1
|
Lv Y, Li H. Blood diagnostic and prognostic biomarkers in amyotrophic lateral sclerosis. Neural Regen Res 2025; 20:2556-2570. [PMID: 39314138 DOI: 10.4103/nrr.nrr-d-24-00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
Amyotrophic lateral sclerosis is a devastating neurodegenerative disease for which the current treatment approaches remain severely limited. The principal pathological alterations of the disease include the selective degeneration of motor neurons in the brain, brainstem, and spinal cord, as well as abnormal protein deposition in the cytoplasm of neurons and glial cells. The biological markers under extensive scrutiny are predominantly located in the cerebrospinal fluid, blood, and even urine. Among these biomarkers, neurofilament proteins and glial fibrillary acidic protein most accurately reflect the pathologic changes in the central nervous system, while creatinine and creatine kinase mainly indicate pathological alterations in the peripheral nerves and muscles. Neurofilament light chain levels serve as an indicator of neuronal axonal injury that remain stable throughout disease progression and are a promising diagnostic and prognostic biomarker with high specificity and sensitivity. However, there are challenges in using neurofilament light chain to differentiate amyotrophic lateral sclerosis from other central nervous system diseases with axonal injury. Glial fibrillary acidic protein predominantly reflects the degree of neuronal demyelination and is linked to non-motor symptoms of amyotrophic lateral sclerosis such as cognitive impairment, oxygen saturation, and the glomerular filtration rate. TAR DNA-binding protein 43, a pathological protein associated with amyotrophic lateral sclerosis, is emerging as a promising biomarker, particularly with advancements in exosome-related research. Evidence is currently lacking for the value of creatinine and creatine kinase as diagnostic markers; however, they show potential in predicting disease prognosis. Despite the vigorous progress made in the identification of amyotrophic lateral sclerosis biomarkers in recent years, the quest for definitive diagnostic and prognostic biomarkers remains a formidable challenge. This review summarizes the latest research achievements concerning blood biomarkers in amyotrophic lateral sclerosis that can provide a more direct basis for the differential diagnosis and prognostic assessment of the disease beyond a reliance on clinical manifestations and electromyography findings.
Collapse
Affiliation(s)
- Yongting Lv
- Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Hongfu Li
- Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Department of Medical Genetics and Center for Rare disease, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
- Nanhu Brain-Computer Interface Institute, Hangzhou, Zhejiang Province, China
| |
Collapse
|
2
|
Moss KR, Saxena S. Schwann Cells in Neuromuscular Disorders: A Spotlight on Amyotrophic Lateral Sclerosis. Cells 2025; 14:47. [PMID: 39791748 PMCID: PMC11719703 DOI: 10.3390/cells14010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/23/2024] [Accepted: 01/01/2025] [Indexed: 01/12/2025] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a complex neurodegenerative disease primarily affecting motor neurons, leading to progressive muscle atrophy and paralysis. This review explores the role of Schwann cells in ALS pathogenesis, highlighting their influence on disease progression through mechanisms involving demyelination, neuroinflammation, and impaired synaptic function. While Schwann cells have been traditionally viewed as peripheral supportive cells, especially in motor neuron disease, recent evidence indicates that they play a significant role in ALS by impacting motor neuron survival and plasticity, influencing inflammatory responses, and altering myelination processes. Furthermore, advancements in understanding Schwann cell pathology in ALS combined with lessons learned from studying Charcot-Marie-Tooth disease Type 1 (CMT1) suggest potential therapeutic strategies targeting these cells may support nerve repair and slow disease progression. Overall, this review aims to provide comprehensive insights into Schwann cell classification, physiology, and function, underscoring the critical pathological contributions of Schwann cells in ALS and suggests new avenues for targeted therapeutic interventions aimed at modulating Schwann cell function in ALS.
Collapse
Affiliation(s)
- Kathryn R. Moss
- Department of Physical Medicine and Rehabilitation, University of Missouri School of Medicine, Columbia, MO 65211, USA
- NextGen Precision Health, University of Missouri, Columbia, MO 65211, USA
| | - Smita Saxena
- Department of Physical Medicine and Rehabilitation, University of Missouri School of Medicine, Columbia, MO 65211, USA
- NextGen Precision Health, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
3
|
Yu Y, Cheung YT, Cheung CW. Discovery of Glucose Metabolism-Associated Genes in Neuropathic Pain: Insights from Bioinformatics. Int J Mol Sci 2024; 25:13503. [PMID: 39769264 PMCID: PMC11679926 DOI: 10.3390/ijms252413503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Metabolic dysfunction has been demonstrated to contribute to diabetic pain, pointing towards a potential correlation between glucose metabolism and pain. To investigate the relationship between altered glucose metabolism and neuropathic pain, we compared samples from healthy subjects with those from intervertebral disc degeneration (IVDD) patients, utilizing data from two public datasets. This led to the identification of 412 differentially expressed genes (DEG), of which 234 were upregulated and 178 were downregulated. Among these, three key genes (Ins, Igfbp3, Plod2) were found. Kyoto Encyclopedia of Genes and Genomes pathway analysis demonstrated the enrichment of hub genes in pathways such as the positive regulation of the ErbB signaling pathway, monocyte activation, and response to reactive oxygen species; thereby suggesting a potential correlation between these biological pathways and pain sensation. Further analysis identified three key genes (Ins, Igfbp3, and Plod2), which showed significant correlations with immune cell infiltration, suggesting their roles in modulating pain through immune response. To validate our findings, quantitative real-time polymerase chain reaction (qPCR) analysis confirmed the expression levels of these genes in a partial sciatic nerve ligation (PSNL) model, and immunofluorescence studies demonstrated increased immune cell infiltration at the injury site. Behavioral assessments further corroborated pain hypersensitivity in neuropathic pain (NP) models. Our study sheds light on the molecular mechanisms underlying NP and aids the identification of potential therapeutic targets for future drug development.
Collapse
Affiliation(s)
- Ying Yu
- Department of Anesthesiology, Laboratory and Clinical Research Institute for Pain, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (Y.Y.)
| | - Yan-Ting Cheung
- Department of Anesthesiology, Laboratory and Clinical Research Institute for Pain, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (Y.Y.)
| | - Chi-Wai Cheung
- Department of Anesthesiology, Laboratory and Clinical Research Institute for Pain, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (Y.Y.)
- Department of Anesthesiology, Queen Mary Hospital, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
4
|
Cabeza-Fernández S, Hernández-Rojas R, Casillas-Bajo A, Patel N, de la Fuente AG, Cabedo H, Gomez-Sanchez JA. Schwann cell JUN expression worsens motor performance in an amyotrophic lateral sclerosis mouse model. Glia 2024; 72:2178-2189. [PMID: 39149866 DOI: 10.1002/glia.24604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 08/17/2024]
Abstract
Amyotrophic lateral sclerosis is a devastating neurodegenerative disease characterized by motor neuron death and distal axonopathy. Despite its clinical severity and profound impact in the patients and their families, many questions about its pathogenesis remain still unclear, including the role of Schwann cells and axon-glial signaling in disease progression. Upon axonal injury, upregulation of JUN transcription factor promotes Schwann cell reprogramming into a repair phenotype that favors axon regrowth and neuronal survival. To study the potential role of repair Schwann cells on motoneuron survival in amyotrophic lateral sclerosis, we generated a mouse line that over-expresses JUN in the Schwann cells of the SOD1G93A mutant, a mouse model of this disease. Then, we explored disease progression by evaluating survival, motor performance and histology of peripheral nerves and spinal cord of these mice. We found that Schwann cell JUN overexpression does not prevent axon degeneration neither motor neuron death in the SOD1G93A mice. Instead, it induces a partial demyelination of medium and large size axons, worsening motor performance and resulting in more aggressive disease phenotype.
