1
|
Augusto-Oliveira M, Arrifano GDP, Leal-Nazaré CG, Chaves-Filho A, Santos-Sacramento L, Lopes-Araujo A, Tremblay MÈ, Crespo-Lopez ME. Morphological diversity of microglia: Implications for learning, environmental adaptation, ageing, sex differences and neuropathology. Neurosci Biobehav Rev 2025; 172:106091. [PMID: 40049541 DOI: 10.1016/j.neubiorev.2025.106091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/21/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
Microglia are the brain resident macrophages that respond rapidly to any insult. These non-neuroectodermal cells are decorated with plenty of receptors allowing them to recognise and respond precisely to a multitude of stimuli. To do so, microglia undergo structural and functional changes aiming to actively keep the brain's homeostasis. However, some microglial responses, when sustained or exacerbated, can contribute to neuropathology and neurodegeneration. Many microglial molecular and cellular changes were identified that display a strong correlation with neuronal damage and neuroinflammation/disease status, as well as present key sex-related differences that modulate microglial outcomes. Nevertheless, the relationship between microglial structural and functional features is just beginning to be unravelled. Several reports show that microglia undergo soma and branch remodelling in response to environmental stimuli, ageing, neurodegenerative diseases, trauma, and systemic inflammation, suggesting a complex form and function link. Also, it is reasonable overall to suppose that microglia diminishing their process length and ramification also reduce their monitoring activity of synapses, which is critical for detecting any synaptic disturbance and performing synaptic remodelling. Elucidating the complex interactions between microglial morphological plasticity and its functional implications appears essential for the understanding of complex cognitive and behavioural processes in health and neuropathological conditions.
Collapse
Affiliation(s)
- Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil; Amazonian Institute on Mercury (Instituto Amazônico do Mercúrio - IAMER).
| | - Gabriela de Paula Arrifano
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil; Amazonian Institute on Mercury (Instituto Amazônico do Mercúrio - IAMER)
| | - Caio Gustavo Leal-Nazaré
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil; Amazonian Institute on Mercury (Instituto Amazônico do Mercúrio - IAMER)
| | - Adriano Chaves-Filho
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, British Columbia, Canada; Women's Health Research Institute, British Columbia, Canada
| | - Leticia Santos-Sacramento
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil; Amazonian Institute on Mercury (Instituto Amazônico do Mercúrio - IAMER)
| | - Amanda Lopes-Araujo
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil; Amazonian Institute on Mercury (Instituto Amazônico do Mercúrio - IAMER)
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Department of Molecular Medicine, Université Laval, Québec, Qubec, Canada; Neurology and Neurosurgery Department, McGill University, Montréal, Québec, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, British Columbia, Canada; Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, British Columbia, Canada; Women's Health Research Institute, British Columbia, Canada; College Member of the Royal Society of Canada, Canada.
| | - Maria Elena Crespo-Lopez
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, PA, Brazil; Amazonian Institute on Mercury (Instituto Amazônico do Mercúrio - IAMER).
| |
Collapse
|
2
|
Sakai M, Yu Z, Picotin R, Kasahara T, Kikuchi Y, Ono C, Hino M, Kunii Y, Maejima Y, Shimomura K, Nakanishi M, Abe T, Yoshii H, Tomita H. Experimenters' sex modulates anxiety-like behavior, contextual fear, and microglial oxytocin transcription in mice. Behav Brain Res 2025; 483:115480. [PMID: 39938574 DOI: 10.1016/j.bbr.2025.115480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/14/2025]
Abstract
Oxytocin (OXT) is a neuropeptide known for modulating anxiety and fear memory. We have reported that microglial cytokine regulates contextual fear memory and that microglial OXT positively correlates with cytokine secretion. However, the relationship between contextual fear memory and microglial OXT expression remains unclear. We evaluated whether experimental handling minimizes anxiety-like behaviors through microglial OXT expression and its effects on contextual fear response in a sex-dependent manner. Male and female mice were cup-handled for seven days by male or female experimenters (four groups: male mice with or without handling and female mice with or without handling). Post-handling anxiety-like behavior was assessed using elevated plus maze (EPM) and light-dark box (LDB) tests. Microglial Oxt transcription was evaluated using real-time PCR following handling and footshock. Our results showed that handling by female experimenters induced anxiolytic behaviors in the EPM and LDB and microglial Oxt transcripts in male mice but did not show a direct causal relationship. After handling by male experimenters, male mice exhibited stronger conditional freezing responses than female mice. In contrast, female mice exhibited significantly weaker freezing, independent of Oxt transcription in the microglia and the paraventricular hypothalamic nucleus. These findings suggest that handling influences anxiety and microglial Oxt expression, while conditional freezing reflects a sex-dependent effect by experimenter sex.
Collapse
Affiliation(s)
- Mai Sakai
- Department of Psychiatric Nursing, Graduate School of Health Science, Tohoku University, Sendai 980-8575, Japan.
| | - Zhiqian Yu
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai 980-8573, Japan.
| | - Rosanne Picotin
- Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Tomoko Kasahara
- Department of Clinical Biology and Hormonal Regulation, Graduate School of Medicine, Tohoku University, Sendai 980-8573, Japan
| | - Yoshie Kikuchi
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai 980-8573, Japan
| | - Chiaki Ono
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai 980-8573, Japan
| | - Mizuki Hino
- Department of Disaster Psychiatry, International Research Institute for Disaster Science, Tohoku University, Sendai 980-8573, Japan
| | - Yasuto Kunii
- Department of Disaster Psychiatry, International Research Institute for Disaster Science, Tohoku University, Sendai 980-8573, Japan
| | - Yuko Maejima
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan; Department of Obesity and Inflammation Research, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Kenju Shimomura
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | - Miharu Nakanishi
- Department of Psychiatric Nursing, Graduate School of Health Science, Tohoku University, Sendai 980-8575, Japan
| | - Takaaki Abe
- Department of Biomedical Engineering Regenerative and Biomedical Engineering Medical Science, Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8575, Japan
| | - Hatsumi Yoshii
- Department of Psychiatric Nursing, Graduate School of Health Science, Tohoku University, Sendai 980-8575, Japan
| | - Hiroaki Tomita
- Department of Psychiatry, Graduate School of Medicine, Tohoku University, Sendai 980-8573, Japan; Department of Disaster Psychiatry, International Research Institute for Disaster Science, Tohoku University, Sendai 980-8573, Japan
| |
Collapse
|
3
|
Chen Y, Yao X, Wang C, Zhuang H, Xie B, Sun C, Wang Z, Zhou X, Luo Y, Zhang Y, Zhou S, Liu L. Minocycline treatment attenuates neurobehavioural abnormalities and neurostructural aberrations in the medial prefrontal cortex in mice fed a high-fat diet during adolescence. Brain Behav Immun 2025; 128:83-98. [PMID: 40180016 DOI: 10.1016/j.bbi.2025.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/24/2025] [Accepted: 03/29/2025] [Indexed: 04/05/2025] Open
Abstract
A preference for and overconsumption of a high-fat diet (HFD) are common among adolescents and are recognized as risk factors for multiple mental disorders. The protracted maturation of the medial prefrontal cortex (mPFC), a key brain structure that plays a critical role in mental functions that are essential for both developing and mature individuals (including emotional processing, decision making, risk assessment, and creative thinking), during adolescence renders it more vulnerable to the environmental insults experienced during this critical developmental window. However, the effects of HFD consumption during adolescence on mPFC-related behaviours and the underlying mechanisms need to be further investigated. In this study, we observed that mice fed a HFD throughout adolescence developed depressive- and anxiety-like behaviours and distinctively increased risk-avoidance behaviour, accompanied by morphological aberrations of both pyramidal neuron and microglia in the mPFC. The systemic administration of minocycline, a well-known broad-spectrum antibiotic, effectively attenuated the adverse effects of HFD consumption during adolescence on neurobehaviours and the morphology of pyramidal neurons in the mPFC. This study provides new insights into the psychological effects of long-term HFD consumption during adolescence and indicates the existence of a window during which microglial stabilization may be a promising strategy to protect against the HFD consumption-induced increase in the risk of psychiatric disorders.
Collapse
Affiliation(s)
- Yuxi Chen
- Medical College, Southeast University, Nanjing 210009, China
| | - Xiuting Yao
- Medical College, Southeast University, Nanjing 210009, China
| | - Conghui Wang
- Medical College, Southeast University, Nanjing 210009, China
| | - Hong Zhuang
- Medical College, Southeast University, Nanjing 210009, China
| | - Bingjie Xie
- Medical College, Southeast University, Nanjing 210009, China
| | - Congli Sun
- Medical College, Southeast University, Nanjing 210009, China
| | - Zixuan Wang
- Medical College, Southeast University, Nanjing 210009, China
| | - Xinguo Zhou
- Medical College, Southeast University, Nanjing 210009, China
| | - Yu Luo
- Medical College, Southeast University, Nanjing 210009, China
| | - Yilin Zhang
- Medical College, Southeast University, Nanjing 210009, China
| | - Shihui Zhou
- Medical College, Southeast University, Nanjing 210009, China
| | - Lijie Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Physiology, School of Medicine, Southeast University, Nanjing 210009, China.
| |
Collapse
|
4
|
Kraatz G, Xie HTH, Long H, Walker CD. Neonatal estradiol and early adversity interact to modify basolateral amygdala morphology and adult behavior in female rats. J Neuroendocrinol 2024:e13483. [PMID: 39694537 DOI: 10.1111/jne.13483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Abstract
Being raised under adverse conditions during infancy and childhood represents a significant risk factor for developing later psychopathologies and dysfunctions in emotional, affective, and cognitive abilities. Depending on the type, timing, and duration of early adversity, different consequences emerge across the sexes in both human and animal models, although our understanding of the underlying interactions between sex and early life stress (ELS) is still incomplete. In this study, we used the limited bedding (LB) paradigm, a well-described model of ELS in rat pups during the first 10 days of life, and tested whether masculinization of the female brain by neonatal injections of estradiol benzoate (EB) would recapitulate the ELS-induced vulnerability phenotype of males on morphology of the basolateral amygdala (BLA) principal neurons and pre-adolescent and adult behavior. Our results show that LB-induced morphological changes in BLA neurons of weaning female rats were eliminated by EB treatment independently of early changes in estrogen receptor (ERα) expression in this region. EB treatment synergized with LB to enhance play behavior of pre-adolescent females to levels far greater than those observed in control males. In adult offspring, LB reduced time spent in the center in males and EB tended to increase social contact time compared to normal females, but only in LB conditions. Our findings indicate that neonatal masculinization of the female brain modifies specific, but not all aspects of BLA morphology and both pre-adolescent and adult behavior that are altered by ELS.
Collapse
Affiliation(s)
- Grace Kraatz
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Douglas Mental Health University Institute Research Center, Montreal, Quebec, Canada
| | - Henry Tian Hao Xie
- Douglas Mental Health University Institute Research Center, Montreal, Quebec, Canada
| | - Hong Long
- Douglas Mental Health University Institute Research Center, Montreal, Quebec, Canada
| | - Claire-Dominique Walker
- Douglas Mental Health University Institute Research Center, Montreal, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Ahmed S, Polis B, Jamwal S, Sanganahalli BG, MacDowell Kaswan Z, Islam R, Kim D, Bowers C, Giuliano L, Biederer T, Hyder F, Kaffman A. Transient impairment in microglial function causes sex-specific deficits in synaptic maturity and hippocampal function in mice exposed to early adversity. Brain Behav Immun 2024; 122:95-109. [PMID: 39134183 PMCID: PMC11402597 DOI: 10.1016/j.bbi.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/04/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024] Open
Abstract
Abnormal development and function of the hippocampus are two of the most consistent findings in humans and rodents exposed to early-life adversity (ELA), with males often being more affected than females. Using the limited bedding (LB) paradigm as a rodent model of ELA, we found that male adolescent mice that had been exposed to LB exhibit significant deficits in contextual fear conditioning and synaptic connectivity in the hippocampus, which are not observed in females. This is linked to altered developmental refinement of connectivity, with LB severely impairing microglial-mediated synaptic pruning in the hippocampus of male and female pups on postnatal day 17 (P17), but not in adolescent P33 mice when levels of synaptic engulfment by microglia are substantially lower. Since the rodent hippocampus undergoes intense synaptic pruning during the second and third weeks of life, we investigated whether microglia are required for the synaptic and behavioral aberrations observed in adolescent LB mice. Indeed, transient ablation of microglia from P13-21 in normally developing mice caused sex-specific behavioral and synaptic abnormalities similar to those observed in adolescent LB mice. Furthermore, chemogenetic activation of microglia during the same period reversed the microglial-mediated phagocytic deficits at P17 and restored normal contextual fear conditioning and synaptic connectivity in adolescent LB male mice. Our data support an additional contribution of astrocytes in the sex-specific effects of LB, with increased expression of the membrane receptor MEGF10 and enhanced synaptic engulfment in hippocampal astrocytes of 17-day-old LB females, but not in LB male littermates. These findings suggest a potential compensatory mechanism that may explain the relative resilience of LB females. Collectively, our study highlights a novel role for glial cells in mediating sex-specific hippocampal deficits in a mouse model of ELA.
