1
|
Zeng HX, Qin SJ, Andersson J, Li SP, Zeng QG, Li JH, Wu QZ, Meng WJ, Oudin A, Kanninen KM, Jalava P, Dong GH, Zeng XW. The emerging roles of particulate matter-changed non-coding RNAs in the pathogenesis of Alzheimer's disease: A comprehensive in silico analysis and review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125440. [PMID: 39631655 DOI: 10.1016/j.envpol.2024.125440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 11/27/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Research on epigenetic‒environmental interactions in the development of Alzheimer's disease (AD) has accelerated rapidly in recent decades. Numerous studies have demonstrated the contribution of ambient particulate matter (PM) to the onset of AD. Emerging evidence indicates that non-coding RNAs (ncRNAs), including long non-coding RNAs, circular RNAs, and microRNAs, play a role in the pathophysiology of AD. In this review, we provide an overview of PM-altered ncRNAs in the brain, with emphasis on their potential roles in the pathogenesis of AD. These results suggest that these PM-altered ncRNAs are involved in the regulation of amyloid-beta pathology, microtubule-associated protein Tau pathology, synaptic dysfunction, damage to the blood‒brain barrier, microglial dysfunction, dysmyelination, and neuronal loss. In addition, we utilized in silico analysis to explore the biological functions of PM-altered ncRNAs in the development of AD. This review summarizes the knowns and unknowns of PM-altered ncRNAs in AD pathogenesis and discusses the current dilemma regarding PM-altered ncRNAs as promising biomarkers of AD. Altogether, this is the first thorough review of the connection between PM exposure and ncRNAs in AD pathogenesis, which may offer novel insights into the prevention, diagnosis, and treatment of AD associated with ambient PM exposure.
Collapse
Affiliation(s)
- Hui-Xian Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Shuang-Jian Qin
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | | | - Shen-Pan Li
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing-Guo Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jia-Hui Li
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qi-Zhen Wu
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Wen-Jie Meng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Anna Oudin
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Katja M Kanninen
- A.I.Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pasi Jalava
- Department of Environmental and Biological Science, University of Eastern Finland, Kuopio, Finland
| | - Guang-Hui Dong
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiao-Wen Zeng
- Joint International Research Laboratory of Environment and Health, Ministry of Education, Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
2
|
Gao JJ, Liang T, Wen SL, Feng RQ, Zheng Y, Chen SS, Chen JE, Xu XL. Harnessing polysialic acid (PSA)-embedded exudate-absorbing hydrogel for on-demand trigeminal neuralgia treatment. Int J Biol Macromol 2025; 284:138035. [PMID: 39586435 DOI: 10.1016/j.ijbiomac.2024.138035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 11/27/2024]
Abstract
A key characteristic of trigeminal neuralgia (TN) is cytokine-enriched exudate and a "reactive oxygen species (ROS) storm" generated from the inflammatory cascade, resulting in demyelination of the sensory root of the trigeminal nerve, tissue swelling, and intense electric shock-like pain. The clinically approved drug carbamazepine (CBZ) is capable of inhibiting pain, reducing inflammatory factors, and alleviating oxidative stress, but its clinical application is restricted by its systemic toxicity. Herein, we developed an exudate-absorbing hydrogel incorporating polysialic acid (PSA) and CBZ (F127@PSA@CBZ) for on-demand TN treatment. Owing to the strong water absorption properties of PSA and F127, the F127@PSA@CBZ hydrogel can quickly absorb the lesion exudate and swell into a larger volume with a looser structure, thus releasing payloads sustainably, such as CBZ and PSA, for approximately 7 days in vivo. The released CBZ can scavenges the ROS storm and inhibits the levels of proinflammatory factors. More importantly, the residual PSA was found to promoted the proliferation of Schwann cells by upregulating the expression of STAT3 and Ki67, contributing to enhanced myelin sheath regeneration in a rat TN model. These findings highlight that the PSA-embedded exudate-absorbing hydrogel has great potential for facilitating the repair of the trigeminal nerve myelin sheath.
Collapse
Affiliation(s)
- Jing-Jing Gao
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Tao Liang
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Shi-Lin Wen
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Rui-Quan Feng
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Yu Zheng
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China
| | - Shi-Shi Chen
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, PR China
| | - Jian-Er Chen
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou 310053, PR China; The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou 310053, PR China; Zhejiang Rehabilitation Medical Center, Hangzhou 310053, PR China.
| | - Xiao-Ling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou 310015, PR China.
| |
Collapse
|
3
|
Schumacher N, Vandenbosch R, Franzen R. Peripheral myelin: From development to maintenance. J Neurochem 2025; 169:e16268. [PMID: 39655795 DOI: 10.1111/jnc.16268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 12/18/2024]
Abstract
Peripheral myelin is synthesized by glial cells called Schwann cells (SCs). SC development and differentiation must be tightly regulated to avoid any pathological consequence affecting peripheral nerve function. Neuropathic symptoms can arise from developmental issues in SCs, as well as in adult life through processes affecting mature SCs. In this review we focus on SC differentiation from the immature towards the myelinating and non-myelinating SC stages, defining molecular mechanisms outlining radial sorting, a multi-stepped event essential for immature SC differentiation and myelination. We also describe mechanisms regulating myelin sheath maintenance and SC homeostasis during aging. Finally, we will conclude with some remaining questions in the field of SC biology.
Collapse
Affiliation(s)
- Nathalie Schumacher
- Laboratory of Nervous System Disorders and Therapies, GIGA Institute, University of Liège, Liège, Belgium
| | - Renaud Vandenbosch
- Laboratory of Developmental Neurobiology, GIGA Institute, University of Liège, Liège, Belgium
| | - Rachelle Franzen
- Laboratory of Nervous System Disorders and Therapies, GIGA Institute, University of Liège, Liège, Belgium
| |
Collapse
|
4
|
Asiri YI, Moni SS, Ramar M, Chidambaram K. Advancing Pain Understanding and Drug Discovery: Insights from Preclinical Models and Recent Research Findings. Pharmaceuticals (Basel) 2024; 17:1439. [PMID: 39598351 PMCID: PMC11597627 DOI: 10.3390/ph17111439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/19/2024] [Accepted: 10/21/2024] [Indexed: 11/29/2024] Open
Abstract
Despite major advancements in our understanding of its fundamental causes, pain-both acute and chronic-remains a serious health concern. Various preclinical investigations utilizing diverse animal, cellular, and alternative models are required and frequently demanded by regulatory approval bodies to bridge the gap between the lab and the clinic. Investigating naturally occurring painful disorders can speed up medication development at the preclinical and clinical levels by illuminating molecular pathways. A wide range of animal models related to pain have been developed to elucidate pathophysiological mechanisms and aid in identifying novel targets for treatment. Pain sometimes drugs fail clinically, causing high translational costs due to poor selection and the use of preclinical tools and reporting. To improve the study of pain in a clinical context, researchers have been creating innovative models over the past few decades that better represent pathological pain conditions. In this paper, we provide a summary of traditional animal models, including rodents, cellular models, human volunteers, and alternative models, as well as the specific characteristics of pain diseases they model. However, a more rigorous approach to preclinical research and cutting-edge analgesic technologies may be necessary to successfully create novel analgesics. The research highlights from this review emphasize new opportunities to develop research that includes animals and non-animals using proven methods pertinent to comprehending and treating human suffering. This review highlights the value of using a variety of modern pain models in animals before human trials. These models can help us understand the different mechanisms behind various pain types. This will ultimately lead to the development of more effective pain medications.
Collapse
Affiliation(s)
- Yahya I. Asiri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia;
| | - Sivakumar S. Moni
- Health Research Centre, Jazan University, Jazan 45142, Saudi Arabia;
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | - Mohankumar Ramar
- Department of Pharmaceutical Sciences, UConn School of Pharmacy, University of Connecticut, Storrs, CT 06269, USA;
| | - Kumarappan Chidambaram
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 62521, Saudi Arabia;
| |
Collapse
|
5
|
Wu W, Zhang J, Chen Y, Chen Q, Liu Q, Zhang F, Li S, Wang X. Genes in Axonal Regeneration. Mol Neurobiol 2024; 61:7431-7447. [PMID: 38388774 DOI: 10.1007/s12035-024-04049-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
This review explores the molecular and genetic underpinnings of axonal regeneration and functional recovery post-nerve injury, emphasizing its significance in reversing neurological deficits. It presents a systematic exploration of the roles of various genes in axonal regrowth across peripheral and central nerve injuries. Initially, it highlights genes and gene families critical for axonal growth and guidance, delving into their roles in regeneration. It then examines the regenerative microenvironment, focusing on the role of glial cells in neural repair through dedifferentiation, proliferation, and migration. The concept of "traumatic microenvironments" within the central nervous system (CNS) and peripheral nervous system (PNS) is discussed, noting their impact on regenerative capacities and their importance in therapeutic strategy development. Additionally, the review delves into axonal transport mechanisms essential for accurate growth and reinnervation, integrating insights from proteomics, genome-wide screenings, and gene editing advancements. Conclusively, it synthesizes these insights to offer a comprehensive understanding of axonal regeneration's molecular orchestration, aiming to inform effective nerve injury therapies and contribute to regenerative neuroscience.
Collapse
Affiliation(s)
- Wenshuang Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Jing Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Yu Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Qianqian Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Qianyan Liu
- School of Acupuncture-Moxibustion, Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Fuchao Zhang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Shiying Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| | - Xinghui Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
| |
Collapse
|
6
|
Salzer J, Feltri ML, Jacob C. Schwann Cell Development and Myelination. Cold Spring Harb Perspect Biol 2024; 16:a041360. [PMID: 38503507 PMCID: PMC11368196 DOI: 10.1101/cshperspect.a041360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Glial cells in the peripheral nervous system (PNS), which arise from the neural crest, include axon-associated Schwann cells (SCs) in nerves, synapse-associated SCs at the neuromuscular junction, enteric glia, perikaryon-associated satellite cells in ganglia, and boundary cap cells at the border between the central nervous system (CNS) and the PNS. Here, we focus on axon-associated SCs. These SCs progress through a series of formative stages, which culminate in the generation of myelinating SCs that wrap large-caliber axons and of nonmyelinating (Remak) SCs that enclose multiple, small-caliber axons. In this work, we describe SC development, extrinsic signals from the axon and extracellular matrix (ECM) and the intracellular signaling pathways they activate that regulate SC development, and the morphogenesis and organization of myelinating SCs and the myelin sheath. We review the impact of SCs on the biology and integrity of axons and their emerging role in regulating peripheral nerve architecture. Finally, we explain how transcription and epigenetic factors control and fine-tune SC development and myelination.
Collapse
Affiliation(s)
- James Salzer
- Neuroscience Institute, New York University Grossman School of Medicine, New York, New York 10016, USA
| | - M Laura Feltri
- Institute for Myelin and Glia Exploration, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York 14203, USA
- IRCCS Neurological Institute Carlo Besta, Milano 20133, Italy
- Department of Biotechnology and Translational Sciences, Universita' Degli Studi di Milano, Milano 20133, Italy
| | - Claire Jacob
- Faculty of Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz 55128, Germany
| |
Collapse
|
7
|
Jörg LM, Schlötzer-Schrehardt U, Lefebvre V, Sock E, Wegner M. Transcription Factors Sox8 and Sox10 Contribute with Different Importance to the Maintenance of Mature Oligodendrocytes. Int J Mol Sci 2024; 25:8754. [PMID: 39201442 PMCID: PMC11354551 DOI: 10.3390/ijms25168754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Myelin-forming oligodendrocytes in the vertebrate nervous system co-express the transcription factor Sox10 and its paralog Sox8. While Sox10 plays crucial roles throughout all stages of oligodendrocyte development, including terminal differentiation, the loss of Sox8 results in only mild and transient perturbations. Here, we aimed to elucidate the roles and interrelationships of these transcription factors in fully differentiated oligodendrocytes and myelin maintenance in adults. For that purpose, we conducted targeted deletions of Sox10, Sox8, or both in the brains of two-month-old mice. Three weeks post-deletion, none of the resulting mouse mutants exhibited significant alterations in oligodendrocyte numbers, myelin sheath counts, myelin ultrastructure, or myelin protein levels in the corpus callosum, despite efficient gene inactivation. However, differences were observed in the myelin gene expression in mice with Sox10 or combined Sox8/Sox10 deletion. RNA-sequencing analysis on dissected corpus callosum confirmed substantial alterations in the oligodendrocyte expression profile in mice with combined deletion and more subtle changes in mice with Sox10 deletion alone. Notably, Sox8 deletion did not affect any aspects of the expression profile related to the differentiated state of oligodendrocytes or myelin integrity. These findings extend our understanding of the roles of Sox8 and Sox10 in oligodendrocytes into adulthood and have important implications for the functional relationship between the paralogs and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Lisa Mirja Jörg
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D91054 Erlangen, Germany; (L.M.J.); (E.S.)
| | | | - Véronique Lefebvre
- Department of Surgery, Division of Orthopaedic Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - Elisabeth Sock
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D91054 Erlangen, Germany; (L.M.J.); (E.S.)
| | - Michael Wegner
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D91054 Erlangen, Germany; (L.M.J.); (E.S.)
| |
Collapse
|
8
|
Chen Y, Shang T, Sun J, Ji Y, Gong L, Li A, Ding F, Shen M, Zhang Q. Characterization of sciatic nerve myelin sheath during development in C57BL/6 mice. Eur J Neurosci 2024; 60:4503-4517. [PMID: 38951719 DOI: 10.1111/ejn.16457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 06/05/2024] [Accepted: 06/16/2024] [Indexed: 07/03/2024]
Abstract
Myelin sheath plays important roles in information conduction and nerve injury repair in the peripheral nerve system (PNS). Enhancing comprehension of the structure and components of the myelin sheath in the PNS during development would contribute to a more comprehensive understanding of the developmental and regenerative processes. In this research, the structure of sciatic nerve myelin sheath in C57BL/6 mice from embryonic day 14 (E14) to postnatal 12 months (12M) was observed with transmission electron microscopy. Myelin structure appeared in the sciatic nerve as early as E14, and the number and thickness of myelin lamellar gradually increased with the development until 12M. Transcriptome analysis was performed to show the expressions of myelin-associated genes and transcriptional factors involved in myelin formation. The genes encoding myelin proteins (Mag, Pmp22, Mpz, Mbp, Cnp and Prx) showed the same expression pattern, peaking at postnatal day 7 (P7) and P28 after birth, whereas the negative regulators of myelination (c-Jun, Tgfb1, Tnc, Cyr61, Ngf, Egr1, Hgf and Bcl11a) showed an opposite expression pattern. In addition, the expression of myelin-associated proteins and transcriptional factors was measured by Western blot and immunofluorescence staining. The protein expressions of MAG, PMP22, MPZ, CNPase and PRX increased from E20 to P14. The key transcriptional factor c-Jun co-localized with the Schwann cells Marker S100β and decreased after birth, whereas Krox20/Egr2 increased during development. Our data characterized the structure and components of myelin sheath during the early developmental stages, providing insights for further understanding of PNS development.
