1
|
Rapaka D, Adiukwu PC, Challa SR, Bitra VR. Interplay Between Astroglial Endocannabinoid System and the Cognitive Dysfunction in Alzheimer's Disease. Physiol Res 2023; 72:575-586. [PMID: 38015757 PMCID: PMC10751057 DOI: 10.33549/physiolres.935156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 06/29/2023] [Indexed: 01/05/2024] Open
Abstract
Cannabinoid CB1 receptors have been shown to regulate wide array of functions ranging from homeostasis to the cognitive functioning but recent data support the hypothesis that astrocytes also operate as a mediator of synaptic plasticity and contribute to cognition and learning. The receptor heterogeneity plays a key role in understanding the molecular mechanisms underlying these processes. Despite the fact that the majority of CB1 receptors act on neurons, studies have revealed that cannabinoids have direct control over astrocytes, including energy generation and neuroprotection. The tripartite synapse connects astrocytes to neurons and allows them to interact with one another and the astrocytes are key players in synaptic plasticity, which is associated with cognitive functions. This review focuses on our growing understanding of the intricate functions of astroglial CB1 that underpin physiological brain function, and in Alzheimer's disease.
Collapse
Affiliation(s)
- D Rapaka
- School of Pharmacy, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana. ,
| | | | | | | |
Collapse
|
2
|
Lampron MC, Paré I, Al-Zharani M, Semlali A, Loubaki L. Cannabinoid Mixture Affects the Fate and Functions of B Cells through the Modulation of the Caspase and MAP Kinase Pathways. Cells 2023; 12:588. [PMID: 36831255 PMCID: PMC9954265 DOI: 10.3390/cells12040588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/12/2023] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
Cannabis use is continuously increasing in Canada, raising concerns about its potential impact on immunity. The current study assessed the impact of a cannabinoid mixture (CM) on B cells and the mechanisms by which the CM exerts its potential anti-inflammatory properties. Peripheral blood mononuclear cells (PBMCs) were treated with different concentrations of the CM to evaluate cytotoxicity. In addition, flow cytometry was used to evaluate oxidative stress, antioxidant levels, mitochondrial membrane potential, apoptosis, caspase activation, and the activation of key signaling pathways (ERK1/2, NF-κB, STAT5, and p38). The number of IgM- and IgG-expressing cells was assessed using FluoroSpot, and the cytokine production profile of the B cells was explored using a cytokine array. Our results reveal that the CM induced B-cell cytotoxicity in a dose-dependent manner, which was mediated by apoptosis. The levels of ROS and those of the activated caspases, mitochondrial membrane potential, and DNA damage increased following exposure to the CM (3 µg/mL). In addition, the activation of MAP Kinase, STATs, and the NF-κB pathway and the number of IgM- and IgG-expressing cells were reduced following exposure to the CM. Furthermore, the exposure to the CM significantly altered the cytokine profile of the B cells. Our results suggest that cannabinoids have a detrimental effect on B cells, inducing caspase-mediated apoptosis.
Collapse
Affiliation(s)
- Marie-Claude Lampron
- Héma-Québec, Medical Affairs and Innovation, 1070 Avenue des Sciences-de-la-Vie, Québec, QC G1V 5C3, Canada
| | - Isabelle Paré
- Héma-Québec, Medical Affairs and Innovation, 1070 Avenue des Sciences-de-la-Vie, Québec, QC G1V 5C3, Canada
| | - Mohammed Al-Zharani
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Abdelhabib Semlali
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec, QC G1V 0A6, Canada
| | - Lionel Loubaki
- Héma-Québec, Medical Affairs and Innovation, 1070 Avenue des Sciences-de-la-Vie, Québec, QC G1V 5C3, Canada
- Department of Biochemistry, Microbiology and Bioinformatics, Laval University, Québec, QC G1V 0A6, Canada
| |
Collapse
|
3
|
Eraso‐Pichot A, Pouvreau S, Olivera‐Pinto A, Gomez‐Sotres P, Skupio U, Marsicano G. Endocannabinoid signaling in astrocytes. Glia 2023; 71:44-59. [PMID: 35822691 PMCID: PMC9796923 DOI: 10.1002/glia.24246] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 01/07/2023]
Abstract
The study of the astrocytic contribution to brain functions has been growing in popularity in the neuroscience field. In the last years, and especially since the demonstration of the involvement of astrocytes in synaptic functions, the astrocyte field has revealed multiple functions of these cells that seemed inconceivable not long ago. In parallel, cannabinoid investigation has also identified different ways by which cannabinoids are able to interact with these cells, modify their functions, alter their communication with neurons and impact behavior. In this review, we will describe the expression of different endocannabinoid system members in astrocytes. Moreover, we will relate the latest findings regarding cannabinoid modulation of some of the most relevant astroglial functions, namely calcium (Ca2+ ) dynamics, gliotransmission, metabolism, and inflammation.
Collapse
Affiliation(s)
- Abel Eraso‐Pichot
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| | - Sandrine Pouvreau
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| | - Alexandre Olivera‐Pinto
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| | - Paula Gomez‐Sotres
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| | - Urszula Skupio
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| | - Giovanni Marsicano
- U1215 Neurocentre MagendieInstitut national de la santé et de la recherche médicale (INSERM)BordeauxFrance,University of BordeauxBordeauxFrance
| |
Collapse
|
4
|
Samandar F, Tehranizadeh ZA, Saberi MR, Chamani J. CB1 as a novel target for Ginkgo biloba's terpene trilactone for controlling chemotherapy-induced peripheral neuropathy (CIPN). J Mol Model 2022; 28:283. [PMID: 36044079 DOI: 10.1007/s00894-022-05284-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022]
Abstract
The application of antineoplastic chemotherapeutic agents causes a common side effect known as chemotherapy-induced peripheral neuropathy (CIPN) that leads to reducing the quality of patient's life. This research involves the performance of molecular docking and molecular dynamic (MD) simulation studies to explore the impact of terpenoids of Ginkgo biloba on the targets (CB-1, TLR4, FAAH-1, COX-1, COX-2) that can significantly affect the controlling of CIPN's symptoms. According to the in-vitro and in-vivo investigations, terpenoids, particularly ginkgolides B, A, and bilobalide, can cause significant effects on neuropathic pain. The molecular docking results disclosed the tendency of our ligands to interact with mainly CB1 and FAAH-1, as well as partly with TLR4, throughout their interactions with targets. Terpene trilactone can exhibit a lower rate of binding energy than CB1's inhibitor (7dy), while being precisely located in the CB1's active site and capable of inducing stable interactions by forming hydrogen bonds. The analyses of MD simulation proved that ginkgolide B was a more suitable activator and inhibitor for CB1 and TLR4, respectively, when compared to bilobalide and ginkgolide A. Moreover, bilobalide is capable of inhibiting FAAH-1 more effectively than the two other ligands. According to the analyses of ADME, every three ligands followed the Lipinski's rule of five. Considering these facts, the exertion of three ligands is recommended for their anti-inflammatory, neuroprotective, and anti-nociception influences caused by primarily activating CB1 and inhibiting FAAH-1 and TLR4; in this regard, these compounds can stand as potential candidates for the control and treatment of CIPN's symptoms.
Collapse
Affiliation(s)
- Farzaneh Samandar
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Zeinab Amiri Tehranizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mohammad Reza Saberi
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Bioinformatics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jamshidkhan Chamani
- Department of Biology, Faculty of Sciences, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
5
|
de Bus IA, America AHP, de Ruijter NCA, Lam M, van de Sande JW, Poland M, Witkamp RF, Zuilhof H, Balvers MGJ, Albada B. PUFA-Derived N-Acylethanolamide Probes Identify Peroxiredoxins and Small GTPases as Molecular Targets in LPS-Stimulated RAW264.7 Macrophages. ACS Chem Biol 2022; 17:2054-2064. [PMID: 35867905 PMCID: PMC9396616 DOI: 10.1021/acschembio.1c00355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We studied the mechanistic and biological origins of anti-inflammatory poly-unsaturated fatty acid-derived N-acylethanolamines using synthetic bifunctional chemical probes of docosahexaenoyl ethanolamide (DHEA) and arachidonoyl ethanolamide (AEA) in RAW264.7 macrophages stimulated with 1.0 μg mL-1 lipopolysaccharide. Using a photoreactive diazirine, probes were covalently attached to their target proteins, which were further studied by introducing a fluorescent probe or biotin-based affinity purification. Fluorescence confocal microscopy showed DHEA and AEA probes localized in cytosol, specifically in structures that point toward the endoplasmic reticulum and in membrane vesicles. Affinity purification followed by proteomic analysis revealed peroxiredoxin-1 (Prdx1) as the most significant binding interactor of both DHEA and AEA probes. In addition, Prdx4, endosomal related proteins, small GTPase signaling proteins, and prostaglandin synthase 2 (Ptgs2, also known as cyclooxygenase 2 or COX-2) were identified. Lastly, confocal fluorescence microscopy revealed the colocalization of Ptgs2 and Rac1 with DHEA and AEA probes. These data identified new molecular targets suggesting that DHEA and AEA may be involved in reactive oxidation species regulation, cell migration, cytoskeletal remodeling, and endosomal trafficking and support endocytosis as an uptake mechanism.
Collapse
Affiliation(s)
- Ian-Arris de Bus
- Division of Human Nutrition and Health, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.,Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Antoine H P America
- Wageningen Plant Research, Business Unit Bioscience, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Norbert C A de Ruijter
- Laboratory of Cell Biology, Wageningen Light Microscopy Centre, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Milena Lam
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Jasper W van de Sande
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Mieke Poland
- Division of Human Nutrition and Health, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Renger F Witkamp
- Division of Human Nutrition and Health, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Han Zuilhof
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.,School of Pharmaceutical Sciences and Technology, Tianjin University, 92 Weijin Road, 300072 Tianjin, People's Republic of China.,Department of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Michiel G J Balvers
- Division of Human Nutrition and Health, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Bauke Albada
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
6
|
Vecchiarelli HA, Aukema RJ, Hume C, Chiang V, Morena M, Keenan CM, Nastase AS, Lee FS, Pittman QJ, Sharkey KA, Hill MN. Genetic Variants of Fatty Acid Amide Hydrolase Modulate Acute Inflammatory Responses to Colitis in Adult Male Mice. Front Cell Neurosci 2021; 15:764706. [PMID: 34916909 PMCID: PMC8670533 DOI: 10.3389/fncel.2021.764706] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/25/2021] [Indexed: 11/13/2022] Open
Abstract
Cannabinoids, including cannabis derived phytocannabinoids and endogenous cannabinoids (endocannabinoids), are typically considered anti-inflammatory. One such endocannabinoid is N-arachidonoylethanolamine (anandamide, AEA), which is metabolized by fatty acid amide hydrolase (FAAH). In humans, there is a loss of function single nucleotide polymorphism (SNP) in the FAAH gene (C385A, rs324420), that leads to increases in the levels of AEA. Using a mouse model with this SNP, we investigated how this SNP affects inflammation in a model of inflammatory bowel disease. We administered 2,4,6-trinitrobenzene sulfonic acid (TNBS) intracolonically, to adult male FAAH SNP mice and examined colonic macroscopic tissue damage and myeloperoxidase activity, as well as levels of plasma and amygdalar cytokines and chemokines 3 days after administration, at the peak of colitis. We found that mice possessing the loss of function alleles (AC and AA), displayed no differences in colonic damage or myeloperoxidase activity compared to mice with wild type alleles (CC). In contrast, in plasma, colitis-induced increases in interleukin (IL)-2, leukemia inhibitory factor (LIF), monocyte chemoattractant protein (MCP)-1, and tumor necrosis factor (TNF) were reduced in animals with an A allele. A similar pattern was observed in the amygdala for granulocyte colony stimulating factor (G-CSF) and MCP-1. In the amygdala, the mutant A allele led to lower levels of IL-1α, IL-9, macrophage inflammatory protein (MIP)-1β, and MIP-2 independent of colitis-providing additional understanding of how FAAH may serve as a regulator of inflammatory responses in the brain. Together, these data provide insights into how FAAH regulates inflammatory processes in disease.
