1
|
Kallweit L, Hamlett ED, Saternos H, Gilmore A, Granholm AC, Horowitz S. A New Role for RNA G-quadruplexes in Aging and Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.02.560545. [PMID: 37873355 PMCID: PMC10592952 DOI: 10.1101/2023.10.02.560545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
INTRODUCTION As the world population ages, new molecular targets in aging and Alzheimer's Disease (AD) are needed to combat the expected influx of new AD cases. Until now, the role of RNA structure in aging and neurodegeneration has largely remained unexplored. METHODS In this study, we examined human hippocampal postmortem tissue for the formation of RNA G-quadruplexes (rG4s) in aging and AD. RESULTS We found that rG4 immunostaining strongly increased in the hippocampus with both age and with AD severity. We further found that neurons with accumulation of phospho-tau immunostaining contained rG4s, that rG4 structure can drive tau aggregation, and that rG4 staining density depended on APOE genotype in the human tissue examined. DISCUSSION Combined with previous studies showing the dependence of rG4 structure on stress and the extreme power of rG4s at oligomerizing proteins, we propose a model of neurodegeneration in which chronic rG4 formation drives proteostasis collapse. These morphological findings suggest that further investigation of RNA structure in neurodegeneration is a critical avenue for future treatments and diagnoses.
Collapse
Affiliation(s)
- Lena Kallweit
- Department of Chemistry & Biochemistry and the Knoebel Institute for Healthy Aging, University of Denver, 2155 E Wesley Ave, Denver, CO 80208, USA
| | - Eric D Hamlett
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425 USA
| | - Hannah Saternos
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, P15-5112, Aurora, CO 80045 USA
| | - Anah Gilmore
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, P15-5112, Aurora, CO 80045 USA
| | - Ann-Charlotte Granholm
- Department of Neurosurgery, University of Colorado Anschutz Medical Campus, 12700 East 19th Avenue, P15-5112, Aurora, CO 80045 USA
| | - Scott Horowitz
- Department of Chemistry & Biochemistry and the Knoebel Institute for Healthy Aging, University of Denver, 2155 E Wesley Ave, Denver, CO 80208, USA
| |
Collapse
|
2
|
Jörg LM, Schlötzer-Schrehardt U, Lefebvre V, Sock E, Wegner M. Transcription Factors Sox8 and Sox10 Contribute with Different Importance to the Maintenance of Mature Oligodendrocytes. Int J Mol Sci 2024; 25:8754. [PMID: 39201442 PMCID: PMC11354551 DOI: 10.3390/ijms25168754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Myelin-forming oligodendrocytes in the vertebrate nervous system co-express the transcription factor Sox10 and its paralog Sox8. While Sox10 plays crucial roles throughout all stages of oligodendrocyte development, including terminal differentiation, the loss of Sox8 results in only mild and transient perturbations. Here, we aimed to elucidate the roles and interrelationships of these transcription factors in fully differentiated oligodendrocytes and myelin maintenance in adults. For that purpose, we conducted targeted deletions of Sox10, Sox8, or both in the brains of two-month-old mice. Three weeks post-deletion, none of the resulting mouse mutants exhibited significant alterations in oligodendrocyte numbers, myelin sheath counts, myelin ultrastructure, or myelin protein levels in the corpus callosum, despite efficient gene inactivation. However, differences were observed in the myelin gene expression in mice with Sox10 or combined Sox8/Sox10 deletion. RNA-sequencing analysis on dissected corpus callosum confirmed substantial alterations in the oligodendrocyte expression profile in mice with combined deletion and more subtle changes in mice with Sox10 deletion alone. Notably, Sox8 deletion did not affect any aspects of the expression profile related to the differentiated state of oligodendrocytes or myelin integrity. These findings extend our understanding of the roles of Sox8 and Sox10 in oligodendrocytes into adulthood and have important implications for the functional relationship between the paralogs and the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Lisa Mirja Jörg
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D91054 Erlangen, Germany; (L.M.J.); (E.S.)
| | | | - Véronique Lefebvre
- Department of Surgery, Division of Orthopaedic Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA;
| | - Elisabeth Sock
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D91054 Erlangen, Germany; (L.M.J.); (E.S.)
| | - Michael Wegner
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, D91054 Erlangen, Germany; (L.M.J.); (E.S.)
| |
Collapse
|
3
|
Choi JJ, Svaren J, Wang D. Single-cell multi-omics analysis reveals cooperative transcription factors for gene regulation in oligodendrocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599799. [PMID: 38948852 PMCID: PMC11213031 DOI: 10.1101/2024.06.19.599799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Oligodendrocytes are the myelinating cells within the central nervous system. Many oligodendrocyte genes have been associated with brain disorders. However, how transcription factors (TFs) cooperate for gene regulation in oligodendrocytes remains largely uncharacterized. To address this, we integrated scRNA-seq and scATAC-seq data to identify the cooperative TFs that co-regulate the target gene (TG) expression in oligodendrocytes. First, we identified co- binding TF pairs whose binding sites overlapped in oligodendrocyte-specific regulatory regions. Second, we trained a deep learning model to predict the expression level of each TG using the expression levels of co-binding TFs. Third, using the trained models, we computed the TF importance and TF-TF interaction scores for predicting TG expression by the Shapley interaction scores. We found that the co-binding TF pairs involving known important TF pairs for oligodendrocyte differentiation, such as SOX10-TCF12, SOX10-MYRF, and SOX10-OLIG2, exhibited significantly higher Shapley scores than others (t-test, p-value < 1e-4). Furthermore, we identified 153 oligodendrocyte-associated eQTLs that reside in oligodendrocyte-specific enhancers or promoters where their eGenes (TGs) are regulated by cooperative TFs, suggesting potential novel regulatory roles from genetic variants. We also experimentally validated some identified TF pairs such as SOX10-OLIG2 and SOX10-NKX2.2 by co-enrichment analysis, using ChIP-seq data from rat peripheral nerve.
Collapse
|
4
|
Dalton GD, Siecinski SK, Nikolova VD, Cofer GP, Hornburg KJ, Qi Y, Johnson GA, Jiang YH, Moy SS, Gregory SG. Transcriptome analysis identifies an ASD-Like phenotype in oligodendrocytes and microglia from C58/J amygdala that is dependent on sex and sociability. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2024; 20:14. [PMID: 38898502 PMCID: PMC11188533 DOI: 10.1186/s12993-024-00240-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Autism Spectrum Disorder (ASD) is a group of neurodevelopmental disorders with higher incidence in males and is characterized by atypical verbal/nonverbal communication, restricted interests that can be accompanied by repetitive behavior, and disturbances in social behavior. This study investigated brain mechanisms that contribute to sociability deficits and sex differences in an ASD animal model. METHODS Sociability was measured in C58/J and C57BL/6J mice using the 3-chamber social choice test. Bulk RNA-Seq and snRNA-Seq identified transcriptional changes in C58/J and C57BL/6J amygdala within which DMRseq was used to measure differentially methylated regions in amygdala. RESULTS C58/J mice displayed divergent social strata in the 3-chamber test. Transcriptional and pathway signatures revealed immune-related biological processes differ between C58/J and C57BL/6J amygdala. Hypermethylated and hypomethylated genes were identified in C58/J versus C57BL/6J amygdala. snRNA-Seq data in C58/J amygdala identified differential transcriptional signatures within oligodendrocytes and microglia characterized by increased ASD risk gene expression and predicted impaired myelination that was dependent on sex and sociability. RNA velocity, gene regulatory network, and cell communication analysis showed diminished oligodendrocyte/microglia differentiation. Findings were verified using Bulk RNA-Seq and demonstrated oxytocin's beneficial effects on myelin gene expression. LIMITATIONS Our findings are significant. However, limitations can be noted. The cellular mechanisms linking reduced oligodendrocyte differentiation and reduced myelination to an ASD phenotype in C58/J mice need further investigation. Additional snRNA-Seq and spatial studies would determine if effects in oligodendrocytes/microglia are unique to amygdala or if this occurs in other brain regions. Oxytocin's effects need further examination to understand its' potential as an ASD therapeutic. CONCLUSIONS Our work demonstrates the C58/J mouse model's utility in evaluating the influence of sex and sociability on the transcriptome in concomitant brain regions involved in ASD. Our single-nucleus transcriptome analysis elucidates potential pathological roles of oligodendrocytes and microglia in ASD. This investigation provides details regarding regulatory features disrupted in these cell types, including transcriptional gene dysregulation, aberrant cell differentiation, altered gene regulatory networks, and changes to key pathways that promote microglia/oligodendrocyte differentiation. Our studies provide insight into interactions between genetic risk and epigenetic processes associated with divergent affiliative behavior and lack of positive sociability.
Collapse
Affiliation(s)
- George D Dalton
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 27701, USA
| | - Stephen K Siecinski
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 27701, USA
| | - Viktoriya D Nikolova
- Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA
| | - Gary P Cofer
- Center for In Vivo Microscopy, Duke University, Durham, NC, 27710, USA
| | | | - Yi Qi
- Center for In Vivo Microscopy, Duke University, Durham, NC, 27710, USA
| | - G Allan Johnson
- Center for In Vivo Microscopy, Duke University, Durham, NC, 27710, USA
| | - Yong-Hui Jiang
- Department of Genetics, Neuroscience, and Pediatrics, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Sheryl S Moy
- Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27516, USA
| | - Simon G Gregory
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, 27701, USA.
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Neurology, Molecular Genetics and Microbiology Duke Molecular Physiology Institute, 300 N. Duke Street, DUMC 104775, Durham, NC, 27701, USA.
| |
Collapse
|
5
|
Emery B, Wood TL. Regulators of Oligodendrocyte Differentiation. Cold Spring Harb Perspect Biol 2024; 16:a041358. [PMID: 38503504 PMCID: PMC11146316 DOI: 10.1101/cshperspect.a041358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Myelination has evolved as a mechanism to ensure fast and efficient propagation of nerve impulses along axons. Within the central nervous system (CNS), myelination is carried out by highly specialized glial cells, oligodendrocytes. The formation of myelin is a prolonged aspect of CNS development that occurs well into adulthood in humans, continuing throughout life in response to injury or as a component of neuroplasticity. The timing of myelination is tightly tied to the generation of oligodendrocytes through the differentiation of their committed progenitors, oligodendrocyte precursor cells (OPCs), which reside throughout the developing and adult CNS. In this article, we summarize our current understanding of some of the signals and pathways that regulate the differentiation of OPCs, and thus the myelination of CNS axons.
Collapse
Affiliation(s)
- Ben Emery
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Teresa L Wood
- Department of Pharmacology, Physiology and Neuroscience, New Jersey Medical School, Rutgers University, Newark, New Jersey 07103, USA
| |
Collapse
|
6
|
Balboni N, Babini G, Poeta E, Protti M, Mercolini L, Magnifico MC, Barile SN, Massenzio F, Pignataro A, Giorgi FM, Lasorsa FM, Monti B. Transcriptional and metabolic effects of aspartate-glutamate carrier isoform 1 (AGC1) downregulation in mouse oligodendrocyte precursor cells (OPCs). Cell Mol Biol Lett 2024; 29:44. [PMID: 38553684 PMCID: PMC10979587 DOI: 10.1186/s11658-024-00563-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
Aspartate-glutamate carrier isoform 1 (AGC1) is a carrier responsible for the export of mitochondrial aspartate in exchange for cytosolic glutamate and is part of the malate-aspartate shuttle, essential for the balance of reducing equivalents in the cells. In the brain, mutations in SLC25A12 gene, encoding for AGC1, cause an ultra-rare genetic disease, reported as a neurodevelopmental encephalopathy, whose symptoms include global hypomyelination, arrested psychomotor development, hypotonia and seizures. Among the biological components most affected by AGC1 deficiency are oligodendrocytes, glial cells responsible for myelination processes, and their precursors [oligodendrocyte progenitor cells (OPCs)]. The AGC1 silencing in an in vitro model of OPCs was documented to cause defects of proliferation and differentiation, mediated by alterations of histone acetylation/deacetylation. Disrupting AGC1 activity could possibly reduce the availability of acetyl groups, leading to perturbation of many biological pathways, such as histone modifications and fatty acids formation for myelin production. Here, we explore the transcriptome of mouse OPCs partially silenced for AGC1, reporting results of canonical analyses (differential expression) and pathway enrichment analyses, which highlight a disruption in fatty acids synthesis from both a regulatory and enzymatic stand. We further investigate the cellular effects of AGC1 deficiency through the identification of most affected transcriptional networks and altered alternative splicing. Transcriptional data were integrated with differential metabolite abundance analysis, showing downregulation of several amino acids, including glutamine and aspartate. Taken together, our results provide a molecular foundation for the effects of AGC1 deficiency in OPCs, highlighting the molecular mechanisms affected and providing a list of actionable targets to mitigate the effects of this pathology.