Collapse
Affiliation(s)
- Yuhan Chen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Medical School, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Tongxin Shang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Medical School, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Junjie Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Medical School, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Yuhua Ji
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Medical School, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Leilei Gong
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Medical School, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
- Research and Development Center for E-Learning, Ministry of Education, Beijing, China
| | - Aihong Li
- Department of Neurology, Affiliated Hospital of Nantong University, Medical School, Nantong University, Nantong, China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Medical School, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Mi Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Medical School, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| | - Qi Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Medical School, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, China
| |
Collapse
|
9
|
Gregory HN, Guillemot-Legris O, Crouch D, Williams G, Phillips JB. Electrospun aligned tacrolimus-loaded polycaprolactone biomaterials for peripheral nerve repair. Regen Med 2024; 19:171-187. [PMID: 37818696 DOI: 10.2217/rme-2023-0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023] Open
Abstract
Background: Efficacious repair of peripheral nerve injury is an unmet clinical need. The implantation of biomaterials containing neurotrophic drugs at the injury site could promote nerve regeneration and improve outcomes for patients. Materials & methods: Random and aligned electrospun poly-ε-caprolactone scaffolds containing encapsulated tacrolimus were fabricated, and the gene expression profile of Schwann cells (SCs) cultured on the surface was elucidated. On aligned fibers, the morphology of SCs and primary rat neurons was investigated. Results: Both scaffold types exhibited sustained release of drug, and the gene expression of SCs was modulated by both nanofibrous topography and the presence of tacrolimus. Aligned fibers promoted the alignment of SCs and orientated outgrowth from neurons. Conclusion: Electrospun PCL scaffolds with tacrolimus hold promise for the repair of peripheral nerve injury.
Collapse
Affiliation(s)
- Holly N Gregory
- UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
- UCL Centre for Nerve Engineering, London, WC1N 1AX, UK
| | - Owein Guillemot-Legris
- UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
- UCL Centre for Nerve Engineering, London, WC1N 1AX, UK
| | - Daisy Crouch
- UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
- UCL Centre for Nerve Engineering, London, WC1N 1AX, UK
| | - Gareth Williams
- UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
- UCL Centre for Nerve Engineering, London, WC1N 1AX, UK
| | - James B Phillips
- UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
- UCL Centre for Nerve Engineering, London, WC1N 1AX, UK
| |
Collapse
|
10
|
Grove M, Kim H, Pang S, Amaya JP, Hu G, Zhou J, Lemay M, Son YJ. TEAD1 is crucial for developmental myelination, Remak bundles, and functional regeneration of peripheral nerves. eLife 2024; 13:e87394. [PMID: 38456457 PMCID: PMC10959528 DOI: 10.7554/elife.87394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 03/06/2024] [Indexed: 03/09/2024] Open
Abstract
Previously we showed that the hippo pathway transcriptional effectors, YAP and TAZ, are essential for Schwann cells (SCs) to develop, maintain and regenerate myelin . Although TEAD1 has been implicated as a partner transcription factor, the mechanisms by which it mediates YAP/TAZ regulation of SC myelination are unclear. Here, using conditional and inducible knockout mice, we show that TEAD1 is crucial for SCs to develop and regenerate myelin. It promotes myelination by both positively and negatively regulating SC proliferation, enabling Krox20/Egr2 to upregulate myelin proteins, and upregulating the cholesterol biosynthetic enzymes FDPS and IDI1. We also show stage-dependent redundancy of TEAD1 and that non-myelinating SCs have a unique requirement for TEAD1 to enwrap nociceptive axons in Remak bundles. Our findings establish TEAD1 as a major partner of YAP/TAZ in developmental myelination and functional nerve regeneration and as a novel transcription factor regulating Remak bundle integrity.
Collapse
Affiliation(s)
- Matthew Grove
- Department of Neural Sciences, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple UniversityPhiladelphiaUnited States
| | - Hyukmin Kim
- Department of Neural Sciences, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple UniversityPhiladelphiaUnited States
| | - Shuhuan Pang
- Department of Neural Sciences, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple UniversityPhiladelphiaUnited States
| | - Jose Paz Amaya
- Department of Bioengineering, Temple UniversityPhiladelphiaUnited States
| | - Guoqing Hu
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta UniversityAugustaUnited States
| | - Jiliang Zhou
- Department of Pharmacology & Toxicology, Medical College of Georgia, Augusta UniversityAugustaUnited States
| | - Michel Lemay
- Department of Bioengineering, Temple UniversityPhiladelphiaUnited States
| | - Young-Jin Son
- Department of Neural Sciences, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple UniversityPhiladelphiaUnited States
| |
Collapse
|
11
|
Grove M, Kim H, Pang S, Amaya JP, Hu G, Zhou J, Lemay M, Son YJ. TEAD1 is crucial for developmental myelination, Remak bundles, and functional regeneration of peripheral nerves. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.27.530298. [PMID: 38293102 PMCID: PMC10827063 DOI: 10.1101/2023.02.27.530298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Previously we showed that the hippo pathway transcriptional effectors, YAP and TAZ, are essential for Schwann cells (SCs) to develop, maintain and regenerate myelin (Grove et al., 2017; Grove, Lee, Zhao, & Son, 2020). Although TEAD1 has been implicated as a partner transcription factor, the mechanisms by which it mediates YAP/TAZ regulation of SC myelination are unclear. Here, using conditional and inducible knockout mice, we show that TEAD1 is crucial for SCs to develop and regenerate myelin. It promotes myelination by both positively and negatively regulating SC proliferation, enabling Krox20/Egr2 to upregulate myelin proteins, and upregulating the cholesterol biosynthetic enzymes FDPS and IDI1. We also show stage-dependent redundancy of TEAD1 and that non-myelinating SCs have a unique requirement for TEAD1 to enwrap nociceptive axons in Remak bundles. Our findings establish TEAD1 as a major partner of YAP/TAZ in developmental myelination and functional nerve regeneration and as a novel transcription factor regulating Remak bundle integrity.
Collapse
|
12
|
Roudbari F, Dallal Amandi AR, Bonyadi M, Sadeghi L, Jabbarpour N. Identification of a de novo, Novel Pathogenic Variant in the Splice Region of the SOX10 Gene in an Iranian Azeri Turkish Family with Waardenburg Syndrome. Mol Syndromol 2023; 14:516-522. [PMID: 38058752 PMCID: PMC10697760 DOI: 10.1159/000531566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 06/13/2023] [Indexed: 12/08/2023] Open
Abstract
Background Waardenburg syndrome (WS) is an inherited heterogeneous auditory pigmentary syndrome, divided into at least four types and characterized by iris heterochromia, white forelock, prominent nasal root, dystopia canthorum, middle eyebrow hypertrichosis, and deafness. Pathogenic variants in the SOX10 gene have been reported to be involved in WS disease. Methods Whole exome sequencing (WES) was conducted on a 24-year-old male, who originated from Iranian Azeri Turkish ethnic group, with symptoms of deafness and blue eyes from brown-eyed parents. Web-based tools including Mutation Taster, VarSome, SIFT, Human Splicing Finder (HSF), and I-TASSER, were used for bioinformatics analysis. To verify the WES findings, DNAs taken from the blood samples of all family members were subjected to PCR-Sanger sequencing. Results A novel heterozygous pathogenic variant, NC_000022.11 (NM_006941):c.428+1G>T, located in the second intron of the SOX10 gene and disrupting the splicing site, was identified in the proband. Sanger sequencing was applied on the proband and his parents. The results showed that the variant was a de novo pathogenic variant with an autosomal dominant inheritance pattern. Conclusions Identification of a novel de novo pathogenic variant, NC_000022.11 (NM_006941):c.428+1G>T, in the second intron of the SOX10 gene with autosomal dominant inheritance pattern.
Collapse
Affiliation(s)
- Faranak Roudbari
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | | | - Mortaza Bonyadi
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Leyla Sadeghi
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| | - Neda Jabbarpour
- Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran
| |
Collapse
|
13
|
Doan RA, Monk KR. Dock1 acts cell-autonomously in Schwann cells to regulate the development, maintenance, and repair of peripheral myelin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564271. [PMID: 37961336 PMCID: PMC10634861 DOI: 10.1101/2023.10.26.564271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Schwann cells, the myelinating glia of the peripheral nervous system (PNS), are critical for myelin development, maintenance, and repair. Rac1 is a known regulator of radial sorting, a key step in developmental myelination, and we previously showed in zebrafish that loss of Dock1, a Rac1-specific guanine nucleotide exchange factor, results in delayed peripheral myelination in development. We demonstrate here that Dock1 is necessary for myelin maintenance and remyelination after injury in adult zebrafish. Furthermore, it performs an evolutionary conserved role in mice, acting cell-autonomously in Schwann cells to regulate peripheral myelin development, maintenance, and repair. Additionally, manipulating Rac1 levels in larval zebrafish reveals that dock1 mutants are sensitized to inhibition of Rac1, suggesting an interaction between the two proteins during PNS development. We propose that the interplay between Dock1 and Rac1 signaling in Schwann cells is required to establish, maintain, and facilitate repair and remyelination within the peripheral nervous system.
Collapse
Affiliation(s)
- Ryan A Doan
- The Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| | - Kelly R Monk
- The Vollum Institute, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
14
|
Guillemot-Legris O, Girmahun G, Shipley RJ, Phillips JB. Local Administration of Minocycline Improves Nerve Regeneration in Two Rat Nerve Injury Models. Int J Mol Sci 2023; 24:12085. [PMID: 37569473 PMCID: PMC10418394 DOI: 10.3390/ijms241512085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Peripheral nerve injuries are quite common and often require a surgical intervention. However, even after surgery, patients do not often regain satisfactory sensory and motor functions. This, in turn, results in a heavy socioeconomic burden. To some extent, neurons can regenerate from the proximal nerve stump and try to reconnect to the distal stump. However, this regenerating capacity is limited, and depending on the type and size of peripheral nerve injury, this process may not lead to a positive outcome. To date, no pharmacological approach has been used to improve nerve regeneration following repair surgery. We elected to investigate the effects of local delivery of minocycline on nerve regeneration. This molecule has been studied in the central nervous system and was shown to improve the outcome in many disease models. In this study, we first tested the effects of minocycline on SCL 4.1/F7 Schwann cells in vitro and on sciatic nerve explants. We specifically focused on the Schwann cell repair phenotype, as these cells play a central role in orchestrating nerve regeneration. Finally, we delivered minocycline locally in two different rat models of nerve injury, a sciatic nerve transection and a sciatic nerve autograft, demonstrating the capacity of local minocycline treatment to improve nerve regeneration.
Collapse
Affiliation(s)
- Owein Guillemot-Legris
- UCL Centre for Nerve Engineering, London WC1N 1AX, UK; (G.G.); (R.J.S.); (J.B.P.)
- UCL School of Pharmacy, London WC1N 1AX, UK
- UCL Mechanical Engineering, London WC1E 7JE, UK
| | - Gedion Girmahun
- UCL Centre for Nerve Engineering, London WC1N 1AX, UK; (G.G.); (R.J.S.); (J.B.P.)
- UCL School of Pharmacy, London WC1N 1AX, UK
| | - Rebecca J. Shipley
- UCL Centre for Nerve Engineering, London WC1N 1AX, UK; (G.G.); (R.J.S.); (J.B.P.)
- UCL Mechanical Engineering, London WC1E 7JE, UK
| | - James B. Phillips
- UCL Centre for Nerve Engineering, London WC1N 1AX, UK; (G.G.); (R.J.S.); (J.B.P.)