Collapse
Affiliation(s)
- Haley A Vecchiarelli
- Neuroscience Graduate Program, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Robert J Aukema
- Neuroscience Graduate Program, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Catherine Hume
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Vincent Chiang
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Maria Morena
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Catherine M Keenan
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Andrei S Nastase
- Neuroscience Graduate Program, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Francis S Lee
- Department of Psychiatry, Weill Cornell Medical College, New York, NY, United States
| | - Quentin J Pittman
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Keith A Sharkey
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Matthew N Hill
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Mathison Centre for Mental Health Research and Education, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
7
|
Guzzo LS, Oliveira CC, Ferreira RCM, Machado DPD, Castor MGM, Perez AC, Piscitelli F, Marzo VD, Romero TRL, Duarte IDG. Kahweol, a natural diterpene from coffee, induces peripheral antinociception by endocannabinoid system activation. Braz J Med Biol Res 2021; 54:e11071. [PMID: 34730678 PMCID: PMC8555452 DOI: 10.1590/1414-431x2021e11071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/26/2021] [Indexed: 11/24/2022] Open
Abstract
Kahweol is a compound derived from coffee with reported antinociceptive effects. Based on the few reports that exist in the literature regarding the mechanisms involved in kahweol-induced peripheral antinociceptive action, this study proposed to investigate the contribution of the endocannabinoid system to the peripheral antinociception induced in rats by kahweol. Hyperalgesia was induced by intraplantar injection of prostaglandin E2(PGE2) and was measured with the paw pressure test. Kahweol and the drugs to test the cannabinoid system were administered locally into the right hind paw. The endocannabinoids were purified by open-bed chromatography on silica and measured by LC-MS. Kahweol (80 µg/paw) induced peripheral antinociception against PGE2-induced hyperalgesia. This effect was reversed by the intraplantar injection of the CB1 cannabinoid receptor antagonist AM251 (20, 40, and 80 μg/paw), but not by the CB2 cannabinoid receptor antagonist AM630 (100 μg/paw). Treatment with the endocannabinoid reuptake inhibitor VDM11 (2.5 μg/paw) intensified the peripheral antinociceptive effect induced by low-dose kahweol (40 μg/paw). The monoacylglycerol lipase (MAGL) inhibitor, JZL184 (4 μg/paw), and the dual MAGL/fatty acid amide hydrolase (FAAH) inhibitor, MAFP (0.5 μg/paw), potentiated the peripheral antinociceptive effect of low-dose kahweol. Furthermore, kahweol increased the levels of the endocannabinoid anandamide, but not of the other endocannabinoid 2-arachidonoylglycerol nor of anandamide-related N-acylethanolamines, in the plantar surface of the rat paw. Our results suggested that kahweol induced peripheral antinociception via anandamide release and activation of CB1 cannabinoid receptors and this compound could be used to develop new drugs for pain relief.
Collapse
Affiliation(s)
- L S Guzzo
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - C C Oliveira
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - R C M Ferreira
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - D P D Machado
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - M G M Castor
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - A C Perez
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - F Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Napoli, Italy
| | - V Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Napoli, Italy
| | - T R L Romero
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - I D G Duarte
- Departamento de Farmacologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| |
Collapse
|
8
|
Greco R, Demartini C, Francavilla M, Zanaboni AM, Tassorelli C. Dual Inhibition of FAAH and MAGL Counteracts Migraine-like Pain and Behavior in an Animal Model of Migraine. Cells 2021; 10:2543. [PMID: 34685523 PMCID: PMC8534238 DOI: 10.3390/cells10102543] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/07/2021] [Accepted: 09/23/2021] [Indexed: 12/26/2022] Open
Abstract
The endocannabinoid system exerts an important role in pain processing and modulation. Modulation of the system with hydrolase inhibitors of anandamide (AEA) or 2-arachidonyl glycerol (2-AG) has proved effective in reducing migraine-like features in animal models of migraine. Here, we investigated the effect of dual inhibition of the AEA and 2-AG catabolic pathways in the nitroglycerin-based animal model of migraine. The dual inhibitor JZL195 was administered to rats 2 h after nitroglycerin or vehicle injection. Rats were then exposed to the open field test and the orofacial formalin test. At the end of the tests, they were sacrificed to evaluate calcitonin gene-related peptide (CGRP) serum levels and gene expression of CGRP and cytokines in the cervical spinal cord and the trigeminal ganglion. The dual inhibitor significantly reduced the nitroglycerin-induced trigeminal hyperalgesia and pain-associated behavior, possibly via cannabinoid 1 receptors-mediated action, but it did not change the hypomotility and the anxiety behaviors induced by nitroglycerin. The decreased hyperalgesia was associated with a reduction in CGRP and cytokine gene expression levels in central and peripheral structures and reduced CGRP serum levels. These data suggest an antinociceptive synergy of the endocannabinoid action in peripheral and central sites, confirming that this system participates in reduction of cephalic pain signals.
Collapse
Affiliation(s)
- Rosaria Greco
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy; (C.D.); (M.F.); (A.M.Z.); (C.T.)
| | - Chiara Demartini
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy; (C.D.); (M.F.); (A.M.Z.); (C.T.)
| | - Miriam Francavilla
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy; (C.D.); (M.F.); (A.M.Z.); (C.T.)
| | - Anna Maria Zanaboni
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy; (C.D.); (M.F.); (A.M.Z.); (C.T.)
- Department of Brain and Behavioral Sciences, University of Pavia, via Bassi 21, 27100 Pavia, Italy
| | - Cristina Tassorelli
- Unit of Translational Neurovascular Research, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy; (C.D.); (M.F.); (A.M.Z.); (C.T.)
- Department of Brain and Behavioral Sciences, University of Pavia, via Bassi 21, 27100 Pavia, Italy
| |
Collapse
|
9
|
Flannery LE, Kerr DM, Hughes EM, Kelly C, Costello J, Thornton AM, Humphrey RM, Finn DP, Roche M. N-acylethanolamine regulation of TLR3-induced hyperthermia and neuroinflammatory gene expression: A role for PPARα. J Neuroimmunol 2021; 358:577654. [PMID: 34265624 PMCID: PMC8243641 DOI: 10.1016/j.jneuroim.2021.577654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/11/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022]
Abstract
Increasing evidence suggests that SARS-CoV-2, the virus responsible for the COVID-19 pandemic, is associated with increased risk of developing neurological or psychiatric conditions such as depression, anxiety or dementia. While the precise mechanism underlying this association is unknown, aberrant activation of toll-like receptor (TLR)3, a viral recognizing pattern recognition receptor, may play a key role. Synthetic cannabinoids and enhancing cannabinoid tone via inhibition of fatty acid amide hydrolase (FAAH) has been demonstrated to modulate TLR3-induced neuroimmune responses and associated sickness behaviour. However, the role of individual FAAH substrates, and the receptor mechanisms mediating these effects, are unknown. The present study examined the effects of intracerebral or systemic administration of the FAAH substrates N-oleoylethanolamide (OEA), N-palmitoylethanolamide (PEA) or the anandamide (AEA) analogue meth-AEA on hyperthermia and hypothalamic inflammatory gene expression following administration of the TLR3 agonist, and viral mimetic, poly I:C. The data demonstrate that meth-AEA does not alter TLR3-induced hyperthermia or hypothalamic inflammatory gene expression. In comparison, OEA and PEA attenuated the TLR3-induced hyperthermia, although only OEA attenuated the expression of hyperthermia-related genes (IL-1β, iNOS, COX2 and m-PGES) in the hypothalamus. OEA, but not PEA, attenuated TLR3-induced increases in the expression of all IRF- and NFκB-related genes examined in the hypothalamus, but not in the spleen. Antagonism of PPARα prevented the OEA-induced attenuation of IRF- and NFκB-related genes in the hypothalamus following TLR3 activation but did not significantly alter temperature. PPARα agonism did not alter TLR3-induced hyperthermia or hypothalamic inflammatory gene expression. These data indicate that OEA may be the primary FAAH substrate that modulates TLR3-induced neuroinflammation and hyperthermia, effects partially mediated by PPARα.
Collapse
Affiliation(s)
- Lisa E Flannery
- Physiology, National University of Ireland, Galway, Ireland; Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Daniel M Kerr
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland; Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Edel M Hughes
- Physiology, National University of Ireland, Galway, Ireland
| | - Colm Kelly
- Physiology, National University of Ireland, Galway, Ireland
| | | | | | - Rachel M Humphrey
- Physiology, National University of Ireland, Galway, Ireland; Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland; Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Michelle Roche
- Physiology, National University of Ireland, Galway, Ireland; Centre for Pain Research and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland.
| |
Collapse
|
10
|
Morris G, Walder K, Kloiber S, Amminger P, Berk M, Bortolasci CC, Maes M, Puri BK, Carvalho AF. The endocannabinoidome in neuropsychiatry: Opportunities and potential risks. Pharmacol Res 2021; 170:105729. [PMID: 34119623 DOI: 10.1016/j.phrs.2021.105729] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023]
Abstract
The endocannabinoid system (ECS) comprises two cognate endocannabinoid receptors referred to as CB1R and CB2R. ECS dysregulation is apparent in neurodegenerative/neuro-psychiatric disorders including but not limited to schizophrenia, major depressive disorder and potentially bipolar disorder. The aim of this paper is to review mechanisms whereby both receptors may interact with neuro-immune and neuro-oxidative pathways, which play a pathophysiological role in these disorders. CB1R is located in the presynaptic terminals of GABAergic, glutamatergic, cholinergic, noradrenergic and serotonergic neurons where it regulates the retrograde suppression of neurotransmission. CB1R plays a key role in long-term depression, and, to a lesser extent, long-term potentiation, thereby modulating synaptic transmission and mediating learning and memory. Optimal CB1R activity plays an essential neuroprotective role by providing a defense against the development of glutamate-mediated excitotoxicity, which is achieved, at least in part, by impeding AMPA-mediated increase in intracellular calcium overload and oxidative stress. Moreover, CB1R activity enables optimal neuron-glial communication and the function of the neurovascular unit. CB2R receptors are detected in peripheral immune cells and also in central nervous system regions including the striatum, basal ganglia, frontal cortex, hippocampus, amygdala as well as the ventral tegmental area. CB2R upregulation inhibits the presynaptic release of glutamate in several brain regions. CB2R activation also decreases neuroinflammation partly by mediating the transition from a predominantly neurotoxic "M1" microglial phenotype to a more neuroprotective "M2" phenotype. CB1R and CB2R are thus novel drug targets for the treatment of neuro-immune and neuro-oxidative disorders including schizophrenia and affective disorders.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Deakin University, Centre for Molecular and Medical Research, School of Medicine, Geelong, Australia
| | - Stefan Kloiber
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, 33 Ursula Franklin Street, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Paul Amminger
- Orygen, Parkville, Victoria, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, Centre for Youth Mental Health, Florey Institute for Neuroscience and Mental Health and the Department of Psychiatry, The University of Melbourne, Melbourne, Australia
| | - Chiara C Bortolasci
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Maes
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia; Department of Psychiatry, Faculty of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
| | | | - Andre F Carvalho
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| |
Collapse
|
11
|
Rivera P, Guerra-Cantera S, Vargas A, Díaz F, García-Úbeda R, Tovar R, Ramírez-López MT, Argente J, de Fonseca FR, Suárez J, Chowen JA. Maternal hypercaloric diet affects factors involved in lipid metabolism and the endogenous cannabinoid systems in the hypothalamus of adult offspring: sex-specific response of astrocytes to palmitic acid and anandamide. Nutr Neurosci 2020; 25:931-944. [PMID: 32954972 DOI: 10.1080/1028415x.2020.1821519] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Aim: We aimed to investigate whether maternal malnutrition during gestation/lactation induces long-lasting changes on inflammation, lipid metabolism and endocannabinoid signaling in the adult offspring hypothalamus and the role of hypothalamic astrocytes in these changes.Methods: We analyzed the effects of a free-choice hypercaloric palatable diet (P) during (pre)gestation, lactation and/or post-weaning on inflammation, lipid metabolism and endogenous cannabinoid signaling in the adult offspring hypothalamus. We also evaluated the response of primary hypothalamic astrocytes to palmitic acid and anandamide.Results: Postnatal exposure to a P diet induced factors involved in hypothalamic inflammation (Tnfa and Il6) and gliosis (Gfap, vimentin and Iba1) in adult offspring, being more significant in females. In contrast, maternal P diet reduced factors involved in astrogliosis (vimentin), fatty acid oxidation (Cpt1a) and monounsaturated fatty acid synthesis (Scd1). These changes were accompanied by an increase in the expression of the genes for the cannabinoid receptor (Cnr1) and Nape-pld, an enzyme involved in endocannabinoid synthesis, in females and a decrease in the endocannabinoid degradation enzyme Faah in males. These changes suggest that the maternal P diet results in sex-specific alterations in hypothalamic endocannabinoid signaling and lipid metabolism. This hypothesis was tested in hypothalamic astrocyte cultures, where palmitic acid (PA) and the polyunsaturated fatty acid N-arachidonoylethanolamine (anandamide or AEA) were found to induce similar changes in the endocannabinoid system (ECS) and lipid metabolism.Conclusion: These results stress the importance of both maternal diet and sex in long term metabolic programming and suggest a possible role of hypothalamic astrocytes in this process.