Collapse
Affiliation(s)
- Sahabuddin Ahmed
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven CT, 06511, USA
| | - Baruh Polis
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven CT, 06511, USA
| | - Sumit Jamwal
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven CT, 06511, USA
| | - Basavaraju G Sanganahalli
- Department of Radiology & Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, 06520, USA
| | - Zoe MacDowell Kaswan
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven CT, 06511, USA
| | - Rafiad Islam
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven CT, 06511, USA
| | - Dana Kim
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven CT, 06511, USA
| | - Christian Bowers
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven CT, 06511, USA
| | - Lauryn Giuliano
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven CT, 06511, USA
| | - Thomas Biederer
- Department of Neurology, Yale School of Medicine, 100 College Street, New Haven, CT 06510, USA
| | - Fahmeed Hyder
- Department of Radiology & Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, 06520, USA; Department of Biomedical Engineering, Yale University, New Haven, CT, 06519, USA
| | - Arie Kaffman
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven CT, 06511, USA.
| |
Collapse
|
6
|
Pramanik S, Devi M H, Chakrabarty S, Paylar B, Pradhan A, Thaker M, Ayyadhury S, Manavalan A, Olsson PE, Pramanik G, Heese K. Microglia signaling in health and disease - Implications in sex-specific brain development and plasticity. Neurosci Biobehav Rev 2024; 165:105834. [PMID: 39084583 DOI: 10.1016/j.neubiorev.2024.105834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/21/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Microglia, the intrinsic neuroimmune cells residing in the central nervous system (CNS), exert a pivotal influence on brain development, homeostasis, and functionality, encompassing critical roles during both aging and pathological states. Recent advancements in comprehending brain plasticity and functions have spotlighted conspicuous variances between male and female brains, notably in neurogenesis, neuronal myelination, axon fasciculation, and synaptogenesis. Nevertheless, the precise impact of microglia on sex-specific brain cell plasticity, sculpting diverse neural network architectures and circuits, remains largely unexplored. This article seeks to unravel the present understanding of microglial involvement in brain development, plasticity, and function, with a specific emphasis on microglial signaling in brain sex polymorphism. Commencing with an overview of microglia in the CNS and their associated signaling cascades, we subsequently probe recent revelations regarding molecular signaling by microglia in sex-dependent brain developmental plasticity, functions, and diseases. Notably, C-X3-C motif chemokine receptor 1 (CX3CR1), triggering receptors expressed on myeloid cells 2 (TREM2), calcium (Ca2+), and apolipoprotein E (APOE) emerge as molecular candidates significantly contributing to sex-dependent brain development and plasticity. In conclusion, we address burgeoning inquiries surrounding microglia's pivotal role in the functional diversity of developing and aging brains, contemplating their potential implications for gender-tailored therapeutic strategies in neurodegenerative diseases.
Collapse
Affiliation(s)
- Subrata Pramanik
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Harini Devi M
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Saswata Chakrabarty
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Berkay Paylar
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Ajay Pradhan
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Manisha Thaker
- Eurofins Lancaster Laboratories, Inc., 2425 New Holland Pike, Lancaster, PA 17601, USA
| | - Shamini Ayyadhury
- The Donnelly Centre, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Arulmani Manavalan
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 600077, India
| | - Per-Erik Olsson
- Biology, The Life Science Center, School of Science and Technology, Örebro University, Örebro 70182, Sweden
| | - Gopal Pramanik
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India.
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133791, the Republic of Korea.
| |
Collapse
|
7
|
Walker KA, Rhodes ST, Liberman DA, Gore AC, Bell MR. Microglial responses to inflammatory challenge in adult rats altered by developmental exposure to polychlorinated biphenyls in a sex-specific manner. Neurotoxicology 2024; 104:95-115. [PMID: 39038526 PMCID: PMC11548868 DOI: 10.1016/j.neuro.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Polychlorinated biphenyls are ubiquitous environmental contaminants linkedc with peripheral immune and neural dysfunction. Neuroimmune signaling is critical to brain development and later health; however, effects of PCBs on neuroimmune processes are largely undescribed. This study extends our previous work in neonatal or adolescent rats by investigating longer-term effects of perinatal PCB exposure on later neuroimmune responses to an inflammatory challenge in adulthood. Male and female Sprague-Dawley rats were exposed to a low-dose, environmentally relevant, mixture of PCBs (Aroclors 1242, 1248, and 1254, 1:1:1, 20 μg / kg dam BW per gestational day) or oil control during gestation and via lactation. Upon reaching adulthood, rats were given a mild inflammatory challenge with lipopolysaccharide (LPS, 50 μg / kg BW, ip) or saline control and then euthanized 3 hours later for gene expression analysis or 24 hours later for immunohistochemical labeling of Iba1+ microglia. PCB exposure did not alter gene expression or microglial morphology independently, but instead interacted with the LPS challenge in brain region- and sex-specific ways. In the female hypothalamus, PCB exposure blunted LPS responses of neuroimmune and neuromodulatory genes without changing microglial morphology. In the female prefrontal cortex, PCBs shifted Iba1+ cells from reactive to hyperramified morphology in response to LPS. Conversely, in the male hypothalamus, PCBs shifted cell phenotypes from hyperramified to reactive morphologies in response to LPS. The results highlight the potential for long-lasting effects of environmental contaminants that are differentially revealed over a lifetime, sometimes only after a secondary challenge. These neuroimmune endpoints are possible mechanisms for PCB effects on a range of neural dysfunction in adulthood, including mental health and neurodegenerative disorders. The findings suggest possible interactions with other environmental challenges that also influence neuroimmune systems.
Collapse
Affiliation(s)
- Katherine A Walker
- Departments of Biological Sciences and Health Sciences, DePaul University, Chicago, IL 60614, USA.
| | - Simone T Rhodes
- Departments of Biological Sciences and Health Sciences, DePaul University, Chicago, IL 60614, USA.
| | - Deborah A Liberman
- Departments of Biological Sciences and Health Sciences, DePaul University, Chicago, IL 60614, USA.
| | - Andrea C Gore
- Division of Pharmacology and Toxicology, College of Pharmacy and Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA.
| | - Margaret R Bell
- Departments of Biological Sciences and Health Sciences, DePaul University, Chicago, IL 60614, USA; Division of Pharmacology and Toxicology, College of Pharmacy and Department of Psychology, University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
8
|
Postic PY, Leprince Y, Brosset S, Drutel L, Peyric E, Ben Abdallah I, Bekha D, Neumane S, Duchesnay E, Dinomais M, Chevignard M, Hertz-Pannier L. Brain growth until adolescence after a neonatal focal injury: sex related differences beyond lesion effect. Front Neurosci 2024; 18:1405381. [PMID: 39247049 PMCID: PMC11378422 DOI: 10.3389/fnins.2024.1405381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/26/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction Early focal brain injuries lead to long-term disabilities with frequent cognitive impairments, suggesting global dysfunction beyond the lesion. While plasticity of the immature brain promotes better learning, outcome variability across individuals is multifactorial. Males are more vulnerable to early injuries and neurodevelopmental disorders than females, but long-term sex differences in brain growth after an early focal lesion have not been described yet. With this MRI longitudinal morphometry study of brain development after a Neonatal Arterial Ischemic Stroke (NAIS), we searched for differences between males and females in the trajectories of ipsi- and contralesional gray matter growth in childhood and adolescence, while accounting for lesion characteristics. Methods We relied on a longitudinal cohort (AVCnn) of patients with unilateral NAIS who underwent clinical and MRI assessments at ages 7 and 16 were compared to age-matched controls. Non-lesioned volumes of gray matter (hemispheres, lobes, regions, deep structures, cerebellum) were extracted from segmented T1 MRI images at 7 (Patients: 23 M, 16 F; Controls: 17 M, 18 F) and 16 (Patients: 18 M, 11 F; Controls: 16 M, 15 F). These volumes were analyzed using a Linear Mixed Model accounting for age, sex, and lesion characteristics. Results Whole hemisphere volumes were reduced at both ages in patients compared to controls (gray matter volume: -16% in males, -10% in females). In ipsilesional hemisphere, cortical gray matter and thalamic volume losses (average -13%) mostly depended on lesion severity, suggesting diaschisis, with minimal effect of patient sex. In the contralesional hemisphere however, we consistently found sex differences in gray matter volumes, as only male volumes were smaller than in male controls (average -7.5%), mostly in territories mirroring the contralateral lesion. Females did not significantly deviate from the typical trajectories of female controls. Similar sex differences were found in both cerebellar hemispheres. Discussion These results suggest sex-dependent growth trajectories after an early brain lesion with a contralesional growth deficit in males only. The similarity of patterns at ages 7 and 16 suggests that puberty has little effect on these trajectories, and that most of the deviation in males occurs in early childhood, in line with the well-described perinatal vulnerability of the male brain, and with no compensation thereafter.
Collapse
Affiliation(s)
- Pierre-Yves Postic
- CEA Paris-Saclay, Frederic Joliot Institute, NeuroSpin, UNIACT, Gif-sur-Yvette, France
- INSERM, Université Paris Cité, UMR 1141 NeuroDiderot, InDEV, Paris, France
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale (LIB), Paris, France
| | - Yann Leprince
- CEA Paris-Saclay, Frederic Joliot Institute, NeuroSpin, UNIACT, Gif-sur-Yvette, France
| | - Soraya Brosset
- CEA Paris-Saclay, Frederic Joliot Institute, NeuroSpin, UNIACT, Gif-sur-Yvette, France
- INSERM, Université Paris Cité, UMR 1141 NeuroDiderot, InDEV, Paris, France
| | - Laure Drutel
- LP3C, Rennes 2 University, Rennes, France
- French National Reference Center for Pediatric Stroke, CHU de Saint-Etienne, Saint-Etienne, France
| | - Emeline Peyric
- Pediatric Neurology Department, HFME, Hospices Civils de Lyon, Lyon, France
| | - Ines Ben Abdallah
- CEA Paris-Saclay, Frederic Joliot Institute, NeuroSpin, UNIACT, Gif-sur-Yvette, France
- INSERM, Université Paris Cité, UMR 1141 NeuroDiderot, InDEV, Paris, France
| | - Dhaif Bekha
- CEA Paris-Saclay, Frederic Joliot Institute, NeuroSpin, UNIACT, Gif-sur-Yvette, France
- INSERM, Université Paris Cité, UMR 1141 NeuroDiderot, InDEV, Paris, France
| | - Sara Neumane
- CEA Paris-Saclay, Frederic Joliot Institute, NeuroSpin, UNIACT, Gif-sur-Yvette, France
- INSERM, Université Paris Cité, UMR 1141 NeuroDiderot, InDEV, Paris, France
- Université Paris-Saclay, UVSQ - APHP, Pediatric Physical Medicine and Rehabilitation Department, Raymond Poincaré University Hospital, Garches, France
| | - Edouard Duchesnay
- CEA Paris-Saclay, Frederic Joliot Institute, NeuroSpin, BAOBAB/GAIA/SIGNATURE, Gif-sur-Yvette, France
| | - Mickael Dinomais
- Department of Physical Medicine and Rehabilitation, Angers University Hospital Centre, Angers, France
| | - Mathilde Chevignard
- Sorbonne Université, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale (LIB), Paris, France
- Rehabilitation Department for Children with Acquired Brain Injury, Saint Maurice Hospitals, Saint Maurice, France
- Sorbonne University, GRC 24 Handicap Moteur Cognitif et Réadaptation (HaMCRe), Paris, France
| | - Lucie Hertz-Pannier
- CEA Paris-Saclay, Frederic Joliot Institute, NeuroSpin, UNIACT, Gif-sur-Yvette, France
- INSERM, Université Paris Cité, UMR 1141 NeuroDiderot, InDEV, Paris, France
| |
Collapse
|
9
|
Bailey ML, Nixon C, Rusch DB, Buechlein A, Rosvall KA, Bentz AB. Maternal social environment shapes yolk testosterone allocation and embryonic neural gene expression in tree swallows. Horm Behav 2024; 163:105561. [PMID: 38759417 DOI: 10.1016/j.yhbeh.2024.105561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/19/2024]
Abstract
Offspring from females breeding in competitive social environments are often exposed to more testosterone (T) during embryonic development, which can affect traits from growth to behavior in potentially adaptive ways. Despite the important role of maternally derived steroids in shaping offspring development, the molecular mechanisms driving these processes are currently unclear. Here, we use tree swallows (Tachycineta bicolor) to explore the effects of the maternal social environment on yolk T concentrations and genome-wide patterns of neural gene expression in embryos. We measured aggressive interactions among females breeding at variable densities and collected their eggs at two timepoints, including the day laid to measure yolk T concentrations and on embryonic day 11 to measure gene expression in whole brain samples. We found that females breeding in high-density sites experienced elevated rates of physical aggression and their eggs had higher yolk T concentrations. A differential gene expression and weighted gene co-expression network analysis indicated that embryos from high-density sites experienced an upregulation of genes involved in hormone, circulatory, and immune processes, and these gene expression patterns were correlated with yolk T levels and aggression. Genes implicated in neural development were additionally downregulated in embryos from high-density sites. These data highlight how early neurogenomic processes may be affected by the maternal social environment, giving rise to phenotypic plasticity in offspring.