Collapse
Affiliation(s)
- Sonia Cabeza-Fernández
- Instituto de Investigación Biomédica y Sanitaria de Alicante (ISABIAL), Alicante, Spain
- Molecular control of neuronal axon myelination laboratory, Instituto de Neurociencias UMH-CSIC, Sant Joan d'Alacant, Spain
| | - Rubí Hernández-Rojas
- Instituto de Investigación Biomédica y Sanitaria de Alicante (ISABIAL), Alicante, Spain
- Molecular control of neuronal axon myelination laboratory, Instituto de Neurociencias UMH-CSIC, Sant Joan d'Alacant, Spain
| | - Angeles Casillas-Bajo
- Instituto de Investigación Biomédica y Sanitaria de Alicante (ISABIAL), Alicante, Spain
- Molecular control of neuronal axon myelination laboratory, Instituto de Neurociencias UMH-CSIC, Sant Joan d'Alacant, Spain
| | - Nikiben Patel
- Instituto de Investigación Biomédica y Sanitaria de Alicante (ISABIAL), Alicante, Spain
- Molecular control of neuronal axon myelination laboratory, Instituto de Neurociencias UMH-CSIC, Sant Joan d'Alacant, Spain
| | - Alerie G de la Fuente
- Instituto de Investigación Biomédica y Sanitaria de Alicante (ISABIAL), Alicante, Spain
- Molecular control of neuronal axon myelination laboratory, Instituto de Neurociencias UMH-CSIC, Sant Joan d'Alacant, Spain
| | - Hugo Cabedo
- Instituto de Investigación Biomédica y Sanitaria de Alicante (ISABIAL), Alicante, Spain
- Molecular control of neuronal axon myelination laboratory, Instituto de Neurociencias UMH-CSIC, Sant Joan d'Alacant, Spain
| | - Jose A Gomez-Sanchez
- Instituto de Investigación Biomédica y Sanitaria de Alicante (ISABIAL), Alicante, Spain
- Molecular control of neuronal axon myelination laboratory, Instituto de Neurociencias UMH-CSIC, Sant Joan d'Alacant, Spain
| |
Collapse
|
5
|
Chen M, Yang L, Zhou P, Jin S, Wu Z, Tan Z, Xiao W, Xu S, Zhu Y, Wang M, Jian D, Liu F, Tang Y, Zhao Z, Huang Y, Shi W, Xie H, Nie Q, Wang B, Deng Z, Li J. Single-cell transcriptomics reveals aberrant skin-resident cell populations and identifies fibroblasts as a determinant in rosacea. Nat Commun 2024; 15:8737. [PMID: 39384741 PMCID: PMC11464544 DOI: 10.1038/s41467-024-52946-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 09/25/2024] [Indexed: 10/11/2024] Open
Abstract
Rosacea is a chronic inflammatory skin disorder, whose underlying cellular and molecular mechanisms remain obscure. Here, we generate a single-cell atlas of facial skin from female rosacea patients and healthy individuals. Among keratinocytes, a subpopulation characterized by IFNγ-mediated barrier function damage is found to be unique to rosacea lesions. Blocking IFNγ signaling alleviates rosacea-like phenotypes and skin barrier damage in mice. The papulopustular rosacea is featured by expansion of pro-inflammatory fibroblasts, Schwann, endothelial and macrophage/dendritic cells. The frequencies of type 1/17 and skin-resident memory T cells are increased, and vascular mural cells are characterized by activation of inflammatory pathways and impaired muscle contraction function in rosacea. Most importantly, fibroblasts are identified as the leading cell type producing pro-inflammatory and vasodilative signals in rosacea. Depletion of fibroblasts or knockdown of PTGDS, a gene specifically upregulated in fibroblasts, blocks rosacea development in mice. Our study provides a comprehensive understanding of the aberrant alterations of skin-resident cell populations and identifies fibroblasts as a key determinant in rosacea development.
Collapse
Grants
- the National Natural Science Funds for Distinguished Young Scholars (No. 82225039), the National Key Research and Development Program of China (No. 2023YFC2509003), the National Natural Science Foundation of China (No. 82373508, No. 82303992, No. 82203958, No. 82073457, No.82203945, No. 82173448, No. 81874251), the Natural Science Funds of Hunan province for excellent Young Scholars (No. 2023JJ20094), the Natural Science Foundation of Hunan Province, China (No. 2021JJ31079).
Collapse
Affiliation(s)
- Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Changsha, China
| | - Li Yang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Changsha, China
| | - Peijie Zhou
- Center for Machine Learning Research, Peking University, Beijing, China
- AI for Science Institute, Beijing, China
| | - Suoqin Jin
- School of Mathematics and Statistics, Wuhan University, Wuhan, China
| | - Zheng Wu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Changsha, China
| | - Zixin Tan
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Changsha, China
| | - Wenqin Xiao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Changsha, China
| | - San Xu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Changsha, China
| | - Yan Zhu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Changsha, China
| | - Mei Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Changsha, China
| | - Dan Jian
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Changsha, China
| | - Fangfen Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Changsha, China
| | - Yan Tang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Changsha, China
| | - Zhixiang Zhao
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Changsha, China
| | - Yingxue Huang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Changsha, China
| | - Wei Shi
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Changsha, China
| | - Hongfu Xie
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- FuRong Laboratory, Changsha, China
| | - Qing Nie
- Department of Mathematics, University of California Irvine, Irvine, CA, USA.
- The NSF-Simons Center for Multiscale Cell Fate Research, University of California Irvine, Irvine, CA, USA.
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, CA, USA.
| | - Ben Wang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- FuRong Laboratory, Changsha, China.
| | - Zhili Deng
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- FuRong Laboratory, Changsha, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- FuRong Laboratory, Changsha, China.
| |
Collapse
|
6
|
Kantarci H, Elvira PD, Thottumkara AP, O'Connell EM, Iyer M, Donovan LJ, Dugan MQ, Ambiel N, Granados A, Zeng H, Saw NL, Brosius Lutz A, Sloan SA, Gray EE, Tran KV, Vichare A, Yeh AK, Münch AE, Huber M, Agrawal A, Morri M, Zhong H, Shamloo M, Anderson TA, Tawfik VL, Du Bois J, Zuchero JB. Schwann cell-secreted PGE 2 promotes sensory neuron excitability during development. Cell 2024; 187:4690-4712.e30. [PMID: 39142281 DOI: 10.1016/j.cell.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/18/2024] [Accepted: 06/21/2024] [Indexed: 08/16/2024]
Abstract
Electrical excitability-the ability to fire and propagate action potentials-is a signature feature of neurons. How neurons become excitable during development and whether excitability is an intrinsic property of neurons remain unclear. Here, we demonstrate that Schwann cells, the most abundant glia in the peripheral nervous system, promote somatosensory neuron excitability during development. We find that Schwann cells secrete prostaglandin E2, which is necessary and sufficient to induce developing somatosensory neurons to express normal levels of genes required for neuronal function, including voltage-gated sodium channels, and to fire action potential trains. Inactivating this signaling pathway in Schwann cells impairs somatosensory neuron maturation, causing multimodal sensory defects that persist into adulthood. Collectively, our studies uncover a neurodevelopmental role for prostaglandin E2 distinct from its established role in inflammation, revealing a cell non-autonomous mechanism by which glia regulate neuronal excitability to enable the development of normal sensory functions.
Collapse
Affiliation(s)
- Husniye Kantarci
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Pablo D Elvira
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | | | - Emma M O'Connell
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Manasi Iyer
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lauren J Donovan
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Micaela Quinn Dugan
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nicholas Ambiel
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Hong Zeng
- Transgenic, Knockout and Tumor model Center (TKTC), Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nay L Saw
- Behavioral and Functional Neuroscience Laboratory, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amanda Brosius Lutz
- Department of Obstetrics and Gynecology, University Hospital, Bern, Switzerland
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Erin E Gray
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Khanh V Tran
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aditi Vichare
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ashley K Yeh
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alexandra E Münch
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Max Huber
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Aditi Agrawal
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | | | - Haining Zhong
- Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Mehrdad Shamloo
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA; Behavioral and Functional Neuroscience Laboratory, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Thomas Anthony Anderson
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Vivianne L Tawfik
- Department of Anesthesiology, Perioperative & Pain Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - J Du Bois
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA.