- UCL School of Pharmacy, London WC1N 1AX, UK
| |
Collapse
|
15
|
Ciotu CI, Kistner K, Kaindl U, Millesi F, Weiss T, Radtke C, Kremer A, Schmidt K, Fischer MJM. Schwann cell stimulation induces functional and structural changes in peripheral nerves. Glia 2023; 71:945-956. [PMID: 36495059 DOI: 10.1002/glia.24316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022]
Abstract
Signal propagation is the essential function of nerves. Lysophosphatidic acid 18:1 (LPA) allows the selective stimulation of calcium signaling in Schwann cells but not neurons. Here, the time course of slowing and amplitude reduction on compound action potentials due to LPA exposure was observed in myelinated and unmyelinated fibers of the mouse, indicating a clear change of axonal function. Teased nerve fiber imaging showed that Schwann cell activation is also present in axon-attached Schwann cells in freshly isolated peripheral rat nerves. The LPA receptor 1 was primarily localized at the cell extensions in isolated rat Schwann cells, suggesting a role in cell migration. Structural investigation of rat C-fibers demonstrated that LPA leads to an evagination of the axons from their Schwann cells. In A-fibers, the nodes of Ranvier appeared unchanged, but the Schmidt-Lanterman incisures were shortened and myelination reduced. The latter might increase leak current, reducing the potential spread to the next node of Ranvier and explain the changes in conduction velocity. The observed structural changes provide a plausible explanation for the functional changes in myelinated and unmyelinated axons of peripheral nerves and the reported sensory sensations such as itch and pain.
Collapse
Affiliation(s)
- Cosmin I Ciotu
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Katrin Kistner
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Ulrich Kaindl
- Department of Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Flavia Millesi
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Tamara Weiss
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Christine Radtke
- Department of Plastic, Reconstructive and Aesthetic Surgery, Medical University of Vienna, Vienna, Austria
| | - Andreas Kremer
- Department of Gastroenterology and Hepatology, University Hospital Zürich, Zürich, Switzerland
| | - Katy Schmidt
- Department of Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Michael J M Fischer
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Chen YS, Ng HY, Chen YW, Cho DY, Ho CC, Chen CY, Chiu SC, Jhong YR, Shie MY. Additive manufacturing of Schwann cell-laden collagen/alginate nerve guidance conduits by freeform reversible embedding regulate neurogenesis via exosomes secretion towards peripheral nerve regeneration. BIOMATERIALS ADVANCES 2023; 146:213276. [PMID: 36640522 DOI: 10.1016/j.bioadv.2022.213276] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/09/2022] [Accepted: 12/29/2022] [Indexed: 01/02/2023]
Abstract
Peripheral nerve injury is a common clinical problem that could be debilitating to one's quality of life. The complex nerve guidance conduits (NGCs) with cells in order to improve nerve regeneration. Therefore, we used freeform reversible embedding of suspended hydrogels to fabricate Schwann cells (SCs)-laden collagen/alginate (Col/Alg) NGCs. First, we evaluated Col influence on the characteristics of NGCs. After which, Wharton's jelly mesenchymal stem cells (WJMSC) are seeded onto the inner channel of NGCs and evaluated neural regeneration behaviors. Results indicated the SCs-laden NGCs with 2.5 % Col found the highest proliferation and secretion of neurotrophic protein. Furthermore, co-culture of SCs promoted differentiation of WJMSC as seen from the increased neurogenic-related protein in NGCs. To determine the molecular mechanism between SCs and WJMSC, we demonstrated the neurotrophic factors secreted by SCs act on tropomyosin receptor kinase A (TrkA) receptors of WJMSC to promote nerve regeneration. In addition, our study demonstrated SCs-derived exosomes had a critical role in regulating neural differentiation of WJMSC. Taken together, this study demonstrates the fabrication of SCs-laden Col/Alg NGCs for nerve regeneration and understanding regarding the synergistic regenerative mechanisms of different cells could bring us a step closer for clinical treatment of large nerve defects.
Collapse
Affiliation(s)
- Yueh-Sheng Chen
- School of Chinese Medicine, China Medical University, Taichung 40447, Taiwan; Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 41354, Taiwan
| | - Hooi Yee Ng
- Department of Education, China Medical University Hospital, Taichung 404332, Taiwan
| | - Yi-Wen Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung City 406040, Taiwan; x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung City 404332, Taiwan
| | - Der-Yang Cho
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung City 406040, Taiwan; Department of Neurosurgery, China Medical University Hospital, Taichung, Taiwan; Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Che Ho
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 41354, Taiwan; High Performance Materials Institute for x-Dimensional Printing, Asia University, Taichung City 41354, Taiwan
| | - Cheng-Yu Chen
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung City 404332, Taiwan
| | - Shao-Chih Chiu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung City 406040, Taiwan; Translational Cell Therapy Center, China Medical University Hospital, Taichung, Taiwan
| | - Yi-Rong Jhong
- x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung City 404332, Taiwan
| | - Ming-You Shie
- Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 41354, Taiwan; x-Dimension Center for Medical Research and Translation, China Medical University Hospital, Taichung City 404332, Taiwan; School of Dentistry, China Medical University, Taichung City 406040, Taiwan.
| |
Collapse
|
17
|
Han SH, Kim YH, Park SJ, Cho JG, Shin YK, Hong YB, Yun J, Han JY, Park HT, Park JI. COUP-TFII plays a role in cAMP-induced Schwann cell differentiation and in vitro myelination by up-regulating Krox20. J Neurochem 2023; 165:660-681. [PMID: 36648143 DOI: 10.1111/jnc.15764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023]
Abstract
Schwann cells (SCs) are known to produce myelin for saltatory nerve conduction in the peripheral nervous system (PNS). Schwann cell differentiation and myelination processes are controlled by several transcription factors including Sox10, Oct6/Pou3f1, and Krox20/Egr2. Chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII/NR2F2) is an orphan receptor that plays a role in the development and differentiation. However, the role of COUP-TFII in the transcriptional regulatory network of SC differentiation has not been fully identified yet. Thus, the objective of this study was to investigate the role and molecular hierarchy of COUP-TFII during cAMP-induced SC differentiation. Our results showed that dibutyryl-cAMP (db-cAMP) increased expression levels of COUP-TFII along with the expressions of Oct6, Krox20, and myelin-related genes known to be related to SC differentiation. Our mechanistic studies showed that COUP-TFII acted downstream of Hsp90/ErbB2/Gab1/ERK-AKT pathway during db-cAMP-induced SC differentiation. In addition, we found that COUP-TFII induced Krox20 expression by directly binding to Krox20-MSE8 as revealed by chromatin immunoprecipitation assay and promoter activity assay. In line with this, the expression of COUP-TFII was increased before up-regulation of Oct6, Krox20, and myelin-related genes in the sciatic nerves during early postnatal myelination period. Finally, COUP-TFII knockdown by COUP-TFII siRNA or via AAV-COUP-TFII shRNA in SCs inhibited db-cAMP-induced SC differentiation and in vitro myelination of sensory axons, respectively. Taken together, these findings indicate that COUP-TFII might be involved in postnatal myelination through induction of Krox20 in SCs. Our results present a new insight into the transcriptional regulatory mechanism in SC differentiation and myelination.
Collapse
Affiliation(s)
- Sang-Heum Han
- Department of Biochemistry, Dong-A University College of Medicine, Busan, South Korea.,Peripheral Neuropathy Research Center, Dong-A University, Busan, South Korea.,Department of Translational Biomedical Sciences, Dong-A University Graduate School, Busan, South Korea
| | - Young Hee Kim
- Peripheral Neuropathy Research Center, Dong-A University, Busan, South Korea
| | - Su-Jeong Park
- Department of Biochemistry, Dong-A University College of Medicine, Busan, South Korea.,Peripheral Neuropathy Research Center, Dong-A University, Busan, South Korea.,Department of Translational Biomedical Sciences, Dong-A University Graduate School, Busan, South Korea
| | - Jun-Gi Cho
- Department of Biochemistry, Dong-A University College of Medicine, Busan, South Korea.,Peripheral Neuropathy Research Center, Dong-A University, Busan, South Korea.,Department of Translational Biomedical Sciences, Dong-A University Graduate School, Busan, South Korea
| | - Yoon Kyung Shin
- Peripheral Neuropathy Research Center, Dong-A University, Busan, South Korea
| | - Young Bin Hong
- Department of Biochemistry, Dong-A University College of Medicine, Busan, South Korea.,Peripheral Neuropathy Research Center, Dong-A University, Busan, South Korea.,Department of Translational Biomedical Sciences, Dong-A University Graduate School, Busan, South Korea
| | - Jeanho Yun
- Department of Biochemistry, Dong-A University College of Medicine, Busan, South Korea.,Peripheral Neuropathy Research Center, Dong-A University, Busan, South Korea.,Department of Translational Biomedical Sciences, Dong-A University Graduate School, Busan, South Korea
| | - Jin-Yeong Han
- Department of Laboratory Medicine, Dong-A University College of Medicine, Busan, South Korea
| | - Hwan Tae Park
- Peripheral Neuropathy Research Center, Dong-A University, Busan, South Korea.,Department of Translational Biomedical Sciences, Dong-A University Graduate School, Busan, South Korea.,Department of Molecular Neuroscience, Dong-A University College of Medicine, Busan, South Korea
| | - Joo-In Park
- Department of Biochemistry, Dong-A University College of Medicine, Busan, South Korea.,Peripheral Neuropathy Research Center, Dong-A University, Busan, South Korea.,Department of Translational Biomedical Sciences, Dong-A University Graduate School, Busan, South Korea
| |
Collapse
|
18
|
Cristobal CD, Lee HK. Development of myelinating glia: An overview. Glia 2022; 70:2237-2259. [PMID: 35785432 PMCID: PMC9561084 DOI: 10.1002/glia.24238] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 01/07/2023]
Abstract
Myelin is essential to nervous system function, playing roles in saltatory conduction and trophic support. Oligodendrocytes (OLs) and Schwann cells (SCs) form myelin in the central and peripheral nervous systems respectively and follow different developmental paths. OLs are neural stem-cell derived and follow an intrinsic developmental program resulting in a largely irreversible differentiation state. During embryonic development, OL precursor cells (OPCs) are produced in distinct waves originating from different locations in the central nervous system, with a subset developing into myelinating OLs. OPCs remain evenly distributed throughout life, providing a population of responsive, multifunctional cells with the capacity to remyelinate after injury. SCs derive from the neural crest, are highly dependent on extrinsic signals, and have plastic differentiation states. SC precursors (SCPs) are produced in early embryonic nerve structures and differentiate into multipotent immature SCs (iSCs), which initiate radial sorting and differentiate into myelinating and non-myelinating SCs. Differentiated SCs retain the capacity to radically change phenotypes in response to external signals, including becoming repair SCs, which drive peripheral regeneration. While several transcription factors and myelin components are common between OLs and SCs, their differentiation mechanisms are highly distinct, owing to their unique lineages and their respective environments. In addition, both OLs and SCs respond to neuronal activity and regulate nervous system output in reciprocal manners, possibly through different pathways. Here, we outline their basic developmental programs, mechanisms regulating their differentiation, and recent advances in the field.
Collapse
Affiliation(s)
- Carlo D. Cristobal
- Integrative Program in Molecular and Biomedical SciencesBaylor College of MedicineHoustonTexasUSA,Jan and Dan Duncan Neurological Research InstituteTexas Children's HospitalHoustonTexasUSA
| | - Hyun Kyoung Lee
- Integrative Program in Molecular and Biomedical SciencesBaylor College of MedicineHoustonTexasUSA,Jan and Dan Duncan Neurological Research InstituteTexas Children's HospitalHoustonTexasUSA,Department of PediatricsBaylor College of MedicineHoustonTexasUSA,Department of NeuroscienceBaylor College of MedicineHoustonTexasUSA
| |
Collapse
|
19
|
Luo H, Xia X, Huang LB, An H, Cao M, Kim GD, Chen HN, Zhang WH, Shu Y, Kong X, Ren Z, Li PH, Liu Y, Tang H, Sun R, Li C, Bai B, Jia W, Liu Y, Zhang W, Yang L, Peng Y, Dai L, Hu H, Jiang Y, Hu Y, Zhu J, Jiang H, Li Z, Caulin C, Park J, Xu H. Pan-cancer single-cell analysis reveals the heterogeneity and plasticity of cancer-associated fibroblasts in the tumor microenvironment. Nat Commun 2022; 13:6619. [PMID: 36333338 PMCID: PMC9636408 DOI: 10.1038/s41467-022-34395-2] [Citation(s) in RCA: 205] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Cancer-associated fibroblasts (CAFs) are the predominant components of the tumor microenvironment (TME) and influence cancer hallmarks, but without systematic investigation on their ubiquitous characteristics across different cancer types. Here, we perform pan-cancer analysis on 226 samples across 10 solid cancer types to profile the TME at single-cell resolution, illustrating the commonalities/plasticity of heterogenous CAFs. Activation trajectory of the major CAF types is divided into three states, exhibiting distinct interactions with other cell components, and relating to prognosis of immunotherapy. Moreover, minor CAF components represent the alternative origin from other TME components (e.g., endothelia and macrophages). Particularly, the ubiquitous presentation of endothelial-to-mesenchymal transition CAF, which may interact with proximal SPP1+ tumor-associated macrophages, is implicated in endothelial-to-mesenchymal transition and survival stratifications. Our study comprehensively profiles the shared characteristics and dynamics of CAFs, and highlight their heterogeneity and plasticity across different cancer types. Browser of integrated pan-cancer single-cell information is available at https://gist-fgl.github.io/sc-caf-atlas/ .