Collapse
Affiliation(s)
- M Leigh Bailey
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019, USA
| | - Cameron Nixon
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019, USA
| | - Douglas B Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA
| | - Aaron Buechlein
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, USA
| | | | - Alexandra B Bentz
- School of Biological Sciences, University of Oklahoma, Norman, OK 73019, USA; Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
10
|
Hedley KE, Gomez HM, Kecelioglu E, Carroll OR, Jobling P, Horvat JC, Tadros MA. Neonatal Chlamydia muridarum respiratory infection causes neuroinflammation within the brainstem during the early postnatal period. J Neuroinflammation 2024; 21:158. [PMID: 38879567 PMCID: PMC11179230 DOI: 10.1186/s12974-024-03150-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/10/2024] [Indexed: 06/19/2024] Open
Abstract
Respiratory infections are one of the most common causes of illness and morbidity in neonates worldwide. In the acute phase infections are known to cause wide-spread peripheral inflammation. However, the inflammatory consequences to the critical neural control centres for respiration have not been explored. Utilising a well characterised model of neonatal respiratory infection, we investigated acute responses within the medulla oblongata which contains key respiratory regions. Neonatal mice were intranasally inoculated within 24 h of birth, with either Chlamydia muridarum or sham-infected, and tissue collected on postnatal day 15, the peak of peripheral inflammation. A key finding of this study is that, while the periphery appeared to show no sex-specific effects of a neonatal respiratory infection, sex had a significant impact on the inflammatory response of the medulla oblongata. There was a distinct sex-specific response in the medulla coincident with peak of peripheral inflammation, with females demonstrating an upregulation of anti-inflammatory cytokines and males showing very few changes. Microglia also demonstrated sex-specificity with the morphology of females and males differing based upon the nuclei. Astrocytes showed limited changes during the acute response to neonatal infection. These data highlight the strong sex-specific impact of a respiratory infection can have on the medulla in the acute inflammatory phase.
Collapse
Affiliation(s)
- Kateleen E Hedley
- School of Biomedical Sciences & Pharmacy, The University of Newcastle Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Henry M Gomez
- School of Biomedical Sciences & Pharmacy, The University of Newcastle Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Eda Kecelioglu
- School of Biomedical Sciences & Pharmacy, The University of Newcastle Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Olivia R Carroll
- School of Biomedical Sciences & Pharmacy, The University of Newcastle Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Phillip Jobling
- School of Biomedical Sciences & Pharmacy, The University of Newcastle Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jay C Horvat
- School of Biomedical Sciences & Pharmacy, The University of Newcastle Callaghan, NSW, 2308, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Melissa A Tadros
- School of Biomedical Sciences & Pharmacy, The University of Newcastle Callaghan, NSW, 2308, Australia.
- Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.
| |
Collapse
|
11
|
Uweru OJ, Okojie AK, Trivedi A, Benderoth J, Thomas LS, Davidson G, Cox K, Eyo UB. A P2RY12 deficiency results in sex-specific cellular perturbations and sexually dimorphic behavioral anomalies. J Neuroinflammation 2024; 21:95. [PMID: 38622726 PMCID: PMC11017545 DOI: 10.1186/s12974-024-03079-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/28/2024] [Indexed: 04/17/2024] Open
Abstract
Microglia are sexually dimorphic, yet, this critical aspect is often overlooked in neuroscientific studies. Decades of research have revealed the dynamic nature of microglial-neuronal interactions, but seldom consider how this dynamism varies with microglial sex differences, leaving a significant gap in our knowledge. This study focuses on P2RY12, a highly expressed microglial signature gene that mediates microglial-neuronal interactions, we show that adult females have a significantly higher expression of the receptor than adult male microglia. We further demonstrate that a genetic deletion of P2RY12 induces sex-specific cellular perturbations with microglia and neurons in females more significantly affected. Correspondingly, female mice lacking P2RY12 exhibit unique behavioral anomalies not observed in male counterparts. These findings underscore the critical, sex-specific roles of P2RY12 in microglial-neuronal interactions, offering new insights into basal interactions and potential implications for CNS disease mechanisms.
Collapse
Affiliation(s)
- Ogochukwu J Uweru
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, USA.
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA.
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA.
| | - Akhabue K Okojie
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Aparna Trivedi
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Jordan Benderoth
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Lauren S Thomas
- North Carolina Agricultural and Technical State University, Greensboro, NC, USA
| | - Georgia Davidson
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Kendall Cox
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, USA
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Ukpong B Eyo
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, USA.
- Department of Neuroscience, University of Virginia, Charlottesville, VA, USA.
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
12
|
Kirkland JM, Edgar EL, Patel I, Feustel P, Belin S, Kopec AM. Synaptic pruning during adolescence shapes adult social behavior in both males and females. Dev Psychobiol 2024; 66:e22473. [PMID: 38433422 PMCID: PMC11758907 DOI: 10.1002/dev.22473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 01/23/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Evolutionarily conserved, peer-directed social behaviors are essential to participate in many aspects of human society. These behaviors directly impact psychological, physiological, and behavioral maturation. Adolescence is an evolutionarily conserved period during which reward-related behaviors, including social behaviors, develop via developmental plasticity in the mesolimbic dopaminergic "reward" circuitry of the brain. The nucleus accumbens (NAc) is an intermediate reward relay center that develops during adolescence and mediates both social behaviors and dopaminergic signaling. In several developing brain regions, synaptic pruning mediated by microglia, the resident immune cells of the brain, is important for normal behavioral development. We previously demonstrated that during adolescence, in rats, microglial synaptic pruning shapes the development of NAc and social play behavior in males and females. In this report, we hypothesize that interrupting microglial pruning in NAc during adolescence will have persistent effects on male and female social behavior in adulthood. We found that inhibiting microglial pruning in the NAc during adolescence had different effects on social behavior in males and females. In males, inhibiting pruning increased familiar exploration and increased nonsocial contact. In females, inhibiting pruning did not change familiar exploration behavior but increased active social interaction. This leads us to infer that naturally occurring NAc pruning serves to reduce social behaviors toward a familiar conspecific in both males and females.
Collapse
Affiliation(s)
- Julia M Kirkland
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Erin L Edgar
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Ishan Patel
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Paul Feustel
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Sophie Belin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| | - Ashley M Kopec
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, New York, USA
| |
Collapse
|
13
|
Uweru OJ, Okojie KA, Trivedi A, Benderoth J, Thomas LS, Davidson G, Cox K, Eyo U. A P2RY12 Deficiency Results in Sex-specific Cellular Perturbations and Sexually Dimorphic Behavioral Anomalies. RESEARCH SQUARE 2024:rs.3.rs-3997803. [PMID: 38496602 PMCID: PMC10942488 DOI: 10.21203/rs.3.rs-3997803/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Microglia are sexually dimorphic, yet, this critical aspect is often overlooked in neuroscientific studies. Decades of research have revealed the dynamic nature of microglial-neuronal interactions, but seldom consider how this dynamism varies with microglial sex differences, leaving a significant gap in our knowledge. This study focuses on P2RY12, a highly expressed microglial signature gene that mediates microglial-neuronal interactions, we show that adult females have a significantly higher expression of the receptor than adult male microglia. We further demonstrate that a genetic deletion of P2RY12 induces sex-specific cellular perturbations with microglia and neurons in females more significantly affected. Correspondingly, female mice lacking P2RY12 exhibit unique behavioral anomalies not observed in male counterparts. These findings underscore the critical, sex-specific roles of P2RY12 in microglial-neuronal interactions, offering new insights into basal interactions and potential implications for CNS disease mechanisms.
Collapse
|
14
|
Boland R, Kokiko-Cochran ON. Deplete and repeat: microglial CSF1R inhibition and traumatic brain injury. Front Cell Neurosci 2024; 18:1352790. [PMID: 38450286 PMCID: PMC10915023 DOI: 10.3389/fncel.2024.1352790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/25/2024] [Indexed: 03/08/2024] Open
Abstract
Traumatic brain injury (TBI) is a public health burden affecting millions of people. Sustained neuroinflammation after TBI is often associated with poor outcome. As a result, increased attention has been placed on the role of immune cells in post-injury recovery. Microglia are highly dynamic after TBI and play a key role in the post-injury neuroinflammatory response. Therefore, microglia represent a malleable post-injury target that could substantially influence long-term outcome after TBI. This review highlights the cell specific role of microglia in TBI pathophysiology. Microglia have been manipulated via genetic deletion, drug inhibition, and pharmacological depletion in various pre-clinical TBI models. Notably, colony stimulating factor 1 (CSF1) and its receptor (CSF1R) have gained much traction in recent years as a pharmacological target on microglia. CSF1R is a transmembrane tyrosine kinase receptor that is essential for microglia proliferation, differentiation, and survival. Small molecule inhibitors targeting CSF1R result in a swift and effective depletion of microglia in rodents. Moreover, discontinuation of the inhibitors is sufficient for microglia repopulation. Attention is placed on summarizing studies that incorporate CSF1R inhibition of microglia. Indeed, microglia depletion affects multiple aspects of TBI pathophysiology, including neuroinflammation, oxidative stress, and functional recovery with measurable influence on astrocytes, peripheral immune cells, and neurons. Taken together, the data highlight an important role for microglia in sustaining neuroinflammation and increasing risk of oxidative stress, which lends to neuronal damage and behavioral deficits chronically after TBI. Ultimately, the insights gained from CSF1R depletion of microglia are critical for understanding the temporospatial role that microglia develop in mediating TBI pathophysiology and recovery.
Collapse
Affiliation(s)
- Rebecca Boland
- Department of Neuroscience, College of Medicine, Chronic Brain Injury Program, Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, United States
| | - Olga N Kokiko-Cochran
- Department of Neuroscience, College of Medicine, Chronic Brain Injury Program, Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
15
|
Ahmed S, Polis B, Jamwal S, Sanganahalli BG, Kaswan ZM, Islam R, Kim D, Bowers C, Giuliano L, Biederer T, Hyder F, Kaffman A. Transient Impairment in Microglial Function Causes Sex-Specific Deficits in Synaptic and Hippocampal Function in Mice Exposed to Early Adversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580284. [PMID: 38405887 PMCID: PMC10888912 DOI: 10.1101/2024.02.14.580284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Abnormal development and function of the hippocampus are two of the most consistent findings in humans and rodents exposed to early life adversity, with males often being more affected than females. Using the limited bedding (LB) paradigm as a rodent model of early life adversity, we found that male adolescent mice that had been exposed to LB exhibit significant deficits in contextual fear conditioning and synaptic connectivity in the hippocampus, which are not observed in females. This is linked to altered developmental refinement of connectivity, with LB severely impairing microglial-mediated synaptic pruning in the hippocampus of male and female pups on postnatal day 17 (P17), but not in adolescent P33 mice when levels of synaptic engulfment by microglia are substantially lower. Since the hippocampus undergoes intense synaptic pruning during the second and third weeks of life, we investigated whether microglia are required for the synaptic and behavioral aberrations observed in adolescent LB mice. Indeed, transient ablation of microglia from P13-21, in normally developing mice caused sex-specific behavioral and synaptic abnormalities similar to those observed in adolescent LB mice. Furthermore, chemogenetic activation of microglia during the same period reversed the microglial-mediated phagocytic deficits at P17 and restored normal contextual fear conditioning and synaptic connectivity in adolescent LB male mice. Our data support an additional contribution of astrocytes in the sex-specific effects of LB, with increased expression of the membrane receptor MEGF10 and enhanced synaptic engulfment in hippocampal astrocytes of 17-day-old LB females, but not in LB male littermates. This finding suggests a potential compensatory mechanism that may explain the relative resilience of LB females. Collectively, these studies highlight a novel role for glial cells in mediating sex-specific hippocampal deficits in a mouse model of early-life adversity.