Collapse
Affiliation(s)
- Nicola Balboni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Giorgia Babini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Eleonora Poeta
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Michele Protti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Laura Mercolini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Maria Chiara Magnifico
- Department of Biosciences, Biotechnologies and Environment, University of Bari, Bari, Italy
| | - Simona Nicole Barile
- Department of Biosciences, Biotechnologies and Environment, University of Bari, Bari, Italy
| | - Francesca Massenzio
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Antonella Pignataro
- Department of Biosciences, Biotechnologies and Environment, University of Bari, Bari, Italy
| | - Federico M Giorgi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| | | | - Barbara Monti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| |
Collapse
|
7
|
Molin AN, Contentin R, Angelozzi M, Karvande A, Kc R, Haseeb A, Voskamp C, de Charleroy C, Lefebvre V. Skeletal growth is enhanced by a shared role for SOX8 and SOX9 in promoting reserve chondrocyte commitment to columnar proliferation. Proc Natl Acad Sci U S A 2024; 121:e2316969121. [PMID: 38346197 PMCID: PMC10895259 DOI: 10.1073/pnas.2316969121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/26/2023] [Indexed: 02/15/2024] Open
Abstract
SOX8 was linked in a genome-wide association study to human height heritability, but roles in chondrocytes for this close relative of the master chondrogenic transcription factor SOX9 remain unknown. We undertook here to fill this knowledge gap. High-throughput assays demonstrate expression of human SOX8 and mouse Sox8 in growth plate cartilage. In situ assays show that Sox8 is expressed at a similar level as Sox9 in reserve and early columnar chondrocytes and turned off when Sox9 expression peaks in late columnar and prehypertrophic chondrocytes. Sox8-/- mice and Sox8fl/flPrx1Cre and Sox9fl/+Prx1Cre mice (inactivation in limb skeletal cells) have a normal or near normal skeletal size. In contrast, juvenile and adult Sox8fl/flSox9fl/+Prx1Cre compound mutants exhibit a 15 to 20% shortening of long bones. Their growth plate reserve chondrocytes progress slowly toward the columnar stage, as witnessed by a delay in down-regulating Pthlh expression, in packing in columns and in elevating their proliferation rate. SOX8 or SOX9 overexpression in chondrocytes reveals not only that SOX8 can promote growth plate cell proliferation and differentiation, even upon inactivation of endogenous Sox9, but also that it is more efficient than SOX9, possibly due to greater protein stability. Altogether, these findings uncover a major role for SOX8 and SOX9 in promoting skeletal growth by stimulating commitment of growth plate reserve chondrocytes to actively proliferating columnar cells. Further, by showing that SOX8 is more chondrogenic than SOX9, they suggest that SOX8 could be preferred over SOX9 in therapies to promote cartilage formation or regeneration in developmental and degenerative cartilage diseases.
Collapse
Affiliation(s)
- Arnaud N. Molin
- Department of Surgery, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Romain Contentin
- Department of Surgery, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Marco Angelozzi
- Department of Surgery, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Anirudha Karvande
- Department of Surgery, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Ranjan Kc
- Department of Surgery, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Abdul Haseeb
- Department of Surgery, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Chantal Voskamp
- Department of Surgery, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Charles de Charleroy
- Department of Surgery, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Véronique Lefebvre
- Department of Surgery, Division of Orthopaedic Surgery, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
| |
Collapse
|
8
|
Freudenstein D, Lippert M, Popp JS, Aprato J, Wegner M, Sock E, Haase S, Linker RA, González Alvarado MN. Endogenous Sox8 is a critical factor for timely remyelination and oligodendroglial cell repletion in the cuprizone model. Sci Rep 2023; 13:22272. [PMID: 38097655 PMCID: PMC10721603 DOI: 10.1038/s41598-023-49476-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
Genome-wide association studies identified a single nucleotide polymorphism (SNP) downstream of the transcription factor Sox8, associated with an increased risk of multiple sclerosis (MS). Sox8 is known to influence oligodendrocyte terminal differentiation and is involved in myelin maintenance by mature oligodendrocytes. The possible link of a Sox8 related SNP and MS risk, along with the role of Sox8 in oligodendrocyte physiology prompted us to investigate its relevance during de- and remyelination using the cuprizone model. Sox8-/- mice and wildtype littermates received a cuprizone diet for 5 weeks (wk). Sox8-/- mice showed reduced motor performance and weight compared to wildtype controls. Brains were histologically analysed at the maximum of demyelination (wk 5) and on two time points during remyelination (wk 5.5 and wk 6) for oligodendroglial, astroglial, microglial and myelin markers. We identified reduced proliferation of oligodendrocyte precursor cells at wk 5 as well as reduced numbers of mature oligodendrocytes in Sox8-/- mice at wk 6. Moreover, analysis of myelin markers revealed a delay in remyelination in the Sox8-/- group, demonstrating the potential importance of Sox8 in remyelination processes. Our findings present, for the first time, compelling evidence of a significant role of Sox8 in the context of a disease model.
Collapse
Affiliation(s)
- David Freudenstein
- Neuroimmunology Laboratory, Department of Neurology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Magdalena Lippert
- Neuroimmunology Laboratory, Department of Neurology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Janina Sophie Popp
- Neuroimmunology Laboratory, Department of Neurology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Jessica Aprato
- Institute of Biochemistry, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Michael Wegner
- Institute of Biochemistry, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Elisabeth Sock
- Institute of Biochemistry, Friedrich-Alexander University Erlangen, Erlangen, Germany
| | - Stefanie Haase
- Neuroimmunology Laboratory, Department of Neurology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
| | - Ralf A Linker
- Neuroimmunology Laboratory, Department of Neurology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - María Nazareth González Alvarado
- Neuroimmunology Laboratory, Department of Neurology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
9
|
Rexach JE, Cheng Y, Chen L, Polioudakis D, Lin LC, Mitri V, Elkins A, Yin A, Calini D, Kawaguchi R, Ou J, Huang J, Williams C, Robinson J, Gaus SE, Spina S, Lee EB, Grinberg LT, Vinters H, Trojanowski JQ, Seeley WW, Malhotra D, Geschwind DH. Disease-specific selective vulnerability and neuroimmune pathways in dementia revealed by single cell genomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560245. [PMID: 37808727 PMCID: PMC10557766 DOI: 10.1101/2023.09.29.560245] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The development of successful therapeutics for dementias requires an understanding of their shared and distinct molecular features in the human brain. We performed single-nuclear RNAseq and ATACseq in Alzheimer disease (AD), Frontotemporal degeneration (FTD), and Progressive Supranuclear Palsy (PSP), analyzing 40 participants, yielding over 1.4M cells from three brain regions ranging in vulnerability and pathological burden. We identify 35 shared disease-associated cell types and 14 that are disease-specific, replicating those previously identified in AD. Disease - specific cell states represent molecular features of disease-specific glial-immune mechanisms and neuronal vulnerability in each disorder, layer 4/5 intra-telencephalic neurons in AD, layer 2/3 intra-telencephalic neurons in FTD, and layer 5/6 near-projection neurons in PSP. We infer intrinsic disease-associated gene regulatory networks, which we empirically validate by chromatin footprinting. We find that causal genetic risk acts in specific neuronal and glial cells that differ across disorders, primarily non-neuronal cells in AD and specific neuronal subtypes in FTD and PSP. These data illustrate the heterogeneous spectrum of glial and neuronal composition and gene expression alterations in different dementias and identify new therapeutic targets by revealing shared and disease-specific cell states.
Collapse
|
10
|
Mich JK, Sunil S, Johansen N, Martinez RA, Leytze M, Gore BB, Mahoney JT, Ben-Simon Y, Bishaw Y, Brouner K, Campos J, Canfield R, Casper T, Dee N, Egdorf T, Gary A, Gibson S, Goldy J, Groce EL, Hirschstein D, Loftus L, Lusk N, Malone J, Martin NX, Monet D, Omstead V, Opitz-Araya X, Oster A, Pom CA, Potekhina L, Reding M, Rimorin C, Ruiz A, Sedeño-Cortés AE, Shapovalova NV, Taormina M, Taskin N, Tieu M, Valera Cuevas NJ, Weed N, Way S, Yao Z, McMillen DA, Kunst M, McGraw M, Thyagarajan B, Waters J, Bakken TE, Yao S, Smith KA, Svoboda K, Podgorski K, Kojima Y, Horwitz GD, Zeng H, Daigle TL, Lein ES, Tasic B, Ting JT, Levi BP. Enhancer-AAVs allow genetic access to oligodendrocytes and diverse populations of astrocytes across species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.20.558718. [PMID: 37790503 PMCID: PMC10542530 DOI: 10.1101/2023.09.20.558718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Proper brain function requires the assembly and function of diverse populations of neurons and glia. Single cell gene expression studies have mostly focused on characterization of neuronal cell diversity; however, recent studies have revealed substantial diversity of glial cells, particularly astrocytes. To better understand glial cell types and their roles in neurobiology, we built a new suite of adeno-associated viral (AAV)-based genetic tools to enable genetic access to astrocytes and oligodendrocytes. These oligodendrocyte and astrocyte enhancer-AAVs are highly specific (usually > 95% cell type specificity) with variable expression levels, and our astrocyte enhancer-AAVs show multiple distinct expression patterns reflecting the spatial distribution of astrocyte cell types. To provide the best glial-specific functional tools, several enhancer-AAVs were: optimized for higher expression levels, shown to be functional and specific in rat and macaque, shown to maintain specific activity in epilepsy where traditional promoters changed activity, and used to drive functional transgenes in astrocytes including Cre recombinase and acetylcholine-responsive sensor iAChSnFR. The astrocyte-specific iAChSnFR revealed a clear reward-dependent acetylcholine response in astrocytes of the nucleus accumbens during reinforcement learning. Together, this collection of glial enhancer-AAVs will enable characterization of astrocyte and oligodendrocyte populations and their roles across species, disease states, and behavioral epochs.
Collapse
|
11
|
Pruvost M, Patzig J, Yattah C, Selcen I, Hernandez M, Park HJ, Moyon S, Liu S, Morioka MS, Shopland L, Al-Dalahmah O, Bendl J, Fullard JF, Roussos P, Goldman J, He Y, Dupree JL, Casaccia P. The stability of the myelinating oligodendrocyte transcriptome is regulated by the nuclear lamina. Cell Rep 2023; 42:112848. [PMID: 37515770 PMCID: PMC10600948 DOI: 10.1016/j.celrep.2023.112848] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/26/2023] [Accepted: 07/07/2023] [Indexed: 07/31/2023] Open
Abstract
Oligodendrocytes are specialized cells that insulate and support axons with their myelin membrane, allowing proper brain function. Here, we identify lamin A/C (LMNA/C) as essential for transcriptional and functional stability of myelinating oligodendrocytes. We show that LMNA/C levels increase with differentiation of progenitors and that loss of Lmna in differentiated oligodendrocytes profoundly alters their chromatin accessibility and transcriptional signature. Lmna deletion in myelinating glia is compatible with normal developmental myelination. However, altered chromatin accessibility is detected in fully differentiated oligodendrocytes together with increased expression of progenitor genes and decreased levels of lipid-related transcription factors and inner mitochondrial membrane transcripts. These changes are accompanied by altered brain metabolism, lower levels of myelin-related lipids, and altered mitochondrial structure in oligodendrocytes, thereby resulting in myelin thinning and the development of a progressively worsening motor phenotype. Overall, our data identify LMNA/C as essential for maintaining the transcriptional and functional stability of myelinating oligodendrocytes.