Collapse
Affiliation(s)
- Han Luo
- grid.412901.f0000 0004 1770 1022Division of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan China ,grid.412901.f0000 0004 1770 1022Laboratory of thyroid and parathyroid disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan China ,grid.412901.f0000 0004 1770 1022Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan China ,grid.412901.f0000 0004 1770 1022Division of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Xuyang Xia
- grid.412901.f0000 0004 1770 1022Division of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan China ,grid.412901.f0000 0004 1770 1022State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Li-Bin Huang
- grid.412901.f0000 0004 1770 1022Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan China ,grid.412901.f0000 0004 1770 1022Division of Gastrointestinal Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Hyunsu An
- grid.61221.360000 0001 1033 9831School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Minyuan Cao
- grid.412901.f0000 0004 1770 1022State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Gyeong Dae Kim
- grid.61221.360000 0001 1033 9831School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Hai-Ning Chen
- grid.412901.f0000 0004 1770 1022Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan China ,grid.412901.f0000 0004 1770 1022Colorectal Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Wei-Han Zhang
- grid.412901.f0000 0004 1770 1022Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan China ,grid.412901.f0000 0004 1770 1022Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Yang Shu
- grid.412901.f0000 0004 1770 1022State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China ,grid.412901.f0000 0004 1770 1022Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Xiangyu Kong
- grid.412901.f0000 0004 1770 1022Division of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan China ,grid.412901.f0000 0004 1770 1022Laboratory of thyroid and parathyroid disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan China ,grid.412901.f0000 0004 1770 1022Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Zhixiang Ren
- grid.412901.f0000 0004 1770 1022State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Pei-Heng Li
- grid.412901.f0000 0004 1770 1022Division of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan China ,grid.412901.f0000 0004 1770 1022Laboratory of thyroid and parathyroid disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan China ,grid.412901.f0000 0004 1770 1022Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Yang Liu
- grid.412901.f0000 0004 1770 1022Division of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan China ,grid.412901.f0000 0004 1770 1022Laboratory of thyroid and parathyroid disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan China ,grid.412901.f0000 0004 1770 1022Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Huairong Tang
- grid.412901.f0000 0004 1770 1022Health Promotion Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Ronghao Sun
- grid.412901.f0000 0004 1770 1022Division of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan China ,grid.412901.f0000 0004 1770 1022Laboratory of thyroid and parathyroid disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan China ,grid.54549.390000 0004 0369 4060Department of Head and Neck Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan China
| | - Chao Li
- grid.54549.390000 0004 0369 4060Department of Head and Neck Surgery, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan China
| | - Bing Bai
- grid.218292.20000 0000 8571 108XState Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology; Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan China
| | - Weiguo Jia
- grid.412901.f0000 0004 1770 1022Center for Geriatrics medicine, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Yi Liu
- grid.13291.380000 0001 0807 1581Division of Rheumatism & Immunology, Rare Diseases Center, West Chia Hospital, Sichuan University, Chengdu, Sichuan China
| | - Wei Zhang
- grid.452223.00000 0004 1757 7615Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, Hunan China
| | - Li Yang
- grid.412901.f0000 0004 1770 1022State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Yong Peng
- grid.412901.f0000 0004 1770 1022State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Lunzhi Dai
- grid.412901.f0000 0004 1770 1022State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Hongbo Hu
- grid.412901.f0000 0004 1770 1022State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Yong Jiang
- grid.412901.f0000 0004 1770 1022Division of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Yiguo Hu
- grid.412901.f0000 0004 1770 1022Division of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan China ,grid.412901.f0000 0004 1770 1022State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Jingqiang Zhu
- grid.412901.f0000 0004 1770 1022Division of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan China ,grid.412901.f0000 0004 1770 1022Laboratory of thyroid and parathyroid disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Hong Jiang
- grid.412901.f0000 0004 1770 1022State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Zhihui Li
- grid.412901.f0000 0004 1770 1022Division of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan China ,grid.412901.f0000 0004 1770 1022Laboratory of thyroid and parathyroid disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan China
| | - Carlos Caulin
- grid.134563.60000 0001 2168 186XDepartment of Otolaryngology - Head & Neck Surgery and University of Arizona Cancer Center, University of Arizona, Tucson, AZ USA
| | - Jihwan Park
- grid.61221.360000 0001 1033 9831School of Life Sciences, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Heng Xu
- grid.412901.f0000 0004 1770 1022Division of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan China ,grid.412901.f0000 0004 1770 1022State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan China
| |
Collapse
|
20
|
Negro S, Pirazzini M, Rigoni M. Models and methods to study Schwann cells. J Anat 2022; 241:1235-1258. [PMID: 34988978 PMCID: PMC9558160 DOI: 10.1111/joa.13606] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/26/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022] Open
Abstract
Schwann cells (SCs) are fundamental components of the peripheral nervous system (PNS) of all vertebrates and play essential roles in development, maintenance, function, and regeneration of peripheral nerves. There are distinct populations of SCs including: (1) myelinating SCs that ensheath axons by a specialized plasma membrane, called myelin, which enhances the conduction of electric impulses; (2) non-myelinating SCs, including Remak SCs, which wrap bundles of multiple axons of small caliber, and perysinaptic SCs (PSCs), associated with motor axon terminals at the neuromuscular junction (NMJ). All types of SCs contribute to PNS regeneration through striking morphological and functional changes in response to nerve injury, are affected in peripheral neuropathies and show abnormalities and a diminished plasticity during aging. Therefore, methodological approaches to study and manipulate SCs in physiological and pathophysiological conditions are crucial to expand the present knowledge on SC biology and to devise new therapeutic strategies to counteract neurodegenerative conditions and age-derived denervation. We present here an updated overview of traditional and emerging methodologies for the study of SCs for scientists approaching this research field.
Collapse
Affiliation(s)
- Samuele Negro
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
| | - Marco Pirazzini
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
- CIR‐MyoCentro Interdipartimentale di Ricerca di MiologiaUniversity of PaduaPadovaItaly
| | - Michela Rigoni
- Department of Biomedical SciencesUniversity of PaduaPaduaItaly
- CIR‐MyoCentro Interdipartimentale di Ricerca di MiologiaUniversity of PaduaPadovaItaly
| |
Collapse
|
21
|
Transcriptional Control of Peripheral Nerve Regeneration. Mol Neurobiol 2022; 60:329-341. [PMID: 36261692 DOI: 10.1007/s12035-022-03090-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/10/2022] [Indexed: 10/24/2022]
Abstract
Transcription factors are master regulators of various cellular processes under diverse physiological and pathological conditions. Many transcription factors that are differentially expressed after injury to peripheral nerves play important roles in nerve regeneration. Considering that rapid and timely regrowth of injured axons is a prerequisite for successful target reinnervation, here, we compile transcription factors that mediates axon elongation, including axon growth suppressor Klf4 and axon growth promoters c-Myc, Sox11, STAT3, Atf3, c-Jun, Smad1, C/EBPδ, and p53. Besides neuronal changes, Schwann cell phenotype modulation is also critical for nerve regeneration. The activation of Schwann cells at early time points post injury provides a permissive microenvironment whereas the re-differentiation of Schwann cells at later time points supports myelin sheath formation. Hence, c-Jun and Sox2, two critical drivers for Schwann cell reprogramming, as well as Krox-20 and Sox10, two essential regulators of Schwann cell myelination, are reviewed. These transcription factors may serve as promising targets for promoting the functional recovery of injured peripheral nerves.
Collapse
|
22
|
Comparative role of SOX10 gene in the gliogenesis of central, peripheral, and enteric nervous systems. Differentiation 2022; 128:13-25. [DOI: 10.1016/j.diff.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022]
|
23
|
Basu S, Choudhury IN, Lee JYP, Chacko A, Ekberg JAK, St John JA. Macrophages Treated with VEGF and PDGF Exert Paracrine Effects on Olfactory Ensheathing Cell Function. Cells 2022; 11:cells11152408. [PMID: 35954252 PMCID: PMC9368560 DOI: 10.3390/cells11152408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 08/01/2022] [Indexed: 02/05/2023] Open
Abstract
Glial cell transplantation using olfactory ensheathing cells (OECs) holds a promising approach for treating spinal cord injury (SCI). However, integration of OECs into the hostile acute secondary injury site requires interaction and response to macrophages. Immunomodulation of macrophages to reduce their impact on OECs may improve the functionality of OECs. Vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF), known for their immunomodulatory and neuroprotective functions, have provided improved outcomes in SCI animal models. Thus, VEGF and PDGF modulation of the SCI microenvironment may be beneficial for OEC transplantation. In this in vitro study, the effect of VEGF and PDGF on macrophages in an inflammatory condition was tested. Combined VEGF + PDGF reduced translocation nuclear factor kappa B p65 in macrophages without altering pro-inflammatory cytokines. Further, the ability of OECs to phagocytose myelin debris was assessed using macrophage-conditioned medium. Conditioned medium from macrophages incubated with PDGF and combined VEGF + PDGF in inflammatory conditions promoted phagocytosis by OECs. The growth factor treated conditioned media also modulated the expression of genes associated with nerve repair and myelin expression in OECs. Overall, these results suggest that the use of growth factors together with OEC transplantation may be beneficial in SCI therapy.
Collapse
Affiliation(s)
- Souptik Basu
- Clem Jones Centre for Neurobiology and Stem Cell Research, Nathan Campus, Griffith University, Nathan, QLD 4222, Australia
- Menzies Health Institute Queensland, Southport Campus, Griffith University, Southport, QLD 4222, Australia
| | - Indra N. Choudhury
- Clem Jones Centre for Neurobiology and Stem Cell Research, Nathan Campus, Griffith University, Nathan, QLD 4222, Australia
- Menzies Health Institute Queensland, Southport Campus, Griffith University, Southport, QLD 4222, Australia
| | - Jia Yu Peppermint Lee
- Clem Jones Centre for Neurobiology and Stem Cell Research, Nathan Campus, Griffith University, Nathan, QLD 4222, Australia
| | - Anu Chacko
- Clem Jones Centre for Neurobiology and Stem Cell Research, Nathan Campus, Griffith University, Nathan, QLD 4222, Australia
- Menzies Health Institute Queensland, Southport Campus, Griffith University, Southport, QLD 4222, Australia
| | - Jenny A. K. Ekberg
- Clem Jones Centre for Neurobiology and Stem Cell Research, Nathan Campus, Griffith University, Nathan, QLD 4222, Australia
- Menzies Health Institute Queensland, Southport Campus, Griffith University, Southport, QLD 4222, Australia
- Griffith Institute for Drug Discovery, Nathan Campus, Griffith University, Nathan, QLD 4111, Australia
| | - James A. St John
- Clem Jones Centre for Neurobiology and Stem Cell Research, Nathan Campus, Griffith University, Nathan, QLD 4222, Australia
- Menzies Health Institute Queensland, Southport Campus, Griffith University, Southport, QLD 4222, Australia
- Griffith Institute for Drug Discovery, Nathan Campus, Griffith University, Nathan, QLD 4111, Australia
- Correspondence:
| |
Collapse
|
24
|
4-Aminopyridine Induces Nerve Growth Factor to Improve Skin Wound Healing and Tissue Regeneration. Biomedicines 2022; 10:biomedicines10071649. [PMID: 35884953 PMCID: PMC9313269 DOI: 10.3390/biomedicines10071649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 11/30/2022] Open
Abstract
The discovery of ways to enhance skin wound healing is of great importance due to the frequency of skin lesions. We discovered that 4-aminopyridine (4-AP), a potassium channel blocker approved by the FDA for improving walking ability in multiple sclerosis, greatly enhances skin wound healing. Benefits included faster wound closure, restoration of normal-appearing skin architecture, and reinnervation. Hair follicle neogenesis within the healed wounds was increased, both histologically and by analysis of K15 and K17 expression. 4-AP increased levels of vimentin (fibroblasts) and alpha-smooth muscle actin (α-SMA, collagen-producing myofibroblasts) in the healed dermis. 4-AP also increased neuronal regeneration with increased numbers of axons and S100+ Schwann cells (SCs), and increased expression of SRY-Box Transcription Factor 10 (SOX10). Treatment also increased levels of transforming growth factor-β (TGF-β), substance P, and nerve growth factor (NGF), important promoters of wound healing. In vitro studies demonstrated that 4-AP induced nerve growth factor and enhanced proliferation and migration of human keratinocytes. Thus, 4-AP enhanced many of the key attributes of successful wound healing and offers a promising new approach to enhance skin wound healing and tissue regeneration.
