1
|
McGivney CL, McGivney BA, Farries G, Gough KF, Han H, Holtby AR, MacHugh DE, Katz LM, Hill EW. A genome-wide association study for recurrent laryngeal neuropathy in the Thoroughbred horse identifies a candidate gene that regulates myelin structure. Equine Vet J 2025. [PMID: 39791379 DOI: 10.1111/evj.14461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/05/2024] [Indexed: 01/12/2025]
Abstract
BACKGROUND Equine recurrent laryngeal neuropathy (RLN) is an economically important upper respiratory tract (URT) disease with a genetic contribution to risk, but genetic variants independent of height have not been identified for Thoroughbreds. The method of clinical assessment for RLN is critical to accurately phenotype groups for genetic studies. OBJECTIVES To identify genetic risk loci for RLN in Thoroughbreds in a genome-wide association study (GWAS) following high-resolution phenotyping. STUDY DESIGN Case-control. METHODS Thoroughbred horses were characterised as RLN cases and controls using resting and exercising URT endoscopic examinations and laryngeal ultrasonography, with the case-cohort supplemented using a questionnaire. Genotypes for 43 831 autosomal single-nucleotide polymorphisms (SNPs) from n = 235 horses (n = 110 cases; n = 125 controls) were used to estimate trait heritability and identify significantly associated SNPs in a GWAS. Haplotypes were examined in cases and controls and risk allele frequencies were examined in a population cohort (n = 3126). RESULTS Heritability was h2 = 0.30 including sex and 5PCs as covariates. A SNP on ECA20 located between candidate genes, DAAM2 and LRFN2, was significantly associated with RLN. Six index SNPs with allelic effect sizes OR = 1.5-2.9 were identified on ECA1, ECA14, and ECA20 close to candidate genes ATPA10, KCNN2, and TFAP2A. Eleven ECA20 SNPs defined seven haplotypes with homozygous H2/H2 horses having a 3.1× higher risk of RLN. Risk alleles segregate in the population, and stallions are carriers. MAIN LIMITATIONS The main study population was young. Horses in the control group had no evidence of RLN as 2- or 3-year olds but may have developed RLN later. CONCLUSIONS Genetic markers for RLN were identified which may be useful for the development of a polygenic risk score. Candidate genes with functions in neuropathies may further the understanding of RLN pathobiology.
Collapse
Affiliation(s)
- Charlotte L McGivney
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Beatrice A McGivney
- Plusvital Ltd., The Highline, Dun Laoghaire Industrial Estate, Dublin, Ireland
| | - Gabriella Farries
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Katie F Gough
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Haige Han
- Plusvital Ltd., The Highline, Dun Laoghaire Industrial Estate, Dublin, Ireland
| | - Amy R Holtby
- Plusvital Ltd., The Highline, Dun Laoghaire Industrial Estate, Dublin, Ireland
| | - David E MacHugh
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Lisa Michelle Katz
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Emmeline W Hill
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
- Plusvital Ltd., The Highline, Dun Laoghaire Industrial Estate, Dublin, Ireland
| |
Collapse
|
2
|
Zou Y, Jin Y, Yang Y, Zhang L, Feng Y, Long Y, Xu Z, He Y, Zheng W, Wang S, He Y, Li J, Li H, Luo Z, Hu C, Xiao L. Effect of Cytoskeletal Linker Protein GAS2L1 on Oligodendrocyte and Myelin Development. Glia 2025. [PMID: 39743758 DOI: 10.1002/glia.24658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025]
Abstract
Oligodendrocytes (OLs), the myelin-forming cells of the central nervous system (CNS), develop from OL precursor cells (OPCs) through a complex process involving significant morphological changes that are critically dependent on the dynamic interactions between cytoskeletal networks. Growth arrest-specific 2-like protein 1 (GAS2L1) is a cytoskeletal linker protein that mediates the cross-talk between actin filaments and microtubules. However, its role in OL and myelin development remains unknown. Here, we report that GAS2L1 is expressed in both OPCs and mature OLs, and that overexpression or knockdown of Gas2l1 in cultured OPCs in vitro impaired or enhanced their differentiation, respectively, while both inhibited their proliferation. We generated a Gas2l1fl/fl mouse line and found that mice with conditional knockout of Gas2l1 in OL lineage cells (Olig1-Cre;Gas2l1fl/fl, cKO) showed an increased number of mature OLs and enhanced myelination, as well as a reduction in the branching complexity of OPCs. In addition, an alternative mouse line with postnatally induced Gas2l1 ablation specifically in OPCs (Pdfgra-CreERT2;Gas2l1fl/fl, iKO) recapitulated the acceleration of OL and myelin development as well as the inhibition of OPC process branching. Furthermore, EdU tracking in Gas2l1 iKO mice in vivo and in their OPC cultures in vitro showed both a reduction in OPC proliferation and an increase in OL maturation. Finally, cultured OPCs from iKO mice showed an increase in filopodia extension. Taken together, our results demonstrate an effect of GAS2L1 on the regulation of OL/myelin development and may provide a novel potential therapeutic target for various diseases involving OL/myelin pathology.
Collapse
Affiliation(s)
- Yanping Zou
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education; Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Yili Jin
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education; Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Yuqian Yang
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education; Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Liuning Zhang
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education; Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Yuanyu Feng
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education; Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Yu Long
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education; Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - ZhengTao Xu
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education; Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Yuehua He
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education; Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Wei Zheng
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education; Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Shuming Wang
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education; Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Yongxiang He
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education; Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Jiong Li
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education; Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Huiliang Li
- Wolfson Institute for Biomedical Research, University College London, London, UK
| | - Zhigang Luo
- Department of Experimental Medicine, The Third People's Hospital of Sichuan Province, Chengdu, Sichuan, China
| | - Chun Hu
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education; Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Lin Xiao
- Key Laboratory of Brain, Cognition and Education Sciences of Ministry of Education; Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, and Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| |
Collapse
|
3
|
Demmings MD, da Silva Chagas L, Traetta ME, Rodrigues RS, Acutain MF, Barykin E, Datusalia AK, German-Castelan L, Mattera VS, Mazengenya P, Skoug C, Umemori H. (Re)building the nervous system: A review of neuron-glia interactions from development to disease. J Neurochem 2025; 169:e16258. [PMID: 39680483 DOI: 10.1111/jnc.16258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 12/18/2024]
Abstract
Neuron-glia interactions are fundamental to the development and function of the nervous system. During development, glia, including astrocytes, microglia, and oligodendrocytes, influence neuronal differentiation and migration, synapse formation and refinement, and myelination. In the mature brain, glia are crucial for maintaining neural homeostasis, modulating synaptic activity, and supporting metabolic functions. Neurons, inherently vulnerable to various stressors, rely on glia for protection and repair. However, glia, in their reactive state, can also promote neuronal damage, which contributes to neurodegenerative and neuropsychiatric diseases. Understanding the dual role of glia-as both protectors and potential aggressors-sheds light on their complex contributions to disease etiology and pathology. By appropriately modulating glial activity, it may be possible to mitigate neurodegeneration and restore neuronal function. In this review, which originated from the International Society for Neurochemistry (ISN) Advanced School in 2019 held in Montreal, Canada, we first describe the critical importance of glia in the development and maintenance of a healthy nervous system as well as their contributions to neuronal damage and neurological disorders. We then discuss potential strategies to modulate glial activity during disease to protect and promote a properly functioning nervous system. We propose that targeting glial cells presents a promising therapeutic avenue for rebuilding the nervous system.
Collapse
Affiliation(s)
- Matthew D Demmings
- Neuroscience Program, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Luana da Silva Chagas
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Marianela E Traetta
- Instituto de Biología Celular y Neurociencia (IBCN), Facultad de Medicina, Conicet, Buenos Aires, Argentina
| | - Rui S Rodrigues
- University of Bordeaux, INSERM, Neurocentre Magendie U1215, Bordeaux, France
| | - Maria Florencia Acutain
- Instituto de Biología Celular y Neurociencia (IBCN), Facultad de Medicina, Conicet, Buenos Aires, Argentina
| | - Evgeny Barykin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ashok Kumar Datusalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER Raebareli), Raebareli, UP, India
| | - Liliana German-Castelan
- Neuroscience Program, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Vanesa S Mattera
- Instituto de Química y Fisicoquímica Biológica (IQUIFIB-FFyB-UBA), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pedzisai Mazengenya
- Center of Medical and bio-Allied Health Sciences Research, College of Medicine, Ajman University, Ajman, United Arab Emirates
| | - Cecilia Skoug
- Department of Neuroscience, Physiology & Pharmacology, Centre for Cardiovascular and Metabolic Neuroscience, University College London, London, UK
| | - Hisashi Umemori
- Department of Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Verma H, Kaur S, Kaur S, Gangwar P, Dhiman M, Mantha AK. Role of Cytoskeletal Elements in Regulation of Synaptic Functions: Implications Toward Alzheimer's Disease and Phytochemicals-Based Interventions. Mol Neurobiol 2024; 61:8320-8343. [PMID: 38491338 DOI: 10.1007/s12035-024-04053-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 02/13/2024] [Indexed: 03/18/2024]
Abstract
Alzheimer's disease (AD), a multifactorial disease, is characterized by the accumulation of neurofibrillary tangles (NFTs) and amyloid beta (Aβ) plaques. AD is triggered via several factors like alteration in cytoskeletal proteins, a mutation in presenilin 1 (PSEN1), presenilin 2 (PSEN2), amyloid precursor protein (APP), and post-translational modifications (PTMs) in the cytoskeletal elements. Owing to the major structural and functional role of cytoskeletal elements, like the organization of axon initial segmentation, dendritic spines, synaptic regulation, and delivery of cargo at the synapse; modulation of these elements plays an important role in AD pathogenesis; like Tau is a microtubule-associated protein that stabilizes the microtubules, and it also causes inhibition of nucleo-cytoplasmic transportation by disrupting the integrity of nuclear pore complex. One of the major cytoskeletal elements, actin and its dynamics, regulate the dendritic spine structure and functions; impairments have been documented towards learning and memory defects. The second major constituent of these cytoskeletal elements, microtubules, are necessary for the delivery of the cargo, like ion channels and receptors at the synaptic membranes, whereas actin-binding protein, i.e., Cofilin's activation form rod-like structures, is involved in the formation of paired helical filaments (PHFs) observed in AD. Also, the glial cells rely on their cytoskeleton to maintain synaptic functionality. Thus, making cytoskeletal elements and their regulation in synaptic structure and function as an important aspect to be focused for better management and targeting AD pathology. This review advocates exploring phytochemicals and Ayurvedic plant extracts against AD by elucidating their neuroprotective mechanisms involving cytoskeletal modulation and enhancing synaptic plasticity. However, challenges include their limited bioavailability due to the poor solubility and the limited potential to cross the blood-brain barrier (BBB), emphasizing the need for targeted strategies to improve therapeutic efficacy.
Collapse
Affiliation(s)
- Harkomal Verma
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Village Ghudda, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Sharanjot Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Village Ghudda, Bathinda, Punjab, India
| | - Sukhchain Kaur
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Village Ghudda, Bathinda, Punjab, India
| | - Prabhakar Gangwar
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Village Ghudda, VPO - Ghudda, Bathinda, 151 401, Punjab, India
| | - Monisha Dhiman
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Village Ghudda, Bathinda, Punjab, India
| | - Anil Kumar Mantha
- Department of Zoology, School of Basic Sciences, Central University of Punjab, Village Ghudda, VPO - Ghudda, Bathinda, 151 401, Punjab, India.
| |
Collapse
|
5
|
Yamazaki R, Ohno N. Myosin superfamily members during myelin formation and regeneration. J Neurochem 2024; 168:2264-2274. [PMID: 39136255 DOI: 10.1111/jnc.16202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/10/2024] [Accepted: 07/31/2024] [Indexed: 10/04/2024]
Abstract
Myelin is an insulator that forms around axons that enhance the conduction velocity of nerve fibers. Oligodendrocytes dramatically change cell morphology to produce myelin throughout the central nervous system (CNS). Cytoskeletal alterations are critical for the morphogenesis of oligodendrocytes, and actin is involved in cell differentiation and myelin wrapping via polymerization and depolymerization, respectively. Various protein members of the myosin superfamily are known to be major binding partners of actin filaments and have been intensively researched because of their involvement in various cellular functions, including differentiation, cell movement, membrane trafficking, organelle transport, signal transduction, and morphogenesis. Some members of the myosin superfamily have been found to play important roles in the differentiation of oligodendrocytes and in CNS myelination. Interestingly, each member of the myosin superfamily expressed in oligodendrocyte lineage cells also shows specific spatial and temporal expression patterns and different distributions. In this review, we summarize previous findings related to the myosin superfamily and discuss how these molecules contribute to myelin formation and regeneration by oligodendrocytes.
