1
|
Vav Proteins in Development of the Brain: A Potential Relationship to the Pathogenesis of Congenital Zika Syndrome? Viruses 2022; 14:v14020386. [PMID: 35215978 PMCID: PMC8874935 DOI: 10.3390/v14020386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 12/07/2022] Open
Abstract
Zika virus (ZIKV) infection during pregnancy can result in a significant impact on the brain and eye of the developing fetus, termed congenital zika syndrome (CZS). At a morphological level, the main serious presentations of CZS are microcephaly and retinal scarring. At a cellular level, many cell types of the brain may be involved, but primarily neuronal progenitor cells (NPC) and developing neurons. Vav proteins have guanine exchange activity in converting GDP to GTP on proteins such as Rac1, Cdc42 and RhoA to stimulate intracellular signaling pathways. These signaling pathways are known to play important roles in maintaining the polarity and self-renewal of NPC pools by coordinating the formation of adherens junctions with cytoskeletal rearrangements. In developing neurons, these same pathways are adopted to control the formation and growth of neurites and mediate axonal guidance and targeting in the brain and retina. This review describes the role of Vavs in these processes and highlights the points of potential ZIKV interaction, such as (i) the binding and entry of ZIKV in cells via TAM receptors, which may activate Vav/Rac/RhoA signaling; (ii) the functional convergence of ZIKV NS2A with Vav in modulating adherens junctions; (iii) ZIKV NS4A/4B protein effects on PI3K/AKT in a regulatory loop via PPI3 to influence Vav/Rac1 signaling in neurite outgrowth; and (iv) the induction of SOCS1 and USP9X following ZIKV infection to regulate Vav protein degradation or activation, respectively, and impact Vav/Rac/RhoA signaling in NPC and neurons. Experiments to define these interactions will further our understanding of the molecular basis of CZS and potentially other developmental disorders stemming from in utero infections. Additionally, Vav/Rac/RhoA signaling pathways may present tractable targets for therapeutic intervention or molecular rationale for disease severity in CZS.
Collapse
|
2
|
Camacho-Arroyo I, Piña-Medina AG, Bello-Alvarez C, Zamora-Sánchez CJ. Sex hormones and proteins involved in brain plasticity. VITAMINS AND HORMONES 2020; 114:145-165. [PMID: 32723542 DOI: 10.1016/bs.vh.2020.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
It is well known that peripheral sex steroid hormones cross the blood-brain barrier and control a broad spectrum of reproductive behaviors. However, their role in other essential brain functions was investigated since the 1980s, when the accumulation of pregnenolone and dehydroepiandrosterone in the brain of mammalian species was determined. Since then, numerous studies have demonstrated the participation of sex hormones in brain plasticity processes. Sex hormones through both genomic and non-genomic mechanisms of action are capable of inducing gene transcription or activating signaling cascades that result in the promotion of different physiological and pathological events of brain plasticity, such as remodeling or formation of dendritic spines, neurogenesis, synaptogenesis or myelination. In this chapter, we will present the effects of sex hormones and proteins involved in brain plasticity.
Collapse
Affiliation(s)
- Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico.
| | - Ana Gabriela Piña-Medina
- Facultad de Química, Departamento de Biología, Universidad Nacional Autónoma de México (UNAM), Ciudad de México, México
| | - Claudia Bello-Alvarez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | - Carmen J Zamora-Sánchez
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| |
Collapse
|
3
|
Signs of Reduced Basal Progenitor Levels and Cortical Neurogenesis in Human Fetuses with Open Spina Bifida at 11-15 Weeks of Gestation. J Neurosci 2020; 40:1766-1777. [PMID: 31953373 DOI: 10.1523/jneurosci.0192-19.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 12/06/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022] Open
Abstract
Open spina bifida (OSB) is one of the most prevalent congenital malformations of the CNS that often leads to severe disabilities. Previous studies reported the volume and thickness of the neocortex to be altered in children and adolescents diagnosed with OSB. Until now, the onset and the underlying cause of the atypical neocortex organization in OSB patients remain largely unknown. To examine the effects of OSB on fetal neocortex development, we analyzed human fetuses of both sexes diagnosed with OSB between 11 and 15 weeks of gestation by immunofluorescence for established neuronal and neural progenitor marker proteins and compared the results with healthy controls of the same, or very similar, gestational age. Our data indicate that neocortex development in OSB fetuses is altered as early as 11 weeks of gestation. We observed a marked reduction in the radial thickness of the OSB neocortex, which appears to be attributable to a massive decrease in the number of deep- and upper-layer neurons per field, and found a marked reduction in the number of basal progenitors (BPs) per field in the OSB neocortex, consistent with an impairment of cortical neurogenesis underlying the neuronal decrease in OSB fetuses. Moreover, our data suggest that the decrease in BP number in the OSB neocortex may be associated with BPs spending a lesser proportion of their cell cycle in M-phase. Together, our findings expand our understanding of the pathophysiology of OSB and support the need for an early fetal therapy (i.e., in the first trimester of pregnancy).SIGNIFICANCE STATEMENT Open spina bifida (OSB) is one of the most prevalent congenital malformations of the CNS. This study provides novel data on neocortex development of human OSB fetuses. Our data indicate that neocortex development in OSB fetuses is altered as early as 11 weeks of gestation. We observed a marked reduction in the radial thickness of the OSB neocortex, which appears to be attributable a decrease in the number of deep- and upper-layer neurons per field, and found a marked reduction in the number of basal progenitors per field, indicating that impaired neurogenesis underlies the neuronal decrease in OSB fetuses. Our findings support the need for an early fetal therapy and expand our understanding of the pathophysiology of OSB.
Collapse
|
4
|
Baldauf C, Sondhi M, Shin BC, Ko YE, Ye X, Lee KW, Devaskar SU. Murine maternal dietary restriction affects neural Humanin expression and cellular profile. J Neurosci Res 2019; 98:902-920. [PMID: 31840315 DOI: 10.1002/jnr.24568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/06/2019] [Accepted: 11/15/2019] [Indexed: 11/10/2022]
Abstract
To understand the cellular basis for the neurodevelopmental effects of intrauterine growth restriction (IUGR), we examined the global and regional expression of various cell types within murine (Mus musculus) fetal brain. Our model employed maternal calorie restriction to 50% daily food intake from gestation day 10-19, producing IUGR offspring. Offspring had smaller head sizes with larger head:body ratios indicating a head sparing IUGR effect. IUGR fetuses at embryonic day 19 (E19) had reduced nestin (progenitors), β-III tubulin (immature neurons), Glial fibrillary acidic protein (astrocytes), and O4 (oligodendrocytes) cell lineages via immunofluorescence quantification and a 30% reduction in cortical thickness. No difference was found in Bcl-2 or Bax (apoptosis) between controls and IUGR, though qualitatively, immunoreactivity of doublecortin (migration) and Ki67 (proliferation) was decreased. In the interest of examining a potential therapeutic peptide, we next investigated a novel pro-survival peptide, mouse Humanin (mHN). Ontogeny examination revealed highest mHN expression at E19, diminishing by postnatal day 15 (P15), and nearly absent in adult (3 months). Subanalysis by sex at E19 yielded higher mHN expression among males during fetal life, without significant difference between sexes postnatally. Furthermore, female IUGR mice at E19 had a greater increase in cortical mHN versus the male fetus over their respective controls. We conclude that maternal dietary restriction-associated IUGR interferes with neural progenitors differentiating into the various cellular components populating the cerebral cortex, and reduces cerebral cortical size. mHN expression is developmental stage and sex specific, with IUGR, particularly in the females, adaptively increasing its expression toward mediating a pro-survival approach against nutritional adversity.
Collapse
Affiliation(s)
- Claire Baldauf
- Department of Pediatrics, Division of Neonatology & Developmental Biology, UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA
| | - Monica Sondhi
- Department of Pediatrics, Division of Neonatology & Developmental Biology, UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA
| | - Bo-Chul Shin
- Department of Pediatrics, Division of Neonatology & Developmental Biology, UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA
| | - Young Eun Ko
- Department of Pediatrics, Division of Neonatology & Developmental Biology, UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA
| | - Xin Ye
- Department of Pediatrics, Division of Neonatology & Developmental Biology, UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA
| | - Kuk-Wha Lee
- Department of Pediatrics, Division of Endocrinology, Neonatal Research Center of the UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA
| | - Sherin U Devaskar
- Department of Pediatrics, Division of Neonatology & Developmental Biology, UCLA Children's Discovery and Innovation Institute, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
5
|
Gurung S, Reuter N, Preno A, Dubaut J, Nadeau H, Hyatt K, Singleton K, Martin A, Parks WT, Papin JF, Myers DA. Zika virus infection at mid-gestation results in fetal cerebral cortical injury and fetal death in the olive baboon. PLoS Pathog 2019; 15:e1007507. [PMID: 30657788 PMCID: PMC6355048 DOI: 10.1371/journal.ppat.1007507] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/31/2019] [Accepted: 12/05/2018] [Indexed: 11/21/2022] Open
Abstract
Zika virus (ZIKV) infection during pregnancy in humans is associated with an increased incidence of congenital anomalies including microcephaly as well as fetal death and miscarriage and collectively has been referred to as Congenital Zika Syndrome (CZS). Animal models for ZIKV infection in pregnancy have been developed including mice and non-human primates (NHPs). In macaques, fetal CZS outcomes from maternal ZIKV infection range from none to significant. In the present study we develop the olive baboon (Papio anubis), as a model for vertical transfer of ZIKV during pregnancy. Four mid-gestation, timed-pregnant baboons were inoculated with the French Polynesian ZIKV isolate (104 ffu). This study specifically focused on the acute phase of vertical transfer. Dams were terminated at 7 days post infection (dpi; n = 1), 14 dpi (n = 2) and 21 dpi (n = 1). All dams exhibited mild to moderate rash and conjunctivitis. Viremia peaked at 5–7 dpi with only one of three dams remaining mildly viremic at 14 dpi. An anti-ZIKV IgM response was observed by 14 dpi in all three dams studied to this stage, and two dams developed a neutralizing IgG response by either 14 dpi or 21 dpi, the latter included transfer of the IgG to the fetus (cord blood). A systemic inflammatory response (increased IL2, IL6, IL7, IL15, IL16) was observed in three of four dams. Vertical transfer of ZIKV to the placenta was observed in three pregnancies (n = 2 at 14 dpi and n = 1 at 21 dpi) and ZIKV was detected in fetal tissues in two pregnancies: one associated with fetal death at ~14 dpi, and the other in a viable fetus at 21 dpi. ZIKV RNA was detected in the fetal cerebral cortex and other tissues of both of these fetuses. In the fetus studied at 21 dpi with vertical transfer of virus to the CNS, the frontal cerebral cortex exhibited notable defects in radial glia, radial glial fibers, disorganized migration of immature neurons to the cortical layers, and signs of pathology in immature oligodendrocytes. In addition, indices of pronounced neuroinflammation were observed including astrogliosis, increased microglia and IL6 expression. Of interest, in one fetus examined at 14 dpi without detection of ZIKV RNA in brain and other fetal tissues, increased neuroinflammation (IL6 and microglia) was observed in the cortex. Although the placenta of the 14 dpi dam with fetal death showed considerable pathology, only minor pathology was noted in the other three placentas. ZIKV was detected immunohistochemically in two placentas (14 dpi) and one placenta at 21 dpi but not at 7 dpi. This is the first study to examine the early events of vertical transfer of ZIKV in a NHP infected at mid-gestation. The baboon thus represents an additional NHP as a model for ZIKV induced brain pathologies to contrast and compare to humans as well as other NHPs. Zika virus is endemic in the Americas, primarily spread through mosquitos and sexual contact. Zika virus infection during pregnancy in women is associated with a variety of fetal pathologies now referred to as Congenital Zika Syndrome (CZS), with the most severe pathology being fetal microcephaly. Developing model organisms that faithfully recreate Zika infection in humans is critical for future development of treatments and preventions. In our present study, we infected Olive baboons at mid-gestation with Zika virus and studied the acute period of viremia and transfer of Zika virus to the fetus during the first three weeks after infection to better understand the timing and mechanisms of transfer of ZIKV across the placenta, leading to CZS. We observed Zika virus transfer to fetuses resulting in fetal death in one pregnancy and in a second pregnancy, significant damage to the frontal cortex of the fetal brain at a critical period of neurodevelopment in primates. Thus, the baboon provides a promising new non-human primate model to further compare and contrast the consequences of Zika virus infection in pregnancy to humans and other non-human primates.