| | - J Bradley Zuchero
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
7
|
Jing B, Chen ZN, Si WM, Zhao JJ, Zhao GP, Zhang D. (+)-Catechin Alleviates CCI-Induced Neuropathic Pain in Rats by Modulating the IL34/CSFIR Axis and Attenuating the Schwann Cell-Macrophage Cascade Response in the DRG. Mol Neurobiol 2024; 61:5027-5041. [PMID: 38159197 DOI: 10.1007/s12035-023-03876-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/30/2023] [Indexed: 01/03/2024]
Abstract
The aim of this study was to investigate the potential therapeutic applications of (+)-catechin in the treatment of neuropathic pain. In vivo study, 32 SD rats were randomly divided into four groups: sham group, chronic constriction injury (CCI) group, CCI + ibuprofen group and CCI+ (+)-catechin group. They were subjected to behavioural tests, ELISA, immunohistochemistry and Western blotting. The mechanisms involved were investigated using specific inhibitors in cell experiments. Results of in vivo experiments showed that (+)-catechin could reduce the cold sensitivity pain in a rat model of CCI; ELISA and immunohistochemistry results showed that (+)-catechin could decrease the levels of IL-8, IL-6, TNF-α, CCL2 and CCL5 in serum and the expression levels of nNOS, COX2, IL6, TNF-α, IBA-1 and CSF1R in DRG of CCI rats. Finally, western blot confirmed that (+)-catechin could diminish the levels of IL-34/CSF1R/JAK2/STAT3 signalling pathway in DRG of CCI rats. In vitro studies showed that (+)-catechin reduced IL-34 secretion in LPS-induced RSC96 cells. Meanwhile, (+)-catechin administration in LPS-induced Schwann cell-conditioned medium (L-CM) significantly inhibited the proliferation and migration of RAW264.7 cells; in addition, L-CM+(+)-catechin reduced the activation of the CSF1R/JAK2/STAT3 signalling pathway. (+)-Catechin attenuated the Schwann cell-macrophage cascade response in the DRG by modulating the IL34/CSFIR axis and inhibiting activation of the JAK2/STAT3 pathway, thereby attenuating CCI-induced neuropathic pain in rats.
Collapse
Affiliation(s)
- Bei Jing
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Zhen-Ni Chen
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Wai-Mei Si
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Jia-Ji Zhao
- Chemistry & Chemical Engineering, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Guo-Ping Zhao
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| | - Di Zhang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
8
|
Pandya VA, Patani R. The role of glial cells in amyotrophic lateral sclerosis. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 176:381-450. [PMID: 38802179 DOI: 10.1016/bs.irn.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) has traditionally been considered a neuron-centric disease. This view is now outdated, with increasing recognition of cell autonomous and non-cell autonomous contributions of central and peripheral nervous system glia to ALS pathomechanisms. With glial research rapidly accelerating, we comprehensively interrogate the roles of astrocytes, microglia, oligodendrocytes, ependymal cells, Schwann cells and satellite glia in nervous system physiology and ALS-associated pathology. Moreover, we highlight the inter-glial, glial-neuronal and inter-system polylogue which constitutes the healthy nervous system and destabilises in disease. We also propose classification based on function for complex glial reactive phenotypes and discuss the pre-requisite for integrative modelling to advance translation. Given the paucity of life-enhancing therapies currently available for ALS patients, we discuss the promising potential of harnessing glia in driving ALS therapeutic discovery.
Collapse
Affiliation(s)
- Virenkumar A Pandya
- University College London Medical School, London, United Kingdom; The Francis Crick Institute, London, United Kingdom.
| | - Rickie Patani
- The Francis Crick Institute, London, United Kingdom; Department of Neuromuscular Diseases, University College London Queen Square Institute of Neurology, Queen Square, London, United Kingdom.
| |
Collapse
|
9
|
Hamad AA, Amer BE, Hawas Y, Mabrouk MA, Meshref M. Masitinib as a neuroprotective agent: a scoping review of preclinical and clinical evidence. Neurol Sci 2024; 45:1861-1873. [PMID: 38105307 PMCID: PMC11021265 DOI: 10.1007/s10072-023-07259-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
OBJECTIVES Masitinib, originally developed as a tyrosine kinase inhibitor for cancer treatment, has shown potential neuroprotective effects in various neurological disorders by modulating key pathways implicated in neurodegeneration. This scoping review aimed to summarize the current evidence of masitinib's neuroprotective activities from preclinical to clinical studies. METHODS This scoping review was conducted following the guidelines described by Arksey and O'Malley and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The inclusion criteria covered all original studies reporting on the neuroprotective effects of masitinib, including clinical studies, animal studies, and in vitro studies. RESULTS A total of 16 studies met the inclusion criteria and were included in the review. These comprised five randomized controlled trials (RCTs), one post-hoc analysis study, one case report, and nine animal studies. The RCTs focused on Alzheimer's disease (two studies), multiple sclerosis (two studies), and amyotrophic lateral sclerosis (one study). Across all included studies, masitinib consistently demonstrated neuroprotective properties. However, the majority of RCTs reported concerns regarding the safety profile of masitinib. Preclinical studies revealed the neuroprotective mechanisms of masitinib, which include inhibition of certain kinases interfering with cell proliferation and survival, reduction of neuroinflammation, and exhibition of antioxidant activity. CONCLUSION The current evidence suggests a promising therapeutic benefit of masitinib in neurodegenerative diseases. However, further research is necessary to validate and expand upon these findings, particularly regarding the precise mechanisms through which masitinib exerts its therapeutic effects. Future studies should also focus on addressing the safety concerns associated with masitinib use.
Collapse
Affiliation(s)
| | | | - Yousef Hawas
- Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Manar Alaa Mabrouk
- Faculty of Medicine, Fayoum University, Fayoum, Egypt
- Medical Research Group of Egypt, Negida Academy, Arlington, MA, USA
| | - Mostafa Meshref
- Department of Neurology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
10
|
Jagaraj CJ, Shadfar S, Kashani SA, Saravanabavan S, Farzana F, Atkin JD. Molecular hallmarks of ageing in amyotrophic lateral sclerosis. Cell Mol Life Sci 2024; 81:111. [PMID: 38430277 PMCID: PMC10908642 DOI: 10.1007/s00018-024-05164-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/21/2024] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal, severely debilitating and rapidly progressing disorder affecting motor neurons in the brain, brainstem, and spinal cord. Unfortunately, there are few effective treatments, thus there remains a critical need to find novel interventions that can mitigate against its effects. Whilst the aetiology of ALS remains unclear, ageing is the major risk factor. Ageing is a slowly progressive process marked by functional decline of an organism over its lifespan. However, it remains unclear how ageing promotes the risk of ALS. At the molecular and cellular level there are specific hallmarks characteristic of normal ageing. These hallmarks are highly inter-related and overlap significantly with each other. Moreover, whilst ageing is a normal process, there are striking similarities at the molecular level between these factors and neurodegeneration in ALS. Nine ageing hallmarks were originally proposed: genomic instability, loss of telomeres, senescence, epigenetic modifications, dysregulated nutrient sensing, loss of proteostasis, mitochondrial dysfunction, stem cell exhaustion, and altered inter-cellular communication. However, these were recently (2023) expanded to include dysregulation of autophagy, inflammation and dysbiosis. Hence, given the latest updates to these hallmarks, and their close association to disease processes in ALS, a new examination of their relationship to pathophysiology is warranted. In this review, we describe possible mechanisms by which normal ageing impacts on neurodegenerative mechanisms implicated in ALS, and new therapeutic interventions that may arise from this.
Collapse
Affiliation(s)
- Cyril Jones Jagaraj
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Sina Shadfar
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Sara Assar Kashani
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Sayanthooran Saravanabavan
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Fabiha Farzana
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia
| | - Julie D Atkin
- MND Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, 75 Talavera Road, Sydney, NSW, 2109, Australia.
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
11
|
Potenza RL, Armida M, Popoli P. Can Some Anticancer Drugs Be Repurposed to Treat Amyotrophic Lateral Sclerosis? A Brief Narrative Review. Int J Mol Sci 2024; 25:1751. [PMID: 38339026 PMCID: PMC10855887 DOI: 10.3390/ijms25031751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rare progressive motor neuron disease that, due to its high complexity, still lacks effective treatments. Development of a new drug is a highly costly and time-consuming process, and the repositioning of approved drugs can represent an efficient strategy to provide therapeutic opportunities. This is particularly true for rare diseases, which are characterised by small patient populations and therefore attract little commercial interest. Based on the overlap between the biological background of cancer and neurodegeneration, the repurposing of antineoplastic drugs for ALS has been suggested. The objective of this narrative review was to summarise the current experimental evidence on the use of approved anticancer drugs in ALS. Specifically, anticancer drugs belonging to different classes were found to act on mechanisms involved in the ALS pathogenesis, and some of them proved to exert beneficial effects in ALS models. However, additional studies are necessary to confirm the real therapeutic potential of anticancer drugs for repositioning in ALS treatment.