Collapse
Affiliation(s)
- Reiji Yamazaki
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, School of Medicine, Jichi Medical University, Shimotsuke, Japan
- Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
6
|
Wu H, Chen X, Yu B, Zhang J, Gu X, Liu W, Mei F, Ye J, Xiao L. Deficient deposition of new myelin impairs adult optic nerve function in a murine model of diabetes. Glia 2023; 71:1333-1345. [PMID: 36661098 DOI: 10.1002/glia.24341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/21/2023]
Abstract
Visual impairment in diabetes is a growing public health concern. Apart from the well-defined diabetic retinopathy, disturbed optic nerve function, which is dependent on the myelin sheath, has recently been recognized as an early feature of visual impairment in diabetes. However, the underlying cellular mechanisms remain unclear. Using a streptozotocin-induced diabetic mouse model, we observed a myelin deficiency along with a disturbed composition of oligodendroglial lineage cells in diabetic optic nerve. We found that new myelin deposition, a continuous process that lasts throughout adulthood, was diminished during pathogenesis. Genetically dampening newly generated myelin by conditionally deleting olig2 in oligodendrocyte precursor cells within this short time window extensively delayed the signal transmission of the adult optic nerve. In addition, clemastine, an antimuscarinic compound that enhances myelination, significantly restored oligodendroglia, and promoted the functional recovery of the optic nerve in diabetic mice. Together, our results point to the role of new myelin deposition in optic neuropathy under diabetic insult and provide a promising therapeutic target for restoring visual function.
Collapse
Affiliation(s)
- Haoqian Wu
- Department of Ophthalmology, Daping Hospital, Army Medical Center, Army Medical University, Chongqing, China
| | - Xianjun Chen
- Department of Physiology, Research Center of Neuroscience, College of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Bin Yu
- Department of Neurosurgery, 2nd Affiliated Hospital, Army Medical University, Chongqing, China
| | - Jieqiong Zhang
- Department of Ophthalmology, Daping Hospital, Army Medical Center, Army Medical University, Chongqing, China
| | - Xingmei Gu
- Department of Histology and Embryology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Army Medical University, Chongqing, China
| | - Wei Liu
- Department of Ophthalmology, Daping Hospital, Army Medical Center, Army Medical University, Chongqing, China
| | - Feng Mei
- Department of Histology and Embryology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Army Medical University, Chongqing, China
| | - Jian Ye
- Department of Ophthalmology, Daping Hospital, Army Medical Center, Army Medical University, Chongqing, China
| | - Lan Xiao
- Department of Neurosurgery, 2nd Affiliated Hospital, Army Medical University, Chongqing, China
- Department of Histology and Embryology, Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Army Medical University, Chongqing, China
| |
Collapse
|
7
|
Catalpol Regulates Oligodendrocyte Regeneration and Remyelination by Activating the GEF-Cdc42/Rac1 Signaling Pathway in EAE Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7074157. [DOI: 10.1155/2022/7074157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/24/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022]
Abstract
The main obstacle to remyelination in demyelinating diseases, such as multiple sclerosis, is the inability of oligodendrocyte precursor cells (OPCs) to differentiate into mature oligodendrocytes (OLs) in the demyelinating region. Consequently, promoting OL differentiation and myelin remodeling is a key goal in the search for treatments. Rho GTPases play diverse and important roles throughout the development of neuronal axons and the formation of the myelin sheath. The current study aimed to investigate the direct protective effects of catalpol on demyelination damage induced by myelin oligodendrocyte glycoprotein (MOG) immunization and to explore whether the GEF-Cdc42/Rac1 signaling pathway contributes to the regeneration effect induced by catalpol. In the MOG-induced experimental autoimmune encephalomyelitis (EAE) mouse model of demyelination, we observed that catalpol significantly promoted OL development by enhancing the expression of glutathione S-transferase pi (GST-pi) in the affected brain. By Luxol fast blue staining and myelin basic protein (MBP) expression assessment, catalpol was found to increase MBP expression and promote myelin repair. Furthermore, catalpol promoted OL differentiation associated with the upregulation of Cdc42/Rac1 expression and activation in vivo. In addition, PAK1/MRCKα, proteins downstream of Cdc42/Rac1, was positively regulated by catalpol. We also found that catalpol alleviated clinical neurological dysfunction, inhibited inflammatory infiltration, increased the proportion of Treg cells, and suppressed demyelination. Overall, our study is the first to reveal that catalpol can promote OL generation and myelination and contributes to the crucial regulatory process of GEF-Cdc42/Rac1 signaling expression and activation. Therefore, catalpol is a promising drug candidate for the potential treatment of demyelinating diseases.
Collapse
|
8
|
Tran V, Carpo N, Shaka S, Zamudio J, Choi S, Cepeda C, Espinosa-Jeffrey A. Delayed Maturation of Oligodendrocyte Progenitors by Microgravity: Implications for Multiple Sclerosis and Space Flight. Life (Basel) 2022; 12:797. [PMID: 35743828 PMCID: PMC9224676 DOI: 10.3390/life12060797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022] Open
Abstract
In previous studies, we examined the effects of space microgravity on human neural stem cells. To date, there are no studies on a different type of cell that is critical for myelination and electrical signals transmission, oligodendrocyte progenitors (OLPs). The purpose of the present study was to examine the behavior of space-flown OLPs (SPC-OLPs) as they were adapting to Earth's gravity. We found that SPC-OLPs survived, and most of them proliferated normally. Nonetheless, some of them displayed incomplete cytokinesis. Both morphological and ontogenetic analyses showed that they remained healthy and expressed the immature OLP markers Sox2, PDGFR-α, and transferrin (Tf) after space flight, which confirmed that SPC-OLPs displayed a more immature phenotype than their ground control (GC) counterparts. In contrast, GC OLPs expressed markers that usually appear later (GPDH, O4, and ferritin), indicating a delay in SPC-OLPs' development. These cells remained immature even after treatment with culture media designed to support oligodendrocyte (OL) maturation. The most remarkable and surprising finding was that the iron carrier glycoprotein Tf, previously described as an early marker for OLPs, was expressed ectopically in the nucleus of all SPC-OLPs. In contrast, their GC counterparts expressed it exclusively in the cytoplasm, as previously described. In addition, analysis of the secretome demonstrated that SPC-OLPs contained 3.5 times more Tf than that of GC cells, indicating that Tf is gravitationally regulated, opening two main fields of study to understand the upregulation of the Tf gene and secretion of the protein that keep OLPs at a progenitor stage rather than moving forward to more mature phenotypes. Alternatively, because Tf is an autocrine and paracrine factor in the central nervous system (CNS), in the absence of neurons, it accumulated in the secretome collected after space flight. We conclude that microgravity is becoming a novel platform to study why in some myelin disorders OLPs are present but do not mature.
Collapse
Affiliation(s)
- Victoria Tran
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, The University of California Los Angeles, Los Angeles, CA 90095, USA; (V.T.); (N.C.); (S.S.); (J.Z.); (C.C.)
| | - Nicholas Carpo
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, The University of California Los Angeles, Los Angeles, CA 90095, USA; (V.T.); (N.C.); (S.S.); (J.Z.); (C.C.)
| | - Sophia Shaka
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, The University of California Los Angeles, Los Angeles, CA 90095, USA; (V.T.); (N.C.); (S.S.); (J.Z.); (C.C.)
| | - Joile Zamudio
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, The University of California Los Angeles, Los Angeles, CA 90095, USA; (V.T.); (N.C.); (S.S.); (J.Z.); (C.C.)
| | - Sungshin Choi
- KBR, NASA Ames Research Center, Moffett Field, CA 94035, USA;
| | - Carlos Cepeda
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, The University of California Los Angeles, Los Angeles, CA 90095, USA; (V.T.); (N.C.); (S.S.); (J.Z.); (C.C.)
| | - Araceli Espinosa-Jeffrey
- Department of Psychiatry, Semel Institute for Neuroscience and Human Behavior, The University of California Los Angeles, Los Angeles, CA 90095, USA; (V.T.); (N.C.); (S.S.); (J.Z.); (C.C.)
| |
Collapse
|
9
|
Facchinetti R, Valenza M, Gomiero C, Mancini GF, Steardo L, Campolongo P, Scuderi C. Co-Ultramicronized Palmitoylethanolamide/Luteolin Restores Oligodendrocyte Homeostasis via Peroxisome Proliferator-Activated Receptor-α in an In Vitro Model of Alzheimer's Disease. Biomedicines 2022; 10:1236. [PMID: 35740258 PMCID: PMC9219769 DOI: 10.3390/biomedicines10061236] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/22/2022] Open
Abstract
Oligodendrocytes are cells fundamental for brain functions as they form the myelin sheath and feed axons. They perform these critical functions thanks to the cooperation with other glial cells, mainly astrocytes. The astrocyte/oligodendrocyte crosstalk needs numerous mediators and receptors, such as peroxisome proliferator-activated receptors (PPARs). PPAR agonists promote oligodendrocyte precursor cells (OPCs) maturation in myelinating oligodendrocytes. In the Alzheimer's disease brain, deposition of beta-amyloid (Aβ) has been linked to several alterations, including astrogliosis and changes in OPCs maturation. However, very little is known about the molecular mechanisms. Here, we investigated for the first time the maturation of OPCs co-cultured with astrocytes in an in vitro model of Aβ1-42 toxicity. We also tested the potential beneficial effect of the anti-inflammatory and neuroprotective composite palmitoylethanolamide and luteolin (co-ultra PEALut), which is known to engage the isoform alfa of the PPARs. Our results show that Aβ1-42 triggers astrocyte reactivity and inflammation and reduces the levels of growth factors important for OPCs maturation. Oligodendrocytes indeed show low cell surface area and few arborizations. Co-ultra PEALut counteracts the Aβ1-42-induced inflammation and astrocyte reactivity preserving the morphology of co-cultured oligodendrocytes through a mechanism that in some cases involves PPAR-α. This is the first evidence of the negative effects exerted by Aβ1-42 on astrocyte/oligodendrocyte crosstalk and discloses a never-explored co-ultra PEALut ability in restoring oligodendrocyte homeostasis.
Collapse
Affiliation(s)
- Roberta Facchinetti
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P. le Aldo Moro, 5, 00185 Rome, Italy; (R.F.); (M.V.); (G.F.M.); (L.S.); (P.C.)
| | - Marta Valenza
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P. le Aldo Moro, 5, 00185 Rome, Italy; (R.F.); (M.V.); (G.F.M.); (L.S.); (P.C.)
| | | | - Giulia Federica Mancini
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P. le Aldo Moro, 5, 00185 Rome, Italy; (R.F.); (M.V.); (G.F.M.); (L.S.); (P.C.)
- Centro Europeo di Ricerca sul Cervello (CERC), IRCCS Santa Lucia Foundation Rome, 00143 Rome, Italy
| | - Luca Steardo
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P. le Aldo Moro, 5, 00185 Rome, Italy; (R.F.); (M.V.); (G.F.M.); (L.S.); (P.C.)
- Università Telematica Giustino Fortunato, 82100 Benevento, Italy
| | - Patrizia Campolongo
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P. le Aldo Moro, 5, 00185 Rome, Italy; (R.F.); (M.V.); (G.F.M.); (L.S.); (P.C.)
- Centro Europeo di Ricerca sul Cervello (CERC), IRCCS Santa Lucia Foundation Rome, 00143 Rome, Italy
| | - Caterina Scuderi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, SAPIENZA University of Rome—P. le Aldo Moro, 5, 00185 Rome, Italy; (R.F.); (M.V.); (G.F.M.); (L.S.); (P.C.)
| |
Collapse
|
10
|
Dion V, Schumacher N, Masar N, Pieltain A, Tocquin P, Lesoinne P, Malgrange B, Vandenbosch R, Franzen R. Cyclin-dependent kinase 7 contributes to myelin maintenance in the adult central nervous system and promotes myelin gene expression. Glia 2022; 70:1652-1665. [PMID: 35488490 DOI: 10.1002/glia.24186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 04/08/2022] [Accepted: 04/21/2022] [Indexed: 11/08/2022]
Abstract
Mechanisms regulating oligodendrocyte differentiation, developmental myelination and myelin maintenance in adulthood are complex and still not completely described. Their understanding is crucial for the development of new protective or therapeutic strategies in demyelinating pathologies such as multiple sclerosis. In this perspective, we have investigated the role of Cyclin-dependent kinase 7 (Cdk7), a kinase involved in cell-cycle progression and transcription regulation, in the oligodendroglial lineage. We generated a conditional knock-out mouse model in which Cdk7 is invalidated in post-mitotic oligodendrocytes. At the end of developmental myelination, the number and diameter of myelinated axons, as well as the myelin structure, thickness and protein composition, were normal. However, in young adult and in aged mice, there was a higher number of small caliber myelinated axons associated with a decreased mean axonal diameter, myelin sheaths of large caliber axons were thinner, and the level of some major myelin-associated proteins was reduced. These defects were accompanied by the appearance of an abnormal clasping phenotype. We also used an in vitro oligodendroglial model and showed that Cdk7 pharmacological inhibition led to an altered myelination-associated morphological modification combined with a decreased expression of myelin-specific genes. Altogether, we identified novel functions for Cdk7 in CNS myelination.