Collapse
Affiliation(s)
- Patricia Rivera
- Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
| | - Santiago Guerra-Cantera
- Department of Endocrinology, Fundación Investigación Biomédica del Hospital Infantil Universitario Niño Jesús, Instituto de Investigación Biomédica la Princesa, Madrid, Spain.,CIBEROBN (Centro de Investigación Biomédica en Red sobre Fisiopatología de la Obesidad y Nutrición), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Vargas
- Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
| | - Francisca Díaz
- Department of Endocrinology, Fundación Investigación Biomédica del Hospital Infantil Universitario Niño Jesús, Instituto de Investigación Biomédica la Princesa, Madrid, Spain.,CIBEROBN (Centro de Investigación Biomédica en Red sobre Fisiopatología de la Obesidad y Nutrición), Instituto de Salud Carlos III, Madrid, Spain
| | - Rocío García-Úbeda
- Department of Endocrinology, Fundación Investigación Biomédica del Hospital Infantil Universitario Niño Jesús, Instituto de Investigación Biomédica la Princesa, Madrid, Spain
| | - Rubén Tovar
- Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
| | | | - Jesús Argente
- Department of Endocrinology, Fundación Investigación Biomédica del Hospital Infantil Universitario Niño Jesús, Instituto de Investigación Biomédica la Princesa, Madrid, Spain.,CIBEROBN (Centro de Investigación Biomédica en Red sobre Fisiopatología de la Obesidad y Nutrición), Instituto de Salud Carlos III, Madrid, Spain.,IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain.,Department of Pediatrics, Universidad Autonóma de Madrid, Madrid, Spain
| | - Fernando Rodríguez de Fonseca
- Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
| | - Juan Suárez
- Hospital Regional Universitario de Málaga, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Málaga, Spain
| | - Julie A Chowen
- Department of Endocrinology, Fundación Investigación Biomédica del Hospital Infantil Universitario Niño Jesús, Instituto de Investigación Biomédica la Princesa, Madrid, Spain.,CIBEROBN (Centro de Investigación Biomédica en Red sobre Fisiopatología de la Obesidad y Nutrición), Instituto de Salud Carlos III, Madrid, Spain.,IMDEA Food Institute, CEI UAM + CSIC, Madrid, Spain
| |
Collapse
|
12
|
Feliu A, Mestre L, Carrillo-Salinas FJ, Yong VW, Mecha M, Guaza C. 2-arachidonoylglycerol reduces chondroitin sulphate proteoglycan production by astrocytes and enhances oligodendrocyte differentiation under inhibitory conditions. Glia 2020; 68:1255-1273. [PMID: 31894889 DOI: 10.1002/glia.23775] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 11/22/2019] [Accepted: 12/17/2019] [Indexed: 01/21/2023]
Abstract
The failure to remyelinate and regenerate is a critical impediment to recovery in multiple sclerosis (MS), resulting in severe dysfunction and disability. The chondroitin sulfate proteoglycans (CSPGs) that accumulate in MS lesions are thought to be linked to the failure to regenerate, impeding oligodendrocyte precursor cell (OPC) differentiation and neuronal growth. The potential of endocannabinoids to influence MS progression may reflect their capacity to enhance repair processes. Here, we investigated how 2-arachidonoylglycerol (2-AG) may affect the production of the CSPGs neurocan and brevican by astrocytes in culture. In addition, we studied whether 2-AG promotes oligodendrocyte differentiation under inhibitory conditions in vitro. Following treatment with 2-AG or by enhancing its endogenous tone through the use of inhibitors of its hydrolytic enzymes, CSPG production by rat and human TGF-β1 stimulated astrocytes was reduced. These effects of 2-AG might reflect its influence on TGF-β1/SMAD pathway, signaling that is involved in CSPG upregulation. The matrix generated from 2-AG-treated astrocytes is less inhibitory to oligodendrocyte differentiation and significantly, 2-AG administration directly promotes the differentiation of rat and human oligodendrocytes cultured under inhibitory conditions. Overall, the data obtained favor targeting the endocannabinoid system to neutralize CSPG accumulation and to enhance oligodendrocyte differentiation.
Collapse
Affiliation(s)
- Ana Feliu
- Functional and Systems Neurobiology Department, Neuroimmunology Group, Instituto Cajal, CSIC, Madrid, Spain
| | - Leyre Mestre
- Functional and Systems Neurobiology Department, Neuroimmunology Group, Instituto Cajal, CSIC, Madrid, Spain
| | | | - V Wee Yong
- Hotchkiss Brain Institute and the Department of Clinical Neurosciences and Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Miriam Mecha
- Functional and Systems Neurobiology Department, Neuroimmunology Group, Instituto Cajal, CSIC, Madrid, Spain
| | - Carmen Guaza
- Functional and Systems Neurobiology Department, Neuroimmunology Group, Instituto Cajal, CSIC, Madrid, Spain
| |
Collapse
|
13
|
Adipocyte cannabinoid CB1 receptor deficiency alleviates high fat diet-induced memory deficit, depressive-like behavior, neuroinflammation and impairment in adult neurogenesis. Psychoneuroendocrinology 2019; 110:104418. [PMID: 31491589 DOI: 10.1016/j.psyneuen.2019.104418] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/14/2019] [Accepted: 08/22/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND Obesity is a low-grade inflammation condition that facilitates the development of numerous comorbidities and the dysregulation of brain homeostasis. Additionally, obesity also causes distinct behavioral alterations both in humans and rodents. Here, we investigated the effect of inducible genetic deletion of the cannabinoid type 1 receptor (CB1) in adipocytes (Ati-CB1-KO mice) on obesity-induced memory deficits, depressive-like behavior, neuroinflammation and adult neurogenesis. METHODS Behavioral, mRNA expression and immunohistochemical studies were performed in Ati-CB1-KO mice and corresponding wild-type controls under standard and high-fat diet. RESULTS Adipocyte-specific CB1 deletion reversed metabolic disturbances associated with an obese condition confirming previous studies. As compared to obese mice, the metabolic amelioration in Ati-CB1-KO mice was associated with an improvement of mood-related behavior and recognition memory, concomitantly with an increase in cell proliferation in metabolic relevant neurogenic niches in hippocampus and hypothalamus. In mutant mice, these changes were related to an increased neuronal maturation/survival in the hippocampus. Furthermore, CB1 deletion in adipocytes was sufficient to reduce obesity-induced inflammation, gliosis and apoptosis in a brain region-specific manner. CONCLUSIONS Overall our data provide compelling evidence of the physiological relevance of the adipocyte-brain crosstalk where adipocyte-specific CB1 influences obesity-related cognitive deficits and depression-like behavior, concomitantly with brain remodeling, such as adult neurogenesis and neuroinflammation in the hippocampus and hypothalamus.
Collapse
|
14
|
de Almeida V, Martins-de-Souza D. Cannabinoids and glial cells: possible mechanism to understand schizophrenia. Eur Arch Psychiatry Clin Neurosci 2018; 268:727-737. [PMID: 29392440 DOI: 10.1007/s00406-018-0874-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/24/2018] [Indexed: 01/03/2023]
Abstract
Clinical and neurobiological findings have reported the involvement of endocannabinoid signaling in the pathophysiology of schizophrenia. This system modulates dopaminergic and glutamatergic neurotransmission that is associated with positive, negative, and cognitive symptoms of schizophrenia. Despite neurotransmitter impairments, increasing evidence points to a role of glial cells in schizophrenia pathobiology. Glial cells encompass three main groups: oligodendrocytes, microglia, and astrocytes. These cells promote several neurobiological functions, such as myelination of axons, metabolic and structural support, and immune response in the central nervous system. Impairments in glial cells lead to disruptions in communication and in the homeostasis of neurons that play role in pathobiology of disorders such as schizophrenia. Therefore, data suggest that glial cells may be a potential pharmacological tool to treat schizophrenia and other brain disorders. In this regard, glial cells express cannabinoid receptors and synthesize endocannabinoids, and cannabinoid drugs affect some functions of these cells that can be implicated in schizophrenia pathobiology. Thus, the aim of this review is to provide data about the glial changes observed in schizophrenia, and how cannabinoids could modulate these alterations.
Collapse
Affiliation(s)
- Valéria de Almeida
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato 255, Campinas, SP, 13083-862, Brazil.
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato 255, Campinas, SP, 13083-862, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| |
Collapse
|
15
|
Boccella S, Cristiano C, Romano R, Iannotta M, Belardo C, Farina A, Guida F, Piscitelli F, Palazzo E, Mazzitelli M, Imperatore R, Tunisi L, de Novellis V, Cristino L, Di Marzo V, Calignano A, Maione S, Luongo L. Ultra-micronized palmitoylethanolamide rescues the cognitive decline-associated loss of neural plasticity in the neuropathic mouse entorhinal cortex-dentate gyrus pathway. Neurobiol Dis 2018; 121:106-119. [PMID: 30266286 DOI: 10.1016/j.nbd.2018.09.023] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 09/10/2018] [Accepted: 09/24/2018] [Indexed: 02/08/2023] Open
Abstract
Chronic pain is associated with cognitive deficits. Palmitoylethanolamide (PEA) has been shown to ameliorate pain and pain-related cognitive impairments by restoring glutamatergic synapses functioning in the spared nerve injury (SNI) of the sciatic nerve in mice. SNI reduced mechanical and thermal threshold, spatial memory and LTP at the lateral entorhinal cortex (LEC)-dentate gyrus (DG) pathway. It decreased also postsynaptic density, volume and dendrite arborization of DG and increased the expression of metabotropic glutamate receptor 1 and 7 (mGluR1 and mGluR7), of the GluR1, GluR1s845 and GluR1s831 subunits of AMPA receptor and the levels of glutamate in the DG. The level of the endocannabinoid 2-arachidonoylglycerol (2-AG) was instead increased in the LEC. Chronic treatment with PEA, starting from when neuropathic pain was fully developed, was able to reverse mechanical allodynia and thermal hyperalgesia, memory deficit and LTP in SNI wild type, but not in PPARα null, mice. PEA also restored the level of glutamate and the expression of phosphorylated GluR1 subunits, postsynaptic density and neurogenesis. Altogether, these results suggest that neuropathic pain negatively affects cognitive behavior and related LTP, glutamatergic synapse and synaptogenesis in the DG. In these conditions PEA treatment alleviates pain and cognitive impairment by restoring LTP and synaptic maladaptative changes in the LEC-DG pathway. These outcomes open new perspectives for the use of the N-acylethanolamines, such as PEA, for the treatment of neuropathic pain and its central behavioural sequelae.
Collapse
Affiliation(s)
- Serena Boccella
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138 Naples, Italy
| | - Claudia Cristiano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Rosaria Romano
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138 Naples, Italy
| | - Monica Iannotta
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138 Naples, Italy
| | - Carmela Belardo
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138 Naples, Italy
| | - Antonio Farina
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138 Naples, Italy
| | - Francesca Guida
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138 Naples, Italy
| | - Fabiana Piscitelli
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy
| | - Enza Palazzo
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138 Naples, Italy
| | - Mariacristina Mazzitelli
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Roberta Imperatore
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Lea Tunisi
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy
| | - Vito de Novellis
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138 Naples, Italy
| | - Luigia Cristino
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy
| | - Vincenzo Di Marzo
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry, CNR, Pozzuoli, Italy
| | - Antonio Calignano
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138 Naples, Italy
| | - Livio Luongo
- Department of Experimental Medicine, Pharmacology Division, University of Campania "L. Vanvitelli", 80138 Naples, Italy.
| |
Collapse
|
16
|
Bilkei-Gorzo A, Albayram O, Ativie F, Chasan S, Zimmer T, Bach K, Zimmer A. Cannabinoid 1 receptor signaling on GABAergic neurons influences astrocytes in the ageing brain. PLoS One 2018; 13:e0202566. [PMID: 30114280 PMCID: PMC6095551 DOI: 10.1371/journal.pone.0202566] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/06/2018] [Indexed: 01/27/2023] Open
Abstract
Astrocytes, key regulators of brain homeostasis, interact with neighboring glial cells, neurons and the vasculature through complex processes involving different signaling pathways. It is not entirely clear how these interactions change in the ageing brain and which factors influence astrocyte ageing. Here, we investigate the role of endocannabinoid signaling, because it is an important modulator of neuron and astrocyte functions, as well as brain ageing. We demonstrate that mice with a specific deletion of CB1 receptors on GABAergic neurons (GABA-Cnr1-/- mice), which show a phenotype of accelerated brain ageing, affects age-related changes in the morphology of astrocytes in the hippocampus. Thus, GABA-Cnr1-/- mice showed a much more pronounced age-related and layer-specific increase in GFAP-positive areas in the hippocampus compared to wild-type animals. The number of astrocytes, in contrast, was similar between the two genotypes. Astrocytes in the hippocampus of old GABA-Cnr1-/- mice also showed a different morphology with enhanced GFAP-positive process branching and a less polarized intrahippocampal distribution. Furthermore, astrocytic TNFα levels were higher in GABA-Cnr1-/- mice, indicating that these morphological changes were accompanied by a more pro-inflammatory function. These findings demonstrate that the disruption of endocannabinoid signaling on GABAergic neurons is accompanied by functional changes in astrocyte activity, which are relevant to brain ageing.
Collapse
Affiliation(s)
- Andras Bilkei-Gorzo
- Institute of Molecular Psychiatry, Medical Faculty of the University of Bonn, Bonn, Germany
- * E-mail:
| | - Onder Albayram
- Institute of Molecular Psychiatry, Medical Faculty of the University of Bonn, Bonn, Germany
| | - Frank Ativie
- Institute of Molecular Psychiatry, Medical Faculty of the University of Bonn, Bonn, Germany
| | - Safak Chasan
- Institute of Molecular Psychiatry, Medical Faculty of the University of Bonn, Bonn, Germany
| | - Till Zimmer
- Institute of Molecular Psychiatry, Medical Faculty of the University of Bonn, Bonn, Germany
| | - Karsten Bach
- Institute of Molecular Psychiatry, Medical Faculty of the University of Bonn, Bonn, Germany
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, Medical Faculty of the University of Bonn, Bonn, Germany
| |
Collapse
|
17
|
Mastinu A, Premoli M, Ferrari-Toninelli G, Tambaro S, Maccarinelli G, Memo M, Bonini SA. Cannabinoids in health and disease: pharmacological potential in metabolic syndrome and neuroinflammation. Horm Mol Biol Clin Investig 2018; 36:/j/hmbci.ahead-of-print/hmbci-2018-0013/hmbci-2018-0013.xml. [PMID: 29601300 DOI: 10.1515/hmbci-2018-0013] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 03/02/2018] [Indexed: 12/26/2022]
Abstract
The use of different natural and/or synthetic preparations of Cannabis sativa is associated with therapeutic strategies for many diseases. Indeed, thanks to the widespread diffusion of the cannabinoidergic system in the brain and in the peripheral districts, its stimulation, or inhibition, regulates many pathophysiological phenomena. In particular, central activation of the cannabinoidergic system modulates the limbic and mesolimbic response which leads to food craving. Moreover, cannabinoid agonists are able to reduce inflammatory response. In this review a brief history of cannabinoids and the protagonists of the endocannabinoidergic system, i.e. synthesis and degradation enzymes and main receptors, will be described. Furthermore, the pharmacological effects of cannabinoids will be outlined. An overview of the involvement of the endocannabinoidergic system in neuroinflammatory and metabolic pathologies will be made. Finally, particular attention will also be given to the new pharmacological entities acting on the two main receptors, cannabinoid receptor type 1 (CB1) and cannabinoid receptor type 2 (CB2), with particular focus on the neuroinflammatory and metabolic mechanisms involved.