Collapse
Affiliation(s)
- Rosa Luisa Potenza
- National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, 00161 Rome, Italy; (M.A.); (P.P.)
| | | | | |
Collapse
|
12
|
Barrett TF, Patel B, Khan SM, Mullins RDZ, Yim AKY, Pugazenthi S, Mahlokozera T, Zipfel GJ, Herzog JA, Chicoine MR, Wick CC, Durakovic N, Osbun JW, Shew M, Sweeney AD, Patel AJ, Buchman CA, Petti AA, Puram SV, Kim AH. Single-cell multi-omic analysis of the vestibular schwannoma ecosystem uncovers a nerve injury-like state. Nat Commun 2024; 15:478. [PMID: 38216553 PMCID: PMC10786875 DOI: 10.1038/s41467-023-42762-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 10/10/2023] [Indexed: 01/14/2024] Open
Abstract
Vestibular schwannomas (VS) are benign tumors that lead to significant neurologic and otologic morbidity. How VS heterogeneity and the tumor microenvironment (TME) contribute to VS pathogenesis remains poorly understood. In this study, we perform scRNA-seq on 15 VS, with paired scATAC-seq (n = 6) and exome sequencing (n = 12). We identify diverse Schwann cell (SC), stromal, and immune populations in the VS TME and find that repair-like and MHC-II antigen-presenting SCs are associated with myeloid cell infiltrate, implicating a nerve injury-like process. Deconvolution analysis of RNA-expression data from 175 tumors reveals Injury-like tumors are associated with larger tumor size, and scATAC-seq identifies transcription factors associated with nerve repair SCs from Injury-like tumors. Ligand-receptor analysis and in vitro experiments suggest that Injury-like VS-SCs recruit myeloid cells via CSF1 signaling. Our study indicates that Injury-like SCs may cause tumor growth via myeloid cell recruitment and identifies molecular pathways that may be therapeutically targeted.
Collapse
Affiliation(s)
- Thomas F Barrett
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Bhuvic Patel
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Saad M Khan
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Brain Tumor Immunology and Immunotherapy Program, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Riley D Z Mullins
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Aldrin K Y Yim
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Sangami Pugazenthi
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Tatenda Mahlokozera
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Gregory J Zipfel
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Brain Tumor Center, Washington University School of Medicine/Siteman Cancer Center, St. Louis, MO, USA
| | - Jacques A Herzog
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Brain Tumor Center, Washington University School of Medicine/Siteman Cancer Center, St. Louis, MO, USA
| | - Michael R Chicoine
- Department of Neurological Surgery, University of Missouri School of Medicine, Columbia, MO, USA
| | - Cameron C Wick
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Brain Tumor Center, Washington University School of Medicine/Siteman Cancer Center, St. Louis, MO, USA
| | - Nedim Durakovic
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Brain Tumor Center, Washington University School of Medicine/Siteman Cancer Center, St. Louis, MO, USA
| | - Joshua W Osbun
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Matthew Shew
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Brain Tumor Center, Washington University School of Medicine/Siteman Cancer Center, St. Louis, MO, USA
| | - Alex D Sweeney
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX, USA
| | - Akash J Patel
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Craig A Buchman
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Brain Tumor Center, Washington University School of Medicine/Siteman Cancer Center, St. Louis, MO, USA
| | - Allegra A Petti
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Brain Tumor Immunology and Immunotherapy Program, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Sidharth V Puram
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
- Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO, USA.
| | - Albert H Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
- Brain Tumor Center, Washington University School of Medicine/Siteman Cancer Center, St. Louis, MO, USA.
| |
Collapse
|
13
|
Stansberry WM, Pierchala BA. Neurotrophic factors in the physiology of motor neurons and their role in the pathobiology and therapeutic approach to amyotrophic lateral sclerosis. Front Mol Neurosci 2023; 16:1238453. [PMID: 37692101 PMCID: PMC10483118 DOI: 10.3389/fnmol.2023.1238453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/11/2023] [Indexed: 09/12/2023] Open
Abstract
The discovery of the neurotrophins and their potent survival and trophic effects led to great enthusiasm about their therapeutic potential to rescue dying neurons in neurodegenerative diseases. The further discovery that brain-derived neurotrophic factor (BDNF), ciliary neurotrophic factor (CNTF) and glial cell line-derived neurotrophic factor (GDNF) had potent survival-promoting activity on motor neurons led to the proposal for their use in motor neuron diseases such as amyotrophic lateral sclerosis (ALS). In this review we synthesize the literature pertaining to the role of NGF, BDNF, CNTF and GDNF on the development and physiology of spinal motor neurons, as well as the preclinical studies that evaluated their potential for the treatment of ALS. Results from the clinical trials of these molecules will also be described and, with the aid of decades of hindsight, we will discuss what can reasonably be concluded and how this information can inform future clinical development of neurotrophic factors for ALS.
Collapse
Affiliation(s)
- Wesley M. Stansberry
- The Department of Anatomy, Cell Biology and Physiology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Brian A. Pierchala
- The Department of Anatomy, Cell Biology and Physiology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, United States
- Medical Neuroscience Graduate Program, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
14
|
Berriat F, Lobsiger CS, Boillée S. The contribution of the peripheral immune system to neurodegeneration. Nat Neurosci 2023:10.1038/s41593-023-01323-6. [PMID: 37231108 DOI: 10.1038/s41593-023-01323-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 04/05/2023] [Indexed: 05/27/2023]
Abstract
Microglial cells are the major immune cells of the central nervous system (CNS), and directly react to neurodegeneration, but other immune cell types are also able to react to pathology and can modify the course of neurodegenerative processes. These mainly include monocytes/macrophages and lymphocytes. While these peripheral immune cells were initially considered to act only after infiltrating the CNS, recent evidence suggests that some of them can also act directly from the periphery. We will review the existing and emerging evidence for a role of peripheral immune cells in neurodegenerative diseases, both with and without CNS infiltration. Our focus will be on amyotrophic lateral sclerosis, but we will also compare to Alzheimer's disease and Parkinson's disease to highlight similarities or differences. Peripheral immune cells are easily accessible, and therefore may be an attractive therapeutic target for neurodegenerative diseases. Thus, understanding how these peripheral immune cells communicate with the CNS deserves deeper investigation.
Collapse
Affiliation(s)
- Félix Berriat
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Christian S Lobsiger
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Séverine Boillée
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié-Salpêtrière, Paris, France.
| |
Collapse
|
15
|
Sharma K, Sarkar J, Trisal A, Ghosh R, Dixit A, Singh AK. Targeting mitochondrial dysfunction to salvage cellular senescence for managing neurodegeneration. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 136:309-337. [PMID: 37437982 DOI: 10.1016/bs.apcsb.2023.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Aging is an inevitable phenomenon that causes a decline in bodily functions over time. One of the most important processes that play a role in aging is senescence. Senescence is characterized by accumulation of cells that are no longer functional but elude the apoptotic pathway. These cells secrete inflammatory molecules that comprise the senescence associated secretory phenotype (SASP). Several essential molecules such as p53, Rb, and p16INK4a regulate the senescence process. Mitochondrial regulation has been found to play an important role in senescence. Reactive oxygen species (ROS) generated from mitochondria can affect cellular senescence by inducing the persistent DNA damage response, thus stabilizing the senescence. Evidently, senescence plays a major contributory role to the development of age-related neurological disorders. In this chapter, we discuss the role of senescence in the progression and onset of several neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Moreover, we also discuss the efficacy of certain molecules like MitoQ, SkQ1, and Latrepirdine that could be proven therapeutics with respect to these disorders by regulating mitochondrial activity.