Collapse
Affiliation(s)
- Sahabuddin Ahmed
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven CT, 06511, USA
| | - Baruh Polis
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven CT, 06511, USA
| | - Sumit Jamwal
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven CT, 06511, USA
| | - Basavaraju G. Sanganahalli
- Department of Radiology & Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06519, USA
| | - Zoe MacDowell Kaswan
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven CT, 06511, USA
| | - Rafiad Islam
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven CT, 06511, USA
| | - Dana Kim
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven CT, 06511, USA
| | - Christian Bowers
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven CT, 06511, USA
| | - Lauryn Giuliano
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven CT, 06511, USA
| | - Thomas Biederer
- Department of Neurology, Yale School of Medicine, 100 College Street, New Haven, CT 06510, USA
| | - Fahmeed Hyder
- Department of Radiology & Biomedical Imaging and Magnetic Resonance Research Center, Yale University, New Haven, CT, 06520, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06519, USA
| | - Arie Kaffman
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, Suite 901, New Haven CT, 06511, USA
| |
Collapse
|
16
|
Davis AB, Lloyd KR, Bollinger JL, Wohleb ES, Reyes TM. Adolescent high fat diet alters the transcriptional response of microglia in the prefrontal cortex in response to stressors in both male and female mice. Stress 2024; 27:2365864. [PMID: 38912878 PMCID: PMC11228993 DOI: 10.1080/10253890.2024.2365864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/28/2024] [Indexed: 06/25/2024] Open
Abstract
Both obesity and high fat diets (HFD) have been associated with an increase in inflammatory gene expression within the brain. Microglia play an important role in early cortical development and may be responsive to HFD, particularly during sensitive windows, such as adolescence. We hypothesized that HFD during adolescence would increase proinflammatory gene expression in microglia at baseline and potentiate the microglial stress response. Two stressors were examined, a physiological stressor [lipopolysaccharide (LPS), IP] and a psychological stressor [15 min restraint (RST)]. From 3 to 7 weeks of age, male and female mice were fed standard control diet (SC, 20% energy from fat) or HFD (60% energy from fat). On P49, 1 h before sacrifice, mice were randomly assigned to either stressor exposure or control conditions. Microglia from the frontal cortex were enriched using a Percoll density gradient and isolated via fluorescence-activated cell sorting (FACS), followed by RNA expression analysis of 30 genes (27 target genes, three housekeeping genes) using Fluidigm, a medium throughput qPCR platform. We found that adolescent HFD induced sex-specific transcriptional response in cortical microglia, both at baseline and in response to a stressor. Contrary to our hypothesis, adolescent HFD did not potentiate the transcriptional response to stressors in males, but rather in some cases, resulted in a blunted or absent response to the stressor. This was most apparent in males treated with LPS. However, in females, potentiation of the LPS response was observed for select proinflammatory genes, including Tnfa and Socs3. Further, HFD increased the expression of Itgam, Ikbkb, and Apoe in cortical microglia of both sexes, while adrenergic receptor expression (Adrb1 and Adra2a) was changed in response to stressor exposure with no effect of diet. These data identify classes of genes that are uniquely affected by adolescent exposure to HFD and different stressor modalities in males and females.
Collapse
Affiliation(s)
- Alyshia B Davis
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Kelsey R Lloyd
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Justin L Bollinger
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Eric S Wohleb
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Teresa M Reyes
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
17
|
Reed EG, Keller-Norrell PR. Minding the Gap: Exploring Neuroinflammatory and Microglial Sex Differences in Alzheimer's Disease. Int J Mol Sci 2023; 24:17377. [PMID: 38139206 PMCID: PMC10743742 DOI: 10.3390/ijms242417377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/04/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Research into Alzheimer's Disease (AD) describes a link between AD and the resident immune cells of the brain, the microglia. Further, this suspected link is thought to have underlying sex effects, although the mechanisms of these effects are only just beginning to be understood. Many of these insights are the result of policies put in place by funding agencies such as the National Institutes of Health (NIH) to consider sex as a biological variable (SABV) and the move towards precision medicine due to continued lackluster therapeutic options. The purpose of this review is to provide an updated assessment of the current research that summarizes sex differences and the research pertaining to microglia and their varied responses in AD.
Collapse
Affiliation(s)
- Erin G. Reed
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44242, USA
| | | |
Collapse
|
18
|
Kessler W, Thomas C, Kuhlmann T. Microglia activation in periplaque white matter in multiple sclerosis depends on age and lesion type, but does not correlate with oligodendroglial loss. Acta Neuropathol 2023; 146:817-828. [PMID: 37897549 PMCID: PMC10628007 DOI: 10.1007/s00401-023-02645-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/30/2023]
Abstract
Multiple sclerosis (MS) is the most frequent inflammatory and demyelinating disease of the CNS. The disease course in MS is highly variable and driven by a combination of relapse-driven disease activity and relapse-independent disease progression. The formation of new focal demyelinating lesions is associated with clinical relapses; however, the pathological mechanisms driving disease progression are less well understood. Current concepts suggest that ongoing focal and diffuse inflammation within the CNS in combination with an age-associated failure of compensatory and repair mechanisms contribute to disease progression. The aim of our study was to characterize the diffuse microglia activation in periplaque white matter (PPWM) of MS patients, to identify factors modulating its extent and to determine its potential correlation with loss or preservation of oligodendrocytes. We analyzed microglial and oligodendroglial numbers in PPWM in a cohort of 96 tissue blocks from 32 MS patients containing 100 lesions as well as a control cohort (n = 37). Microglia activation in PPWM was dependent on patient age, proximity to lesion, lesion type, and to a lesser degree on sex. Oligodendrocyte numbers were decreased in PPWM; however, increased microglia densities did not correlate with lower oligodendroglial cell counts, indicating that diffuse microglia activation is not sufficient to drive oligodendroglial loss in PPWM. In summary, our findings support the notion of the close relationship between focal and diffuse inflammation in MS and that age is an important modulator of MS pathology.
Collapse
Affiliation(s)
- Wiebke Kessler
- Institute of Neuropathology, University Hospital Münster, Pottkamp 2, 48149, Münster, Germany
| | - Christian Thomas
- Institute of Neuropathology, University Hospital Münster, Pottkamp 2, 48149, Münster, Germany
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Münster, Pottkamp 2, 48149, Münster, Germany.
| |
Collapse
|
19
|
Starkey J, Horstick EJ, Ackerman SD. Glial regulation of critical period plasticity. Front Cell Neurosci 2023; 17:1247335. [PMID: 38034592 PMCID: PMC10687281 DOI: 10.3389/fncel.2023.1247335] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Animal behavior, from simple to complex, is dependent on the faithful wiring of neurons into functional neural circuits. Neural circuits undergo dramatic experience-dependent remodeling during brief developmental windows called critical periods. Environmental experience during critical periods of plasticity produces sustained changes to circuit function and behavior. Precocious critical period closure is linked to autism spectrum disorders, whereas extended synaptic remodeling is thought to underlie circuit dysfunction in schizophrenia. Thus, resolving the mechanisms that instruct critical period timing is important to our understanding of neurodevelopmental disorders. Control of critical period timing is modulated by neuron-intrinsic cues, yet recent data suggest that some determinants are derived from neighboring glial cells (astrocytes, microglia, and oligodendrocytes). As glia make up 50% of the human brain, understanding how these diverse cells communicate with neurons and with each other to sculpt neural plasticity, especially during specialized critical periods, is essential to our fundamental understanding of circuit development and maintenance.
Collapse
Affiliation(s)
- Jacob Starkey
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Eric J. Horstick
- Department of Biology, West Virginia University, Morgantown, WV, United States
- Department of Neuroscience, West Virginia University, Morgantown, WV, United States
| | - Sarah D. Ackerman
- Department of Pathology and Immunology, Brain Immunology and Glia Center, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
20
|
King'uyu DN, Nti-Kyemereh L, Bonin JL, Feustel PJ, Tram M, MacNamara KC, Kopec AM. The effect of morphine on rat microglial phagocytic activity: An in vitro study of brain region-, plating density-, sex-, morphine concentration-, and receptor-dependency. J Neuroimmunol 2023; 384:578204. [PMID: 37774553 DOI: 10.1016/j.jneuroim.2023.578204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/24/2023] [Accepted: 09/19/2023] [Indexed: 10/01/2023]
Abstract
Opioids have long been used for clinical pain management, but also have addictive properties that have contributed to the ongoing opioid epidemic. While opioid activation of opioid receptors is well known to contribute to reward and reinforcement, data now also suggest that opioid activation of immune signaling via toll-like receptor 4 (TLR4) may also play a role in addiction-like processes. TLR4 expression is enriched in immune cells, and in the nervous system is primarily expressed in microglia. Microglial phagocytosis is important for developmental, homeostatic, and pathological processes. To examine how morphine impacts microglial phagocytosis, we isolated microglia from adult male and female rat cortex and striatum and plated them in vitro at 10,000 (10K) or 50,000 cells/well densities. Microglia were incubated with neutral fluorescent microbeads to stimulate phagocytosis in the presence of one of four morphine concentrations. We found that the brain region from which microglia are isolated and plating density, but not morphine concentration, impacts cell survival in vitro. We found that 10-12 M morphine, but not higher concentrations, increases phagocytosis in striatal microglia in vitro independent of sex and plating density, while 10-12 M morphine increased phagocytosis in cortical microglia in vitro independent of sex, but contingent on a plating density. Finally, we demonstrate that the effect of 10-12 M morphine in striatal microglia plated at 10 K density is mediated via TLR4, and not μORs. Overall, our data suggest that in rats, a morphine-TLR4 signaling pathway increases phagocytic activity in microglia independent of sex. This may is useful information for better understanding the possible neural outcomes associated with morphine exposures.
Collapse
Affiliation(s)
- David N King'uyu
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, United States of America.
| | - Lily Nti-Kyemereh
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, United States of America; Siena College, Loudonville, NY 12211, United States of America
| | - Jesse L Bonin
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, United States of America
| | - Paul J Feustel
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, United States of America
| | - Michelle Tram
- Siena College, Loudonville, NY 12211, United States of America
| | - Katherine C MacNamara
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, United States of America
| | - Ashley M Kopec
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, United States of America
| |
Collapse
|
21
|
Chen X, Zhao Y, Huang Y, Zhu K, Zeng F, Zhao J, Zhang H, Zhu X, Kettenmann H, Xiang X. TREM2 promotes glioma progression and angiogenesis mediated by microglia/brain macrophages. Glia 2023; 71:2679-2695. [PMID: 37641212 DOI: 10.1002/glia.24456] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023]
Abstract
Triggering receptor expressed on myeloid cell 2 (TREM2), a myeloid cell-specific signaling molecule, controls essential functions of microglia and impacts on the pathogenesis of Alzheimer's disease and other neurodegenerative disorders. TREM2 is also highly expressed in tumor-associated macrophages in different types of cancer. Here, we studied whether TREM2 influences glioma progression. We found a gender-dependent effect of glioma growth in wild-type (WT) animals injected with GL261-EGFP glioma cells. Most importantly, TREM2 promotes glioma progression in male but not female animals. The accumulation of glioma-associated microglia/macrophages (GAMs) and CD31+ blood vessel density is reduced in male TREM2-deficient mice. A transcriptomic analysis of glioma tissue revealed that TREM2 deficiency suppresses immune-related genes. In an organotypic slice model devoid of functional vascularization and immune components from periphery, the tumor size was not affected by TREM2-deficiency. In human resection samples from glioblastoma, TREM2 is upregulated in GAMs. Based on the Cancer Genome Atlas Program (TCGA) and the Chinese Glioma Genome Atlas (CGGA) databases, the TREM2 expression levels were negatively correlated with survival. Thus, the TREM2-dependent crosstalk between GAMs and the vasculature formation promotes glioma growth.
Collapse
Affiliation(s)
- Xuezhen Chen
- Shenzhen Key Laboratory of Immunomodulation for Neurological Diseases, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yue Zhao
- Shenzhen Key Laboratory of Immunomodulation for Neurological Diseases, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yimin Huang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Kaichuan Zhu
- Shenzhen Key Laboratory of Immunomodulation for Neurological Diseases, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Fan Zeng
- Shenzhen Key Laboratory of Immunomodulation for Neurological Diseases, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Junyi Zhao
- Shenzhen Key Laboratory of Immunomodulation for Neurological Diseases, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Huaqiu Zhang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, China
| | - Xinzhou Zhu
- Shenzhen Key Laboratory of Immunomodulation for Neurological Diseases, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Helmut Kettenmann
- Shenzhen Key Laboratory of Immunomodulation for Neurological Diseases, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Xianyuan Xiang
- Shenzhen Key Laboratory of Immunomodulation for Neurological Diseases, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
22
|
Bobotis BC, Braniff O, Gargus M, Akinluyi ET, Awogbindin IO, Tremblay MÈ. Sex differences of microglia in the healthy brain from embryonic development to adulthood and across lifestyle influences. Brain Res Bull 2023; 202:110752. [PMID: 37652267 DOI: 10.1016/j.brainresbull.2023.110752] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Microglia, the central nervous system innate immune cells, play a critical role in maintaining a homeostatic environment in the brain throughout life. These cells exhibit an impressive range of functions and characteristics that help to ensure proper functioning of the brain. Notably, microglia can present differences in their genetic and physical traits, which can be influenced by a range of factors, including age, environmental exposures, disease, and sex. Remarkably, microglia have been found to express receptors for sex hormones, suggesting that these hormones may play a role in modulating microglial behavior and potentially contribute to sex differences. Additionally, sex-chromosomal factors were shown to impact microglial genetics and functioning. In this review, we will examine how microglial responses in homeostasis are impacted by their interaction with sex hormones and sex chromosomes. Specifically, our investigation will focus on examining this interaction from embryonic development to adulthood, and the influence of lifestyle elements on various microglial features, including density and distribution, morphology, transcriptome, and proteome.