Collapse
Affiliation(s)
- Valérie Dion
- Laboratory of Nervous System Disorders and Therapies, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Nathalie Schumacher
- Laboratory of Nervous System Disorders and Therapies, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Nathalie Masar
- Laboratory of Nervous System Disorders and Therapies, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Alexandra Pieltain
- Laboratory of Nervous System Disorders and Therapies, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Pierre Tocquin
- CARE PhytoSYSTEMS, Integrative Biological Sciences, University of Liège, Liège, Belgium
| | - Pierre Lesoinne
- Laboratory of Nervous System Disorders and Therapies, GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Brigitte Malgrange
- Laboratory of Developmental Neurobiology, GIGA Stem Cells & GIGA Neurosciences, University of Liège, Liège, Belgium
| | - Renaud Vandenbosch
- Laboratory of Developmental Neurobiology, GIGA Stem Cells & GIGA Neurosciences, University of Liège, Liège, Belgium.,Division of Histology, Department of Biomedical and Preclinical Sciences, University of Liège, Liège, Belgium
| | - Rachelle Franzen
- Laboratory of Nervous System Disorders and Therapies, GIGA Neurosciences, University of Liège, Liège, Belgium
| |
Collapse
|
11
|
Valdés-Tovar M, Rodríguez-Ramírez AM, Rodríguez-Cárdenas L, Sotelo-Ramírez CE, Camarena B, Sanabrais-Jiménez MA, Solís-Chagoyán H, Argueta J, López-Riquelme GO. Insights into myelin dysfunction in schizophrenia and bipolar disorder. World J Psychiatry 2022; 12:264-285. [PMID: 35317338 PMCID: PMC8900585 DOI: 10.5498/wjp.v12.i2.264] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/10/2021] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
Schizophrenia and bipolar disorder are disabling psychiatric disorders with a worldwide prevalence of approximately 1%. Both disorders present chronic and deteriorating prognoses that impose a large burden, not only on patients but also on society and health systems. These mental illnesses share several clinical and neurobiological traits; of these traits, oligodendroglial dysfunction and alterations to white matter (WM) tracts could underlie the disconnection between brain regions related to their symptomatic domains. WM is mainly composed of heavily myelinated axons and glial cells. Myelin internodes are discrete axon-wrapping membrane sheaths formed by oligodendrocyte processes. Myelin ensheathment allows fast and efficient conduction of nerve impulses through the nodes of Ranvier, improving the overall function of neuronal circuits. Rapid and precisely synchronized nerve impulse conduction through fibers that connect distant brain structures is crucial for higher-level functions, such as cognition, memory, mood, and language. Several cellular and subcellular anomalies related to myelin and oligodendrocytes have been found in postmortem samples from patients with schizophrenia or bipolar disorder, and neuroimaging techniques have revealed consistent alterations at the macroscale connectomic level in both disorders. In this work, evidence regarding these multilevel alterations in oligodendrocytes and myelinated tracts is discussed, and the involvement of proteins in key functions of the oligodendroglial lineage, such as oligodendrogenesis and myelination, is highlighted. The molecular components of the axo-myelin unit could be important targets for novel therapeutic approaches to schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Marcela Valdés-Tovar
- Departamento de Farmacogenética, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | | | - Leslye Rodríguez-Cárdenas
- Departamento de Farmacogenética, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Carlo E Sotelo-Ramírez
- Departamento de Farmacogenética, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
- Doctorado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
| | - Beatriz Camarena
- Departamento de Farmacogenética, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | | | - Héctor Solís-Chagoyán
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Jesús Argueta
- Doctorado en Biología Experimental, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09340, Mexico
- Laboratorio de Neurofarmacología, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico
| | - Germán Octavio López-Riquelme
- Laboratorio de Socioneurobiología, Centro de Investigación en Ciencias Cognitivas, Universidad del Estado de Morelos, Cuernavaca 62209, Morelos, Mexico
| |
Collapse
|
12
|
Carvalho E, Morais M, Ferreira H, Silva M, Guimarães S, Pêgo A. A paradigm shift: Bioengineering meets mechanobiology towards overcoming remyelination failure. Biomaterials 2022; 283:121427. [DOI: 10.1016/j.biomaterials.2022.121427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 01/31/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022]
|
13
|
Qiu H, Qian T, Wu T, Gao T, Xing Q, Wang L. Src Family Kinases Inhibition Ameliorates Hypoxic-Ischemic Brain Injury in Immature Rats. Front Cell Neurosci 2022; 15:746130. [PMID: 34992524 PMCID: PMC8724194 DOI: 10.3389/fncel.2021.746130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/24/2021] [Indexed: 01/06/2023] Open
Abstract
Hypoxic-ischemic (HI) injury is one of the initial factors contributing to neonatal brain injury. Src family kinases (SFKs) are considered to act as molecular hubs for N-methyl-d-aspartate receptor (NMDAR) regulation and participate in the HI injury process. The objectives of this study were to evaluate the levels of phospho-Src (p-Src), the relationship between NMDARs and SFKs, and the effects of SFK inhibition on an immature rat HI brain injury model. The model was induced in 3-day-old Sprague–Dawley rats using the Rice-Vannucci model operation. The level of p-Src was evaluated using Western blotting. The association of NMDARs with SFKs was detected using Western blotting and coimmunoprecipitation. After intraperitoneal injection of 4-amino-5-(4-chlorophenyl)-7-(t-butyl) pyrazolo [3,4-d] pyrimidine (PP2), an SFK-selective inhibitor, neuropathological changes were observed by performing H&E and immunofluorescence staining, and the neurological functions were assessed using the following behavioral tests: modified neurological severity score, open field test, and Morris water maze test. The levels of p-Src first decreased at 0 h after injury, increased at 2 h after injury, and continuously decreased from 6 h to 3 days. Along with the increased p-Src levels observed at 2 h after injury, the phosphorylation of NMDAR subunit NR2B at tyrosine 1472 was increased. Following the administration of PP2, the increased p-Src and NMDAR-2B levels detected at 2 h after injury were decreased, and tissue injury and myelin basic protein expression were improved at 7 days after injury. The PP2 intervention improved the performance of injured rats on behavioral tests. In conclusion, we determined the patterns of p-Src expression after HI brain injury in immature rats and showed a relationship with the activated NMDA receptor. The inhibition of p-Src ameliorates neuropathological changes and damages neurological functions induced by HI injury.
Collapse
Affiliation(s)
- Han Qiu
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Tianyang Qian
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Tong Wu
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Ting Gao
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| | - Qinghe Xing
- Department of Neonatology, Children's Hospital of Fudan University and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Laishuan Wang
- National Health Commission Key Laboratory of Neonatal Diseases, Department of Neonatology, Children's Hospital of Fudan University, Shanghai, China
| |
Collapse
|
14
|
Park WU, Yeon GB, Yu MS, Goo HG, Hwang SH, Na D, Kim DS. A Novel Vitronectin Peptide Facilitates Differentiation of Oligodendrocytes from Human Pluripotent Stem Cells (Synthetic ECM for Oligodendrocyte Differentiation). BIOLOGY 2021; 10:biology10121254. [PMID: 34943169 PMCID: PMC8698880 DOI: 10.3390/biology10121254] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 11/15/2021] [Accepted: 11/25/2021] [Indexed: 11/23/2022]
Abstract
Simple Summary Oligodendrocyte (OD) is a cell type of great interest in the regenerative medicine for several neurological diseases. This study provides a new defined coating material for the differentiation of ODs from human pluripotent stem cells. A new peptide named VNP2, designed by in silico simulation, can be readily produced in a large amount and stably immobilized on the bottom of culture vessel. Upon using for differentiation of ODs, VNP2 promoted the differentiation efficiency more than the conventional coating materials did. Furthermore, transcriptomic analysis revealed molecular clues for the differentiation promoting activity of VNP2. Therefore, this peptide may be used as a favored coating material for the culture and differentiation of ODs. Abstract Differentiation of oligodendrocytes (ODs) presents a challenge in regenerative medicine due to their role in various neurological diseases associated with dysmyelination and demyelination. Here, we designed a peptide derived from vitronectin (VN) using in silico docking simulation and examined its use as a synthetic substrate to support the differentiation of ODs derived from human pluripotent stem cells. The designed peptide, named VNP2, promoted OD differentiation induced by the overexpression of SOX10 in OD precursor cells compared with Matrigel and full-length VN. ODs differentiated on VNP2 exhibited greater contact with axon-mimicking nanofibers than those differentiated on Matrigel. Transcriptomic analysis revealed that the genes associated with morphogenesis, cytoskeleton remodeling, and OD differentiation were upregulated in cells grown on VNP2 compared with cells grown on Matrigel. This new synthetic VN-derived peptide can be used to develop a culture environment for efficient OD differentiation.
Collapse
Affiliation(s)
- Won Ung Park
- Department of Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (W.U.P.); (G.-B.Y.)
- Institute of Animal Molecular Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Gyu-Bum Yeon
- Department of Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (W.U.P.); (G.-B.Y.)
- Institute of Animal Molecular Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
| | - Myeong-Sang Yu
- Department of Biomedical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea; (M.-S.Y.); (S.-H.H.)
| | - Hui-Gwan Goo
- AMO Life Sciences, 91 Gimpo-daero 1950 beon-gil, Tongjin-eup, Gyeonggi-do 10014, Korea;
| | - Su-Hee Hwang
- Department of Biomedical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea; (M.-S.Y.); (S.-H.H.)
| | - Dokyun Na
- Department of Biomedical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 06974, Korea; (M.-S.Y.); (S.-H.H.)
- Correspondence: (D.N.); (D.-S.K.); Tel.: +82-2-820-5690 (D.N.); +82-2-3290-3013 (D.-S.K.); Fax: +82-2-3290-3040 (D.-S.K.)
| | - Dae-Sung Kim
- Department of Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea; (W.U.P.); (G.-B.Y.)
- Institute of Animal Molecular Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Korea
- Department of Pediatrics, Korea University College of Medicine, Guro Hospital, 97 Gurodong-gil, Guro-gu, Seoul 08308, Korea
- Correspondence: (D.N.); (D.-S.K.); Tel.: +82-2-820-5690 (D.N.); +82-2-3290-3013 (D.-S.K.); Fax: +82-2-3290-3040 (D.-S.K.)
| |
Collapse
|
15
|
Wang Y, Guo F. Group I PAKs in myelin formation and repair of the central nervous system: what, when, and how. Biol Rev Camb Philos Soc 2021; 97:615-639. [PMID: 34811887 DOI: 10.1111/brv.12815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/20/2021] [Accepted: 11/04/2021] [Indexed: 11/30/2022]
Abstract
p21-activated kinases (PAKs) are a family of cell division control protein 42/ras-related C3 botulinum toxin substrate 1 (Cdc42/Rac1)-activated serine/threonine kinases. Group I PAKs (PAK1-3) have distinct activation mechanisms from group II PAKs (PAK4-6) and are the focus of this review. In transformed cancer cells, PAKs regulate a variety of cellular processes and molecular pathways which are also important for myelin formation and repair in the central nervous system (CNS). De novo mutations in group I PAKs are frequently seen in children with neurodevelopmental defects and white matter anomalies. Group I PAKs regulate virtually every aspect of neuronal development and function. Yet their functions in CNS myelination and remyelination remain incompletely defined. Herein, we highlight the current understanding of PAKs in regulating cellular and molecular pathways and discuss the status of PAK-regulated pathways in oligodendrocyte development. We point out outstanding questions and future directions in the research field of group I PAKs and oligodendrocyte development.
Collapse
Affiliation(s)
- Yan Wang
- Department of Neurology, Shriners Hospitals for Children/School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), University of California, Davis, 2425 Stockton Blvd, Sacramento, CA, 95817, U.S.A
| | - Fuzheng Guo
- Department of Neurology, Shriners Hospitals for Children/School of Medicine, Institute for Pediatric Regenerative Medicine (IPRM), University of California, Davis, 2425 Stockton Blvd, Sacramento, CA, 95817, U.S.A
| |
Collapse
|
16
|
Ki SM, Jeong HS, Lee JE. Primary Cilia in Glial Cells: An Oasis in the Journey to Overcoming Neurodegenerative Diseases. Front Neurosci 2021; 15:736888. [PMID: 34658775 PMCID: PMC8514955 DOI: 10.3389/fnins.2021.736888] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/31/2021] [Indexed: 12/29/2022] Open
Abstract
Many neurodegenerative diseases have been associated with defects in primary cilia, which are cellular organelles involved in diverse cellular processes and homeostasis. Several types of glial cells in both the central and peripheral nervous systems not only support the development and function of neurons but also play significant roles in the mechanisms of neurological disease. Nevertheless, most studies have focused on investigating the role of primary cilia in neurons. Accordingly, the interest of recent studies has expanded to elucidate the role of primary cilia in glial cells. Correspondingly, several reports have added to the growing evidence that most glial cells have primary cilia and that impairment of cilia leads to neurodegenerative diseases. In this review, we aimed to understand the regulatory mechanisms of cilia formation and the disease-related functions of cilia, which are common or specific to each glial cell. Moreover, we have paid close attention to the signal transduction and pathological mechanisms mediated by glia cilia in representative neurodegenerative diseases. Finally, we expect that this field of research will clarify the mechanisms involved in the formation and function of glial cilia to provide novel insights and ideas for the treatment of neurodegenerative diseases in the future.