Collapse
Affiliation(s)
- Komal Sharma
- Amity Institute of Neuropsychology and Neurosciences, Amity University Uttar Pradesh, Noida, India
| | - Joyobrata Sarkar
- Amity Institute of Neuropsychology and Neurosciences, Amity University Uttar Pradesh, Noida, India
| | - Anchal Trisal
- Amity Institute of Neuropsychology and Neurosciences, Amity University Uttar Pradesh, Noida, India
| | - Rishika Ghosh
- Amity Institute of Neuropsychology and Neurosciences, Amity University Uttar Pradesh, Noida, India
| | - Anubhuti Dixit
- Amity Institute of Neuropsychology and Neurosciences, Amity University Uttar Pradesh, Noida, India.
| | - Abhishek Kumar Singh
- Amity Institute of Neuropsychology and Neurosciences, Amity University Uttar Pradesh, Noida, India.
| |
Collapse
|
16
|
Badiola-Mateos M, Osaki T, Kamm RD, Samitier J. In vitro modelling of human proprioceptive sensory neurons in the neuromuscular system. Sci Rep 2022; 12:21318. [PMID: 36494423 PMCID: PMC9734133 DOI: 10.1038/s41598-022-23565-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 11/02/2022] [Indexed: 12/13/2022] Open
Abstract
Proprioceptive sensory neurons (pSN) are an essential and undervalued part of the neuromuscular circuit. A protocol to differentiate healthy and amyotrophic lateral sclerosis (ALS) human neural stem cells (hNSC) into pSN, and their comparison with the motor neuron (MN) differentiation process from the same hNSC sources, facilitated the development of in vitro co-culture platforms. The obtained pSN spheroids cultured interact with human skeletal myocytes showing the formation of annulospiral wrapping-like structures between TrkC + neurons and a multinucleated muscle fibre, presenting synaptic bouton-like structures in the contact point. The comparative analysis of the genetic profile performed in healthy and sporadic ALS hNSC differentiated to pSN suggested that basal levels of ETV1, critical for motor feedback from pSN, were much lower for ALS samples and that the differences between healthy and ALS samples, suggest the involvement of pSN in ALS pathology development and progression.
Collapse
Affiliation(s)
- Maider Badiola-Mateos
- grid.424736.00000 0004 0536 2369Institute for Bioengineering of Catalonia (IBEC)—Barcelona Institute of Science and Technology, 08028 Barcelona, Spain ,grid.5841.80000 0004 1937 0247Department of Electronic and Biomedical Engineering, Universitat de Barcelona, 08028 Barcelona, Spain ,grid.116068.80000 0001 2341 2786Department of Biological Engineering, Massachusetts Institute of Technology (MIT), 500 Technology Square, MIT Building, Cambridge, MA 02139 USA ,grid.263145.70000 0004 1762 600XPresent Address: The BioRobotics Institute, Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Tatsuya Osaki
- grid.116068.80000 0001 2341 2786Department of Biological Engineering, Massachusetts Institute of Technology (MIT), 500 Technology Square, MIT Building, Cambridge, MA 02139 USA ,grid.26999.3d0000 0001 2151 536XPresent Address: Institute of Industrial Science, The University of Tokyo, 4-6-1, Komaba, Meguro-Ku, Tokyo, 153-8505 Japan
| | - Roger Dale Kamm
- grid.116068.80000 0001 2341 2786Department of Biological Engineering, Massachusetts Institute of Technology (MIT), 500 Technology Square, MIT Building, Cambridge, MA 02139 USA ,grid.116068.80000 0001 2341 2786Department of Mechanical Engineering, Massachusetts Institute of Technology, 500 Technology Square, MIT Building, Cambridge, MA 02139 USA
| | - Josep Samitier
- grid.424736.00000 0004 0536 2369Institute for Bioengineering of Catalonia (IBEC)—Barcelona Institute of Science and Technology, 08028 Barcelona, Spain ,grid.5841.80000 0004 1937 0247Department of Electronic and Biomedical Engineering, Universitat de Barcelona, 08028 Barcelona, Spain ,grid.512890.7Centro de Investigación Biomédica en Red (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
17
|
Contreras C, Cádiz B, Schmachtenberg O. Determination of the Severity of Pulpitis by Immunohistological Analysis and Comparison with the Clinical Picture. J Endod 2022; 49:26-35. [DOI: 10.1016/j.joen.2022.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/23/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
|
18
|
Cabezas Perez RJ, Ávila Rodríguez MF, Rosero Salazar DH. Exogenous Antioxidants in Remyelination and Skeletal Muscle Recovery. Biomedicines 2022; 10:biomedicines10102557. [PMID: 36289819 PMCID: PMC9599955 DOI: 10.3390/biomedicines10102557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/18/2022] [Accepted: 07/25/2022] [Indexed: 11/16/2022] Open
Abstract
Inflammatory, oxidative, and autoimmune responses cause severe damage to the nervous system inducing loss of myelin layers or demyelination. Even though demyelination is not considered a direct cause of skeletal muscle disease there is extensive damage in skeletal muscles following demyelination and impaired innervation. In vitro and in vivo evidence using exogenous antioxidants in models of demyelination is showing improvements in myelin formation alongside skeletal muscle recovery. For instance, exogenous antioxidants such as EGCG stimulate nerve structure maintenance, activation of glial cells, and reduction of oxidative stress. Consequently, this evidence is also showing structural and functional recovery of impaired skeletal muscles due to demyelination. Exogenous antioxidants mostly target inflammatory pathways and stimulate remyelinating mechanisms that seem to induce skeletal muscle regeneration. Therefore, the aim of this review is to describe recent evidence related to the molecular mechanisms in nerve and skeletal muscle regeneration induced by exogenous antioxidants. This will be relevant to identifying further targets to improve treatments of neuromuscular demyelinating diseases.
Collapse
|
19
|
Shen T, Li Y, Wang D, Su Y, Li G, Shang Z, Niu Y, Tan X. YAP1-TEAD1 mediates the perineural invasion of prostate cancer cells induced by cancer-associated fibroblasts. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166540. [PMID: 36100154 DOI: 10.1016/j.bbadis.2022.166540] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/10/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022]
Abstract
Perineural invasion (PNI) driven by the tumor microenvironment (TME) has emerged as a key pattern of metastasis of prostate cancer (PCa), while its underlying mechanism is still elusive. Here, we identified increased CAFs and YAP1 expression levels in patients with metastatic PCa. In the cultured PCa cell line LNCaP, co-culture with cancer-associated fibroblasts (CAFs) could upregulate YAP1 protein expression. Either ectopic overexpression of YAP1 or co-culture with CAFs could promote the infiltration of LNCaPs towards dorsal root ganglia (DRG). This effect could be blocked using an YAP1 inhibitor. In vivo, overexpression of YAP1 could increase PNI in a mouse model of sciatic nerve tumor invasion. Mechanistically, TEAD1 binds to the NGF promotor and YAP1/TEAD1 activates its transcription and consequently increases NGF secretion. In turn, PCa cells treated with CM from CAFs or stable YAP1 overexpression can stimulate DRG to secrete CCL2. The epithelial-to-mesenchymal transition (EMT) of PCa cells is thus activated via CCL2/CCR2. Overall, our data demonstrate that CAFs can activate YAP1/TEAD1 signaling and increase the secretion of NGF, therefore promoting PCa PNI. In addition, EMT induced by PNI suggests a feedback loop is present between neurons and PCa cells.