Collapse
Affiliation(s)
- Mathilde Pruvost
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA
| | - Julia Patzig
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA
| | - Camila Yattah
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA; Graduate Program in Biochemistry, The Graduate Center of The City University of New York, 365 5(th) Avenue, New York, NY 10016, USA
| | - Ipek Selcen
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA; Graduate Program in Biochemistry, The Graduate Center of The City University of New York, 365 5(th) Avenue, New York, NY 10016, USA
| | - Marylens Hernandez
- Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hye-Jin Park
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA
| | - Sarah Moyon
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA
| | - Shibo Liu
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA; Structural Biology Initiative, Advanced Science Research Center at the Graduate Center, City University of New York, New York, NY 10031, USA
| | - Malia S Morioka
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA; Macaulay Honors College, City College of New York, New York, NY 10031, USA
| | - Lindsay Shopland
- Jackson Laboratory, 1650 Santa Ana Ave, Sacramento, CA 95835, USA
| | - Osama Al-Dalahmah
- Department of Pathology and Cell Biology, Division of Neuropathology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Jaroslav Bendl
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - John F Fullard
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Panos Roussos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Disease Neurogenomics, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mental Illness Research, Education, and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY 10468, USA; Center for Dementia Research, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - James Goldman
- Department of Pathology and Cell Biology, Division of Neuropathology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, and the New York Presbyterian Hospital, New York, NY 10032, USA
| | - Ye He
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA; Macaulay Honors College, City College of New York, New York, NY 10031, USA
| | - Jeffrey L Dupree
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Patrizia Casaccia
- Neuroscience Initiative at the Advanced Science Research Center of the Graduate Center of the City University of New York, 85 St. Nicholas Terrace, New York, NY 10031, USA; Graduate Program in Biochemistry, The Graduate Center of The City University of New York, 365 5(th) Avenue, New York, NY 10016, USA; Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Graduate Program in Biology, The Graduate Center of The City University of New York, 365 5th Avenue, New York, NY 10016, USA.
| |
Collapse
|
12
|
Mihailova V, Stoyanova II, Tonchev AB. Glial Populations in the Human Brain Following Ischemic Injury. Biomedicines 2023; 11:2332. [PMID: 37760773 PMCID: PMC10525766 DOI: 10.3390/biomedicines11092332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/14/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
There is a growing interest in glial cells in the central nervous system due to their important role in maintaining brain homeostasis under physiological conditions and after injury. A significant amount of evidence has been accumulated regarding their capacity to exert either pro-inflammatory or anti-inflammatory effects under different pathological conditions. In combination with their proliferative potential, they contribute not only to the limitation of brain damage and tissue remodeling but also to neuronal repair and synaptic recovery. Moreover, reactive glial cells can modulate the processes of neurogenesis, neuronal differentiation, and migration of neurons in the existing neural circuits in the adult brain. By discovering precise signals within specific niches, the regulation of sequential processes in adult neurogenesis holds the potential to unlock strategies that can stimulate the generation of functional neurons, whether in response to injury or as a means of addressing degenerative neurological conditions. Cerebral ischemic stroke, a condition falling within the realm of acute vascular disorders affecting the circulation in the brain, stands as a prominent global cause of disability and mortality. Extensive investigations into glial plasticity and their intricate interactions with other cells in the central nervous system have predominantly relied on studies conducted on experimental animals, including rodents and primates. However, valuable insights have also been gleaned from in vivo studies involving poststroke patients, utilizing highly specialized imaging techniques. Following the attempts to map brain cells, the role of various transcription factors in modulating gene expression in response to cerebral ischemia is gaining increasing popularity. Although the results obtained thus far remain incomplete and occasionally ambiguous, they serve as a solid foundation for the development of strategies aimed at influencing the recovery process after ischemic brain injury.
Collapse
Affiliation(s)
- Victoria Mihailova
- Department of Anatomy and Cell Biology, Faculty of Medicine, Medical University Varna, 9000 Varna, Bulgaria; (I.I.S.); (A.B.T.)
| | | | | |
Collapse
|
13
|
Hopkins BR, Barmina O, Kopp A. A single-cell atlas of the sexually dimorphic Drosophila foreleg and its sensory organs during development. PLoS Biol 2023; 21:e3002148. [PMID: 37379332 DOI: 10.1371/journal.pbio.3002148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/03/2023] [Indexed: 06/30/2023] Open
Abstract
To respond to the world around them, animals rely on the input of a network of sensory organs distributed throughout the body. Distinct classes of sensory organs are specialized for the detection of specific stimuli such as strain, pressure, or taste. The features that underlie this specialization relate both to the neurons that innervate sensory organs and the accessory cells they comprise. To understand the genetic basis of this diversity of cell types, both within and between sensory organs, we performed single-cell RNA sequencing on the first tarsal segment of the male Drosophila melanogaster foreleg during pupal development. This tissue displays a wide variety of functionally and structurally distinct sensory organs, including campaniform sensilla, mechanosensory bristles, and chemosensory taste bristles, as well as the sex comb, a recently evolved male-specific structure. In this study, we characterize the cellular landscape in which the sensory organs reside, identify a novel cell type that contributes to the construction of the neural lamella, and resolve the transcriptomic differences among support cells within and between sensory organs. We identify the genes that distinguish between mechanosensory and chemosensory neurons, resolve a combinatorial transcription factor code that defines 4 distinct classes of gustatory neurons and several types of mechanosensory neurons, and match the expression of sensory receptor genes to specific neuron classes. Collectively, our work identifies core genetic features of a variety of sensory organs and provides a rich, annotated resource for studying their development and function.
Collapse
Affiliation(s)
- Ben R Hopkins
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| | - Olga Barmina
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California, Davis, California, United States of America
| |
Collapse
|
14
|
Brase L, You SF, D'Oliveira Albanus R, Del-Aguila JL, Dai Y, Novotny BC, Soriano-Tarraga C, Dykstra T, Fernandez MV, Budde JP, Bergmann K, Morris JC, Bateman RJ, Perrin RJ, McDade E, Xiong C, Goate AM, Farlow M, Sutherland GT, Kipnis J, Karch CM, Benitez BA, Harari O. Single-nucleus RNA-sequencing of autosomal dominant Alzheimer disease and risk variant carriers. Nat Commun 2023; 14:2314. [PMID: 37085492 PMCID: PMC10121712 DOI: 10.1038/s41467-023-37437-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/15/2023] [Indexed: 04/23/2023] Open
Abstract
Genetic studies of Alzheimer disease (AD) have prioritized variants in genes related to the amyloid cascade, lipid metabolism, and neuroimmune modulation. However, the cell-specific effect of variants in these genes is not fully understood. Here, we perform single-nucleus RNA-sequencing (snRNA-seq) on nearly 300,000 nuclei from the parietal cortex of AD autosomal dominant (APP and PSEN1) and risk-modifying variant (APOE, TREM2 and MS4A) carriers. Within individual cell types, we capture genes commonly dysregulated across variant groups. However, specific transcriptional states are more prevalent within variant carriers. TREM2 oligodendrocytes show a dysregulated autophagy-lysosomal pathway, MS4A microglia have dysregulated complement cascade genes, and APOEε4 inhibitory neurons display signs of ferroptosis. All cell types have enriched states in autosomal dominant carriers. We leverage differential expression and single-nucleus ATAC-seq to map GWAS signals to effector cell types including the NCK2 signal to neurons in addition to the initially proposed microglia. Overall, our results provide insights into the transcriptional diversity resulting from AD genetic architecture and cellular heterogeneity. The data can be explored on the online browser ( http://web.hararilab.org/SNARE/ ).
Collapse
Affiliation(s)
- Logan Brase
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Shih-Feng You
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Ricardo D'Oliveira Albanus
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | | | - Yaoyi Dai
- Baylor College of Medicine, Houston, TX, USA
| | - Brenna C Novotny
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Carolina Soriano-Tarraga
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Taitea Dykstra
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Maria Victoria Fernandez
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - John P Budde
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Kristy Bergmann
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - John C Morris
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Randall J Bateman
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Richard J Perrin
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Knight Alzheimer Disease Research Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Eric McDade
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Chengjie Xiong
- Knight Alzheimer Disease Research Center, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Division of Biostatistics, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Alison M Goate
- Ronald M. Loeb Center for Alzheimer's Disease, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martin Farlow
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Greg T Sutherland
- School of Medical Sciences and Charles Perkins Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Jonathan Kipnis
- Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Celeste M Karch
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Bruno A Benitez
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Oscar Harari
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
- Hope Center for Neurological Disorders, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
- NeuroGenomics and Informatics, Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
15
|
Bo T, Li J, Hu G, Zhang G, Wang W, Lv Q, Zhao S, Ma J, Qin M, Yao X, Wang M, Wang GZ, Wang Z. Brain-wide and cell-specific transcriptomic insights into MRI-derived cortical morphology in macaque monkeys. Nat Commun 2023; 14:1499. [PMID: 36932104 PMCID: PMC10023667 DOI: 10.1038/s41467-023-37246-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 03/06/2023] [Indexed: 03/19/2023] Open
Abstract
Integrative analyses of transcriptomic and neuroimaging data have generated a wealth of information about biological pathways underlying regional variability in imaging-derived brain phenotypes in humans, but rarely in nonhuman primates due to the lack of a comprehensive anatomically-defined atlas of brain transcriptomics. Here we generate complementary bulk RNA-sequencing dataset of 819 samples from 110 brain regions and single-nucleus RNA-sequencing dataset, and neuroimaging data from 162 cynomolgus macaques, to examine the link between brain-wide gene expression and regional variation in morphometry. We not only observe global/regional expression profiles of macaque brain comparable to human but unravel a dorsolateral-ventromedial gradient of gene assemblies within the primate frontal lobe. Furthermore, we identify a set of 971 protein-coding and 34 non-coding genes consistently associated with cortical thickness, specially enriched for neurons and oligodendrocytes. These data provide a unique resource to investigate nonhuman primate models of human diseases and probe cross-species evolutionary mechanisms.
Collapse
Affiliation(s)
- Tingting Bo
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Clinical Neuroscience Center, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ganlu Hu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai, China
| | - Ge Zhang
- Department of Medical Imaging, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, Henan, China
| | - Wei Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qian Lv
- School of Psychological and Cognitive Sciences; Beijing Key Laboratory of Behavior and Mental Health; IDG/McGovern Institute for Brain Research; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Shaoling Zhao
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Junjie Ma
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Meng Qin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Xiaohui Yao
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao, Shandong, China
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin, Heilongjiang, China
| | - Meiyun Wang
- Department of Medical Imaging, Henan Provincial People's Hospital & the People's Hospital of Zhengzhou University, No. 7 Weiwu Road, Zhengzhou, Henan, China.
| | - Guang-Zhong Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| | - Zheng Wang
- School of Psychological and Cognitive Sciences; Beijing Key Laboratory of Behavior and Mental Health; IDG/McGovern Institute for Brain Research; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China.
- School of Biomedical Engineering, Hainan University, Haikou, Hainan, China.
| |
Collapse
|
16
|
Herring CA, Simmons RK, Freytag S, Poppe D, Moffet JJD, Pflueger J, Buckberry S, Vargas-Landin DB, Clément O, Echeverría EG, Sutton GJ, Alvarez-Franco A, Hou R, Pflueger C, McDonald K, Polo JM, Forrest ARR, Nowak AK, Voineagu I, Martelotto L, Lister R. Human prefrontal cortex gene regulatory dynamics from gestation to adulthood at single-cell resolution. Cell 2022; 185:4428-4447.e28. [PMID: 36318921 DOI: 10.1016/j.cell.2022.09.039] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 07/19/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
Abstract
Human brain development is underpinned by cellular and molecular reconfigurations continuing into the third decade of life. To reveal cell dynamics orchestrating neural maturation, we profiled human prefrontal cortex gene expression and chromatin accessibility at single-cell resolution from gestation to adulthood. Integrative analyses define the dynamic trajectories of each cell type, revealing major gene expression reconfiguration at the prenatal-to-postnatal transition in all cell types followed by continuous reconfiguration into adulthood and identifying regulatory networks guiding cellular developmental programs, states, and functions. We uncover links between expression dynamics and developmental milestones, characterize the diverse timing of when cells acquire adult-like states, and identify molecular convergence from distinct developmental origins. We further reveal cellular dynamics and their regulators implicated in neurological disorders. Finally, using this reference, we benchmark cell identities and maturation states in organoid models. Together, this captures the dynamic regulatory landscape of human cortical development.