Collapse
Affiliation(s)
- Andrea Mastinu
- Department of Molecular and Translational Medicine, Section of Pharmacology, University of Brescia, Brescia, Italy
| | - Marika Premoli
- Department of Molecular and Translational Medicine, Section of Pharmacology, University of Brescia, Brescia, Italy
| | - Giulia Ferrari-Toninelli
- Department of Molecular and Translational Medicine, Section of Pharmacology, University of Brescia, Brescia, Italy.,Istituto Clinico Città di Brescia, Brescia, Italy
| | - Simone Tambaro
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Giuseppina Maccarinelli
- Department of Molecular and Translational Medicine, Section of Pharmacology, University of Brescia, Brescia, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, Section of Pharmacology, University of Brescia, Brescia, Italy
| | - Sara Anna Bonini
- Department of Molecular and Translational Medicine, Section of Pharmacology, University of Brescia, Brescia, Italy
| |
Collapse
|
18
|
Pharmacological inhibition of FAAH modulates TLR-induced neuroinflammation, but not sickness behaviour: An effect partially mediated by central TRPV1. Brain Behav Immun 2017; 62:318-331. [PMID: 28237711 DOI: 10.1016/j.bbi.2017.02.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 02/17/2017] [Accepted: 02/19/2017] [Indexed: 01/08/2023] Open
Abstract
Aberrant activation of toll-like receptors (TLRs), key components of the innate immune system, has been proposed to underlie and exacerbate a range of central nervous system disorders. Increasing evidence supports a role for the endocannabinoid system in modulating inflammatory responses including those mediated by TLRs, and thus this system may provide an important treatment target for neuroinflammatory disorders. However, the effect of modulating endocannabinoid tone on TLR-induced neuroinflammation in vivo and associated behavioural changes is largely unknown. The present study examined the effect of inhibiting fatty acid amide hydrolyase (FAAH), the primary enzyme responsible for the metabolism of anandamide (AEA), in vivo on TLR4-induced neuroimmune and behavioural responses, and evaluated sites and mechanisms of action. Systemic administration of the FAAH inhibitor PF3845 increased levels of AEA, and related FAAH substrates N-oleoylethanolamide (OEA) and N-palmitoylethanolamide (PEA), in the frontal cortex and hippocampus of rats, an effect associated with an attenuation in the expression of pro- and anti-inflammatory cytokines and mediators measured 2hrs following systemic administration of the TLR4 agonist, lipopolysaccharide (LPS). These effects were mimicked by central i.c.v. administration of PF3845, but not systemic administration of the peripherally-restricted FAAH inhibitor URB937. Central antagonism of TRPV1 significantly attenuated the PF3845-induced decrease in IL-6 expression, effects not observed following antagonism of CB1, CB2, PPARα, PPARγ or GPR55. LPS-induced a robust sickness-like behavioural response and increased the expression of markers of glial activity and pro-inflammatory cytokines over 24hrs. Systemic administration of PF3845 modulated the TLR4-induced expression of neuroimmune mediators and anhedonia without altering acute sickness behaviour. Overall, these findings support an important role for FAAH substrates directly within the brain in the regulation of TLR4-associated neuroinflammation and highlight a role for TRPV1 in partially mediating these effects.
Collapse
|
19
|
Kelly MEM, Lehmann C, Zhou J. The Endocannabinoid System in Local and Systemic Inflammation. ACTA ACUST UNITED AC 2017. [DOI: 10.4199/c00151ed1v01y201702isp074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Carta AR, Mulas G, Bortolanza M, Duarte T, Pillai E, Fisone G, Vozari RR, Del-Bel E. l-DOPA-induced dyskinesia and neuroinflammation: do microglia and astrocytes play a role? Eur J Neurosci 2016; 45:73-91. [DOI: 10.1111/ejn.13482] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/07/2016] [Accepted: 11/11/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Anna R. Carta
- Department of Biomedical Sciences; University of Cagliari, Cittadella Universitaria di Monserrato; S.P. N. 8 09042 Monserrato Cagliari Italy
| | - Giovanna Mulas
- Department of Biomedical Sciences; University of Cagliari, Cittadella Universitaria di Monserrato; S.P. N. 8 09042 Monserrato Cagliari Italy
| | - Mariza Bortolanza
- School of Odontology of Ribeirão Preto; Department of Morphology, Physiology and Basic Pathology; University of São Paulo (USP); Av. Café S/N 14040-904 Ribeirão Preto SP Brazil
- USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA); São Paulo Brazil
| | - Terence Duarte
- School of Odontology of Ribeirão Preto; Department of Morphology, Physiology and Basic Pathology; University of São Paulo (USP); Av. Café S/N 14040-904 Ribeirão Preto SP Brazil
- USP, Center for Interdisciplinary Research on Applied Neurosciences (NAPNA); São Paulo Brazil
| | - Elisabetta Pillai
- Department of Biomedical Sciences; University of Cagliari, Cittadella Universitaria di Monserrato; S.P. N. 8 09042 Monserrato Cagliari Italy
| | - Gilberto Fisone
- Department of Neuroscience; Karolinska Institutet; Retzius väg 8 17177 Stockholm Sweden
| | - Rita Raisman Vozari
- INSERM U 1127; CNRS UMR 7225; UPMC Univ Paris 06; UMR S 1127; Institut Du Cerveau et de La Moelle Epiniére; ICM; Paris France
| | - Elaine Del-Bel
- School of Odontology of Ribeirão Preto; Department of Morphology, Physiology and Basic Pathology; University of São Paulo (USP); Av. Café S/N 14040-904 Ribeirão Preto SP Brazil
| |
Collapse
|
21
|
Turcotte C, Blanchet MR, Laviolette M, Flamand N. The CB 2 receptor and its role as a regulator of inflammation. Cell Mol Life Sci 2016; 73:4449-4470. [PMID: 27402121 PMCID: PMC5075023 DOI: 10.1007/s00018-016-2300-4] [Citation(s) in RCA: 359] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/20/2016] [Accepted: 06/27/2016] [Indexed: 12/12/2022]
Abstract
The CB2 receptor is the peripheral receptor for cannabinoids. It is mainly expressed in immune tissues, highlighting the possibility that the endocannabinoid system has an immunomodulatory role. In this respect, the CB2 receptor was shown to modulate immune cell functions, both in cellulo and in animal models of inflammatory diseases. In this regard, numerous studies have reported that mice lacking the CB2 receptor have an exacerbated inflammatory phenotype. This suggests that therapeutic strategies aiming at modulating CB2 signaling could be promising for the treatment of various inflammatory conditions. Herein, we review the pharmacology of the CB2 receptor, its expression pattern, and the signaling pathways induced by its activation. We next examine the regulation of immune cell functions by the CB2 receptor and the evidence obtained from primary human cells, immortalized cell lines, and animal models of inflammation. Finally, we discuss the possible therapies targeting the CB2 receptor and the questions that remain to be addressed to determine whether this receptor could be a potential target to treat inflammatory disease.
Collapse
Affiliation(s)
- Caroline Turcotte
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Quebec, QC, G1V 4G5, Canada
| | - Marie-Renée Blanchet
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Quebec, QC, G1V 4G5, Canada
| | - Michel Laviolette
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Quebec, QC, G1V 4G5, Canada
| | - Nicolas Flamand
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Département de médecine, Faculté de médecine, Université Laval, Quebec, QC, G1V 4G5, Canada.
| |
Collapse
|
22
|
Gajardo-Gómez R, Labra VC, Maturana CJ, Shoji KF, Santibañez CA, Sáez JC, Giaume C, Orellana JA. Cannabinoids prevent the amyloid β-induced activation of astroglial hemichannels: A neuroprotective mechanism. Glia 2016; 65:122-137. [PMID: 27757991 DOI: 10.1002/glia.23080] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/13/2016] [Accepted: 09/19/2016] [Indexed: 11/06/2022]
Abstract
The mechanisms involved in Alzheimer's disease are not completely understood and how astrocytes and their gliotransmission contribute to this neurodegenerative disease remains to be fully elucidated. Previous studies have shown that amyloid-β peptide (Aβ) induces neuronal death by a mechanism that involves the excitotoxic release of ATP and glutamate associated to astroglial hemichannel opening. We have demonstrated that synthetic and endogenous cannabinoids (CBs) reduce the opening of astrocyte Cx43 hemichannels evoked by activated microglia or inflammatory mediators. Nevertheless, whether CBs could prevent the astroglial hemichannel-dependent death of neurons evoked by Aβ is unknown. Astrocytes as well as acute hippocampal slices were treated with the active fragment of Aβ alone or in combination with the following CBs: WIN, 2-AG, or methanandamide (Meth). Hemichannel activity was monitored by single channel recordings and by time-lapse ethidium uptake while neuronal death was assessed by Fluoro-Jade C staining. We report that CBs fully prevented the hemichannel activity and inflammatory profile evoked by Aβ in astrocytes. Moreover, CBs fully abolished the Aβ-induced release of excitotoxic glutamate and ATP associated to astrocyte Cx43 hemichannel activity, as well as neuronal damage in hippocampal slices exposed to Aβ. Consequently, this work opens novel avenues for alternative treatments that target astrocytes to maintain neuronal function and survival during AD. GLIA 2016 GLIA 2017;65:122-137.
Collapse
Affiliation(s)
- Rosario Gajardo-Gómez
- Departamento de Neurología; Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Valeria C Labra
- Departamento de Neurología; Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carola J Maturana
- Departamento de Neurología; Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Kenji F Shoji
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile and Instituto Milenio, Centro Interdisciplinario de Neurociencias de Valparaíso, Chile
| | - Cristian A Santibañez
- Departamento de Neurología; Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan C Sáez
- Departamento de Fisiología, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile and Instituto Milenio, Centro Interdisciplinario de Neurociencias de Valparaíso, Chile
| | - Christian Giaume
- Center for Interdisciplinary Research in Biology, Collège de France/Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7241, Institut National de la Santé et de la Recherche Médicale U1050, Paris Cedex 05, France
| | - Juan A Orellana
- Departamento de Neurología; Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
23
|
Pavón FJ, Marco EM, Vázquez M, Sánchez L, Rivera P, Gavito A, Mela V, Alén F, Decara J, Suárez J, Giné E, López-Moreno JA, Chowen J, Rodríguez-de-Fonseca F, Serrano A, Viveros MP. Effects of Adolescent Intermittent Alcohol Exposure on the Expression of Endocannabinoid Signaling-Related Proteins in the Spleen of Young Adult Rats. PLoS One 2016; 11:e0163752. [PMID: 27662369 PMCID: PMC5035052 DOI: 10.1371/journal.pone.0163752] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/13/2016] [Indexed: 12/15/2022] Open
Abstract
Intermittent alcohol exposure is a common pattern of alcohol consumption among adolescents and alcohol is known to modulate the expression of the endocannabinoid system (ECS), which is involved in metabolism and inflammation. However, it is unknown whether this pattern may have short-term consequences on the ECS in the spleen. To address this question, we examined the plasma concentrations of metabolic and inflammatory signals and the splenic ECS in early adult rats exposed to alcohol during adolescence. A 4-day drinking in the dark (DID) procedure for 4 weeks was used as a model of intermittent forced-alcohol administration (20%, v/v) in female and male Wistar rats, which were sacrificed 2 weeks after the last DID session. First, there was no liver damage or alterations in plasma metabolic parameters. However, certain plasma inflammatory signals were altered according to sex and alcohol exposition. Whereas fractalkine [chemokine (C-X3-C motif) ligand 1] was only affected by sex with lower concentration in male rats, there was an interaction between sex and alcohol exposure in the TNF-α and interleukin-6 concentrations and only female rats displayed changes. Regarding the mRNA and protein expression of the ECS, the receptors and endocannabinoid-synthesizing enzymes were found to be altered with area-specific expression patterns in the spleen. Overall, whereas the expression of the cannabinoid receptor CB1 and the nuclear peroxisome proliferator-activated receptor PPARα were lower in alcohol-exposed rats compared to control rats, the CB2 expression was higher. Additionally, the N-acyl-phosphatidylethanolamine-specific phospholipase D expression was high in female alcohol-exposed rats and low in male alcohol-exposed rats. In conclusion, intermittent alcohol consumption during adolescence may be sufficient to induce short-term changes in the expression of splenic endocannabinoid signaling-related proteins and plasma pro-inflammatory cytokines in young adult rats with a strong sexual dimorphism. The potential impact of these alterations in early adulthood remains to be elucidated.