Collapse
Affiliation(s)
- Tianyu Shen
- School of Medicine, Nankai University, Tianjin, China
| | - Yang Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Dekun Wang
- School of Medicine, Nankai University, Tianjin, China
| | - Yu Su
- School of Medicine, Nankai University, Tianjin, China
| | - Gang Li
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhiqun Shang
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Yuanjie Niu
- Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China.
| | - Xiaoyue Tan
- School of Medicine, Nankai University, Tianjin, China.
| |
Collapse
|
20
|
Yan L, Fu J, Dong X, Chen B, Hong H, Cui Z. Identification of hub genes in the subacute spinal cord injury in rats. BMC Neurosci 2022; 23:51. [PMID: 36030234 PMCID: PMC9419366 DOI: 10.1186/s12868-022-00737-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022] Open
Abstract
Background Spinal cord injury (SCI) is a common trauma in clinical practices. Subacute SCI is mainly characterized by neuronal apoptosis, axonal demyelination, Wallerian degeneration, axonal remodeling, and glial scar formation. It has been discovered in recent years that inflammatory responses are particularly important in subacute SCI. However, the mechanisms mediating inflammation are not completely clear. Methods The gene expression profiles of GSE20907, GSE45006, and GSE45550 were downloaded from the GEO database. The models of the three gene expression profiles were all for SCI to the thoracic segment of the rat. The differentially expressed genes (DEGs) and weighted correlation network analysis (WGCNA) were performed using R software, and functional enrichment analysis and protein–protein interaction (PPI) network were performed using Metascape. Module analysis was performed using Cytoscape. Finally, the relative mRNA expression level of central genes was verified by RT-PCR. Results A total of 206 candidate genes were identified, including 164 up-regulated genes and 42 down-regulated genes. The PPI network was evaluated, and the candidate genes enrichment results were mainly related to the production of tumor necrosis factors and innate immune regulatory response. Twelve core genes were identified, including 10 up-regulated genes and 2 down-regulated genes. Finally, seven hub genes with statistical significance in both the RT-PCR results and expression matrix were identified, namely Itgb1, Ptprc, Cd63, Lgals3, Vav1, Shc1, and Casp4. They are all related to the activation process of microglia. Conclusion In this study, we identified the hub genes and signaling pathways involved in subacute SCI using bioinformatics methods, which may provide a molecular basis for the future treatment of SCI.
Collapse
Affiliation(s)
- Lei Yan
- The Second Affiliated Hospital of Nantong University, No.6, North Road, 226000, Haierxiang, Nantong, Jiangsu, People's Republic of China
| | - Jiawei Fu
- The Second Affiliated Hospital of Nantong University, No.6, North Road, 226000, Haierxiang, Nantong, Jiangsu, People's Republic of China
| | - Xiong Dong
- The Second Affiliated Hospital of Nantong University, No.6, North Road, 226000, Haierxiang, Nantong, Jiangsu, People's Republic of China
| | - Baishen Chen
- The Second Affiliated Hospital of Nantong University, No.6, North Road, 226000, Haierxiang, Nantong, Jiangsu, People's Republic of China
| | - Hongxiang Hong
- The Second Affiliated Hospital of Nantong University, No.6, North Road, 226000, Haierxiang, Nantong, Jiangsu, People's Republic of China
| | - Zhiming Cui
- The Second Affiliated Hospital of Nantong University, No.6, North Road, 226000, Haierxiang, Nantong, Jiangsu, People's Republic of China.
| |
Collapse
|
21
|
Lopez MA, Si Y, Hu X, Williams V, Qushair F, Carlyle J, Alesce L, Conklin M, Gilbert S, Bamman MM, Alexander MS, King PH. Smad8 Is Increased in Duchenne Muscular Dystrophy and Suppresses miR-1, miR-133a, and miR-133b. Int J Mol Sci 2022; 23:7515. [PMID: 35886863 PMCID: PMC9323105 DOI: 10.3390/ijms23147515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 12/10/2022] Open
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive disease characterized by skeletal muscle instability, progressive muscle wasting, and fibrosis. A major driver of DMD pathology stems from aberrant upregulation of transforming growth factor β (TGFβ) signaling. In this report, we investigated the major transducers of TGFβ signaling, i.e., receptor Smads (R-Smads), in DMD patient skeletal muscle and observed a 48-fold increase in Smad8 mRNA. Smad1, Smad2, Smad3, and Smad5 mRNA were only minimally increased. A similar pattern was observed in the muscle from the mdx5cv mouse. Western blot analysis showed upregulation of phosphorylated Smad1, Smad5, and Smad8 compared to total Smad indicating activation of this pathway. In parallel, we observed a profound diminishment of muscle-enriched microRNAs (myomiRs): miR-1, miR-133a, and miR-133b. The pattern of Smad8 induction and myomiR suppression was recapitulated in C2C12 muscle cells after stimulation with bone morphogenetic protein 4 (BMP4), a signaling factor that we found upregulated in DMD muscle. Silencing Smad8 in C2C12 myoblasts derepressed myomiRs and promoted myoblast differentiation; there was also a concomitant upregulation of myogenic regulatory factors (myogenin and myocyte enhancer factor 2D) and suppression of a pro-inflammatory cytokine (interleukin-6). Our data suggest that Smad8 is a negative regulator of miR-1, miR-133a, and miR-133b in muscle cells and that the BMP4-Smad8 axis is a driver of dystrophic pathology in DMD.
Collapse
Affiliation(s)
- Michael A. Lopez
- Children’s of Alabama, Birmingham, AL 35233, USA; (M.C.); (S.G.); (M.S.A.)
- Department of Pediatrics, University of Alabama at Birmingham (UAB), CHB314, 1600 7th Avenue South, Birmingham, AL 35233, USA; (X.H.); (V.W.); (F.Q.); (J.C.)
- Department of Neurology, University of Alabama at Birmingham (UAB), Civitan 545C, 1530 3rd Avenue South, Birmingham, AL 35294, USA; (Y.S.); (L.A.); (M.M.B.)
- UAB Center for Exercise Medicine (UCEM), University of Alabama at Birmingham (UAB), Birmingham, AL 35233, USA
| | - Ying Si
- Department of Neurology, University of Alabama at Birmingham (UAB), Civitan 545C, 1530 3rd Avenue South, Birmingham, AL 35294, USA; (Y.S.); (L.A.); (M.M.B.)
- Birmingham Veterans Affairs Medical Center, Birmingham, AL 35233, USA
| | - Xianzhen Hu
- Department of Pediatrics, University of Alabama at Birmingham (UAB), CHB314, 1600 7th Avenue South, Birmingham, AL 35233, USA; (X.H.); (V.W.); (F.Q.); (J.C.)
| | - Valentyna Williams
- Department of Pediatrics, University of Alabama at Birmingham (UAB), CHB314, 1600 7th Avenue South, Birmingham, AL 35233, USA; (X.H.); (V.W.); (F.Q.); (J.C.)
| | - Fuad Qushair
- Department of Pediatrics, University of Alabama at Birmingham (UAB), CHB314, 1600 7th Avenue South, Birmingham, AL 35233, USA; (X.H.); (V.W.); (F.Q.); (J.C.)
| | - Jackson Carlyle
- Department of Pediatrics, University of Alabama at Birmingham (UAB), CHB314, 1600 7th Avenue South, Birmingham, AL 35233, USA; (X.H.); (V.W.); (F.Q.); (J.C.)
| | - Lyndsy Alesce
- Department of Neurology, University of Alabama at Birmingham (UAB), Civitan 545C, 1530 3rd Avenue South, Birmingham, AL 35294, USA; (Y.S.); (L.A.); (M.M.B.)
| | - Michael Conklin
- Children’s of Alabama, Birmingham, AL 35233, USA; (M.C.); (S.G.); (M.S.A.)
- Department of Orthopedic Surgery, University of Alabama at Birmingham (UAB), Birmingham, AL 35233, USA
| | - Shawn Gilbert
- Children’s of Alabama, Birmingham, AL 35233, USA; (M.C.); (S.G.); (M.S.A.)
- Department of Orthopedic Surgery, University of Alabama at Birmingham (UAB), Birmingham, AL 35233, USA
| | - Marcas M. Bamman
- Department of Neurology, University of Alabama at Birmingham (UAB), Civitan 545C, 1530 3rd Avenue South, Birmingham, AL 35294, USA; (Y.S.); (L.A.); (M.M.B.)
- UAB Center for Exercise Medicine (UCEM), University of Alabama at Birmingham (UAB), Birmingham, AL 35233, USA
- Department of Cell, Development and Integrative Biology, Birmingham, AL 35233, USA
| | - Matthew S. Alexander
- Children’s of Alabama, Birmingham, AL 35233, USA; (M.C.); (S.G.); (M.S.A.)
- Department of Pediatrics, University of Alabama at Birmingham (UAB), CHB314, 1600 7th Avenue South, Birmingham, AL 35233, USA; (X.H.); (V.W.); (F.Q.); (J.C.)