Collapse
Affiliation(s)
- Soo Mi Ki
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Hui Su Jeong
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Ji Eun Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
- Samsung Medical Center, Samsung Biomedical Research Institute, Seoul, South Korea
| |
Collapse
|
17
|
Plectin in the Central Nervous System and a Putative Role in Brain Astrocytes. Cells 2021; 10:cells10092353. [PMID: 34572001 PMCID: PMC8464768 DOI: 10.3390/cells10092353] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 11/17/2022] Open
Abstract
Plectin, a high-molecular-mass cytolinker, is abundantly expressed in the central nervous system (CNS). Currently, a limited amount of data about plectin in the CNS prevents us from seeing the complete picture of how plectin affects the functioning of the CNS as a whole. Yet, by analogy to its role in other tissues, it is anticipated that, in the CNS, plectin also functions as the key cytoskeleton interlinking molecule. Thus, it is likely involved in signalling processes, thereby affecting numerous fundamental functions in the brain and spinal cord. Versatile direct and indirect interactions of plectin with cytoskeletal filaments and enzymes in the cells of the CNS in normal physiological and in pathologic conditions remain to be fully addressed. Several pathologies of the CNS related to plectin have been discovered in patients with plectinopathies. However, in view of plectin as an integrator of a cohesive mesh of cellular proteins, it is important that the role of plectin is also considered in other CNS pathologies. This review summarizes the current knowledge of plectin in the CNS, focusing on plectin isoforms that have been detected in the CNS, along with its expression profile and distribution alongside diverse cytoskeleton filaments in CNS cell types. Considering that the bidirectional communication between neurons and glial cells, especially astrocytes, is crucial for proper functioning of the CNS, we place particular emphasis on the known roles of plectin in neurons, and we propose possible roles of plectin in astrocytes.
Collapse
|
18
|
Ghelman J, Grewing L, Windener F, Albrecht S, Zarbock A, Kuhlmann T. SKAP2 as a new regulator of oligodendroglial migration and myelin sheath formation. Glia 2021; 69:2699-2716. [PMID: 34324225 DOI: 10.1002/glia.24066] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023]
Abstract
Oligodendroglial progenitor cells (OPCs) are highly proliferative and migratory cells, which differentiate into complex myelin forming and axon ensheathing mature oligodendrocytes during myelination. Recent studies indicate that the oligodendroglial cell population is heterogeneous on transcriptional and functional level depending on the location in the central nervous system. Here, we compared intrinsic properties of OPC from spinal cord and brain on functional and transcriptional level. Spinal cord OPC demonstrated increased migration as well as differentiation capacity. Moreover, transcriptome analysis revealed differential expression of several genes between both OPC populations. In spinal cord OPC, we confirmed upregulation of SKAP2, a cytoplasmatic adaptor protein known for its implication in cytoskeletal remodeling and migration in other cell types. Recent findings suggest that actin dynamics determine not only oligodendroglial migration, but also differentiation: Whereas actin polymerization is important for process extension, actin destabilization and depolymerization is required for myelin sheath formation. Downregulation or complete lack of SKAP2 in OPC resulted in reduced migration and impaired morphological maturation in oligodendrocytes. In contrast, overexpression of SKAP2 as well as constitutively active SKAP2 increased OPC migration suggesting that SKAP2 function is dependent on activation by phosphorylation. Furthermore, lack of SKAP2 enhanced the positive effect on OPC migration after integrin activation suggesting that SKAP2 acts as modulator of integrin dependent migration. In summary, we demonstrate the presence of intrinsic differences between spinal cord and brain OPC and identified SKAP2 as a new regulator of oligodendroglial migration and sheath formation.
Collapse
Affiliation(s)
- Julia Ghelman
- Institute of Neuropathology, University Hospital Muenster, Muenster, Germany
| | - Laureen Grewing
- Institute of Neuropathology, University Hospital Muenster, Muenster, Germany
| | - Farina Windener
- Institute of Neuropathology, University Hospital Muenster, Muenster, Germany
| | - Stefanie Albrecht
- Institute of Neuropathology, University Hospital Muenster, Muenster, Germany
| | - Alexander Zarbock
- Department of Anesthesiology, Intensive Care, and Pain Medicine, University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
19
|
Hisahara S, Iwahara N, Matsushita T, Suzuki S, Matsumura A, Fujikura M, Yokokawa K, Saito T, Manabe T, Kawamata J, Horio Y, Shimohama S. SIRT1 decelerates morphological processing of oligodendrocyte cell lines and regulates the expression of cytoskeleton-related oligodendrocyte proteins. Biochem Biophys Res Commun 2021; 546:7-14. [PMID: 33556638 DOI: 10.1016/j.bbrc.2021.01.095] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 01/28/2021] [Indexed: 10/22/2022]
Abstract
SIRT1 is involved in the regulation of a variety of biological processes such as metabolism, stress response, autophagy and differentiation. Although progenitor cells of oligodendrocytes (OPCs) express high level of SIRT1, its function on differentiation is unknown. Because we have shown that SIRT1 plays a pivotal role in differentiation of neural precursor cells, we hypothesized that SIRT1 may also participate in the differentiation of oligodendrocytes (OLGs). We examined whether SIRT1 was expressed in two human oligodendrocyte cell lines: KG-1-C and MO 3.13 OLG. Transfection of cell lines with SIRT1-siRNA and SIRT2-siRNA promoted the extension of cellular processes. SIRT1-siRNA and SIRT2-siRNA increased acetyl-α-tubulin level, conversely, over expression of SIRTs resulted in decreased the ratio of acetyl-α-tubulin to α-tubulin. We also found knockdown of SIRT1 and SIRT2 induced overexpression of βIV-tubulin and tubulin polymerization promoting protein (TPPP) (OLG-specific cytoskeleton-related molecules) that distributed widely in cell bodies. Taken together, SIRT1 may play a role in oligodenroglial differentiation and myelinogenesis.
Collapse
Affiliation(s)
- Shin Hisahara
- Department of Neurology, School of Medicine, Sapporo Medical University, South 1 West 16 Chuo-ku, Sapporo, Hokkaido, 060-8556, Japan.
| | - Naotoshi Iwahara
- Department of Neurology, School of Medicine, Sapporo Medical University, South 1 West 16 Chuo-ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Takashi Matsushita
- Department of Neurology, School of Medicine, Sapporo Medical University, South 1 West 16 Chuo-ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Syuuichirou Suzuki
- Department of Neurology, School of Medicine, Sapporo Medical University, South 1 West 16 Chuo-ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Akihiro Matsumura
- Department of Neurology, School of Medicine, Sapporo Medical University, South 1 West 16 Chuo-ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Mai Fujikura
- Department of Neurology, Saiseikai Otaru Hospital, 10-1 Chikkou, Otaru, Hokkaido, 047-0008, Japan
| | - Kazuki Yokokawa
- Department of Neurology, School of Medicine, Sapporo Medical University, South 1 West 16 Chuo-ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Taro Saito
- Department of Neurology, School of Medicine, Sapporo Medical University, South 1 West 16 Chuo-ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Tatsuo Manabe
- Department of Neurology, School of Medicine, Sapporo Medical University, South 1 West 16 Chuo-ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Jun Kawamata
- Department of Neurology, School of Medicine, Kitasato University, 1-15-1 Kitasato Minami, Sagamihara, Kanagawa, 252-0375, Japan
| | - Yoshiyuki Horio
- Department of Pharmacology, School of Medicine, Sapporo Medical University, South 1 West 16 Chuo-ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Shun Shimohama
- Department of Neurology, School of Medicine, Sapporo Medical University, South 1 West 16 Chuo-ku, Sapporo, Hokkaido, 060-8556, Japan
| |
Collapse
|
20
|
Nowack L, Teschers CS, Albrecht S, Gilmour R. Oligodendroglial glycolipids in (Re)myelination: implications for multiple sclerosis research. Nat Prod Rep 2021; 38:890-904. [PMID: 33575689 DOI: 10.1039/d0np00093k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Covering: up to 2020 This short review surveys aspects of glycolipid-based natural products and their biological relevance in multiple sclerosis (MS). The role of isolated gangliosides in disease models is discussed together with an overview of ganglioside-inspired small molecule drugs and imaging probes. The discussion is extended to neurodegeneration in a more general context and addresses the need for more efficient synthetic methods to generate (glyco)structures that are of therapeutic relevance.
Collapse
Affiliation(s)
- Luise Nowack
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany. and Institute of Neuropathology, University Hospital Münster, Pottkamp 2, 48149 Münster, Germany.
| | - Charlotte S Teschers
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany.
| | - Stefanie Albrecht
- Institute of Neuropathology, University Hospital Münster, Pottkamp 2, 48149 Münster, Germany.
| | - Ryan Gilmour
- Institute for Organic Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstraße 36, 48149 Münster, Germany.
| |
Collapse
|
21
|
Katanov C, Novak N, Vainshtein A, Golani O, Dupree JL, Peles E. N-Wasp Regulates Oligodendrocyte Myelination. J Neurosci 2020; 40:6103-6111. [PMID: 32601246 PMCID: PMC7406274 DOI: 10.1523/jneurosci.0912-20.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022] Open
Abstract
Oligodendrocyte myelination depends on actin cytoskeleton rearrangement. Neural Wiskott-Aldrich syndrome protein(N-Wasp) is an actin nucleation factor that promotes polymerization of branched actin filaments. N-Wasp activity is essential for myelin membrane wrapping by Schwann cells, but its role in oligodendrocytes and CNS myelination remains unknown. Here we report that oligodendrocytes-specific deletion of N-Wasp in mice of both sexes resulted in hypomyelination (i.e., reduced number of myelinated axons and thinner myelin profiles), as well as substantial focal hypermyelination reflected by the formation of remarkably long myelin outfolds. These myelin outfolds surrounded unmyelinated axons, neuronal cell bodies, and other myelin profiles. The latter configuration resulted in pseudo-multimyelin profiles that were often associated with axonal detachment and degeneration throughout the CNS, including in the optic nerve, corpus callosum, and the spinal cord. Furthermore, developmental analysis revealed that myelin abnormalities were already observed during the onset of myelination, suggesting that they are formed by aberrant and misguided elongation of the oligodendrocyte inner lip membrane. Our results demonstrate that N-Wasp is required for the formation of normal myelin in the CNS. They also reveal that N-Wasp plays a distinct role in oligodendrocytes compared with Schwann cells, highlighting a difference in the regulation of actin dynamics during CNS and PNS myelination.SIGNIFICANCE STATEMENT Myelin is critical for the normal function of the nervous system by facilitating fast conduction of action potentials. During the process of myelination in the CNS, oligodendrocytes undergo extensive morphological changes that involve cellular process extension and retraction, axonal ensheathment, and myelin membrane wrapping. Here we present evidence that N-Wasp, a protein regulating actin filament assembly through Arp2/3 complex-dependent actin nucleation, plays a critical role in CNS myelination, and its absence leads to several myelin abnormalities. Our data provide an important step into the understanding of the molecular mechanisms underlying CNS myelination.
Collapse
Affiliation(s)
- Christina Katanov
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Nurit Novak
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Anya Vainshtein
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Ofra Golani
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Jeffery L Dupree
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia 23284
| | - Elior Peles
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| |
Collapse
|
22
|
Zhang T, Guan P, Liu W, Zhao G, Fang Y, Fu H, Gui JF, Li G, Liu JX. Copper stress induces zebrafish central neural system myelin defects via WNT/NOTCH-hoxb5b signaling and pou3f1/fam168a/fam168b DNA methylation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194612. [PMID: 32745624 DOI: 10.1016/j.bbagrm.2020.194612] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/18/2020] [Accepted: 07/27/2020] [Indexed: 12/21/2022]
Abstract
Unbalanced copper (Cu) homeostasis is associated with neurological development defects and diseases. However, the molecular mechanisms remain elusive. Here, central neural system (CNS) myelin defects and the down-regulated expression of WNT/NOTCH signaling and its down-stream mediator hoxb5b were observed in Cu2+ stressed zebrafish larvae. The loss/knockdown-of-function of hoxb5b phenocopied the myelin and axon defects observed in Cu2+ stressed embryos. Meanwhile, the activation of WNT/NOTCH signaling and ectopic expression of hoxb5b could rescue Cu induced myelin defects. Additionally, fam168b, similar to pou3f1/2, exhibited significant promoter hypermethylation and reduced expression in Cu2+ stressed embryos. The hypermethylated locus in fam168b promoter acted pivotally in its transcription, and the loss/knockdown of fam168b/pou3f1 also induced myelin defects. This study also demonstrated that fam168b/pou3f1 and hoxb5b axis acted in a seesaw manner during fish embryogenesis: Cu induced the down-regulated expression of the WNT&NOTCH-hoxb5b axis through the function of copper transporter cox17, coupled with the promoter methylation of genes fam168b/pou3f1, and its subsequent down-regulated expression through the function of another transporter atp7b, making joint contributions to myelin defects in embryos.