Collapse
Affiliation(s)
- Sunam Gurung
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Nicole Reuter
- Division of Comparative Medicine, Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Alisha Preno
- Division of Comparative Medicine, Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Jamie Dubaut
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Hugh Nadeau
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Kimberly Hyatt
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Krista Singleton
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
| | - Ashley Martin
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - W. Tony Parks
- Department of Pathology, University of Toronto, Toronto, Ontario, Canada
| | - James F. Papin
- Division of Comparative Medicine, Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Dean A. Myers
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States of America
- * E-mail:
| |
Collapse
|
6
|
Ilyasov AA, Milligan CE, Pharr EP, Howlett AC. The Endocannabinoid System and Oligodendrocytes in Health and Disease. Front Neurosci 2018; 12:733. [PMID: 30416422 PMCID: PMC6214135 DOI: 10.3389/fnins.2018.00733] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 09/24/2018] [Indexed: 12/22/2022] Open
Abstract
Cannabinoid-based interventions are being explored for central nervous system (CNS) pathologies such as neurodegeneration, demyelination, epilepsy, stroke, and trauma. As these disease states involve dysregulation of myelin integrity and/or remyelination, it is important to consider effects of the endocannabinoid system on oligodendrocytes and their precursors. In this review, we examine research reports on the effects of the endocannabinoid system (ECS) components on oligodendrocytes and their precursors, with a focus on therapeutic implications. Cannabinoid ligands and modulators of the endocannabinoid system promote cell signaling in oligodendrocyte precursor survival, proliferation, migration and differentiation, and mature oligodendrocyte survival and myelination. Agonist stimulation of oligodendrocyte precursor cells (OPCs) at both CB1 and CB2 receptors counter apoptotic processes via Akt/PI3K, and promote proliferation via Akt/mTOR and ERK pathways. CB1 receptors in radial glia promote proliferation and conversion to progenitors fated to become oligodendroglia, whereas CB2 receptors promote OPC migration in neonatal development. OPCs produce 2-arachidonoylglycerol (2-AG), stimulating cannabinoid receptor-mediated ERK pathways responsible for differentiation to arborized, myelin basic protein (MBP)-producing oligodendrocytes. In cell culture models of excitotoxicity, increased reactive oxygen species, and depolarization-dependent calcium influx, CB1 agonists improved viability of oligodendrocytes. In transient and permanent middle cerebral artery occlusion models of anoxic stroke, WIN55212-2 increased OPC proliferation and maturation to oligodendroglia, thereby reducing cerebral tissue damage. In several models of rodent encephalomyelitis, chronic treatment with cannabinoid agonists ameliorated the damage by promoting OPC survival and oligodendrocyte function. Pharmacotherapeutic strategies based upon ECS and oligodendrocyte production and survival should be considered.
Collapse
Affiliation(s)
- Alexander A Ilyasov
- Graduate Program in Neuroscience, Wake Forest School of Medicine, Winston Salem, NC, United States.,Department of Physiology and Pharmacology and Center for Research on Substance Use and Addiction, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Carolanne E Milligan
- Graduate Program in Neuroscience, Wake Forest School of Medicine, Winston Salem, NC, United States.,Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Emily P Pharr
- Graduate Program in Neuroscience, Wake Forest School of Medicine, Winston Salem, NC, United States.,Department of Neurology and Comprehensive Multiple Sclerosis Center, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Allyn C Howlett
- Graduate Program in Neuroscience, Wake Forest School of Medicine, Winston Salem, NC, United States.,Department of Physiology and Pharmacology and Center for Research on Substance Use and Addiction, Wake Forest School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
7
|
Saili KS, Zurlinden TJ, Schwab AJ, Silvin A, Baker NC, Hunter ES, Ginhoux F, Knudsen TB. Blood-brain barrier development: Systems modeling and predictive toxicology. Birth Defects Res 2018; 109:1680-1710. [PMID: 29251840 DOI: 10.1002/bdr2.1180] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 11/12/2017] [Indexed: 01/17/2023]
Abstract
The blood-brain barrier (BBB) serves as a gateway for passage of drugs, chemicals, nutrients, metabolites, and hormones between vascular and neural compartments in the brain. Here, we review BBB development with regard to the microphysiology of the neurovascular unit (NVU) and the impact of BBB disruption on brain development. Our focus is on modeling these complex systems. Extant in silico models are available as tools to predict the probability of drug/chemical passage across the BBB; in vitro platforms for high-throughput screening and high-content imaging provide novel data streams for profiling chemical-biological interactions; and engineered human cell-based microphysiological systems provide empirical models with which to investigate the dynamics of NVU function. Computational models are needed that bring together kinetic and dynamic aspects of NVU function across gestation and under various physiological and toxicological scenarios. This integration will inform adverse outcome pathways to reduce uncertainty in translating in vitro data and in silico models for use in risk assessments that aim to protect neurodevelopmental health.
Collapse
Affiliation(s)
- Katerine S Saili
- National Center for Computational Toxicology (NCCT); U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina 27711
| | - Todd J Zurlinden
- National Center for Computational Toxicology (NCCT); U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina 27711
| | - Andrew J Schwab
- National Health and Environmental Effects Research Laboratory (NHEERL), U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina 27711
| | - Aymeric Silvin
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 138648, Singapore
| | - Nancy C Baker
- Leidos, contractor to NCCT, Research Triangle Park, North Carolina 27711
| | - E Sidney Hunter
- National Health and Environmental Effects Research Laboratory (NHEERL), U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina 27711
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 138648, Singapore
| | - Thomas B Knudsen
- National Center for Computational Toxicology (NCCT); U.S. Environmental Protection Agency, Office of Research and Development, Research Triangle Park, North Carolina 27711
| |
Collapse
|
8
|
Pellegrino G, Trubert C, Terrien J, Pifferi F, Leroy D, Loyens A, Migaud M, Baroncini M, Maurage CA, Fontaine C, Prévot V, Sharif A. A comparative study of the neural stem cell niche in the adult hypothalamus of human, mouse, rat and gray mouse lemur (Microcebus murinus). J Comp Neurol 2018; 526:1419-1443. [PMID: 29230807 DOI: 10.1002/cne.24376] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/08/2017] [Accepted: 11/27/2017] [Indexed: 12/20/2022]
Abstract
The adult brain contains niches of neural stem cells that continuously add new neurons to selected circuits throughout life. Two niches have been extensively studied in various mammalian species including humans, the subventricular zone of the lateral ventricles and the subgranular zone of the hippocampal dentate gyrus. Recently, studies conducted mainly in rodents have identified a third neurogenic niche in the adult hypothalamus. In order to evaluate whether a neural stem cell niche also exists in the adult hypothalamus in humans, we performed multiple immunofluorescence labeling to assess the expression of a panel of neural stem/progenitor cell (NPC) markers (Sox2, nestin, vimentin, GLAST, GFAP) in the human hypothalamus and compared them with the mouse, rat and a non-human primate species, the gray mouse lemur (Microcebus murinus). Our results show that the adult human hypothalamus contains four distinct populations of cells that express the five NPC markers: (a) a ribbon of small stellate cells that lines the third ventricular wall behind a hypocellular gap, similar to that found along the lateral ventricles, (b) ependymal cells, (c) tanycytes, which line the floor of the third ventricle in the tuberal region, and (d) a population of small stellate cells in the suprachiasmatic nucleus. In the mouse, rat and mouse lemur hypothalamus, co-expression of NPC markers is primarily restricted to tanycytes, and these species lack a ventricular ribbon. Our work thus identifies four cell populations with the antigenic profile of NPCs in the adult human hypothalamus, of which three appear specific to humans.
Collapse
Affiliation(s)
- Giuliana Pellegrino
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Lille Cedex, France.,University of Lille, School of Medicine, Lille Cedex, France
| | - Claire Trubert
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Lille Cedex, France.,University of Lille, School of Medicine, Lille Cedex, France
| | - Jérémy Terrien
- MECADEV UMR 7179, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Brunoy, France
| | - Fabien Pifferi
- MECADEV UMR 7179, Centre National de la Recherche Scientifique, Muséum National d'Histoire Naturelle, Brunoy, France
| | - Danièle Leroy
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Lille Cedex, France
| | - Anne Loyens
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Lille Cedex, France
| | - Martine Migaud
- INRA, UMR 85 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,CNRS, UMR7247, Nouzilly, France; Université de Tours, Tours, France.,Institut Français du Cheval et de l'Equitation (IFCE), Nouzilly, France
| | - Marc Baroncini
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Lille Cedex, France.,University of Lille, School of Medicine, Lille Cedex, France.,Department of Neurosurgery, Lille University Hospital, Lille, France
| | - Claude-Alain Maurage
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Lille Cedex, France.,University of Lille, School of Medicine, Lille Cedex, France.,Department of Neuropathology, Lille University Hospital, Lille, France
| | - Christian Fontaine
- University of Lille, School of Medicine, Lille Cedex, France.,Laboratory of Anatomy, Lille University Hospital, Lille, France
| | - Vincent Prévot
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Lille Cedex, France.,University of Lille, School of Medicine, Lille Cedex, France
| | - Ariane Sharif
- Inserm, Jean-Pierre Aubert Research Center, Development and Plasticity of the Neuroendocrine Brain, Lille Cedex, France.,University of Lille, School of Medicine, Lille Cedex, France
| |
Collapse
|
9
|
Human iPS-Derived Astroglia from a Stable Neural Precursor State Show Improved Functionality Compared with Conventional Astrocytic Models. Stem Cell Reports 2018; 10:1030-1045. [PMID: 29456185 PMCID: PMC5918339 DOI: 10.1016/j.stemcr.2018.01.021] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 01/19/2018] [Accepted: 01/19/2018] [Indexed: 12/15/2022] Open
Abstract
In vivo studies of human brain cellular function face challenging ethical and practical difficulties. Animal models are typically used but display distinct cellular differences. One specific example is astrocytes, recently recognized for contribution to neurological diseases and a link to the genetic risk factor apolipoprotein E (APOE). Current astrocytic in vitro models are questioned for lack of biological characterization. Here, we report human induced pluripotent stem cell (hiPSC)-derived astroglia (NES-Astro) developed under defined conditions through long-term neuroepithelial-like stem (ltNES) cells. We characterized NES-Astro and astrocytic models from primary sources, astrocytoma (CCF-STTG1), and hiPSCs through transcriptomics, proteomics, glutamate uptake, inflammatory competence, calcium signaling response, and APOE secretion. Finally, we assess modulation of astrocyte biology using APOE-annotated compounds, confirming hits of the cholesterol biosynthesis pathway in adult and hiPSC-derived astrocytes. Our data show large diversity among astrocytic models and emphasize a cellular context when studying astrocyte biology. Expression and functional profiling display variation between astrocyte models Development of NES-Astro showing functional astrocyte-associated glutamate receptor NES-Astro is immune competent, displaying ATP and glutamate-driven calcium signaling APOE HTS assay shows that compound hit finding depends on astrocytic model biology
Collapse
|
10
|
Djuric U, Rodrigues DC, Batruch I, Ellis J, Shannon P, Diamandis P. Spatiotemporal Proteomic Profiling of Human Cerebral Development. Mol Cell Proteomics 2017; 16:1548-1562. [PMID: 28687556 DOI: 10.1074/mcp.m116.066274] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 05/30/2017] [Indexed: 12/21/2022] Open
Abstract
Mass spectrometry (MS) analysis of human post-mortem central nervous system (CNS) tissue and induced pluripotent stem cell (iPSC)-based directed differentiations offer complementary avenues to define protein signatures of neurodevelopment. Methodological improvements of formalin-fixed, paraffin-embedded (FFPE) protein isolation now enable widespread proteomic analysis of well-annotated archival tissue samples in the context of development and disease. Here, we utilize a shotgun label-free quantification (LFQ) MS method to profile magnetically enriched human cortical neurons and neural progenitor cells (NPCs) derived from iPSCs. We use these signatures to help define spatiotemporal protein dynamics of developing human FFPE cerebral regions. We show that the use of high resolution Q Exactive mass spectrometers now allow simultaneous quantification of >2700 proteins in a single LFQ experiment and provide sufficient coverage to define novel biomarkers and signatures of NPC maintenance and differentiation. Importantly, we show that this abbreviated strategy allows efficient recovery of novel cytoplasmic, membrane-specific and synaptic proteins that are shared between both in vivo and in vitro neuronal differentiation. This study highlights the discovery potential of non-comprehensive high-throughput proteomic profiling of unfractionated clinically well-annotated FFPE human tissue from a diverse array of development and diseased states.