Collapse
Affiliation(s)
- Charles A Herring
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Rebecca K Simmons
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Saskia Freytag
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Daniel Poppe
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Joel J D Moffet
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Jahnvi Pflueger
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Sam Buckberry
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Dulce B Vargas-Landin
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Olivier Clément
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Enrique Goñi Echeverría
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Gavin J Sutton
- School of Biotechnology and Biomolecular Sciences, Cellular Genomics Futures Institute, and the RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Alba Alvarez-Franco
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid 28029, Spain
| | - Rui Hou
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Christian Pflueger
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Kerrie McDonald
- Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jose M Polo
- Adelaide Centre for Epigenetics and the South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia; Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3000, Australia
| | - Alistair R R Forrest
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia
| | - Anna K Nowak
- Medical School, University of Western Australia, Perth, WA 6009, Australia
| | - Irina Voineagu
- School of Biotechnology and Biomolecular Sciences, Cellular Genomics Futures Institute, and the RNA Institute, University of New South Wales, Sydney, NSW 2052, Australia
| | - Luciano Martelotto
- Adelaide Centre for Epigenetics and the South Australian Immunogenomics Cancer Institute, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5000, Australia; University of Melbourne Centre for Cancer Research, Victoria Comprehensive Cancer Centre, Melbourne, VIC 3000, Australia
| | - Ryan Lister
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, WA 6009, Australia; ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia.
| |
Collapse
|
17
|
Wang J, Yang L, Jiang M, Zhao C, Liu X, Berry K, Waisman A, Langseth AJ, Novitch BG, Bergles DE, Nishiyama A, Lu QR. Olig2 Ablation in Immature Oligodendrocytes Does Not Enhance CNS Myelination and Remyelination. J Neurosci 2022; 42:8542-8555. [PMID: 36198499 PMCID: PMC9665935 DOI: 10.1523/jneurosci.0237-22.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/25/2022] [Accepted: 09/07/2022] [Indexed: 11/21/2022] Open
Abstract
The oligodendrocyte (OL) lineage transcription factor Olig2 is expressed throughout oligodendroglial development and is essential for oligodendroglial progenitor specification and differentiation. It was previously reported that deletion of Olig2 enhanced the maturation and myelination of immature OLs and accelerated the remyelination process. However, by analyzing multiple Olig2 conditional KO mouse lines (male and female), we conclude that Olig2 has the opposite effect and is required for OL maturation and remyelination. We found that deletion of Olig2 in immature OLs driven by an immature OL-expressing Plp1 promoter resulted in defects in OL maturation and myelination, and did not enhance remyelination after demyelination. Similarly, Olig2 deletion during premyelinating stages in immature OLs using Mobp or Mog promoter-driven Cre lines also did not enhance OL maturation in the CNS. Further, we found that Olig2 was not required for myelin maintenance in mature OLs but was critical for remyelination after lysolecithin-induced demyelinating injury. Analysis of genomic occupancy in immature and mature OLs revealed that Olig2 targets the enhancers of key myelination-related genes for OL maturation from immature OLs. Together, by leveraging multiple immature OL-expressing Cre lines, these studies indicate that Olig2 is essential for differentiation and myelination of immature OLs and myelin repair. Our findings raise fundamental questions about the previously proposed role of Olig2 in opposing OL myelination and highlight the importance of using Cre-dependent reporter(s) for lineage tracing in studying cell state progression.SIGNIFICANCE STATEMENT Identification of the regulators that promote oligodendrocyte (OL) myelination and remyelination is important for promoting myelin repair in devastating demyelinating diseases. Olig2 is expressed throughout OL lineage development. Ablation of Olig2 was reported to induce maturation, myelination, and remyelination from immature OLs. However, lineage-mapping analysis of Olig2-ablated cells was not conducted. Here, by leveraging multiple immature OL-expressing Cre lines, we observed no evidence that Olig2 ablation promotes maturation or remyelination of immature OLs. Instead, we find that Olig2 is required for immature OL maturation, myelination, and myelin repair. These data raise fundamental questions about the proposed inhibitory role of Olig2 against OL maturation and remyelination. Our findings highlight the importance of validating genetic manipulation with cell lineage tracing in studying myelination.
Collapse
Affiliation(s)
- Jiajia Wang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Lijun Yang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Minqing Jiang
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Chuntao Zhao
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Xuezhao Liu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Kalen Berry
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| | - Ari Waisman
- Institute for Molecular Medicine, Langenbeckstrasse 1, Mainz, 55131, Germany
| | - Abraham J Langseth
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Bennett G Novitch
- Department of Neurobiology, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, California 90095
| | - Dwight E Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
- Johns Hopkins Kavli Neuroscience Discovery Institute, Baltimore, Maryland 21205
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269
| | - Q Richard Lu
- Department of Pediatrics, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229
| |
Collapse
|
18
|
Spatially resolved gene regulatory and disease-related vulnerability map of the adult Macaque cortex. Nat Commun 2022; 13:6747. [PMID: 36347848 PMCID: PMC9643508 DOI: 10.1038/s41467-022-34413-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
Single cell approaches have increased our knowledge about the cell type composition of the non-human primate (NHP), but a detailed characterization of area-specific regulatory features remains outstanding. We generated single-cell transcriptomic and chromatin accessibility (single-cell ATAC) data of 358,237 cells from prefrontal cortex (PFC), primary motor cortex (M1) and primary visual cortex (V1) of adult female cynomolgus monkey brain, and integrated this dataset with Stereo-seq (spatial enhanced resolution omics-sequencing) of the corresponding cortical areas to assign topographic information to molecular states. We identified area-specific chromatin accessible sites and their targeted genes, including the cell type-specific transcriptional regulatory network associated with excitatory neurons heterogeneity. We reveal calcium ion transport and axon guidance genes related to specialized functions of PFC and M1, identified the similarities and differences between adult macaque and human oligodendrocyte trajectories, and mapped the genetic variants and gene perturbations of human diseases to NHP cortical cells. This resource establishes a transcriptomic and chromatin accessibility combinatory regulatory landscape at a single-cell and spatially resolved resolution in NHP cortex.
Collapse
|
19
|
Comparative role of SOX10 gene in the gliogenesis of central, peripheral, and enteric nervous systems. Differentiation 2022; 128:13-25. [DOI: 10.1016/j.diff.2022.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 11/17/2022]
|
20
|
Huang H, He W, Tang T, Qiu M. Immunological Markers for Central Nervous System Glia. Neurosci Bull 2022; 39:379-392. [PMID: 36028641 PMCID: PMC10043115 DOI: 10.1007/s12264-022-00938-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/09/2022] [Indexed: 10/15/2022] Open
Abstract
Glial cells in the central nervous system (CNS) are composed of oligodendrocytes, astrocytes and microglia. They contribute more than half of the total cells of the CNS, and are essential for neural development and functioning. Studies on the fate specification, differentiation, and functional diversification of glial cells mainly rely on the proper use of cell- or stage-specific molecular markers. However, as cellular markers often exhibit different specificity and sensitivity, careful consideration must be given prior to their application to avoid possible confusion. Here, we provide an updated overview of a list of well-established immunological markers for the labeling of central glia, and discuss the cell-type specificity and stage dependency of their expression.
Collapse
Affiliation(s)
- Hao Huang
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Wanjun He
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Tao Tang
- Department of Anatomy, Cell Biology and Physiology Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mengsheng Qiu
- Zhejiang Key Laboratory of Organ Development and Regeneration, Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
21
|
Dermitzakis I, Manthou ME, Meditskou S, Miliaras D, Kesidou E, Boziki M, Petratos S, Grigoriadis N, Theotokis P. Developmental Cues and Molecular Drivers in Myelinogenesis: Revisiting Early Life to Re-Evaluate the Integrity of CNS Myelin. Curr Issues Mol Biol 2022; 44:3208-3237. [PMID: 35877446 PMCID: PMC9324160 DOI: 10.3390/cimb44070222] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/14/2022] [Accepted: 07/17/2022] [Indexed: 02/07/2023] Open
Abstract
The mammalian central nervous system (CNS) coordinates its communication through saltatory conduction, facilitated by myelin-forming oligodendrocytes (OLs). Despite the fact that neurogenesis from stem cell niches has caught the majority of attention in recent years, oligodendrogenesis and, more specifically, the molecular underpinnings behind OL-dependent myelinogenesis, remain largely unknown. In this comprehensive review, we determine the developmental cues and molecular drivers which regulate normal myelination both at the prenatal and postnatal periods. We have indexed the individual stages of myelinogenesis sequentially; from the initiation of oligodendrocyte precursor cells, including migration and proliferation, to first contact with the axon that enlists positive and negative regulators for myelination, until the ultimate maintenance of the axon ensheathment and myelin growth. Here, we highlight multiple developmental pathways that are key to successful myelin formation and define the molecular pathways that can potentially be targets for pharmacological interventions in a variety of neurological disorders that exhibit demyelination.
Collapse
Affiliation(s)
- Iasonas Dermitzakis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.D.); (M.E.M.); (S.M.); (D.M.)
| | - Maria Eleni Manthou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.D.); (M.E.M.); (S.M.); (D.M.)
| | - Soultana Meditskou
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.D.); (M.E.M.); (S.M.); (D.M.)
| | - Dimosthenis Miliaras
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.D.); (M.E.M.); (S.M.); (D.M.)
| | - Evangelia Kesidou
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, AHEPA University Hospital, 54621 Thessaloniki, Greece; (E.K.); (M.B.); (N.G.)
| | - Marina Boziki
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, AHEPA University Hospital, 54621 Thessaloniki, Greece; (E.K.); (M.B.); (N.G.)
| | - Steven Petratos
- Department of Neuroscience, Central Clinical School, Monash University, Prahran, VIC 3004, Australia;
| | - Nikolaos Grigoriadis
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, AHEPA University Hospital, 54621 Thessaloniki, Greece; (E.K.); (M.B.); (N.G.)
| | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (I.D.); (M.E.M.); (S.M.); (D.M.)
- Laboratory of Experimental Neurology and Neuroimmunology, Second Department of Neurology, AHEPA University Hospital, 54621 Thessaloniki, Greece; (E.K.); (M.B.); (N.G.)
- Correspondence:
| |
Collapse
|
22
|
Nimodipine Exerts Beneficial Effects on the Rat Oligodendrocyte Cell Line OLN-93. Brain Sci 2022; 12:brainsci12040476. [PMID: 35448007 PMCID: PMC9029615 DOI: 10.3390/brainsci12040476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS). Therapy is currently limited to drugs that interfere with the immune system; treatment options that primarily mediate neuroprotection and prevent neurodegeneration are not available. Here, we studied the effects of nimodipine on the rat cell line OLN-93, which resembles young mature oligodendrocytes. Nimodipine is a dihydropyridine that blocks the voltage-gated L-type calcium channel family members Cav1.2 and Cav1.3. Our data show that the treatment of OLN-93 cells with nimodipine induced the upregulation of myelin genes, in particular of proteolipid protein 1 (Plp1), which was confirmed by a significantly greater expression of PLP1 in immunofluorescence analysis and the presence of myelin structures in the cytoplasm at the ultrastructural level. Whole-genome RNA sequencing additionally revealed the upregulation of genes that are involved in neuroprotection, remyelination, and antioxidation pathways. Interestingly, the observed effects were independent of Cav1.2 and Cav1.3 because OLN-93 cells do not express these channels, and there was no measurable response pattern in patch-clamp analysis. Taking into consideration previous studies that demonstrated a beneficial effect of nimodipine on microglia, our data support the notion that nimodipine is an interesting drug candidate for the treatment of MS and other demyelinating diseases.
Collapse
|
23
|
Sock E, Wegner M. Using the lineage determinants Olig2 and Sox10 to explore transcriptional regulation of oligodendrocyte development. Dev Neurobiol 2021; 81:892-901. [PMID: 34480425 DOI: 10.1002/dneu.22849] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 02/02/2023]
Abstract
The transcription factors Olig2 and Sox10 jointly define oligodendroglial identity. Because of their continuous presence during development and in the differentiated state they shape the oligodendroglial regulatory network at all times. In this review, we exploit their eminent role and omnipresence to elaborate the central principles that organize the gene regulatory network in oligodendrocytes in such a way that it preserves its identity, but at the same time allows defined and stimulus-dependent changes that result in an ordered lineage progression, differentiation, and myelination. For this purpose, we outline the multiple functional and physical interactions and intricate cross-regulatory relationships with other transcription factors, such as Hes5, Id, and SoxD proteins, in oligodendrocyte precursors and Tcf7l2, Sip1, Nkx2.2, Zfp24, and Myrf during differentiation and myelination, and interpret them in the context of the regulatory network.
Collapse
Affiliation(s)
- Elisabeth Sock
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Wegner
- Institut für Biochemie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
24
|
Spaas J, van Veggel L, Schepers M, Tiane A, van Horssen J, Wilson DM, Moya PR, Piccart E, Hellings N, Eijnde BO, Derave W, Schreiber R, Vanmierlo T. Oxidative stress and impaired oligodendrocyte precursor cell differentiation in neurological disorders. Cell Mol Life Sci 2021; 78:4615-4637. [PMID: 33751149 PMCID: PMC8195802 DOI: 10.1007/s00018-021-03802-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/12/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) account for 5% of the resident parenchymal central nervous system glial cells. OPCs are not only a back-up for the loss of oligodendrocytes that occurs due to brain injury or inflammation-induced demyelination (remyelination) but are also pivotal in plastic processes such as learning and memory (adaptive myelination). OPC differentiation into mature myelinating oligodendrocytes is controlled by a complex transcriptional network and depends on high metabolic and mitochondrial demand. Mounting evidence shows that OPC dysfunction, culminating in the lack of OPC differentiation, mediates the progression of neurodegenerative disorders such as multiple sclerosis, Alzheimer's disease and Parkinson's disease. Importantly, neurodegeneration is characterised by oxidative and carbonyl stress, which may primarily affect OPC plasticity due to the high metabolic demand and a limited antioxidant capacity associated with this cell type. The underlying mechanisms of how oxidative/carbonyl stress disrupt OPC differentiation remain enigmatic and a focus of current research efforts. This review proposes a role for oxidative/carbonyl stress in interfering with the transcriptional and metabolic changes required for OPC differentiation. In particular, oligodendrocyte (epi)genetics, cellular defence and repair responses, mitochondrial signalling and respiration, and lipid metabolism represent key mechanisms how oxidative/carbonyl stress may hamper OPC differentiation in neurodegenerative disorders. Understanding how oxidative/carbonyl stress impacts OPC function may pave the way for future OPC-targeted treatment strategies in neurodegenerative disorders.