Collapse
Affiliation(s)
| | - Olivia Braniff
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Makenna Gargus
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
| | - Elizabeth Toyin Akinluyi
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Department of Pharmacology and Therapeutics, Afe Babalola University, Ado-Ekiti, Nigeria
| | - Ifeoluwa Oluleke Awogbindin
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Neuroimmunology Group, Molecular Drug Metabolism and Toxicology Laboratory, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada; Neurosciences Axis, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, Canada; Department of Molecular Medicine, Université Laval, Québec, QC, Canada; Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada.
| |
Collapse
|
23
|
Pfau DR, Baribeau S, Brown F, Khetarpal N, Marc Breedlove S, Jordan CL. Loss of TRPC2 function in mice alters sex differences in brain regions regulating social behaviors. J Comp Neurol 2023; 531:1550-1561. [PMID: 37496437 PMCID: PMC10642801 DOI: 10.1002/cne.25528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 05/15/2023] [Accepted: 06/29/2023] [Indexed: 07/28/2023]
Abstract
The transient receptor potential cation channel 2 (TRPC2) conveys pheromonal information from the vomeronasal organ (VNO) to the brain. Both male and female mice lacking this gene show altered sex-typical behavior as adults. We asked whether TRPC2, highly expressed in the VNO, normally participates in the development of VNO-recipient brain regions controlling mounting and aggression, two behaviors affected by TRPC2 loss. We now report significant effects of TRPC2 loss in both the posterodorsal aspect of the medial amygdala (MePD) and ventromedial nucleus of the hypothalamus (VMH) of male and female mice. In the MePD, a sex difference in neuron number was eliminated by the TRPC2 knockout (KO), but the effect was complex, with fewer neurons in the right MePD of females, and fewer neurons in the left MePD of males. In contrast, MePD astrocytes were unaffected by the KO. In the ventrolateral (vl) aspect of the VMH, KO females were like wildtype (WT) females, but TRPC2 loss had a dramatic effect in males, with fewer neurons than WT males and a smaller VMHvl overall. We also discovered a glial sex difference in VMHvl of WTs, with females having more astrocytes than males. Interestingly, TRPC2 loss increased astrocyte number in males in this region. We conclude that TRPC2 normally participates in the sexual differentiation of the mouse MePD and VMHvl. These changes in two key VNO-recipient regions may underlie the effects of the TRPC2 KO on behavior.
Collapse
Affiliation(s)
- Daniel R Pfau
- Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
| | - Sarah Baribeau
- Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
| | - Felix Brown
- Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
| | - Niki Khetarpal
- Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
| | - S Marc Breedlove
- Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
| | - Cynthia L Jordan
- Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
24
|
Terrin F, Tesoriere A, Plotegher N, Dalla Valle L. Sex and Brain: The Role of Sex Chromosomes and Hormones in Brain Development and Parkinson's Disease. Cells 2023; 12:1486. [PMID: 37296608 PMCID: PMC10252697 DOI: 10.3390/cells12111486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Sex hormones and genes on the sex chromosomes are not only key factors in the regulation of sexual differentiation and reproduction but they are also deeply involved in brain homeostasis. Their action is crucial for the development of the brain, which presents different characteristics depending on the sex of individuals. The role of these players in the brain is fundamental in the maintenance of brain function during adulthood as well, thus being important also with respect to age-related neurodegenerative diseases. In this review, we explore the role of biological sex in the development of the brain and analyze its impact on the predisposition toward and the progression of neurodegenerative diseases. In particular, we focus on Parkinson's disease, a neurodegenerative disorder that has a higher incidence in the male population. We report how sex hormones and genes encoded by the sex chromosomes could protect from the disease or alternatively predispose toward its development. We finally underline the importance of considering sex when studying brain physiology and pathology in cellular and animal models in order to better understand disease etiology and develop novel tailored therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Nicoletta Plotegher
- Department of Biology, University of Padova, 35131 Padova, Italy; (F.T.); (A.T.)
| | - Luisa Dalla Valle
- Department of Biology, University of Padova, 35131 Padova, Italy; (F.T.); (A.T.)
| |
Collapse
|
25
|
Kirkland JM, Edgar EL, Patel I, Kopec AM. Impaired microglia-mediated synaptic pruning in the nucleus accumbens during adolescence results in persistent dysregulation of familiar, but not novel social interactions in sex-specific ways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.02.539115. [PMID: 37205324 PMCID: PMC10187149 DOI: 10.1101/2023.05.02.539115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Evolutionarily conserved, peer-directed social behaviors are essential to participate in many aspects of human society. These behaviors directly impact psychological, physiological, and behavioral maturation. Adolescence is an evolutionarily conserved period during which reward-related behaviors, including social behaviors, develop via developmental plasticity in the mesolimbic dopaminergic 'reward' circuitry of the brain. The nucleus accumbens (NAc) is an intermediate reward relay center that develops during adolescence and mediates both social behaviors and dopaminergic signaling. In several developing brain regions, synaptic pruning mediated by microglia, the resident immune cells of the brain, is important for normal behavioral development. In rats, we previously demonstrated that microglial synaptic pruning also mediates NAc and social development during sex-specific adolescent periods and via sex-specific synaptic pruning targets. In this report, we demonstrate that interrupting microglial pruning in NAc during adolescence persistently dysregulates social behavior towards a familiar, but not novel social partner in both sexes, via sex-specific behavioral expression. This leads us to infer that naturally occurring NAc pruning serves to reduce social behaviors primarily directed toward a familiar conspecific in both sexes, but in sex-specific ways.
Collapse
Affiliation(s)
- Julia M. Kirkland
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College
| | - Erin L. Edgar
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College
| | - Ishan Patel
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College
| | - Ashley M. Kopec
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College
| |
Collapse
|
26
|
Paton SEJ, Solano JL, Coulombe-Rozon F, Lebel M, Menard C. Barrier-environment interactions along the gut-brain axis and their influence on cognition and behaviour throughout the lifespan. J Psychiatry Neurosci 2023; 48:E190-E208. [PMID: 37253482 PMCID: PMC10234620 DOI: 10.1503/jpn.220218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/01/2023] [Accepted: 03/19/2023] [Indexed: 06/01/2023] Open
Abstract
Environment is known to substantially alter mental state and behaviour across the lifespan. Biological barriers such as the blood-brain barrier (BBB) and gut barrier (GB) are major hubs for communication of environmental information. Alterations in the structural, social and motor environment at different stages of life can influence function of the BBB and GB and their integrity to exert behavioural consequences. Importantly, each of these environmental components is associated with a distinct immune profile, glucocorticoid response and gut microbiome composition, creating unique effects on the BBB and GB. These barrier-environment interactions are sensitive to change throughout life, and positive or negative alterations at critical stages of development can exert long-lasting cognitive and behavioural consequences. Furthermore, because loss of barrier integrity is implicated in pathogenesis of mental disorders, the pathways of environmental influence represent important areas for understanding these diseases. Positive environments can be protective against stress- and age-related damage, raising the possibility of novel pharmacological targets. This review summarizes known mechanisms of environmental influence - such as social interactions, structural complexity and physical exercise - on barrier composition, morphology and development, and considers the outcomes and implications of these interactions in the context of psychiatric disorders.
Collapse
Affiliation(s)
- Sam E J Paton
- From the Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Centre, Université Laval, Québec, Que. (Paton, Solano, Coulombe-Rozon, Lebel, Menard)
| | - José L Solano
- From the Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Centre, Université Laval, Québec, Que. (Paton, Solano, Coulombe-Rozon, Lebel, Menard)
| | - François Coulombe-Rozon
- From the Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Centre, Université Laval, Québec, Que. (Paton, Solano, Coulombe-Rozon, Lebel, Menard)
| | - Manon Lebel
- From the Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Centre, Université Laval, Québec, Que. (Paton, Solano, Coulombe-Rozon, Lebel, Menard)
| | - Caroline Menard
- From the Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Centre, Université Laval, Québec, Que. (Paton, Solano, Coulombe-Rozon, Lebel, Menard)
| |
Collapse
|
27
|
Prengel TM, Brunne B, Habiballa M, Rune GM. Sexually differentiated microglia and CA1 hippocampal synaptic connectivity. J Neuroendocrinol 2023; 35:e13276. [PMID: 37170708 DOI: 10.1111/jne.13276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/14/2023] [Accepted: 03/31/2023] [Indexed: 05/13/2023]
Abstract
Microglia have been shown to sculpt postnatal circuitry from birth up to adulthood due to their role in both synapse formation, synaptic pruning, and the elimination of weak, redundant synapses. Microglia are differentiated in a sex-dependent manner. In this study, we tested whether sexual differentiation of microglia results in sex-dependent postnatal reorganization of CA1 synaptic connectivity in the hippocampus. The stereological counting of synapses in mice using electron microscopy showed a continuous rise in synapse density until the fourth week, followed by a plateau phase and loss of synapses from the eighth week onwards, with no difference between sexes. This course of alteration in synapse numbers did not differ between sexes. However, selectively, on postnatal day (P) 14 the density of synapses was significantly higher in the female than in the male hippocampus. Higher synapse density in females was paralleled by higher activity of microglia, as indicated by morphological changes, CD68 expression, and proximity of microglia to synaptic sites. In Thy1-GFP mice, consistent with increased synapse numbers, bouton density was also clearly increased in females at P14. At this time point, CD47 expression, the "don't eat me" signal of neurons, was similar in males and females. The decrease in bouton density thereafter in conjunction with increased synapse numbers argues for a role of microglia in the formation of multispine boutons (MSB). Our data in females at P14 support the regulatory role of microglia in synapse density. Sexual differentiation of microglia, however, does not substantially affect long-term synaptic reorganization in the hippocampus.
Collapse
Affiliation(s)
- Tim M Prengel
- Institute of Neuroanatomy, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Bianka Brunne
- Institute of Neuroanatomy, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Moataz Habiballa
- Institute of Neuroanatomy, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Gabriele M Rune
- Institute of Cell Biology and Neurobiology, Charité Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
28
|
Ocañas SR, Ansere VA, Kellogg CM, Isola JVV, Chucair-Elliott AJ, Freeman WM. Chromosomal and gonadal factors regulate microglial sex effects in the aging brain. Brain Res Bull 2023; 195:157-171. [PMID: 36804773 PMCID: PMC10810555 DOI: 10.1016/j.brainresbull.2023.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023]
Abstract
Biological sex contributes to phenotypic sex effects through genetic (sex chromosomal) and hormonal (gonadal) mechanisms. There are profound sex differences in the prevalence and progression of age-related brain diseases, including neurodegenerative diseases. Inflammation of neural tissue is one of the most consistent age-related phenotypes seen with healthy aging and disease. The pro-inflammatory environment of the aging brain has primarily been attributed to microglial reactivity and adoption of heterogeneous reactive states dependent upon intrinsic (i.e., sex) and extrinsic (i.e., age, disease state) factors. Here, we review sex effects in microglia across the lifespan, explore potential genetic and hormonal molecular mechanisms of microglial sex effects, and discuss currently available models and methods to study sex effects in the aging brain. Despite recent attention to this area, significant further research is needed to mechanistically understand the regulation of microglial sex effects across the lifespan, which may open new avenues for sex informed prevention and treatment strategies.
Collapse
Affiliation(s)
- Sarah R Ocañas
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Victor A Ansere
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Collyn M Kellogg
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jose V V Isola
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Ana J Chucair-Elliott
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Willard M Freeman
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
29
|
Breton É, Juster RP, Booij L. Gender and sex in eating disorders: A narrative review of the current state of knowledge, research gaps, and recommendations. Brain Behav 2023; 13:e2871. [PMID: 36840375 PMCID: PMC10097055 DOI: 10.1002/brb3.2871] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/10/2022] [Accepted: 12/08/2022] [Indexed: 02/26/2023] Open
Abstract
INTRODUCTION Eating disorders (EDs) have long been considered conditions exclusively affecting women, and studies in the ED field regularly exclude men. Research efforts are needed to better understand the role of gender and sex in EDs. This review describes the role of gender and sex in the development of EDs from a biopsychosocial perspective. METHODS The primary hypothesis of this narrative review is that gender and sex interact to influence ED risk. The literature review was conducted using the PubMed database. RESULTS This review first presents the general characteristics and prevalence of EDs according to gender and sex. Next, neurodevelopmental processes, neurobiology, gender roles, body image, and the minority stress model are addressed. Lastly, research perspectives to better include gender and sex in the field of EDs are discussed (e.g., representation of gender and sex diversities, development of appropriate assessment tools, and increasing awareness). CONCLUSION Although substantial knowledge gaps remain, there is a growing recognition of the importance of integrating gender and sex in ED research that holds promise for further development in the field.