Collapse
|
25
|
Wiltbank AT, Steinson ER, Criswell SJ, Piller M, Kucenas S. Cd59 and inflammation regulate Schwann cell development. eLife 2022; 11:e76640. [PMID: 35748863 PMCID: PMC9232220 DOI: 10.7554/elife.76640] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
Efficient neurotransmission is essential for organism survival and is enhanced by myelination. However, the genes that regulate myelin and myelinating glial cell development have not been fully characterized. Data from our lab and others demonstrates that cd59, which encodes for a small GPI-anchored glycoprotein, is highly expressed in developing zebrafish, rodent, and human oligodendrocytes (OLs) and Schwann cells (SCs), and that patients with CD59 dysfunction develop neurological dysfunction during early childhood. Yet, the function of Cd59 in the developing nervous system is currently undefined. In this study, we demonstrate that cd59 is expressed in a subset of developing SCs. Using cd59 mutant zebrafish, we show that developing SCs proliferate excessively and nerves may have reduced myelin volume, altered myelin ultrastructure, and perturbed node of Ranvier assembly. Finally, we demonstrate that complement activity is elevated in cd59 mutants and that inhibiting inflammation restores SC proliferation, myelin volume, and nodes of Ranvier to wildtype levels. Together, this work identifies Cd59 and developmental inflammation as key players in myelinating glial cell development, highlighting the collaboration between glia and the innate immune system to ensure normal neural development.
Collapse
Affiliation(s)
- Ashtyn T Wiltbank
- Neuroscience Graduate Program, University of VirginiaCharlottesvilleUnited States
- Program in Fundamental Neuroscience, University of VirginiaCharlottesvilleUnited States
| | - Emma R Steinson
- Department of Biology, University of VirginiaCharlottesvilleUnited States
| | - Stacey J Criswell
- Department of Cell Biology, University of VirginiaCharlottesvilleUnited States
| | - Melanie Piller
- Department of Biology, University of VirginiaCharlottesvilleUnited States
| | - Sarah Kucenas
- Neuroscience Graduate Program, University of VirginiaCharlottesvilleUnited States
- Program in Fundamental Neuroscience, University of VirginiaCharlottesvilleUnited States
- Department of Biology, University of VirginiaCharlottesvilleUnited States
| |
Collapse
|
26
|
Transcriptome Analysis of Schwann Cells at Various Stages of Myelination Implicates Chromatin Regulator Sin3A in Control of Myelination Identity. Neurosci Bull 2022; 38:720-740. [DOI: 10.1007/s12264-022-00850-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/13/2021] [Indexed: 10/18/2022] Open
|
27
|
Analysis of Signal Transduction Pathways Downstream M2 Receptor Activation: Effects on Schwann Cell Migration and Morphology. Life (Basel) 2022; 12:life12020211. [PMID: 35207498 PMCID: PMC8875146 DOI: 10.3390/life12020211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/25/2022] [Accepted: 01/27/2022] [Indexed: 01/14/2023] Open
Abstract
Background: Schwann cells (SCs) express cholinergic receptors, suggesting a role of cholinergic signaling in the control of SC proliferation, differentiation and/or myelination. Our previous studies largely demonstrated that the pharmacological activation of the M2 muscarinic receptor subtype caused an inhibition of cell proliferation and promoted the expression of pro-myelinating differentiation genes. In order to elucidate the molecular signaling activated downstream the M2 receptor activation, in the present study we investigated the signal transduction pathways activated by the M2 orthosteric agonist arecaidine propargyl ester (APE) in SCs. Methods: Using Western blot we analyzed some components of the noncanonical pathways involving β1-arrestin and PI3K/AKT/mTORC1 signaling. A wound healing assay was used to evaluate SC migration. Results: Our results demonstrated that M2 receptor activation negatively modulated the PI3K/Akt/mTORC1 axis, possibly through β1-arrestin downregulation. The involvement of the mTORC1 complex was also supported by the decreased expression of its specific target p-p70 S6KThr389. Then, we also analyzed the expression of p-AMPKαthr172, a negative regulator of myelination that resulted in reduced levels after M2 agonist treatment. The analysis of cell migration and morphology allowed us to demonstrate that M2 receptor activation caused an arrest of SC migration and modified cell morphology probably by the modulation of β1-arrestin/cofilin-1 and PKCα expression, respectively. Conclusions: The data obtained demonstrated that M2 receptor activation in addition to the canonical Gi protein-coupled pathway modulates noncanonical pathways involving the mTORC1 complex and other kinases whose activation may contribute to the inhibition of SC proliferation and migration and address SC differentiation.
Collapse
|
28
|
Szepanowski F, Winkelhausen M, Steubing RD, Mausberg AK, Kleinschnitz C, Stettner M. LPA 1 signaling drives Schwann cell dedifferentiation in experimental autoimmune neuritis. J Neuroinflammation 2021; 18:293. [PMID: 34920725 PMCID: PMC8680309 DOI: 10.1186/s12974-021-02350-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lysophosphatidic acid (LPA) is a pleiotropic lipid messenger that addresses at least six specific G-protein coupled receptors. Accumulating evidence indicates a significant involvement of LPA in immune cell regulation as well as Schwann cell physiology, with potential relevance for the pathophysiology of peripheral neuroinflammation. However, the role of LPA signaling in inflammatory neuropathies has remained completely undefined. Given the broad expression of LPA receptors on both Schwann cells and cells of the innate and adaptive immune system, we hypothesized that inhibition of LPA signaling may ameliorate the course of disease in experimental autoimmune neuritis (EAN). METHODS We induced active EAN by inoculation of myelin protein 2 peptide (P255-78) in female Lewis rats. Animals received the orally available LPA receptor antagonist AM095, specifically targeting the LPA1 receptor subtype. AM095 was administered daily via oral gavage in a therapeutic regimen from 10 until 28 days post-immunization (dpi). Analyses were based on clinical testing, hemogram profiles, immunohistochemistry and morphometric assessment of myelination. RESULTS Lewis rats treated with AM095 displayed a significant improvement in clinical scores, most notably during the remission phase. Cellular infiltration of sciatic nerve was only discretely affected by AM095. Hemogram profiles indicated no impact on circulating leukocytes. However, sciatic nerve immunohistochemistry revealed a reduction in the number of Schwann cells expressing the dedifferentiation marker Sox2 paralleled by a corresponding increase in differentiating Sox10-positive Schwann cells. In line with this, morphometric analysis of sciatic nerve semi-thin sections identified a significant increase in large-caliber myelinated axons at 28 dpi. Myelin thickness was unaffected by AM095. CONCLUSION Thus, LPA1 signaling may present a novel therapeutic target for the treatment of inflammatory neuropathies, potentially affecting regenerative responses in the peripheral nerve by modulating Schwann cell differentiation.
Collapse
Affiliation(s)
- Fabian Szepanowski
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany.
| | - Maximilian Winkelhausen
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Rebecca D Steubing
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Anne K Mausberg
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| | - Mark Stettner
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, Hufelandstr. 55, 45147, Essen, Germany
| |
Collapse
|
29
|
Zou Y, Zhang J, Xu J, Fu L, Xu Y, Wang X, Li Z, Zhu L, Sun H, Zheng H, Guo J. SIRT6 inhibition delays peripheral nerve recovery by suppressing migration, phagocytosis and M2-polarization of macrophages. Cell Biosci 2021; 11:210. [PMID: 34906231 PMCID: PMC8672560 DOI: 10.1186/s13578-021-00725-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 12/03/2021] [Indexed: 12/18/2022] Open
Abstract
Background Silent information regulator 6 (SIRT6) is a mammalian homolog of the nicotinamide adenine dinucleotide (NAD)-dependent deacetylase sirtuin family. Prior evidences suggested that the anti-inflammatory function of SIRT6 after spinal cord and brain injury, and it plays a crucial role in macrophages polarization of adipose tissue and skin. However, the role of SIRT6 in macrophages involved peripheral nerve injury is still unknown. Given the prominent role of macrophages in peripheral nerve recovery, we aim to investigate the role of SIRT6 in the regulation of phenotypes shift and functions in macrophages after peripheral nerve injury. Results In the present study, we first identified a significant increase of SIRT6 expression during nerve degeneration and macrophages phagocytosis. Next, we found nerve recovery was delayed after SIRT6 silencing by injected shRNA lentivirus into the crushed sciatic nerve, which exhibited a reduced expression of myelin-related proteins (e.g., MAG and MBP), severer myoatrophy of target muscles, and inferior nerve conduction compared to the shRNA control injected mice. In vitro, we found that SIRT6 inhibition by being treated with a selective inhibitor OSS_128167 or lentivirus transfection impairs migration and phagocytosis capacity of bone marrow-derived macrophages (BMDM). In addition, SIRT6 expression was discovered to be reduced after M1 polarization, but SIRT6 was enhanced after M2 polarization in the monocyte-macrophage cell line RAW264.7 and BMDM. Moreover, SIRT6 inhibition increased M1 macrophage polarization with a concomitant decrease in M2 polarization both in RAW264.7 and BMDM via activating NF-κB and TNF-α expression, and SIRT6 activation by UBCS039 treatment could shift the macrophages from M1 to M2 phenotype. Conclusion Our findings indicate that SIRT6 inhibition impairs peripheral nerve repair through suppressing the migration, phagocytosis, and M2 polarization of macrophages. Therefore, SIRT6 may become a favorable therapeutic target for peripheral nerve injury.
Collapse
Affiliation(s)
- Ying Zou
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China
| | - Jiaqi Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China
| | - Jiawei Xu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China
| | - Lanya Fu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China
| | - Yizhou Xu
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China.,Department of Spine Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Xianghai Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China.,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510700, China.,Key Laboratory of Mental Health of the Ministry of Education, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, 510515, China
| | - Zhenlin Li
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China
| | - Lixin Zhu
- Department of Spine Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Hao Sun
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510700, China
| | - Hui Zheng
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510700, China
| | - Jiasong Guo
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China. .,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou, 510515, China. .,Department of Spine Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China. .,Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510700, China. .,Key Laboratory of Mental Health of the Ministry of Education, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, 510515, China.
| |
Collapse
|
30
|
Abstract
Myelin is a key evolutionary specialization and adaptation of vertebrates formed by the plasma membrane of glial cells, which insulate axons in the nervous system. Myelination not only allows rapid and efficient transmission of electric impulses in the axon by decreasing capacitance and increasing resistance but also influences axonal metabolism and the plasticity of neural circuits. In this review, we will focus on Schwann cells, the glial cells which form myelin in the peripheral nervous system. Here, we will describe the main extrinsic and intrinsic signals inducing Schwann cell differentiation and myelination and how myelin biogenesis is achieved. Finally, we will also discuss how the study of human disorders in which molecules and pathways relevant for myelination are altered has enormously contributed to the current knowledge on myelin biology.
Collapse
Affiliation(s)
- Alessandra Bolino
- Human Inherited Neuropathies Unit, Institute of Experimental Neurology INSPE, Division of Neuroscience, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy.
| |
Collapse
|
31
|
Della-Flora Nunes G, Wilson ER, Hurley E, He B, O'Malley BW, Poitelon Y, Wrabetz L, Feltri ML. Activation of mTORC1 and c-Jun by Prohibitin1 loss in Schwann cells may link mitochondrial dysfunction to demyelination. eLife 2021; 10:e66278. [PMID: 34519641 PMCID: PMC8478418 DOI: 10.7554/elife.66278] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 09/13/2021] [Indexed: 12/26/2022] Open
Abstract
Schwann cell (SC) mitochondria are quickly emerging as an important regulator of myelin maintenance in the peripheral nervous system (PNS). However, the mechanisms underlying demyelination in the context of mitochondrial dysfunction in the PNS are incompletely understood. We recently showed that conditional ablation of the mitochondrial protein Prohibitin 1 (PHB1) in SCs causes a severe and fast progressing demyelinating peripheral neuropathy in mice, but the mechanism that causes failure of myelin maintenance remained unknown. Here, we report that mTORC1 and c-Jun are continuously activated in the absence of Phb1, likely as part of the SC response to mitochondrial damage. Moreover, we demonstrate that these pathways are involved in the demyelination process, and that inhibition of mTORC1 using rapamycin partially rescues the demyelinating pathology. Therefore, we propose that mTORC1 and c-Jun may play a critical role as executioners of demyelination in the context of perturbations to SC mitochondria.