Collapse
Affiliation(s)
- Jan Spaas
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Lieve van Veggel
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Melissa Schepers
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Assia Tiane
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Jack van Horssen
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, MS Center Amsterdam, Amsterdam University Medical Center, Location VUmc, Amsterdam, The Netherlands
| | - David M Wilson
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Pablo R Moya
- Facultad de Ciencias, Instituto de Fisiología, Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
| | - Elisabeth Piccart
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Niels Hellings
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Bert O Eijnde
- University MS Center (UMSC), Hasselt-Pelt, Belgium
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
- Faculty of Medicine and Life Sciences, SMRC-Sportsmedical Research Center, BIOMED Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Wim Derave
- Department of Movement and Sports Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Rudy Schreiber
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Tim Vanmierlo
- University MS Center (UMSC), Hasselt-Pelt, Belgium.
- BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.
- Department Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
25
|
Gene Expression of Mouse Hippocampal Stem Cells Grown in a Galactose-Derived Molecular Gel Compared to In Vivo and Neurospheres. Processes (Basel) 2021. [DOI: 10.3390/pr9040716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background: N-heptyl-D-galactonamide (GalC7) is a small synthetic carbohydrate derivative that forms a biocompatible supramolecular hydrogel. In this study, the objective was to analyze more in-depth how neural cells differentiate in contact with GalC7. Method: Direct (ex vivo) cells of the fresh hippocampus and culture (In vitro) of the primary cells were investigated. In vitro, investigation performed under three conditions: on culture in neurospheres for 19 days, on culture in GalC7 gel for 7 days, and on culture in both neurospheres and GalC7 gel. Total RNA was isolated with TRIzol from each group, Sox8, Sox9, Sox10, Dcx, and Neurod1 expression levels were measured by qPCR. Result: Sox8 and Sox10, oligodendrocyte markers, and Sox9, an astrocyte marker, were expressed at a much higher level after 7 days of culture in GalC7 hydrogel compared to all other conditions. Dcx, a marker of neurogenesis, and Neurod1, a marker of neuronal differentiation, were expressed at better levels in the GalC7 gel culture compared to the neurosphere. Conclusions: These results show that the GalC7 hydrogel brings different and interesting conditions for inducing the differentiation and maturation of neural progenitor cells compared with polymer-based scaffolds or cell-only conditions. The differences observed open new perspectives in tissue engineering, induction, and transcript analysis.
Collapse
|
26
|
Brooks LJ, Clements MP, Burden JJ, Kocher D, Richards L, Devesa SC, Zakka L, Woodberry M, Ellis M, Jaunmuktane Z, Brandner S, Morrison G, Pollard SM, Dirks PB, Marguerat S, Parrinello S. The white matter is a pro-differentiative niche for glioblastoma. Nat Commun 2021; 12:2184. [PMID: 33846316 PMCID: PMC8042097 DOI: 10.1038/s41467-021-22225-w] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/23/2021] [Indexed: 02/02/2023] Open
Abstract
Glioblastomas are hierarchically organised tumours driven by glioma stem cells that retain partial differentiation potential. Glioma stem cells are maintained in specialised microenvironments, but whether, or how, they undergo lineage progression outside of these niches remains unclear. Here we identify the white matter as a differentiative niche for glioblastomas with oligodendrocyte lineage competency. Tumour cells in contact with white matter acquire pre-oligodendrocyte fate, resulting in decreased proliferation and invasion. Differentiation is a response to white matter injury, which is caused by tumour infiltration itself in a tumoursuppressive feedback loop. Mechanistically, tumour cell differentiation is driven by selective white matter upregulation of SOX10, a master regulator of normal oligodendrogenesis. SOX10 overexpression or treatment with myelination-promoting agents that upregulate endogenous SOX10, mimic this response, leading to niche-independent pre-oligodendrocyte differentiation and tumour suppression in vivo. Thus, glioblastoma recapitulates an injury response and exploiting this latent programme may offer treatment opportunities for a subset of patients.
Collapse
Affiliation(s)
- Lucy J Brooks
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK
| | - Melanie P Clements
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK
| | - Jemima J Burden
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Daniela Kocher
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK
| | - Luca Richards
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK
| | - Sara Castro Devesa
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK
| | - Leila Zakka
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK
| | - Megan Woodberry
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK
| | - Michael Ellis
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK
| | - Zane Jaunmuktane
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, Queen Square, WC1N 3BG, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, WC1N 3BG, London, UK
| | - Sebastian Brandner
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, Queen Square, WC1N 3BG, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, WC1N 3BG, London, UK
| | - Gillian Morrison
- MRC Centre for Regenerative Medicine and Edinburgh Cancer Research UK Cancer Centre, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Steven M Pollard
- MRC Centre for Regenerative Medicine and Edinburgh Cancer Research UK Cancer Centre, University of Edinburgh, 5 Little France Drive, Edinburgh, EH16 4UU, UK
| | - Peter B Dirks
- Division of Neurosurgery, Arthur and Sonia Labatt Brain Tumor Research Center, Departments of Surgery and Molecular Genetics, Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Samuel Marguerat
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Simona Parrinello
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute, London, WC1E 6DD, UK.
| |
Collapse
|
27
|
Stevanovic M, Drakulic D, Lazic A, Ninkovic DS, Schwirtlich M, Mojsin M. SOX Transcription Factors as Important Regulators of Neuronal and Glial Differentiation During Nervous System Development and Adult Neurogenesis. Front Mol Neurosci 2021; 14:654031. [PMID: 33867936 PMCID: PMC8044450 DOI: 10.3389/fnmol.2021.654031] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/11/2021] [Indexed: 12/11/2022] Open
Abstract
The SOX proteins belong to the superfamily of transcription factors (TFs) that display properties of both classical TFs and architectural components of chromatin. Since the cloning of the Sox/SOX genes, remarkable progress has been made in illuminating their roles as key players in the regulation of multiple developmental and physiological processes. SOX TFs govern diverse cellular processes during development, such as maintaining the pluripotency of stem cells, cell proliferation, cell fate decisions/germ layer formation as well as terminal cell differentiation into tissues and organs. However, their roles are not limited to development since SOX proteins influence survival, regeneration, cell death and control homeostasis in adult tissues. This review summarized current knowledge of the roles of SOX proteins in control of central nervous system development. Some SOX TFs suspend neural progenitors in proliferative, stem-like state and prevent their differentiation. SOX proteins function as pioneer factors that occupy silenced target genes and keep them in a poised state for activation at subsequent stages of differentiation. At appropriate stage of development, SOX members that maintain stemness are down-regulated in cells that are competent to differentiate, while other SOX members take over their functions and govern the process of differentiation. Distinct SOX members determine down-stream processes of neuronal and glial differentiation. Thus, sequentially acting SOX TFs orchestrate neural lineage development defining neuronal and glial phenotypes. In line with their crucial roles in the nervous system development, deregulation of specific SOX proteins activities is associated with neurodevelopmental disorders (NDDs). The overview of the current knowledge about the link between SOX gene variants and NDDs is presented. We outline the roles of SOX TFs in adult neurogenesis and brain homeostasis and discuss whether impaired adult neurogenesis, detected in neurodegenerative diseases, could be associated with deregulation of SOX proteins activities. We present the current data regarding the interaction between SOX proteins and signaling pathways and microRNAs that play roles in nervous system development. Finally, future research directions that will improve the knowledge about distinct and various roles of SOX TFs in health and diseases are presented and discussed.
Collapse
Affiliation(s)
- Milena Stevanovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia.,Faculty of Biology, University of Belgrade, Belgrade, Serbia.,Serbian Academy of Sciences and Arts, Belgrade, Serbia
| | - Danijela Drakulic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Andrijana Lazic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Danijela Stanisavljevic Ninkovic
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Marija Schwirtlich
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Marija Mojsin
- Laboratory for Human Molecular Genetics, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
28
|
Zafar I, Iftikhar R, Ahmad SU, Rather MA. Genome wide identification, phylogeny, and synteny analysis of sox gene family in common carp ( Cyprinus carpio). ACTA ACUST UNITED AC 2021; 30:e00607. [PMID: 33936955 PMCID: PMC8076717 DOI: 10.1016/j.btre.2021.e00607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/20/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022]
Abstract
27 SOX (high-mobility group HMG-box) genes were identified in the C. carp genome. SOX genes ranging from 3496 (SOX6) to 924bp (SOX17b) which coded with putative protein series from 307 to 509 amino acids. Gene ontology revealed SOX proteins maximum involvement is in metabolic process 49.796 %. Chromosomal location and synteny analysis display all SOX gene are located on different chromosomes.
Common carp (Cyprinus carpio) is a commercial fish species valuable for nutritious components and plays a vital role in human healthy nutrition. The SOX (SRY-related genes systematically characterized by a high-mobility group HMG-box) encoded important gene regulatory proteins, a family of transcription factors found in a broad range of animal taxa and extensively known for its contribution in multiple developmental processes including contribution in sex determination across phyla. In our current study, we initially accomplished a genome-wide analysis to report the SOX gene family in common carp fish based on available genomic sequences of zebrafish retrieved from gene repository databases, we focused on the global identification of the Sox gene family in Common carp among wide range of vertebrates and teleosts based on bioinformatics tools and techniques and explore the evolutionary relationships. In our results, a total of 27 SOX (high-mobility group HMG-box) domain genes were identified in the C. carp genome. The full length sequences of SOX genes ranging from 3496 (SOX6) to 924bp (SOX17b) which coded with putative proteins series from 307 to 509 amino acids and all gene having exon number expect SOX9 and SOX13. All the SOX proteins contained at least one conserved DNA-binding HMG-box domain and two (SOX7 and SOX18) were found C terminal. The Gene ontology revealed SOX proteins maximum involvement is in metabolic process 49.796 %, average in biological regulation 45.188 %, biosynthetic process (19.992 %), regulation of cellular process 39.68, 45.508 % organic substance metabolic process, multicellular organismal process 23.23 %,developmental process 21.74 %, system development 16.59 %, gene expression 16.05 % and 14.337 % of RNA metabolic process. Chromosomal location and syntanic analysis show all SOX gene are located on different chromosomes and apparently does not fallow the unique pattern. The maximum linkage of chromosome is (2) on Unplaced Scaffold region. Finally, our results provide important genomic suggestion for upcoming studies of biochemical, physiological, and phylogenetic understanding on SOX genes among teleost.
Collapse
Affiliation(s)
- Imran Zafar
- Department of Bioinformatics and Computational Biology, Virtual University Pakistan, Punjab, Pakistan
| | - Rida Iftikhar
- Department of Bioinformatics and Computational Biology, Virtual University Pakistan, Punjab, Pakistan
| | - Syed Umair Ahmad
- Department of Bioinformatics, Hazara University, Mansehra, Pakistan
| | - Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Fauclty of Fisheries Rangil, Ganderbal, SKUAST-Kashmir, India
- Corresponding author.
| |
Collapse
|
29
|
Chao FL, Zhang Y, Zhang L, Jiang L, Zhou CN, Tang J, Liang X, Fan JH, Dou XY, Tang Y. Fluoxetine Promotes Hippocampal Oligodendrocyte Maturation and Delays Learning and Memory Decline in APP/PS1 Mice. Front Aging Neurosci 2021; 12:627362. [PMID: 33519426 PMCID: PMC7838348 DOI: 10.3389/fnagi.2020.627362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 12/14/2020] [Indexed: 12/12/2022] Open
Abstract
Oligodendrogenesis dysfunction impairs memory consolidation in adult mice, and an oligodendrocyte abnormality is an important change occurring in Alzheimer's disease (AD). While fluoxetine (FLX) is known to delay memory decline in AD models, its effects on hippocampal oligodendrogenesis are unclear. Here, we subjected 8-month-old male amyloid precursor protein (APP)/presenilin 1 (PS1) mice to the FLX intervention for 2 months. Their exploratory behaviors and general activities in a novel environment, spatial learning and memory and working and reference memory were assessed using the open-field test, Morris water maze, and Y maze. Furthermore, changes in hippocampal oligodendrogenesis were investigated using stereology, immunohistochemistry, immunofluorescence staining, and Western blotting techniques. FLX delayed declines in the spatial learning and memory, as well as the working and reference memory of APP/PS1 mice. In addition, APP/PS1 mice exhibited immature hippocampal oligodendrogenesis, and FLX increased the numbers of 2'3'cyclic nucleotide 3'-phosphodiesterase (CNPase)+ and newborn CNPase+ oligodendrocytes in the hippocampi of APP/PS1 mice. Moreover, FLX increased the density of SRY-related HMG-box 10 protein (SOX10)+ cells and reduced the percentage of oligodendrocyte lineage cells displaying the senescence phenotype (CDKN2A/p16INK4a) in the hippocampus of APP/PS1 mice. Moreover, FLX had no effect on the serotonin (5-HT) 1A receptor (5-HT1AR) content or number of 5-HT1AR+ oligodendrocytes, but it reduced the content and activity of glycogen synthase kinase 3β (GSK3β) in the hippocampus of APP/PS1 transgenic mice. Taken together, FLX delays the senescence of oligodendrocyte lineage cells and promotes oligodendrocyte maturation in the hippocampus of APP/PS1 mice. FLX may regulate GSK3β through a mechanism other than 5-HT1AR and then inhibit the negative effect of GSK3β on oligodendrocyte maturation in the hippocampus of an AD mouse model.