Collapse
Affiliation(s)
- Édith Breton
- CHU Sainte-Justine Research Centre, Montreal, Canada.,Department of Psychiatry and Addictology, University of Montreal, Montreal, Canada
| | - Robert-Paul Juster
- Department of Psychiatry and Addictology, University of Montreal, Montreal, Canada.,Research Centre of the Montreal Mental Health University Institute, Montreal, Canada
| | - Linda Booij
- CHU Sainte-Justine Research Centre, Montreal, Canada.,Department of Psychiatry and Addictology, University of Montreal, Montreal, Canada.,Department of Psychology, Concordia University, Montreal, Canada.,Department of Psychiatry, McGill University, Montreal, Canada
| |
Collapse
|
30
|
Mela V, Gaban AS, Shatz PM, Guillot-Sestier MV, Lynch MA. Acute Stress, Induced by IFNγ + Aβ, and Chronic Stress, Induced by Age, Affect Microglia in a Sex-Specific Manner. Mol Neurobiol 2023; 60:3044-3053. [PMID: 36781739 PMCID: PMC10122617 DOI: 10.1007/s12035-023-03235-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/13/2023] [Indexed: 02/15/2023]
Abstract
Microglial phenotype changes in the aged brain, and also in neurodegenerative diseases, and it is generally accepted that these changes at least contribute to the inflammation that can have detrimental effects on brain health. Accumulating data have determined that there are multiple microglial activation states with consistent findings indicating that with stressors including age, a switch towards an inflammatory phenotype occurs. Among the changes that accompany this is a change in metabolism, whereby glycolysis is increased in microglia. Here, we asked whether sex impacted on the response of microglia to two stressors, interferon-γ + amyloid-β (IFNγ + Aβ) and age. The data show that IFNγ + Aβ triggered cells from female mice to adopt a glycolytic phenotype. Metabolism was also altered with age; microglia from aged male mice responded by increasing oxidative phosphorylation, and microglial motility was preserved, contrasting with microglia from female mice where motility was compromised. We conclude that sex is a significant variable in the responses of microglia to stressors.
Collapse
Affiliation(s)
- Virginia Mela
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Dublin 2, Ireland. .,Department of Medicine and Dermatology, Faculty of Medicine, University of Malaga, Malaga, 29010, Spain.
| | - Aline Sayd Gaban
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Dublin 2, Ireland
| | - Paul Marie Shatz
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Dublin 2, Ireland
| | - Marie-Victoire Guillot-Sestier
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Dublin 2, Ireland.,School of Medicine and Conway Institute, University College Dublin, Dublin, Ireland
| | - Marina A Lynch
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Dublin 2, Ireland
| |
Collapse
|
31
|
Brown RE. Sex Differences in Neurodevelopment and Its Disorders. NEURODEVELOPMENTAL PEDIATRICS 2023:179-212. [DOI: 10.1007/978-3-031-20792-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
32
|
Reinl EL, Blanchard AC, Graham EL, Edwards SW, Dionisos CV, McCarthy MM. The immune cell profile of the developing rat brain. Brain Behav Immun 2022; 106:198-226. [PMID: 36049705 PMCID: PMC11914895 DOI: 10.1016/j.bbi.2022.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/09/2022] [Accepted: 08/25/2022] [Indexed: 12/14/2022] Open
Abstract
Little is known about the peripheral immune cell (PIC) profile of the developing brain despite growing appreciation for these cells in the mature nervous system. To address this gap, the PIC profile, defined as which cells are present, where they are located, and for how long, was examined in the developing rat using spectral flow cytometry. Select regions of the rat brain (cerebellum, hippocampus, and hypothalamus) were examined at embryonic day 20, and postnatal days 0, 7 and 16. At their peak (E20), PICs were most abundant in the cerebellum, then the hippocampus and hypothalamus. Within the PIC pool, monocytes were most prevalent in all regions and time points, and shifted from being majority classical at E20 to non-classical by PN7. T cells increased over time, and shifted from majority cytotoxic to T-helper cells by PN7. This suggests the PIC profile transitions from reactive to adaptive and surveilling in the second postnatal week. NK cells and mast cells increased temporarily, and mast cells were restricted to the hippocampus and hypothalamus, suggesting they may play a specific role in the development of those regions. Mimicking a viral infection by administration of Poly I:C increased the influx of PICs into the neonatal brain, particularly of NK cells and in the case of males only, non-classical monocytes. This work provides a map for researchers as they study immune cell contributions to healthy and pathological brain development.
Collapse
Affiliation(s)
- Erin L Reinl
- University of Maryland School of Medicine, Department of Pharmacology, United States
| | - Alexa C Blanchard
- University of Maryland School of Medicine, Program in Molecular Medicine and Medical Scientist Training Program, United States
| | - Emily L Graham
- University of Maryland School of Medicine, Department of Pharmacology, United States
| | - Serena W Edwards
- University of Maryland School of Medicine, Department of Pharmacology, United States
| | - Christie V Dionisos
- University of Maryland School of Medicine, Program in Neuroscience, United States
| | - Margaret M McCarthy
- University of Maryland School of Medicine, Department of Pharmacology, United States; University of Maryland School of Medicine, Program in Neuroscience, United States
| |
Collapse
|
33
|
Sullivan O, Ciernia AV. Work hard, play hard: how sexually differentiated microglia work to shape social play and reproductive behavior. Front Behav Neurosci 2022; 16:989011. [PMID: 36172465 PMCID: PMC9510374 DOI: 10.3389/fnbeh.2022.989011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022] Open
Abstract
Microglia are brain-resident immune cells that play a critical role in synaptic pruning and circuit fine-tuning during development. In the adult brain, microglia actively survey their local environment and mobilize inflammatory responses to signs of damage or infection. Sex differences in microglial gene expression and function across the lifespan have been identified, which play a key role in shaping brain function and behavior. The levels of sex hormones such as androgens, estrogens, and progesterone vary in an age-dependent and sex-dependent manner. Microglia respond both directly and indirectly to changes in hormone levels, altering transcriptional gene expression, morphology, and function. Of particular interest is the microglial function in brain regions that are highly sexually differentiated in development such as the amygdala as well as the pre-optic and ventromedial hypothalamic regions. With a focus on hormone-sensitive developmental windows, this review compares male and female microglia in the embryonic, developing, and adult brain with a particular interest in the influence of sex hormones on microglial wiring of social, reproductive, and disordered behavior circuits in the brain.
Collapse
Affiliation(s)
- Olivia Sullivan
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Annie Vogel Ciernia
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
34
|
Microglia involvement in sex-dependent behaviors and schizophrenia occurrence in offspring with maternal dexamethasone exposure. SCHIZOPHRENIA 2022; 8:71. [PMID: 36075925 PMCID: PMC9458670 DOI: 10.1038/s41537-022-00280-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/27/2022] [Indexed: 12/30/2022]
Abstract
Fetal microglia that are particularly sensitive cells to the changes in utero environment might be involved in the sex-biased onset and vulnerability to psychiatric disorders. To address this issue, we administered a 50 µg/kg dexamethasone (DEX) to dams subcutaneously from gestational days 16 to 18 and a series of behavioral assessments were performed in the offspring. Prenatal exposure to dexamethasone (PN-DEX) induced schizophrenia (SCZ)-relevant behaviors in male mice and depressive-like behavior in female mice. SCZ-relevant behavioral patterns occurred in 10-week-old (10 W) male mice but not in 4-week-old (4 W) male mice. Microglia in the medial prefrontal cortex (mPFC) and the striatum (STR) of 10 W males prenatally treated with dexamethasone (10 W PN-DEX-M) showed hyper-ramified morphology and dramatically reduced spine density in mPFC. Immunofluorescence studies indicated that microglia in the mPFC of the 10 W PN-DEX-M group interacted with pre-synaptic Bassoon and post-synaptic density 95 (PSD95) puncta. PN-DEX-M also showed significantly changed dopamine system proteins. However, a testosterone surge during adolescence was not a trigger on SCZ-relevant behavior occurrence in 10 W PN-DEX-M. Furthermore, females prenatally treated with dexamethasone (PN-DEX-F) displayed depressive-like behavior, in addition to HPA-axis activation and inflammatory microglial phenotypes in their hippocampus (HPC). We propose that altered microglial function, such as increased synaptic pruning, may be involved in the occurrence of SCZ-relevant behavior in PN-DEX-M and sex-biased abnormal behavior in the PN-DEX model.
Collapse
|
35
|
Smith CJ, Lintz T, Clark MJ, Malacon KE, Abiad A, Constantino NJ, Kim VJ, Jo YC, Alonso-Caraballo Y, Bilbo SD, Chartoff EH. Prenatal opioid exposure inhibits microglial sculpting of the dopamine system selectively in adolescent male offspring. Neuropsychopharmacology 2022; 47:1755-1763. [PMID: 35835992 PMCID: PMC9372181 DOI: 10.1038/s41386-022-01376-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/22/2022] [Accepted: 06/25/2022] [Indexed: 02/08/2023]
Abstract
The current opioid epidemic has dramatically increased the number of children who are prenatally exposed to opioids, including oxycodone. A number of social and cognitive abnormalities have been documented in these children as they reach young adulthood. However, little is known about the mechanisms underlying developmental effects of prenatal opioid exposure. Microglia, the resident immune cells of the brain, respond to acute opioid exposure in adulthood. Moreover, microglia are known to sculpt neural circuits during typical development. Indeed, we recently found that microglial phagocytosis of dopamine D1 receptors (D1R) in the nucleus accumbens (NAc) is required for the natural developmental decline in NAc-D1R that occurs between adolescence and adulthood in rats. This microglial pruning occurs only in males, and is required for the normal developmental trajectory of social play behavior. However, virtually nothing is known as to whether this developmental program is altered by prenatal exposure to opioids. Here, we show in rats that maternal oxycodone self-administration during pregnancy leads to reduced adolescent microglial phagocytosis of D1R and subsequently higher D1R density within the NAc in adult male, but not female, offspring. Finally, we show prenatal and adult behavioral deficits in opioid-exposed offspring, including impaired extinction of oxycodone-conditioned place preference in males. This work demonstrates for the first time that microglia play a key role in translating prenatal opioid exposure to changes in neural systems and behavior.
Collapse
Affiliation(s)
- Caroline J Smith
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA.
| | - Tania Lintz
- Department of Psychiatry, Harvard Medical School and Basic Neuroscience Division, Mclean Hospital, Belmont, MA, USA
| | - Madeline J Clark
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Karen E Malacon
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Alia Abiad
- Department of Psychiatry, Harvard Medical School and Basic Neuroscience Division, Mclean Hospital, Belmont, MA, USA
| | - Nicholas J Constantino
- Department of Psychiatry, Harvard Medical School and Basic Neuroscience Division, Mclean Hospital, Belmont, MA, USA
| | - Veronica J Kim
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Young C Jo
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Yanaira Alonso-Caraballo
- Department of Psychiatry, Harvard Medical School and Basic Neuroscience Division, Mclean Hospital, Belmont, MA, USA
| | - Staci D Bilbo
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Elena H Chartoff
- Department of Psychiatry, Harvard Medical School and Basic Neuroscience Division, Mclean Hospital, Belmont, MA, USA
| |
Collapse
|
36
|
Brosolo M, Lecointre M, Laquerrière A, Janin F, Genty D, Lebon A, Lesueur C, Vivien D, Marret S, Marguet F, Gonzalez BJ. In utero alcohol exposure impairs vessel-associated positioning and differentiation of oligodendrocytes in the developing neocortex. Neurobiol Dis 2022; 171:105791. [PMID: 35760273 DOI: 10.1016/j.nbd.2022.105791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/30/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
Prenatal alcohol exposure (PAE) is a major cause of nongenetic mental retardation and can lead to fetal alcohol syndrome (FAS), the most severe manifestation of fetal alcohol spectrum disorder (FASD). FASD infants present behavioral disabilities resulting from neurodevelopmental defects. Both grey and white matter lesions have been characterized and are associated with apoptotic death and/or ectopic migration profiles. In the last decade, it was shown that PAE impairs brain angiogenesis, and the radial organization of cortical microvessels is lost. Concurrently, several studies have reported that tangential migration of oligodendrocyte precursors (OPCs) originating from ganglionic eminences is vascular associated. Because numerous migrating oligodendrocytes enter the developing neocortex, the present study aimed to determine whether migrating OPCs interacted with radial cortical microvessels and whether alcohol-induced vascular impairments were associated with altered positioning and differentiation of cortical oligodendrocytes. Using a 3D morphometric analysis, the results revealed that in both human and mouse cortices, 15 to 40% of Olig2-positive cells were in close association with radial cortical microvessels, respectively. Despite perinatal vascular disorganization, PAE did not modify the vessel association of Olig2-positive cells but impaired their positioning between deep and superficial cortical layers. At the molecular level, PAE markedly but transiently reduced the expression of CNPase and MBP, two differentiation markers of immature and mature oligodendrocytes. In particular, PAE inverted their distribution profiles in cortical layers V and VI and reduced the thickness of the myelin sheath of efferent axons. These perinatal oligo-vascular defects were associated with motor disabilities that persisted in adults. Altogether, the present study provides the first evidence that Olig2-positive cells entering the neocortex are associated with radial microvessels. PAE disorganized the cortical microvasculature and delayed the positioning and differentiation of oligodendrocytes. Although most of these oligovascular defects occurred in perinatal life, the offspring developed long-term motor troubles. Altogether, these data suggest that alcohol-induced oligo-vascular impairments contribute to the neurodevelopmental issues described in FASD.
