1
|
Pichi F, Neri P, Aljeneibi S, Hay S, Chaudhry H, Saturno MC, Carreno E. In Vivo Visualization of Macrophage-Like Cells in Patients with Uveitis by Use of En Face Swept Source Optical Coherence Tomography. Ocul Immunol Inflamm 2024; 32:1532-1538. [PMID: 37722841 DOI: 10.1080/09273948.2023.2254369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/20/2023]
Abstract
AIMS To detect macrophage-like cells (MLCs) in uveitis patients and describe their characteristics compared to healthy subjects by using en face SS-OCTA. METHODS Fifteen consecutive patients with "active" uveitis and 11 healthy participants underwent 6 macular scans of 6×6mm using SS-OCTA. The 3μm en face OCT slabs on inner limiting membrane were used to visualize the MLCs. RESULTS In healthy subjects there was an average of 478.2±149.7 MLCs with a density of 13.28±4.16 cells/mm2. MLCs were larger in patients with "active" uveitis than in controls (891.18±69.46 µm2 vs.885±77.53 µm2). Patients with "active" anterior uveitis had a significantly reduced count and density of MLCs (172±14.68 and 4.77±0.4 cell/mm2) compared to controls, while patients with posterior uveitis had a statistically increased count (546.1±132.4) and area (909.23+/-54.97 µm2) of MLCs compared to controls. CONCLUSIONS MLCs detected with en face SS-OCTA are increased in number and size in active posterior uveitis eyes compared to controls.
Collapse
Affiliation(s)
- Francesco Pichi
- Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Piergiorgio Neri
- Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Shaikha Aljeneibi
- Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Steven Hay
- Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Hannah Chaudhry
- Eye Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, United Arab Emirates
| | | | - Ester Carreno
- Department of Ophthalmology, University Hospital Fundación Jiménez Díaz, Madrid, Spain
- Department of Ophthalmology, University Hospital Rey Juan Carlos, Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz, Madrid, Spain
| |
Collapse
|
2
|
Yamaguchi M, Nakao S, Arima M, Little K, Singh A, Wada I, Kaizu Y, Zandi S, Garweg JG, Matoba T, Shiraishi W, Yamasaki R, Shibata K, Go Y, Ishibashi T, Uemura A, Stitt AW, Sonoda KH. Heterotypic macrophages/microglia differentially contribute to retinal ischaemia and neovascularisation. Diabetologia 2024; 67:2329-2345. [PMID: 38977459 DOI: 10.1007/s00125-024-06215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/30/2024] [Indexed: 07/10/2024]
Abstract
AIMS/HYPOTHESIS Diabetic retinopathy is characterised by neuroinflammation that drives neuronal and vascular degenerative pathology, which in many individuals can lead to retinal ischaemia and neovascularisation. Infiltrating macrophages and activated retina-resident microglia have been implicated in the progression of diabetic retinopathy, although the distinct roles of these immune cells remain ill-defined. Our aim was to clarify the distinct roles of macrophages/microglia in the pathogenesis of proliferative ischaemic retinopathies. METHODS Murine oxygen-induced retinopathy is commonly used as a model of ischaemia-induced proliferative diabetic retinopathy (PDR). We evaluated the phenotype macrophages/microglia by immunostaining, quantitative real-time RT-PCR (qRT-PCR), flow cytometry and scRNA-seq analysis. In clinical imaging studies of diabetic retinopathy, we used optical coherence tomography (OCT) and OCT angiography. RESULTS Immunostaining, qRT-PCR and flow cytometry showed expression levels of M1-like macrophages/microglia markers (CD80, CD68 and nitric oxide synthase 2) and M2-like macrophages/microglia markers (CD206, CD163 and macrophage scavenger receptor 1) were upregulated in areas of retinal ischaemia and around neo-vessels, respectively. scRNA-seq analysis of the ischaemic retina revealed distinct ischaemia-related clusters of macrophages/microglia that express M1 markers as well as C-C chemokine receptor 2. Inhibition of Rho-kinase (ROCK) suppressed CCL2 expression and reduced CCR2-positive M1-like macrophages/microglia in areas of ischaemia. Furthermore, the area of retinal ischaemia was reduced by suppressing blood macrophage infiltration not only by ROCK inhibitor and monocyte chemoattractant protein-1 antibody but also by GdCl3. Clinical imaging studies of diabetic retinopathy using OCT indicated potential involvement of macrophages/microglia represented by hyperreflective foci in areas of reduced perfusion. CONCLUSIONS/INTERPRETATION These results collectively indicated that heterotypic macrophages/microglia differentially contribute to retinal ischaemia and neovascularisation in retinal vascular diseases including diabetic retinopathy. This adds important new information that could provide a basis for a more targeted, cell-specific therapeutic approach to prevent progression to sight-threatening PDR.
Collapse
Affiliation(s)
- Muneo Yamaguchi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shintaro Nakao
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.
- Department of Ophthalmology, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan.
- Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan.
- Department of Ophthalmology, Juntendo University School of Medicine, Tokyo, Japan.
| | - Mitsuru Arima
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Karis Little
- Wellcome Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Aditi Singh
- Wellcome Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Iori Wada
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Kaizu
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Souska Zandi
- Department of Ophthalmology and Department of BioMedical Sciences, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Justus G Garweg
- Department of Ophthalmology and Department of BioMedical Sciences, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Tetsuya Matoba
- Department of Cardiovascular Medicine, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Wataru Shiraishi
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryo Yamasaki
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kensuke Shibata
- Department of Biology and Biochemistry, University of Yamaguchi, Ube, Japan
| | - Yasuhiro Go
- Cognitive Genomics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
- Division of Behavioral Development, Department of System Neuroscience, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Tatsuro Ishibashi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Alan W Stitt
- Wellcome Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
Wu M, Fletcher EL, Chinnery HR, Downie LE, Mueller SN. Redefining our vision: an updated guide to the ocular immune system. Nat Rev Immunol 2024:10.1038/s41577-024-01064-y. [PMID: 39215057 DOI: 10.1038/s41577-024-01064-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2024] [Indexed: 09/04/2024]
Abstract
Balanced immune responses in the eyes are crucial to preserve vision. The ocular immune system has long been considered distinct, owing to the so-called 'immune privilege' of its component tissues. More recently, intravital imaging and transcriptomic techniques have reshaped scientific understanding of the ocular immune landscape, such as revealing the specialization of immune cell populations in the various tissues of the eye. As knowledge of the phenotypes of corneal and retinal immune cells has evolved, links to both the systemic immune system, and the central and peripheral nervous systems, have been identified. Using intravital imaging, T cells have recently been found to reside in, and actively patrol, the healthy human cornea. Disease-associated retinal microglia with links to retinal degeneration have also been identified. This Review provides an updated guide to the ocular immune system, highlighting current knowledge of the immune cells that are present in steady-state and specific diseased ocular tissues, as well as evidence for their relationship to systemic disease. In addition, we discuss emerging intravital imaging techniques that can be used to visualize immune cell morphology and dynamics in living human eyes and how these could be applied to advance understanding of the human immune system.
Collapse
Affiliation(s)
- Mengliang Wu
- Department of Optometry and Vision Sciences, The University of Melbourne, Carlton, Victoria, Australia
- Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Erica L Fletcher
- Department of Anatomy and Physiology, The University of Melbourne, Carlton, Victoria, Australia
| | - Holly R Chinnery
- Department of Optometry and Vision Sciences, The University of Melbourne, Carlton, Victoria, Australia.
- Lions Eye Institute, Nedlands, Western Australia, Australia.
- Optometry, The University of Western Australia, Crawley, Western Australia, Australia.
| | - Laura E Downie
- Department of Optometry and Vision Sciences, The University of Melbourne, Carlton, Victoria, Australia.
| | - Scott N Mueller
- Department of Microbiology and Immunology, The University of Melbourne, at The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| |
Collapse
|
4
|
Rosmus DD, Koch J, Hausmann A, Chiot A, Arnhold F, Masuda T, Kierdorf K, Hansen SM, Kuhrt H, Fröba J, Wolf J, Boneva S, Gericke M, Ajami B, Prinz M, Lange C, Wieghofer P. Redefining the ontogeny of hyalocytes as yolk sac-derived tissue-resident macrophages of the vitreous body. J Neuroinflammation 2024; 21:168. [PMID: 38961498 PMCID: PMC11223341 DOI: 10.1186/s12974-024-03110-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/22/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND The eye is a highly specialized sensory organ which encompasses the retina as a part of the central nervous system, but also non-neural compartments such as the transparent vitreous body ensuring stability of the eye globe and a clear optical axis. Hyalocytes are the tissue-resident macrophages of the vitreous body and are considered to play pivotal roles in health and diseases of the vitreoretinal interface, such as proliferative vitreoretinopathy or diabetic retinopathy. However, in contrast to other ocular macrophages, their embryonic origin as well as the extent to which these myeloid cells might be replenished by circulating monocytes remains elusive. RESULTS In this study, we combine transgenic reporter mice, embryonic and adult fate mapping approaches as well as parabiosis experiments with multicolor immunofluorescence labeling and confocal laser-scanning microscopy to comprehensively characterize the murine hyalocyte population throughout development and in adulthood. We found that murine hyalocytes express numerous well-known myeloid cell markers, but concomitantly display a distinct immunophenotype that sets them apart from retinal microglia. Embryonic pulse labeling revealed a yolk sac-derived origin of murine hyalocytes, whose precursors seed the developing eye prenatally. Finally, postnatal labeling and parabiosis established the longevity of hyalocytes which rely on Colony Stimulating Factor 1 Receptor (CSF1R) signaling for their maintenance, independent of blood-derived monocytes. CONCLUSION Our study identifies hyalocytes as long-living progeny of the yolk sac hematopoiesis and highlights their role as integral members of the innate immune system of the eye. As a consequence of their longevity, immunosenescence processes may culminate in hyalocyte dysfunction, thereby contributing to the development of vitreoretinal diseases. Therefore, myeloid cell-targeted therapies that convey their effects through the modification of hyalocyte properties may represent an interesting approach to alleviate the burden imposed by diseases of the vitreoretinal interface.
Collapse
Affiliation(s)
- Dennis-Dominik Rosmus
- Institute of Anatomy, Leipzig University, 04103, Leipzig, Germany
- Cellular Neuroanatomy, Institute of Theoretical Medicine, Augsburg University, Universitätsstrasse 2, 86159, Augsburg, Germany
| | - Jana Koch
- Cellular Neuroanatomy, Institute of Theoretical Medicine, Augsburg University, Universitätsstrasse 2, 86159, Augsburg, Germany
- Institute of Neuropathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Annika Hausmann
- Institute of Neuropathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Aude Chiot
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, 97239, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Franz Arnhold
- Institute of Anatomy, Leipzig University, 04103, Leipzig, Germany
| | - Takahiro Masuda
- Institute of Neuropathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Division of Molecular Neuroimmunology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Katrin Kierdorf
- Institute of Neuropathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies, University of Freiburg, 79106, Freiburg, Germany
- Centre for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Stefanie Marie Hansen
- Institute of Neuropathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Heidrun Kuhrt
- Institute of Anatomy, Leipzig University, 04103, Leipzig, Germany
| | - Janine Fröba
- Institute of Anatomy, Leipzig University, 04103, Leipzig, Germany
| | - Julian Wolf
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Molecular Surgery Laboratory, Stanford University, Palo Alto, CA, 94304, USA
- Department of Ophthalmology, Byers Eye Institute, Stanford University, Palo Alto, CA, 94304, USA
| | - Stefaniya Boneva
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
| | - Martin Gericke
- Institute of Anatomy, Leipzig University, 04103, Leipzig, Germany
| | - Bahareh Ajami
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, 97239, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Marco Prinz
- Institute of Neuropathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79106, Freiburg, Germany
| | - Clemens Lange
- Eye Center, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany
- Ophtha Lab, Department of Ophthalmology, St. Franziskus Hospital, 48145, Münster, Germany
| | - Peter Wieghofer
- Institute of Anatomy, Leipzig University, 04103, Leipzig, Germany.
- Cellular Neuroanatomy, Institute of Theoretical Medicine, Augsburg University, Universitätsstrasse 2, 86159, Augsburg, Germany.
- Institute of Neuropathology, Medical Center, Faculty of Medicine, University of Freiburg, 79106, Freiburg, Germany.
| |
Collapse
|
5
|
Wang X, Wang T, Lam E, Alvarez D, Sun Y. Ocular Vascular Diseases: From Retinal Immune Privilege to Inflammation. Int J Mol Sci 2023; 24:12090. [PMID: 37569464 PMCID: PMC10418793 DOI: 10.3390/ijms241512090] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
The eye is an immune privileged tissue that insulates the visual system from local and systemic immune provocation to preserve homeostatic functions of highly specialized retinal neural cells. If immune privilege is breached, immune stimuli will invade the eye and subsequently trigger acute inflammatory responses. Local resident microglia become active and release numerous immunological factors to protect the integrity of retinal neural cells. Although acute inflammatory responses are necessary to control and eradicate insults to the eye, chronic inflammation can cause retinal tissue damage and cell dysfunction, leading to ocular disease and vision loss. In this review, we summarized features of immune privilege in the retina and the key inflammatory responses, factors, and intracellular pathways activated when retinal immune privilege fails, as well as a highlight of the recent clinical and research advances in ocular immunity and ocular vascular diseases including retinopathy of prematurity, age-related macular degeneration, and diabetic retinopathy.
Collapse
Affiliation(s)
- Xudong Wang
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| | - Tianxi Wang
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| | - Enton Lam
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| | - David Alvarez
- Department of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Ye Sun
- Department of Ophthalmology, Harvard Medical School, Boston Children’s Hospital, Boston, MA 02115, USA; (X.W.)
| |
Collapse
|
6
|
Augustin S, Lam M, Lavalette S, Verschueren A, Blond F, Forster V, Przegralek L, He Z, Lewandowski D, Bemelmans AP, Picaud S, Sahel JA, Mathis T, Paques M, Thuret G, Guillonneau X, Delarasse C, Sennlaub F. Melanophages give rise to hyperreflective foci in AMD, a disease-progression marker. J Neuroinflammation 2023; 20:28. [PMID: 36755326 PMCID: PMC9906876 DOI: 10.1186/s12974-023-02699-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/13/2023] [Indexed: 02/10/2023] Open
Abstract
Retinal melanosome/melanolipofuscin-containing cells (MCCs), clinically visible as hyperreflective foci (HRF) and a highly predictive imaging biomarker for the progression of age-related macular degeneration (AMD), are widely believed to be migrating retinal pigment epithelial (RPE) cells. Using human donor tissue, we identify the vast majority of MCCs as melanophages, melanosome/melanolipofuscin-laden mononuclear phagocytes (MPs). Using serial block-face scanning electron microscopy, RPE flatmounts, bone marrow transplantation and in vitro experiments, we show how retinal melanophages form by the transfer of melanosomes from the RPE to subretinal MPs when the "don't eat me" signal CD47 is blocked. These melanophages give rise to hyperreflective foci in Cd47-/--mice in vivo, and are associated with RPE dysmorphia similar to intermediate AMD. Finally, we show that Cd47 expression in human RPE declines with age and in AMD, which likely participates in melanophage formation and RPE decline. Boosting CD47 expression in AMD might protect RPE cells and delay AMD progression.