Collapse
Affiliation(s)
- Gustavo Della-Flora Nunes
- Hunter James Kelly Research Institute, University at BuffaloBuffaloUnited States
- Department of Biochemistry, University at BuffaloBuffaloUnited States
| | - Emma R Wilson
- Hunter James Kelly Research Institute, University at BuffaloBuffaloUnited States
- Department of Biochemistry, University at BuffaloBuffaloUnited States
| | - Edward Hurley
- Hunter James Kelly Research Institute, University at BuffaloBuffaloUnited States
| | - Bin He
- Immunobiology & Transplant Science Center and Department of Surgery, Houston Methodist HospitalHoustonUnited States
| | - Bert W O'Malley
- Department of Medicine and Molecular and Cellular Biology, Baylor College of MedicineHoustonUnited States
| | - Yannick Poitelon
- Department of Neuroscience and Experimental Therapeutics, Albany Medical CollegeAlbanyUnited States
| | - Lawrence Wrabetz
- Hunter James Kelly Research Institute, University at BuffaloBuffaloUnited States
- Department of Biochemistry, University at BuffaloBuffaloUnited States
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at BuffaloBuffaloUnited States
| | - M Laura Feltri
- Hunter James Kelly Research Institute, University at BuffaloBuffaloUnited States
- Department of Biochemistry, University at BuffaloBuffaloUnited States
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at BuffaloBuffaloUnited States
| |
Collapse
|
32
|
Clinical manifestations and novel pathogenic variants in SOX10 in eight Danish probands with Waardenburg syndrome. Eur J Med Genet 2021; 64:104265. [PMID: 34171448 DOI: 10.1016/j.ejmg.2021.104265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/13/2021] [Accepted: 06/18/2021] [Indexed: 11/24/2022]
Abstract
The SRY-related HMG box gene 10 (SOX10), located on 22q13.1, encodes a member of the SOX family of transcription factors involved in the regulation of embryonic development and in the determination of cell fate and differentiation. SOX10 is one of the six causal genes for Waardenburg syndrome, which is a dominantly inherited auditory-pigmentary disorder characterized by sensorineural hearing impairment and abnormal pigmentation of the hair, skin and iris. Waardenburg syndrome is categorized into four subtypes based on clinical features (WS1-WS4). Here we present eight families (eleven patients) harboring pathogenic variants in SOX10. The patients displayed both allelic and clinical variability: bilateral profound hearing impairment (11/11), malformations of the semicircular canals (5/11), motor skill developmental delay (5/11), pigmentary defects (3/11) and Hirschsprung's disease (3/11) were some of the clinical manifestations observed. The patients demonstrate a spectrum of pathogenic SOX10 variants, of which six were novel (c.267del, c.299_300insA, c.335T >C, c.366_376del, c.1160_1179dup, and exon 3-4 deletion), and two were previously reported (c.336G>A and c.422T>C). Six of the variants occurred de novo whereas two were dominantly inherited. The pathogenic SOX10 variants presented here add novel information to the allelic variability of Waardenburg syndrome and illustrate the considerable clinical heterogeneity.
Collapse
|
33
|
Bargagna‐Mohan P, Schultz G, Rheaume B, Trakhtenberg EF, Robson P, Pal‐Ghosh S, Stepp MA, Given KS, Macklin WB, Mohan R. Corneal nonmyelinating Schwann cells illuminated by single-cell transcriptomics and visualized by protein biomarkers. J Neurosci Res 2021; 99:731-749. [PMID: 33197966 PMCID: PMC7894186 DOI: 10.1002/jnr.24757] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 10/05/2020] [Accepted: 10/25/2020] [Indexed: 12/23/2022]
Abstract
The cornea is the most innervated tissue in the human body. Myelinated axons upon inserting into the peripheral corneal stroma lose their myelin sheaths and continue into the central cornea wrapped by only nonmyelinating corneal Schwann cells (nm-cSCs). This anatomical organization is believed to be important for central vision. Here we employed single-cell RNA sequencing (scRNA-seq), microscopy, and transgenics to characterize these nm-cSCs of the central cornea. Using principal component analysis, uniform manifold approximation and projection, and unsupervised hierarchal cell clustering of scRNA-seq data derived from central corneal cells of male rabbits, we successfully identified several clusters representing different corneal cell types, including a unique cell cluster representing nm-cSCs. To confirm protein expression of cSC genes, we performed cross-species validation, employing corneal whole-mount immunostaining with confocal microscopy in mouse corneas. The expression of several representative proteins of nm-cSCs were validated. As the proteolipid protein 1 (PLP1) gene was also expressed in nm-cSCs, we explored the Plp1-eGFP transgenic reporter mouse line to visualize cSCs. Specific and efficient eGFP expression was observed in cSCs in adult mice of different ages. Of several putative cornea-specific SC genes identified, Dickkopf-related protein 1 was shown to be present in nm-cSCs. Taken together, our findings, for the first time, identify important insights and tools toward the study nm-cSCs in isolated tissue and adult animals. We expect that our results will advance the future study of nm-cSCs in applications of nerve repair, and provide a resource for the study of corneal sensory function.
Collapse
Affiliation(s)
- Paola Bargagna‐Mohan
- Department of NeuroscienceUniversity of Connecticut Health CenterFarmingtonCTUSA
| | - Gwendolyn Schultz
- Department of NeuroscienceUniversity of Connecticut Health CenterFarmingtonCTUSA
| | - Bruce Rheaume
- Department of NeuroscienceUniversity of Connecticut Health CenterFarmingtonCTUSA
| | | | - Paul Robson
- Department of Genetics & Genome SciencesUniversity of Connecticut Health CenterFarmingtonCTUSA
- The Jackson Laboratory for Genomic MedicineFarmingtonCTUSA
| | - Sonali Pal‐Ghosh
- Department of Anatomy and Regenerative BiologyGeorge Washington University Medical SchoolWashingtonDCUSA
| | - Mary Ann Stepp
- Department of Anatomy and Regenerative BiologyGeorge Washington University Medical SchoolWashingtonDCUSA
| | - Katherine S. Given
- Department of Cell and Developmental BiologyUniversity of Colorado School of MedicineAuroraCOUSA
| | - Wendy B. Macklin
- Department of Cell and Developmental BiologyUniversity of Colorado School of MedicineAuroraCOUSA
| | - Royce Mohan
- Department of NeuroscienceUniversity of Connecticut Health CenterFarmingtonCTUSA
| |
Collapse
|
34
|
Saur AL, Fröb F, Weider M, Wegner M. Formation of the node of Ranvier by Schwann cells is under control of transcription factor Sox10. Glia 2021; 69:1464-1477. [PMID: 33566433 DOI: 10.1002/glia.23973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 11/06/2022]
Abstract
The transcription factor Sox10 is an essential regulator of genes that code for structural components of the myelin sheath and for lipid metabolic enzymes in both types of myelinating glia in the central and peripheral nervous systems. In an attempt to characterize additional Sox10 target genes in Schwann cells, we identified in this study a strong influence of Sox10 on the expression of genes associated with adhesion in the MSC80 Schwann cell line. These included the genes for Gliomedin, Neuronal cell adhesion molecule and Neurofascin that together constitute essential Schwann cell contributions to paranode and node of Ranvier. Using bioinformatics and molecular biology techniques we provide evidence that Sox10 directly activates these genes by binding to conserved regulatory regions. For activation, Sox10 cooperates with Krox20, a transcription factor previously identified as the central regulator of Schwann cell myelination. Both the activating function of Sox10 as well as its cooperation with Krox20 were confirmed in vivo. We conclude that the employment of Sox10 and Krox20 as regulators of structural myelin sheath components and genes associated with the node of Ranvier is one way of ensuring a biologically meaningful coordinated formation of both structures during peripheral myelination.
Collapse
Affiliation(s)
- Anna-Lena Saur
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Franziska Fröb
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Weider
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Zahnklinik 3 - Kieferorthopädie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
35
|
Balakrishnan A, Belfiore L, Chu TH, Fleming T, Midha R, Biernaskie J, Schuurmans C. Insights Into the Role and Potential of Schwann Cells for Peripheral Nerve Repair From Studies of Development and Injury. Front Mol Neurosci 2021; 13:608442. [PMID: 33568974 PMCID: PMC7868393 DOI: 10.3389/fnmol.2020.608442] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Peripheral nerve injuries arising from trauma or disease can lead to sensory and motor deficits and neuropathic pain. Despite the purported ability of the peripheral nerve to self-repair, lifelong disability is common. New molecular and cellular insights have begun to reveal why the peripheral nerve has limited repair capacity. The peripheral nerve is primarily comprised of axons and Schwann cells, the supporting glial cells that produce myelin to facilitate the rapid conduction of electrical impulses. Schwann cells are required for successful nerve regeneration; they partially “de-differentiate” in response to injury, re-initiating the expression of developmental genes that support nerve repair. However, Schwann cell dysfunction, which occurs in chronic nerve injury, disease, and aging, limits their capacity to support endogenous repair, worsening patient outcomes. Cell replacement-based therapeutic approaches using exogenous Schwann cells could be curative, but not all Schwann cells have a “repair” phenotype, defined as the ability to promote axonal growth, maintain a proliferative phenotype, and remyelinate axons. Two cell replacement strategies are being championed for peripheral nerve repair: prospective isolation of “repair” Schwann cells for autologous cell transplants, which is hampered by supply challenges, and directed differentiation of pluripotent stem cells or lineage conversion of accessible somatic cells to induced Schwann cells, with the potential of “unlimited” supply. All approaches require a solid understanding of the molecular mechanisms guiding Schwann cell development and the repair phenotype, which we review herein. Together these studies provide essential context for current efforts to design glial cell-based therapies for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Anjali Balakrishnan
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Lauren Belfiore
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Tak-Ho Chu
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Taylor Fleming
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada
| | - Rajiv Midha
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Jeff Biernaskie
- Department of Comparative Biology and Experimental Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Carol Schuurmans
- Biological Sciences Platform, Sunnybrook Research Institute (SRI), Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
36
|
Huang Q, Cai Y, Zhang X, Liu J, Liu Z, Li B, Wong H, Xu F, Sheng L, Sun D, Qin J, Luo Z, Lu X. Aligned Graphene Mesh-Supported Double Network Natural Hydrogel Conduit Loaded with Netrin-1 for Peripheral Nerve Regeneration. ACS APPLIED MATERIALS & INTERFACES 2021; 13:112-122. [PMID: 33397079 DOI: 10.1021/acsami.0c16391] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The gold standard treatment for peripheral nerve injuries (PNIs) is the autologous graft, while it is associated with the shortage of donors and results in major complications. In the present study, we engineer a graphene mesh-supported double-network (DN) hydrogel scaffold, loaded with netrin-1. Natural alginate and gelatin-methacryloyl entangled hydrogel that is synthesized via fast exchange of ions and ultraviolet irradiation provide proper mechanical strength and excellent biocompatibility and can also serve as a reservoir for netrin-1. Meanwhile, the graphene mesh can promote the proliferation of Schwann cells and guide their alignments. This approach allows scaffolds to have an acceptable Young's modulus of 725.8 ± 46.52 kPa, matching with peripheral nerves, as well as a satisfactory electrical conductivity of 6.8 ± 0.85 S/m. In addition, netrin-1 plays a dual role in directing axon pathfinding and neuronal migration that optimizes the tube formation ability at a concentration of 100 ng/mL. This netrin-1-loaded graphene mesh tube/DN hydrogel nerve scaffold can significantly promote the regeneration of peripheral nerves and the restoration of denervated muscle, which is even superior to autologous grafts. Our findings may provide an effective therapeutic strategy for PNI patients that can replace the scarce autologous graft.
Collapse
Affiliation(s)
- Qun Huang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yuting Cai
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
- Department of Chemical and Biological Engineering, and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Xing Zhang
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Junchao Liu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Zhenjing Liu
- Department of Chemical and Biological Engineering, and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Bo Li
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Hoilun Wong
- Department of Chemical and Biological Engineering, and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Liyuan Sheng
- Shenzhen Institute, Peking University, Shenzhen 518057, China
| | - Dazhi Sun
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China
| | - Jinbao Qin
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Vascular Center of Shanghai Jiao Tong University, Shanghai 200011, China
| | - Zhengtang Luo
- Department of Chemical and Biological Engineering, and William Mong Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Xinwu Lu
- Department of Vascular Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- Vascular Center of Shanghai Jiao Tong University, Shanghai 200011, China
| |
Collapse
|
37
|
The transcription factor Sox10 is an essential determinant of branching morphogenesis and involution in the mouse mammary gland. Sci Rep 2020; 10:17807. [PMID: 33082503 PMCID: PMC7575560 DOI: 10.1038/s41598-020-74664-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
The high mobility group-domain containing transcription factor Sox10 is an essential regulator of developmental processes and homeostasis in the neural crest, several neural crest-derived lineages and myelinating glia. Recent studies have also implicated Sox10 as an important factor in mammary stem and precursor cells. Here we employ a series of mouse mutants with constitutive and conditional Sox10 deficiencies to show that Sox10 has multiple functions in the developing mammary gland. While there is no indication for a requirement of Sox10 in the specification of the mammary placode or descending mammary bud, it is essential for both the prenatal hormone-independent as well as the pubertal hormone-dependent branching of the mammary epithelium and for proper alveologenesis during pregnancy. It furthermore acts in a dosage-dependent manner. Sox10 also plays a role during the involution process at the end of the lactation period. Whereas its effect on epithelial branching and alveologenesis are likely causally related to its function in mammary stem and precursor cells, this is not the case for its function during involution where Sox10 seems to work at least in part through regulation of the miR-424(322)/503 cluster.