Collapse
Affiliation(s)
- M Brosolo
- Normandie Univ, UNIROUEN, INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, F 76000 Rouen, France
| | - M Lecointre
- Normandie Univ, UNIROUEN, INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, F 76000 Rouen, France
| | - A Laquerrière
- Normandie Univ, UNIROUEN, INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, F 76000 Rouen, France; Department of Pathology, Rouen University Hospital, 76000 Rouen, France
| | - F Janin
- Normandie Univ, UNIROUEN, INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, F 76000 Rouen, France
| | - D Genty
- Department of Pathology, Rouen University Hospital, 76000 Rouen, France
| | - A Lebon
- Normandie Univ, UNIROUEN, INSERM US 51, CNRS UAR 2026, HeRacLeS-PRIMACEN, 76000 Rouen, France
| | - C Lesueur
- Normandie Univ, UNIROUEN, INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, F 76000 Rouen, France
| | - D Vivien
- Normandie Univ, UNICAEN, INSERM UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), GIP Cyceron, Institut Blood and Brain @ Caen-Normandie (BB@C), 14000 Caen, France; Department of Clinical Research, Caen-Normandie University Hospital, CHU, Avenue de la côte de Nacre, Caen, France
| | - S Marret
- Normandie Univ, UNIROUEN, INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, F 76000 Rouen, France; Department of Neonatal Pediatrics and Intensive Care, Rouen University Hospital, 76000 Rouen, France
| | - F Marguet
- Normandie Univ, UNIROUEN, INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, F 76000 Rouen, France; Department of Pathology, Rouen University Hospital, 76000 Rouen, France
| | - B J Gonzalez
- Normandie Univ, UNIROUEN, INSERM U1245, Normandy Centre for Genomic and Personalized Medicine, F 76000 Rouen, France.
| |
Collapse
|
37
|
Desroziers E. Unusual suspects: Glial cells in fertility regulation and their suspected role in polycystic ovary syndrome. J Neuroendocrinol 2022; 34:e13136. [PMID: 35445462 PMCID: PMC9489003 DOI: 10.1111/jne.13136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 11/28/2022]
Abstract
Gonadotropin-releasing-hormone (GnRH) neurons sitting within the hypothalamus control the production of gametes and sex steroids by the gonads, therefore ensuring survival of species. As orchestrators of reproductive function, GnRH neurons integrate information from external and internal cues. This occurs through an extensively studied neuronal network known as the "GnRH neuronal network." However, the brain is not simply composed of neurons. Evidence suggests a role for glial cells in controlling GnRH neuron activity, secretion and fertility outcomes, although numerous questions remain. Glial cells have historically been seen as support cells for neurons. This idea has been challenged by the discovery that some neurological diseases originate from glial dysfunction. The prevalence of infertility disorders is increasing worldwide, with one in four couples being affected; therefore, it remains essential to understand the mechanisms by which the brain controls fertility. The "GnRH glial network" could be a major player in infertility disorders and represent a potential therapeutic target. In polycystic ovary syndrome (PCOS), the most common infertility disorder of reproductive aged women worldwide, the brain is considered a prime suspect. Recent studies have demonstrated pathological neuronal wiring of the "GnRH neuronal network" in PCOS-like animal models. However, the role of the "GnRH glial network" remains to be elucidated. In this review, I aim to propose glial cells as unusual suspects in infertility disorders such as PCOS. In the first part, I state our current knowledge about the role of glia in the regulation of GnRH neurons and fertility. In the second part, based on our recent findings, I discuss how glial cells could be implicated in PCOS pathology.
Collapse
Affiliation(s)
- Elodie Desroziers
- Department of Physiology, Centre for NeuroendocrinologyUniversity of OtagoDunedinNew Zealand
- Sorbonne Université, CNRS, INSERM, Neuroscience Paris Seine – Institut de Biologie Paris Seine, Neuroplasticity of Reproductive Behaviours TeamParisFrance
| |
Collapse
|
38
|
Lynch MA. Exploring Sex-Related Differences in Microglia May Be a Game-Changer in Precision Medicine. Front Aging Neurosci 2022; 14:868448. [PMID: 35431903 PMCID: PMC9009390 DOI: 10.3389/fnagi.2022.868448] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/08/2022] [Indexed: 12/16/2022] Open
Abstract
One area of microglial biology that has been relatively neglected until recently is sex differences and this is in spite of the fact that sex is a risk factor in several diseases that are characterized by neuroinflammation and, by extension, microglial activation. Why these sex differences exist is not known but the panoply of differences extend to microglial number, genotype and phenotype. Significantly, several of these sex-related differences are also evident in health and change during life emphasizing the dynamic and plastic nature of microglia. This review will consider how age impacts on sex-related differences in microglia and ask whether the advancement of personalized medicine demands that a greater focus is placed on studying sex-related differences in microglia in Alzheimer's disease, Parkinson's disease and models of inflammatory stress and trauma in order to make true progress in dealing with these conditions.
Collapse
Affiliation(s)
- Marina A. Lynch
- Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| |
Collapse
|
39
|
Ceasrine AM, Bilbo SD. Dietary fat: a potent microglial influencer. Trends Endocrinol Metab 2022; 33:196-205. [PMID: 35078706 PMCID: PMC8881786 DOI: 10.1016/j.tem.2021.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/14/2021] [Accepted: 12/23/2021] [Indexed: 12/25/2022]
Abstract
Poor nutrition, lack of exercise, and genetic predisposition all contribute to the growing epidemic of obesity. Overweight/obesity create an environment of chronic inflammation that leads to negative physiological and neurological outcomes, such as diabetes, cardiovascular disease, and anxiety/depression. While the whole body contributes to metabolic homeostasis, the neuroimmune system has recently emerged as a key regulator of metabolism. Microglia, the resident immune cells of the brain, respond both directly and indirectly to dietary fat, and the environment in which microglia develop contributes to their responsiveness later in life. Thus, high maternal weight during pregnancy may have consequences for microglial function in offspring. Here, we discuss the most recent findings on microglia signaling in overweight/obesity with a focus on perinatal programming.
Collapse
Affiliation(s)
- Alexis M Ceasrine
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27710, USA
| | - Staci D Bilbo
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27710, USA; Department of Neurobiology, Duke University, Durham, NC 27710, USA; Department of Cell Biology, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
40
|
Mela V, Sayd Gaban A, O’Neill E, Bechet S, Walsh A, Lynch MA. The Modulatory Effects of DMF on Microglia in Aged Mice Are Sex-Specific. Cells 2022; 11:cells11040729. [PMID: 35203379 PMCID: PMC8870377 DOI: 10.3390/cells11040729] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/08/2022] [Accepted: 02/16/2022] [Indexed: 02/01/2023] Open
Abstract
There is a striking sex-related difference in the prevalence of many neurodegenerative diseases, highlighting the need to consider whether treatments may exert sex-specific effects. A change in microglial activation state is a common feature of several neurodegenerative diseases and is considered to be a key factor in driving the inflammation that characterizes these conditions. Among the changes that have been described is a switch in microglial metabolism towards glycolysis which is associated with production of inflammatory mediators and reduced function. Marked sex-related differences in microglial number, phenotype and function have been described in late embryonic and early postnatal life in rodents and some reports suggest that sexual dimorphism extends into adulthood and age and, in models of Alzheimer’s disease, the changes are more profound in microglia from female, compared with male, mice. Dimethyl fumarate (DMF) is a fumaric acid ester used in the treatment of psoriasis and relapsing remitting multiple sclerosis and, while its mechanism of action is unclear, it possesses anti-inflammatory and anti-oxidant properties and also impacts on cell metabolism. Here we treated 16–18-month-old female and male mice with DMF for 1 month and assessed its effect on microglia. The evidence indicates that it exerted sex-specific effects on microglial morphology and metabolism, reducing glycolysis only in microglia from female mice. The data suggest that this may result from its ability to inactivate glyceraldehyde-3-phosphate dehydrogenase (GAPDH).
Collapse
Affiliation(s)
- Virginia Mela
- Department of Medicine and Dermatology, Faculty of Medicine, University of Malaga, 29010 Malaga, Spain;
| | - Aline Sayd Gaban
- Trinity College Institute of Neuroscience, Trinity College Dublin, D02 DK07 Dublin, Ireland; (A.S.G.); (E.O.); (S.B.); (A.W.)
| | - Eoin O’Neill
- Trinity College Institute of Neuroscience, Trinity College Dublin, D02 DK07 Dublin, Ireland; (A.S.G.); (E.O.); (S.B.); (A.W.)
| | - Sibylle Bechet
- Trinity College Institute of Neuroscience, Trinity College Dublin, D02 DK07 Dublin, Ireland; (A.S.G.); (E.O.); (S.B.); (A.W.)
| | - Aífe Walsh
- Trinity College Institute of Neuroscience, Trinity College Dublin, D02 DK07 Dublin, Ireland; (A.S.G.); (E.O.); (S.B.); (A.W.)
| | - Marina A. Lynch
- Trinity College Institute of Neuroscience, Trinity College Dublin, D02 DK07 Dublin, Ireland; (A.S.G.); (E.O.); (S.B.); (A.W.)
- Correspondence:
| |
Collapse
|
41
|
Jean A, Mhaouty-Kodja S, Hardin-Pouzet H. Hypothalamic cellular and molecular plasticity linked to sexual experience in male rats and mice. Front Neuroendocrinol 2021; 63:100949. [PMID: 34687674 DOI: 10.1016/j.yfrne.2021.100949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
Male sexual behavior is subject to learning, resulting in increased efficiency of experienced males compared to naive ones. The improvement in behavioral parameters is underpinned by cellular and molecular changes in the neural circuit controlling sexual behavior, particularly in the hypothalamic medial preoptic area. This review provides an update on the mechanisms related to the sexual experience in male rodents, emphasizing the differences between rats and mice.
Collapse
Affiliation(s)
- Arnaud Jean
- Sorbonne Université - Faculté de Sciences et Ingénierie, Neuroplasticité des Comportements de la Reproduction, Neurosciences Paris Seine, UM119 - CNRS UMR 8246 - INSERM UMRS 1130, 7 quai Saint Bernard, 75 005 Paris, France
| | - Sakina Mhaouty-Kodja
- Sorbonne Université - Faculté de Sciences et Ingénierie, Neuroplasticité des Comportements de la Reproduction, Neurosciences Paris Seine, UM119 - CNRS UMR 8246 - INSERM UMRS 1130, 7 quai Saint Bernard, 75 005 Paris, France
| | - Hélène Hardin-Pouzet
- Sorbonne Université - Faculté de Sciences et Ingénierie, Neuroplasticité des Comportements de la Reproduction, Neurosciences Paris Seine, UM119 - CNRS UMR 8246 - INSERM UMRS 1130, 7 quai Saint Bernard, 75 005 Paris, France.
| |
Collapse
|
42
|
Tremblay MÈ. Microglial functional alteration and increased diversity in the challenged brain: Insights into novel targets for intervention. Brain Behav Immun Health 2021; 16:100301. [PMID: 34589793 PMCID: PMC8474548 DOI: 10.1016/j.bbih.2021.100301] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 02/07/2023] Open
Abstract
Microglia are the resident immune cells of the central nervous system (CNS) parenchyma, which perform beneficial physiological roles across life. These immune cells actively maintain CNS health by clearing toxic debris and removing dysfunctional or degenerating cells. They also modify the wiring of neuronal circuits, by acting on the formation, modification, and elimination of synapses-the connections between neurons. Microglia furthermore recently emerged as highly diverse cells comprising several structural and functional states, indicating a far more critical involvement in orchestrating brain development, plasticity, behaviour, and cognition. Various environmental factors, together with the individual genetic predispositions, confer an increased risk for neurodevelopmental and neuropsychiatric disorders, as well as neurodegenerative diseases that include autism spectrum disorders, schizophrenia, major depressive disorder, and Alzheimer's disease, across life. Microglia are highly sensitive to chronic psychological stress, inadequate diet, viral/bacterial infection, pollution, and insufficient or altered sleep, especially during critical developmental periods, but also throughout life. These environmental challenges can compromise microglial physiological functions, resulting notably in defective neuronal circuit wiring, altered brain functional connectivity, and the onset of behavioral deficits into adolescence, adulthood, and aging. This short review provides a historical and technical perspective, notably focused on my contribution to the field, on how environmental challenges affect microglia, particularly their physiological functions, and increase their diversity, which provides novel targets for intervention.
Collapse
Affiliation(s)
- Marie-Ève Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC, Canada
- Molecular Medicine Department, Université Laval, Québec City, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- The Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
43
|
Reynolds LM, Flores C. Mesocorticolimbic Dopamine Pathways Across Adolescence: Diversity in Development. Front Neural Circuits 2021; 15:735625. [PMID: 34566584 PMCID: PMC8456011 DOI: 10.3389/fncir.2021.735625] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/17/2021] [Indexed: 12/26/2022] Open
Abstract
Mesocorticolimbic dopamine circuity undergoes a protracted maturation during adolescent life. Stable adult levels of behavioral functioning in reward, motivational, and cognitive domains are established as these pathways are refined, however, their extended developmental window also leaves them vulnerable to perturbation by environmental factors. In this review, we highlight recent advances in understanding the mechanisms underlying dopamine pathway development in the adolescent brain, and how the environment influences these processes to establish or disrupt neurocircuit diversity. We further integrate these recent studies into the larger historical framework of anatomical and neurochemical changes occurring during adolescence in the mesocorticolimbic dopamine system. While dopamine neuron heterogeneity is increasingly appreciated at molecular, physiological, and anatomical levels, we suggest that a developmental facet may play a key role in establishing vulnerability or resilience to environmental stimuli and experience in distinct dopamine circuits, shifting the balance between healthy brain development and susceptibility to psychiatric disease.