Collapse
Affiliation(s)
- Sebastien Augustin
- Sorbonne Université, INSERM, CNRS, UMR_S 968, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Marion Lam
- Ophthalmology Department, Université de Paris, APHP, Hôpital Lariboisière, 75010 Paris, France
| | - Sophie Lavalette
- Sorbonne Université, INSERM, CNRS, UMR_S 968, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Anna Verschueren
- grid.415610.70000 0001 0657 9752Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 503, Paris, France
| | - Frédéric Blond
- Sorbonne Université, INSERM, CNRS, UMR_S 968, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Valérie Forster
- Sorbonne Université, INSERM, CNRS, UMR_S 968, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Lauriane Przegralek
- Sorbonne Université, INSERM, CNRS, UMR_S 968, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Zhiguo He
- grid.6279.a0000 0001 2158 1682Laboratory of Biology, Engineering and Imaging for Ophthalmology, BiiO, EA2521, Faculty of Medicine, University of Saint Etienne, Saint Etienne, France
| | - Daniel Lewandowski
- grid.457349.80000 0004 0623 0579Cellules Souches et Radiations, Stabilité Génétique, Université de Paris, Université Paris-Saclay, Inserm, CEA, Fontenay-Aux-Roses, France
| | - Alexis-Pierre Bemelmans
- grid.457349.80000 0004 0623 0579Laboratoire des Maladies Neurodégénératives, Université Paris-Saclay, CEA, CNRS, MIRCen, Fontenay-Aux-Roses, France
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, UMR_S 968, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - José-Alain Sahel
- Sorbonne Université, INSERM, CNRS, UMR_S 968, Institut de la Vision, 17 rue Moreau, 75012 Paris, France ,grid.415610.70000 0001 0657 9752Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 503, Paris, France
| | - Thibaud Mathis
- grid.7849.20000 0001 2150 7757Service d’Ophtalmologie, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, UMR CNRS 5510 MATEIS, Université Lyon 1, 103 Grande rue de la Croix Rousse, 69317 Lyon Cedex 04, France
| | - Michel Paques
- Sorbonne Université, INSERM, CNRS, UMR_S 968, Institut de la Vision, 17 rue Moreau, 75012 Paris, France ,grid.415610.70000 0001 0657 9752Centre Hospitalier National d’Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 503, Paris, France
| | - Gilles Thuret
- grid.6279.a0000 0001 2158 1682Laboratory of Biology, Engineering and Imaging for Ophthalmology, BiiO, EA2521, Faculty of Medicine, University of Saint Etienne, Saint Etienne, France
| | - Xavier Guillonneau
- Sorbonne Université, INSERM, CNRS, UMR_S 968, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Cécile Delarasse
- Sorbonne Université, INSERM, CNRS, UMR_S 968, Institut de la Vision, 17 rue Moreau, 75012 Paris, France
| | - Florian Sennlaub
- Sorbonne Université, INSERM, CNRS, UMR_S 968, Institut de la Vision, 17 rue Moreau, 75012, Paris, France.
| |
Collapse
|
7
|
McPherson SW, Heuss ND, Abedin M, Roehrich H, Pierson MJ, Gregerson DS. Parabiosis reveals the correlation between the recruitment of circulating antigen presenting cells to the retina and the induction of spontaneous autoimmune uveoretinitis. J Neuroinflammation 2022; 19:295. [PMID: 36494807 PMCID: PMC9733026 DOI: 10.1186/s12974-022-02660-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Characterizing immune cells and conditions that govern their recruitment and function in autoimmune diseases of the nervous system or in neurodegenerative processes is an area of active investigation. We sought to analyze the origin of antigen presenting cells associated with the induction of retinal autoimmunity using a system that relies on spontaneous autoimmunity, thus avoiding uncertainties associated with immunization with adjuvants at remotes sites or adoptive transfer of in vitro activated T cells. METHODS R161H mice (B10.RIII background), which spontaneously and rapidly develop severe spontaneous autoimmune uveoretinitis (SAU), were crossed to CD11cDTR/GFP mice (B6/J) allowing us to track the recruitment to and/or expansion within the retina of activated, antigen presenting cells (GFPhi cells) in R161H+/- × CD11cDTR/GFP F1 mice relative to the course of SAU. Parabiosis between R161H+/- × CD11cDTR/GFP F1 mice and B10.RIII × B6/J F1 (wild-type recipient) mice was done to explore the origin and phenotype of antigen presenting cells crucial for the induction of autoimmunity. Analysis was done by retinal imaging, flow cytometry, and histology. RESULTS Onset of SAU in R161H+/- × CD11cDTR/GFP F1 mice was delayed relative to B10.RIII-R161H+/- mice revealing a disease prophase prior to frank autoimmunity that was characterized by expansion of GFPhi cells within the retina prior to any clinical or histological evidence of autoimmunity. Parabiosis between mice carrying the R161H and CD11cDTR/GFP transgenes and transgene negative recipients showed that recruitment of circulating GFPhi cells into retinas was highly correlative with the occurrence of SAU. CONCLUSIONS Our results here contrast with our previous findings showing that retinal antigen presenting cells expanding in response to either sterile mechanical injury or neurodegeneration were derived from myeloid cells within the retina or optic nerve, thus highlighting a unique facet of retinal autoimmunity.
Collapse
Affiliation(s)
- Scott W. McPherson
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6th Street SE, Lions Research Building, Room 482A, Minneapolis, MN 55455 USA
| | - Neal D. Heuss
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6th Street SE, Lions Research Building, Room 482A, Minneapolis, MN 55455 USA
| | - Md. Abedin
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6th Street SE, Lions Research Building, Room 482A, Minneapolis, MN 55455 USA
| | - Heidi Roehrich
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6th Street SE, Lions Research Building, Room 482A, Minneapolis, MN 55455 USA
| | - Mark J. Pierson
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6th Street SE, Lions Research Building, Room 482A, Minneapolis, MN 55455 USA
| | - Dale S. Gregerson
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6th Street SE, Lions Research Building, Room 482A, Minneapolis, MN 55455 USA
| |
Collapse
|
8
|
Yamaguchi M, Nakao S, Wada I, Matoba T, Arima M, Kaizu Y, Shirane M, Ishikawa K, Nakama T, Murakami Y, Mizuochi M, Shiraishi W, Yamasaki R, Hisatomi T, Ishibashi T, Shibuya M, Stitt AW, Sonoda KH. Identifying Hyperreflective Foci in Diabetic Retinopathy via VEGF-Induced Local Self-Renewal of CX3CR1+ Vitreous Resident Macrophages. Diabetes 2022; 71:2685-2701. [PMID: 36203331 DOI: 10.2337/db21-0247] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/13/2022] [Indexed: 01/11/2023]
Abstract
Intraretinal hyperreflective foci (HRF) are significant biomarkers for diabetic macular edema. However, HRF at the vitreoretinal interface (VRI) have not been examined in diabetic retinopathy (DR). A prospective observational clinical study with 162 consecutive eyes using OCT imaging showed significantly increased HRF at the VRI during DR progression (P < 0.01), which was reversed by anti-vascular endothelial growth factor (VEGF) therapy. F4/80+ macrophages increased significantly at the VRI in Kimba (vegfa+/+) or Akimba (Akita × Kimba) mice (both P < 0.01), but not in diabetic Akita (Ins2+/-) mice, indicating macrophage activation was modulated by elevated VEGF rather than the diabetic milieu. Macrophage depletion significantly reduced HRF at the VRI (P < 0.01). Furthermore, BrdU administration in Ccr2rfp/+Cx3cr1gfp/+vegfa+/- mice identified a significant contribution of M2-like tissue-resident macrophages (TRMs) at the VRI. Ki-67+ and CD11b+ cells were observed in preretinal tissues of DR patients, while exposure of vitreal macrophages to vitreous derived from PDR patients induced a significant proliferation response in vitro (P < 0.01). Taken together, the evidence suggests that VEGF drives a local proliferation of vitreous resident macrophages (VRMs) at the VRI during DR. This phenomenon helps to explain the derivation and disease-relevance of the HRF lesions observed through OCT imaging in patients.
Collapse
Affiliation(s)
- Muneo Yamaguchi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shintaro Nakao
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Ophthalmology, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
- Clinical Research Institute, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| | - Iori Wada
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuya Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mitsuru Arima
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Kaizu
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Mariko Shirane
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keijiro Ishikawa
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takahito Nakama
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yusuke Murakami
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Wataru Shiraishi
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryo Yamasaki
- Department of Neurology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toshio Hisatomi
- Department of Ophthalmology, Fukuoka University Chikushi Hospital, Fukuoka, Japan
| | - Tatsuro Ishibashi
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Masabumi Shibuya
- Institute of Physiology and Medicine, Jobu University, Gunma, Japan
| | - Alan W Stitt
- Wellcome Wolfson Institute for Experimental Medicine, Queen's University, Belfast, Northern Ireland
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
9
|
Murenu E, Gerhardt MJ, Biel M, Michalakis S. More than meets the eye: The role of microglia in healthy and diseased retina. Front Immunol 2022; 13:1006897. [PMID: 36524119 PMCID: PMC9745050 DOI: 10.3389/fimmu.2022.1006897] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/11/2022] [Indexed: 11/30/2022] Open
Abstract
Microglia are the main resident immune cells of the nervous system and as such they are involved in multiple roles ranging from tissue homeostasis to response to insults and circuit refinement. While most knowledge about microglia comes from brain studies, some mechanisms have been confirmed for microglia cells in the retina, the light-sensing compartment of the eye responsible for initial processing of visual information. However, several key pieces of this puzzle are still unaccounted for, as the characterization of retinal microglia has long been hindered by the reduced population size within the retina as well as the previous lack of technologies enabling single-cell analyses. Accumulating evidence indicates that the same cell type may harbor a high degree of transcriptional, morphological and functional differences depending on its location within the central nervous system. Thus, studying the roles and signatures adopted specifically by microglia in the retina has become increasingly important. Here, we review the current understanding of retinal microglia cells in physiology and in disease, with particular emphasis on newly discovered mechanisms and future research directions.
Collapse
Affiliation(s)
- Elisa Murenu
- Department of Ophthalmology, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany,*Correspondence: Elisa Murenu, ; ; Stylianos Michalakis,
| | | | - Martin Biel
- Department of Pharmacy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stylianos Michalakis
- Department of Ophthalmology, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany,*Correspondence: Elisa Murenu, ; ; Stylianos Michalakis,
| |
Collapse
|
10
|
Asare-Bediako B, Adu-Agyeiwaah Y, Abad A, Li Calzi S, Floyd JL, Prasad R, DuPont M, Asare-Bediako R, Bustelo XR, Grant MB. Hematopoietic Cells Influence Vascular Development in the Retina. Cells 2022; 11:3207. [PMID: 36291075 PMCID: PMC9601270 DOI: 10.3390/cells11203207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
Hematopoietic cells play a crucial role in the adult retina in health and disease. Monocytes, macrophages, microglia and myeloid angiogenic cells (MACs) have all been implicated in retinal pathology. However, the role that hematopoietic cells play in retinal development is understudied. The temporal changes in recruitment of hematopoietic cells into the developing retina and the phenotype of the recruited cells are not well understood. In this study, we used the hematopoietic cell-specific protein Vav1 to track and investigate hematopoietic cells in the developing retina. By flow cytometry and immunohistochemistry, we show that hematopoietic cells are present in the retina as early as P0, and include microglia, monocytes and MACs. Even before the formation of retinal blood vessels, hematopoietic cells localize to the inner retina where they eventually form networks that intimately associate with the developing vasculature. Loss of Vav1 lead to a reduction in the density of medium-sized vessels and an increased inflammatory response in retinal astrocytes. When pups were subjected to oxygen-induced retinopathy, hematopoietic cells maintained a close association with the vasculature and occasionally formed 'frameworks' for the generation of new vessels. Our study provides further evidence for the underappreciated role of hematopoietic cells in retinal vasculogenesis and the formation of a healthy retina.
Collapse
Affiliation(s)
- Bright Asare-Bediako
- Vision Science Graduate Program, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama, Birmingham, AL 35294, USA
| | - Yvonne Adu-Agyeiwaah
- Vision Science Graduate Program, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama, Birmingham, AL 35294, USA
| | - Antonio Abad
- Centro de Investigación del Cáncer de Salamanca, CSIC and University of Salamanca, 37007 Salamanca, Spain
- Instituto de Biología Molecular y Celular del Cáncer, CSIC and University of Salamanca, 37007 Salamanca, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBER), CSIC and University of Salamanca, 37007 Salamanca, Spain
| | - Sergio Li Calzi
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama, Birmingham, AL 35294, USA
| | - Jason L. Floyd
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama, Birmingham, AL 35294, USA
| | - Ram Prasad
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama, Birmingham, AL 35294, USA
| | - Mariana DuPont
- Vision Science Graduate Program, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama, Birmingham, AL 35294, USA
| | - Richmond Asare-Bediako
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY 14623, USA
| | - Xose R. Bustelo
- Centro de Investigación del Cáncer de Salamanca, CSIC and University of Salamanca, 37007 Salamanca, Spain
| | - Maria B. Grant
- Department of Ophthalmology and Visual Sciences, School of Medicine, University of Alabama, Birmingham, AL 35294, USA
| |
Collapse
|
11
|
Wieghofer P, Engelbert M, Chui TYP, Rosen RB, Sakamoto T, Sebag J. Hyalocyte origin, structure, and imaging. EXPERT REVIEW OF OPHTHALMOLOGY 2022; 17:233-248. [PMID: 36632192 PMCID: PMC9831111 DOI: 10.1080/17469899.2022.2100762] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/08/2022] [Indexed: 01/14/2023]
Abstract
Introduction Hyalocytes have been recognized as resident tissue macrophages of the vitreous body since the mid-19th century. Despite this, knowledge about their origin, turnover, and dynamics is limited. Areas covered Historically, initial studies on the origin of hyalocytes used light and electron microscopy. Modern investigations across species including rodents and humans will be described. Novel imaging is now available to study human hyalocytes in vivo. The shared ontogeny with retinal microglia and their eventual interdependence as well as differences will be discussed. Expert opinion Owing to a common origin as myeloid cells, hyalocytes and retinal microglia have similarities, but hyalocytes appear to be distinct as resident macrophages of the vitreous body.