Collapse
Affiliation(s)
- Francisco Javier Pavón
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga-Universidad de Málaga, Málaga, Spain
| | - Eva María Marco
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense, Madrid, Spain
| | - Mariam Vázquez
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga-Universidad de Málaga, Málaga, Spain
| | - Laura Sánchez
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga-Universidad de Málaga, Málaga, Spain
| | - Patricia Rivera
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga-Universidad de Málaga, Málaga, Spain
| | - Ana Gavito
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga-Universidad de Málaga, Málaga, Spain
| | - Virginia Mela
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense, Madrid, Spain
| | - Francisco Alén
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga-Universidad de Málaga, Málaga, Spain
| | - Juan Decara
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga-Universidad de Málaga, Málaga, Spain
| | - Juan Suárez
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga-Universidad de Málaga, Málaga, Spain
| | - Elena Giné
- Departamento de Biología Celular, Facultad de Psicología, Universidad Complutense, Madrid, Spain
| | | | - Julie Chowen
- Servicio de Pediatría y Endocrinología Pediátrica, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación Sanitaria del Hospital Universitario de La Princesa (IP), Madrid, Spain
- Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn) Instituto de Salud Carlos III, Madrid, Spain
| | - Fernando Rodríguez-de-Fonseca
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga-Universidad de Málaga, Málaga, Spain
| | - Antonia Serrano
- Unidad Gestión Clínica de Salud Mental, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Regional Universitario de Málaga-Universidad de Málaga, Málaga, Spain
- * E-mail: (ASC); (MPV)
| | - María Paz Viveros
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense, Madrid, Spain
- * E-mail: (ASC); (MPV)
| |
Collapse
|
24
|
Chung YC, Shin WH, Baek JY, Cho EJ, Baik HH, Kim SR, Won SY, Jin BK. CB2 receptor activation prevents glial-derived neurotoxic mediator production, BBB leakage and peripheral immune cell infiltration and rescues dopamine neurons in the MPTP model of Parkinson's disease. Exp Mol Med 2016; 48:e205. [PMID: 27534533 PMCID: PMC4892852 DOI: 10.1038/emm.2015.100] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/14/2015] [Accepted: 09/21/2015] [Indexed: 01/04/2023] Open
Abstract
The cannabinoid (CB2) receptor type 2 has been proposed to prevent the degeneration of dopamine neurons in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice. However, the mechanisms underlying CB2 receptor-mediated neuroprotection in MPTP mice have not been elucidated. The mechanisms underlying CB2 receptor-mediated neuroprotection of dopamine neurons in the substantia nigra (SN) were evaluated in the MPTP mouse model of Parkinson's disease (PD) by immunohistochemical staining (tyrosine hydroxylase, macrophage Ag complex-1, glial fibrillary acidic protein, myeloperoxidase (MPO), and CD3 and CD68), real-time PCR and a fluorescein isothiocyanate-labeled albumin assay. Treatment with the selective CB2 receptor agonist JWH-133 (10 μg kg(-1), intraperitoneal (i.p.)) prevented MPTP-induced degeneration of dopamine neurons in the SN and of their fibers in the striatum. This JWH-133-mediated neuroprotection was associated with the suppression of blood-brain barrier (BBB) damage, astroglial MPO expression, infiltration of peripheral immune cells and production of inducible nitric oxide synthase, proinflammatory cytokines and chemokines by activated microglia. The effects of JWH-133 were mimicked by the non-selective cannabinoid receptor WIN55,212 (10 μg kg(-1), i.p.). The observed neuroprotection and inhibition of glial-mediated neurotoxic events were reversed upon treatment with the selective CB2 receptor antagonist AM630, confirming the involvement of the CB2 receptor. Our results suggest that targeting the cannabinoid system may be beneficial for the treatment of neurodegenerative diseases, such as PD, that are associated with glial activation, BBB disruption and peripheral immune cell infiltration.
Collapse
Affiliation(s)
- Young C Chung
- Department of Biochemistry and Molecular Biology, School of Medicine Kyung Hee University, Seoul, Korea.,Department of Biochemistry and Molecular Biology, Neurodegeneration Control Research Center, Age-Related and Brain Diseases Research Center, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Won-Ho Shin
- Korea Institute of Toxicology, Daejon, Korea
| | - Jeong Y Baek
- Department of Biochemistry and Molecular Biology, School of Medicine Kyung Hee University, Seoul, Korea.,Department of Biochemistry and Molecular Biology, Neurodegeneration Control Research Center, Age-Related and Brain Diseases Research Center, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Eun J Cho
- Department of Biochemistry and Molecular Biology, School of Medicine Kyung Hee University, Seoul, Korea.,Department of Biochemistry and Molecular Biology, Neurodegeneration Control Research Center, Age-Related and Brain Diseases Research Center, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Hyung H Baik
- Department of Biochemistry and Molecular Biology, School of Medicine Kyung Hee University, Seoul, Korea
| | - Sang R Kim
- School of Life Sciences, BK21 Plus KNU Creative Bio Research Group, Kyungpook National University, Daejon, Korea
| | - So-Yoon Won
- Department of Biochemistry and Signaling Disorder Research Center, College of Medicine, Chungbuk National University, Cheongju, Korea
| | - Byung K Jin
- Department of Biochemistry and Molecular Biology, School of Medicine Kyung Hee University, Seoul, Korea.,Department of Biochemistry and Molecular Biology, Neurodegeneration Control Research Center, Age-Related and Brain Diseases Research Center, School of Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
25
|
Henry RJ, Kerr DM, Finn DP, Roche M. For whom the endocannabinoid tolls: Modulation of innate immune function and implications for psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:167-80. [PMID: 25794989 DOI: 10.1016/j.pnpbp.2015.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 03/03/2015] [Accepted: 03/03/2015] [Indexed: 12/21/2022]
Abstract
Toll-like receptors (TLRs) mediate the innate immune response to pathogens and are critical in the host defence, homeostasis and response to injury. However, uncontrolled and aberrant TLR activation can elicit potent effects on neurotransmission and neurodegenerative cascades and has been proposed to trigger the onset of certain neurodegenerative disorders and elicit detrimental effects on the progression and outcome of established disease. Over the past decade, there has been increasing evidence demonstrating that the endocannabinoid system can elicit potent modulatory effects on inflammatory processes, with clinical and preclinical evidence demonstrating beneficial effects on disease severity and symptoms in several inflammatory conditions. This review examines the evidence supporting a modulatory effect of endocannabinoids on TLR-mediated immune responses both peripherally and centrally, and the implications for psychiatric disorders such as depression and schizophrenia.
Collapse
Affiliation(s)
- Rebecca J Henry
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland, Galway, Ireland
| | - Daniel M Kerr
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland; Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland, Galway, Ireland
| | - Michelle Roche
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland; Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland, Galway, Ireland.
| |
Collapse
|
26
|
Vázquez C, Tolón RM, Grande MT, Caraza M, Moreno M, Koester EC, Villaescusa B, Ruiz-Valdepeñas L, Fernández-Sánchez FJ, Cravatt BF, Hillard CJ, Romero J. Endocannabinoid regulation of amyloid-induced neuroinflammation. Neurobiol Aging 2015; 36:3008-3019. [PMID: 26362942 DOI: 10.1016/j.neurobiolaging.2015.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 07/20/2015] [Accepted: 08/04/2015] [Indexed: 12/26/2022]
Abstract
The modulation of endocannabinoid (EC) levels and the activation of cannabinoid receptors are seen as promising therapeutic strategies in a variety of diseases, including Alzheimer's disease (AD). We aimed to evaluate the effect of the pharmacologic and genetic inhibition of anandamide-degrading enzyme in a mouse model of AD (5xFAD). Pharmacologic inhibition of the fatty acid amide hydrolase (FAAH) had little impact on the expression of key enzymes and cytokines and also on the cognitive impairment, plaque deposition, and gliosis in 5xFAD mice. CB1 blockade exacerbated inflammation in this transgenic mouse model of AD. The genetic inactivation of FAAH led to increases in the expression of inflammatory cytokines. At the same time, FAAH-null 5xFAD mice exhibited a behavioral improvement in spatial memory that was independent of the level of anxiety and was not CB1 mediated. Finally, mice lacking FAAH showed diminished soluble amyloid levels, neuritic plaques, and gliosis. These data reinforce the notion of a role for the EC system in neuroinflammation and open new perspectives on the relevance of modulating EC levels in the inflamed brain.
Collapse
Affiliation(s)
- Carmen Vázquez
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain
| | - Rosa M Tolón
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain
| | - M Teresa Grande
- School of Biosciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Marina Caraza
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain; School of Biosciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain
| | - Marta Moreno
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain
| | - Erin C Koester
- Department of Pharmacology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Borja Villaescusa
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain
| | - Lourdes Ruiz-Valdepeñas
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain
| | | | - Benjamin F Cravatt
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA; Department of Cell Biology, The Scripps Research Institute, La Jolla, CA, USA; Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Cecilia J Hillard
- Department of Pharmacology and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Julián Romero
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain; School of Biosciences, Universidad Francisco de Vitoria, Pozuelo de Alarcón, Madrid, Spain.
| |
Collapse
|
27
|
Ligand activation of cannabinoid receptors attenuates hypertrophy of neonatal rat cardiomyocytes. J Cardiovasc Pharmacol 2015; 64:420-30. [PMID: 24979612 DOI: 10.1097/fjc.0000000000000134] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
: Endocannabinoids are bioactive amides, esters, and ethers of long-chain polyunsaturated fatty acids. Evidence suggests that activation of the endocannabinoid pathway offers cardioprotection against myocardial ischemia, arrhythmias, and endothelial dysfunction of coronary arteries. As cardiac hypertrophy is a convergence point of risk factors for heart failure, we determined a role for endocannabinoids in attenuating endothelin-1-induced hypertrophy and probed the signaling pathways involved. The cannabinoid receptor ligand anandamide and its metabolically stable analog, R-methanandamide, suppressed hypertrophic indicators including cardiomyocyte enlargement and fetal gene activation (ie, the brain natriuretic peptide gene) elicited by endothelin-1 in isolated neonatal rat ventricular myocytes. The ability of R-methanandamide to suppress myocyte enlargement and fetal gene activation was mediated by CB2 and CB1 receptors, respectively. Accordingly, a CB2-selective agonist, JWH-133, prevented only myocyte enlargement but not brain natriuretic peptide gene activation. A CB1/CB2 dual agonist with limited brain penetration, CB-13, inhibited both hypertrophic indicators. CB-13 activated AMP-activated protein kinase (AMPK) and, in an AMPK-dependent manner, endothelial nitric oxide synthase (eNOS). Disruption of AMPK signaling, using compound C or short hairpinRNA knockdown, and eNOS inhibition using L-NIO abolished the antihypertrophic actions of CB-13. In conclusion, CB-13 inhibits cardiomyocyte hypertrophy through AMPK-eNOS signaling and may represent a novel therapeutic approach to cardioprotection.
Collapse
|
28
|
Turcotte C, Chouinard F, Lefebvre JS, Flamand N. Regulation of inflammation by cannabinoids, the endocannabinoids 2-arachidonoyl-glycerol and arachidonoyl-ethanolamide, and their metabolites. J Leukoc Biol 2015; 97:1049-70. [PMID: 25877930 DOI: 10.1189/jlb.3ru0115-021r] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 02/28/2015] [Indexed: 12/26/2022] Open
Abstract
2-Arachidonoyl-glycerol (2-AG) and arachidonyl-ethanolamide (AEA) are endocannabinoids that have been implicated in many physiologic disorders, including obesity, metabolic syndromes, hepatic diseases, pain, neurologic disorders, and inflammation. Their immunomodulatory effects are numerous and are not always mediated by cannabinoid receptors, reflecting the presence of an arachidonic acid (AA) molecule in their structure, the latter being the precursor of numerous bioactive lipids that are pro- or anti-inflammatory. 2-AG and AEA can thus serve as a source of AA but can also be metabolized by most eicosanoid biosynthetic enzymes, yielding additional lipids. In this regard, enhancing endocannabinoid levels by using endocannabinoid hydrolysis inhibitors is likely to augment the levels of these lipids that could regulate inflammatory cell functions. This review summarizes the metabolic pathways involved in the biosynthesis and metabolism of AEA and 2-AG, as well as the biologic effects of the 2-AG and AEA lipidomes in the regulation of inflammation.