Collapse
Affiliation(s)
- Ugljesa Djuric
- From the ‡Laboratory Medicine and Pathology Program, University Health Network, Toronto, Ontario, M5G 2C4, Canada
| | - Deivid C Rodrigues
- §Department of Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, M5G 1L7, Canada
| | - Ihor Batruch
- ¶Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada
| | - James Ellis
- §Department of Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, M5G 1L7, Canada.,‖Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Patrick Shannon
- ¶Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, M5G 1X5, Canada.,**Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5S 1A1, Canada; and
| | - Phedias Diamandis
- From the ‡Laboratory Medicine and Pathology Program, University Health Network, Toronto, Ontario, M5G 2C4, Canada; .,**Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, M5S 1A1, Canada; and
| |
Collapse
|
11
|
Ortega JA, Sirois CL, Memi F, Glidden N, Zecevic N. Oxygen Levels Regulate the Development of Human Cortical Radial Glia Cells. Cereb Cortex 2017; 27:3736-3751. [PMID: 27600849 PMCID: PMC6075453 DOI: 10.1093/cercor/bhw194] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2016] [Revised: 04/29/2016] [Accepted: 05/24/2016] [Indexed: 12/17/2022] Open
Abstract
The oxygen (O2) concentration is a vital parameter for controlling the survival, proliferation, and differentiation of neural stem cells. A prenatal reduction of O2 levels (hypoxia) often leads to cognitive and behavioral defects, attributable to altered neural development. In this study, we analyzed the effects of O2 levels on human cortical progenitors, the radial glia cells (RGCs), during active neurogenesis, corresponding to the second trimester of gestation. Small changes in O2 levels profoundly affected RGC survival, proliferation, and differentiation. Physiological hypoxia (3% O2) promoted neurogenesis, whereas anoxia (<1% O2) and severe hypoxia (1% O2) arrested the differentiation of human RGCs, mainly by altering the generation of glutamatergic neurons. The in vitro activation of Wnt-β-catenin signaling rescued the proliferation and neuronal differentiation of RGCs subjected to anoxia. Pathologic hypoxia (≤1% O2) also exerted negative effects on gliogenesis, by decreasing the number of O4+ preoligodendrocytes and increasing the number of reactive astrocytes derived from cortical RGCs. O2-dependent alterations in glutamatergic neurogenesis and oligodendrogenesis can lead to significant changes in cortical circuitry formation. A better understanding of the cellular effects caused by changes in O2 levels during human cortical development is essential to elucidating the etiology of numerous neurodevelopmental disorders.
Collapse
Affiliation(s)
- J Alberto Ortega
- Department of Neuroscience, University of Connecticut Health, Farmington, CT 06030, USA
| | - Carissa L Sirois
- Department of Neuroscience, University of Connecticut Health, Farmington, CT 06030, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Fani Memi
- Department of Neuroscience, University of Connecticut Health, Farmington, CT 06030, USA
| | - Nicole Glidden
- Department of Neuroscience, University of Connecticut Health, Farmington, CT 06030, USA
| | - Nada Zecevic
- Department of Neuroscience, University of Connecticut Health, Farmington, CT 06030, USA
| |
Collapse
|
12
|
Dynamic behaviour of human neuroepithelial cells in the developing forebrain. Nat Commun 2017; 8:14167. [PMID: 28139695 PMCID: PMC5290330 DOI: 10.1038/ncomms14167] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 12/05/2016] [Indexed: 11/09/2022] Open
Abstract
To understand how diverse progenitor cells contribute to human neocortex development, we examined forebrain progenitor behaviour using timelapse imaging. Here we find that cell cycle dynamics of human neuroepithelial (NE) cells differ from radial glial (RG) cells in both primary tissue and in stem cell-derived organoids. NE cells undergoing proliferative, symmetric divisions retract their basal processes, and both daughter cells regrow a new process following cytokinesis. The mitotic retraction of the basal process is recapitulated by NE cells in cerebral organoids generated from human-induced pluripotent stem cells. In contrast, RG cells undergoing vertical cleavage retain their basal fibres throughout mitosis, both in primary tissue and in older organoids. Our findings highlight developmentally regulated changes in mitotic behaviour that may relate to the role of RG cells to provide a stable scaffold for neuronal migration, and suggest that the transition in mitotic dynamics can be studied in organoid models. The dynamics of progenitor cells in human neocortex development has not been studied directly. Here, the authors timelapse image human neuroepithelial (NE) and radial glial (RG) cells in embryonic brain slices and find properties of NE cells and RG that are mimicked in cerebral organoids.
Collapse
|
13
|
Ostrem B, Di Lullo E, Kriegstein A. oRGs and mitotic somal translocation - a role in development and disease. Curr Opin Neurobiol 2016; 42:61-67. [PMID: 27978479 DOI: 10.1016/j.conb.2016.11.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/18/2016] [Accepted: 11/22/2016] [Indexed: 12/30/2022]
Abstract
The evolution of the human brain has been characterized by an increase in the size of the neocortex. Underlying this expansion is a significant increase in the number of neurons produced by neural stem cells during early stages of cortical development. Here we highlight recent advances in our understating of these cell populations, consisting of ventricular radial glia and outer radial glia. We highlight how gene expression studies have identified molecular signatures for radial glial cell populations and outline what has been learned about the mechanisms underlying the characteristic mode of division observed in outer radial glia cells, mitotic somal translocation. Understanding the significance of this behavior may help us explain human cortical expansion and further elucidate neurodevelopmental diseases.
Collapse
Affiliation(s)
- Bridget Ostrem
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Elizabeth Di Lullo
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA
| | - Arnold Kriegstein
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA.
| |
Collapse
|
14
|
Bagasrawala I, Zecevic N, Radonjić NV. N-Methyl D-Aspartate Receptor Antagonist Kynurenic Acid Affects Human Cortical Development. Front Neurosci 2016; 10:435. [PMID: 27746712 PMCID: PMC5043058 DOI: 10.3389/fnins.2016.00435] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/08/2016] [Indexed: 12/25/2022] Open
Abstract
Kynurenic acid (KYNA), a neuroactive metabolite of tryptophan degradation, acts as an endogenous N-methyl-D-aspartate receptor (NMDAR) antagonist. Elevated levels of KYNA have been observed in pregnant women after viral infections and are considered to play a role in neurodevelopmental disorders. However, the consequences of KYNA-induced NMDAR blockade in human cortical development still remain elusive. To study the potential impact of KYNA on human neurodevelopment, we used an in vitro system of multipotent cortical progenitors, i.e., radial glia cells (RGCs), enriched from human cerebral cortex at mid-gestation (16–19 gestational weeks). KYNA treatment significantly decreased RGCs proliferation and survival by antagonizing NMDAR. This alteration resulted in a reduced number of cortical progenitors and neurons while number and activation of astrocytes increased. KYNA treatment reduced differentiation of RGCs into GABAergic neurons, while differentiation into glutamatergic neurons was relatively spared. Furthermore, in mixed cortical cultures KYNA triggered an inflammatory response as evidenced by increased levels of the pro-inflammatory cytokine IL-6. In conclusion, elevated levels of KYNA play a significant role in human RGC fate determination by antagonizing NMDARs and by activating an inflammatory response. The altered cell composition observed in cell culture following exposure to elevated KYNA levels suggests a mechanism for impairment of cortical circuitry formation in the fetal brain after viral infection, as seen in neurodevelopmental disorders such as schizophrenia.
Collapse
Affiliation(s)
- Inseyah Bagasrawala
- Department of Neuroscience, University of Connecticut Health Farmington, CT, USA
| | - Nada Zecevic
- Department of Neuroscience, University of Connecticut Health Farmington, CT, USA
| | - Nevena V Radonjić
- Department of Psychiatry, University of Connecticut Health Farmington, CT, USA
| |
Collapse
|
15
|
Chandrasekaran A, Avci HX, Leist M, Kobolák J, Dinnyés A. Astrocyte Differentiation of Human Pluripotent Stem Cells: New Tools for Neurological Disorder Research. Front Cell Neurosci 2016; 10:215. [PMID: 27725795 PMCID: PMC5035736 DOI: 10.3389/fncel.2016.00215] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/30/2016] [Indexed: 12/22/2022] Open
Abstract
Astrocytes have a central role in brain development and function, and so have gained increasing attention over the past two decades. Consequently, our knowledge about their origin, differentiation and function has increased significantly, with new research showing that astrocytes cultured alone or co-cultured with neurons have the potential to improve our understanding of various central nervous system diseases, such as amyotrophic lateral sclerosis, Alzheimer’s disease, or Alexander disease. The generation of astrocytes derived from pluripotent stem cells (PSCs) opens up a new area for studying neurologic diseases in vitro; these models could be exploited to identify and validate potential drugs by detecting adverse effects in the early stages of drug development. However, as it is now known that a range of astrocyte populations exist in the brain, it will be important in vitro to develop standardized protocols for the in vitro generation of astrocyte subsets with defined maturity status and phenotypic properties. This will then open new possibilities for co-cultures with neurons and the generation of neural organoids for research purposes. The aim of this review article is to compare and summarize the currently available protocols and their strategies to generate human astrocytes from PSCs. Furthermore, we discuss the potential role of human-induced PSCs derived astrocytes in disease modeling.