Collapse
Affiliation(s)
- Peter Wieghofer
- Cellular Neuroanatomy, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Universitätsstraße 2, 86159 Augsburg, Germany
| | - Michael Engelbert
- Vitreous Retina Macula Consultants of New York, New York, NY 10022, USA
- LuEsther T. Mertz Retinal Research Center, Manhattan Eye, Ear and Throat Hospital, New York, NY 10065, USA
- Department of Ophthalmology, New York University School of Medicine, New York, NY 10016, USA
| | - Toco YP Chui
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York; Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Richard B Rosen
- Department of Ophthalmology, New York Eye and Ear Infirmary of Mount Sinai, New York, New York; Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Taiji Sakamoto
- Department of Ophthalmology, Kagoshima University Graduate School of Medical and Dental Science, Kagoshima, Japan
| | - J Sebag
- Doheny Eye Institute, UCLA, Los Angeles, CA, USA
- Clinical Ophthalmology, Stein Eye Institute, Geffen School of Medicine, UCLA, Los Angeles, CA, USA
- VMR Institute for Vitreous Macula Retina, Huntington Beach, CA, USA
| |
Collapse
|
12
|
Xie H, Zhang C, Zhang J, Xu Y, Liu K, Luo D, Qiu Q, Xu GT, Zhang J. An in vitro cell model to study microglia activation in diabetic retinopathy. Cell Biol Int 2022; 46:129-138. [PMID: 34647397 DOI: 10.1002/cbin.11710] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 09/22/2021] [Accepted: 10/11/2021] [Indexed: 11/10/2022]
Abstract
Microglial activation has been studied extensively in diabetic retinopathy. We have previously detected activation and migration of microglia in 8-week-old diabetic rat retinas. It is widely acknowledged that microglia-mediated inflammation contributes to the progression of diabetic retinopathy. However, existing cell models do not explore the role of activated microglia in vitro. In this study, microglia were subject to various conditions mimicking diabetic retinopathy, including high glucose, glyoxal, and hypoxia. Under high glucose or glyoxal treatment, microglia demonstrated only partially functional changes, while under hypoxia, microglia became fully activated showing enlarged cell bodies, enhanced migration and phagocytosis as well as increased production of pro-inflammatory factors such as cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), and inducible nitric oxide synthase (iNOS). The data indicate that hypoxia-treated microglia is an optimal in vitro model for exploration of microglia activation in diabetic retinopathy.
Collapse
Affiliation(s)
- Hai Xie
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
| | - Chaoyang Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Jingting Zhang
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Yihua Xu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Kun Liu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Dawei Luo
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Qinghua Qiu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| | - Guo-Tong Xu
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
| | - Jingfa Zhang
- Department of Ophthalmology of Shanghai Tenth People's Hospital, Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
- Department of Regenerative Medicine, and Department of Pharmacology, Tongji University School of Medicine, Shanghai, China
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China
- National Clinical Research Center for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China
| |
Collapse
|
13
|
Mettu PS, Allingham MJ, Cousins SW. Incomplete response to Anti-VEGF therapy in neovascular AMD: Exploring disease mechanisms and therapeutic opportunities. Prog Retin Eye Res 2021; 82:100906. [PMID: 33022379 PMCID: PMC10368393 DOI: 10.1016/j.preteyeres.2020.100906] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022]
Abstract
Intravitreal anti-vascular endothelial growth factor (VEGF) drugs have revolutionized the treatment of neovascular age-related macular degeneration (NVAMD). However, many patients suffer from incomplete response to anti-VEGF therapy (IRT), which is defined as (1) persistent (plasma) fluid exudation; (2) unresolved or new hemorrhage; (3) progressive lesion fibrosis; and/or (4) suboptimal vision recovery. The first three of these collectively comprise the problem of persistent disease activity (PDA) in spite of anti-VEGF therapy. Meanwhile, the problem of suboptimal vision recovery (SVR) is defined as a failure to achieve excellent functional visual acuity of 20/40 or better in spite of sufficient anti-VEGF treatment. Thus, incomplete response to anti-VEGF therapy, and specifically PDA and SVR, represent significant clinical unmet needs. In this review, we will explore PDA and SVR in NVAMD, characterizing the clinical manifestations and exploring the pathobiology of each. We will demonstrate that PDA occurs most frequently in NVAMD patients who develop high-flow CNV lesions with arteriolarization, in contrast to patients with capillary CNV who are highly responsive to anti-VEGF therapy. We will review investigations of experimental CNV and demonstrate that both types of CNV can be modeled in mice. We will present and consider a provocative hypothesis: formation of arteriolar CNV occurs via a distinct pathobiology, termed neovascular remodeling (NVR), wherein blood-derived macrophages infiltrate the incipient CNV lesion, recruit bone marrow-derived mesenchymal precursor cells (MPCs) from the circulation, and activate MPCs to become vascular smooth muscle cells (VSMCs) and myofibroblasts, driving the development of high-flow CNV with arteriolarization and perivascular fibrosis. In considering SVR, we will discuss the concept that limited or poor vision in spite of anti-VEGF may not be caused simply by photoreceptor degeneration but instead may be associated with photoreceptor synaptic dysfunction in the neurosensory retina overlying CNV, triggered by infiltrating blood-derived macrophages and mediated by Müller cell activation Finally, for each of PDA and SVR, we will discuss current approaches to disease management and treatment and consider novel avenues for potential future therapies.
Collapse
Affiliation(s)
- Priyatham S Mettu
- Duke Center for Macular Diseases, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, NC.
| | - Michael J Allingham
- Duke Center for Macular Diseases, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, NC
| | - Scott W Cousins
- Duke Center for Macular Diseases, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, NC; Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
14
|
Wieghofer P, Hagemeyer N, Sankowski R, Schlecht A, Staszewski O, Amann L, Gruber M, Koch J, Hausmann A, Zhang P, Boneva S, Masuda T, Hilgendorf I, Goldmann T, Böttcher C, Priller J, Rossi FM, Lange C, Prinz M. Mapping the origin and fate of myeloid cells in distinct compartments of the eye by single-cell profiling. EMBO J 2021; 40:e105123. [PMID: 33555074 PMCID: PMC7957431 DOI: 10.15252/embj.2020105123] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 12/07/2020] [Accepted: 12/18/2020] [Indexed: 01/10/2023] Open
Abstract
Similar to the brain, the eye is considered an immune‐privileged organ where tissue‐resident macrophages provide the major immune cell constituents. However, little is known about spatially restricted macrophage subsets within different eye compartments with regard to their origin, function, and fate during health and disease. Here, we combined single‐cell analysis, fate mapping, parabiosis, and computational modeling to comprehensively examine myeloid subsets in distinct parts of the eye during homeostasis. This approach allowed us to identify myeloid subsets displaying diverse transcriptional states. During choroidal neovascularization, a typical hallmark of neovascular age‐related macular degeneration (AMD), we recognized disease‐specific macrophage subpopulations with distinct molecular signatures. Our results highlight the heterogeneity of myeloid subsets and their dynamics in the eye that provide new insights into the innate immune system in this organ which may offer new therapeutic targets for ophthalmological diseases.
Collapse
Affiliation(s)
- Peter Wieghofer
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany.,Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Nora Hagemeyer
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Roman Sankowski
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany.,Berta-Ottenstein-Programme for Clinician Scientists, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Anja Schlecht
- Eye Center, Medical Center, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Ori Staszewski
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany.,Berta-Ottenstein-Programme for Clinician Scientists, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Lukas Amann
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Markus Gruber
- Eye Center, Medical Center, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Jana Koch
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany.,Eye Center, Medical Center, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Annika Hausmann
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Peipei Zhang
- Eye Center, Medical Center, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Stefaniya Boneva
- Eye Center, Medical Center, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Takahiro Masuda
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Ingo Hilgendorf
- Department of Cardiology and Angiology I, Medical Faculty, University Heart Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Tobias Goldmann
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Chotima Böttcher
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Josef Priller
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité-Universitätsmedizin Berlin, Berlin, Germany.,DZNE and BIH, Berlin, Germany.,University of Edinburgh and UK DRI, Edinburgh, UK
| | - Fabio Mv Rossi
- Biomedical Research Centre, University of British Columbia & Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Clemens Lange
- Eye Center, Medical Center, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Medical Faculty, University of Freiburg, Freiburg, Germany
| |
Collapse
|
15
|
Xie H, Zhang C, Liu D, Yang Q, Tang L, Wang T, Tian H, Lu L, Xu JY, Gao F, Wang J, Jin C, Li W, Xu G, Xu GT, Zhang J. Erythropoietin protects the inner blood-retinal barrier by inhibiting microglia phagocytosis via Src/Akt/cofilin signalling in experimental diabetic retinopathy. Diabetologia 2021; 64:211-225. [PMID: 33104828 DOI: 10.1007/s00125-020-05299-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/19/2020] [Indexed: 01/09/2023]
Abstract
AIMS/HYPOTHESIS Microglial activation in diabetic retinopathy and the protective effect of erythropoietin (EPO) have been extensively studied. However, the regulation of microglia in the retina and its relationship to inner blood-retinal barrier (iBRB) maintenance have not been fully characterised. In this study, we investigated the role of microglia in iBRB breakdown in diabetic retinopathy and the protective effects of EPO in this context. METHODS Male Sprague Dawley rats were injected intraperitoneally with streptozotocin (STZ) to establish the experimental model of diabetes. At 2 h after STZ injection, the right and left eyes were injected intravitreally with EPO (16 mU/eye, 2 μl) and an equivalent volume of normal saline (NaCl 154 mmol/l), respectively. The rats were killed at 2 or 8 weeks after diabetes onset. Microglia activation was detected by ionised calcium binding adaptor molecule (IBA)-1 immunolabelling. Leakage of the iBRB was evaluated by albumin staining and FITC-dextran permeability assay. BV2 cells and primary rat microglia under hypoxic conditions were used to model microglial activation in diabetic retinopathy. Phagocytosis was examined by confocal microscopy in flat-mounted retina preparations and in microglia and endothelial cell cocultures. Protein levels of IBA-1, CD11b, complement component 1r (C1r), and Src/Akt/cofilin signalling pathway components were assessed by western blotting. RESULTS In diabetic rat retinas, phagocytosis of endothelial cells by activated microglia was observed at 8 weeks, resulting in an increased number of acellular capillaries (increased by 426.5%) and albumin leakage. Under hypoxic conditions, activated microglia transmigrated to the opposite membrane of the transwell, where they disrupted the endothelial cell monolayer by engulfing endothelial cells. The activation and phagocytic activity of microglia was blocked by intravitreal injection of EPO. In vitro, IBA-1, CD11b and C1r protein levels were increased by 50.9%, 170.0% and 135.5%, respectively, by hypoxia, whereas the phosphorylated proteins of Src/Akt/cofilin signalling pathway components were decreased by 74.2%, 47.8% and 39.7%, respectively, compared with the control; EPO treatment abrogated these changes. CONCLUSIONS/INTERPRETATION In experimental diabetic retinopathy, activated microglia penetrate the basement membrane of the iBRB and engulf endothelial cells, leading to iBRB breakdown. EPO exerts a protective effect that preserves iBRB integrity via activation of Src/Akt/cofilin signalling in microglia, as demonstrated in vitro. These data support a causal role for activated microglia in iBRB breakdown and highlight the therapeutic potential of EPO for the treatment of diabetic retinopathy. Graphical abstract.
Collapse
Affiliation(s)
- Hai Xie
- Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
| | - Chaoyang Zhang
- Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
| | - Dandan Liu
- Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
| | - Qian Yang
- Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
| | - Lei Tang
- Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
| | - Tianqin Wang
- Department of Ophthalmology, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Haibin Tian
- Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
| | - Lixia Lu
- Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
| | - Jing-Ying Xu
- Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
| | - Furong Gao
- Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
| | - Juan Wang
- Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
| | - Caixia Jin
- Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
| | - Weiye Li
- Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China
- Department of Ophthalmology, Drexel University College of Medicine, Philadelphia, PA, USA
| | - Guoxu Xu
- Department of Ophthalmology, the Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Guo-Tong Xu
- Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China.
| | - Jingfa Zhang
- Tongji Eye Institute, Tongji University School of Medicine, Shanghai, China.
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, Shanghai, China.
- National Clinical Research Center for Eye Diseases, Shanghai, China.
- Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China.
- Shanghai Engineering Center for Visual Science and Photomedicine, Shanghai, China.
- Shanghai Engineering Center for Precise Diagnosis and Treatment of Eye Diseases, Shanghai, China.
| |
Collapse
|
16
|
Bucher K, Rodríguez-Bocanegra E, Dauletbekov D, Fischer MD. Immune responses to retinal gene therapy using adeno-associated viral vectors - Implications for treatment success and safety. Prog Retin Eye Res 2020; 83:100915. [PMID: 33069860 DOI: 10.1016/j.preteyeres.2020.100915] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/08/2020] [Accepted: 10/10/2020] [Indexed: 02/06/2023]
Abstract
Recombinant adeno-associated virus (AAV) is the leading vector for gene therapy in the retina. As non-pathogenic, non-integrating, replication deficient vector, the recombinant virus efficiently transduces all key retinal cell populations. Successful testing of AAV vectors in clinical trials of inherited retinal diseases led to the recent approval of voretigene neparvovec (Luxturna) for the treatment of RPE65 mutation-associated retinal dystrophies. However, studies applying AAV-mediated retinal gene therapy independently reported intraocular inflammation and/or loss of efficacy after initial functional improvements. Both observations might be explained by targeted removal of transduced cells via anti-viral defence mechanisms. AAV has been shown to activate innate pattern recognition receptors (PRRs) such as toll-like receptor (TLR)-2 and TLR-9 resulting in the release of inflammatory cytokines and type I interferons. The vector can also induce capsid-specific and transgene-specific T cell responses and neutralizing anti-AAV antibodies which both limit the therapeutic effect. However, the target organ of retinal gene therapy, the eye, is known as an immune-privileged site. It is characterized by suppression of inflammation and promotion of immune tolerance which might prevent AAV-induced immune responses. This review evaluates AAV-related immune responses, toxicity and inflammation in studies of retinal gene therapy, identifies influencing variables of these responses and discusses potential strategies to modulate immune reactions to AAV vectors to increase the safety and efficacy of ocular gene therapy.