Collapse
Affiliation(s)
- Lauren M Reynolds
- Plasticité du Cerveau CNRS UMR8249, École supérieure de physique et de chimie industrielles de la Ville de Paris (ESPCI Paris), Paris, France.,Neuroscience Paris Seine CNRS UMR 8246 INSERM U1130, Institut de Biologie Paris Seine, Sorbonne Université, Paris, France
| | - Cecilia Flores
- Department of Psychiatry and Department of Neurology and Neurosurgery, McGill University, Douglas Mental Health University Institute, Montréal, QC, Canada
| |
Collapse
|
44
|
Dziabis JE, Bilbo SD. Microglia and Sensitive Periods in Brain Development. Curr Top Behav Neurosci 2021; 53:55-78. [PMID: 34463934 DOI: 10.1007/7854_2021_242] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
From embryonic neuronal migration to adolescent circuit refinement, the immune system plays an essential role throughout central nervous system (CNS) development. Immune signaling molecules serve as a common language between the immune system and CNS, allowing them to work together to modulate brain function both in health and disease. As the resident CNS macrophage, microglia comprise the majority of immune cells in the brain. Much like their peripheral counterparts, microglia survey their environment for pathology, clean up debris, and propagate inflammatory responses when necessary. Beyond this, recent studies have highlighted that microglia perform a number of complex tasks during neural development, from directing neuronal and axonal positioning to pruning synapses, receptors, and even whole cells. In this chapter, we discuss this literature within the framework that immune activation during discrete windows of neural development can profoundly impact brain function long-term, and thus the risk of neurodevelopmental and neuropsychiatric disorders. In this chapter, we review three sensitive developmental periods - embryonic wiring, early postnatal synaptic pruning, and adolescent circuit refinement - in order to highlight the diversity of functions that microglia perform in building a brain. In reviewing this literature, it becomes obvious that timing matters, perhaps more so than the nature of the immune activation itself; largely conserved patterns of microglial response to diverse insults result in different functional impacts depending on the stage of brain maturation at the time of the challenge.
Collapse
Affiliation(s)
- Julia E Dziabis
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA.,Department of Neurobiology, Duke University, Durham, NC, USA
| | - Staci D Bilbo
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA. .,Department of Neurobiology, Duke University, Durham, NC, USA.
| |
Collapse
|
45
|
Zetter MA, Hernández VS, Roque A, Hernández-Pérez OR, Gómora MJ, Ruiz-Velasco S, Eiden LE, Zhang L. Microglial synaptic pruning on axon initial segment spines of dentate granule cells: Sexually dimorphic effects of early-life stress and consequences for adult fear response. J Neuroendocrinol 2021; 33:e12969. [PMID: 33890333 DOI: 10.1111/jne.12969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/22/2022]
Abstract
Axon initial segments (AIS) of dentate granule cells in the hippocampus exhibit prominent spines (AISS) during early development that are associated with microglial contacts. In the present study, we investigated whether developmental changes in AISS could be modified by early-life stress (ELS), specifically neonatal maternal separation (MS), through stress hormones and microglial activation and examined the potential behavioural consequences. We examined AISS at postnatal day (PND)5, 15 and 50, using Golgi-Cox staining and anatomical analysis. Neurone-microglial interaction was assessed using antibodies against ankyrin-G, PSD-95 and Iba1, for AIS, AISS and microglia visualisation, respectively, in normally reared and neonatal maternally separated male and female rats. We observed a higher density of AISS in ELS rats at both PND15 and PND50 compared to controls. Effects were more pronounced in females than males. AIS-associated microglia in ELS rats showed a hyper-ramified morphology and less co-localisation with PSD-95 compared to controls at PND15. ELS-associated alteration in microglial morphology and synaptic pruning was mimicked by treatment of acute hippocampal slices of normally reared rats with vasopressin. ELS rats exhibited increased freezing behaviour during auditory fear memory testing, which was more pronounced in female subjects and corresponded with increased Fos expression in dorsal and ventral dentate granule cells. Thus, microglial synaptic pruning in dentate AIS of hippocampus is influenced by ELS, with demonstrable sex bias regarding its anatomical characteristics and subsequent fear-induced defensive behaviours.
Collapse
Affiliation(s)
- Mario A Zetter
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Vito S Hernández
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Angélica Roque
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Oscar R Hernández-Pérez
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - María J Gómora
- Department of Embryology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Silvia Ruiz-Velasco
- Department of Probability and Statistics, Applied Mathematics and Systems Research Institute, National Autonomous University of Mexico, Mexico City, Mexico
| | - Lee E Eiden
- Section on Molecular Neuroscience, Intramural Research Program, National Institute of Mental Health, NIH, Bethesda, MD, USA
| | - Limei Zhang
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| |
Collapse
|
46
|
Latchney SE, Majewska AK. Persistent organic pollutants at the synapse: Shared phenotypes and converging mechanisms of developmental neurotoxicity. Dev Neurobiol 2021; 81:623-652. [PMID: 33851516 DOI: 10.1002/dneu.22825] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/27/2021] [Accepted: 04/09/2021] [Indexed: 12/18/2022]
Abstract
The developing nervous system is sensitive to environmental and physiological perturbations in part due to its protracted period of prenatal and postnatal development. Epidemiological and experimental studies link developmental exposures to persistent organic pollutants (POPs) including polychlorinated biphenyls, polychlorinated dibenzo-p-dioxins, polybrominated diphenyl ethers, and benzo(a)pyrene to increased risk for neurodevelopmental disorders in children. Mechanistic studies reveal that many of the complex cellular processes that occur during sensitive periods of rapid brain development are cellular targets for developmental neurotoxicants. One area of research interest has focused on synapse formation and plasticity, processes that involve the growth and retraction of dendrites and dendritic spines. For each chemical discussed in this review, we summarize the morphological and electrophysiological data that provide evidence that developmental POP exposure produces long-lasting effects on dendritic morphology, spine formation, glutamatergic and GABAergic signaling systems, and synaptic transmission. We also discuss shared intracellular mechanisms, with a focus on calcium and thyroid hormone homeostasis, by which these chemicals act to modify synapses. We conclude our review highlighting research gaps that merit consideration when characterizing synaptic pathology elicited by chemical exposure. These gaps include low-dose and nonmonotonic dose-response effects, the temporal relationship between dendritic growth, spine formation, and synaptic activity, excitation-inhibition balance, hormonal effects, and the need for more studies in females to identify sex differences. By identifying converging pathological mechanisms elicited by POP exposure at the synapse, we can define future research directions that will advance our understanding of these chemicals on synapse structure and function.
Collapse
Affiliation(s)
- Sarah E Latchney
- Department of Biology, St. Mary's College of Maryland, St. Mary's City, MD, USA.,Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Ania K Majewska
- Department of Neuroscience, Del Monte Institute for Neuroscience, University of Rochester Medical Center, Rochester, NY, USA.,Center for Visual Science, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
47
|
Serrano-Saiz E, Isogai Y. Single-cell molecular and developmental perspectives of sexually dimorphic circuits underlying innate social behaviors. Curr Opin Neurobiol 2021; 68:159-166. [PMID: 33915498 DOI: 10.1016/j.conb.2021.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/10/2021] [Accepted: 03/16/2021] [Indexed: 12/21/2022]
Abstract
While single-cell transcriptomics in the brain has uncovered a vast diversity of neural cell types in unprecedented detail, it is becoming increasingly urgent to address what exactly their functional roles are in the context of circuits and behavior. In this review, we discuss the molecular profiling of cell types in circuits underlying social behaviors in mice as a prominent case study. We first highlight key roles of molecularly identified sensory and downstream neurons involved in sexually dimorphic behaviors. We then propose future opportunities to define cell types using multimodal criteria, especially gene expression, physiology, as well as the developmental origin, to advance our understanding of these circuits.
Collapse
Affiliation(s)
| | - Yoh Isogai
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, United Kingdom.
| |
Collapse
|
48
|
Han J, Fan Y, Zhou K, Blomgren K, Harris RA. Uncovering sex differences of rodent microglia. J Neuroinflammation 2021; 18:74. [PMID: 33731174 PMCID: PMC7972194 DOI: 10.1186/s12974-021-02124-z] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
There are inherent structural and functional differences in the central nervous systems (CNS) of females and males. It has been gradually established that these sex-specific differences are due to a spectrum of genetic, epigenetic, and hormonal factors which actively contribute to the differential incidences, disease courses, and even outcomes of CNS diseases between sexes. Microglia, as principle resident macrophages in the CNS, play a crucial role in both CNS physiology and pathology. However, sex differences of microglia have been relatively unexplored until recently. Emerging data has convincingly demonstrated the existence of sex-dependent structural and functional differences of rodent microglia, consequently changing our current understanding of these versatile cells. In this review, we attempt to comprehensively outline the current advances revealing microglial sex differences in rodent and their potential implications for specific CNS diseases with a stark sex difference. A detailed understanding of molecular processes underlying microglial sex differences is of major importance in design of translational sex- and microglia-specific therapeutic approaches.
Collapse
Affiliation(s)
- Jinming Han
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, CMM L8:04, Karolinska Sjukhuset, S-171 76, Stockholm, Sweden.
| | - Yueshan Fan
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, CMM L8:04, Karolinska Sjukhuset, S-171 76, Stockholm, Sweden.,Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China.,Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin Neurological Institute, Tianjin, China.,Tianjin Medical University, Tianjin, China
| | - Kai Zhou
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Department of Pediatrics, Children's Hospital of Zhengzhou, Zhengzhou, China
| | - Klas Blomgren
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden.,Pediatric Oncology, Karolinska University Hospital, Stockholm, Sweden
| | - Robert A Harris
- Applied Immunology and Immunotherapy, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine, Karolinska University Hospital, CMM L8:04, Karolinska Sjukhuset, S-171 76, Stockholm, Sweden.
| |
Collapse
|
49
|
Smith CJ, Bilbo SD. Sickness and the Social Brain: Love in the Time of COVID. Front Psychiatry 2021; 12:633664. [PMID: 33692712 PMCID: PMC7937950 DOI: 10.3389/fpsyt.2021.633664] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
As a highly social species, inclusion in social networks and the presence of strong social bonds are critical to our health and well-being. Indeed, impaired social functioning is a component of numerous neuropsychiatric disorders including depression, anxiety, and substance use disorder. During the current COVID-19 pandemic, our social networks are at risk of fracture and many are vulnerable to the negative consequences of social isolation. Importantly, infection itself leads to changes in social behavior as a component of "sickness behavior." Furthermore, as in the case of COVID-19, males and females often differ in their immunological response to infection, and, therefore, in their susceptibility to negative outcomes. In this review, we discuss the many ways in which infection changes social behavior-sometimes to the benefit of the host, and in some instances for the sake of the pathogen-in species ranging from eusocial insects to humans. We also explore the neuroimmune mechanisms by which these changes in social behavior occur. Finally, we touch upon the ways in which the social environment (group living, social isolation, etc.) shapes the immune system and its ability to respond to challenge. Throughout we emphasize how males and females differ in their response to immune activation, both behaviorally and physiologically.
Collapse
Affiliation(s)
- Caroline J Smith
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| | - Staci D Bilbo
- Department of Psychology and Neuroscience, Duke University, Durham, NC, United States
| |
Collapse
|
50
|
Pei G, Wang YY, Simon LM, Dai Y, Zhao Z, Jia P. Gene expression imputation and cell-type deconvolution in human brain with spatiotemporal precision and its implications for brain-related disorders. Genome Res 2020; 31:146-158. [PMID: 33272935 PMCID: PMC7849392 DOI: 10.1101/gr.265769.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/25/2020] [Indexed: 12/30/2022]
Abstract
As the most complex organ of the human body, the brain is composed of diverse regions, each consisting of distinct cell types and their respective cellular interactions. Human brain development involves a finely tuned cascade of interactive events. These include spatiotemporal gene expression changes and dynamic alterations in cell-type composition. However, our understanding of this process is still largely incomplete owing to the difficulty of brain spatiotemporal transcriptome collection. In this study, we developed a tensor-based approach to impute gene expression on a transcriptome-wide level. After rigorous computational benchmarking, we applied our approach to infer missing data points in the widely used BrainSpan resource and completed the entire grid of spatiotemporal transcriptomics. Next, we conducted deconvolutional analyses to comprehensively characterize major cell-type dynamics across the entire BrainSpan resource to estimate the cellular temporal changes and distinct neocortical areas across development. Moreover, integration of these results with GWAS summary statistics for 13 brain-associated traits revealed multiple novel trait–cell-type associations and trait-spatiotemporal relationships. In summary, our imputed BrainSpan transcriptomic data provide a valuable resource for the research community and our findings help further studies of the transcriptional and cellular dynamics of the human brain and related diseases.
Collapse
Affiliation(s)
- Guangsheng Pei
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Yin-Ying Wang
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Lukas M Simon
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Yulin Dai
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| | - Zhongming Zhao
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA.,Human Genetics Center, School of Public Health, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030, USA.,Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA
| | - Peilin Jia
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA
| |
Collapse
|