Collapse
Affiliation(s)
| | - Hasan X Avci
- BioTalentum LtdGödöllő, Hungary; Department of Medical Chemistry, University of SzegedSzeged, Hungary
| | - Marcel Leist
- Dorenkamp-Zbinden Chair, Faculty of Mathematics and Sciences, University of Konstanz Konstanz, Germany
| | | | - Andras Dinnyés
- BioTalentum LtdGödöllő, Hungary; Molecular Animal Biotechnology Laboratory, Szent Istvan UniversityGödöllő, Hungary
| |
Collapse
|
16
|
Brøchner CB, Møllgård K. SSEA-4 and YKL-40 positive progenitor subtypes in the subventricular zone of developing human neocortex. Glia 2015; 64:90-104. [PMID: 26295543 PMCID: PMC5049638 DOI: 10.1002/glia.22905] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 07/24/2015] [Accepted: 08/05/2015] [Indexed: 12/17/2022]
Abstract
The glycosphingolipid SSEA-4 and the glycoprotein YKL-40 have both been associated with human embryonic and neural stem cell differentiation. We investigated the distribution of SSEA-4 and YKL-40 positive cells in proliferative zones of human fetal forebrain using immunohistochemistry and double-labeling immunofluorescence. A few small rounded SSEA-4 and YKL-40 labeled cells were present in the radial glial BLBP positive proliferative zones adjacent to the lateral ganglionic eminence from 12th week post conception. With increasing age, a similarly stained cell population appeared more widespread in the subventricular zone. At midgestation, the entire subventricular zone showed patches of SSEA-4, YKL-40, and BLBP positive cells. Co-labeling with markers for radial glial cells (RGCs) and neuronal, glial, and microglial markers tested the lineage identity of this subpopulation of radial glial descendants. Adjacent to the ventricular zone, a minor fraction showed overlap with GFAP but not with nestin, Olig2, NG2, or S100. No co-localization was found with neuronal markers NeuN, calbindin, DCX or with markers for microglial cells (Iba-1, CD68). Moreover, the SSEA-4 and YKL-40 positive cell population in subventricular zone was largely devoid of Tbr2, a marker for intermediate neuronal progenitor cells descending from RGCs. YKL-40 has recently been found in astrocytes in the neuron-free fimbria, and both SSEA-4 and YKL-40 are present in malignant astroglial brain tumors. We suggest that the population of cells characterized by immunohistochemical combination of antibodies against SSEA-4 and YKL-40 and devoid of neuronal and microglial markers represent a yet unexplored astrogenic lineage illustrating the complexity of astroglial development.
Collapse
Affiliation(s)
- Christian B Brøchner
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, DK-2200, Denmark
| | - Kjeld Møllgård
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, Copenhagen, DK-2200, Denmark
| |
Collapse
|
17
|
Duan L, Peng CY, Pan L, Kessler JA. Human pluripotent stem cell-derived radial glia recapitulate developmental events and provide real-time access to cortical neurons and astrocytes. Stem Cells Transl Med 2015; 4:437-47. [PMID: 25834120 DOI: 10.5966/sctm.2014-0137] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 01/19/2015] [Indexed: 01/08/2023] Open
Abstract
Studies of human cerebral cortex development are limited by difficulties in accessing and manipulating human neural tissue at specific development stages. We have derived human radial glia (hRG), which are responsible for most cerebral cortex neurogenesis, from human pluripotent stem cells. These hRG display the hallmark morphological, cellular, and molecular features of radial glia in vitro. They can be passaged and generate layer-specific subtypes of cortical neurons in a temporal and passage-dependent fashion. In later passages, they adopt a distinct progenitor phenotype that gives rise to cortical astrocytes and GABAergic interneurons. These hRG are also capable of following developmental cues to engraft, differentiate, migrate, and integrate into the embryonic mouse cortex when injected into E14 lateral ventricles. Moreover, hRG-derived cells can be cryopreserved at specific stages and retain their stage-specific phenotypes and competence when revived. Our study demonstrates that cultured hRG maintain a cell-intrinsic clock that regulates the progressive generation of stage-specific neuronal and glial subtypes. It also describes an easily accessible cell source for studying hRG lineage specification and progression and an on-demand supply of specific cortical neuron subtypes and astrocytes.
Collapse
Affiliation(s)
- Lishu Duan
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Chian-Yu Peng
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Liuliu Pan
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - John A Kessler
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
18
|
Brøchner CB, Holst CB, Møllgård K. Outer brain barriers in rat and human development. Front Neurosci 2015; 9:75. [PMID: 25852456 PMCID: PMC4360706 DOI: 10.3389/fnins.2015.00075] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 02/20/2015] [Indexed: 12/24/2022] Open
Abstract
Complex barriers at the brain's surface, particularly in development, are poorly defined. In the adult, arachnoid blood-cerebrospinal fluid (CSF) barrier separates the fenestrated dural vessels from the CSF by means of a cell layer joined by tight junctions. Outer CSF-brain barrier provides diffusion restriction between brain and subarachnoid CSF through an initial radial glial end feet layer covered with a pial surface layer. To further characterize these interfaces we examined embryonic rat brains from E10 to P0 and forebrains from human embryos and fetuses (6–21st weeks post-conception) and adults using immunohistochemistry and confocal microscopy. Antibodies against claudin-11, BLBP, collagen 1, SSEA-4, MAP2, YKL-40, and its receptor IL-13Rα2 and EAAT1 were used to describe morphological characteristics and functional aspects of the outer brain barriers. Claudin-11 was a reliable marker of the arachnoid blood-CSF barrier. Collagen 1 delineated the subarachnoid space and stained pial surface layer. BLBP defined radial glial end feet layer and SSEA-4 and YKL-40 were present in both leptomeningeal cells and end feet layer, which transformed into glial limitans. IL-13Rα2 and EAAT1 were present in the end feet layer illustrating transporter/receptor presence in the outer CSF-brain barrier. MAP2 immunostaining in adult brain outlined the lower border of glia limitans; remnants of end feet were YKL-40 positive in some areas. We propose that outer brain barriers are composed of at least 3 interfaces: blood-CSF barrier across arachnoid barrier cell layer, blood-CSF barrier across pial microvessels, and outer CSF-brain barrier comprising glial end feet layer/pial surface layer.
Collapse
Affiliation(s)
- Christian B Brøchner
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| | - Camilla B Holst
- Department of Oncology, Copenhagen University Hospital Copenhagen, Denmark
| | - Kjeld Møllgård
- Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen Copenhagen, Denmark
| |
Collapse
|
19
|
Lewitus E, Kelava I, Kalinka AT, Tomancak P, Huttner WB. An adaptive threshold in mammalian neocortical evolution. PLoS Biol 2014; 12:e1002000. [PMID: 25405475 PMCID: PMC4236020 DOI: 10.1371/journal.pbio.1002000] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 10/09/2014] [Indexed: 01/19/2023] Open
Abstract
A study of the evolutionary history of cortical folding in mammals, its relationship to physiological and life-history traits and the underlying cortical progenitor behavior during embryogenesis, explains the diversity of folding we see across modern mammals. The diversity of neocortical folding among mammals can be explained by two distinct neurogenic programs, which give rise to mammals with a highly folded neocortex and mammals with slightly folded or unfolded neocortex, each occupying a distinct ecological niche. Expansion of the neocortex is a hallmark of human evolution. However, determining which adaptive mechanisms facilitated its expansion remains an open question. Here we show, using the gyrencephaly index (GI) and other physiological and life-history data for 102 mammalian species, that gyrencephaly is an ancestral mammalian trait. We find that variation in GI does not evolve linearly across species, but that mammals constitute two principal groups above and below a GI threshold value of 1.5, approximately equal to 109 neurons, which may be characterized by distinct constellations of physiological and life-history traits. By integrating data on neurogenic period, neuroepithelial founder pool size, cell-cycle length, progenitor-type abundances, and cortical neuron number into discrete mathematical models, we identify symmetric proliferative divisions of basal progenitors in the subventricular zone of the developing neocortex as evolutionarily necessary for generating a 14-fold increase in daily prenatal neuron production, traversal of the GI threshold, and thus establishment of two principal groups. We conclude that, despite considerable neuroanatomical differences, changes in the length of the neurogenic period alone, rather than any novel neurogenic progenitor lineage, are sufficient to explain differences in neuron number and neocortical size between species within the same principal group. What are the key differences in the development and evolution of the cerebral cortex that underlie the differences in its size and degree of folding across mammals? Here, we present phylogenetic evidence that the Jurassic era mammalian ancestor may have been a relatively large-brained species with a folded neocortex. We then show that variation in the degree of cortical folding (gyrencephaly index [GI]) does not evolve linearly across species, as previously assumed, but that mammals fall into two principal groups associated with distinct ecological niches: low-GI mammals (such as mice and tarsiers) and high-GI mammals (such as dolphins and humans), which are found to generate on average 14-fold more brain weight per day of gestation. This greater daily brain weight production in mammals with a highly folded neocortex requires a specific class of progenitor cell-type to adopt a special mode of cell division, which is absent in mammals with slightly folded or unfolded neocortices. Differences among mammals within the same GI group (high or low) are not due to different programming, but rather the result of differences in the length of the neurogenic period. So, the impressively large and folded human neocortex, which is three times the size of the chimpanzee neocortex, can be explained by a modest evolutionary extension of the neurogenic period with respect to its closest primate ancestors.
Collapse
Affiliation(s)
- Eric Lewitus
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- * E-mail: (EL); (WBH)
| | - Iva Kelava
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Alex T. Kalinka
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Pavel Tomancak
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Wieland B. Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- * E-mail: (EL); (WBH)
| |
Collapse
|
20
|
Errede M, Girolamo F, Rizzi M, Bertossi M, Roncali L, Virgintino D. The contribution of CXCL12-expressing radial glia cells to neuro-vascular patterning during human cerebral cortex development. Front Neurosci 2014; 8:324. [PMID: 25360079 PMCID: PMC4197642 DOI: 10.3389/fnins.2014.00324] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 09/25/2014] [Indexed: 12/20/2022] Open
Abstract
This study was conducted on human developing brain by laser confocal and transmission electron microscopy (TEM) to make a detailed analysis of important features of blood-brain barrier (BBB) microvessels and possible control mechanisms of vessel growth and differentiation during cerebral cortex vascularization. The BBB status of cortex microvessels was examined at a defined stage of cortex development, at the end of neuroblast waves of migration, and before cortex lamination, with BBB-endothelial cell markers, namely tight junction (TJ) proteins (occludin and claudin-5) and influx and efflux transporters (Glut-1 and P-glycoprotein), the latter supporting evidence for functional effectiveness of the fetal BBB. According to the well-known roles of astroglia cells on microvessel growth and differentiation, the early composition of astroglia/endothelial cell relationships was analyzed by detecting the appropriate astroglia, endothelial, and pericyte markers. GFAP, chemokine CXCL12, and connexin 43 (Cx43) were utilized as markers of radial glia cells, CD105 (endoglin) as a marker of angiogenically activated endothelial cells (ECs), and proteoglycan NG2 as a marker of immature pericytes. Immunolabeling for CXCL12 showed the highest level of the ligand in radial glial (RG) fibers in contact with the growing cortex microvessels. These specialized contacts, recognizable on both perforating radial vessels and growing collaterals, appeared as CXCL12-reactive en passant, symmetrical and asymmetrical, vessel-specific RG fiber swellings. At the highest confocal resolution, these RG varicosities showed a CXCL12-reactive dot-like content whose microvesicular nature was confirmed by ultrastructural observations. A further analysis of RG varicosities reveals colocalization of CXCL12 with Cx43, which is possibly implicated in vessel-specific chemokine signaling.
Collapse
Affiliation(s)
- Mariella Errede
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari School of Medicine Bari, Italy
| | - Francesco Girolamo
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari School of Medicine Bari, Italy
| | - Marco Rizzi
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari School of Medicine Bari, Italy
| | - Mirella Bertossi
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari School of Medicine Bari, Italy
| | - Luisa Roncali
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari School of Medicine Bari, Italy
| | - Daniela Virgintino
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari School of Medicine Bari, Italy
| |
Collapse
|
21
|
Florio M, Huttner WB. Neural progenitors, neurogenesis and the evolution of the neocortex. Development 2014; 141:2182-94. [PMID: 24866113 DOI: 10.1242/dev.090571] [Citation(s) in RCA: 433] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The neocortex is the seat of higher cognitive functions and, in evolutionary terms, is the youngest part of the mammalian brain. Since its origin, the neocortex has expanded in several mammalian lineages, and this is particularly notable in humans. This expansion reflects an increase in the number of neocortical neurons, which is determined during development and primarily reflects the number of neurogenic divisions of distinct classes of neural progenitor cells. Consequently, the evolutionary expansion of the neocortex and the concomitant increase in the numbers of neurons produced during development entail interspecies differences in neural progenitor biology. Here, we review the diversity of neocortical neural progenitors, their interspecies variations and their roles in determining the evolutionary increase in neuron numbers and neocortex size.