Collapse
Affiliation(s)
- Kirsten Bucher
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany; Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Eduardo Rodríguez-Bocanegra
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany; Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - Daniyar Dauletbekov
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany; Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany
| | - M Dominik Fischer
- University Eye Hospital, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany; Institute for Ophthalmic Research, Centre for Ophthalmology, University Hospital Tübingen, Tübingen, Germany; Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, UK; Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, UK.
| |
Collapse
|
17
|
Grigoruta M, Chavez-Solano M, Varela-Ramirez A, Sierra-Fonseca JA, Orozco-Lucero E, Hamdan JN, Gosselink KL, Martinez-Martinez A. Maternal separation induces retinal and peripheral blood mononuclear cell alterations across the lifespan of female rats. Brain Res 2020; 1749:147117. [PMID: 32971085 DOI: 10.1016/j.brainres.2020.147117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 08/21/2020] [Accepted: 09/04/2020] [Indexed: 12/24/2022]
Abstract
Early life stress alters the function and feedback regulation of the hypothalamic-pituitaryadrenal (HPA) axis, and can contribute to neuroinflammation and neurodegeneration by modifying peripheral blood mononuclear cell (PBMC) activity. The retina, as part of the nervous system, is sensitive to immune changes induced by stress. However, the consequences of stress experienced at an early age on retinal development have not yet been elucidated. Here we aimed to evaluate the impact of maternal separation (MatSep) across three stages of the lifespan (adolescent, adult, and aged) on the retina, as well as on progression through the cell cycle and mitochondrial activity in PBMCs from female Wistar rats. Newborn pups were separated from their mother from postnatal day (PND) 2 until PND 14 for 3 h/day. Retinal analysis from the MatSep groups showed architectural alterations such as a diminished thickness of retinal layers, as well as increased expression of proinflammatory markers DJ-1, Iba-1, and CD45 and the gliotic marker GFAP. Additionally, MatSep disrupted the cell cycle and caused long-term increases in mitochondrial activity in PBMCs from adolescent and adult rats. Changes in the cell cycle profile of the PBMCs from aged MatSep rats were undetected. However, these PBMCs exhibited increased sensitivity to H2O2-induced oxidative stress in vitro. Therefore, these results suggest that early life stress can have long-term effects on retinal structure and function, possibly elicited by neonatal immune preconditioning.
Collapse
Affiliation(s)
- Mariana Grigoruta
- Department of Chemical and Biological Sciences. Biomedical Sciences Institute. Autonomous University of Ciudad Juarez, Anillo envolvente Pronaf y Estocolmo S/N, Zona Pronaf, 32315 Ciudad Juárez, Chihuahua, Mexico; Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, 500 West University Avenue, 79968 El Paso, TX, USA
| | - Marbella Chavez-Solano
- Department of Chemical and Biological Sciences. Biomedical Sciences Institute. Autonomous University of Ciudad Juarez, Anillo envolvente Pronaf y Estocolmo S/N, Zona Pronaf, 32315 Ciudad Juárez, Chihuahua, Mexico; Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, 500 West University Avenue, 79968 El Paso, TX, USA.
| | - Armando Varela-Ramirez
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, 500 West University Avenue, 79968 El Paso, TX, USA
| | - Jorge A Sierra-Fonseca
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, 500 West University Avenue, 79968 El Paso, TX, USA
| | - Ernesto Orozco-Lucero
- Department of Veterinary Sciences. Biomedical Sciences Institute. Autonomous University of Ciudad Juarez, Anillo envolvente Pronaf y Estocolmo S/N, Zona Pronaf, 32315 Ciudad Juarez, Chihuahua, Mexico
| | - Jameel N Hamdan
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, 500 West University Avenue, 79968 El Paso, TX, USA
| | - Kristin L Gosselink
- Department of Biological Sciences and Border Biomedical Research Center, The University of Texas at El Paso, 500 West University Avenue, 79968 El Paso, TX, USA.
| | - Alejandro Martinez-Martinez
- Department of Chemical and Biological Sciences. Biomedical Sciences Institute. Autonomous University of Ciudad Juarez, Anillo envolvente Pronaf y Estocolmo S/N, Zona Pronaf, 32315 Ciudad Juárez, Chihuahua, Mexico
| |
Collapse
|
18
|
Noreikiene K, Ozerov M, Ahmad F, Kõiv T, Kahar S, Gross R, Sepp M, Pellizzone A, Vesterinen EJ, Kisand V, Vasemägi A. Humic-acid-driven escape from eye parasites revealed by RNA-seq and target-specific metabarcoding. Parasit Vectors 2020; 13:433. [PMID: 32859251 PMCID: PMC7456052 DOI: 10.1186/s13071-020-04306-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/16/2020] [Indexed: 01/09/2023] Open
Abstract
Background Next generation sequencing (NGS) technologies are extensively used to dissect the molecular mechanisms of host-parasite interactions in human pathogens. However, ecological studies have yet to fully exploit the power of NGS as a rich source for formulating and testing new hypotheses. Methods We studied Eurasian perch (Perca fluviatilis) and its eye parasite (Trematoda, Diplostomidae) communities in 14 lakes that differed in humic content in order to explore host-parasite-environment interactions. We hypothesised that high humic content along with low pH would decrease the abundance of the intermediate hosts (gastropods), thus limiting the occurrence of diplostomid parasites in humic lakes. This hypothesis was initially invoked by whole eye RNA-seq data analysis and subsequently tested using PCR-based detection and a novel targeted metabarcoding approach. Results Whole eye transcriptome results revealed overexpression of immune-related genes and the presence of eye parasite sequences in RNA-seq data obtained from perch living in clear-water lakes. Both PCR-based and targeted-metabarcoding approach showed that perch from humic lakes were completely free from diplostomid parasites, while the prevalence of eye flukes in clear-water lakes that contain low amounts of humic substances was close to 100%, with the majority of NGS reads assigned to Tylodelphys clavata. Conclusions High intraspecific diversity of T. clavata indicates that massively parallel sequencing of naturally pooled samples represents an efficient and powerful strategy for shedding light on cryptic diversity of eye parasites. Our results demonstrate that perch populations in clear-water lakes experience contrasting eye parasite pressure compared to those from humic lakes, which is reflected by prevalent differences in the expression of immune-related genes in the eye. This study highlights the utility of NGS to discover novel host-parasite-environment interactions and provide unprecedented power to characterize the molecular diversity of cryptic parasites.![]()
Collapse
Affiliation(s)
- Kristina Noreikiene
- Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 46, 51006, Tartu, Estonia.
| | - Mikhail Ozerov
- Department of Biology, University of Turku, 20014, Turku, Finland.,Department of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agricultural Sciences, 17893, Drottningholm, Sweden.,Biodiversity Unit, University of Turku, 20014, Turku, Finland
| | - Freed Ahmad
- Department of Biology, University of Turku, 20014, Turku, Finland
| | - Toomas Kõiv
- Chair of Hydrobiology and Fishery, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia
| | - Siim Kahar
- Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 46, 51006, Tartu, Estonia
| | - Riho Gross
- Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 46, 51006, Tartu, Estonia
| | - Margot Sepp
- Chair of Hydrobiology and Fishery, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 5, 51006, Tartu, Estonia
| | - Antonia Pellizzone
- Department of Biology, University of Turku, 20014, Turku, Finland.,Department of Life Sciences and Biotechnology, University of Ferrara, 44121, Ferrara, Italy
| | - Eero J Vesterinen
- Biodiversity Unit, University of Turku, 20014, Turku, Finland.,Department of Ecology, Swedish University of Agricultural Sciences, 75651, Uppsala, Sweden
| | - Veljo Kisand
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - Anti Vasemägi
- Chair of Aquaculture, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Kreutzwaldi 46, 51006, Tartu, Estonia. .,Department of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agricultural Sciences, 17893, Drottningholm, Sweden.
| |
Collapse
|
19
|
Jamali A, Kenyon B, Ortiz G, Abou-Slaybi A, Sendra VG, Harris DL, Hamrah P. Plasmacytoid dendritic cells in the eye. Prog Retin Eye Res 2020; 80:100877. [PMID: 32717378 DOI: 10.1016/j.preteyeres.2020.100877] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/28/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023]
Abstract
Plasmacytoid dendritic cells (pDCs) are a unique subpopulation of immune cells, distinct from classical dendritic cells. pDCs are generated in the bone marrow and following development, they typically home to secondary lymphoid tissues. While peripheral tissues are generally devoid of pDCs during steady state, few tissues, including the lung, kidney, vagina, and in particular ocular tissues harbor resident pDCs. pDCs were originally appreciated for their potential to produce large quantities of type I interferons in viral immunity. Subsequent studies have now unraveled their pivotal role in mediating immune responses, in particular in the induction of tolerance. In this review, we summarize our current knowledge on pDCs in ocular tissues in both mice and humans, in particular in the cornea, limbus, conjunctiva, choroid, retina, and lacrimal gland. Further, we will review our current understanding on the significance of pDCs in ameliorating inflammatory responses during herpes simplex virus keratitis, sterile inflammation, and corneal transplantation. Moreover, we describe their novel and pivotal neuroprotective role, their key function in preserving corneal angiogenic privilege, as well as their potential application as a cell-based therapy for ocular diseases.
Collapse
Affiliation(s)
- Arsia Jamali
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Brendan Kenyon
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Gustavo Ortiz
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Abdo Abou-Slaybi
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Program in Immunology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA
| | - Victor G Sendra
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Deshea L Harris
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA
| | - Pedram Hamrah
- Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA, USA; Program in Neuroscience, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA; Program in Immunology, Graduate School of Biomedical Sciences, Tufts University, Boston, MA, USA; Cornea Service, Tufts New England Eye Center, Boston, MA, USA.
| |
Collapse
|
20
|
Ramachandra Rao S, Skelton LA, Wu F, Onysk A, Spolnik G, Danikiewicz W, Butler MC, Stacks DA, Surmacz L, Mu X, Swiezewska E, Pittler SJ, Fliesler SJ. Retinal Degeneration Caused by Rod-Specific Dhdds Ablation Occurs without Concomitant Inhibition of Protein N-Glycosylation. iScience 2020; 23:101198. [PMID: 32526701 PMCID: PMC7287266 DOI: 10.1016/j.isci.2020.101198] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/10/2020] [Accepted: 05/20/2020] [Indexed: 12/16/2022] Open
Abstract
Dehydrodolichyl diphosphate synthase (DHDDS) catalyzes the committed step in dolichol synthesis. Recessive mutations in DHDDS cause retinitis pigmentosa (RP59), resulting in blindness. We hypothesized that rod photoreceptor-specific ablation of Dhdds would cause retinal degeneration due to diminished dolichol-dependent protein N-glycosylation. Dhddsflx/flx mice were crossed with rod-specific Cre recombinase-expressing (Rho-iCre75) mice to generate rod-specific Dhdds knockout mice (Dhddsflx/flx iCre+). In vivo morphological and electrophysiological evaluation of Dhddsflx/flx iCre+ retinas revealed mild retinal dysfunction at postnatal (PN) 4 weeks, compared with age-matched controls; however, rapid photoreceptor degeneration ensued, resulting in almost complete loss of rods and cones by PN 6 weeks. Retina dolichol levels were markedly decreased by PN 4 weeks in Dhddsflx/flx iCre+ mice, relative to controls; despite this, N-glycosylation of retinal proteins, including opsin (the dominant rod-specific glycoprotein), persisted in Dhddsflx/flx iCre+ mice. These findings challenge the conventional mechanistic view of RP59 as a congenital disorder of glycosylation. Deletion of Dhdds in rod cells caused rapid retinal degeneration in mice Retinal dolichol levels markedly decreased before onset of degeneration Protein N-glycosylation was uncompromised despite Dhdds deletion Degeneration also involved gliosis, microglial activation, and phagoptosis
Collapse
Affiliation(s)
- Sriganesh Ramachandra Rao
- Department of Ophthalmology/Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY 14209, USA; Research Service, VA Western NY Healthcare System, Buffalo, NY 142015, USA; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY 14203, USA
| | - Lara A Skelton
- Department of Ophthalmology/Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY 14209, USA; Research Service, VA Western NY Healthcare System, Buffalo, NY 142015, USA; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY 14203, USA
| | - Fuguo Wu
- Department of Ophthalmology/Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY 14209, USA; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY 14203, USA; New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York- University at Buffalo, Buffalo, NY 14203, USA
| | - Agnieszka Onysk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Grzegorz Spolnik
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw 02106, Poland
| | - Witold Danikiewicz
- Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw 02106, Poland
| | - Mark C Butler
- Department of Ophthalmology/Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY 14209, USA; Research Service, VA Western NY Healthcare System, Buffalo, NY 142015, USA
| | - Delores A Stacks
- Department of Optometry and Vision Science, Vision Science Research Center, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Liliana Surmacz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Xiuqian Mu
- Department of Ophthalmology/Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY 14209, USA; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY 14203, USA; New York State Center of Excellence in Bioinformatics and Life Sciences, State University of New York- University at Buffalo, Buffalo, NY 14203, USA
| | - Ewa Swiezewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Steven J Pittler
- Department of Optometry and Vision Science, Vision Science Research Center, School of Optometry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Steven J Fliesler
- Department of Ophthalmology/Ross Eye Institute, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY 14209, USA; Research Service, VA Western NY Healthcare System, Buffalo, NY 142015, USA; Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York- University at Buffalo, Buffalo, NY 14203, USA.
| |
Collapse
|
21
|
Kezic JM, Chrysostomou V, McMenamin PG, Crowston JG. Effects of age on retinal macrophage responses to acute elevation of intraocular pressure. Exp Eye Res 2020; 193:107995. [PMID: 32156653 DOI: 10.1016/j.exer.2020.107995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/17/2020] [Accepted: 03/05/2020] [Indexed: 11/25/2022]
Abstract
There is accumulating evidence that aging shifts the central nervous system milieu towards a proinflammatory state, with increased reactivity of microglia in the aging eye and brain having been implicated in the development of age-related neurodegenerative conditions. Indeed, alterations to microglial morphology and function have been recognized as a part of normal aging. Here, we sought to assess the effects of age on the retinal microglial and macrophage response to acute intraocular pressure (IOP) elevation. Further, we performed experiments whereby bone marrow from young or middle-aged mice was used to reconstitute the bone marrow of whole-body irradiated 12 month old mice. Bone marrow chimeric mice then underwent cannulation and IOP elevation 8 weeks after whole-body irradiation and bone marrow transplantation in order to determine whether the age of bone marrow alters the macrophage response to retinal injury. Our data show retinal macrophage reactivity and microglial morphological changes were enhanced in older mice when compared to younger mice in response to injury. When IOP elevation was performed after whole-body irradiation and bone marrow rescue, we noted subretinal macrophage accumulation and glial reactivity was reduced compared to non-irradiated mice that had also undergone IOP elevation. This effect was evident in both groups of chimeric mice that had received either young or middle-aged bone marrow, suggesting irradiation itself may alter the macrophage and glial response to injury rather than the age of bone marrow.