Collapse
Affiliation(s)
- Feng-lei Chao
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Yi Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Zhang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Lin Jiang
- Experimental Teaching Management Center, Chongqing Medical University, Chongqing, China
| | - Chun-ni Zhou
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Jing Tang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Xin Liang
- Department of Physiology, Chongqing Medical University, Chongqing, China
| | - Jin-hua Fan
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| | - Xiao-yun Dou
- Academy of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Yong Tang
- Department of Histology and Embryology, Chongqing Medical University, Chongqing, China
- Laboratory of Stem Cells and Tissue Engineering, Chongqing Medical University, Chongqing, China
| |
Collapse
|
30
|
Chen Y, Zheng Z, Mei A, Huang H, Lin F. Claudin-1 and Claudin-3 as Molecular Regulators of Myelination in Leukoaraiosis Patients. Clinics (Sao Paulo) 2021; 76:e2167. [PMID: 34008771 PMCID: PMC8101689 DOI: 10.6061/clinics/2021/e2167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/05/2020] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVES Leukoaraiosis is described as white matter lesions that are associated with cognitive dysfunction, neurodegenerative disorders, etc. Myelin depletion is a salient pathological feature of, and the loss of oligodendrocytes is one of the most robust alterations evident in, white matter degeneration. Recent studies have revealed that claudin proteins are aberrantly expressed in leukoaraiosis and regulate oligodendrocyte activity. However, the roles of claudin-1 and claudin-3 in oligodendrocytes and leukoaraiosis are still not well-defined. METHODS Quantitative polymerase chain reaction was used to measure the expression of claudin-1 (CLDN1), claudin-3 (CLDN3), and myelinogenesis-related genes such as myelin basic protein (MBP), proteolipid protein (PLP), oligodendrocyte transcription factor 2 (OLIG2), and SRY-box transcription factor 10 (SOX10) in leukoaraiosis patients (n=122) and healthy controls (n=122). The expression of claudin-1 and claudin-3 was either ectopically silenced or augmented in Oli-neu oligodendrocytes, and colony formation, apoptosis, and migration assays were performed. Finally, the expression of myelin proteins was evaluated by western blotting. RESULTS Our results revealed that in addition to SOX10, the expression levels of claudin-1, claudin-3, and myelinogenesis-related proteins were prominently downregulated in leukoaraiosis patients, compared to those in healthy controls. Furthermore, the growth and migration of Oli-neu cells were downregulated upon silencing claudin-1 or claudin-3. However, the overexpression of claudin-1 or claudin-3 resulted in the reduction of the degree of apoptosis in Oli-neu cells. In addition, claudin-1 and claudin-3 promoted the expression of MBP, OLIG2, PLP, and SOX10 at the translational level. CONCLUSION Our data has demonstrated that the abnormal expression of claudin-1 and claudin-3 regulates the pathological progression of leukoaraiosis by governing the viability and myelination of oligodendrocytes. These findings provide novel insights into the regulatory mechanisms underlying the roles of claudin-1 and claudin-3 in leukoaraiosis.
Collapse
Affiliation(s)
- Yan Chen
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, P.R. China
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou, 350001, P.R. China
- Fujian Key Laboratory of Geriatrics, Fuzhou, 350001, P.R. China
- Fujian Provincial center for Geriatrics, Fuzhou, 350001, P.R. China
| | - Zheng Zheng
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, P.R. China
- Department of Neurology, Fujian Provincial Hospital, Fuzhou, 350001, P.R. China
- *Corresponding author. E-mail:
| | - Ainong Mei
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, P.R. China
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou, 350001, P.R. China
- Fujian Key Laboratory of Geriatrics, Fuzhou, 350001, P.R. China
- Fujian Provincial center for Geriatrics, Fuzhou, 350001, P.R. China
| | - Huan Huang
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, P.R. China
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou, 350001, P.R. China
- Fujian Key Laboratory of Geriatrics, Fuzhou, 350001, P.R. China
- Fujian Provincial center for Geriatrics, Fuzhou, 350001, P.R. China
| | - Fan Lin
- Shengli Clinical Medical College, Fujian Medical University, Fuzhou, 350001, P.R. China
- Department of Geriatric Medicine, Fujian Provincial Hospital, Fuzhou, 350001, P.R. China
- Fujian Key Laboratory of Geriatrics, Fuzhou, 350001, P.R. China
- Fujian Provincial center for Geriatrics, Fuzhou, 350001, P.R. China
| |
Collapse
|
31
|
Petralia F, Tignor N, Reva B, Koptyra M, Chowdhury S, Rykunov D, Krek A, Ma W, Zhu Y, Ji J, Calinawan A, Whiteaker JR, Colaprico A, Stathias V, Omelchenko T, Song X, Raman P, Guo Y, Brown MA, Ivey RG, Szpyt J, Guha Thakurta S, Gritsenko MA, Weitz KK, Lopez G, Kalayci S, Gümüş ZH, Yoo S, da Veiga Leprevost F, Chang HY, Krug K, Katsnelson L, Wang Y, Kennedy JJ, Voytovich UJ, Zhao L, Gaonkar KS, Ennis BM, Zhang B, Baubet V, Tauhid L, Lilly JV, Mason JL, Farrow B, Young N, Leary S, Moon J, Petyuk VA, Nazarian J, Adappa ND, Palmer JN, Lober RM, Rivero-Hinojosa S, Wang LB, Wang JM, Broberg M, Chu RK, Moore RJ, Monroe ME, Zhao R, Smith RD, Zhu J, Robles AI, Mesri M, Boja E, Hiltke T, Rodriguez H, Zhang B, Schadt EE, Mani DR, Ding L, Iavarone A, Wiznerowicz M, Schürer S, Chen XS, Heath AP, Rokita JL, Nesvizhskii AI, Fenyö D, Rodland KD, Liu T, Gygi SP, Paulovich AG, Resnick AC, Storm PB, Rood BR, Wang P. Integrated Proteogenomic Characterization across Major Histological Types of Pediatric Brain Cancer. Cell 2020; 183:1962-1985.e31. [PMID: 33242424 PMCID: PMC8143193 DOI: 10.1016/j.cell.2020.10.044] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/19/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Abstract
We report a comprehensive proteogenomics analysis, including whole-genome sequencing, RNA sequencing, and proteomics and phosphoproteomics profiling, of 218 tumors across 7 histological types of childhood brain cancer: low-grade glioma (n = 93), ependymoma (32), high-grade glioma (25), medulloblastoma (22), ganglioglioma (18), craniopharyngioma (16), and atypical teratoid rhabdoid tumor (12). Proteomics data identify common biological themes that span histological boundaries, suggesting that treatments used for one histological type may be applied effectively to other tumors sharing similar proteomics features. Immune landscape characterization reveals diverse tumor microenvironments across and within diagnoses. Proteomics data further reveal functional effects of somatic mutations and copy number variations (CNVs) not evident in transcriptomics data. Kinase-substrate association and co-expression network analysis identify important biological mechanisms of tumorigenesis. This is the first large-scale proteogenomics analysis across traditional histological boundaries to uncover foundational pediatric brain tumor biology and inform rational treatment selection.
Collapse
Affiliation(s)
- Francesca Petralia
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicole Tignor
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Boris Reva
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mateusz Koptyra
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Shrabanti Chowdhury
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dmitry Rykunov
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Azra Krek
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Weiping Ma
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yuankun Zhu
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jiayi Ji
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Anna Calinawan
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Antonio Colaprico
- Department of Public Health Science, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Vasileios Stathias
- Department of Pharmacology, Institute for Data Science and Computing, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33146, USA
| | - Tatiana Omelchenko
- Cell Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Xiaoyu Song
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Pichai Raman
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Bioinformatics and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yiran Guo
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Miguel A Brown
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Richard G Ivey
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - John Szpyt
- Thermo Fisher Scientific Center for Multiplexed Proteomics, Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Sanjukta Guha Thakurta
- Thermo Fisher Scientific Center for Multiplexed Proteomics, Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Marina A Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Karl K Weitz
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Gonzalo Lopez
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Selim Kalayci
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Zeynep H Gümüş
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Seungyeul Yoo
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Hui-Yin Chang
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Karsten Krug
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02412, USA
| | - Lizabeth Katsnelson
- Institute for Systems Genetics; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Ying Wang
- Institute for Systems Genetics; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Jacob J Kennedy
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | - Lei Zhao
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Krutika S Gaonkar
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Bioinformatics and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Brian M Ennis
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Bo Zhang
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Valerie Baubet
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lamiya Tauhid
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jena V Lilly
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jennifer L Mason
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Bailey Farrow
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Nathan Young
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sarah Leary
- Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Cancer and Blood Disorders Center, Seattle Children's Hospital, Seattle, WA 98105, USA; Department of Pediatrics, University of Washington, Seattle, WA 98195, USA
| | - Jamie Moon
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Vladislav A Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Javad Nazarian
- Children's National Research Institute, George Washington University School of Medicine, Washington, DC 20010, USA; Department of Oncology, Children's Research Center, University Children's Hospital Zürich, Zürich 8032, Switzerland
| | - Nithin D Adappa
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James N Palmer
- Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert M Lober
- Department of Neurosurgery, Dayton Children's Hospital, Dayton, OH 45404, USA
| | - Samuel Rivero-Hinojosa
- Children's National Research Institute, George Washington University School of Medicine, Washington, DC 20010, USA
| | - Liang-Bo Wang
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA
| | - Joshua M Wang
- Institute for Systems Genetics; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Matilda Broberg
- Institute for Systems Genetics; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Rosalie K Chu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Ronald J Moore
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Matthew E Monroe
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Rui Zhao
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Jun Zhu
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Emily Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tara Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - D R Mani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02412, USA
| | - Li Ding
- Department of Medicine, Washington University in St. Louis, St. Louis, MO 631110, USA; McDonnell Genome Institute, Washington University in St. Louis, St. Louis, MO 63108, USA; Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Antonio Iavarone
- Institute for Cancer Genetics, Department of Neurology, Department of Pathology and Cell Biology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY 10032, USA
| | - Maciej Wiznerowicz
- Poznan University of Medical Sciences, 61-701 Poznań, Poland; International Institute for Molecular Oncology, 61-203 Poznań, Poland
| | - Stephan Schürer
- Department of Pharmacology, Institute for Data Science and Computing, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33146, USA
| | - Xi S Chen
- Department of Public Health Science, University of Miami Miller School of Medicine, Miami, FL 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Allison P Heath
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jo Lynne Rokita
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Bioinformatics and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - David Fenyö
- Institute for Systems Genetics; Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Karin D Rodland
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA; Department of Cell, Developmental, and Cancer Biology, Oregon Health & Science University, Portland, OR 97221, USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Steven P Gygi
- Thermo Fisher Scientific Center for Multiplexed Proteomics, Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Adam C Resnick
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Phillip B Storm
- Center for Data-Driven Discovery in Biomedicine, Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| | - Brian R Rood
- Children's National Research Institute, George Washington University School of Medicine, Washington, DC 20010, USA.
| | - Pei Wang
- Department of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
32
|
Wedel M, Fröb F, Elsesser O, Wittmann MT, Lie DC, Reis A, Wegner M. Transcription factor Tcf4 is the preferred heterodimerization partner for Olig2 in oligodendrocytes and required for differentiation. Nucleic Acids Res 2020; 48:4839-4857. [PMID: 32266943 PMCID: PMC7229849 DOI: 10.1093/nar/gkaa218] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/20/2020] [Accepted: 03/24/2020] [Indexed: 12/24/2022] Open
Abstract
Development of oligodendrocytes and myelin formation in the vertebrate central nervous system is under control of several basic helix-loop-helix transcription factors such as Olig2, Ascl1, Hes5 and the Id proteins. The class I basic helix-loop-helix proteins Tcf3, Tcf4 and Tcf12 represent potential heterodimerization partners and functional modulators for all, but have not been investigated in oligodendrocytes so far. Using mouse mutants, organotypic slice and primary cell cultures we here show that Tcf4 is required in a cell-autonomous manner for proper terminal differentiation and myelination in vivo and ex vivo. Partial compensation is provided by the paralogous Tcf3, but not Tcf12. On the mechanistic level Tcf4 was identified as the preferred heterodimerization partner of the central regulator of oligodendrocyte development Olig2. Both genetic studies in the mouse as well as functional studies on enhancer regions of myelin genes confirmed the relevance of this physical interaction for oligodendrocyte differentiation. Considering that alterations in TCF4 are associated with syndromic and non-syndromic forms of intellectual disability, schizophrenia and autism in humans, our findings point to the possibility of an oligodendroglial contribution to these disorders.