Collapse
Affiliation(s)
- Marta Florio
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| | - Wieland B Huttner
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, Dresden 01307, Germany
| |
Collapse
|
22
|
Mitotic spindle orientation predicts outer radial glial cell generation in human neocortex. Nat Commun 2013; 4:1665. [PMID: 23575669 PMCID: PMC3625970 DOI: 10.1038/ncomms2647] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Accepted: 02/25/2013] [Indexed: 12/23/2022] Open
Abstract
The human neocortex is increased in size and complexity as compared with most other species. Neocortical expansion has recently been attributed to protracted neurogenesis by outer radial glial cells in the outer subventricular zone, a region present in humans but not in rodents. The mechanisms of human outer radial glial cell generation are unknown, but are proposed to involve division of ventricular radial glial cells; neural stem cells present in all developing mammals. Here we show that human ventricular radial glial cells produce outer radial glial cells and seed formation of the outer subventricular zone via horizontal divisions, which occur more frequently in humans than in rodents. We further find that outer radial glial cell mitotic behaviour is cell intrinsic, and that the basal fibre, inherited by outer radial glial cells after ventricular radial glial division, determines cleavage angle. Our results suggest that altered regulation of mitotic spindle orientation increased outer radial glial cell number, and ultimately neuronal number, during human brain evolution.
Collapse
|
23
|
Xie Y, Jüschke C, Esk C, Hirotsune S, Knoblich JA. The phosphatase PP4c controls spindle orientation to maintain proliferative symmetric divisions in the developing neocortex. Neuron 2013; 79:254-65. [PMID: 23830831 PMCID: PMC3725415 DOI: 10.1016/j.neuron.2013.05.027] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2013] [Indexed: 12/28/2022]
Abstract
In the developing neocortex, progenitor cells expand through symmetric division before they generate cortical neurons through multiple rounds of asymmetric cell division. Here, we show that the orientation of the mitotic spindle plays a crucial role in regulating the transition between those two division modes. We demonstrate that the protein phosphatase PP4c regulates spindle orientation in early cortical progenitor cells. Upon removing PP4c, mitotic spindles fail to orient in parallel to the neuroepithelial surface and progenitors divide with random orientation. As a result, their divisions become asymmetric and neurogenesis starts prematurely. Biochemical and genetic experiments show that PP4c acts by dephosphorylating the microtubule binding protein Ndel1, thereby enabling complex formation with Lis1 to form a functional spindle orientation complex. Our results identify a key regulator of cortical development and demonstrate that changes in the orientation of progenitor division are responsible for the transition between symmetric and asymmetric cell division. PP4c is required for spindle orientation in cortical progenitors Loss of PP4c leads to premature neuronal differentiation Spindle misorientation causes layering defects during a critical time window PP4c acts on Ndel1 and Lis1
Collapse
Affiliation(s)
- Yunli Xie
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Dr. Bohr-Gasse 3-5, 1030 Vienna, Austria
| | | | | | | | | |
Collapse
|
24
|
Reinchisi G, Limaye PV, Singh MB, Antic SD, Zecevic N. Neurogenic potential of hESC-derived human radial glia is amplified by human fetal cells. Stem Cell Res 2013; 11:587-600. [PMID: 23651582 DOI: 10.1016/j.scr.2013.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Revised: 03/20/2013] [Accepted: 03/25/2013] [Indexed: 01/19/2023] Open
Abstract
The efficient production of human neocortical neurons from human embryonic stem cells (hESC) is the primary requirement for studying early stages of human cortical development. We used hESC to obtain radial glial cells (hESC-RG) and then compared them with RG cells isolated from human fetal forebrain. Fate of hESC-RG cells critically depends on intrinsic and extrinsic factors. The expression of Pax6 (intrinsic factor) has a similar neurogenic effect on hESC-RG differentiation as reported for human fetal RG cells. Factors from the microenvironment also play a significant role in determining hESC-RG cell fate. In contrast to control cultures, wherein hESC-RG generate mainly astroglia and far fewer neurons, in co-cultures with human fetal forebrain cells, the reverse was found to be true. This neurogenic effect was partly due to soluble factors from human fetal brain cultures. The detected shift towards neurogenesis has significance for developing future efficient neuro-differentiation protocols. Importantly, we established that hESC-RG cells are similar in many respects to human fetal RG cells, including their proliferative capacity, neurogenic potential, and ability to generate various cortical neuronal sub-types. Unlike fetal RG cells, the hESC-RG cells are readily available and can be standardized, features that have considerable practical advantages in research and clinics.
Collapse
Affiliation(s)
- Gisela Reinchisi
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | | | | | | | |
Collapse
|
25
|
Borrell V, Reillo I. Emerging roles of neural stem cells in cerebral cortex development and evolution. Dev Neurobiol 2012; 72:955-71. [PMID: 22684946 DOI: 10.1002/dneu.22013] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Expansion and folding of the cerebral cortex are landmark features of mammalian brain evolution, which are recapitulated during embryonic development. Neural stem cells and their derived germinal cells are coordinated during cerebral cortex development to produce the appropriate amounts and types of neurons. This process is further complicated in gyrencephalic species, where newborn neurons must disperse in the tangential axis to expand the cerebral cortex in surface area. Here, we review advances that have been made over the last decade in understanding the nature and diversity of telencephalic neural stem cells and their roles in cortical development, and we discuss recent progress on how newly identified types of cortical progenitor cell populations may have evolved to drive the expansion and folding of the mammalian cerebral cortex.
Collapse
Affiliation(s)
- Víctor Borrell
- Developmental Neurobiology Unit, Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain.
| | | |
Collapse
|
26
|
Barkovich AJ, Guerrini R, Kuzniecky RI, Jackson GD, Dobyns WB. A developmental and genetic classification for malformations of cortical development: update 2012. Brain 2012; 135:1348-69. [PMID: 22427329 PMCID: PMC3338922 DOI: 10.1093/brain/aws019] [Citation(s) in RCA: 658] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Malformations of cerebral cortical development include a wide range of developmental disorders that are common causes of neurodevelopmental delay and epilepsy. In addition, study of these disorders contributes greatly to the understanding of normal brain development and its perturbations. The rapid recent evolution of molecular biology, genetics and imaging has resulted in an explosive increase in our knowledge of cerebral cortex development and in the number and types of malformations of cortical development that have been reported. These advances continue to modify our perception of these malformations. This review addresses recent changes in our perception of these disorders and proposes a modified classification based upon updates in our knowledge of cerebral cortical development.
Collapse
Affiliation(s)
- A James Barkovich
- Neuroradiology, University of California at San Francisco, 505 Parnassus Avenue, San Francisco, CA 94913-0628, USA.
| | | | | | | | | |
Collapse
|
27
|
Hevner RF, Haydar TF. The (not necessarily) convoluted role of basal radial glia in cortical neurogenesis. Cereb Cortex 2011; 22:465-8. [PMID: 22116731 DOI: 10.1093/cercor/bhr336] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Recent advances in cell labeling and imaging techniques have dramatically expanded our knowledge of the neural precursor cells responsible for corticogenesis. In particular, radial glial cells are now known to generate several classes of restricted progenitors and neurons. While radial glial cells in the ventricular zone have received the most attention, it has become increasingly clear that a distinct subclass of radial glial cells situated in the subventricular zone (SVZ) and intermediate zone also play an important role in corticogenesis. These delaminated radial glial cells, which lack an apical process attached to the ventricular surface but maintain a basal process, were discovered over 3 decades ago. Recently, they have been further characterized as cortical progenitors and renamed outer, intermediate, or basal radial glia (bRG). Some of these studies indicated that bRG abundance in the outer SVZ (oSVZ) is correlated with enhanced gyrencephaly, particularly in primates and especially human, and therefore suggested that bRG may be responsible for the emergence and evolution of cerebral convolutions. In this issue of Cerebral Cortex, 2 papers provide new information about bRG in common marmosets, a near-lissencephalic primate, and in agouti, a near-gyrencephalic rodent (Garcia-Moreno et al. 2011; Kelava et al. 2011). They demonstrate that bRG are abundant and proliferate in inner as well as oSVZ, in both species. Together, these findings indicate that bRG and the oSVZ might not be correlated with gyrification or phylogeny. Rather, differential regulation of bRG and other progenitor types may enhance the adaptability and diversity of cortical morphogenesis.
Collapse
Affiliation(s)
- Robert F Hevner
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, USA.
| | | |
Collapse
|
28
|
Kelava I, Reillo I, Murayama AY, Kalinka AT, Stenzel D, Tomancak P, Matsuzaki F, Lebrand C, Sasaki E, Schwamborn JC, Okano H, Huttner WB, Borrell V. Abundant occurrence of basal radial glia in the subventricular zone of embryonic neocortex of a lissencephalic primate, the common marmoset Callithrix jacchus. ACTA ACUST UNITED AC 2011; 22:469-81. [PMID: 22114084 PMCID: PMC3256412 DOI: 10.1093/cercor/bhr301] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Subventricular zone (SVZ) progenitors are a hallmark of the developing neocortex. Recent studies described a novel type of SVZ progenitor that retains a basal process at mitosis, sustains expression of radial glial markers, and is capable of self-renewal. These progenitors, referred to here as basal radial glia (bRG), occur at high relative abundance in the SVZ of gyrencephalic primates (human) and nonprimates (ferret) but not lissencephalic rodents (mouse). Here, we analyzed the occurrence of bRG cells in the embryonic neocortex of the common marmoset Callithrix jacchus, a near-lissencephalic primate. bRG cells, expressing Pax6, Sox2 (but not Tbr2), glutamate aspartate transporter, and glial fibrillary acidic protein and retaining a basal process at mitosis, occur at similar relative abundance in the marmoset SVZ as in human and ferret. The proportion of progenitors in M-phase was lower in embryonic marmoset than developing ferret neocortex, raising the possibility of a longer cell cycle. Fitting the gyrification indices of 26 anthropoid species to an evolutionary model suggested that the marmoset evolved from a gyrencephalic ancestor. Our results suggest that a high relative abundance of bRG cells may be necessary, but is not sufficient, for gyrencephaly and that the marmoset's lissencephaly evolved secondarily by changing progenitor parameters other than progenitor type.
Collapse
Affiliation(s)
- Iva Kelava
- Max-Planck-Institute of Molecular Cell Biology and Genetics, D-01307 Dresden, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Late development of the GABAergic system in the human cerebral cortex and white matter. J Neuropathol Exp Neurol 2011; 70:841-58. [PMID: 21937910 DOI: 10.1097/nen.0b013e31822f471c] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Despite the key role of γ-aminobutyric acid (GABA) neurons in the modulation of cerebral cortical output, little is known about their development in the human cortex. We analyzed several GABAergic parameters in standardized regions of the cerebral cortex and white matter in a total of 38 human fetuses and infants from 19 gestational weeks to 2.7 postnatal years using immunocytochemistry, Western blotting, tissue autoradiography, and computer-based cellular quantitation. At least 20% of GABAergic neurons in the white matter migrated toward the cortex over late gestation. After term, migration declined and ended within 6 postnatal months. In parallel, the GABAergic neuronal density increased in the cortex over late gestation, also with a peak at term. From midgestation to infancy, the pattern of GABAA receptor binding changed from uniformly low across all cortical layers to high levels concentrated in the middle laminae; glutamic acid decarboxylase (GAD65 and GAD67) levels differentially increased. Thus, the second half of gestation is a period of rapid development of the cortical GABAergic system that continues into early infancy. This period corresponds to the peak window of vulnerability to perinatal hypoxia-ischemia in which GABAergic neurons are potentially developmentally susceptible, including in the preterm infant.