Collapse
Affiliation(s)
- Caroline Turcotte
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Département de Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - François Chouinard
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Département de Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - Julie S Lefebvre
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Département de Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| | - Nicolas Flamand
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Département de Médecine, Faculté de Médecine, Université Laval, Québec City, QC, Canada
| |
Collapse
|
29
|
Greco R, Bandiera T, Mangione AS, Demartini C, Siani F, Nappi G, Sandrini G, Guijarro A, Armirotti A, Piomelli D, Tassorelli C. Effects of peripheral FAAH blockade on NTG-induced hyperalgesia--evaluation of URB937 in an animal model of migraine. Cephalalgia 2015; 35:1065-76. [PMID: 25608877 DOI: 10.1177/0333102414566862] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/06/2014] [Indexed: 11/16/2022]
Abstract
BACKGROUND Systemic nitroglycerin (NTG) activates brain nuclei involved in nociceptive transmission as well as in neuroendocrine and autonomic functions in rats. These changes are considered relevant for migraine because NTG consistently provokes spontaneous-like migraine attacks in migraineurs. Several studies have suggested a relationship between the endocannabinoid levels and pain mediation in migraine. URB937, a peripheral inhibitor of fatty acid amide hydrolase (FAAH)-the enzyme that degrades anandamide, produces analgesia in animal models of pain, but there is no information on its effects in migraine. AIM We evaluated whether URB937 alters nociceptive responses in the animal model of migraine based on NTG administration in male rats, using the tail flick test and the plantar and orofacial formalin tests, under baseline conditions and after NTG administration. Furthermore, we investigated whether URB937 affects NTG-induced c-Fos expression in the brain. RESULTS During the tail flick test, URB937 showed an antinociceptive effect in baseline conditions and it blocked NTG-induced hyperalgesia. URB937 also proved effective in counteracting NTG-induced hyperalgesia during both the plantar and orofacial formalin tests. Mapping of brain nuclei activated by NTG indicates that URB937 significantly reduces c-Fos expression in the nucleus trigeminalis caudalis and the locus coeruleus. CONCLUSIONS The data suggest that URB937 is capable of changing, probably via indirect mechanisms, the functional status of central structures that are important for pain transmission in an animal model of migraine.
Collapse
Affiliation(s)
- R Greco
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, C. Mondino National Neurological Institute, Italy
| | - T Bandiera
- Dept. of Drug Discovery and Development, Istituto Italiano di Tecnologia, Italy
| | - A S Mangione
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, C. Mondino National Neurological Institute, Italy
| | - C Demartini
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, C. Mondino National Neurological Institute, Italy
| | - F Siani
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, National Neurological Institute "C. Mondino," Italy
| | - G Nappi
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, C. Mondino National Neurological Institute, Italy
| | - G Sandrini
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, C. Mondino National Neurological Institute, Italy Dept. of Brain and Behavioural Sciences, University of Pavia, Italy
| | - A Guijarro
- Dept. of Drug Discovery and Development, Istituto Italiano di Tecnologia, Italy
| | - A Armirotti
- Dept. of Drug Discovery and Development, Istituto Italiano di Tecnologia, Italy
| | - D Piomelli
- Dept. of Drug Discovery and Development, Istituto Italiano di Tecnologia, Italy Dept. of Anatomy and Neurobiology, University of California, USA
| | - C Tassorelli
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Centre, C. Mondino National Neurological Institute, Italy Dept. of Brain and Behavioural Sciences, University of Pavia, Italy
| |
Collapse
|
30
|
Cabral GA, Ferreira GA, Jamerson MJ. Endocannabinoids and the Immune System in Health and Disease. Handb Exp Pharmacol 2015; 231:185-211. [PMID: 26408161 DOI: 10.1007/978-3-319-20825-1_6] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Endocannabinoids are bioactive lipids that have the potential to signal through cannabinoid receptors to modulate the functional activities of a variety of immune cells. Their activation of these seven-transmembranal, G protein-coupled receptors sets in motion a series of signal transductional events that converge at the transcriptional level to regulate cell migration and the production of cytokines and chemokines. There is a large body of data that supports a functional relevance for 2-arachidonoylglycerol (2-AG) as acting through the cannabinoid receptor type 2 (CB2R) to inhibit migratory activities for a diverse array of immune cell types. However, unequivocal data that supports a functional linkage of anandamide (AEA) to a cannabinoid receptor in immune modulation remains to be obtained. Endocannabinoids, as typical bioactive lipids, have a short half-life and appear to act in an autocrine and paracrine fashion. Their immediate effective action on immune function may be at localized sites in the periphery and within the central nervous system. It is speculated that endocannabinoids play an important role in maintaining the overall "fine-tuning" of the immune homeostatic balance within the host.
Collapse
Affiliation(s)
- Guy A Cabral
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA.
| | - Gabriela A Ferreira
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Melissa J Jamerson
- Department of Clinical Laboratory Sciences, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
31
|
Metna-Laurent M, Marsicano G. Rising stars: modulation of brain functions by astroglial type-1 cannabinoid receptors. Glia 2014; 63:353-64. [PMID: 25452006 DOI: 10.1002/glia.22773] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/13/2014] [Indexed: 01/03/2023]
Abstract
The type-1-cannabinoid (CB1 ) receptor is amongst the most widely expressed G protein-coupled receptors in the brain. In few decades, CB1 receptors have been shown to regulate a large array of functions from brain cell development and survival to complex cognitive processes. Understanding the cellular mechanisms underlying these functions of CB1 is complex due to the heterogeneity of the brain cell types on which the receptor is expressed. Although the large majority of CB1 receptors act on neurons, early studies pointed to a direct control of CB1 receptors over astroglial functions including brain energy supply and neuroprotection. In line with the growing concept of the tripartite synapse highlighting astrocytes as direct players in synaptic plasticity, astroglial CB1 receptor signaling recently emerged as the mediator of several forms of synaptic plasticity associated to important cognitive functions. Here, we shortly review the current knowledge on CB1 receptor-mediated astroglial functions. This functional spectrum is large and most of the mechanisms by which CB1 receptors control astrocytes, as well as their consequences in vivo, are still unknown, requiring innovative approaches to improve this new cannabinoid research field.
Collapse
|
32
|
Henry RJ, Kerr DM, Finn DP, Roche M. FAAH-mediated modulation of TLR3-induced neuroinflammation in the rat hippocampus. J Neuroimmunol 2014; 276:126-34. [PMID: 25245162 DOI: 10.1016/j.jneuroim.2014.09.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/02/2014] [Accepted: 09/04/2014] [Indexed: 02/05/2023]
Abstract
The present study examined the effect of enhancing fatty acid amide hydrolase (FAAH) substrate levels in vivo on Toll-like receptor (TLR)3-induced neuroinflammation. Systemic and central (i.c.v.) administration of the FAAH inhibitor URB597 increased hippocampal levels of the N-acylethanolamines palmitoylethanolamide and oleoylethanolamide, but not anandamide. Systemic URB597 increased IFNα, IFNγ and IL-6 expression following TLR3 activation and attenuated TLR3-induced IL-1β and TNFα expression. In comparison, central URB597 administration attenuated the TLR3-induced increase in TNFα and IFNγ expression (and associated downstream genes IP-10 and SOCS1), while concurrently increasing IL-10 expression. These data support an important role for FAAH-mediated regulation of TLR3-induced neuroinflammatory responses.
Collapse
Affiliation(s)
- Rebecca J Henry
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland; NCBES Centre for Pain Research and Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Daniel M Kerr
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland; Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland; NCBES Centre for Pain Research and Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - David P Finn
- Pharmacology and Therapeutics, School of Medicine, National University of Ireland, Galway, Ireland; NCBES Centre for Pain Research and Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Michelle Roche
- Physiology, School of Medicine, National University of Ireland, Galway, Ireland; NCBES Centre for Pain Research and Neuroscience Centre, National University of Ireland, Galway, Ireland.
| |
Collapse
|
33
|
Castelli MP, Madeddu C, Casti A, Casu A, Casti P, Scherma M, Fattore L, Fadda P, Ennas MG. Δ9-tetrahydrocannabinol prevents methamphetamine-induced neurotoxicity. PLoS One 2014; 9:e98079. [PMID: 24844285 PMCID: PMC4028295 DOI: 10.1371/journal.pone.0098079] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 04/25/2014] [Indexed: 12/05/2022] Open
Abstract
Methamphetamine (METH) is a potent psychostimulant with neurotoxic properties. Heavy use increases the activation of neuronal nitric oxide synthase (nNOS), production of peroxynitrites, microglia stimulation, and induces hyperthermia and anorectic effects. Most METH recreational users also consume cannabis. Preclinical studies have shown that natural (Δ9-tetrahydrocannabinol, Δ9-THC) and synthetic cannabinoid CB1 and CB2 receptor agonists exert neuroprotective effects on different models of cerebral damage. Here, we investigated the neuroprotective effect of Δ9-THC on METH-induced neurotoxicity by examining its ability to reduce astrocyte activation and nNOS overexpression in selected brain areas. Rats exposed to a METH neurotoxic regimen (4×10 mg/kg, 2 hours apart) were pre- or post-treated with Δ9-THC (1 or 3 mg/kg) and sacrificed 3 days after the last METH administration. Semi-quantitative immunohistochemistry was performed using antibodies against nNOS and Glial Fibrillary Acidic Protein (GFAP). Results showed that, as compared to corresponding controls (i) METH-induced nNOS overexpression in the caudate-putamen (CPu) was significantly attenuated by pre- and post-treatment with both doses of Δ9-THC (−19% and −28% for 1 mg/kg pre- and post-treated animals; −25% and −21% for 3 mg/kg pre- and post-treated animals); (ii) METH-induced GFAP-immunoreactivity (IR) was significantly reduced in the CPu by post-treatment with 1 mg/kg Δ9-THC1 (−50%) and by pre-treatment with 3 mg/kg Δ9-THC (−53%); (iii) METH-induced GFAP-IR was significantly decreased in the prefrontal cortex (PFC) by pre- and post-treatment with both doses of Δ9-THC (−34% and −47% for 1 mg/kg pre- and post-treated animals; −37% and −29% for 3 mg/kg pre- and post-treated animals). The cannabinoid CB1 receptor antagonist SR141716A attenuated METH-induced nNOS overexpression in the CPu, but failed to counteract the Δ9-THC-mediated reduction of METH-induced GFAP-IR both in the PFC and CPu. Our results indicate that Δ9-THC reduces METH-induced brain damage via inhibition of nNOS expression and astrocyte activation through CB1-dependent and independent mechanisms, respectively.
Collapse
Affiliation(s)
- M. Paola Castelli
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
- Center of Excellence “Neurobiology of Addiction”, University of Cagliari, Cagliari, Italy
- * E-mail:
| | - Camilla Madeddu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Alberto Casti
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Angelo Casu
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Paola Casti
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Maria Scherma
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Liana Fattore
- CNR Institute of Neuroscience-Cagliari, National Research Council-Italy, Cittadella Universitaria di Monserrato, Cagliari, Italy
| | - Paola Fadda
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
- Center of Excellence “Neurobiology of Addiction”, University of Cagliari, Cagliari, Italy
- National Institute of Neuroscience (INN), University of Cagliari, Cagliari, Italy
| | - M. Grazia Ennas
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
34
|
Intrathecal Injection of JWH015 Attenuates Remifentanil-Induced Postoperative Hyperalgesia by Inhibiting Activation of Spinal Glia in a Rat Model. Anesth Analg 2014; 118:841-53. [DOI: 10.1213/ane.0000000000000146] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
35
|
Vijayakaran K, Kannan K, Kesavan M, Suresh S, Sankar P, Tandan SK, Sarkar SN. Arsenic reduces the antipyretic activity of paracetamol in rats: modulation of brain COX-2 activity and CB₁ receptor expression. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:438-447. [PMID: 24448467 DOI: 10.1016/j.etap.2013.12.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/17/2013] [Accepted: 12/19/2013] [Indexed: 06/03/2023]
Abstract
We examined whether subacute arsenic exposure can reduce paracetamol-mediated antipyretic activity by affecting COX pathway and cannabinoid CB1 receptor regulation. Rats were preexposed to elemental arsenic (4 ppm) as sodium arsenite through drinking water for 28 days. Next day pyrexia was induced with lipopolysaccharide and paracetamol's (200 mg/kg, oral) antipyretic activity was assessed. The activities of COX-1 and COX-2, the levels of PGE₂, TNF-α and IL-1β and expression of CB₁ receptors were assessed in brain. Arsenic inhibited paracetamol-mediated antipyretic activity. COX-1 activity was not affected by any treatments. Paracetamol decreased COX-2 activity, levels of PGE₂, TNF-α and IL-1β and caused up-regulation of CB1 receptors. Arsenic caused opposite effects on these parameters. In the arsenic-preexposed rats, paracetamol-mediated effects were attenuated, while CB₁ receptor up-regulation was reversed to down-regulation. Results suggest that elevated COX-2 activity and reduced CB₁ expression could be involved in the arsenic-mediated attenuation of the antipyretic activity of paracetamol.