Collapse
Affiliation(s)
- Miriam Wedel
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Franziska Fröb
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Olga Elsesser
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Marie-Theres Wittmann
- Humangenetisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - D Chichung Lie
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - André Reis
- Humangenetisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
33
|
Parras C, Marie C, Zhao C, Lu QR. Chromatin remodelers in oligodendroglia. Glia 2020; 68:1604-1618. [PMID: 32460418 DOI: 10.1002/glia.23837] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 04/09/2020] [Accepted: 04/16/2020] [Indexed: 01/09/2023]
Abstract
Oligodendrocytes, the myelinating cells in the vertebrate central nervous system, produce myelin sheaths to enable saltatory propagation of action potentials. The process of oligodendrocyte myelination entails a stepwise progression from precursor specification to differentiation, which is coordinated by a series of transcriptional and chromatin remodeling events. ATP-dependent chromatin remodeling enzymes, which utilize ATP as an energy source to control chromatin dynamics and regulate the accessibility of chromatin to transcriptional regulators, are critical for oligodendrocyte lineage development and regeneration. In this review, we focus on the latest insights into the spatial and temporal specificity of chromatin remodelers during oligodendrocyte development, myelinogenesis, and regeneration. We will also bring together various plausible mechanisms by which lineage specific transcriptional regulators coordinate with chromatin remodeling factors for programming genomic landscapes to specifically modulate these different processes during developmental myelination and remyelination upon injury.
Collapse
Affiliation(s)
- Carlos Parras
- Sorbonne Université, UPMC University Paris 06, Inserm U1127, CNRS UMR 7225, GH Pitié-Salpêtrière, Institut du Cerveau et de la Moelle Épinière, ICM, Paris, France
| | - Corentine Marie
- Sorbonne Université, UPMC University Paris 06, Inserm U1127, CNRS UMR 7225, GH Pitié-Salpêtrière, Institut du Cerveau et de la Moelle Épinière, ICM, Paris, France
| | - Chuntao Zhao
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Qing Richard Lu
- Department of Pediatrics, Brain Tumor Center, Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
34
|
Karakousis VA, Liouliou D, Loula A, Kagianni N, Dietrich EM, Meditskou S, Sioga A, Papamitsou T. Immunohistochemical Femoral Nerve Study Following Bisphosphonates Administration. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:medicina56030140. [PMID: 32204565 PMCID: PMC7142497 DOI: 10.3390/medicina56030140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/11/2020] [Accepted: 03/11/2020] [Indexed: 01/07/2023]
Abstract
Background and objectives: Bisphosphonates represent selective inhibitors of excess osteoblastic bone resorption that characterizes all osteopathies, targeting osteoclasts and their precursors. Their long-term administration in postmenopausal women suffering from osteoporosis has resulted in neural adverse effects. The current study focuses on the research of possible alterations in the femoral nerve, caused by bisphosphonates. We hypothesized that bisphosphonates, taken orally (per os), may produce degenerative changes to the femoral nerve, affecting lower-limb posture and walking neuronal commands. Materials and Methods: In order to support our hypothesis, femoral nerve specimens were extracted from ten female 12-month-old Wistar rats given 0.05 milligrams (mg) per kilogram (kg) of body weight (b.w.) per week alendronate per os for 13 weeks and from ten female 12-month-old Wistar rats given normal saline that were used as a control group. Specimens were studied using immunohistochemistry for selected antibodies NeuN (Neuronal Nuclear Protein), a protein located within mature, postmitotic neural nucleus, and cytosol and Sox10 (Sex-determining Region Y (SRY) - High-Motility Group (HMG) - box 10). The latter marker is fundamental for myelination of peripheral nerves. Obtained slides were examined under a light microscope. Results: Samples extracted from rats given alendronate were more Sox10 positive compared to samples of the control group, where the marker's expression was not so intense. Both groups were equally NeuN positive. Our results are in agreement with previous studies conducted under a transmission electron microscope. Conclusions: The suggested pathophysiological mechanism linked to histological alterations described above is possibly related to toxic drug effects on Schwann and neuronal cells. Our hypothesis enhances the existing scientific evidence of degenerative changes present on femoral nerve following bisphosphonates administration, indicating a possible relationship between alendronate use and neuronal function.
Collapse
Affiliation(s)
| | - Danai Liouliou
- Laboratory of Histology and Embryology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Aikaterini Loula
- Laboratory of Histology and Embryology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nikoleta Kagianni
- Laboratory of Histology and Embryology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Eva-Maria Dietrich
- Department of Oral and Maxillofacial Surgery, University Hospital of Erlangen, 91054 Erlangen, Germany
| | - Soultana Meditskou
- Laboratory of Histology and Embryology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Antonia Sioga
- Laboratory of Histology and Embryology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Theodora Papamitsou
- Laboratory of Histology and Embryology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Correspondence:
| |
Collapse
|
35
|
Elsesser O, Fröb F, Küspert M, Tamm ER, Fujii T, Fukunaga R, Wegner M. Chromatin remodeler Ep400 ensures oligodendrocyte survival and is required for myelination in the vertebrate central nervous system. Nucleic Acids Res 2020; 47:6208-6224. [PMID: 31081019 PMCID: PMC6614847 DOI: 10.1093/nar/gkz376] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 04/26/2019] [Accepted: 05/02/2019] [Indexed: 11/27/2022] Open
Abstract
Differentiating oligodendrocytes generate myelin to ensure rapid saltatory conduction in the vertebrate central nervous system. Although oligodendroglial differentiation and myelination are accompanied by dramatic chromatin reorganizations, previously studied chromatin remodelers had only limited direct effects on the process. To study the functional significance of chromatin changes for myelination and identify relevant remodelers, we deleted Ep400, the central ATP-hydrolyzing subunit of the TIP60/EP400 complex, at defined times of mouse oligodendrocyte development. Whereas Ep400-deficient oligodendrocyte precursors develop normally, terminal differentiation and myelination are dramatically impaired. Mechanistically, Ep400 interacts with transcription factor Sox10, binds to regulatory regions of the Myrf gene and is required to induce this central transcriptional regulator of the myelination program. In addition to reduced and aberrant myelin formation, oligodendrocytes exhibit increased DNA damage and apoptosis so that numbers never reach wildtype levels during the short lifespan of Ep400-deficient mice. Ep400 deletion in already mature oligodendrocytes remains phenotypically inapparent arguing that Ep400 is dispensable for myelin maintenance. Given its essential function in myelin formation, modulation of Ep400 activity may be beneficial in conditions such as multiple sclerosis where this process is compromised.
Collapse
Affiliation(s)
- Olga Elsesser
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Franziska Fröb
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Melanie Küspert
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ernst R Tamm
- Institut für Humananatomie und Embryologie, Universität Regensburg, Regensburg, Germany
| | - Toshihiro Fujii
- Department of Biochemistry, Osaka University of Pharmaceutical Sciences, Osaka, Japan
| | - Rikiro Fukunaga
- Department of Biochemistry, Osaka University of Pharmaceutical Sciences, Osaka, Japan
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
36
|
Tiane A, Schepers M, Rombaut B, Hupperts R, Prickaerts J, Hellings N, van den Hove D, Vanmierlo T. From OPC to Oligodendrocyte: An Epigenetic Journey. Cells 2019; 8:E1236. [PMID: 31614602 PMCID: PMC6830107 DOI: 10.3390/cells8101236] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022] Open
Abstract
Oligodendrocytes provide metabolic and functional support to neuronal cells, rendering them key players in the functioning of the central nervous system. Oligodendrocytes need to be newly formed from a pool of oligodendrocyte precursor cells (OPCs). The differentiation of OPCs into mature and myelinating cells is a multistep process, tightly controlled by spatiotemporal activation and repression of specific growth and transcription factors. While oligodendrocyte turnover is rather slow under physiological conditions, a disruption in this balanced differentiation process, for example in case of a differentiation block, could have devastating consequences during ageing and in pathological conditions, such as multiple sclerosis. Over the recent years, increasing evidence has shown that epigenetic mechanisms, such as DNA methylation, histone modifications, and microRNAs, are major contributors to OPC differentiation. In this review, we discuss how these epigenetic mechanisms orchestrate and influence oligodendrocyte maturation. These insights are a crucial starting point for studies that aim to identify the contribution of epigenetics in demyelinating diseases and may thus provide new therapeutic targets to induce myelin repair in the long run.
Collapse
Affiliation(s)
- Assia Tiane
- Department of Immunology, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium.
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| | - Melissa Schepers
- Department of Immunology, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium.
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| | - Ben Rombaut
- Department of Immunology, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium.
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| | - Raymond Hupperts
- Department of Neurology, Zuyderland Medical Center, Sittard-Geleen 6130 MB, The Netherlands.
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| | - Jos Prickaerts
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| | - Niels Hellings
- Department of Immunology, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium.
| | - Daniel van den Hove
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Wuerzburg 97080, Germany.
| | - Tim Vanmierlo
- Department of Immunology, Biomedical Research Institute, Hasselt University, Hasselt 3500, Belgium.
- Department Psychiatry and Neuropsychology, European Graduate School of Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht 6200 MD, The Netherlands.
| |
Collapse
|
37
|
Wang Y, Pan WY, Ge JS, Wang XD, Chen W, Luo X, Wang YL. A review of the relationship between long noncoding RNA and post-stroke injury repair. J Int Med Res 2019; 47:4619-4624. [PMID: 31526155 PMCID: PMC6833389 DOI: 10.1177/0300060519867493] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/12/2019] [Indexed: 11/15/2022] Open
Abstract
Stroke is a cerebrovascular circulation disorder with sudden onset, which causes disorder of ion balance, inflammation, and acidosis, and that in turn induces ischemia-reperfusion injury, influencing the prognosis of stroke patients. Long noncoding RNAs (lncRNAs) are regulatory sequences involved at the transcriptional, post-transcriptional, and epigenetic levels, have high specific expression in the central nervous system, and effectively regulate the development of the central nervous system and progression of diseases. Stroke induces changes in the expression of many lncRNAs. Therefore, lncRNAs play an important role in the complex pathological process of stroke. Exploring lncRNA could facilitate a comprehensive understanding of the pathological mechanism of stroke and the post-injury molecular regulatory network. However, there are few reports on the role of lncRNA in the pathological development of stroke. In the present review, we discuss the association of lncRNA with post-stroke injury repair.
Collapse
Affiliation(s)
- Yao Wang
- Department of Rehabilitation Medicine, Shenzhen Dapeng New District Nan’ao People’s Hospital, Shenzhen, China
| | - Wei-Yi Pan
- Department of Rehabilitation Medicine, Shenzhen Dapeng New District Nan’ao People’s Hospital, Shenzhen, China
| | - Jun-Sheng Ge
- Department of Rehabilitation Medicine, Shenzhen Dapeng New District Nan’ao People’s Hospital, Shenzhen, China
| | - Xiao-Dong Wang
- Department of Rehabilitation, Shenzhen Second People’s Hospital, The First Affiliated Hospital, Shenzhen University School of Medicine, Shenzhen, China
| | - Wei Chen
- Kerry Rehabilitation Medicine Research Institute, Shenzhen, Guangdong, China
| | - Xun Luo
- Kerry Rehabilitation Medicine Research Institute, Shenzhen, Guangdong, China
| | - Yu-Long Wang
- Department of Rehabilitation, Shenzhen Second People’s Hospital, The First Affiliated Hospital, Shenzhen University School of Medicine, Shenzhen, China
| |
Collapse
|
38
|
Angelozzi M, Lefebvre V. SOXopathies: Growing Family of Developmental Disorders Due to SOX Mutations. Trends Genet 2019; 35:658-671. [PMID: 31288943 DOI: 10.1016/j.tig.2019.06.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 12/15/2022]
Abstract
The SRY-related (SOX) transcription factor family pivotally contributes to determining cell fate and identity in many lineages. Since the original discovery that SRY deletions cause sex reversal, mutations in half of the 20 human SOX genes have been associated with rare congenital disorders, henceforward called SOXopathies. Mutations are generally de novo, heterozygous, and inactivating, revealing gene haploinsufficiency, but other types, including duplications, have been reported too. Missense variants primarily target the HMG domain, the SOX hallmark that mediates DNA binding and bending, nuclear trafficking, and protein-protein interactions. We here review key clinical and molecular features of SOXopathies and discuss the prospect that the disease family likely involves more SOX genes and larger clinical and genetic spectrums than currently appreciated.