Collapse
Affiliation(s)
- Ting Zhang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - PengPeng Guan
- College of Informatics, Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, Huazhong Agricultural University, Wuhan 430070, China
| | - WenYe Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Guang Zhao
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - YaPing Fang
- College of Informatics, Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, Huazhong Agricultural University, Wuhan 430070, China
| | - Hui Fu
- Department of Anatomy, School of Basic Medical Science, Wuhan University, Wuhan 430072, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - GuoLiang Li
- College of Informatics, Agricultural Bioinformatics Key Laboratory of Hubei Province, Hubei Engineering Technology Research Center of Agricultural Big Data, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
23
|
Tandon A, Singh SJ, Gupta M, Singh N, Shankar J, Arjaria N, Goyal S, Chaturvedi RK. Notch pathway up-regulation via curcumin mitigates bisphenol-A (BPA) induced alterations in hippocampal oligodendrogenesis. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122052. [PMID: 32151947 DOI: 10.1016/j.jhazmat.2020.122052] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 01/06/2020] [Accepted: 01/07/2020] [Indexed: 05/02/2023]
Abstract
CNS myelination process involves proliferation and differentiation of oligodendrocyte progenitor cells (OPCs). Defective myelination causes onset of neurological disorders. Bisphenol-A (BPA), a component of plastic items, exerts adverse effects on human health. Our previous studies indicated that BPA impairs neurogenesis and myelination process stimulating cognitive dysfunctions. But, the underlying mechanism(s) of BPA induced de-myelination and probable neuroprotection by curcumin remains elusive. We found that curcumin protected BPA mediated adverse effects on oligosphere growth kinetics. Curcumin significantly improved proliferation and differentiation of OPCs upon BPA exposure both in-vitro and in-vivo. Curcumin enhanced the mRNA expression and protein levels of myelination markers in BPA treated rat hippocampus. Curcumin improved myelination potential via increasing β-III tubulin-/MBP+ cells (neuron-oligodendrocyte co-culture) and augmented fluoromyelin intensity and neurofilament/MBP+ neurons in vivo. In silico docking studies suggested Notch pathway genes (Notch-1, Hes-1 and Mib-1) as potential targets of BPA and curcumin. Curcumin reversed BPA mediated myelination inhibition via increasing the Notch pathway gene expression. Genetic and pharmacological Notch pathway inhibition by DAPT and Notch-1 siRNA exhibited decreased curcumin mediated neuroprotection. Curcumin improved BPA mediated myelin sheath degeneration and neurobehavioral impairments. Altogether, results suggest that curcumin protected BPA induced de-myelination and behavioural deficits through Notch pathway activation.
Collapse
Affiliation(s)
- Ankit Tandon
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh (U.P.), India; Department of Biochemistry, School of Dental Sciences, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow 226 028, U.P., India
| | - Sangh Jyoti Singh
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh (U.P.), India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Lucknow Campus, Lucknow, India
| | - Manjeet Gupta
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh (U.P.), India
| | - Nivedita Singh
- Department of Biochemistry, School of Dental Sciences, Babu Banarasi Das University, BBD City, Faizabad Road, Lucknow 226 028, U.P., India
| | - Jai Shankar
- Advanced Imaging Facility, CSIR-IITR, Lucknow, India
| | - Nidhi Arjaria
- Advanced Imaging Facility, CSIR-IITR, Lucknow, India
| | - Shweta Goyal
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh (U.P.), India; Academy of Scientific and Innovative Research (AcSIR), CSIR-IITR Lucknow Campus, Lucknow, India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research (CSIR-IITR), Vishvigyan Bhavan, 31, Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh (U.P.), India.
| |
Collapse
|
24
|
Weigel M, Wang L, Fu MM. Microtubule organization and dynamics in oligodendrocytes, astrocytes, and microglia. Dev Neurobiol 2020; 81:310-320. [PMID: 32324338 DOI: 10.1002/dneu.22753] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/16/2020] [Accepted: 04/20/2020] [Indexed: 12/16/2022]
Abstract
Though much is known about microtubule organization and microtubule-based transport in neurons, the development and function of microtubules in glia are more enigmatic. In this review, we provide an overview of the literature on microtubules in ramified brain cells, including oligodendrocytes, astrocytes, and microglia. We focus on normal cell biology-how structure relates to function in these cells. In oligodendrocytes, microtubules are important for extension of processes that contact axons and for elongating the myelin sheath. Recent studies demonstrate that new microtubules can form outside of the oligodendrocyte cell body off of Golgi outpost organelles. In astrocytes and microglia, changes in cell shape and ramification can be influenced by neighboring cells and the extracellular milieu. Finally, we highlight key papers implicating glial microtubule defects in neurological injury and disease and discuss how microtubules may contribute to invasiveness in gliomas. Thus, future research on the mechanisms underlying microtubule organization in normal glial cell function may yield valuable insights on neurological disease pathology.
Collapse
Affiliation(s)
- Maya Weigel
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lin Wang
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Meng-Meng Fu
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
25
|
Hu B, Wang C, Chang Q, Yang W, Wu Z, Meng M, Qu F, Chen P, Zhang C, Zhang Y. NF155-overexpression promotes remyelination and functional restoration in a hypoxic-ischemic mixed neonatal rat forebrain cell culture system. Neurosci Lett 2020; 718:134743. [PMID: 31917235 DOI: 10.1016/j.neulet.2020.134743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 01/24/2023]
Abstract
White matter injury caused by perinatal hypoxia-ischemia is characterized by myelination disorders; however, its pathophysiological mechanisms are not fully elucidated. The neurofascin 155 (NF155) protein, expressed in oligodendrocytes, is critical for myelination. Previous findings suggest that NF155 participates in the pathological mechanisms of developmental myelination disorders in hypoxic-ischemic cerebral white matter lesions, and it might regulate cytoskeletal changes. Therefore, we hypothesized that increased NF155 expression during the early stages of hypoxic oligodendrocyte injury helps normalize myelin sheath development and consequently improves neural function by repairing paranodal structures of myelin sheaths and regulating cytoskeletal changes. To test this hypothesis, we established a hypoxic-ischemic, mixed neonatal rat forebrain cell culture model. When NF155 expression was upregulated, synergistic effects occurred between this protein and the paranodal proteins CASPR and contactin. In addition, the expression of Rho GTPase family proteins that regulate key cytoskeletal pathways, myelin sheath structures, and functions were restored, and axonal structures acquired a clear and transparent appearance. These results suggest that NF155 may enable myelin sheath repair by repairing paranodal region structures and regulating oligodendrocyte cytoskeletal mechanisms. Overall, the present study provides new insights into the pathogenesis of hypoxic-ischemic cerebral white matter lesions.
Collapse
Affiliation(s)
- Bin Hu
- Department of Pediatrics, The Second Affiliated Hospital of the Army Medical University, Chongqing 400037, China
| | - Chengju Wang
- Department of Pediatrics, The Second Affiliated Hospital of the Army Medical University, Chongqing 400037, China
| | - Qin Chang
- Department of Pediatrics, The Second Affiliated Hospital of the Army Medical University, Chongqing 400037, China
| | - Wang Yang
- Department of Pediatrics, The Second Affiliated Hospital of the Army Medical University, Chongqing 400037, China
| | - Zhifeng Wu
- Department of Pediatrics, The Second Affiliated Hospital of the Army Medical University, Chongqing 400037, China
| | - Meng Meng
- Department of Pediatrics, The Second Affiliated Hospital of the Army Medical University, Chongqing 400037, China
| | - Fuxiang Qu
- Department of Pediatrics, The Second Affiliated Hospital of the Army Medical University, Chongqing 400037, China
| | - Penghui Chen
- Department of Neurobiology, School of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Chunqing Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of the Army Medical University, Chongqing 400037, China
| | - Yuping Zhang
- Department of Pediatrics, The Second Affiliated Hospital of the Army Medical University, Chongqing 400037, China.
| |
Collapse
|
26
|
Thomason EJ, Escalante M, Osterhout DJ, Fuss B. The oligodendrocyte growth cone and its actin cytoskeleton: A fundamental element for progenitor cell migration and CNS myelination. Glia 2019; 68:1329-1346. [PMID: 31696982 DOI: 10.1002/glia.23735] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 01/06/2023]
Abstract
Cells of the oligodendrocyte (OLG) lineage engage in highly motile behaviors that are crucial for effective central nervous system (CNS) myelination. These behaviors include the guided migration of OLG progenitor cells (OPCs), the surveying of local environments by cellular processes extending from differentiating and pre-myelinating OLGs, and during the process of active myelin wrapping, the forward movement of the leading edge of the myelin sheath's inner tongue along the axon. Almost all of these motile behaviors are driven by actin cytoskeletal dynamics initiated within a lamellipodial structure that is located at the tip of cellular OLG/OPC processes and is structurally as well as functionally similar to the neuronal growth cone. Accordingly, coordinated stoichiometries of actin filament (F-actin) assembly and disassembly at these OLG/OPC growth cones have been implicated in directing process outgrowth and guidance, and the initiation of myelination. Nonetheless, the functional importance of the OLG/OPC growth cone still remains to be fully understood, and, as a unique aspect of actin cytoskeletal dynamics, F-actin depolymerization and disassembly start to predominate at the transition from myelination initiation to myelin wrapping. This review provides an overview of the current knowledge about OLG/OPC growth cones, and it proposes a model in which actin cytoskeletal dynamics in OLG/OPC growth cones are a main driver for morphological transformations and motile behaviors. Remarkably, these activities, at least at the later stages of OLG maturation, may be regulated independently from the transcriptional gene expression changes typically associated with CNS myelination.
Collapse
Affiliation(s)
- Elizabeth J Thomason
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Miguel Escalante
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia.,Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, Mexico
| | - Donna J Osterhout
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, New York
| | - Babette Fuss
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| |
Collapse
|
27
|
Temporal and partial inhibition of GLI1 in neural stem cells (NSCs) results in the early maturation of NSC derived oligodendrocytes in vitro. Stem Cell Res Ther 2019; 10:272. [PMID: 31455382 PMCID: PMC6712625 DOI: 10.1186/s13287-019-1374-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 11/30/2022] Open
Abstract
Background Oligodendrocytes are a type of glial cells that synthesize the myelin sheath around the axons and are critical for the nerve conduction in the CNS. Oligodendrocyte death and defects are the leading causes of several myelin disorders such as multiple sclerosis, progressive multifocal leukoencephalopathy, periventricular leukomalacia, and several leukodystrophies. Temporal activation of the Sonic Hedgehog (SHH) pathway is critical for the generation of oligodendrocyte progenitors, and their differentiation and maturation in the brain and spinal cord during embryonic development in mammals. Methods Our protocol utilized adherent cultures of human induced pluripotent stem cells (iPSC) and human embryonic stem cells (hESCs) with a green fluorescent protein (GFP) reporter knocked into one allele of the OLIG2 gene locus, dual SMAD inhibition, and transient partial inhibition of glioma-associated oncogene 1 (GLI1) by the small molecule GANT61 during the formation of the SOX2/PAX6-positive neural stem cells (NSCs). The SHH pathway was later restimulated by a Smoothened agonist purmorphamine to induce the generation of OLIG2 glial precursors. One hundred ninety-two individual oligodendrocyte precursor cells (OPCs) from GANT61 and control group were analyzed by single-cell RNA sequencing (RNA-Seq). Results We demonstrate here that transient and partial inhibition of the SHH pathway transcription factor GLI1 in NSCs by a small molecule inhibitor GANT61 was found to generate OPCs that were more migratory and could differentiate earlier toward myelin-producing oligodendrocytes. Single-cell transcriptomic analysis (RNA-Seq) showed that GANT61-NSC-derived oligodendrocyte precursor cells (OPCs) had differential activation of some of the genes in the cytoskeleton rearrangement pathways that are involved in OPC motility and induction of maturation. At the protein level, this was also associated with higher levels of myelin-specific genes in the GANT61 group compared to controls. GANT61-NSC-derived OPCs were functional and could generate compact myelin in vitro and in vivo after transplantation in myelin-deficient shiverer mice. Conclusions This is a small molecule-based in vitro protocol that leads to the faster generation of functional oligodendrocytes. The development of protocols that lead to efficient and faster differentiation of oligodendrocytes from progenitors provides important advances toward the development of autologous neural stem cell-based therapies using human iPSCs. Electronic supplementary material The online version of this article (10.1186/s13287-019-1374-y) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Cyfip1 haploinsufficient rats show white matter changes, myelin thinning, abnormal oligodendrocytes and behavioural inflexibility. Nat Commun 2019; 10:3455. [PMID: 31371763 PMCID: PMC6671959 DOI: 10.1038/s41467-019-11119-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 06/20/2019] [Indexed: 11/30/2022] Open
Abstract
The biological basis of the increased risk for psychiatric disorders seen in 15q11.2 copy number deletion is unknown. Previous work has shown disturbances in white matter tracts in human carriers of the deletion. Here, in a novel rat model, we recapitulated low dosage of the candidate risk gene CYFIP1 present within the 15q11.2 interval. Using diffusion tensor imaging, we first showed extensive white matter changes in Cyfip1 mutant rats, which were most pronounced in the corpus callosum and external capsule. Transmission electron microscopy showed that these changes were associated with thinning of the myelin sheath in the corpus callosum. Myelin thinning was independent of changes in axon number or diameter but was associated with effects on mature oligodendrocytes, including aberrant intracellular distribution of myelin basic protein. Finally, we demonstrated effects on cognitive phenotypes sensitive to both disruptions in myelin and callosal circuitry. People with a genetic deletion of the 15q11.2 locus are at increased risk for psychiatric disorders and white matter disturbances, but the gene(s) responsible are unclear. Here, the authors show that low dosage of CYFIP1, present in the human 15q11.2 region, alters white matter structure and cognition in rats.