Collapse
Affiliation(s)
- Karunakaran Vijayakaran
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar 243122, Bareilly, Uttar Pradesh, India
| | - Kandasamy Kannan
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar 243122, Bareilly, Uttar Pradesh, India
| | - Manickam Kesavan
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar 243122, Bareilly, Uttar Pradesh, India
| | - Subramaniyam Suresh
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar 243122, Bareilly, Uttar Pradesh, India
| | - Palanisamy Sankar
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar 243122, Bareilly, Uttar Pradesh, India
| | - Surendra Kumar Tandan
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar 243122, Bareilly, Uttar Pradesh, India
| | - Souvendra Nath Sarkar
- Division of Pharmacology and Toxicology, Indian Veterinary Research Institute, Izatnagar 243122, Bareilly, Uttar Pradesh, India.
| |
Collapse
|
36
|
Bilkei-Gorzo A. The endocannabinoid system in normal and pathological brain ageing. Philos Trans R Soc Lond B Biol Sci 2013; 367:3326-41. [PMID: 23108550 DOI: 10.1098/rstb.2011.0388] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The role of endocannabinoids as inhibitory retrograde transmitters is now widely known and intensively studied. However, endocannabinoids also influence neuronal activity by exerting neuroprotective effects and regulating glial responses. This review centres around this less-studied area, focusing on the cellular and molecular mechanisms underlying the protective effect of the cannabinoid system in brain ageing. The progression of ageing is largely determined by the balance between detrimental, pro-ageing, largely stochastic processes, and the activity of the homeostatic defence system. Experimental evidence suggests that the cannabinoid system is part of the latter system. Cannabinoids as regulators of mitochondrial activity, as anti-oxidants and as modulators of clearance processes protect neurons on the molecular level. On the cellular level, the cannabinoid system regulates the expression of brain-derived neurotrophic factor and neurogenesis. Neuroinflammatory processes contributing to the progression of normal brain ageing and to the pathogenesis of neurodegenerative diseases are suppressed by cannabinoids, suggesting that they may also influence the ageing process on the system level. In good agreement with the hypothesized beneficial role of cannabinoid system activity against brain ageing, it was shown that animals lacking CB1 receptors show early onset of learning deficits associated with age-related histological and molecular changes. In preclinical models of neurodegenerative disorders, cannabinoids show beneficial effects, but the clinical evidence regarding their efficacy as therapeutic tools is either inconclusive or still missing.
Collapse
|
37
|
Zaky A, Mohammad B, Moftah M, Kandeel KM, Bassiouny AR. Apurinic/apyrimidinic endonuclease 1 is a key modulator of aluminum-induced neuroinflammation. BMC Neurosci 2013; 14:26. [PMID: 23497276 PMCID: PMC3616857 DOI: 10.1186/1471-2202-14-26] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 03/05/2013] [Indexed: 12/22/2022] Open
Abstract
Background Chronic administration of Aluminum is proposed as an environmental factor that may affect several enzymes and other biomolecules related to neurotoxicity and Alzheimer's disease (AD). APE1 a multifunctional protein, functions in DNA repair and plays a key role in cell survival versus cell death upon stimulation with cytotoxic agent, making it an attractive emerging therapeutic target. The promising protective effect of resveratrol (resv), which is known to exert potent anti-inflammatory effects on neurotoxicity induced by aluminum chloride (AlCl3), may be derived from its own antioxidant properties. In the present work we investigated the modulation of APE1 expression during AlCl3-induced neuroinflammation (25 mg/Kg body weight by oral gavages) in experimental rats. We tested the hypothesis that a reactive oxygen species (ROS)-scavenger, resveratrol at 0.5 mg/kg bodyweight, which is known to exert potent anti-inflammatory effects, would attenuate central inflammation and modulate APE1 expression in AlCl3-fed rats. Neuroinflammation-induced genes including β-secretase (BACE), amyloid-β precursor protein (APP), presenilin 2 (PSEN-2) and sirt-2 were determined by RT-PCR. APE1 is determined at mRNA and protein levels and confirmed by immunohistochemistry. The expression of pro-inflammatory cytokines (TNF-α, IL6) and iNOS by the rat brain extract were measured by RT-PCR. Result Our results indicate that resveratrol may attenuate AlCl3-induced direct neuroinflammation in rats, and its mechanisms are, at least partly, due to maintaining high APE1 level. Resveratrol co-administration with aluminum chloride exerted more protective effect than pre-administration or treatment of induced rats. A significant elevation of APE1 at both mRNA and protein levels was observed in addition to a marked reduction in β-secretase and amyloid-β. We found that AlCl3 stimulated the expression of TNF-α, IL-6, and iNOS in rat brain in which NF-κB was involved. Resveratrol inhibited AlCl3-induced expression and release of TNF-α, IL-6, and iNOS in rat brain. Conclusions These findings establish a role for APE1 as a master regulator of AlCl3 dependent inflammatory responses in rat brain. In addition, there was an ameliorative change with resveratrol against AlCl3-induced neurotoxicity. These results suggest that rat brain cells produce pro-inflammatory cytokines in response to AlCl3 in a similar pattern, and further suggest that resveratrol exerts anti-inflammatory effects in rat brain, at least partly, by inhibiting different pro-inflammatory cytokines and key signaling molecules. It might be a potential agent for treatment of neuroinflammation-related diseases, such as AD.
Collapse
Affiliation(s)
- Amira Zaky
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | | | | | | | | |
Collapse
|
38
|
Merighi S, Gessi S, Varani K, Fazzi D, Mirandola P, Borea PA. Cannabinoid CB(2) receptor attenuates morphine-induced inflammatory responses in activated microglial cells. Br J Pharmacol 2012; 166:2371-85. [PMID: 22428664 DOI: 10.1111/j.1476-5381.2012.01948.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Among several pharmacological properties, analgesia is the most common feature shared by either opioid or cannabinoid systems. Cannabinoids and opioids are distinct drug classes that have been historically used separately or in combination to treat different pain states. In the present study, we characterized the signal transduction pathways mediated by cannabinoid CB(2) and µ-opioid receptors in quiescent and LPS-stimulated murine microglial cells. EXPERIMENTAL APPROACH We examined the effects of µ-opioid and CB(2) receptor stimulation on phosphorylation of MAPKs and Akt and on IL-1β, TNF-α, IL-6 and NO production in primary mouse microglial cells. KEY RESULTS Morphine enhanced release of the proinflammatory cytokines, IL-1β, TNF-α, IL-6, and of NO via µ-opioid receptor in activated microglial cells. In contrast, CB(2) receptor stimulation attenuated morphine-induced microglial proinflammatory mediator increases, interfering with morphine action by acting on the Akt-ERK1/2 signalling pathway. CONCLUSIONS AND IMPLICATIONS Because glial activation opposes opioid analgesia and enhances opioid tolerance and dependence, we suggest that CB(2) receptors, by inhibiting microglial activity, may be potential targets to increase clinical efficacy of opioids.
Collapse
Affiliation(s)
- Stefania Merighi
- Department of Clinical and Experimental Medicine, Pharmacology Section and Interdisciplinary Center for the Study of Inflammation, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | |
Collapse
|
39
|
Benito C, Tolón RM, Castillo AI, Ruiz-Valdepeñas L, Martínez-Orgado JA, Fernández-Sánchez FJ, Vázquez C, Cravatt BF, Romero J. β-Amyloid exacerbates inflammation in astrocytes lacking fatty acid amide hydrolase through a mechanism involving PPAR-α, PPAR-γ and TRPV1, but not CB₁ or CB₂ receptors. Br J Pharmacol 2012; 166:1474-89. [PMID: 22321194 DOI: 10.1111/j.1476-5381.2012.01889.x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE The endocannabinoid system may regulate glial cell functions and their responses to pathological stimuli, specifically, Alzheimer's disease. One experimental approach is the enhancement of endocannabinoid tone by blocking the activity of degradative enzymes, such as fatty acid amide hydrolase (FAAH). EXPERIMENTAL APPROACH We examined the role of FAAH in the response of astrocytes to the pathologic form of β-amyloid (Aβ). Astrocytes from wild-type mice (WT) and from mice lacking FAAH (FAAH-KO) were incubated with Aβ for 8, 24 and 48 h, and their inflammatory responses were quantified by elisa, western-blotting and real-time quantitative-PCR. KEY RESULTS FAAH-KO astrocytes were significantly more responsive to Aβ than WT astrocytes, as shown by the higher production of pro-inflammatory cytokines. Expression of COX-2, inducible NOS and TNF-α was also increased in Aβ-exposed KO astrocytes compared with that in WTs. These effects were accompanied by a differential pattern of activation of signalling cascades involved in mediating inflammatory responses, such as ERK1/2, p38MAPK and NFκB. PPAR-α and PPAR-γ as well as transient receptor potential vanilloid-1 (TRPV1), but not cannabinoid CB₁ or CB₂ receptors, mediate some of the differential changes observed in Aβ-exposed FAAH-KO astrocytes. The pharmacological blockade of FAAH did not render astrocytes more sensitive to Aβ. In contrast, exogenous addition of several acylethanolamides (anandamide, palmitoylethanolamide and oleoylethanolamide) induced an antiinflammatory response. CONCLUSIONS The genetic deletion of FAAH in astrocytes exacerbated their inflammatory phenotype against Aβ in a process involving PPAR-α, PPAR-γ and TRPV1 receptors.
Collapse
Affiliation(s)
- Cristina Benito
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, Alcorcón, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Merighi S, Gessi S, Varani K, Simioni C, Fazzi D, Mirandola P, Borea PA. Cannabinoid CB(2) receptors modulate ERK-1/2 kinase signalling and NO release in microglial cells stimulated with bacterial lipopolysaccharide. Br J Pharmacol 2012; 165:1773-1788. [PMID: 21951063 DOI: 10.1111/j.1476-5381.2011.01673.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Cannabinoid (CB) receptor agonists have potential utility as anti-inflammatory drugs in chronic immune inflammatory diseases. In the present study, we characterized the signal transduction pathways affected by CB(2) receptors in quiescent and lipopolysaccharide (LPS)-stimulated murine microglia. EXPERIMENTAL APPROACH We examined the effects of the synthetic CB(2) receptor ligand, JWH-015, on phosphorylation of MAPKs and NO production. KEY RESULTS Stimulation of CB(2) receptors by JWH-015 activated JNK-1/2 and ERK-1/2 in quiescent murine microglial cells. Furthermore, CB(2) receptor activation increased p-ERK-1/2 at 15 min in LPS-stimulated microglia. Surprisingly, this was reduced after 30 min in the presence of both LPS and JWH-015. The NOS inhibitor L-NAME blocked the ability of JWH-015 to down-regulate the LPS-induced p-ERK increase, indicating that activation of CB(2) receptors reduced effects of LPS on ERK-1/2 phosphorylation through NO. JWH-015 increased LPS-induced NO release at 30 min, while at 4 h CB(2) receptor stimulation had an inhibitory effect. All the effects of JWH-015 were significantly blocked by the CB(2) receptor antagonist AM 630 and, as the inhibition of CB(2) receptor expression by siRNA abolished the effects of JWH-015, were shown to be mediated specifically by activation of CB(2) receptors. CONCLUSIONS AND IMPLICATIONS Our results demonstrate that CB(2) receptor stimulation activated the MAPK pathway, but the presence of a second stimulus blocked MAPK signal transduction, inhibiting pro-inflammatory LPS-induced production of NO. Therefore, CB(2) receptor agonists may promote anti-inflammatory therapeutic responses in activated microglia.
Collapse
Affiliation(s)
- Stefania Merighi
- Department of Clinical and Experimental Medicine, Pharmacology Section and Interdisciplinary Center for the Study of Inflammation, University of Ferrara, Via Fossato di Mortara, Ferrara, ItalyDepartment of Human Anatomy, Pharmacology and Forensic Medicine, Institute of Normal Human Anatomy, Ospedale Maggiore, University of Parma, Parma, Italy
| | - Stefania Gessi
- Department of Clinical and Experimental Medicine, Pharmacology Section and Interdisciplinary Center for the Study of Inflammation, University of Ferrara, Via Fossato di Mortara, Ferrara, ItalyDepartment of Human Anatomy, Pharmacology and Forensic Medicine, Institute of Normal Human Anatomy, Ospedale Maggiore, University of Parma, Parma, Italy
| | - Katia Varani
- Department of Clinical and Experimental Medicine, Pharmacology Section and Interdisciplinary Center for the Study of Inflammation, University of Ferrara, Via Fossato di Mortara, Ferrara, ItalyDepartment of Human Anatomy, Pharmacology and Forensic Medicine, Institute of Normal Human Anatomy, Ospedale Maggiore, University of Parma, Parma, Italy
| | - Carolina Simioni
- Department of Clinical and Experimental Medicine, Pharmacology Section and Interdisciplinary Center for the Study of Inflammation, University of Ferrara, Via Fossato di Mortara, Ferrara, ItalyDepartment of Human Anatomy, Pharmacology and Forensic Medicine, Institute of Normal Human Anatomy, Ospedale Maggiore, University of Parma, Parma, Italy
| | - Debora Fazzi
- Department of Clinical and Experimental Medicine, Pharmacology Section and Interdisciplinary Center for the Study of Inflammation, University of Ferrara, Via Fossato di Mortara, Ferrara, ItalyDepartment of Human Anatomy, Pharmacology and Forensic Medicine, Institute of Normal Human Anatomy, Ospedale Maggiore, University of Parma, Parma, Italy
| | - Prisco Mirandola
- Department of Clinical and Experimental Medicine, Pharmacology Section and Interdisciplinary Center for the Study of Inflammation, University of Ferrara, Via Fossato di Mortara, Ferrara, ItalyDepartment of Human Anatomy, Pharmacology and Forensic Medicine, Institute of Normal Human Anatomy, Ospedale Maggiore, University of Parma, Parma, Italy
| | - Pier Andrea Borea
- Department of Clinical and Experimental Medicine, Pharmacology Section and Interdisciplinary Center for the Study of Inflammation, University of Ferrara, Via Fossato di Mortara, Ferrara, ItalyDepartment of Human Anatomy, Pharmacology and Forensic Medicine, Institute of Normal Human Anatomy, Ospedale Maggiore, University of Parma, Parma, Italy
| |
Collapse
|
41
|
Murphy N, Cowley TR, Blau CW, Dempsey CN, Noonan J, Gowran A, Tanveer R, Olango WM, Finn DP, Campbell VA, Lynch MA. The fatty acid amide hydrolase inhibitor URB597 exerts anti-inflammatory effects in hippocampus of aged rats and restores an age-related deficit in long-term potentiation. J Neuroinflammation 2012; 9:79. [PMID: 22537429 PMCID: PMC3409037 DOI: 10.1186/1742-2094-9-79] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Accepted: 04/26/2012] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Several factors contribute to the deterioration in synaptic plasticity which accompanies age and one of these is neuroinflammation. This is characterized by increased microglial activation associated with increased production of proinflammatory cytokines like interleukin-1β (IL-1β). In aged rats these neuroinflammatory changes are associated with a decreased ability of animals to sustain long-term potentiation (LTP) in the dentate gyrus. Importantly, treatment of aged rats with agents which possess anti-inflammatory properties to decrease microglial activation, improves LTP. It is known that endocannabinoids, such as anandamide (AEA), have anti-inflammatory properties and therefore have the potential to decrease the age-related microglial activation. However, endocannabinoids are extremely labile and are hydrolyzed quickly after production. Here we investigated the possibility that inhibiting the degradation of endocannabinoids with the fatty acid amide hydrolase (FAAH) inhibitor, URB597, could ameliorate age-related increases in microglial activation and the associated decrease in LTP. METHODS Young and aged rats received subcutaneous injections of the FAAH inhibitor URB597 every second day and controls which received subcutaneous injections of 30% DMSO-saline every second day for 28 days. Long-term potentiation was recorded on day 28 and the animals were sacrificed. Brain tissue was analyzed for markers of microglial activation by PCR and for levels of endocannabinoids by liquid chromatography coupled to tandem mass spectrometry. RESULTS The data indicate that expression of markers of microglial activation, MHCII, and CD68 mRNA, were increased in the hippocampus of aged, compared with young, rats and that these changes were associated with increased expression of the proinflammatory cytokines interleukin (IL)-1β and tumor necrosis factor-α (TNFα) which were attenuated by treatment with URB597. Coupled with these changes, we observed an age-related decrease in LTP in the dentate gyrus which was partially restored in URB597-treated aged rats. The data suggest that enhancement of levels of endocannabinoids in the brain by URB597 has beneficial effects on synaptic function, perhaps by modulating microglial activation.