Collapse
|
30
|
Reillo I, Borrell V. Germinal zones in the developing cerebral cortex of ferret: ontogeny, cell cycle kinetics, and diversity of progenitors. ACTA ACUST UNITED AC 2011; 22:2039-54. [PMID: 21988826 DOI: 10.1093/cercor/bhr284] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Expansion and folding of the cerebral cortex are landmark features of mammalian brain evolution. This is recapitulated during embryonic development, and specialized progenitor cell populations known as intermediate radial glia cells (IRGCs) are believed to play central roles. Because developmental mechanisms involved in cortical expansion and folding are likely conserved across phylogeny, it is crucial to identify features specific for gyrencephaly from those unique to primate brain development. Here, we studied multiple features of cortical development in ferret, a gyrencephalic carnivore, in comparison with primates. Analyzing the combinatorial expression of transcription factors, cytoskeletal proteins, and cell cycle parameters, we identified a combination of traits that distinguish in ferret similar germinal layers as in primates. Transcription factor analysis indicated that inner subventricular zone (ISVZ) and outer subventricular zone (OSVZ) may contain an identical mixture of progenitor cell subpopulations in ferret. However, we found that these layers emerge at different time points, differ in IRGC abundance, and progenitors have different cell cycle kinetics and self-renewal dynamics. Thus, ISVZ and OSVZ are likely distinguished by genetic differences regulating progenitor cell behavior and dynamics. Our findings demonstrate that some, but not all, features of primate cortical development are shared by the ferret, suggesting a conserved role in the evolutionary emergence of gyrencephaly.
Collapse
Affiliation(s)
- Isabel Reillo
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | | |
Collapse
|
31
|
Labeed FH, Lu J, Mulhall HJ, Marchenko SA, Hoettges KF, Estrada LC, Lee AP, Hughes MP, Flanagan LA. Biophysical characteristics reveal neural stem cell differentiation potential. PLoS One 2011; 6:e25458. [PMID: 21980464 PMCID: PMC3184132 DOI: 10.1371/journal.pone.0025458] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Accepted: 09/05/2011] [Indexed: 12/15/2022] Open
Abstract
Background Distinguishing human neural stem/progenitor cell (huNSPC) populations that will predominantly generate neurons from those that produce glia is currently hampered by a lack of sufficient cell type-specific surface markers predictive of fate potential. This limits investigation of lineage-biased progenitors and their potential use as therapeutic agents. A live-cell biophysical and label-free measure of fate potential would solve this problem by obviating the need for specific cell surface markers. Methodology/Principal Findings We used dielectrophoresis (DEP) to analyze the biophysical, specifically electrophysiological, properties of cortical human and mouse NSPCs that vary in differentiation potential. Our data demonstrate that the electrophysiological property membrane capacitance inversely correlates with the neurogenic potential of NSPCs. Furthermore, as huNSPCs are continually passaged they decrease neuron generation and increase membrane capacitance, confirming that this parameter dynamically predicts and negatively correlates with neurogenic potential. In contrast, differences in membrane conductance between NSPCs do not consistently correlate with the ability of the cells to generate neurons. DEP crossover frequency, which is a quantitative measure of cell behavior in DEP, directly correlates with neuron generation of NSPCs, indicating a potential mechanism to separate stem cells biased to particular differentiated cell fates. Conclusions/Significance We show here that whole cell membrane capacitance, but not membrane conductance, reflects and predicts the neurogenic potential of human and mouse NSPCs. Stem cell biophysical characteristics therefore provide a completely novel and quantitative measure of stem cell fate potential and a label-free means to identify neuron- or glial-biased progenitors.
Collapse
Affiliation(s)
- Fatima H. Labeed
- Centre for Biomedical Engineering, University of Surrey, Guildford, United Kingdom
| | - Jente Lu
- Department of Neurology and Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, California, United States of America
- Department of Biomedical Engineering, University of California Irvine, Irvine, California, United States of America
| | - Hayley J. Mulhall
- Centre for Biomedical Engineering, University of Surrey, Guildford, United Kingdom
| | - Steve A. Marchenko
- Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, California, United States of America
| | - Kai F. Hoettges
- Centre for Biomedical Engineering, University of Surrey, Guildford, United Kingdom
| | - Laura C. Estrada
- Department of Biomedical Engineering, University of California Irvine, Irvine, California, United States of America
- Laboratory for Fluorescence Dynamics, University of California Irvine, Irvine, California, United States of America
| | - Abraham P. Lee
- Department of Biomedical Engineering, University of California Irvine, Irvine, California, United States of America
| | - Michael P. Hughes
- Centre for Biomedical Engineering, University of Surrey, Guildford, United Kingdom
| | - Lisa A. Flanagan
- Department of Neurology and Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, California, United States of America
- * E-mail:
| |
Collapse
|
32
|
Neural stem cells: historical perspective and future prospects. Neuron 2011; 70:614-25. [PMID: 21609820 DOI: 10.1016/j.neuron.2011.05.005] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2011] [Indexed: 12/21/2022]
Abstract
How a single fertilized cell generates diverse neuronal populations has been a fundamental biological problem since the 19(th) century. Classical histological methods revealed that postmitotic neurons are produced in a precise temporal and spatial order from germinal cells lining the cerebral ventricles. In the 20(th) century, DNA labeling and histo- and immunohistochemistry helped to distinguish the subtypes of dividing cells and delineate their locations in the ventricular and subventricular zones. Recently, genetic and cell biological methods have provided insights into sequential gene expression and molecular and cellular interactions that generate heterogeneous populations of NSCs leading to specific neuronal classes. This precisely regulated developmental process does not tolerate significant in vivo deviation, making replacement of adult neurons by NSCs during pathology a colossal challenge. In contrast, utilizing the trophic factors emanating from the NSC or their derivatives to slow down deterioration or prevent death of degenerating neurons may be a more feasible strategy.
Collapse
|
33
|
Growth hormone and prolactin regulate human neural stem cell regenerative activity. Neuroscience 2011; 190:409-27. [PMID: 21664953 DOI: 10.1016/j.neuroscience.2011.05.029] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 05/10/2011] [Accepted: 05/12/2011] [Indexed: 12/18/2022]
Abstract
We have previously shown that the growth hormone (GH)/prolactin (PRL) axis has a significant role in regulating neuroprotective and/or neurorestorative mechanisms in the brain and that these effects are mediated, at least partly, via actions on neural stem cells (NSCs). Here, using NSCs with properties of neurogenic radial glia derived from fetal human forebrains, we show that exogenously applied GH and PRL promote the proliferation of NSCs in the absence of epidermal growth factor or basic fibroblast growth factor. When applied to differentiating NSCs, they both induce neuronal progenitor proliferation, but only PRL has proliferative effects on glial progenitors. Both GH and PRL also promote NSC migration, particularly at higher concentrations. Since human GH activates both GH and PRL receptors, we hypothesized that at least some of these effects may be mediated via the latter. Migration studies using receptor-specific antagonists confirmed that GH signals via the PRL receptor promote migration. Mechanisms of receptor signaling in NSC proliferation, however, remain to be elucidated. In summary, GH and PRL have complex stimulatory and modulatory effects on NSC activity and as such may have a role in injury-related recovery processes in the brain.
Collapse
|
34
|
Del Bigio MR. Cell proliferation in human ganglionic eminence and suppression after prematurity-associated haemorrhage. Brain 2011; 134:1344-61. [PMID: 21478186 DOI: 10.1093/brain/awr052] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
In premature infants, germinal matrix haemorrhage in the brain is a common occurrence. However, cell proliferation and fate determination in the normal human germinal matrix is poorly understood. Human ganglionic eminence samples were collected prospectively from autopsies of premature and term infants with no evidence of pathological process (n=78; dying at post-menstrual age 14-88 weeks). The ganglionic eminence was thickest at 20-26 weeks and involuted by 34-36 weeks. Proliferating cells, detected by Ki67 immunoreactivity, were abundant throughout the ganglionic eminence prior to 18 weeks, after which a sharp boundary between the dorsal and ventral ganglionic eminence appeared with reduced cell proliferation in the dorsal region. Ki67 immunoreactivity persisted in the majority of ventral cells until ∼28 weeks, after which time the proportion of proliferating cells dropped quickly. The expression of cell lineage markers (such as Olig2, SOX2, platelet-derived growth factor receptor alpha) showed partitioning at the microscopic level. The hypothesis that germinal matrix haemorrhage suppresses cell proliferation was then addressed. In comparison to controls, germinal matrix haemorrhage (n=47; born at post-menstrual age 18-34 weeks followed by survival of 0 h to 98 days) was associated with significantly decreased cell proliferation if survival was >12 h. The cell cycle arrest transcription factor p53 was transiently increased and the oligodendroglial lineage markers Olig2 and platelet-derived growth factor receptor alpha were decreased. Cell death was negligible. A low level of microglial activation was detected. Haemorrhage-associated suppression of cell proliferation in premature human infants could partially explain the reduced brain size and clinical effects in children who suffer germinal matrix haemorrhage after premature birth.
Collapse
Affiliation(s)
- Marc R Del Bigio
- Department of Pathology, University of Manitoba, 401 Brodie Centre, 727 McDermot Avenue, Winnipeg MB, R3E 3P5, Canada.
| |
Collapse
|
35
|
Dorsal radial glial cells have the potential to generate cortical interneurons in human but not in mouse brain. J Neurosci 2011; 31:2413-20. [PMID: 21325508 DOI: 10.1523/jneurosci.5249-10.2011] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Radial glial (RG) cells, in the neocortical ventricular/subventricular zone (VZ/SVZ), generate cortical projection neurons both in rodents and humans, but whether they can also generate cortical interneurons is not clear. We demonstrated both on cryosections and in cell cultures that in the human VZ/SVZ, cells can be double labeled with RG markers and calretinin (CalR) and GABA, markers that suggest interneuronal lineage. We examined in more detail the cell fate of human RG cells isolated from the VZ/SVZ at midterm. After 24 h, no CalR(+) or GABA(+) cells were seen in cultures, whereas 5-10% cells expressed Nkx2.1 and Dlx, two ventral transcription factors. CalR(+) and GABA(+) cells were apparent for the first time after 3 d in vitro, and their number increased in subsequent days, consistent with the gradual transition of RG cells into CalR(+) or GABA(+) cells. Indeed, the progeny of genetically labeled RG cells could be immunolabeled with antibodies to CalR and GABA or ventral transcription factors (Nkx2.1(+), Dlx(+)). In contrast to humans, in the embryonic mouse, similar experiments showed that only RG cells isolated from the subpallium (ganglionic eminence) generate CalR(+) or GABA(+) cells, whereas this was not the case with RG cells isolated from the pallium. These findings support the idea that human, but not mouse, dorsal RG cells have the potential to generate various subtypes of neocortical interneurons. Multiple progenitors and sites of cortical interneuron origin in human might be an evolutionary adaptation underlying brain expansion and the increased complexity of cortical circuitry in humans.