Collapse
Affiliation(s)
- Jelena M Kezic
- Centre for Eye Research Australia, Department of Ophthalmology, University of Melbourne, Royal Victorian Eye and Ear Hospital, 32 Gisborne Street, East Melbourne, Victoria, 3002, Australia; Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia.
| | - Vicki Chrysostomou
- Centre for Eye Research Australia, Department of Ophthalmology, University of Melbourne, Royal Victorian Eye and Ear Hospital, 32 Gisborne Street, East Melbourne, Victoria, 3002, Australia.
| | - Paul G McMenamin
- Department of Anatomy and Developmental Biology, Monash University, Wellington Road, Clayton, Victoria, 3800, Australia.
| | - Jonathan G Crowston
- Centre for Eye Research Australia, Department of Ophthalmology, University of Melbourne, Royal Victorian Eye and Ear Hospital, 32 Gisborne Street, East Melbourne, Victoria, 3002, Australia.
| |
Collapse
|
22
|
Cho KI, Yoon D, Yu M, Peachey NS, Ferreira PA. Microglial activation in an amyotrophic lateral sclerosis-like model caused by Ranbp2 loss and nucleocytoplasmic transport impairment in retinal ganglion neurons. Cell Mol Life Sci 2019; 76:3407-3432. [PMID: 30944974 PMCID: PMC6698218 DOI: 10.1007/s00018-019-03078-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/21/2019] [Accepted: 03/18/2019] [Indexed: 12/12/2022]
Abstract
Nucleocytoplasmic transport is dysregulated in sporadic and familial amyotrophic lateral sclerosis (ALS) and retinal ganglion neurons (RGNs) are purportedly involved in ALS. The Ran-binding protein 2 (Ranbp2) controls rate-limiting steps of nucleocytoplasmic transport. Mice with Ranbp2 loss in Thy1+-motoneurons develop cardinal ALS-like motor traits, but the impairments in RGNs and the degree of dysfunctional consonance between RGNs and motoneurons caused by Ranbp2 loss are unknown. This will help to understand the role of nucleocytoplasmic transport in the differential vulnerability of neuronal cell types to ALS and to uncover non-motor endophenotypes with pathognomonic signs of ALS. Here, we ascertain Ranbp2's function and endophenotypes in RGNs of an ALS-like mouse model lacking Ranbp2 in motoneurons and RGNs. Thy1+-RGNs lacking Ranbp2 shared with motoneurons the dysregulation of nucleocytoplasmic transport. RGN abnormalities were comprised morphologically by soma hypertrophy and optic nerve axonopathy and physiologically by a delay of the visual pathway's evoked potentials. Whole-transcriptome analysis showed restricted transcriptional changes in optic nerves that were distinct from those found in sciatic nerves. Specifically, the level and nucleocytoplasmic partition of the anti-apoptotic and novel substrate of Ranbp2, Pttg1/securin, were dysregulated. Further, acetyl-CoA carboxylase 1, which modulates de novo synthesis of fatty acids and T-cell immunity, showed the highest up-regulation (35-fold). This effect was reflected by the activation of ramified CD11b+ and CD45+-microglia, increase of F4\80+-microglia and a shift from pseudopodial/lamellipodial to amoeboidal F4\80+-microglia intermingled between RGNs of naive mice. Further, there was the intracellular sequestration in RGNs of metalloproteinase-28, which regulates macrophage recruitment and polarization in inflammation. Hence, Ranbp2 genetic insults in RGNs and motoneurons trigger distinct paracrine signaling likely by the dysregulation of nucleocytoplasmic transport of neuronal-type selective substrates. Immune-modulators underpinning RGN-to-microglial signaling are regulated by Ranbp2, and this neuronal-glial system manifests endophenotypes that are likely useful in the prognosis and diagnosis of motoneuron diseases, such as ALS.
Collapse
Affiliation(s)
- Kyoung-In Cho
- Department of Ophthalmology, Duke University Medical Center, DUEC 3802, 2351 Erwin Road, Durham, NC, 27710, USA
| | - Dosuk Yoon
- Department of Ophthalmology, Duke University Medical Center, DUEC 3802, 2351 Erwin Road, Durham, NC, 27710, USA
| | - Minzhong Yu
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Neal S Peachey
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic Foundation, Cleveland, OH, 44195, USA
- Research Service, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, 44106, USA
- Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH, 44195, USA
| | - Paulo A Ferreira
- Department of Ophthalmology, Duke University Medical Center, DUEC 3802, 2351 Erwin Road, Durham, NC, 27710, USA.
| |
Collapse
|
23
|
Rashid K, Akhtar-Schaefer I, Langmann T. Microglia in Retinal Degeneration. Front Immunol 2019; 10:1975. [PMID: 31481963 PMCID: PMC6710350 DOI: 10.3389/fimmu.2019.01975] [Citation(s) in RCA: 200] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/05/2019] [Indexed: 12/18/2022] Open
Abstract
The retina is a complex tissue with multiple cell layers that are highly ordered. Its sophisticated structure makes it especially sensitive to external or internal perturbations that exceed the homeostatic range. This necessitates the continuous surveillance of the retina for the detection of noxious stimuli. This task is mainly performed by microglia cells, the resident tissue macrophages which confer neuroprotection against transient pathophysiological insults. However, under sustained pathological stimuli, microglial inflammatory responses become dysregulated, often worsening disease pathology. In this review, we provide an overview of recent studies that depict microglial responses in diverse retinal pathologies that have degeneration and chronic immune reactions as key pathophysiological components. We also discuss innovative immunomodulatory therapy strategies that dampen the detrimental immunological responses to improve disease outcome.
Collapse
Affiliation(s)
- Khalid Rashid
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Isha Akhtar-Schaefer
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Cologne, Germany
| |
Collapse
|
24
|
Roubeix C, Dominguez E, Raoul W, Guillonneau X, Paques M, Sahel JA, Sennlaub F. Mo-derived perivascular macrophage recruitment protects against endothelial cell death in retinal vein occlusion. J Neuroinflammation 2019; 16:157. [PMID: 31351497 PMCID: PMC6660930 DOI: 10.1186/s12974-019-1547-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 07/16/2019] [Indexed: 01/21/2023] Open
Abstract
Background To decipher the role of monocyte-derived macrophages (Mφs) in vascular remodeling of the occluded vein following experimental branch retinal vein occlusion (BRVO). Methods The inflammation induced by laser-induced BRVO on mice retina was evaluated at different time points by RT-PCR looking at inflammatory markers mRNA level expression, Icam-1, Cd11b, F4/80, Ccl2, and Ccr2 and by quantification of Iba1-positive macrophage (Mφ) density on Iba1-stained retinal flatmount. Repeated intraperitoneal EdU injection combined with liposome clodronate-induced monocyte (Mo) depletion in wildtype mice was used to differentiate Mo-derived Mφs from resident Mφs. Liposome clodronate Mo-depleted wildtype mice and Ccr2-deficient mice were used to evaluate the role of all CCR2+ and CCR2neg Mo-derived Mφs on EC apoptosis in the occluded vein. Results cd11b, ICAM-1, F4/80, Ccl2, and Ccr2 mRNA expression were increased 1, 3, and 7 days after vein occlusion. The number of parenchymal (parMφs) and perivascular (vasMφs) macrophages was increased 3 and 7 days after BRVO. The systemic depletion of all circulating Mos decreased significantly the BRVO-induced parMφs and vasMφs macrophage accumulation, while the deletion of CCR2+-inflammatory Mo only diminished the accumulation of parMφs, but not vasMφs. Finally, apoptotic ECs of the vein were more numerous in fully depleted, liposome clodronate-treated mice, than in Ccr2−/− mice that only lack the recruitment of CCR2+ inflammatory Mos. Conclusions BRVO triggers the recruitment of blood-derived parMφs and vasMφs. Interestingly, vasMφs accumulation was independent of CCR2. The observation that the inhibition of the recruitment of all infiltrating Mφs increases the vein EC apoptosis, while CCR2 deficiency does not, demonstrates that CCR2neg Mo-derived vasMφs protect the ECs against apoptosis in the occluded vein.
Collapse
Affiliation(s)
- Christophe Roubeix
- INSERM, CNRS, Institut de la Vision, 17 rue Moreau, Sorbonne Université, UPMC Univ Paris 06, F-75012, Paris, France.
| | - Elisa Dominguez
- INSERM, CNRS, Institut de la Vision, 17 rue Moreau, Sorbonne Université, UPMC Univ Paris 06, F-75012, Paris, France
| | - William Raoul
- Université François Rabelais de Tours, CNRS, GICC UMR 7292, Tours, France
| | - Xavier Guillonneau
- INSERM, CNRS, Institut de la Vision, 17 rue Moreau, Sorbonne Université, UPMC Univ Paris 06, F-75012, Paris, France
| | - Michel Paques
- INSERM, CNRS, Institut de la Vision, 17 rue Moreau, Sorbonne Université, UPMC Univ Paris 06, F-75012, Paris, France.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 1423, F-75012, Paris, France
| | - José-Alain Sahel
- INSERM, CNRS, Institut de la Vision, 17 rue Moreau, Sorbonne Université, UPMC Univ Paris 06, F-75012, Paris, France.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 1423, F-75012, Paris, France
| | - Florian Sennlaub
- INSERM, CNRS, Institut de la Vision, 17 rue Moreau, Sorbonne Université, UPMC Univ Paris 06, F-75012, Paris, France.,Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
25
|
McPherson SW, Heuss ND, Lehmann U, Roehrich H, Abedin M, Gregerson DS. The retinal environment induces microglia-like properties in recruited myeloid cells. J Neuroinflammation 2019; 16:151. [PMID: 31325968 PMCID: PMC6642741 DOI: 10.1186/s12974-019-1546-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/11/2019] [Indexed: 12/31/2022] Open
Abstract
Background Microglia are essential to the development of the CNS and its homeostasis. Our prior findings suggested a niche model to describe the behaviors of retinal microglia. Here, we ask whether new myeloid cells recruited to the retina are constrained to resemble endogenous microglia morphologically and functionally. Methods Use of CD11cDTR/GFP transgenic mouse allowed identification of two niches of retinal microglia distinguished by being GFPlo or GFPhi. We also used transgenic mice in which CX3CR1+ cells expressed YFP and were depletable following tamoxifen-induced expression of diphtheria toxin subunit A. We employed several ablation and injury stimulation protocols to examine the origin and fate of myeloid cells repopulating the retina. Analysis of retinal myeloid cells was done by microscopy, flow cytometry, and qRT-PCR. Results We found that the origin of new GFPhi and GFPlo myeloid cells in the retina of CD11cDTR/GFP mice, whether recruited or local, depended on the ablation and stimulation protocols. Regardless of origin, new GFPlo and GFPhi retinal myeloid cells were CD45medCD11b+Ly6G−Ly6CloIba1+F4/80+, similar to endogenous microglia. Following tamoxifen-induced diphtheria toxin ablation, myeloid cell repopulation differed in the retina compared to the brain and optic nerve. Stimulation of replacement GFPhi cells was substantially attenuated in repopulating retinas after tamoxifen-induced diphtheria toxin ablation compared to control or radiation-ablated mice. In radiation bone marrow chimeric mice, replacement GFPhi myeloid cells from the circulation were slow to repopulate the retina unless stimulated by an optic nerve crush injury. However, once stimulated, recruited GFPhi cells were found to concentrate on injured retinal ganglion cells and were morphologically similar to GFPhi cells in non-ablated control CD11cDTR/GFP mice. Conclusions The results support the idea that GFPhi cells in the CD11cDTR/GFP mouse, whether recruited or from resident microglia, mark a unique niche of activated retinal myeloid cells. We conclude that the retinal environment has a potent influence on the function, morphology, and proliferative capacity of new myeloid cells regardless of their origin, compelling them to be equivalent to the endogenous microglia. Electronic supplementary material The online version of this article (10.1186/s12974-019-1546-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Scott W McPherson
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6th Street SE, LRB Room 314, Minneapolis, MN, 55455, USA.
| | - Neal D Heuss
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6th Street SE, LRB Room 314, Minneapolis, MN, 55455, USA
| | - Ute Lehmann
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6th Street SE, LRB Room 314, Minneapolis, MN, 55455, USA
| | - Heidi Roehrich
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6th Street SE, LRB Room 314, Minneapolis, MN, 55455, USA
| | - Md Abedin
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6th Street SE, LRB Room 314, Minneapolis, MN, 55455, USA
| | - Dale S Gregerson
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, 2001 6th Street SE, LRB Room 314, Minneapolis, MN, 55455, USA
| |
Collapse
|
26
|
Reyes NJ, Mathew R, Saban DR. Fate Mapping In Vivo to Distinguish Bona Fide Microglia Versus Recruited Monocyte-Derived Macrophages in Retinal Disease. Methods Mol Biol 2019; 1834:153-164. [PMID: 30324443 DOI: 10.1007/978-1-4939-8669-9_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
With the new understanding that adult microglia in mice have embryonic origins and are maintained in situ throughout life, it has become pertinent to now understand how these unique cells differ from monocyte-derived macrophages. The latter are recruited into the neural retina (and elsewhere in CNS) in certain diseased states, such as in various forms of retinal degeneration. However, phenotypic markers expressed by microglia and monocyte-derived macrophages largely overlap, thereby making it technically challenging to distinguish the two cell types in disease. To address this problem in mice, we have established an in vivo fate mapping system that enables distinguishing these two cell types in retinal disease models. Our approach leverages the seminal work that originally developed Cx3cr1-CreER mice and is based on commercially available mouse strains. Here, we detail our protocol and how to apply this fate mapping method paired with flow cytometry (or immunohistochemistry) to faithfully distinguish and examine microglia vs. monocyte-derived macrophages in a mutually exclusive manner. This approach will henceforth empower new efforts to identify functional specializations of these two populations in the pathobiology of retinal degenerative diseases and possibly other conditions of the retina where monocyte recruitment is observed, such as in glaucoma, diabetic retinopathy, ischemia reperfusion, retinal detachment, and so on.