Collapse
|
29
|
Silva AI, Ulfarsson MO, Stefansson H, Gustafsson O, Walters GB, Linden DE, Wilkinson LS, Drakesmith M, Owen MJ, Hall J, Stefansson K. Reciprocal White Matter Changes Associated With Copy Number Variation at 15q11.2 BP1-BP2: A Diffusion Tensor Imaging Study. Biol Psychiatry 2019; 85:563-572. [PMID: 30583851 PMCID: PMC6424871 DOI: 10.1016/j.biopsych.2018.11.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/07/2018] [Accepted: 11/12/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND The 15q11.2 BP1-BP2 cytogenetic region has been associated with learning and motor delays, autism, and schizophrenia. This region includes a gene that codes for the cytoplasmic FMR1 interacting protein 1 (CYFIP1). The CYFIP1 protein is involved in actin cytoskeletal dynamics and interacts with the fragile X mental retardation protein. Absence of fragile X mental retardation protein causes fragile X syndrome. Because abnormal white matter microstructure has been reported in both fragile X syndrome and psychiatric disorders, we looked at the impact of 15q11.2 BP1-BP2 dosage on white matter microstructure. METHODS Combining a brain-wide voxel-based approach and a regional-based analysis, we analyzed diffusion tensor imaging data from healthy individuals with the deletion (n = 30), healthy individuals with the reciprocal duplication (n = 27), and IQ-matched control subjects with no large copy number variants (n = 19), recruited from a large genotyped population sample. RESULTS We found global mirror effects (deletion > control > duplication) on fractional anisotropy. The deletion group showed widespread increased fractional anisotropy when compared with duplication. Regional analyses revealed a greater effect size in the posterior limb of the internal capsule and a tendency for decreased fractional anisotropy in duplication. CONCLUSIONS These results show a reciprocal effect of 15q11.2 BP1-BP2 on white matter microstructure, suggesting that reciprocal chromosomal imbalances may lead to opposite changes in brain structure. Findings in the deletion overlap with previous white matter differences reported in fragile X syndrome patients, suggesting common pathogenic mechanisms derived from disruptions of cytoplasmic CYFIP1-fragile X mental retardation protein complexes. Our data begin to identify specific components of the 15q11.2 BP1-BP2 phenotype and neurobiological mechanisms of potential relevance to the increased risk for disorder.
Collapse
Affiliation(s)
- Ana I. Silva
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff, United Kingdom,Neuroscience and Mental Health Research Institute, Cardiff, United Kingdom,Division of Psychological Medicine and Clinical Neurosciences, Cardiff, United Kingdom
| | - Magnus O. Ulfarsson
- deCODE genetics/Amgen, Reykjavik, Iceland,Faculty of Electrical Engineering, Reykjavik, Iceland
| | | | | | - G. Bragi Walters
- deCODE genetics/Amgen, Reykjavik, Iceland,Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - David E.J. Linden
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff, United Kingdom,Neuroscience and Mental Health Research Institute, Cardiff, United Kingdom,Division of Psychological Medicine and Clinical Neurosciences, Cardiff, United Kingdom
| | - Lawrence S. Wilkinson
- Neuroscience and Mental Health Research Institute, Cardiff, United Kingdom,Division of Psychological Medicine and Clinical Neurosciences, Cardiff, United Kingdom,MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Mark Drakesmith
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff, United Kingdom
| | - Michael J. Owen
- Neuroscience and Mental Health Research Institute, Cardiff, United Kingdom,Division of Psychological Medicine and Clinical Neurosciences, Cardiff, United Kingdom,MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Jeremy Hall
- Neuroscience and Mental Health Research Institute, Cardiff, United Kingdom; Division of Psychological Medicine and Clinical Neurosciences, Cardiff, United Kingdom; MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, United Kingdom.
| | | |
Collapse
|
30
|
Malheiro AR, Correia B, Ferreira da Silva T, Bessa-Neto D, Van Veldhoven PP, Brites P. Leukodystrophy caused by plasmalogen deficiency rescued by glyceryl 1-myristyl ether treatment. Brain Pathol 2019; 29:622-639. [PMID: 30667116 DOI: 10.1111/bpa.12710] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/16/2019] [Indexed: 12/29/2022] Open
Abstract
Plasmalogens are the most abundant form of ether phospholipids in myelin and their deficiency causes Rhizomelic Chondrodysplasia Punctata (RCDP), a severe developmental disorder. Using the Gnpat-knockout (KO) mouse as a model of RCDP, we determined the consequences of a plasmalogen deficiency during myelination and myelin homeostasis in the central nervous system (CNS). We unraveled that the lack of plasmalogens causes a generalized hypomyelination in several CNS regions including the optic nerve, corpus callosum and spinal cord. The defect in myelin content evolved to a progressive demyelination concomitant with generalized astrocytosis and white matter-selective microgliosis. Oligodendrocyte precursor cells (OPC) and mature oligodendrocytes were abundant in the CNS of Gnpat KO mice during the active period of demyelination. Axonal loss was minimal in plasmalogen-deficient mice, although axonal damage was observed in spinal cords from aged Gnpat KO mice. Characterization of the plasmalogen-deficient myelin identified myelin basic protein and septin 7 as early markers of dysmyelination, whereas myelin-associated glycoprotein was associated with the active demyelination phase. Using in vitro myelination assays, we unraveled that the intrinsic capacity of oligodendrocytes to ensheath and initiate membrane wrapping requires plasmalogens. The defect in plasmalogens was rescued with glyceryl 1-myristyl ether [1-O-tetradecyl glycerol (1-O-TDG)], a novel alternative precursor in the plasmalogen biosynthesis pathway. 1-O-TDG treatment rescued myelination in plasmalogen-deficient oligodendrocytes and in mutant mice. Our results demonstrate the importance of plasmalogens for oligodendrocyte function and myelin assembly, and identified a novel strategy to promote myelination in nervous tissue.
Collapse
Affiliation(s)
- Ana R Malheiro
- Neurolipid Biology, Instituto de Investigação e Inovação em Saúde - i3S, Instituto de Biologia Molecular e Celular - IBMC e Universidade do Porto, Porto, Portugal.,ICBAS, Instituto Ciências Biomédicas Abel Salazar, Porto, Portugal
| | - Barbara Correia
- Neurolipid Biology, Instituto de Investigação e Inovação em Saúde - i3S, Instituto de Biologia Molecular e Celular - IBMC e Universidade do Porto, Porto, Portugal
| | - Tiago Ferreira da Silva
- Neurolipid Biology, Instituto de Investigação e Inovação em Saúde - i3S, Instituto de Biologia Molecular e Celular - IBMC e Universidade do Porto, Porto, Portugal
| | - Diogo Bessa-Neto
- Neurolipid Biology, Instituto de Investigação e Inovação em Saúde - i3S, Instituto de Biologia Molecular e Celular - IBMC e Universidade do Porto, Porto, Portugal
| | - Paul P Van Veldhoven
- Laboratory of Lipid Biochemistry and Protein Interactions (LIPIT), KU Leuven, Leuven, Belgium
| | - Pedro Brites
- Neurolipid Biology, Instituto de Investigação e Inovação em Saúde - i3S, Instituto de Biologia Molecular e Celular - IBMC e Universidade do Porto, Porto, Portugal
| |
Collapse
|
31
|
Role of PDGF-A-Activated ERK Signaling Mediated FAK-Paxillin Interaction in Oligodendrocyte Progenitor Cell Migration. J Mol Neurosci 2019; 67:564-573. [DOI: 10.1007/s12031-019-1260-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/03/2019] [Indexed: 12/24/2022]
|
32
|
Cytoskeletal Signal-Regulated Oligodendrocyte Myelination and Remyelination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1190:33-42. [DOI: 10.1007/978-981-32-9636-7_3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Ulc A, Zeug A, Bauch J, van Leeuwen S, Kuhlmann T, ffrench-Constant C, Ponimaskin E, Faissner A. The guanine nucleotide exchange factor Vav3 modulates oligodendrocyte precursor differentiation and supports remyelination in white matter lesions. Glia 2018; 67:376-392. [DOI: 10.1002/glia.23548] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Annika Ulc
- Department of Cell Morphology and Molecular Neurobiology; Ruhr-University Bochum; Germany
| | - Andre Zeug
- Cellular Neurophysiology, Centre for Physiology; Hannover Medical School; Hannover Germany
| | - Juliane Bauch
- Department of Cell Morphology and Molecular Neurobiology; Ruhr-University Bochum; Germany
| | - Simon van Leeuwen
- Department of Cell Morphology and Molecular Neurobiology; Ruhr-University Bochum; Germany
| | - Tanja Kuhlmann
- Institute of Neuropathology; University Hospital Münster; Germany
| | | | - Evgeni Ponimaskin
- Cellular Neurophysiology, Centre for Physiology; Hannover Medical School; Hannover Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology; Ruhr-University Bochum; Germany
| |
Collapse
|
34
|
Ferrer I. Oligodendrogliopathy in neurodegenerative diseases with abnormal protein aggregates: The forgotten partner. Prog Neurobiol 2018; 169:24-54. [DOI: 10.1016/j.pneurobio.2018.07.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 07/24/2018] [Accepted: 07/27/2018] [Indexed: 12/31/2022]
|
35
|
Tripon RG, Oláh J, Nasir T, Csincsik L, Li CL, Szunyogh S, Gong H, Flinn JM, Ovádi J, Lengyel I. Localization of the zinc binding tubulin polymerization promoting protein in the mice and human eye. J Trace Elem Med Biol 2018; 49:222-230. [PMID: 29317136 DOI: 10.1016/j.jtemb.2017.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/15/2017] [Accepted: 12/21/2017] [Indexed: 11/20/2022]
Abstract
Tubulin Polymerization Promoting Protein (TPPP/p25) modulates the dynamics and stability of the microtubule network by its bundling and acetylation enhancing activities that can be modulated by the binding of zinc to TPPP/p25. Its expression is essential for the differentiation of oligodendrocytes, the major constituents of the myelin sheath, and has been associated with neuronal inclusions. In this paper, evidence is provided for the expression and localization of TPPP/p25 in the zinc-rich retina and in the oligodendrocytes in the optic nerve. Localization of TPPP/p25 was established by confocal microscopy using calbindin and synaptophysin as markers of specific striations in the inner plexiform layer (IPL) and presynaptic terminals, respectively. Postsynaptic nerve terminals in striations S1, S3 and S5 in the IPL and a subset of amacrine cells show immunopositivity against TPPP/p25 both in mice and human eyes. The co-localization of TPPP/p25 with acetylated tubulin was detected in amacrine cells, oligodendrocyte cell bodies and in synapses in the IPL. Quantitative Western blot revealed that the TPPP/p25 level in the retina was 0.05-0.13 ng/μg protein, comparable to that in the brain. There was a central (from optic nerve head) to peripheral retinal gradient in TPPP/p25 protein levels. Our in vivo studies revealed that the oral zinc supplementation of mice significantly increased TPPP/p25 as well as acetylated tubulin levels in the IPL. These results suggest that TPPP/p25, a microtubule stabilizer can play a role in the organization and reorganization of synaptic connections and visual integration in the eye.
Collapse
Affiliation(s)
- Robert G Tripon
- UCL Institute of Ophthalmology, University College London, London, EC1Y 8TB, UK; Department of Histology, University of Medicine and Pharmacy, Tîrgu Mureş, Romania.
| | - Judit Oláh
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, 1117, Hungary.
| | - Tajwar Nasir
- UCL Institute of Ophthalmology, University College London, London, EC1Y 8TB, UK.
| | - Lajos Csincsik
- UCL Institute of Ophthalmology, University College London, London, EC1Y 8TB, UK; Center of Experimental Medicine, The Queen's University Belfast, BT9 7BL, UK.
| | - Chee Lok Li
- UCL Institute of Ophthalmology, University College London, London, EC1Y 8TB, UK.
| | - Sándor Szunyogh
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, 1117, Hungary.
| | - Haiyan Gong
- Department of Ophthalmology, Boston University School of Medicine, MA, USA.
| | - Jane M Flinn
- Department of Psychology, George Mason University Fairfax, VA, USA.
| | - Judit Ovádi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, 1117, Hungary.
| | - Imre Lengyel
- UCL Institute of Ophthalmology, University College London, London, EC1Y 8TB, UK; Center of Experimental Medicine, The Queen's University Belfast, BT9 7BL, UK.
| |
Collapse
|
36
|
Naughton SX, Hernandez CM, Beck WD, Poddar I, Yanasak N, Lin PC, Terry AV. Repeated exposures to diisopropylfluorophosphate result in structural disruptions of myelinated axons and persistent impairments of axonal transport in the brains of rats. Toxicology 2018; 406-407:92-103. [DOI: 10.1016/j.tox.2018.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/02/2018] [Accepted: 06/08/2018] [Indexed: 01/17/2023]
|
37
|
Stassart RM, Möbius W, Nave KA, Edgar JM. The Axon-Myelin Unit in Development and Degenerative Disease. Front Neurosci 2018; 12:467. [PMID: 30050403 PMCID: PMC6050401 DOI: 10.3389/fnins.2018.00467] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/19/2018] [Indexed: 12/15/2022] Open
Abstract
Axons are electrically excitable, cable-like neuronal processes that relay information between neurons within the nervous system and between neurons and peripheral target tissues. In the central and peripheral nervous systems, most axons over a critical diameter are enwrapped by myelin, which reduces internodal membrane capacitance and facilitates rapid conduction of electrical impulses. The spirally wrapped myelin sheath, which is an evolutionary specialisation of vertebrates, is produced by oligodendrocytes and Schwann cells; in most mammals myelination occurs during postnatal development and after axons have established connection with their targets. Myelin covers the vast majority of the axonal surface, influencing the axon's physical shape, the localisation of molecules on its membrane and the composition of the extracellular fluid (in the periaxonal space) that immerses it. Moreover, myelinating cells play a fundamental role in axonal support, at least in part by providing metabolic substrates to the underlying axon to fuel its energy requirements. The unique architecture of the myelinated axon, which is crucial to its function as a conduit over long distances, renders it particularly susceptible to injury and confers specific survival and maintenance requirements. In this review we will describe the normal morphology, ultrastructure and function of myelinated axons, and discuss how these change following disease, injury or experimental perturbation, with a particular focus on the role the myelinating cell plays in shaping and supporting the axon.