Collapse
|
36
|
Chan SY, Martín-Santos A, Loubière LS, González AM, Stieger B, Logan A, McCabe CJ, Franklyn JA, Kilby MD. The expression of thyroid hormone transporters in the human fetal cerebral cortex during early development and in N-Tera-2 neurodifferentiation. J Physiol 2011; 589:2827-45. [PMID: 21486766 DOI: 10.1113/jphysiol.2011.207290] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Associations of neurological impairment with mutations in the thyroid hormone (TH) transporter, MCT8, and with maternal hypothyroxinaemia, suggest that THs are crucial for human fetal brain development. It has been postulated that TH transporters regulate the cellular supply of THs within the fetal brain during development. This study describes the expression of TH transporters in the human fetal cerebral cortex (7–20 weeks gestation) and during retinoic acid induced neurodifferentiation of the human N-Tera-2 (NT2) cell line, in triiodothyronine (T3) replete and T3-depleted media. Compared with adult cortex, mRNAs encoding OATP1A2, OATP1C1, OATP3A1 variant 2, OATP4A1, LAT2 and CD98 were reduced in fetal cortex at different gestational ages, whilst mRNAs encoding MCT8, MCT10, OATP3A1 variant 1 and LAT1 were similar. From the early first trimester, immunohistochemistry localised MCT8 and MCT10 to the microvasculature and to undifferentiated CNS cells. With neurodifferentiation, NT2 cells demonstrated declining T3 uptake, accompanied by reduced expressions of MCT8, LAT1, CD98 and OATP4A1. T3 depletion significantly reduced MCT10 and LAT2 mRNA expression at specific time points during neurodifferentiation but there were no effects upon T3 uptake, neurodifferentiation marker expression or neurite lengths and branching. MCT8 repression also did not affect NT2 neurodifferentiation. In conclusion, many TH transporters are expressed in the human fetal cerebral cortex from the first trimester, which could regulate cellular TH supply during early development. However, human NT2 neurodifferentiation is not dependent upon T3 or MCT8 and there were no compensatory changes to promote T3 uptake in a T3-depleted environment.
Collapse
Affiliation(s)
- S-Y Chan
- School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Floor 3, Birmingham Women's Hospital, Edgbaston, Birmingham B15 2TG, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Reillo I, de Juan Romero C, García-Cabezas MÁ, Borrell V. A role for intermediate radial glia in the tangential expansion of the mammalian cerebral cortex. ACTA ACUST UNITED AC 2010; 21:1674-94. [PMID: 21127018 DOI: 10.1093/cercor/bhq238] [Citation(s) in RCA: 449] [Impact Index Per Article: 32.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cerebral cortex of large mammals undergoes massive surface area expansion and folding during development. Specific mechanisms to orchestrate the growth of the cortex in surface area rather than in thickness are likely to exist, but they have not been identified. Analyzing multiple species, we have identified a specialized type of progenitor cell that is exclusive to mammals with a folded cerebral cortex, which we named intermediate radial glia cell (IRGC). IRGCs express Pax6 but not Tbr2, have a radial fiber contacting the pial surface but not the ventricular surface, and are found in both the inner subventricular zone and outer subventricular zone (OSVZ). We find that IRGCs are massively generated in the OSVZ, thus augmenting the numbers of radial fibers. Fanning out of this expanding radial fiber scaffold promotes the tangential dispersion of radially migrating neurons, allowing for the growth in surface area of the cortical sheet. Accordingly, the tangential expansion of particular cortical regions was preceded by high proliferation in the underlying OSVZ, whereas the experimental reduction of IRGCs impaired the tangential dispersion of neurons and resulted in a smaller cortical surface. Thus, the generation of IRGCs plays a key role in the tangential expansion of the mammalian cerebral cortex.
Collapse
Affiliation(s)
- Isabel Reillo
- Developmental Neurobiology Unit, Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas-Universidad Miguel Hernández, 03550 Sant Joan d'Alacant, Spain
| | | | | | | |
Collapse
|
38
|
Poluch S, Juliano SL. Populations of radial glial cells respond differently to reelin and neuregulin1 in a ferret model of cortical dysplasia. PLoS One 2010; 5:e13709. [PMID: 21060844 PMCID: PMC2965671 DOI: 10.1371/journal.pone.0013709] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 09/19/2010] [Indexed: 11/18/2022] Open
Abstract
Radial glial cells play an essential role during corticogenesis through their function as neural precursors and guides of neuronal migration. Both reelin and neuregulin1 (NRG1) maintain the radial glial scaffold; they also induce expression of Brain Lipid Binding Protein (BLBP), a well known marker of radial glia. Although radial glia in normal ferrets express both vimentin and BLBP, this coexpression diverges at P3; vimentin is expressed in the radial glial processes, while BLBP appears in cells detached from the ventricular zone. Our lab developed a model of cortical dysplasia in the ferret, resulting in impaired migration of neurons into the cortical plate and disordered radial glia. This occurs after exposure to the antimitotic methylazoxymethanol (MAM) on the 24th day of development (E24). Ferrets treated with MAM on E24 result in an overall decrease of BLBP expression; radial glia that continue to express BLBP, however, show only mild disruption compared with the strongly disrupted vimentin expressing radial glia. When E24 MAM-treated organotypic slices are exposed to reelin or NRG1, the severely disrupted vimentin+ radial glial processes are repaired but the slightly disordered BLBP+ processes are not. The realignment of vimentin+ processes was linked with an increase of their BLBP expression. BLBP expressing radial glia are distinguished by being both less affected by MAM treatment and by attempts at repair. We further investigated the effects induced by reelin and found that signaling was mediated via VLDLR/Dab1/Pi3K activation while NRG1 signaling was mediated via erbB3/erbB4/Pi3K. We then tested whether radial glial repair correlated with improved neuronal migration. Repairing the radial glial scaffold is not sufficient to restore neuronal migration; although reelin improves migration of neurons toward the cortical plate signaling through ApoER2/Dab1/PI3K activation, NRG1 does not.
Collapse
Affiliation(s)
- Sylvie Poluch
- Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, Maryland, United States of America
- Neuroscience, Uniformed Services University, Bethesda, Maryland, United States of America
| | - Sharon L. Juliano
- Anatomy, Physiology, and Genetics, Uniformed Services University, Bethesda, Maryland, United States of America
- Neuroscience, Uniformed Services University, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
39
|
Abstract
Human neural progenitors are increasingly being employed in drug screens and emerging cell therapies targeted towards neurological disorders where neurogenesis is thought to play a key role including developmental disorders, Alzheimer’s disease, and depression. Key to the success of these applications is understanding the mechanisms by which neurons arise. Our understanding of development can provide some guidance but since little is known about the specifics of human neural development and the requirement that cultures be expanded in vitro prior to use, it is unclear whether neural progenitors obey the same developmental mechanisms that exist in vivo. In previous studies we have shown that progenitors derived from fetal cortex can be cultured for many weeks in vitro as undifferentiated neurospheres and then induced to undergo neurogenesis by removing mitogens and exposing them to supportive substrates. Here we use live time lapse imaging and immunocytochemical analysis to show that neural progenitors use developmental mechanisms to generate neurons. Cells with morphologies and marker profiles consistent with radial glia and recently described outer radial glia divide asymmetrically and symmetrically to generate multipolar intermediate progenitors, a portion of which express ASCL1. These multipolar intermediate progenitors subsequently divide symmetrically to produce CTIP2+ neurons. This 3-cell neurogenic scheme echoes observations in rodents in vivo and in human fetal slice cultures in vitro, providing evidence that hNPCs represent a renewable and robust in vitro assay system to explore mechanisms of human neurogenesis without the continual need for fresh primary human fetal tissue. Knowledge provided by this and future explorations of human neural progenitor neurogenesis will help maximize the safety and efficacy of new stem cell therapies by providing an understanding of how to generate physiologically-relevant cell types that maintain their identities when placed in diagnostic or transplantation environments.
Collapse
|
40
|
Molecular chaperone alphaB-crystallin is expressed in the human fetal telencephalon at midgestation by a subset of progenitor cells. J Neuropathol Exp Neurol 2010; 69:745-59. [PMID: 20535031 DOI: 10.1097/nen.0b013e3181e5f515] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Alphab-crystallin (CRYAB) is a small heat shock protein with a chaperoning activity that is present in the postnatal healthy human brain in oligodendrocytes and in a few astrocytes. The involvement of CRYAB in cell differentiation, proliferation, signaling, cytoskeletal assembly, and apoptosis in various model systems has suggested that it might also play a role in the developing human brain. We analyzed the distribution and the levels of this molecular chaperone in healthy and polygenetically compromised (Down syndrome [DS]) human telencephalon at midgestation. We demonstrate that CRYAB is expressed in a temporospatial pattern by numerous radial glial cells and some early oligodendrocyte progenitors, including dividing cells, as well as a few astroglial cells in both healthy and DS fetal brains. We also found abundant phosphorylation of CRYAB at Ser-59, which mediates its antiapoptotic and cytoskeletal functions. There was only marginal phosphorylation at Ser-45.In contrast to our earlier study in young DS subjects, upregulation of phosphorylated CRYAB occurred rarely in DS fetuses. The distribution, the timing of appearance, and the results of colocalization studies suggest that CRYAB assists in the biological processes associated with developmental remodeling/differentiation and proliferation of select subpopulations of progenitor cells in human fetal brain at midgestation.
Collapse
|
41
|
Stancik EK, Navarro-Quiroga I, Sellke R, Haydar TF. Heterogeneity in ventricular zone neural precursors contributes to neuronal fate diversity in the postnatal neocortex. J Neurosci 2010; 30:7028-36. [PMID: 20484645 PMCID: PMC2909740 DOI: 10.1523/jneurosci.6131-09.2010] [Citation(s) in RCA: 152] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2009] [Revised: 02/16/2010] [Accepted: 04/05/2010] [Indexed: 12/17/2022] Open
Abstract
The recent discovery of short neural precursors (SNPs) in the murine neocortical ventricular zone (VZ) challenges the widely held view that radial glial cells (RGCs) are the sole occupants of this germinal compartment and suggests that precursor variety is an important factor of brain development. Here, we use in utero electroporation and genetic fate mapping to show that SNPs and RGCs cohabit the VZ but display different cell cycle kinetics and generate phenotypically different progeny. In addition, we find that RGC progeny undergo additional rounds of cell division as intermediate progenitor cells (IPCs), whereas SNP progeny generally produce postmitotic neurons directly from the VZ. By clearly defining SNPs as bona fide VZ residents, separate from both RGCs and IPCs, and uncovering their unique proliferative and lineage properties, these results demonstrate how individual neural precursor groups in the embryonic rodent VZ create diversity in the overlying neocortex.
Collapse
Affiliation(s)
- Elizabeth K. Stancik
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC 20010, and
| | - Ivan Navarro-Quiroga
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC 20010, and
| | - Robert Sellke
- University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Tarik F. Haydar
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC 20010, and
| |
Collapse
|
42
|
Hebsgaard JB, Nelander J, Sabelström H, Jönsson ME, Stott S, Parmar M. Dopamine neuron precursors within the developing human mesencephalon show radial glial characteristics. Glia 2009; 57:1648-58. [DOI: 10.1002/glia.20877] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
43
|
Moore AR, Filipovic R, Mo Z, Rasband MN, Zecevic N, Antic SD. Electrical excitability of early neurons in the human cerebral cortex during the second trimester of gestation. Cereb Cortex 2009; 19:1795-805. [PMID: 19015375 PMCID: PMC2705693 DOI: 10.1093/cercor/bhn206] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Information about development of the human cerebral cortex (proliferation, migration, and differentiation of neurons) is largely based on postmortem histology. Physiological properties of developing human cortical neurons are difficult to access experimentally and therefore remain largely unexplored. Animal studies have shown that information about the arousal of electrical activity in individual cells within fundamental cortical zones (subventricular zone [SVZ], intermediate zone, subplate [SP], and cortical plate [CP]) is necessary for understanding normal brain development. Here we ask where, in what cortical zone, and when, in what gestational week (gw), human neurons acquire the ability to generate nerve impulses (action potentials [APs]). We performed electrical recordings from individual cells in acute brain slices harvested postmortem from the human fetal cerebral cortex (16-22 gw). Tetrodotoxin-sensitive Na(+) current occurs more frequently among CP cells and with significantly greater peak amplitudes than in SVZ. As early as 16 gw, a relatively small population of CP neurons (27%) was able to generate sodium APs upon direct current injection. Neurons located in the SP exhibited the highest level of cellular differentiation, as judged by their ability to fire repetitive APs. At 19 gw, a fraction of human CP and SP neurons possess beta IV spectrin-positive axon initial segments populated with voltage-gated sodium channels (PanNav). These results yield the first physiological characterization of developing human fetal cortical neurons with preserved morphologies in intact surrounding brain tissue.