- UAB Center for Exercise Medicine (UCEM), University of Alabama at Birmingham (UAB), Birmingham, AL 35233, USA
- UAB Civitan International Research Center (CIRC), Birmingham, AL 35233, USA
- Department of Genetics, University of Alabama at Birmingham (UAB), Birmingham, AL 35233, USA
| | - Peter H. King
- Department of Neurology, University of Alabama at Birmingham (UAB), Civitan 545C, 1530 3rd Avenue South, Birmingham, AL 35294, USA; (Y.S.); (L.A.); (M.M.B.)
- Birmingham Veterans Affairs Medical Center, Birmingham, AL 35233, USA
| |
Collapse
|
22
|
Expression of Human Immunodeficiency Virus Transactivator of Transcription (HIV-Tat 1-86) Protein Alters Nociceptive Processing that is Sensitive to Anti-Oxidant and Anti-Inflammatory Interventions. J Neuroimmune Pharmacol 2022; 17:152-164. [PMID: 33619645 PMCID: PMC8380260 DOI: 10.1007/s11481-021-09985-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/24/2021] [Indexed: 12/29/2022]
Abstract
Despite the success of combined antiretroviral therapy (cART) in reducing viral load, a substantial portion of Human Immunodeficiency Virus (HIV)+ patients report chronic pain. The exact mechanism underlying this co-morbidity even with undetectable viral load remains unknown, but the transactivator of transcription (HIV-Tat) protein is of particular interest. Functional HIV-Tat protein is observed even in cerebrospinal fluid of patients who have an undetectable viral load. It is hypothesized that Tat protein exposure is sufficient to induce neuropathic pain-like manifestations via both activation of microglia and generation of oxidative stress. iTat mice conditionally expressed Tat(1-86) protein in the central nervous system upon daily administration of doxycycline (100 mg/kg/d, i.p., up to 14 days). The effect of HIV-Tat protein exposure on the well-being of the animal was assessed using sucrose-evoked grooming and acute nesting behavior for pain-depressed behaviors, and the development of hyperalgesia assessed with warm-water tail-withdrawal and von Frey assays for thermal hyperalgesia and mechanical allodynia, respectively. Tissue harvested at select time points was used to assess ex vivo alterations in oxidative stress, astrocytosis and microgliosis, and blood-brain barrier integrity with assays utilizing fluorescence-based indicators. Tat protein induced mild thermal hyperalgesia but robust mechanical allodynia starting after 4 days of exposure, reaching a nadir after 7 days. Changes in nociceptive processing were associated with reduced sucrose-evoked grooming behavior without altering acute nesting behavior, and in spinal cord dysregulated free radical generation as measured by DCF fluorescence intensity, altered immunohistochemical expression of the gliotic markers, Iba-1 and GFAP, and increased permeability of the blood-brain barrier to the small molecule fluorescent tracer, sodium fluorescein, in a time-dependent manner. Pretreatment with the anti-inflammatory, indomethacin (1 mg/kg/d, i.p.), the antioxidant, methylsulfonylmethane (100 mg/kg/d i.p.), or the immunomodulatory agent, dimethylfumarate (100 mg/kg/d p.o.) thirty minutes prior to daily injections of doxycycline (100 mg/kg/d i.p.) over 7 days significantly attenuated the development of Tat-induced mechanical allodynia. Collectively, the data suggests that even acute exposure to HIV-1 Tat protein at pathologically relevant levels is sufficient to produce select neurophysiological and behavioral manifestations of chronic pain consistent with that reported by HIV-positive patients.
Collapse
|
23
|
Yu W, He J, Cai X, Yu Z, Zou Z, Fan D. Neuroimmune Crosstalk Between the Peripheral and the Central Immune System in Amyotrophic Lateral Sclerosis. Front Aging Neurosci 2022; 14:890958. [PMID: 35592701 PMCID: PMC9110796 DOI: 10.3389/fnagi.2022.890958] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/14/2022] [Indexed: 12/28/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by the degeneration and death of motor neurons. Systemic neuroinflammation contributes to the pathogenesis of ALS. The proinflammatory milieu depends on the continuous crosstalk between the peripheral immune system (PIS) and central immune system (CIS). Central nervous system (CNS) resident immune cells interact with the peripheral immune cells via immune substances. Dysfunctional CNS barriers, including the blood–brain barrier, and blood–spinal cord barrier, accelerate the inflammatory process, leading to a systemic self-destructive cycle. This review focuses on the crosstalk between PIS and CIS in ALS. Firstly, we briefly introduce the cellular compartments of CIS and PIS, respectively, and update some new understanding of changes specifically occurring in ALS. Then, we will review previous studies on the alterations of the CNS barriers, and discuss their crucial role in the crosstalk in ALS. Finally, we will review the moveable compartments of the crosstalk, including cytokines, chemokines, and peripheral immune cells which were found to infiltrate the CNS, highlighting the interaction between PIS and CIS. This review aims to provide new insights into pathogenic mechanisms and innovative therapeutic approaches for ALS.
Collapse
Affiliation(s)
- Weiyi Yu
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Ji He
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Xiying Cai
- School of Basic Medical Sciences, Peking University, Beijing, China
| | - Zhou Yu
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
| | - Zhangyu Zou
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
- Key Laboratory for Neuroscience, National Health Commission/Ministry of Education, Peking University, Beijing, China
- *Correspondence: Dongsheng Fan,
| |
Collapse
|
24
|
Louit A, Beaudet MJ, Gros-Louis F, Berthod F. Tissue-engineered in vitro modeling of the impact of Schwann cells in amyotrophic lateral sclerosis. Biotechnol Bioeng 2022; 119:1938-1948. [PMID: 35289393 DOI: 10.1002/bit.28083] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/14/2021] [Accepted: 03/07/2022] [Indexed: 11/06/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a devastating neurodegenerative disease affecting upper and lower motor neurons (MN). To investigate whether Schwann cells could be involved in the disease pathogenesis, we developed a tissue-engineered 3D in vitro model that combined MNs cocultured with astrocytes and microglia seeded on top of a collagen sponge populated with epineurium fibroblasts to enable 3D axonal migration. C2C12 myoblasts were seeded underneath the sponge in presence or absence of Schwann cells. To reproduce an ALS cellular microenvironment, MNs, astrocytes and microglia were extracted from SOD1G93A mice recapitulating many aspects of the human disease. This 3D ALS in vitro model was compared with a 3D control made of cells isolated from SOD1WT mice. We showed that normal Schwann cells strongly enhanced MN axonal migration in the 3D control model but had no effect in the ALS model. However, ALS-derived Schwann cells isolated from SOD1G93A mice failed to significantly improve axonal migration in both models. These results suggest that a cell therapy using healthy Schwann cells may not be effective in promoting axonal regeneration in ALS. In addition, this 3D ALS model could be used to study the impact of other cell types on ALS by various combinations of normal and diseased cells. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Aurélie Louit
- LOEX, Centre de recherche du CHU de Québec-Université Laval
| | | | - François Gros-Louis
- LOEX, Centre de recherche du CHU de Québec-Université Laval.,Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - François Berthod
- LOEX, Centre de recherche du CHU de Québec-Université Laval.,Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
25
|
Klein D, Groh J, Yuan X, Berve K, Stassart R, Fledrich R, Martini R. Early targeting of endoneurial macrophages alleviates the neuropathy and affects abnormal Schwann cell differentiation in a mouse model of Charcot-Marie-Tooth 1A. Glia 2022; 70:1100-1116. [PMID: 35188681 DOI: 10.1002/glia.24158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/26/2022] [Accepted: 01/31/2022] [Indexed: 12/11/2022]
Abstract
We have previously shown that targeting endoneurial macrophages with the orally applied CSF-1 receptor specific kinase (c-FMS) inhibitor PLX5622 from the age of 3 months onwards led to a substantial alleviation of the neuropathy in mouse models of Charcot-Marie-Tooth (CMT) 1X and 1B disease, which are genetically-mediated nerve disorders not treatable in humans. The same approach failed in a model of CMT1A (PMP22-overexpressing mice, line C61), representing the most frequent form of CMT. This was unexpected since previous studies identified macrophages contributing to disease severity in the same CMT1A model. Here we re-approached the possibility of alleviating the neuropathy in a model of CMT1A by targeting macrophages at earlier time points. As a proof-of-principle experiment, we genetically inactivated colony-stimulating factor-1 (CSF-1) in CMT1A mice, which resulted in lower endoneurial macrophage numbers and alleviated the neuropathy. Based on these observations, we pharmacologically ablated macrophages in newborn CMT1A mice by feeding their lactating mothers with chow containing PLX5622, followed by treatment of the respective progenies after weaning until the age of 6 months. We found that peripheral neuropathy was substantially alleviated after early postnatal treatment, leading to preserved motor function in CMT1A mice. Moreover, macrophage depletion affected the altered Schwann cell differentiation phenotype. These findings underscore the targetable role of macrophage-mediated inflammation in peripheral nerves of inherited neuropathies, but also emphasize the need for an early treatment start confined to a narrow therapeutic time window in CMT1A models and potentially in respective patients.