Collapse
Affiliation(s)
- Ruth M. Stassart
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
- Department of Neuropathology, University Medical Center Leipzig, Leipzig, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | - Julia M. Edgar
- Department of Neurogenetics, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
38
|
Singh DK, Ling EA, Kaur C. Hypoxia and myelination deficits in the developing brain. Int J Dev Neurosci 2018; 70:3-11. [PMID: 29964158 DOI: 10.1016/j.ijdevneu.2018.06.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/28/2018] [Accepted: 06/26/2018] [Indexed: 12/15/2022] Open
Abstract
Myelination is a complex and orderly process during brain development that is essential for normal motor, cognitive and sensory functions. Cellular and molecular interactions between myelin-forming oligodendrocytes and axons are required for normal myelination in the developing brain. Oligodendrocyte progenitor cells (OPCs) proliferate and differentiate into mature myelin-forming oligodendrocytes. In this connection, astrocytes and microglia are also involved in survival and proliferation of OPCs. Hypoxic insults during the perinatal period affect the normal development, differentiation and maturation of the OPCs or cause their death resulting in impaired myelination. Several factors such as augmented release of proinflammatory cytokines by activated microglia and astrocytes, extracellular accumulation of excess glutamate and increased levels of nitric oxide are some of the underlying factors for hypoxia induced damage to the OPCs. Additionally, hypoxia also leads to down-regulation of several genes involved in oligodendrocyte differentiation encoding proteolipid protein, platelet-derived growth factor receptor and myelin-associated glycoprotein in the developing brain. Furthermore, oligodendrocytes may also accumulate increased amounts of iron in hypoxic conditions that triggers endoplasmic reticulum stress, misfolding of proteins and generation of reactive oxygen species that ultimately would lead to myelination deficits. More in-depth studies to elucidate the pathophysiological mechanisms underlying the inability of oligodendrocytes to myelinate the developing brain in hypoxic insults are desirable to develop new therapeutic options or strategies for myelination deficits.
Collapse
Affiliation(s)
- Dhiraj Kumar Singh
- Department of Anatomy, Yong Loo Lin School of Medicine, MD10, 4 Medical drive, National University of Singapore, 117597, Singapore
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, MD10, 4 Medical drive, National University of Singapore, 117597, Singapore
| | - Charanjit Kaur
- Department of Anatomy, Yong Loo Lin School of Medicine, MD10, 4 Medical drive, National University of Singapore, 117597, Singapore.
| |
Collapse
|
39
|
Myotube-derived factor promotes oligodendrocyte precursor cell proliferation. Biochem Biophys Res Commun 2018; 500:609-613. [PMID: 29679562 DOI: 10.1016/j.bbrc.2018.04.118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 04/14/2018] [Indexed: 11/22/2022]
Abstract
Muscle cells secrete numerous molecules that function as endocrine hormones and regulate the functions of distant organs. Myelination in the central nervous system (CNS) is regulated by peripheral hormones. However, the effects of muscle-derived molecules on myelination have not been sufficiently analyzed. In this study, we show that muscle-releasing factors promote proliferation of oligodendrocyte precursor cells (OPCs), which is an element of myelination process. Supernatants of mouse myotube cultures stimulated bromodeoxyuridine (BrdU) incorporation into mouse OPCs. Mouse myotube supernatants did not enhance mouse OPC transmigration and myelin basic protein (MBP) expression. RNA sequencing identified candidate genes with hormonal functions that were expressed in mouse myotubes. These data support the possibility that hormonal molecules secreted by myotubes contribute to OPC proliferation and myelination.
Collapse
|
40
|
NDE1 positively regulates oligodendrocyte morphological differentiation. Sci Rep 2018; 8:7644. [PMID: 29769557 PMCID: PMC5955916 DOI: 10.1038/s41598-018-25898-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/01/2018] [Indexed: 11/09/2022] Open
Abstract
Oligodendrocytes, the myelin-forming cells in the central nervous system (CNS), undergo morphological differentiation characterized by elaborated branched processes to enwrap neuronal axons. However, the basic molecular mechanisms underlying oligodendrocyte morphogenesis remain unknown. Herein, we describe the essential roles of Nuclear Distribution E Homolog 1 (NDE1), a dynein cofactor, in oligodendrocyte morphological differentiation. In the mouse corpus callosum, Nde1 mRNA expression was detected in oligodendrocyte lineage cells at the postnatal stage. In vitro analysis revealed that downregulation of NDE1 by siRNA impaired the outgrowth and extensive branching of oligodendrocyte processes and led to a decrease in the expression of myelin-related markers, namely, CNPase and MBP. In myelinating co-cultures with dorsal root ganglion (DRG) neurons, NDE1-knockdown oligodendrocyte precursor cells (OPCs) failed to develop into MBP-positive oligodendrocytes with multiple processes contacting DRG axons. Immunoprecipitation studies showed that NDE1 interacts with the dynein intermediate chain (DIC) in oligodendrocytes, and an overexpressed DIC-binding region of NDE1 exerted effects on oligodendrocyte morphogenesis that were similar to those following NDE1 knockdown. Furthermore, NDE1-knockdown-impaired oligodendrocyte process formation was rescued by siRNA-resistant wild-type NDE1 but not by DIC-binding region-deficient NDE1 overexpression. These results suggest that NDE1 plays a crucial role in oligodendrocyte morphological differentiation via interaction with dynein.
Collapse
|
41
|
Azevedo MM, Domingues HS, Cordelières FP, Sampaio P, Seixas AI, Relvas JB. Jmy regulates oligodendrocyte differentiation via modulation of actin cytoskeleton dynamics. Glia 2018; 66:1826-1844. [DOI: 10.1002/glia.23342] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/26/2018] [Accepted: 04/05/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Maria M. Azevedo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto; Porto Portugal
- IBMC - Instituto de Biologia Molecular e Celular; Porto Portugal
| | - Helena S. Domingues
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto; Porto Portugal
- IBMC - Instituto de Biologia Molecular e Celular; Porto Portugal
| | - Fabrice P. Cordelières
- Bordeaux Imaging Centre, UMS 3420 CNRS, CNRS-INSERM, University of Bordeaux; Bordeaux France
| | - Paula Sampaio
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto; Porto Portugal
- IBMC - Instituto de Biologia Molecular e Celular; Porto Portugal
| | - Ana I. Seixas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto; Porto Portugal
- IBMC - Instituto de Biologia Molecular e Celular; Porto Portugal
| | - João B. Relvas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto; Porto Portugal
- IBMC - Instituto de Biologia Molecular e Celular; Porto Portugal
- The Discoveries Centre for Regeneration and Precision Medicine, Porto campus; Porto Portugal
| |
Collapse
|
42
|
R-Ras1 and R-Ras2 Are Essential for Oligodendrocyte Differentiation and Survival for Correct Myelination in the Central Nervous System. J Neurosci 2018; 38:5096-5110. [PMID: 29720552 DOI: 10.1523/jneurosci.3364-17.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/14/2018] [Accepted: 04/10/2018] [Indexed: 12/21/2022] Open
Abstract
Rapid and effective neural transmission of information requires correct axonal myelination. Modifications in myelination alter axonal capacity to transmit electric impulses and enable pathological conditions. In the CNS, oligodendrocytes (OLs) myelinate axons, a complex process involving various cellular interactions. However, we know little about the mechanisms that orchestrate correct myelination. Here, we demonstrate that OLs express R-Ras1 and R-Ras2. Using female and male mutant mice to delete these proteins, we found that activation of the PI3K/Akt and Erk1/2-MAPK pathways was weaker in mice lacking one or both of these GTPases, suggesting that both proteins coordinate the activity of these two pathways. Loss of R-Ras1 and/or R-Ras2 diminishes the number of OLs in major myelinated CNS tracts and increases the proportion of immature OLs. In R-Ras1-/- and R-Ras2-/--null mice, OLs show aberrant morphologies and fail to differentiate correctly into myelin-forming phenotypes. The smaller OL population and abnormal OL maturation induce severe hypomyelination, with shorter nodes of Ranvier in R-Ras1-/- and/or R-Ras2-/- mice. These defects explain the slower conduction velocity of myelinated axons that we observed in the absence of R-Ras1 and R-Ras2. Together, these results suggest that R-Ras1 and R-Ras2 are upstream elements that regulate the survival and differentiation of progenitors into OLs through the PI3K/Akt and Erk1/2-MAPK pathways for proper myelination.SIGNIFICANCE STATEMENT In this study, we show that R-Ras1 and R-Ras2 play essential roles in regulating myelination in vivo and control fundamental aspects of oligodendrocyte (OL) survival and differentiation through synergistic activation of PI3K/Akt and Erk1/2-MAPK signaling. Mice lacking R-Ras1 and/or R-Ras2 show a diminished OL population with a higher proportion of immature OLs, explaining the observed hypomyelination in main CNS tracts. In vivo electrophysiology recordings demonstrate a slower conduction velocity of nerve impulses in the absence of R-Ras1 and R-Ras2. Therefore, R-Ras1 and R-Ras2 are essential for proper axonal myelination and accurate neural transmission.
Collapse
|
43
|
Zhao L, Yuan Y, Li P, Pan J, Qin J, Liu Y, Zhang Y, Tian F, Yu B, Zhou S. miR-221-3p Inhibits Schwann Cell Myelination. Neuroscience 2018; 379:239-245. [PMID: 29577996 DOI: 10.1016/j.neuroscience.2018.03.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 12/14/2022]
Abstract
Following peripheral nerve injury, Schwann Cells (SCs) undergo dedifferentiation, proliferation, migration, and remyelination. Recent works demonstrated the importance of the short non-coding RNA (miRNAs) in SC dedifferentiation and remyelination after nerve injury. Previously, we found some miRNAs like miR-9, miR-221, miR-222 and miR-182 could regulate the proliferation and migration of SCs. Therefore, it is imperative to ask whether these miRNAs could regulate the myelination of SCs. Here we demonstrated that miR-221-3p could inhibit the myelination of SCs when co-cultured with dorsal root ganglion cells in vitro. In addition, NGF1-A binding protein 1 (Nab1) which was essential for SCs myelination could be downregulated by miR-221-3p. Suppressing the expression of Nab1 could reverse the promotion of miR-221-3p antagomir on SC myelination. The effects of miR-221-3p on SC myelination might be used to improve peripheral nerve regeneration, thus offering a new approach to peripheral nerve repair.
Collapse
Affiliation(s)
- Lili Zhao
- Key laboratory of neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China; State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing Biomedical Research Institute, Nanjing University, Nanjing, Jiangsu 210000, China
| | - Ying Yuan
- Key laboratory of neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China.
| | - Ping Li
- Key laboratory of neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Jiacheng Pan
- Key laboratory of neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Jing Qin
- Key laboratory of neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Yisheng Liu
- Key laboratory of neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Yu Zhang
- F.M. Kirby Neurobiology Center, Department of Neurology, Children's Hospital, Harvard Medical School, 300 Longwood Anevue, Boston, MA 02115, USA
| | - Feng Tian
- F.M. Kirby Neurobiology Center, Department of Neurology, Children's Hospital, Harvard Medical School, 300 Longwood Anevue, Boston, MA 02115, USA
| | - Bin Yu
- Key laboratory of neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Songlin Zhou
- Key laboratory of neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China.
| |
Collapse
|
44
|
Makhija E, Jagielska A, Zhu L, Bost AC, Ong W, Chew SY, Shivashankar GV, Van Vliet KJ. Mechanical Strain Alters Cellular and Nuclear Dynamics at Early Stages of Oligodendrocyte Differentiation. Front Cell Neurosci 2018; 12:59. [PMID: 29559894 PMCID: PMC5845683 DOI: 10.3389/fncel.2018.00059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/19/2018] [Indexed: 11/13/2022] Open
Abstract
Mechanical and physical stimuli including material stiffness and topography or applied mechanical strain have been demonstrated to modulate differentiation of glial progenitor and neural stem cells. Recent studies probing such mechanotransduction in oligodendrocytes have focused chiefly on the biomolecular components. However, the cell-level biophysical changes associated with such responses remain largely unknown. Here, we explored mechanotransduction in oligodendrocyte progenitor cells (OPCs) during the first 48 h of differentiation induction by quantifying the biophysical state in terms of nuclear dynamics, cytoskeleton organization, and cell migration. We compared these mechanophenotypic changes in OPCs exposed to both chemical cues (differentiation factors) and mechanical cues (static tensile strain of 10%) with those exposed to only those chemical cues. We observed that mechanical strain significantly hastened the dampening of nuclear fluctuations and decreased OPC migration, consistent with the progression of differentiation. Those biophysical changes were accompanied by increased production of the intracellular microtubule network. These observations provide insights into mechanisms by which mechanical strain of physiological magnitude could promote differentiation of progenitor cells to oligodendrocytes via inducing intracellular biophysical responses over hours to days post induction.