Collapse
|
38
|
SOX10-regulated promoter use defines isoform-specific gene expression in Schwann cells. BMC Genomics 2020; 21:549. [PMID: 32770939 PMCID: PMC7430845 DOI: 10.1186/s12864-020-06963-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/29/2020] [Indexed: 01/12/2023] Open
Abstract
Background Multicellular organisms adopt various strategies to tailor gene expression to cellular contexts including the employment of multiple promoters (and the associated transcription start sites (TSSs)) at a single locus that encodes distinct gene isoforms. Schwann cells—the myelinating cells of the peripheral nervous system (PNS)—exhibit a specialized gene expression profile directed by the transcription factor SOX10, which is essential for PNS myelination. SOX10 regulates promoter elements associated with unique TSSs and gene isoforms at several target loci, implicating SOX10-mediated, isoform-specific gene expression in Schwann cell function. Here, we report on genome-wide efforts to identify SOX10-regulated promoters and TSSs in Schwann cells to prioritize genes and isoforms for further study. Results We performed global TSS analyses and mined previously reported ChIP-seq datasets to assess the activity of SOX10-bound promoters in three models: (i) an adult mammalian nerve; (ii) differentiating primary Schwann cells, and (iii) cultured Schwann cells with ablated SOX10 function. We explored specific characteristics of SOX10-dependent TSSs, which provides confidence in defining them as SOX10 targets. Finally, we performed functional studies to validate our findings at four previously unreported SOX10 target loci: ARPC1A, CHN2, DDR1, and GAS7. These findings suggest roles for the associated SOX10-regulated gene products in PNS myelination. Conclusions In sum, we provide comprehensive computational and functional assessments of SOX10-regulated TSS use in Schwann cells. The data presented in this study will stimulate functional studies on the specific mRNA and protein isoforms that SOX10 regulates, which will improve our understanding of myelination in the peripheral nerve.
Collapse
|
39
|
Yu W, Ishan M, Yao Y, Stice SL, Liu HX. SOX10- Cre-Labeled Cells Under the Tongue Epithelium Serve as Progenitors for Taste Bud Cells That Are Mainly Type III and Keratin 8-Low. Stem Cells Dev 2020; 29:638-647. [PMID: 32098606 PMCID: PMC7232695 DOI: 10.1089/scd.2020.0022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/24/2020] [Indexed: 12/24/2022] Open
Abstract
Taste bud cells are specialized epithelial cells that undergo continuous turnover, and thus require active progenitors for their renewal and an intact taste function. Our previous studies suggested that a population of taste bud cells originates from outside of the surrounding tongue epithelium-previously regarded sole source of taste bud progenitors. In this study, we demonstrated that SOX10 (SRY-related HMG-box gene 10)-expressing cells, known to be in the migrating neural crest, were also distributed in taste bud-surrounding tissue compartments under the tongue epithelium, that is, the connective tissue core of taste papillae and von Ebner's glands. By lineage tracing of SOX10-expressing cells using SOX10-Cre, a Cre model driven by the endogenous SOX10 promoter, crossing with a Cre reporter line R26-tdTomato (tdT), we found SOX10-Cre-labeled tdT+ cells within taste buds in all three types of taste papillae (fungiform, circumvallate, and foliate) as well as in the soft palate in postnatal mice. The tdT+ taste bud cells were progressively more abundant along the developmental stages, from virtually zero at birth to over 35% in adults. Most of tdT+ taste bud cells had a low intensity of immunosignals of Keratin 8 (a widely used taste bud cell marker). In circumvallate taste buds, tdT signals were co-localized principally with a type III taste bud cell marker, less so with type I and II cell makers. Together, our data demonstrate a novel progenitor source for taste buds of postnatal mice-SOX10-Cre-labeled cells in the connective tissue core and/or von Ebner's glands.
Collapse
Affiliation(s)
- Wenxin Yu
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, Georgia, USA
| | - Mohamed Ishan
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, Georgia, USA
| | - Yao Yao
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, Georgia, USA
| | - Steven L. Stice
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, Georgia, USA
| | - Hong-Xiang Liu
- Regenerative Bioscience Center, Department of Animal and Dairy Science, College of Agricultural and Environmental Sciences, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
40
|
Wilcox MB, Laranjeira SG, Eriksson TM, Jessen KR, Mirsky R, Quick TJ, Phillips JB. Characterising cellular and molecular features of human peripheral nerve degeneration. Acta Neuropathol Commun 2020; 8:51. [PMID: 32303273 PMCID: PMC7164159 DOI: 10.1186/s40478-020-00921-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/26/2020] [Indexed: 12/23/2022] Open
Abstract
Nerve regeneration is a key biological process in those recovering from neural trauma. From animal models it is known that the regenerative capacity of the peripheral nervous system (PNS) relies heavily on the remarkable ability of Schwann cells to undergo a phenotypic shift from a myelinating phenotype to one that is supportive of neural regeneration. In rodents, a great deal is known about the molecules that control this process, such as the transcription factors c-Jun and early growth response protein 2 (EGR2/KROX20), or mark the cells and cellular changes involved, including SOX10 and P75 neurotrophin receptor (p75NTR). However, ethical and practical challenges associated with studying human nerve injury have meant that little is known about human nerve regeneration.The present study addresses this issue, analysing 34 denervated and five healthy nerve samples from 27 patients retrieved during reconstructive nerve procedures. Using immunohistochemistry and Real-Time quantitative Polymerase Chain Reaction (RT-qPCR), the expression of SOX10, c-Jun, p75NTR and EGR2 was assessed in denervated samples and compared to healthy nerve. Nonparametric smoothing linear regression was implemented to better visualise trends in the expression of these markers across denervated samples.It was found, first, that two major genes associated with repair Schwann cells in rodents, c-Jun and p75NTR, are also up-regulated in acutely injured human nerves, while the myelin associated transcription factor EGR2 is down-regulated, observations that encourage the view that rodent models are relevant for learning about human nerve injury. Second, as in rodents, the expression of c-Jun and p75NTR declines during long-term denervation. In rodents, diminishing c-Jun and p75NTR levels mark the general deterioration of repair cells during chronic denervation, a process thought to be a major obstacle to effective nerve repair. The down-regulation of c-Jun and p75NTR reported here provides the first molecular evidence that also in humans, repair cells deteriorate during chronic denervation.
Collapse
Affiliation(s)
- Matthew B. Wilcox
- Peripheral Nerve Injury Research Unit, Royal National Orthopaedic Hospital, Stanmore, UK
- Department of Pharmacology, UCL School of Pharmacy, University College London, London, WC1N 1AX UK
- UCL Centre for Nerve Engineering, University College London, London, UK
| | - Simão G Laranjeira
- UCL Centre for Nerve Engineering, University College London, London, UK
- Department of Mechanical Engineering, University College London, London, UK
| | - Tuula M. Eriksson
- Department of Biomaterials and Tissue Engineering, Eastman Dental Institute, University College London, London, UK
| | - Kristjan R. Jessen
- UCL Centre for Nerve Engineering, University College London, London, UK
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Rhona Mirsky
- UCL Centre for Nerve Engineering, University College London, London, UK
- Department of Cell and Developmental Biology, University College London, London, UK
| | - Tom J. Quick
- Peripheral Nerve Injury Research Unit, Royal National Orthopaedic Hospital, Stanmore, UK
- UCL Centre for Nerve Engineering, University College London, London, UK
| | - James B. Phillips
- Department of Pharmacology, UCL School of Pharmacy, University College London, London, WC1N 1AX UK
- UCL Centre for Nerve Engineering, University College London, London, UK
| |
Collapse
|
41
|
Cell Biology of Intracellular Adaptation of Mycobacterium leprae in the Peripheral Nervous System. Microbiol Spectr 2020; 7. [PMID: 31322104 DOI: 10.1128/microbiolspec.bai-0020-2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The mammalian nervous system is invaded by a number of intracellular bacterial pathogens which can establish and progress infection in susceptible individuals. Subsequent clinical manifestation is apparent with the impairment of the functional units of the nervous system, i.e., the neurons and the supporting glial cells that produce myelin sheaths around axons and provide trophic support to axons and neurons. Most of these neurotrophic bacteria display unique features, have coevolved with the functional sophistication of the nervous system cells, and have adapted remarkably to manipulate neural cell functions for their own advantage. Understanding how these bacterial pathogens establish intracellular adaptation by hijacking endogenous pathways in the nervous system, initiating myelin damage and axonal degeneration, and interfering with myelin maintenance provides new knowledge not only for developing strategies to combat neurodegenerative conditions induced by these pathogens but also for gaining novel insights into cellular and molecular pathways that regulate nervous system functions. Since the pathways hijacked by bacterial pathogens may also be associated with other neurodegenerative diseases, it is anticipated that detailing the mechanisms of bacterial manipulation of neural systems may shed light on common mechanisms, particularly of early disease events. This chapter details a classic example of neurodegeneration, that caused by Mycobacterium leprae, which primarily infects glial cells of the peripheral nervous system (Schwann cells), and how it targets and adapts intracellularly by reprogramming Schwann cells to stem cells/progenitor cells. We also discuss implications of this host cell reprogramming by leprosy bacilli as a model in a wider context.
Collapse
|
42
|
Duman M, Martinez-Moreno M, Jacob C, Tapinos N. Functions of histone modifications and histone modifiers in Schwann cells. Glia 2020; 68:1584-1595. [PMID: 32034929 DOI: 10.1002/glia.23795] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/24/2020] [Accepted: 01/28/2020] [Indexed: 01/25/2023]
Abstract
Schwann cells (SCs) are the main glial cells present in the peripheral nervous system (PNS). Their primary functions are to insulate peripheral axons to protect them from the environment and to enable fast conduction of electric signals along big caliber axons by enwrapping them in a thick myelin sheath rich in lipids. In addition, SCs have the peculiar ability to foster axonal regrowth after a lesion by demyelinating and converting into repair cells that secrete neurotrophic factors and guide axons back to their former target to finally remyelinate regenerated axons. The different steps of SC development and their role in the maintenance of PNS integrity and regeneration after lesion are controlled by various factors among which transcription factors and chromatin-remodeling enzymes hold major functions. In this review, we discussed how histone modifications and histone-modifying enzymes control SC development, maintenance of PNS integrity and response to injury. The functions of histone modifiers as part of chromatin-remodeling complexes are discussed in another review published in the same issue of Glia.
Collapse
Affiliation(s)
- Mert Duman
- Faculty of Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Margot Martinez-Moreno
- Department of Neurosurgery, Molecular Neuroscience & Neuro-Oncology Laboratory, Brown University, Providence, Rhode Island
| | - Claire Jacob
- Faculty of Biology, Institute of Developmental Biology and Neurobiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Nikos Tapinos
- Department of Neurosurgery, Molecular Neuroscience & Neuro-Oncology Laboratory, Brown University, Providence, Rhode Island
| |
Collapse
|
43
|
Wang H, Jia Y, Li J, Liu Q. Schwann cell‑derived exosomes induce bone marrow‑derived mesenchymal stem cells to express Schwann cell markers in vitro. Mol Med Rep 2020; 21:1640-1646. [PMID: 32016464 DOI: 10.3892/mmr.2020.10960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 11/27/2019] [Indexed: 11/05/2022] Open
Abstract
Following peripheral nerve injury, factors in the local microenvironment can induce the differentiation of bone marrow‑derived mesenchymal stem cells (BMSCs) into Schwann cells; however, the specific factors that participate in this process remain unclear. The present study aimed to investigate the role of Schwann cell‑derived exosomes in the differentiation of BMSCs into Schwann cells. Exosomes were extracted from Schwann cells or fibroblasts and co‑cultured with BMSCs. The morphology, as well as gene and protein expressions of the BMSCs were measured to determine the effect of exosomes on cell differentiation. The levels of Schwann cell‑specific markers in BMSCs were significantly increased by Schwann cell‑derived exosomes compared with untreated BMSCs; however, fibroblast‑derived exosomes did not demonstrate the same effects. In conclusion, Schwann cell‑derived exosomes may be involved in the differentiation of BMSCs into Schwann cells, which may provide a novel target for promoting nerve regeneration following injury.