Collapse
Affiliation(s)
- Nancy J Reyes
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Rose Mathew
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - Daniel R Saban
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
27
|
McMenamin PG, Saban DR, Dando SJ. Immune cells in the retina and choroid: Two different tissue environments that require different defenses and surveillance. Prog Retin Eye Res 2018; 70:85-98. [PMID: 30552975 DOI: 10.1016/j.preteyeres.2018.12.002] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/03/2018] [Accepted: 12/11/2018] [Indexed: 01/04/2023]
Abstract
In the eye immune defenses must take place in a plethora of differing microenvironments ranging from the corneal and conjunctival epithelia facing the external environment to the pigmented connective tissue of the uveal tract containing smooth muscle, blood vessels and peripheral nerves to the innermost and highly protected neural retina. The extravascular environment of the neural retina, like the brain parenchyma, is stringently controlled to maintain conditions required for neural transmission. The unique physiological nature of the neural retina can be attributed to the blood retinal barriers (BRB) of the retinal vasculature and the retinal pigment epithelium, which both tightly regulate the transport of small molecules and restrict passage of cells and macromolecules from the circulation into the retina in a similar fashion to the blood brain barrier (BBB). The extracellular environment of the neural retina differs markedly from that of the highly vascular, loose connective tissue of the choroid, which lies outside the BRB. The choroid hosts a variety of immune cell types, including macrophages, dendritic cells (DCs) and mast cells. This is in marked contrast to the neural parenchyma of the retina, which is populated almost solely by microglia. This review will describe the current understanding of the distribution, phenotype and physiological role of ocular immune cells behind or inside the blood-retinal barriers and those in closely juxtaposed tissues outside the barrier. The nature and function of these immune cells can profoundly influence retinal homeostasis and lead to disordered immune function that can lead to vision loss.
Collapse
Affiliation(s)
- Paul G McMenamin
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| | - Daniel R Saban
- Department of Ophthalmology, Department of Immunology, Duke University School of Medicine, Durham, NC, USA
| | - Samantha J Dando
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
28
|
Abstract
Microglia, the primary resident immune cell type, constitute a key population of glia in the retina. Recent evidence indicates that microglia play significant functional roles in the retina at different life stages. During development, retinal microglia regulate neuronal survival by exerting trophic influences and influencing programmed cell death. During adulthood, ramified microglia in the plexiform layers interact closely with synapses to maintain synaptic structure and function that underlie the retina's electrophysiological response to light. Under pathological conditions, retinal microglia participate in potentiating neurodegeneration in diseases such as glaucoma, retinitis pigmentosa, and age-related neurodegeneration by producing proinflammatory neurotoxic cytokines and removing living neurons via phagocytosis. Modulation of pathogenic microglial activation states and effector mechanisms has been linked to neuroprotection in animal models of retinal diseases. These findings have led to the design of early proof-of-concept clinical trials with microglial modulation as a therapeutic strategy.
Collapse
Affiliation(s)
- Sean M. Silverman
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;,
| | - Wai T. Wong
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;,
| |
Collapse
|
29
|
Heuss ND, Pierson MJ, Roehrich H, McPherson SW, Gram AL, Li L, Gregerson DS. Optic nerve as a source of activated retinal microglia post-injury. Acta Neuropathol Commun 2018; 6:66. [PMID: 30037353 PMCID: PMC6055350 DOI: 10.1186/s40478-018-0571-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 07/15/2018] [Indexed: 12/27/2022] Open
Abstract
Using mice expressing green fluorescent protein (GFP) from a transgenic CD11c promoter we found that a controlled optic nerve crush (ONC) injury attracted GFPhi retinal myeloid cells to the dying retinal ganglion cells and their axons. However, the origin of these retinal myeloid cells was uncertain. In this study we use transgenic mice in conjunction with ONC, partial and full optic nerve transection (ONT), and parabiosis to determine the origin of injury induced retinal myeloid cells. Analysis of parabiotic mice and fate mapping showed that responding retinal myeloid cells were not derived from circulating macrophages and that GFPhi myeloid cells could be derived from GFPlo microglia. Comparison of optic nerve to retina following an ONC showed a much greater concentration of GFPhi cells and GFPlo microglia in the optic nerve. Optic nerve injury also induced Ki67+ cells in the optic nerve but not in the retina. Comparison of the retinal myeloid cell response after full versus partial ONT revealed fewer GFPhi cells and GFPlo microglia in the retina following a full ONT despite it being a more severe injury, suggesting that full transection of the optic nerve can block the migration of responding myeloid cells to the retina. Our results suggest that the optic nerve can be a reservoir for activated microglia and other retinal myeloid cells in the retina following optic nerve injury.
Collapse
|
30
|
Copland DA, Theodoropoulou S, Liu J, Dick AD. A Perspective of AMD Through the Eyes of Immunology. ACTA ACUST UNITED AC 2018; 59:AMD83-AMD92. [DOI: 10.1167/iovs.18-23893] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- David A. Copland
- Translational Health Sciences (Ophthalmology), University of Bristol, Bristol, United Kingdom
- National Institute for Health Research Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital and University College London-Institute of Ophthalmology, London, United Kingdom
| | - Sofia Theodoropoulou
- Translational Health Sciences (Ophthalmology), University of Bristol, Bristol, United Kingdom
- Bristol Eye Hospital, Bristol, United Kingdom
| | - Jian Liu
- Translational Health Sciences (Ophthalmology), University of Bristol, Bristol, United Kingdom
| | - Andrew D. Dick
- Translational Health Sciences (Ophthalmology), University of Bristol, Bristol, United Kingdom
- National Institute for Health Research Biomedical Research Centre of Ophthalmology, Moorfields Eye Hospital and University College London-Institute of Ophthalmology, London, United Kingdom
- Bristol Eye Hospital, Bristol, United Kingdom
- University College London–Institute of Ophthalmology, London, United Kingdom
| |
Collapse
|
31
|
Saban DR. New concepts in macrophage ontogeny in the adult neural retina. Cell Immunol 2018; 330:79-85. [PMID: 29703455 DOI: 10.1016/j.cellimm.2018.04.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 04/20/2018] [Accepted: 04/20/2018] [Indexed: 12/16/2022]
Abstract
The number of neurons dedicated to vision itself is thought to be greater than the sum of the four other senses combined. Yet, little attention has been payed to the retina as compared to elsewhere in the central nervous system with respect to microglia, the macrophages of the neural parenchyma. Indeed, major advancements in the understanding of microglial ontogeny and maintenance in brain and spinal cord are now widely appreciated, whereas less notice has been given to the neural retina in this regard. The current Review covers topical concepts on adult microglia and perivascular macrophage ontogenies in the steady state retina, as well as parallels made with these macrophages in other areas of the central nervous system. The subject of recruited monocytes and their descendant monocyte-derived macrophages in degenerative diseases of the retina is also integrated into this Review. Key experiments that have led to the theories covered are highlighted throughout, as are the knowledge gaps that remain unresolved.
Collapse
Affiliation(s)
- Daniel R Saban
- Duke University School of Medicine, Department of Ophthalmology, Durham, NC, USA; Duke University School of Medicine, Department of Immunology, Durham, NC, USA.
| |
Collapse
|
32
|
Zhou T, Huang Z, Sun X, Zhu X, Zhou L, Li M, Cheng B, Liu X, He C. Microglia Polarization with M1/M2 Phenotype Changes in rd1 Mouse Model of Retinal Degeneration. Front Neuroanat 2017; 11:77. [PMID: 28928639 PMCID: PMC5591873 DOI: 10.3389/fnana.2017.00077] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 08/21/2017] [Indexed: 01/28/2023] Open
Abstract
Microglia activation is recognized as the hallmark of neuroinflammation. However, the activation profile and phenotype changes of microglia during the process of retinal degeneration are poorly understood. This study aimed to elucidate the time-spatial pattern of microglia distribution and characterize the polarized phenotype of activated microglia during retinal neuroinflammation and degeneration in rd1 (Pde6βrd1/rd1) mice, the classic model of inherited retinal degeneration. Retinae of rd1 mice at different postnatal days (P7, P14, P21, P28, P56, and P180) were prepared for further analysis. We found most CD11b+ or IBA1+ microglia expressed Ki-67 and CD68 in rd1 mice and these cells migrated toward the layer of degenerative photoreceptors at the rapid rods degeneration phase from P14 to P28. These microglia exhibited typical ameboid activated shape with round bodies and scarce dendrites, while at late phase at P180, they displayed resting ramified morphology with elongated dendrites. Flow cytometry revealed that the percentage of CD86+CD206- M1 microglia increased markedly in rd1 retinae, however, no significant change was observed in CD206+CD86- M2 microglia. Interestingly, CD86+CD206+ microglia, an intermediate state between the two extremes of M1 and M2, increased markedly at the rapid rods degeneration phase. The immunofluorescence images revealed that microglia in rd1 mice highly expressed M1 markers including CD16/32, CD86, and CD40. In addition, increased expression of pro-inflammatory cytokines (TNF-α, IL-6, and CCL2) was observed in rd1 mice. Our findings unfolded a panorama for the first time that microglia conducted distinctive behaviors with the progression of retinal degeneration in rd1 mice. Microglia is activated and particularly polarized to a pro-inflammatory M1 phenotype at the rapid rods degenerative phase, suggesting that the involvement of M1 microglia in the retinal neuroinflammation and degeneration. Most microglia adopted an intermediate polarization “M1½” state in rd1, revealing that microglia orchestrated a complicated continuous spectrum in degenerative retina.
Collapse
Affiliation(s)
- Tian Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen UniversityGuangzhou, China
| | - Zijing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen UniversityGuangzhou, China
| | - Xiaowei Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen UniversityGuangzhou, China
| | - Xiaowei Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen UniversityGuangzhou, China
| | - Lingli Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen UniversityGuangzhou, China
| | - Mei Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen UniversityGuangzhou, China
| | - Bing Cheng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen UniversityGuangzhou, China
| | - Xialin Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen UniversityGuangzhou, China
| | - Chang He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen UniversityGuangzhou, China
| |
Collapse
|
33
|
Wilcox SM, Arora H, Munro L, Xin J, Fenninger F, Johnson LA, Pfeifer CG, Choi KB, Hou J, Hoodless PA, Jefferies WA. The role of the innate immune response regulatory gene ABCF1 in mammalian embryogenesis and development. PLoS One 2017; 12:e0175918. [PMID: 28542262 PMCID: PMC5438103 DOI: 10.1371/journal.pone.0175918] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 04/03/2017] [Indexed: 12/15/2022] Open
Abstract
ABCF1 is an ABC transporter family protein that has been shown to regulate innate immune response and is a risk gene for autoimmune pancreatitis and arthritis. Unlike other members of ABC transporter family, ABCF1 lacks trans-membrane domains and is thought to function in translation initiation through an interaction with eukaryotic translation initiation factor 2 (eIF2). To study ABCF1 expression and function in development and disease, we used a single gene trap insertion in the Abcf1 gene in murine embryonic stem cells (ES cells) that allowed lineage tracing of the endogenous Abcf1 promoter by following the expression of a β-galactosidase reporter gene. From the ES cells, heterozygous mice (Abcf1+/-) were produced. No live born Abcf1-/- progeny were ever generated, and the lethality was not mouse strain-specific. Thus, we have determined that Abcf1 is an essential gene in development. Abcf1-/- mice were found to be embryonic lethal at 3.5 days post coitum (dpc), while Abcf1+/- mice appeared developmentally normal. Abcf1+/- mice were fertile and showed no significant differences in their anatomy when compared with their wild type littermates. The Abcf1 promoter was found to be active in all organs in adult mice, but varies in levels of expression in specific cell types within tissues. Furthermore, we observed high promoter activity in the blastocysts and embryos. Overall, Abcf1 expression in embryos is required for development and its expression in adults was highly correlated with actively proliferating and differentiating cell types.
Collapse
Affiliation(s)
- Sara M. Wilcox
- The Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology & Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Hitesh Arora
- The Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology & Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Lonna Munro
- The Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Jian Xin
- The Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Franz Fenninger
- The Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology & Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Laura A. Johnson
- The Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Cheryl G. Pfeifer
- The Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Kyung Bok Choi
- The Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Juan Hou
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, Canada
| | - Pamela A. Hoodless
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, British Columbia, Canada
- Department of Developmental and Cell Biology, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medical Genetics, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Wilfred A. Jefferies
- The Michael Smith Laboratories, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Microbiology & Immunology, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Zoology, The University of British Columbia, Vancouver, British Columbia, Canada
- Department of Medical Genetics, The University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Blood Research, The University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
34
|
Abstract
The innate immune system is activated in a number of degenerative and inflammatory retinal disorders such as age-related macular degeneration (AMD). Retinal microglia, choroidal macrophages, and recruited monocytes, collectively termed 'retinal mononuclear phagocytes', are critical determinants of ocular disease outcome. Many publications have described the presence of these cells in mouse models for retinal disease; however, only limited aspects of their behavior have been uncovered, and these have only been uncovered using a single detection method. The workflow presented here describes a comprehensive analysis strategy that allows characterization of retinal mononuclear phagocytes in vivo and in situ. We present standardized working steps for scanning laser ophthalmoscopy of microglia from MacGreen reporter mice (mice expressing the macrophage colony-stimulating factor receptor GFP transgene throughout the mononuclear phagocyte system), quantitative analysis of Iba1-stained retinal sections and flat mounts, CD11b-based retinal flow cytometry, and qRT-PCR analysis of key microglia markers. The protocol can be completed within 3 d, and we present data from retinas treated with laser-induced choroidal neovascularization (CNV), bright white-light exposure, and Fam161a-associated inherited retinal degeneration. The assays can be applied to any of the existing mouse models for retinal disorders and may be valuable for documenting immune responses in studies for immunomodulatory therapies.