Collapse
Affiliation(s)
- Ekta Makhija
- BioSystems and Micromechanics Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, CREATE, Singapore, Singapore
| | - Anna Jagielska
- BioSystems and Micromechanics Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, CREATE, Singapore, Singapore.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Lena Zhu
- BioSystems and Micromechanics Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, CREATE, Singapore, Singapore.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Alexander C Bost
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - William Ong
- NTU Institute for Health Technologies (Health Tech NTU), Interdisciplinary Graduate School, Nanyang Technological University, Singapore, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Sing Y Chew
- BioSystems and Micromechanics Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, CREATE, Singapore, Singapore.,School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - G V Shivashankar
- BioSystems and Micromechanics Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, CREATE, Singapore, Singapore.,Mechanobiology Institute, Singapore, Singapore.,The FIRC Institute of Molecular Oncology, Milan, Italy
| | - Krystyn J Van Vliet
- BioSystems and Micromechanics Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, CREATE, Singapore, Singapore.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
45
|
Zou Z, Huang L, Lin S, He Z, Zhu H, Zhang Y, Fang Q, Luo Y. Prenatal diagnosis of posterior fossa anomalies: Additional value of chromosomal microarray analysis in fetuses with cerebellar hypoplasia. Prenat Diagn 2018; 38:91-98. [PMID: 29171036 DOI: 10.1002/pd.5190] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/02/2017] [Accepted: 11/15/2017] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To elucidate the relationship between copy number variations (CNVs) detected by high-resolution chromosomal microarray analysis (CMA) and the type of prenatal posterior fossa anomalies (PFAs), especially cerebellar hypoplasia (CH). METHODS This study involved 77 pregnancies with PFAs who underwent CMA. RESULTS Chromosomal aberrations including pathogenic CNVs and variants of unknown significance were detected in 31.2% (24/77) of all cases by CMA and in 18.5% (12/65) in fetuses with normal karyotypes. The high detection rate of clinically significant CNVs was evident in fetuses with cerebellar hypoplasia (54.6%, 6/11), vermis hypoplasia (33.3%, 1/3), and Dandy-Walker malformation (25.0%, 3/12). Compare with fetuses without other anomalies, cases with CH and additional malformations had the higher CMA detection rate (33.3% vs 88.9%). Three cases of isolated unilateral CH with intact vermis and normal CMA result had normal outcomes. The deletion of 5p15, 6q terminal deletion, and X chromosome aberrations were the most frequent genetic defects associated with cerebellar hypoplasia. CONCLUSION Among fetuses with PFA, those with cerebellar hypoplasia, vermis hypoplasia, or Dandy-Walker malformation are at the highest risk of clinically significant CNVs. Chromosomal microarray analysis revealed the most frequent chromosomal aberrations associated with CH.
Collapse
Affiliation(s)
- Zhiyong Zou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Linhuan Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Shaobin Lin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Zhiming He
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Hui Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yi Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Qun Fang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Yanmin Luo
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
46
|
Collar occupancy: A new quantitative imaging tool for morphometric analysis of oligodendrocytes. J Neurosci Methods 2017; 294:122-135. [PMID: 29174019 DOI: 10.1016/j.jneumeth.2017.11.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/17/2017] [Accepted: 11/19/2017] [Indexed: 12/14/2022]
Abstract
BACKGROUND Oligodendrocytes (OL) are the myelinating cells of the central nervous system. OL differentiation from oligodendrocyte progenitor cells (OPC) is accompanied by characteristic stereotypical morphological changes. Quantitative imaging of those morphological alterations during OPC differentiation is commonly used for characterization of new molecules in cell differentiation and myelination and screening of new pro-myelinating drugs. Current available imaging analysis methods imply a non-automated morphology assessment, which is time-consuming and prone to user subjective evaluation. NEW METHOD Here, we describe an automated high-throughput quantitative image analysis method entitled collar occupancy that allows morphometric ranking of different stages of in vitro OL differentiation in a high-content analysis format. Collar occupancy is based on the determination of the percentage of area occupied by OPC/OL cytoplasmic protrusions within a defined region that contains the protrusion network, the collar. RESULTS We observed that more differentiated cells have higher collar occupancy and, therefore, this parameter correlates with the degree of OL differentiation. COMPARISON WITH EXISTING METHODS In comparison with the method of manual categorization, we found the collar occupancy to be more robust and unbiased. Moreover, when coupled with myelin basic protein (MBP) staining to quantify the percentage of myelinating cells, we were able to evaluate the role of new molecules in OL differentiation and myelination, such as Dusp19 and Kank2. CONCLUSIONS Altogether, we have successfully developed an automated and quantitative method to morphologically characterize OL differentiation in vitro that can be used in multiple studies of OL biology.
Collapse
|
47
|
Yamazaki R, Baba H, Yamaguchi Y. Unconventional Myosin ID is Involved in Remyelination After Cuprizone-Induced Demyelination. Neurochem Res 2017; 43:195-204. [PMID: 28986688 DOI: 10.1007/s11064-017-2413-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/25/2017] [Accepted: 10/04/2017] [Indexed: 12/19/2022]
Abstract
Myelin, which is a multilamellar structure that sheathes the axon, is essential for normal neuronal function. In the central nervous system (CNS), myelin is produced by oligodendrocytes (OLs), which wrap their plasma membrane around axons. The dynamic membrane trafficking system, which relies on motor proteins, is required for myelin formation and maintenance. Previously, we reported that myosin ID (Myo1d) is distributed in rat CNS myelin and is especially enriched in the outer and inner cytoplasm-containing loops. Further, small interfering RNA (siRNA) treatment highlighted the involvement of Myo1d in the formation and maintenance of myelin in cultured OLs. Myo1d is one of the unconventional myosins, which may contribute to membrane dynamics, either in the wrapping process or transport of myelin membrane proteins during myelination. However, the function of Myo1d in myelin formation in vivo remains unclear. In the current study, to clarify the function of Myo1d in vivo, we surgically injected siRNA in the corpus callosum of a cuprizone-treated demyelination mouse model via stereotaxy. Knockdown of Myo1d expression in vivo decreased the intensities of myelin basic protein and myelin proteolipid protein immunofluorescence staining. However, neural/glial antigen 2-positive signals and adenomatous polyposis coli (APC/CC1)-positive cell numbers were unchanged by siRNA treatment. Furthermore, Myo1d knockdown treatment increased pro-inflammatory microglia and astrocytes during remyelination. In contrast, anti-inflammatory microglia were decreased. The percentage of caspase 3-positive cells in total CC1-positive OLs were also increased by Myo1d knockdown. These results indicated that Myo1d plays an important role during the regeneration process after demyelination.
Collapse
Affiliation(s)
- Reiji Yamazaki
- Department of Molecular Neurobiology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Hiroko Baba
- Department of Molecular Neurobiology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Yoshihide Yamaguchi
- Department of Molecular Neurobiology, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| |
Collapse
|
48
|
Roth AD, Núñez MT. Oligodendrocytes: Functioning in a Delicate Balance Between High Metabolic Requirements and Oxidative Damage. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 949:167-181. [PMID: 27714689 DOI: 10.1007/978-3-319-40764-7_8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The study of the metabolic interactions between myelinating glia and the axons they ensheath has blossomed into an area of research much akin to the elucidation of the role of astrocytes in tripartite synapses (Tsacopoulos and Magistretti in J Neurosci 16:877-885, 1996). Still, unlike astrocytes, rich in cytochrome-P450 and other anti-oxidative defense mechanisms (Minn et al. in Brain Res Brain Res Rev 16:65-82, 1991; Wilson in Can J Physiol Pharmacol. 75:1149-1163, 1997), oligodendrocytes can be easily damaged and are particularly sensitive to both hypoxia and oxidative stress, especially during their terminal differentiation phase and while generating myelin sheaths. In the present review, we will focus in the metabolic complexity of oligodendrocytes, particularly during the processes of differentiation and myelin deposition, and with a specific emphasis in the context of oxidative stress and the intricacies of the iron metabolism of the most iron-loaded cells of the central nervous system (CNS).
Collapse
Affiliation(s)
- Alejandro D Roth
- Department of Biology, Faculty of Science, University of Chile, Santiago, Chile.
| | - Marco T Núñez
- Department of Biology, Faculty of Science, University of Chile, Santiago, Chile
| |
Collapse
|
49
|
van der Knaap MS, Bugiani M. Leukodystrophies: a proposed classification system based on pathological changes and pathogenetic mechanisms. Acta Neuropathol 2017; 134:351-382. [PMID: 28638987 PMCID: PMC5563342 DOI: 10.1007/s00401-017-1739-1] [Citation(s) in RCA: 241] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/06/2017] [Accepted: 06/06/2017] [Indexed: 12/29/2022]
Abstract
Leukodystrophies are genetically determined disorders characterized by the selective involvement of the central nervous system white matter. Onset may be at any age, from prenatal life to senescence. Many leukodystrophies are degenerative in nature, but some only impair white matter function. The clinical course is mostly progressive, but may also be static or even improving with time. Progressive leukodystrophies are often fatal, and no curative treatment is known. The last decade has witnessed a tremendous increase in the number of defined leukodystrophies also owing to a diagnostic approach combining magnetic resonance imaging pattern recognition and next generation sequencing. Knowledge on white matter physiology and pathology has also dramatically built up. This led to the recognition that only few leukodystrophies are due to mutations in myelin- or oligodendrocyte-specific genes, and many are rather caused by defects in other white matter structural components, including astrocytes, microglia, axons and blood vessels. We here propose a novel classification of leukodystrophies that takes into account the primary involvement of any white matter component. Categories in this classification are the myelin disorders due to a primary defect in oligodendrocytes or myelin (hypomyelinating and demyelinating leukodystrophies, leukodystrophies with myelin vacuolization); astrocytopathies; leuko-axonopathies; microgliopathies; and leuko-vasculopathies. Following this classification, we illustrate the neuropathology and disease mechanisms of some leukodystrophies taken as example for each category. Some leukodystrophies fall into more than one category. Given the complex molecular and cellular interplay underlying white matter pathology, recognition of the cellular pathology behind a disease becomes crucial in addressing possible treatment strategies.
Collapse
Affiliation(s)
- Marjo S van der Knaap
- Department of Pediatrics/Child Neurology, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Functional Genomics, Centre for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, VU University, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pediatrics/Child Neurology, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands.
- Department of Pathology, VU University Medical Centre, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
50
|
Titus HE, López-Juárez A, Silbak SH, Rizvi TA, Bogard M, Ratner N. Oligodendrocyte RasG12V expressed in its endogenous locus disrupts myelin structure through increased MAPK, nitric oxide, and notch signaling. Glia 2017; 65:1990-2002. [PMID: 28856719 DOI: 10.1002/glia.23209] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/18/2017] [Accepted: 08/04/2017] [Indexed: 01/28/2023]
Abstract
Costello syndrome (CS) is a gain of function Rasopathy caused by heterozygous activating mutations in the HRAS gene. Patients show brain dysfunction that can include abnormal brain white matter. Transgenic activation of HRas in the entire mouse oligodendrocyte lineage resulted in myelin defects and behavioral abnormalities, suggesting roles for disrupted myelin in CS brain dysfunction. Here, we studied a mouse model in which the endogenous HRas gene is conditionally replaced by mutant HRasG12V in mature oligodendrocytes, to separate effects in mature myelinating cells from developmental events. Increased myelin thickness due to decompaction was detectable within one month of HRasG12V expression in the corpus callosum of adult mice. Increases in active ERK and Nitric Oxide (NO) were present in HRas mutants and inhibition of NO synthase (NOS) or MEK each partially rescued myelin decompaction. In addition, genetic or pharmacologic inhibition of Notch signaling improved myelin compaction. Complete rescue of myelin structure required dual drug treatments combining MAPK, NO, or Notch inhibition; with MEK + NOS blockade producing the most robust effect. We suggest that individual or concomitant blockade of these pathways in CS patients may improve aspects of brain function.
Collapse
Affiliation(s)
- Haley E Titus
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
| | - Alejandro López-Juárez
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
| | - Sadiq H Silbak
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
| | - Tilat A Rizvi
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
| | - Madeleine Bogard
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229
| |
Collapse
|