Collapse
Affiliation(s)
- Hui Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing 101199, P.R. China
| | - Yanjun Jia
- Medical Research Center, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100043, P.R. China
| | - Jiamou Li
- Department of Orthopedics, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, P.R. China
| | - Qingsong Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Luhe Hospital, Capital Medical University, Beijing 101199, P.R. China
| |
Collapse
|
44
|
Fröb F, Wegner M. The role of chromatin remodeling complexes in Schwann cell development. Glia 2019; 68:1596-1603. [DOI: 10.1002/glia.23766] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/27/2019] [Accepted: 12/03/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Franziska Fröb
- Institut für Biochemie, Emil‐Fischer‐Zentrum Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany
| | - Michael Wegner
- Institut für Biochemie, Emil‐Fischer‐Zentrum Friedrich‐Alexander‐Universität Erlangen‐Nürnberg Erlangen Germany
| |
Collapse
|
45
|
Fufa TD, Baxter LL, Wedel JC, Gildea DE, Loftus SK, Pavan WJ. MEK inhibition remodels the active chromatin landscape and induces SOX10 genomic recruitment in BRAF(V600E) mutant melanoma cells. Epigenetics Chromatin 2019; 12:50. [PMID: 31399133 PMCID: PMC6688322 DOI: 10.1186/s13072-019-0297-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/28/2019] [Indexed: 01/03/2023] Open
Abstract
Background The MAPK/ERK signaling pathway is an essential regulator of numerous cell processes that are crucial for normal development as well as cancer progression. While much is known regarding MAPK/ERK signal conveyance from the cell membrane to the nucleus, the transcriptional and epigenetic mechanisms that govern gene expression downstream of MAPK signaling are not fully elucidated. Results This study employed an integrated epigenome analysis approach to interrogate the effects of MAPK/ERK pathway inhibition on the global transcriptome, the active chromatin landscape, and protein–DNA interactions in 501mel melanoma cells. Treatment of these cells with the small-molecule MEK inhibitor AZD6244 induces hyperpigmentation, widespread gene expression changes including alteration of genes linked to pigmentation, and extensive epigenomic reprogramming of transcriptionally distinct regulatory regions associated with the active chromatin mark H3K27ac. Regulatory regions with differentially acetylated H3K27ac regions following AZD6244 treatment are enriched in transcription factor binding motifs of ETV/ETS and ATF family members as well as the lineage-determining factors MITF and SOX10. H3K27ac-dense enhancer clusters known as super-enhancers show similar transcription factor motif enrichment, and furthermore, these super-enhancers are associated with genes encoding MITF, SOX10, and ETV/ETS proteins. Along with genome-wide resetting of the active enhancer landscape, MEK inhibition also results in widespread SOX10 recruitment throughout the genome, including increased SOX10 binding density at H3K27ac-marked enhancers. Importantly, these MEK inhibitor-responsive enhancers marked by H3K27ac and occupied by SOX10 are located near melanocyte lineage-specific and pigmentation genes and overlap numerous human SNPs associated with pigmentation and melanoma phenotypes, highlighting the variants located within these regions for prioritization in future studies. Conclusions These results reveal the epigenetic reprogramming underlying the re-activation of melanocyte pigmentation and developmental transcriptional programs in 501mel cells in response to MEK inhibition and suggest extensive involvement of a MEK-SOX10 axis in the regulation of these processes. The dynamic chromatin changes identified here provide a rich genomic resource for further analyses of the molecular mechanisms governing the MAPK pathway in pigmentation- and melanocyte-associated diseases. Electronic supplementary material The online version of this article (10.1186/s13072-019-0297-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Temesgen D Fufa
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.,Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Laura L Baxter
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Julia C Wedel
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Derek E Gildea
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | | | - Stacie K Loftus
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - William J Pavan
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
46
|
Radu AG, Torch S, Fauvelle F, Pernet-Gallay K, Lucas A, Blervaque R, Delmas V, Schlattner U, Lafanechère L, Hainaut P, Tricaud N, Pingault V, Bondurand N, Bardeesy N, Larue L, Thibert C, Billaud M. LKB1 specifies neural crest cell fates through pyruvate-alanine cycling. SCIENCE ADVANCES 2019; 5:eaau5106. [PMID: 31328154 PMCID: PMC6636984 DOI: 10.1126/sciadv.aau5106] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 06/10/2019] [Indexed: 05/08/2023]
Abstract
Metabolic processes underlying the development of the neural crest, an embryonic population of multipotent migratory cells, are poorly understood. Here, we report that conditional ablation of the Lkb1 tumor suppressor kinase in mouse neural crest stem cells led to intestinal pseudo-obstruction and hind limb paralysis. This phenotype originated from a postnatal degeneration of the enteric nervous ganglia and from a defective differentiation of Schwann cells. Metabolomic profiling revealed that pyruvate-alanine conversion is enhanced in the absence of Lkb1. Mechanistically, inhibition of alanine transaminases restored glial differentiation in an mTOR-dependent manner, while increased alanine level directly inhibited the glial commitment of neural crest cells. Treatment with the metabolic modulator AICAR suppressed mTOR signaling and prevented Schwann cell and enteric defects of Lkb1 mutant mice. These data uncover a link between pyruvate-alanine cycling and the specification of glial cell fate with potential implications in the understanding of the molecular pathogenesis of neural crest diseases.
Collapse
Affiliation(s)
- Anca G. Radu
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Sakina Torch
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Florence Fauvelle
- Univ. Grenoble Alpes, INSERM, U1216, Grenoble Institute of Neurosciences GIN, 38000 Grenoble, France
- Univ. Grenoble Alpes, INSERM, US17, MRI facility IRMaGe, 38000 Grenoble, France
| | - Karin Pernet-Gallay
- Univ. Grenoble Alpes, INSERM, U1216, Grenoble Institute of Neurosciences GIN, 38000 Grenoble, France
| | - Anthony Lucas
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Renaud Blervaque
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Véronique Delmas
- Institut Curie, Normal and Pathological Development of Melanocytes, CNRS UMR3347; INSERM U1021; Equipe Labellisée–Ligue Nationale Contre le Cancer, Orsay, France
| | - Uwe Schlattner
- Laboratory of Fundamental and Applied Bioenergetics, Univ Grenoble Alpes, 38185 Grenoble, France
- INSERM U1055, 38041 Grenoble France
| | - Laurence Lafanechère
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Pierre Hainaut
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Nicolas Tricaud
- INSERM U1051, Institut des Neurosciences de Montpellier (INM), Université de Montpellier, Montpellier, France
| | | | | | - Nabeel Bardeesy
- Cancer Center, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02114, USA
| | - Lionel Larue
- Institut Curie, Normal and Pathological Development of Melanocytes, CNRS UMR3347; INSERM U1021; Equipe Labellisée–Ligue Nationale Contre le Cancer, Orsay, France
| | - Chantal Thibert
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
- Corresponding author. (M.B.); (C.T.)
| | - Marc Billaud
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR5309, Université Grenoble Alpes, 38000 Grenoble, France
- “Clinical and experimental model of lymphomagenesis” Univ Lyon, Université Claude Bernard Lyon1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, Lyon France
- Corresponding author. (M.B.); (C.T.)
| |
Collapse
|
47
|
The evolution and multi-molecular properties of NF1 cutaneous neurofibromas originating from C-fiber sensory endings and terminal Schwann cells at normal sites of sensory terminations in the skin. PLoS One 2019; 14:e0216527. [PMID: 31107888 PMCID: PMC6527217 DOI: 10.1371/journal.pone.0216527] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 04/24/2019] [Indexed: 12/30/2022] Open
Abstract
In addition to large plexiform neurofibromas (pNF), NF1 patients are frequently disfigured by cutaneous neurofibromas (cNF) and are often afflicted with chronic pain and itch even from seemingly normal skin areas. Both pNFs and cNF consist primarily of benign hyperproliferating nonmyelinating Schwann cells (nSC). While pNF clearly arise within deep nerves and plexuses, the role of cutaneous innervation in the origin of cNF and in chronic itch and pain is unknown. First, we conducted a comprehensive, multi-molecular, immunofluorescence (IF) analyses on 3mm punch biopsies from three separate locations in normal appearing, cNF-free skin in 19 NF1 patients and skin of 16 normal subjects. At least one biopsy in 17 NF1 patients had previously undescribed micro-lesions consisting of a small, dense cluster of nonpeptidergic C-fiber endings and the affiliated nSC consistently adjoining adnexal structures—dermal papillae, hair follicles, sweat glands, sweat ducts, and arterioles—where C-fiber endings normally terminate. Similar micro-lesions were detected in hind paw skin of mice with conditionally-induced SC Nf1-/- mutations. Hypothesizing that these microlesions were pre-cNF origins of cNF, we subsequently analyzed numerous overt, small cNF (s-cNF, 3–6 mm) and discovered that each had an adnexal structure at the epicenter of vastly increased nonpeptidergic C-fiber terminals, accompanied by excessive nSC. The IF and functional genomics assays indicated that neurturin (NTRN) and artemin (ARTN) signaling through cRET kinase and GFRα2 and GFRα3 co-receptors on the aberrant C-fiber endings and nSC may mutually promote the onset of pre-cNF and their evolution to s-cNF. Moreover, TrpA1 and TrpV1 receptors may, respectively, mediate symptoms of chronic itch and pain. These newly discovered molecular characteristics might be targeted to suppress the development of cNF and to treat chronic itch and pain symptoms in NF1 patients.
Collapse
|
48
|
Sock E, Wegner M. Transcriptional control of myelination and remyelination. Glia 2019; 67:2153-2165. [PMID: 31038810 DOI: 10.1002/glia.23636] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/01/2019] [Accepted: 04/11/2019] [Indexed: 12/11/2022]
Abstract
Myelination is an evolutionary recent differentiation program that has been independently acquired in vertebrates by Schwann cells in the peripheral nervous system and oligodendrocytes in the central nervous system. Therefore, it is not surprising that regulating transcription factors differ substantially between both cell types. However, overall principles are similar as transcriptional control in Schwann cells and oligodendrocytes combines lineage determining and stage-specific factors in complex regulatory networks. Myelination does not only occur during development, but also as remyelination in the adult. In line with the different conditions during developmental myelination and remyelination and the distinctive properties of Schwann cells and oligodendrocytes, transcriptional regulation of remyelination exhibits unique features and differs between the two cell types. This review gives an overview of the current state in the field.
Collapse
Affiliation(s)
- Elisabeth Sock
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
49
|
Casalenovo MB, Rosa PS, de Faria Bertoluci DF, Barbosa ASAA, do Nascimento DC, de Souza VNB, Nogueira MRS. Myelination key factor krox-20 is downregulated in Schwann cells and murine sciatic nerves infected by Mycobacterium leprae. Int J Exp Pathol 2019; 100:83-93. [PMID: 31090128 PMCID: PMC6540694 DOI: 10.1111/iep.12309] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 01/28/2019] [Accepted: 02/06/2019] [Indexed: 12/14/2022] Open
Abstract
Schwann cells (SCs) critically maintain the plasticity of the peripheral nervous system. Peripheral nerve injuries and infections stimulate SCs in order to retrieve homeostasis in neural tissues. Previous studies indicate that Mycobacterium leprae (ML) regulates the expression of key factors related to SC identity, suggesting that alterations in cell phenotype may be involved in the pathogenesis of neural damage in leprosy. To better understand whether ML restricts the plasticity of peripheral nerves, the present study sought to determine the expression of Krox-20, Sox-10, c-Jun and p75NTR in SC culture and mice sciatic nerves, both infected by ML Thai-53 strain. Primary SC cultures were stimulated with two different multiplicities of infection (MOI 100:1; MOI 50:1) and assessed after 7 and 14 days. Sciatic nerves of nude mice (NU-Foxn1nu ) infected with ML were evaluated after 6 and 9 months. In vitro results demonstrate downregulation of Krox-20 and Sox-10 along with the increase in p75NTR-immunolabelled cells. Concurrently, sciatic nerves of infected mice showed a significant decrease in Krox-20 and increase in p75NTR. Our results corroborate previous findings on the interference of ML in the expression of factors involved in cell maturation, favouring the maintenance of a non-myelinating phenotype in SCs, with possible implications for the repair of adult peripheral nerves.
Collapse
Affiliation(s)
- Mariane Bertolucci Casalenovo
- School of Medicine of BotucatuSão Paulo State UniversityBotucatuBrazil
- Lauro de Souza Lima InstituteSecretariat of Health of São PauloBauruSão PauloBrazil
| | | | | | | | | | - Vânia Nieto Brito de Souza
- School of Medicine of BotucatuSão Paulo State UniversityBotucatuBrazil
- Lauro de Souza Lima InstituteSecretariat of Health of São PauloBauruSão PauloBrazil
| | | |
Collapse
|
50
|
de Faria O, Dhaunchak AS, Kamen Y, Roth AD, Kuhlmann T, Colman DR, Kennedy TE. TMEM10 Promotes Oligodendrocyte Differentiation and is Expressed by Oligodendrocytes in Human Remyelinating Multiple Sclerosis Plaques. Sci Rep 2019; 9:3606. [PMID: 30837646 PMCID: PMC6400977 DOI: 10.1038/s41598-019-40342-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 01/25/2019] [Indexed: 11/09/2022] Open
Abstract
Oligodendrocyte precursor cells (OPCs) differentiate during postnatal development into myelin-forming oligodendrocytes, in a process distinguished by substantial changes in morphology and the onset of myelin gene expression. A mammalian-specific CNS myelin gene, tmem10, also called Opalin, encodes a type 1 transmembrane protein that is highly upregulated during early stages of OPC differentiation; however, a function for TMEM10 has not yet been identified. Here, consistent with previous studies, we detect TMEM10 protein in mouse brain beginning at ~P10 and show that protein levels continue to increase as oligodendrocytes differentiate and myelinate axons in vivo. We show that constitutive TMEM10 overexpression in the Oli-neu oligodendroglial cell line promotes the expression of the myelin-associated genes MAG, CNP and CGT, whereas TMEM10 knock down in primary OPCs reduces CNP mRNA expression and decreases the percentage of MBP-positive oligodendrocytes that differentiate in vitro. Ectopic TMEM10 expression evokes an increase in process extension and branching, and blocking endogenous TMEM10 expression results in oligodendrocytes with abnormal cell morphology. These findings may have implications for human demyelinating disorders, as oligodendrocytes expressing TMEM10 are detected in human remyelinating multiple sclerosis lesions. Together, our findings provide evidence that TMEM10 promotes oligodendrocyte terminal differentiation and may represent a novel target to promote remyelination in demyelinating disorders.
Collapse
Affiliation(s)
- Omar de Faria
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University St., Montreal, Quebec, H3A 2B4, Canada
| | - Ajit S Dhaunchak
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University St., Montreal, Quebec, H3A 2B4, Canada
| | - Yasmine Kamen
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University St., Montreal, Quebec, H3A 2B4, Canada
| | - Alejandro D Roth
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University St., Montreal, Quebec, H3A 2B4, Canada.,Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Münster, D-48149, Münster, Germany
| | - David R Colman
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University St., Montreal, Quebec, H3A 2B4, Canada
| | - Timothy E Kennedy
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University St., Montreal, Quebec, H3A 2B4, Canada.
| |
Collapse
|