Collapse
|
35
|
Abstract
Major advances in mononuclear phagocyte biology have been made but key questions pertinent to their roles in health and disease remain, including in the visual system. One problem concerns how dendritic cells can trigger immune responses from certain tightly regulated immune- privileged sites of the eye. Another, albeit separate, problem involves whether there are functional specializations for microglia versus monocytes in retinal neurodegeneration. In this Review, we examine novel insights in eye immune privilege and, separately, we discuss recent inroads concerning retinal degeneration. Both themes have been extensively studied in the visual system and show parallels with recent findings concerning mononuclear phagocytes in the central nervous system and in the periphery.
Collapse
|
36
|
Michels M, Sonai B, Dal-Pizzol F. Polarization of microglia and its role in bacterial sepsis. J Neuroimmunol 2017; 303:90-98. [PMID: 28087076 DOI: 10.1016/j.jneuroim.2016.12.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/04/2016] [Accepted: 12/28/2016] [Indexed: 12/14/2022]
Abstract
Microglial polarization in response to brain inflammatory conditions is a crescent field in neuroscience. However, the effect of systemic inflammation, and specifically sepsis, is a relatively unexplored field that has great interest and relevance. Sepsis has been associated with both early and late harmful events of the central nervous system, suggesting that there is a close link between sepsis and neuroinflammation. During sepsis evolution it is supposed that microglial could exert both neurotoxic and repairing effects depending on the specific microglial phenotype assumed. In this context, here it was reviewed the role of microglial polarization during sepsis-associated brain dysfunction.
Collapse
Affiliation(s)
- Monique Michels
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Av Universitária, 1105, Criciúma 88806000, SC, Brazil.
| | - Beatriz Sonai
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Av Universitária, 1105, Criciúma 88806000, SC, Brazil.
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, University of Southern Santa Catarina, Av Universitária, 1105, Criciúma 88806000, SC, Brazil; Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Graduate Program in Medical Sciences, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| |
Collapse
|
37
|
Jäkel S, Dimou L. Glial Cells and Their Function in the Adult Brain: A Journey through the History of Their Ablation. Front Cell Neurosci 2017; 11:24. [PMID: 28243193 PMCID: PMC5303749 DOI: 10.3389/fncel.2017.00024] [Citation(s) in RCA: 287] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/26/2017] [Indexed: 01/06/2023] Open
Abstract
Glial cells, consisting of microglia, astrocytes, and oligodendrocyte lineage cells as their major components, constitute a large fraction of the mammalian brain. Originally considered as purely non-functional glue for neurons, decades of research have highlighted the importance as well as further functions of glial cells. Although many aspects of these cells are well characterized nowadays, the functions of the different glial populations in the brain under both physiological and pathological conditions remain, at least to a certain extent, unresolved. To tackle these important questions, a broad range of depletion approaches have been developed in which microglia, astrocytes, or oligodendrocyte lineage cells (i.e., NG2-glia and oligodendrocytes) are specifically ablated from the adult brain network with a subsequent analysis of the consequences. As the different glial populations are very heterogeneous, it is imperative to specifically ablate single cell populations instead of inducing cell death in all glial cells in general. Thanks to modern genetic manipulation methods, the approaches can now directly be targeted to the cell type of interest making the ablation more specific compared to general cell ablation approaches that have been used earlier on. In this review, we will give a detailed summary on different glial ablation studies, focusing on the adult mouse central nervous system and the functional readouts. We will also provide an outlook on how these approaches could be further exploited in the future.
Collapse
Affiliation(s)
- Sarah Jäkel
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians UniversityMunich, Germany; MRC Centre for Regenerative Medicine, University of EdinburghEdinburgh, UK
| | - Leda Dimou
- Physiological Genomics, Biomedical Center, Ludwig-Maximilians UniversityMunich, Germany; Munich Cluster for Systems NeurologyMunich, Germany; Molecular and Translational Neuroscience, Department of Neurology, University of UlmUlm, Germany
| |
Collapse
|
38
|
Hu Z, Zhang Y, Wang J, Mao P, Lv X, Yuan S, Huang Z, Ding Y, Xie P, Liu Q. Knockout of Ccr2 alleviates photoreceptor cell death in rodent retina exposed to chronic blue light. Cell Death Dis 2016; 7:e2468. [PMID: 27831552 PMCID: PMC5260896 DOI: 10.1038/cddis.2016.363] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 08/04/2016] [Accepted: 10/11/2016] [Indexed: 12/17/2022]
Abstract
Age-related macular degeneration (AMD), the leading cause of visual loss after the age of 60 years, is a degenerative retinal disease involving a variety of environmental and hereditary factors. Although it has been implicated that immune system is involved in the disease progression, the exact role that microglia has is still unclear. Here we demonstrated that knockout of Ccr2 gene could alleviate photoreceptor cell death in mice retinas exposed to chronic blue light. In Ccr2−/− mice, a damaged microglia recruitment was shown in retina and this could protect the visual function in electroretinogram and alleviate the photoreceptor apoptosis, which thus helped attenuate the blue light-induced retinopathy. We further found an increased co-location of NLRP3, Iba-1, and IL-1β in fluorescence and a concomitant increased protein expression of NLRP3, caspase-1, and IL-1β in western blotting in chronic blue light-induced retinopathy. Moreover, the activation of microglia and their cellular NLRP3 inflammasomes occurred as an earlier step before the structural and functional damage of the mice retinas, which collectively supported that microglial NLRP3 inflammasome might be the key to the chronic blue light-induced retinopathy.
Collapse
Affiliation(s)
- Zizhong Hu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yi Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Junling Wang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Pingan Mao
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xuehua Lv
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Songtao Yuan
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhengru Huang
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yuzhi Ding
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ping Xie
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qinghuai Liu
- Department of Ophthalmology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
39
|
Persistent inflammatory state after photoreceptor loss in an animal model of retinal degeneration. Sci Rep 2016; 6:33356. [PMID: 27624537 PMCID: PMC5022039 DOI: 10.1038/srep33356] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 08/18/2016] [Indexed: 01/24/2023] Open
Abstract
Microglia act as the resident immune cells of the central nervous system, including the retina. In response to damaging stimuli microglia adopt an activated state, which can progress into a phagocytic phenotype and play a potentially harmful role by eliciting the expression and release of pro-inflammatory cytokines. The aim of the present study was to assess longitudinal changes in microglia during retinal degeneration in the homozygous P23H rat, a model of dominant retinitis pigmentosa. Microglial phenotypes, morphology and density were analyzed by immunohistochemistry, flow cytometry, and cytokine antibody array. In addition, we performed electroretinograms to evaluate the retinal response. In the P23H retina, sclera, choroid and ciliary body, inflammatory cells increased in number compared with the control at all ages analyzed. As the rats became older, a higher number of amoeboid MHC-II(+) cells were observed in the P23H retina, which correlated with an increase in the expression of pro-inflammatory cytokines. These findings suggest that, in the P23H model, retinal neuroinflammation persists throughout the rat's life span even after photoreceptor depletion. Therefore, the inclusion of anti-inflammatory drugs at advanced stages of the neurodegenerative process may provide better retinal fitness so the remaining cells could still be used as targets of cellular or gene therapies.
Collapse
|
40
|
Perspectives on reticular pseudodrusen in age-related macular degeneration. Surv Ophthalmol 2016; 61:521-37. [DOI: 10.1016/j.survophthal.2016.02.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/22/2016] [Accepted: 02/26/2016] [Indexed: 11/20/2022]
|
41
|
Fate mapping reveals that microglia and recruited monocyte-derived macrophages are definitively distinguishable by phenotype in the retina. Sci Rep 2016; 6:20636. [PMID: 26856416 PMCID: PMC4746646 DOI: 10.1038/srep20636] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/06/2016] [Indexed: 12/14/2022] Open
Abstract
The recent paradigm shift that microglia are yolk sac-derived, not hematopoietic-derived, is reshaping our knowledge about the isolated role of microglia in CNS diseases, including degenerative conditions of the retina. However, unraveling microglial-specific functions has been hindered by phenotypic overlap of microglia with monocyte-derived macrophages. The latter are differentiated from recruited monocytes in neuroinflammation, including retina. Here we demonstrate the use of fate mapping wherein microglia and monocyte-derived cells are endogenously labeled with different fluorescent reporters. Combining this method with 12-color flow cytometry, we show that these two populations are definitively distinguishable by phenotype in retina. We prove that retinal microglia have a unique CD45(lo) CD11c(lo) F4/80(lo) I-A/I-E(-) signature, conserved in the steady state and during retinal injury. The latter was observed in the widely used light-induced retinal degeneration model and corroborated in other models, including whole-body irradiation/bone-marrow transplantation. The literature contains conflicting observations about whether microglia, including in the retina, increase expression of these markers in neuroinflammation. We show that monocyte-derived macrophages have elevated expression of these surface markers, not microglia. Our resolution of such phenotypic differences may serve as a robust way to help characterize isolated roles of these cells in retinal neuroinflammation and possibly elsewhere in CNS.
Collapse
|
42
|
Taylor AW. Ocular Immune Privilege and Transplantation. Front Immunol 2016; 7:37. [PMID: 26904026 PMCID: PMC4744940 DOI: 10.3389/fimmu.2016.00037] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 01/25/2016] [Indexed: 11/30/2022] Open
Abstract
Allografts are afforded a level of protection from rejection within immune-privileged tissues. Immune-privileged tissues involve mechanisms that suppress inflammation and promote immune tolerance. There are anatomical features, soluble factors, membrane-associated proteins, and alternative antigen-presenting cells (APC) that contribute to allograft survival in the immune-privileged tissue. This review presents the current understanding of how the mechanism of ocular immune privilege promotes tolerogenic activity by APC, and T cells in response to the placement of foreign antigen within the ocular microenvironment. Discussed will be the unique anatomical, cellular, and molecular mechanisms that lessen the chance for graft destroying immune responses within the eye. As more is understood about the molecular mechanisms of ocular immune privilege greater is the potential for using these molecular mechanisms in therapies to prevent allograft rejection.
Collapse
Affiliation(s)
- Andrew W Taylor
- Department of Ophthalmology, Boston University School of Medicine , Boston, MA , USA
| |
Collapse
|
43
|
Sarfare S, Dacquay Y, Askari S, Nusinowitz S, Hubschman JP. Biocompatibility of a Synthetic Biopolymer for the Treatment of Rhegmatogenous Retinal Detachment. ACTA ACUST UNITED AC 2016; 6. [PMID: 26744635 DOI: 10.4172/2155-9570.1000475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE The aim of this study is to evaluate the retinal safety and toxicity of a novel synthetic biopolymer to be used as a patch to treat rhegmatogenous retinal detachment. METHODS Thirty one adult wild type albino mice were divided in 2 groups. In Group A (n=9) 0.2 μl balanced salt solution (BSS) and in Group B (n=22), 0.2 μl biopolymer was injected in the subretinal space. Trans-scleral subretinal injection was performed in one eye and the fellow eye was used as control. In both groups, in vivo color fundus photography, electroretinogram (ERG), spectral domain optical coherence tomography (SD-OCT) were performed before injection and at days 7 and 14 post-intervention. Histological analysis was performed following euthanization at days 1, 7 and 21 post-injection. RESULTS The biopolymer was visualized in the subretinal space in vivo by SD-OCT and post-life by histology up to 1 week after the injection. There were no significant differences in ERG parameters between the two groups at 1 and 2 weeks post-injection. Minimal inflammatory response and loss of photoreceptor cells was only observed in the immediate proximity of the site of scleral perforation, which was similar in both groups. Overall integrity of the outer, inner retina and retinal pigment epithelial (RPE) layers was unaffected by the presence of the biopolymer in the subretinal space. CONCLUSIONS Functional and histological evaluation suggests that the synthetic biopolymer is non-inflammatory and non-toxic to the eye. It may represent a safe therapeutic agent in the future, for the treatment of rhegmatogenous retinal detachment.
Collapse
Affiliation(s)
- Shanta Sarfare
- Jules Stein Eye Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Yann Dacquay
- Jules Stein Eye Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Syed Askari
- Medicus Biosciences, 2528 Qume Drive, Unit 1, San José, California 95131, USA
| | - Steven Nusinowitz
- Jules Stein Eye Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Jean-Pierre Hubschman
- Jules Stein Eye Institute, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
44
|
Bilateral retinal microglial response to unilateral optic nerve transection in rats. Neuroscience 2015; 311:56-66. [PMID: 26432953 DOI: 10.1016/j.neuroscience.2015.09.067] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 09/07/2015] [Accepted: 09/24/2015] [Indexed: 01/17/2023]
Abstract
When retinal ganglion cells undergo apoptosis after optic nerve (ON) injury, microglial cells proliferate and promptly clear the degenerated debris in the ipsilateral retina. However, microglial changes in the contralateral retina have not been fully elucidated. This study characterized the long-term bilateral retinal microglial responses after unilateral ON transection. We analyzed the time course of proliferation and morphology changes of microglial cells, between 3 days and 12 weeks post ON transection, of undisturbed and reactive microglia in bilateral retinas of adult Fischer rats with unilateral ON transection. Microglia in retinas without ON transection were distributed homogeneously and possessed a highly ramified morphology, as judged by immunohistochemistry for ionized calcium-binding adapter molecule 1 (Iba1). After ON transection, microglia density in the ipsilateral retina increased gradually from 3 days to 2 weeks, and decreased from 3 weeks to 12 weeks, along with dramatic inverted alteration of process branch points of microglia in the ganglion cell layer (GCL). Transformation of ramified microglia into ameboid-like macrophages with few branching processes was observed in the ipsilateral retina from 1 week to 3 weeks. Though an increase in microglial density was weak in the contralateral retina and could only be statistically detected in the central retina, the morphological alteration over time was obvious and similar to that of the ipsilateral retina. In the inner plexiform layer (IPL), cell density and morphological changes of microglia in both the ipsilateral and contralateral retina were not prominent. These findings indicates that, though proliferation of microglial cells is weak in the contralateral retina after unilateral ON transection, conspicuous alterations in microglial morphology occur bilaterally. These suggest that using the contralateral retina as a control in studies of retinal degeneration should be considered with caution.