Collapse
Affiliation(s)
- Marco Angelozzi
- Department of Surgery/Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Véronique Lefebvre
- Department of Surgery/Division of Orthopaedic Surgery, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
39
|
Crazy Little Thing Called Sox-New Insights in Oligodendroglial Sox Protein Function. Int J Mol Sci 2019; 20:ijms20112713. [PMID: 31159496 PMCID: PMC6600536 DOI: 10.3390/ijms20112713] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 02/06/2023] Open
Abstract
In the central nervous system, oligodendrocytes wrap axons with myelin sheaths, which is essential for rapid transfer of electric signals and their trophic support. In oligodendroglia, transcription factors of the Sox protein family are pivotal regulators of a variety of developmental processes. These include specification, proliferation, and migration of oligodendrocyte precursor cells as well as terminal differentiation to mature myelinating oligodendrocytes. Sox proteins are further affected in demyelinating diseases and are involved in remyelination following damage of the central nervous system. Here we summarize and discuss latest findings on transcriptional regulation of Sox proteins, their function, target genes, and interaction with other transcription factors and chromatin remodelers in oligodendroglia with physiological and pathophysiological relevance.
Collapse
|
40
|
Dimas P, Montani L, Pereira JA, Moreno D, Trötzmüller M, Gerber J, Semenkovich CF, Köfeler HC, Suter U. CNS myelination and remyelination depend on fatty acid synthesis by oligodendrocytes. eLife 2019; 8:44702. [PMID: 31063129 PMCID: PMC6504237 DOI: 10.7554/elife.44702] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 04/27/2019] [Indexed: 12/26/2022] Open
Abstract
Oligodendrocytes (OLs) support neurons and signal transmission in the central nervous system (CNS) by enwrapping axons with myelin, a lipid-rich membrane structure. We addressed the significance of fatty acid (FA) synthesis in OLs by depleting FA synthase (FASN) from OL progenitor cells (OPCs) in transgenic mice. While we detected no effects in proliferation and differentiation along the postnatal OL lineage, we found that FASN is essential for accurate myelination, including myelin growth. Increasing dietary lipid intake could partially compensate for the FASN deficiency. Furthermore, FASN contributes to correct myelin lipid composition and stability of myelinated axons. Moreover, we depleted FASN specifically in adult OPCs to examine its relevance for remyelination. Applying lysolecithin-induced focal demyelinating spinal cord lesions, we found that FA synthesis is essential to sustain adult OPC-derived OLs and efficient remyelination. We conclude that FA synthesis in OLs plays key roles in CNS myelination and remyelination.
Collapse
Affiliation(s)
- Penelope Dimas
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zürich, Zürich, Switzerland
| | - Laura Montani
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zürich, Zürich, Switzerland
| | - Jorge A Pereira
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zürich, Zürich, Switzerland
| | - Daniel Moreno
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zürich, Zürich, Switzerland
| | | | - Joanne Gerber
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zürich, Zürich, Switzerland
| | - Clay F Semenkovich
- Division of Endocrinology, Metabolism and Lipid Research, Washington University Medical School, St. Louis, United States
| | - Harald C Köfeler
- Center for Medical Research, Medical University of Graz, Graz, Austria
| | - Ueli Suter
- Institute of Molecular Health Sciences, Swiss Federal Institute of Technology, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
41
|
Sock E, Wegner M. Transcriptional control of myelination and remyelination. Glia 2019; 67:2153-2165. [PMID: 31038810 DOI: 10.1002/glia.23636] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/01/2019] [Accepted: 04/11/2019] [Indexed: 12/11/2022]
Abstract
Myelination is an evolutionary recent differentiation program that has been independently acquired in vertebrates by Schwann cells in the peripheral nervous system and oligodendrocytes in the central nervous system. Therefore, it is not surprising that regulating transcription factors differ substantially between both cell types. However, overall principles are similar as transcriptional control in Schwann cells and oligodendrocytes combines lineage determining and stage-specific factors in complex regulatory networks. Myelination does not only occur during development, but also as remyelination in the adult. In line with the different conditions during developmental myelination and remyelination and the distinctive properties of Schwann cells and oligodendrocytes, transcriptional regulation of remyelination exhibits unique features and differs between the two cell types. This review gives an overview of the current state in the field.
Collapse
Affiliation(s)
- Elisabeth Sock
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
42
|
Katsel P, Roussos P, Fam P, Khan S, Tan W, Hirose T, Nakagawa S, Pletnikov MV, Haroutunian V. The expression of long noncoding RNA NEAT1 is reduced in schizophrenia and modulates oligodendrocytes transcription. NPJ SCHIZOPHRENIA 2019; 5:3. [PMID: 30696826 PMCID: PMC6386752 DOI: 10.1038/s41537-019-0071-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/08/2019] [Indexed: 01/22/2023]
Abstract
Oligodendrocyte (OLG)-related abnormalities have been broadly observed in schizophrenia (SZ); however, the etiology of these abnormalities remains unknown. As SZ is broadly believed to be a developmental disorder, the etiology of the myelin abnormalities in SZ may be related to OLG fate specification during development. Noncoding RNAs (ncRNAs) are an important part of multifaceted transcriptional complexes participating in neurogenic commitment and regulation of postmitotic cell function. The long ncRNA, NEAT1, is a structural component of paraspeckles (subnuclear bodies in interchromatin regions) that may control activity of developmental enhancers of OLG fate specification. Gene expression studies of multiple cortical regions from individuals with SZ showed strong downregulation of NEAT1 levels relative to controls. NEAT1-deficient mice show significant decreases in the numbers of OLG-lineage cells in the frontal cortex. To gain further insight into biological processes affected by NEAT1 deficiency, we analyzed RNA-seq data from frontal cortex of NEAT1-/- mice. Analyses of differentially expressed gene signature from NEAT1-/- mice revealed a significant impact on processes related to OLG differentiation and RNA posttranscriptional modification with the underlying mechanisms involving Wnt signaling, cell contact interactions, and regulation of cholesterol/lipid metabolism. Additional studies revealed evidence of co-expression of SOX10, an OLG transcription factor, and NEAT1, and showed enrichment of OLG-specific transcripts in NEAT1 purified chromatin isolates from human frontal cortex. Reduced nuclear retention of quaking isoform 5 in NEAT1-/- mice shed light on possible mechanism(s) responsible for reduced expression of OLG/myelin proteins and supported the involvement of NEAT1 in oligodendrocyte function.
Collapse
Affiliation(s)
- Pavel Katsel
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Panos Roussos
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Genetics and Genomic Sciences and Icahn Institute for Genomics and Multiscale Biology Friedman Brain Institute, The Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Mental Illness Research, Education and Clinical Center (MIRECC), James J Peters VA Medical Center, Bronx, NY, USA
| | - Peter Fam
- Mental Illness Research, Education and Clinical Center (MIRECC), James J Peters VA Medical Center, Bronx, NY, USA
| | - Sonia Khan
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Weilun Tan
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tetsuro Hirose
- Institute for Genetic Medicine, RNA Biology Laboratory, Hokkaido University, Sapporo, 060-0815, Japan
| | - Shinichi Nakagawa
- Institute for Genetic Medicine, RNA Biology Laboratory, Hokkaido University, Sapporo, 060-0815, Japan.,RIKEN, RNA Biology Laboratory, Wako, Saitama, Japan
| | - Mikhail V Pletnikov
- Departments of Psychiatry, Neuroscience, Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Vahram Haroutunian
- Department of Psychiatry, The Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Mental Illness Research, Education and Clinical Center (MIRECC), James J Peters VA Medical Center, Bronx, NY, USA.,Department of Neuroscience, The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
43
|
MicroRNA-135a-5p promotes neuronal differentiation of pluripotent embryonal carcinoma cells by repressing Sox6/CD44 pathway. Biochem Biophys Res Commun 2018; 509:603-610. [PMID: 30606481 DOI: 10.1016/j.bbrc.2018.12.162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 12/25/2018] [Indexed: 12/13/2022]
Abstract
MicroRNA-135a-5p has been reported to play a potential role in the generation of new neurons. However, the underlying targets of miR-135a-5p in regulating neuronal differentiation have been poorly understood. Our study recently has uncovered that Sox6 and CD44 genes were significantly downregulated during neuronal differentiation of P19 cells, a multipotent cell type. We then found that Sox6 directly bound to the promoter of CD44. Importantly, we identified Sox6 as a direct target of miR-135a-5p. Additionally, we demonstrated that miR-135a-5p is crucial for the neuronal differentiation of P19 cells. More significantly, we found that Sox6 overexpression could overturn miR-135a-5p-mediated neuronal differentiation and dendrite development. In conclusion, these findings indicated that miR-135a-5p/Sox6/CD44 axis provides an important molecular target mechanism for neurodifferentiation.
Collapse
|
44
|
Weider M, Starost LJ, Groll K, Küspert M, Sock E, Wedel M, Fröb F, Schmitt C, Baroti T, Hartwig AC, Hillgärtner S, Piefke S, Fadler T, Ehrlich M, Ehlert C, Stehling M, Albrecht S, Jabali A, Schöler HR, Winkler J, Kuhlmann T, Wegner M. Nfat/calcineurin signaling promotes oligodendrocyte differentiation and myelination by transcription factor network tuning. Nat Commun 2018; 9:899. [PMID: 29500351 PMCID: PMC5834605 DOI: 10.1038/s41467-018-03336-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 02/05/2018] [Indexed: 02/06/2023] Open
Abstract
Oligodendrocytes produce myelin for rapid transmission and saltatory conduction of action potentials in the vertebrate central nervous system. Activation of the myelination program requires several transcription factors including Sox10, Olig2, and Nkx2.2. Functional interactions among them are poorly understood and important components of the regulatory network are still unknown. Here, we identify Nfat proteins as Sox10 targets and regulators of oligodendroglial differentiation in rodents and humans. Overall levels and nuclear fraction increase during differentiation. Inhibition of Nfat activity impedes oligodendrocyte differentiation in vitro and in vivo. On a molecular level, Nfat proteins cooperate with Sox10 to relieve reciprocal repression of Olig2 and Nkx2.2 as precondition for oligodendroglial differentiation and myelination. As Nfat activity depends on calcium-dependent activation of calcineurin signaling, regulatory network and oligodendroglial differentiation become sensitive to calcium signals. NFAT proteins are also detected in human oligodendrocytes, downregulated in active multiple sclerosis lesions and thus likely relevant in demyelinating disease.
Collapse
Affiliation(s)
- Matthias Weider
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Laura Julia Starost
- Institute of Neuropathology, University Hospital Münster, D-48149, Münster, Germany.,Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany
| | - Katharina Groll
- Institute of Neuropathology, University Hospital Münster, D-48149, Münster, Germany
| | - Melanie Küspert
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Elisabeth Sock
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Miriam Wedel
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Franziska Fröb
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Christian Schmitt
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Tina Baroti
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Anna C Hartwig
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Simone Hillgärtner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Sandra Piefke
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Tanja Fadler
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Marc Ehrlich
- Institute of Neuropathology, University Hospital Münster, D-48149, Münster, Germany.,Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany
| | - Corinna Ehlert
- Institute of Neuropathology, University Hospital Münster, D-48149, Münster, Germany
| | - Martin Stehling
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany
| | - Stefanie Albrecht
- Institute of Neuropathology, University Hospital Münster, D-48149, Münster, Germany
| | - Ammar Jabali
- Institute of Neuropathology, University Hospital Münster, D-48149, Münster, Germany
| | - Hans R Schöler
- Department of Cell and Developmental Biology, Max Planck Institute for Molecular Biomedicine, D-48149, Münster, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Münster, D-48149, Münster, Germany.
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91054, Erlangen, Germany.
| |
Collapse
|