Collapse
Affiliation(s)
- Anna R. Moore
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Radmila Filipovic
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Zhicheng Mo
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Matthew N. Rasband
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nada Zecevic
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| | - Srdjan D. Antic
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, USA
| |
Collapse
|
44
|
Wakeman DR, Hofmann MR, Redmond DE, Teng YD, Snyder EY. Long-term multilayer adherent network (MAN) expansion, maintenance, and characterization, chemical and genetic manipulation, and transplantation of human fetal forebrain neural stem cells. ACTA ACUST UNITED AC 2009; Chapter 2:Unit2D.3. [PMID: 19455542 DOI: 10.1002/9780470151808.sc02d03s9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Human neural stem/precursor cells (hNSC/hNPC) have been targeted for application in a variety of research models and as prospective candidates for cell-based therapeutic modalities in central nervous system (CNS) disorders. To this end, the successful derivation, expansion, and sustained maintenance of undifferentiated hNSC/hNPC in vitro, as artificial expandable neurogenic micro-niches, promises a diversity of applications as well as future potential for a variety of experimental paradigms modeling early human neurogenesis, neuronal migration, and neurogenetic disorders, and could also serve as a platform for small-molecule drug screening in the CNS. Furthermore, hNPC transplants provide an alternative substrate for cellular regeneration and restoration of damaged tissue in neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease. Human somatic neural stem/progenitor cells (NSC/NPC) have been derived from a variety of cadaveric sources and proven engraftable in a cytoarchitecturally appropriate manner into the developing and adult rodent and monkey brain while maintaining both functional and migratory capabilities in pathological models of disease. In the following unit, we describe a new procedure that we have successfully employed to maintain operationally defined human somatic NSC/NPC from developing fetal, pre-term post-natal, and adult cadaveric forebrain. Specifically, we outline the detailed methodology for in vitro expansion, long-term maintenance, manipulation, and transplantation of these multipotent precursors.
Collapse
Affiliation(s)
- Dustin R Wakeman
- University of California at San Diego, La Jolla, California, USA
| | | | | | | | | |
Collapse
|
45
|
Jakovcevski I, Filipovic R, Mo Z, Rakic S, Zecevic N. Oligodendrocyte development and the onset of myelination in the human fetal brain. Front Neuroanat 2009; 3:5. [PMID: 19521542 PMCID: PMC2694674 DOI: 10.3389/neuro.05.005.2009] [Citation(s) in RCA: 207] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 05/19/2009] [Indexed: 01/30/2023] Open
Abstract
Oligodendrocytes are cells that myelinate axons, providing saltatory conduction of action potentials and proper function of the central nervous system. Myelination begins prenatally in the human, and the sequence of oligodendrocyte development and the onset of myelination are not thoroughly investigated. This knowledge is important to better understand human diseases, such as periventricular leukomalacia, one of the leading causes of motor deficit in premature babies, and demyelinating disorders such as multiple sclerosis (MS). In this review we discuss the spatial and temporal progression of oligodendrocyte lineage characterized by the expression of specific markers and transcription factors in the human fetal brain from the early embryonic period (5 gestational weeks, gw) until midgestation (24 gw). Our in vitro evidence indicated that a subpopulation of human oligodendrocytes may have dorsal origin, from cortical radial glia cells, in addition to their ventral telencephalic origin. Furthermore, we demonstrated that the regulation of myelination in the human fetal brain includes positive and negative regulators. Chemokines, such as CXCL1, abundant in proliferative zones during brain development and in regions of remyelination in adult, are discussed in the view of their potential roles in stimulating oligodendrocyte development. Other signals are inhibitory and may include, but are not limited to, polysialic acid modification of the neural cell adhesion molecule on axons. Overall, important differences in temporal and spatial distribution and regulatory signals for oligodendrocyte differentiation exist between human and rodent brains. Those differences may underlie the unique susceptibility of humans to demyelinating diseases, such as MS.
Collapse
Affiliation(s)
- Igor Jakovcevski
- Department of Neuroscience, University of Connecticut Health CenterFarmington, CT, USA
| | - Radmila Filipovic
- Department of Neuroscience, University of Connecticut Health CenterFarmington, CT, USA
- Department of Physiology and Neurobiology, University of ConnecticutStorrs, CT, USA
| | - Zhicheng Mo
- Department of Neuroscience, University of Connecticut Health CenterFarmington, CT, USA
- Department of Pathology, Conemaugh Memorial Medical CenterJohnstown, PA, USA
| | - Sonja Rakic
- Department of Neuroscience, University of Connecticut Health CenterFarmington, CT, USA
- Department of Cell and Developmental Biology, University College LondonUK
| | - Nada Zecevic
- Department of Neuroscience, University of Connecticut Health CenterFarmington, CT, USA
| |
Collapse
|
46
|
Abstract
Limited knowledge about human oligodendrogenesis prompted us to explore the lineage relationship between cortical radial glia (RG) cells and oligodendrocytes (OLs) in the human fetal forebrain. RG cells were isolated from cortical ventricular/subventricular zone and their progeny was followed in vitro. One portion of RG cells differentiated into cells of OL lineage identified by cell-type specific antibodies, including platelet-derived growth factor receptor-alpha (PDGFRalpha), NG2, O4, myelin basic protein, and myelin oligodendrocyte glycoprotein. Moreover, using Cre Lox fate mapping (brain lipid binding protein-Cre/Floxed-yellow fluorescent protein) we established a direct link between RG cells and OL progenitors. In vitro generation of RG-derived O4(+) OL progenitors was enhanced by addition of sonic hedgehog (SHH) and reduced by the SHH inhibitor, cyclopamine, suggesting the role of SHH signaling in this process. In summary, our in vitro experiments revealed that a portion of cortical RG cells isolated from human forebrain at the second trimester of gestation generates OL progenitors and this suggests a role of SHH in this process.
Collapse
Affiliation(s)
- Zhicheng Mo
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3401, USA
| | | |
Collapse
|
47
|
Li H, Han YR, Bi C, Davila J, Goff LA, Thompson K, Swerdel M, Camarillo C, Ricupero CL, Hart RP, Plummer MR, Grumet M. Functional differentiation of a clone resembling embryonic cortical interneuron progenitors. Dev Neurobiol 2009; 68:1549-64. [PMID: 18814314 DOI: 10.1002/dneu.20679] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have generated clones (L2.3 and RG3.6) of neural progenitors with radial glial properties from rat E14.5 cortex that differentiate into astrocytes, neurons, and oligodendrocytes. Here, we describe a different clone (L2.2) that gives rise exclusively to neurons, but not to glia. Neuronal differentiation of L2.2 cells was inhibited by bone morphogenic protein 2 (BMP2) and enhanced by Sonic Hedgehog (SHH) similar to cortical interneuron progenitors. Compared with L2.3, differentiating L2.2 cells expressed significantly higher levels of mRNAs for glutamate decarboxylases (GADs), DLX transcription factors, calretinin, calbindin, neuropeptide Y (NPY), and somatostatin. Increased levels of DLX-2, GADs, and calretinin proteins were confirmed upon differentiation. L2.2 cells differentiated into neurons that fired action potentials in vitro, and their electrophysiological differentiation was accelerated and more complete when cocultured with developing astroglial cells but not with conditioned medium from these cells. The combined results suggest that clone L2.2 resembles GABAergic interneuron progenitors in the developing forebrain.
Collapse
Affiliation(s)
- Hedong Li
- W. M. Keck Center for Collaborative Neuroscience, Rutgers, State University of New Jersey, Piscataway, New Jersey 08854-8082, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
|
49
|
Congenital subependymal giant cell astrocytoma: clinical considerations and expression of radial glial cell markers in giant cells. Childs Nerv Syst 2008; 24:1499-503. [PMID: 18629509 DOI: 10.1007/s00381-008-0681-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2008] [Indexed: 10/21/2022]
Abstract
OBJECTS Congenital Subependymal giant cell astrocytoma (SEGA), diagnosed in fetal and neonatal period, is extremely rare. Previous studies have reported poor surgical outcomes of this small group of patients. We encountered a patient diagnosed as congenital SEGA and report the surgical outcome along with interesting immuno-phenotypes of giant tumor cells. CASE Ventriculomegaly and a hypoechoic mass near the foramen of Monro were detected in a fetus on prenatal ultrasonography in the 35th week of gestation. Surgery was scheduled 2 months later to reduce the risk of operative complications. At postnatal 2 months, gross total resection of the tumor was achieved without complications. The patient had been followed up for 1 year without tumor recurrence. In double immunofluorescence, the prototype cells of SEGA expressed a variety of neural stem cell (nestin and Sox2) and radial glial cell markers (vimentin and brain lipid-binding protein), in addition to glutamate/aspartate transporter and glial fibrillary acidic protein. CONCLUSIONS Congenital SEGA can be successfully treated with judicious use of observation period and careful evaluation of general conditions. Pathological findings support the concept that SEGA may originate from aberrant radial glial cells in the developing brain.
Collapse
|
50
|
Fountaine TM, Venda LL, Warrick N, Christian HC, Brundin P, Channon KM, Wade-Martins R. The effect of alpha-synuclein knockdown on MPP+ toxicity in models of human neurons. Eur J Neurosci 2008; 28:2459-73. [PMID: 19032594 DOI: 10.1111/j.1460-9568.2008.06527.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The protein alpha-synuclein is central to the pathophysiology of Parkinson's disease (PD) but its role in the development of neurodegeneration remains unclear. alpha-Synuclein-knockout mice develop without gross abnormality and are resistant to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a mitochondrial inhibitor widely used to model parkinsonism. Here we show that differentiated human dopaminergic neuron-like cells also have increased resistance to 1-methyl-4-phenylpyridine (MPP+), the active metabolite of MPTP, when alpha-synuclein is knocked down using RNA interference. In attempting to understand how this occurred we found that lowering alpha-synuclein levels caused changes to intracellular vesicles, dopamine transporter (DAT) and vesicular monoamine transporter (VMAT2), each of which is known to be an important component of the early events leading to MPP+ toxicity. Knockdown of alpha-synuclein reduced the availability of DAT on the neuronal surface by 50%, decreased the total number of intracellular vesicles by 37% but increased the density of VMAT2 molecules per vesicle by 2.8-fold. However, these changes were not associated with any reduction in MPP+ -induced superoxide production, suggesting that alpha-synuclein knockdown may have other downstream effects which are important. We then showed that alpha-synuclein knockdown prevented MPP+ -induced activation of nitric oxide synthase (NOS). Activation of NOS is an essential step in MPTP toxicity and increasing evidence points to nitrosative stress as being important in neurodegeneration. Overall, these results show that as well as having a number of effects on cellular events upstream of mitochondrial dysfunction alpha-synuclein affects pathways downstream of superoxide production, possibly involving regulation of NOS activity.
Collapse
Affiliation(s)
- Timothy M Fountaine
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3QX, UK
| | | | | | | | | | | | | |
Collapse
|