Collapse
Affiliation(s)
- Niamh Murphy
- Department of Physiology, Trinity College, Trinity College Institute for Neuroscience, Dublin 2, Ireland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kerr D, Burke N, Ford G, Connor T, Harhen B, Egan L, Finn D, Roche M. Pharmacological inhibition of endocannabinoid degradation modulates the expression of inflammatory mediators in the hypothalamus following an immunological stressor. Neuroscience 2012; 204:53-63. [DOI: 10.1016/j.neuroscience.2011.09.032] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Revised: 09/08/2011] [Accepted: 09/13/2011] [Indexed: 11/25/2022]
|
43
|
Cannabinoid agonist WIN 55,212-2 prevents the development of paclitaxel-induced peripheral neuropathy in rats. Possible involvement of spinal glial cells. Eur J Pharmacol 2012; 682:62-72. [PMID: 22374260 DOI: 10.1016/j.ejphar.2012.02.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 02/02/2012] [Accepted: 02/08/2012] [Indexed: 02/07/2023]
Abstract
Spinal glial activation contributes to the development and maintenance of chronic pain states, including neuropathic pain of diverse etiologies. Cannabinoid compounds have shown antinociceptive properties in a variety of neuropathic pain models and are emerging as a promising class of drugs to treat neuropathic pain. Thus, the effects of repeated treatment with WIN 55,212-2, a synthetic cannabinoid agonist, were examined throughout the development of paclitaxel-induced peripheral neuropathy. Painful neuropathy was induced in male Wistar rats by intraperitoneal (i.p.) administration of paclitaxel (1mg/kg) on four alternate days. Paclitaxel-treated animals received WIN 55,212-2 (1mg/kg, i.p.) or minocycline (15 mg/kg, i.p.), a microglial inhibitor, daily for 14 days, simultaneous with the antineoplastic. The development of hypersensitive behaviors was assessed on days 1, 7, 14, 21 and 28 following the initial administration of drugs. Both the activation of glial cells (microglia and astrocytes) at day 29 and the time course of proinflammatory cytokine release within the spinal cord were also determined. Similar to minocycline, repeated administration of WIN 55,212-2 prevented the development of thermal hyperalgesia and mechanical allodynia in paclitaxel-treated rats. WIN 55,212-2 treatment also prevented spinal microglial and astrocytic activation evoked by paclitaxel at day 29 and attenuated the early production of spinal proinflammatory cytokines (interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α). Our results confirm changes in the reactivity of glial cells during the development of peripheral neuropathy induced by paclitaxel and support a preventive effect of WIN 55,212-2, probably via glial cells reactivity inactivation, on the development of this neuropathy.
Collapse
|
44
|
Bardou I, DiPatrizio N, Brothers HM, Kaercher RM, Baranger K, Mitchem M, Hopp SC, Wenk GL, Marchalant Y. Pharmacological manipulation of cannabinoid neurotransmission reduces neuroinflammation associated with normal aging. Health (London) 2012. [DOI: 10.4236/health.2012.429107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Hollis JH, Jonaidi H, Lemus M, Oldfield BJ. The endocannabinoid arachidonylethanolamide attenuates aspects of lipopolysaccharide-induced changes in energy intake, energy expenditure and hypothalamic Fos expression. J Neuroimmunol 2011; 233:127-34. [DOI: 10.1016/j.jneuroim.2010.12.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 12/15/2010] [Accepted: 12/20/2010] [Indexed: 11/24/2022]
|
46
|
Lu X, Ma L, Ruan L, Kong Y, Mou H, Zhang Z, Wang Z, Wang JM, Le Y. Resveratrol differentially modulates inflammatory responses of microglia and astrocytes. J Neuroinflammation 2010; 7:46. [PMID: 20712904 PMCID: PMC2936301 DOI: 10.1186/1742-2094-7-46] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 08/17/2010] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Inflammatory responses in the CNS mediated by activated glial cells play an important role in host-defense but are also involved in the development of neurodegenerative diseases. Resveratrol is a natural polyphenolic compound that has cardioprotective, anticancer and anti-inflammatory properties. We investigated the capacity of resveratrol to protect microglia and astrocyte from inflammatory insults and explored mechanisms underlying different inhibitory effects of resveratrol on microglia and astrocytes. METHODS A murine microglia cell line (N9), primary microglia, or astrocytes were stimulated by LPS with or without different concentrations of resveratrol. The expression and release of proinflammatory cytokines (TNF-alpha, IL-1beta, IL-6, MCP-1) and iNOS/NO by the cells were measured by PCR/real-time PCR and ELISA, respectively. The phosphorylation of the MAP kinase superfamily was analyzed by western blotting, and activation of NF-kappaB and AP-1 was measured by luciferase reporter assay and/or electrophoretic mobility shift assay. RESULTS We found that LPS stimulated the expression of TNF-alpha, IL-1beta, IL-6, MCP-1 and iNOS in murine microglia and astrocytes in which MAP kinases, NF-kappaB and AP-1 were differentially involved. Resveratrol inhibited LPS-induced expression and release of TNF-alpha, IL-6, MCP-1, and iNOS/NO in both cell types with more potency in microglia, and inhibited LPS-induced expression of IL-1beta in microglia but not astrocytes. Resveratrol had no effect on LPS-stimulated phosphorylation of ERK1/2 and p38 in microglia and astrocytes, but slightly inhibited LPS-stimulated phosphorylation of JNK in astrocytes. Resveratrol inhibited LPS-induced NF-kappaB activation in both cell types, but inhibited AP-1 activation only in microglia. CONCLUSION These results suggest that murine microglia and astrocytes produce proinflammatory cytokines and NO in response to LPS in a similar pattern with some differences in signaling molecules involved, and further suggest that resveratrol exerts anti-inflammatory effects in microglia and astrocytes by inhibiting different proinflammatory cytokines and key signaling molecules.
Collapse
Affiliation(s)
- Xiaofeng Lu
- Key laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Rossi S, Bernardi G, Centonze D. The endocannabinoid system in the inflammatory and neurodegenerative processes of multiple sclerosis and of amyotrophic lateral sclerosis. Exp Neurol 2010; 224:92-102. [DOI: 10.1016/j.expneurol.2010.03.030] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 03/25/2010] [Indexed: 11/25/2022]
|
48
|
Ashton JC, Glass M. The cannabinoid CB2 receptor as a target for inflammation-dependent neurodegeneration. Curr Neuropharmacol 2010; 5:73-80. [PMID: 18615177 DOI: 10.2174/157015907780866884] [Citation(s) in RCA: 234] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2006] [Revised: 02/01/2007] [Accepted: 02/02/2007] [Indexed: 12/31/2022] Open
Abstract
Endocannabinoids are released following brain injury and may protect against excitotoxic damage during the acute stage of injury. Brain injury also activates microglia in a secondary inflammatory phase of more widespread damage. Most drugs targeting the acute stage are not effective if administered more than 6 hours after injury. Therefore, drugs targeting microglia later in the neurodegenerative cascade are desirable. We have found that cannabinoid CB2 receptors are up-regulated during the activation of microglia following brain injury. Specifically, CB2-positive cells appear in the rat brain following both hypoxia-ischemia (HI) and middle cerebral artery occlusion (MCAO). This may regulate post-injury microglial activation and inflammatory functions. In this paper we review in vivo and in vitro studies of CB2 receptors in microglia, including our results on CB2 expression post-injury. Taken together, studies show that CB2 is up-regulated during a process in which microglia become primed to proliferate, and then become fully reactive. In addition, CB2 activation appears to prevent or decrease microglial activation. In a rodent model of Alzheimer's disease microglial activation was completely prevented by administration of a selective CB2 agonist. The presence of CB2 receptors in microglia in the human Alzheimer's diseased brain suggests that CB2 may provide a novel target for a range of neuropathologies. We conclude that the administration of CB2 agonists and antagonists may differentially alter microglia-dependent neuroinflammation. CB2 specific compounds have considerable therapeutic appeal over CB1 compounds, as the exclusive expression of CB2 on immune cells within the brain provides a highly specialised target, without the psychoactivity that plagues CB1 directed therapies.
Collapse
Affiliation(s)
- John C Ashton
- Department of Pharmacology & Toxicology, University of Otago, PO Box 913, Dunedin, New Zealand.
| | | |
Collapse
|
49
|
Sagar DR, Jhaveri MD, Richardson D, Gray RA, de Lago E, Fernández-Ruiz J, Barrett DA, Kendall DA, Chapman V. Endocannabinoid regulation of spinal nociceptive processing in a model of neuropathic pain. Eur J Neurosci 2010; 31:1414-22. [PMID: 20384778 DOI: 10.1111/j.1460-9568.2010.07162.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Models of neuropathic pain are associated with elevated spinal levels of endocannabinoids (ECs) and altered expression of cannabinoid receptors on primary sensory afferents and post-synaptic cells in the spinal cord. We investigated the impact of these changes on the spinal processing of sensory inputs in a model of neuropathic pain. Extracellular single-unit recordings of spinal neurones were made in anaesthetized neuropathic and sham-operated rats. The effects of spinal administration of the cannabinoid CB(1) receptor antagonist N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251) and the cannabinoid receptor type 2 (CB(2)) receptor antagonist N-[(1S)-endo-1,3,3-trimethylbicycloheptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR144528) on mechanically-evoked responses of spinal neurones were determined. The effects of spinal administration of (5Z,8Z11Z,14Z)-N-(3-furanylmethyl)-5,8,11,14-eicosatetraenamide (UCM707), which binds to CB(2) receptors and alters transport of ECs, on evoked responses of spinal neurones and spinal levels of ECs were also determined. The cannabinoid CB(1) receptor antagonist AM251, but not the CB(2) receptor antagonist, significantly facilitated 10-g-evoked responses of spinal neurones in neuropathic, but not sham-operated, rats. Spinal administration of UCM707 did not alter spinal levels of ECs but did significantly inhibit mechanically-evoked responses of neurones in neuropathic, but not sham-operated, rats. Pharmacological studies indicated that the selective inhibitory effects of spinal UCM707 in neuropathic rats were mediated by activation of spinal CB(2) receptors, as well as a contribution from transient receptor potential vanilloid 1 (TRPV1) channels. This work demonstrates that changes in the EC receptor system in the spinal cord of neuropathic rats influence the processing of sensory inputs, in particular low-weight inputs that drive allodynia, and indicates novel effects of drugs acting via multiple elements of this receptor system.
Collapse
Affiliation(s)
- Devi Rani Sagar
- School of Biomedical Sciences, University of Nottingham, Medical School, Queen's Medical Centre, Nottingham, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Purification of a peptide from seahorse, that inhibits TPA-induced MMP, iNOS and COX-2 expression through MAPK and NF-κB activation, and induces human osteoblastic and chondrocytic differentiation. Chem Biol Interact 2010; 184:413-22. [DOI: 10.1016/j.cbi.2009.12.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 11/27/2009] [Accepted: 12/02/2009] [Indexed: 11/17/2022]
|