Collapse
|
45
|
Loukovaara S, Gucciardo E, Repo P, Vihinen H, Lohi J, Jokitalo E, Salven P, Lehti K. Indications of lymphatic endothelial differentiation and endothelial progenitor cell activation in the pathology of proliferative diabetic retinopathy. Acta Ophthalmol 2015; 93:512-23. [PMID: 25899460 DOI: 10.1111/aos.12741] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 03/18/2015] [Indexed: 12/25/2022]
Abstract
PURPOSE Proliferative diabetic retinopathy (PDR) is characterized by ischaemia- and inflammation-induced neovascularization, but the pathological vascular differentiation in PDR remains poorly characterized. Here, endothelial progenitor and growth properties, as well as potential lymphatic differentiation, were investigated in the neovascular membrane specimens from vitrectomized patients with PDR. METHODS The expression of pan-endothelial CD31 (PECAM-1), ETS-related gene (ERG), α-smooth muscle actin (α-SMA), and stem/progenitor cell marker CD117 (c-kit) and cell proliferation marker Ki67 was investigated along with the markers of lymphatic endothelial differentiation (vascular endothelial growth factor receptor (VEGFR)-3; prospero-related homeobox gene-1 (Prox-1), lymphatic vessel endothelial receptor [LYVE)-1 and podoplanin (PDPN)] by immunohistochemistry. Lymphocyte antigen CD45 and pan-macrophage marker CD68 were likewise investigated. RESULTS All specimens displayed CD31, ERG and α-SMA immunoreactivity in irregular blood vessels. Unexpectedly, VEGFR3 and Prox-1 lymphatic marker positive vessels were also detected in several tissues. Prox-1 was co-expressed with CD117 in lumen-lining endothelial cells and adjacent cells, representing putative endothelial stem/progenitor cells and pro-angiogenic perivascular cells. Immunoreactivity of CD45 and CD68 was detectable in all investigated diabetic neovessel specimens. PDPN immunoreactivity was also detected in irregular lumen-forming structures, but these cells lacked CD31 and ERG that mark blood and lymphatic endothelium. CONCLUSIONS Although the inner part of human eye is physiologically devoid of lymphatic vessels, lymphatic differentiation associated with endothelial stem/progenitor cell activation may be involved in the pathogenesis of human PDR. Further studies are warranted to elucidate whether targeting lymphatic factors could be beneficial in the treatment of patients with the sight-threatening forms of DR.
Collapse
Affiliation(s)
- Sirpa Loukovaara
- Unit of Vitreoretinal Surgery; Ophthalmology; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - Erika Gucciardo
- Research Programs Unit; Genome-Scale Biology; Biomedicum Helsinki; University of Helsinki; Helsinki Finland
- Pathology; Haartman Institute; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - Pauliina Repo
- Research Programs Unit; Genome-Scale Biology; Biomedicum Helsinki; University of Helsinki; Helsinki Finland
- Pathology; Haartman Institute; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - Helena Vihinen
- Electron Microscopy Unit; Institute of Biotechnology; University of Helsinki; Helsinki Finland
| | - Jouko Lohi
- Pathology; Haartman Institute; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - Eija Jokitalo
- Electron Microscopy Unit; Institute of Biotechnology; University of Helsinki; Helsinki Finland
| | - Petri Salven
- Pathology; Haartman Institute; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| | - Kaisa Lehti
- Research Programs Unit; Genome-Scale Biology; Biomedicum Helsinki; University of Helsinki; Helsinki Finland
- Pathology; Haartman Institute; University of Helsinki and Helsinki University Hospital; Helsinki Finland
| |
Collapse
|
46
|
Ardeljan CP, Ardeljan D, Abu-Asab M, Chan CC. Inflammation and Cell Death in Age-Related Macular Degeneration: An Immunopathological and Ultrastructural Model. J Clin Med 2015; 3:1542-60. [PMID: 25580276 PMCID: PMC4287551 DOI: 10.3390/jcm3041542] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The etiology of Age-related Macular Degeneration (AMD) remains elusive despite the characterization of many factors contributing to the disease in its late-stage phenotypes. AMD features an immune system in flux, as shown by changes in macrophage polarization with age, expression of cytokines and complement, microglial accumulation with age, etc. These point to an allostatic overload, possibly due to a breakdown in self vs. non-self when endogenous compounds and structures acquire the appearance of non-self over time. The result is inflammation and inflammation-mediated cell death. While it is clear that these processes ultimately result in degeneration of retinal pigment epithelium and photoreceptor, the prevalent type of cell death contributing to the various phenotypes is unknown. Both molecular studies as well as ultrastructural pathology suggest pyroptosis, and perhaps necroptosis, are the predominant mechanisms of cell death at play, with only minimal evidence for apoptosis. Herein, we attempt to reconcile those factors identified by experimental AMD models and integrate these data with pathology observed under the electron microscope—particularly observations of mitochondrial dysfunction, DNA leakage, autophagy, and cell death.
Collapse
Affiliation(s)
- Christopher P. Ardeljan
- Histology Core, Laboratory of Immunology, National Eye Institute/National Institutes of Health, Bethesda, Maryland 20892-1857, MD, USA; E-Mails: (C.P.A.); (M.A.-A.)
| | - Daniel Ardeljan
- Human Genetics Program, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, MD, USA; E-Mail:
| | - Mones Abu-Asab
- Histology Core, Laboratory of Immunology, National Eye Institute/National Institutes of Health, Bethesda, Maryland 20892-1857, MD, USA; E-Mails: (C.P.A.); (M.A.-A.)
| | - Chi-Chao Chan
- Histology Core, Laboratory of Immunology, National Eye Institute/National Institutes of Health, Bethesda, Maryland 20892-1857, MD, USA; E-Mails: (C.P.A.); (M.A.-A.)
- Immunopathology Section, Laboratory of Immunology, National Eye Institute/National Institutes of Health, Bethesda, Maryland 20892-1857, MD, USA
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-301-496-0417
| |
Collapse
|
47
|
Crespo-Garcia S, Reichhart N, Hernandez-Matas C, Zabulis X, Kociok N, Brockmann C, Joussen AM, Strauss O. In vivo analysis of the time and spatial activation pattern of microglia in the retina following laser-induced choroidal neovascularization. Exp Eye Res 2015. [PMID: 26213305 DOI: 10.1016/j.exer.2015.07.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Microglia play a major role in retinal neovascularization and degeneration and are thus potential targets for therapeutic intervention. In vivo assessment of microglia behavior in disease models can provide important information to understand patho-mechanisms and develop therapeutic strategies. Although scanning laser ophthalmoscope (SLO) permits the monitoring of microglia in transgenic mice with microglia-specific GFP expression, there are fundamental limitations in reliable identification and quantification of activated cells. Therefore, we aimed to improve the SLO-based analysis of microglia using enhanced image processing with subsequent testing in laser-induced neovascularization (CNV). CNV was induced by argon laser in MacGreen mice. Microglia was visualized in vivo by SLO in the fundus auto-fluorescence (FAF) mode and verified ex vivo using retinal preparations. Three image processing algorithms based on different analysis of sequences of images were tested. The amount of recorded frames was limiting the effectiveness of the different algorithms. Best results from short recordings were obtained with a pixel averaging algorithm, further used to quantify spatial and temporal distribution of activated microglia in CNV. Morphologically, different microglia populations were detected in the inner and outer retinal layers. In CNV, the peak of microglia activation occurred in the inner layer at day 4 after laser, lacking an acute reaction. Besides, the spatial distribution of the activation changed by the time over the inner retina. No significant time and spatial changes were observed in the outer layer. An increase in laser power did not increase number of activated microglia. The SLO, in conjunction with enhanced image processing, is suitable for in vivo quantification of microglia activation. This surprisingly revealed that laser damage at the outer retina led to more reactive microglia in the inner retina, shedding light upon a new perspective to approach the immune response in the retina in vivo.
Collapse
Affiliation(s)
- Sergio Crespo-Garcia
- Department of Ophthalmology, Charité University Medicine Berlin, Berlin, Germany
| | - Nadine Reichhart
- Department of Ophthalmology, Charité University Medicine Berlin, Berlin, Germany
| | - Carlos Hernandez-Matas
- Institute of Computer Science, Foundation for Research and Technology - Hellas, Heraklion, Greece; Computer Science Department, University of Crete, Heraklion, Greece
| | - Xenophon Zabulis
- Institute of Computer Science, Foundation for Research and Technology - Hellas, Heraklion, Greece
| | - Norbert Kociok
- Department of Ophthalmology, Charité University Medicine Berlin, Berlin, Germany
| | - Claudia Brockmann
- Department of Ophthalmology, Charité University Medicine Berlin, Berlin, Germany
| | - Antonia M Joussen
- Department of Ophthalmology, Charité University Medicine Berlin, Berlin, Germany
| | - Olaf Strauss
- Department of Ophthalmology, Charité University Medicine Berlin, Berlin, Germany.
| |
Collapse
|
48
|
Bell BA, Kaul C, Bonilha VL, Rayborn ME, Shadrach K, Hollyfield JG. The BALB/c mouse: Effect of standard vivarium lighting on retinal pathology during aging. Exp Eye Res 2015; 135:192-205. [PMID: 25895728 PMCID: PMC4446204 DOI: 10.1016/j.exer.2015.04.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/13/2015] [Accepted: 04/16/2015] [Indexed: 11/16/2022]
Abstract
BALB/cJ mice housed under normal vivarium lighting conditions can exhibit profound retinal abnormalities, including retinal infoldings, autofluorescent inflammatory cells, and photoreceptor degeneration. To explore the sensitivity of the outer retina to cyclic lighting during aging, a cohort of BALB/cJ mice was evaluated with Scanning Laser Ophthalmoscopy (SLO), Spectral-Domain Optical Coherence Tomography (OCT) and conventional histopathology. Mice were bred and reared in a low-illuminance (extracage/intracage: 13 lx/1 lx) vivarium under cyclic light (14 h light: 10 h dark). Retinal imaging (around postnatal day 70) was performed to screen for any pre-existing abnormalities and to establish a baseline. Mice with normal retinas were separated into groups (A, B, C) and placed on bottom (Groups A & B) or top (Group C) of the cage racks where cage illumination was <10 & 150 lx respectively. Experimental groups B & C were imaged multiple times over a 17 month period. Mice from group A (controls) were imaged only once post-baseline at various times for comparison to groups B & C. Mice were assessed by histology at 8, 15, 20, 36, and 56 weeks and immunohistochemistry at 15 weeks post-baseline. SLO and OCT retinal images were measured and the resulting trends displayed as a function of age and light exposure. Retinal lesions (RL) and autofluorescent foci (AFF) were identified with histology as photoreceptor layer infoldings (IF) and localized microglia/macrophages (MM), respectively. Few RL and AFF were evident at baseline. Retinal infoldings were the earliest changes followed by subjacent punctate autofluorescent MM. The colocalization of IF and MM suggests a causal relationship. The incidence of these pathological features increased in all groups relative to baseline. OCT imaging revealed thinning of the outer nuclear layer (ONL) in all groups at 1 year relative to baseline. ONL thinning followed an exponential rate of change but the decay constant varied depending on intensity of illumination of the groups. Advanced age and top row illuminance conditions resulted in significant photoreceptor cell loss as judged by decreased thickness of the ONL. Photoreceptor loss was preceded by both retinal infoldings and the presence of autofluorescent inflammatory cells in the outer retina, suggesting that these changes are early indicators of light toxicity in the BALB/cJ mouse.
Collapse
Affiliation(s)
- Brent A Bell
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Charles Kaul
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Vera L Bonilha
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mary E Rayborn
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Karen Shadrach
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Joe G Hollyfield
- Department of Ophthalmic Research, Cole Eye Institute, Cleveland Clinic, Cleveland, OH, USA; Department of Ophthalmology, Cleveland Clinic Lerner College of Medicine, Cleveland, OH, USA.
| |
Collapse
|
49
|
Macrophages and Uveitis in Experimental Animal Models. Mediators Inflamm 2015; 2015:671417. [PMID: 26078494 PMCID: PMC4452861 DOI: 10.1155/2015/671417] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/14/2015] [Accepted: 03/31/2015] [Indexed: 11/17/2022] Open
Abstract
Resident and infiltrated macrophages play relevant roles in uveitis as effectors of innate immunity and inductors of acquired immunity. They are major effectors of tissue damage in uveitis and are also considered to be potent antigen-presenting cells. In the last few years, experimental animal models of uveitis have enabled us to enhance our understanding of the leading role of macrophages in eye inflammation processes, including macrophage polarization in experimental autoimmune uveoretinitis and the major role of Toll-like receptor 4 in endotoxin-induced uveitis. This improved knowledge should guide advantageous iterative research to establish mechanisms and possible therapeutic targets for human uveitis resolution.
Collapse
|
50
|
Li L, Eter N, Heiduschka P. The microglia in healthy and diseased retina. Exp Eye Res 2015; 136:116-30. [PMID: 25952657 DOI: 10.1016/j.exer.2015.04.020] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 04/28/2015] [Accepted: 04/29/2015] [Indexed: 12/25/2022]
Abstract
The microglia are the immune cells of the central nervous system and, also the retina. They fulfil several tasks of surveillance in the healthy retina. In case of an injury or disease, microglia become activated and tries to repair the damage. However, in a lot of cases it does not work, and microglia deteriorate the situation by releasing toxic and pro-inflammatory compounds. Moreover, they further promote degenerative processes by attacking and phagocytosing damaged neurones and photoreceptors that otherwise would possibly have the chance to survive. Such deleterious action of the microglia has been observed in degeneration of retinal ganglion cells and photoreceptors, and it takes place in hereditary diseases, infections as well as in case of traumatic or light injuries. Therefore, a number of attempts has been undertaken so far to inhibit the microglia, with varying success. The task remains to study behaviour of the microglia and their interaction with other retinal cell populations in more detail with respect to released factors and expressed receptors including the time points of the corresponding events. The goal has to be to find a better balance between helpful and detrimental actions of the microglia.
Collapse
Affiliation(s)
- Lu Li
- University of Münster Medical School, Department of Ophthalmology, Domagkstr. 15, D-48149 Münster, Germany
| | - Nicole Eter
- University of Münster Medical School, Department of Ophthalmology, Domagkstr. 15, D-48149 Münster, Germany
| | - Peter Heiduschka
- University of Münster Medical School, Department of Ophthalmology, Domagkstr. 15, D-48149 Münster, Germany.
| |
Collapse
|