Collapse
Affiliation(s)
- Dennis Klein
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Janos Groh
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Xidi Yuan
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Kristina Berve
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Ruth Stassart
- Paul-Flechsig-Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany
| | - Robert Fledrich
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Rudolf Martini
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
26
|
Liu E, Karpf L, Bohl D. Neuroinflammation in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia and the Interest of Induced Pluripotent Stem Cells to Study Immune Cells Interactions With Neurons. Front Mol Neurosci 2022; 14:767041. [PMID: 34970118 PMCID: PMC8712677 DOI: 10.3389/fnmol.2021.767041] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a shared hallmark between amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). For long, studies were conducted on tissues of post-mortem patients and neuroinflammation was thought to be only bystander result of the disease with the immune system reacting to dying neurons. In the last two decades, thanks to improving technologies, the identification of causal genes and the development of new tools and models, the involvement of inflammation has emerged as a potential driver of the diseases and evolved as a new area of intense research. In this review, we present the current knowledge about neuroinflammation in ALS, ALS-FTD, and FTD patients and animal models and we discuss reasons of failures linked to therapeutic trials with immunomodulator drugs. Then we present the induced pluripotent stem cell (iPSC) technology and its interest as a new tool to have a better immunopathological comprehension of both diseases in a human context. The iPSC technology giving the unique opportunity to study cells across differentiation and maturation times, brings the hope to shed light on the different mechanisms linking neurodegeneration and activation of the immune system. Protocols available to differentiate iPSC into different immune cell types are presented. Finally, we discuss the interest in studying monocultures of iPS-derived immune cells, co-cultures with neurons and 3D cultures with different cell types, as more integrated cellular approaches. The hope is that the future work with human iPS-derived cells helps not only to identify disease-specific defects in the different cell types but also to decipher the synergistic effects between neurons and immune cells. These new cellular tools could help to find new therapeutic approaches for all patients with ALS, ALS-FTD, and FTD.
Collapse
Affiliation(s)
- Elise Liu
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Léa Karpf
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Delphine Bohl
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
27
|
Cai Q, Li M, Li Q. Sleep‐based therapy: A new treatment for amyotrophic lateral sclerosis. BRAIN SCIENCE ADVANCES 2021. [DOI: 10.26599/bsa.2021.9050010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a worldwide problem with no effective treatment. Patients usually die of respiratory failure. The basic pathological process of ALS is the degeneration and necrosis of motor neurons. Neuroglial cell dysfunction is considered closely related to the development of ALS. Sleep plays an important role in repairing the nervous system, and sleep disorders can worsen ALS. Herein, we review the pathogenesis of ALS and the neuroprotective mechanism of sleep‐based therapy. Sleep‐based therapy could be a potential strategy to treat ALS.
Collapse
Affiliation(s)
- Qing Cai
- Department of Curative Anesthesia, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China
| | - Mengya Li
- Department of Curative Anesthesia, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China
| | - Qifang Li
- Department of Curative Anesthesia, Ruijin Hospital Luwan Branch, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200020, China
| |
Collapse
|
28
|
Li Y, Cai M, Feng Y, Yung B, Wang Y, Gao N, Xu X, Zhang H, Huang H, Yao D. Effect of lncRNA H19 on nerve degeneration and regeneration after sciatic nerve injury in rats. Dev Neurobiol 2021; 82:98-111. [PMID: 34818452 DOI: 10.1002/dneu.22861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 09/24/2021] [Accepted: 11/04/2021] [Indexed: 11/09/2022]
Abstract
Hundreds of millions of people worldwide suffer from peripheral nerve damage resulting from car accidents, falls, industrial accidents, residential accidents, and wars. The purpose of our study was to further investigate the effects of Wallerian degeneration (WD) after rat sciatic nerve injury and to screen for critical long noncoding RNAs (lncRNAs) in WD. We found H19 to be essential for nerve degeneration and regeneration and to be highly expressed in the sciatic nerves of rats with WD. lncRNA H19 potentially impaired the recovery of sciatic nerve function in rats. H19 was mainly localized in the cytoplasm of Schwann cells (SCs) and promoted their migration. H19 promoted the apoptosis of dorsal root ganglion (DRG) neurons and slowed the growth of DRG axons. The lncRNA H19 may play a role in WD through the Wnt/β-catenin signaling pathway and is coexpressed with a variety of crucial mRNAs during WD. These data provide further insight into the molecular mechanisms of WD.
Collapse
Affiliation(s)
- Yuting Li
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, P. R. China
| | - Min Cai
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, P. R. China.,Diagnostic laboratory, Medical School of Nantong University, Nantong, P. R. China
| | - Yumei Feng
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, P. R. China
| | - Bryant Yung
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, P. R. China
| | - Yi Wang
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, P. R. China
| | - Nannan Gao
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, P. R. China
| | - Xi Xu
- Rehabilitation Medical Center, Affiliated Hospital of Nantong University, Nantong, P. R. China
| | - Huanhuan Zhang
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, P. R. China
| | - Huiwei Huang
- Diagnostic laboratory, Medical School of Nantong University, Nantong, P. R. China
| | - Dengbing Yao
- School of Life Sciences, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, P. R. China
| |
Collapse
|
29
|
Qian J, Tu H, Zhang D, Barksdale AN, Patel KP, Wadman MC, Li YL. Therapeutic effects of masitinib on abnormal mechanoreception in a mouse model of tourniquet-induced extremity ischemia-reperfusion. Eur J Pharmacol 2021; 911:174549. [PMID: 34619116 DOI: 10.1016/j.ejphar.2021.174549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/01/2021] [Accepted: 09/30/2021] [Indexed: 11/18/2022]
Abstract
Tourniquets are widely used to stop extremity hemorrhage, but their use and subsequent release can result in nerve damage and degeneration, leading to neurological deficits. Increasing evidence has suggested a pivotal role of inflammation in nerve damage and abnormal mechanoreception. In this study, we investigated the therapeutic effects of masitinib (Mas), an anti-neuroinflammatory drug, on the mechanoreception of sensory neurons in a mouse model of tourniquet-induced hind paw ischemia-reperfusion (tourniquet/IR). C57BL/6 mice were subjected to 3 h of ischemia by placing a rubber band at the ankle joint and evaluated for subsequent reperfusion injury on day 1, 3, 7, 14, and 28 based on the experiments. Treatment with Mas (28 mg/kg/day, i.p.) began on the day of IR induction and lasted for 1, 3, 7, 14, or 28 days. Tourniquet/IR caused sensory nerve denervation in the skin of paw pads and abolished the hind paw mechanoreception to mechanical stimulation during the first 3 days of reperfusion. Sensory nerves gradually reinnervated in the skin of paw pads and allodynia began to appear on day 7. The maximum reaction occurred on day 14 and was maintained throughout the study period. Treatment with Mas mitigated nerve damage and improved hind paw mechanoreception to mechanical stimulation by decreasing the production of reactive oxygen species (ROS) during the early stages of tourniquet/IR. Mas also alleviated allodynia and decreased inflammatory cytokines (IL-1β and TNFα) in the skin of paw pads from days 7-28. Our data suggest that treatment with Mas significantly ameliorated paw numbness and allodynia in mouse hind paw tourniquet/IR.
Collapse
Affiliation(s)
- Junliang Qian
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Huiyin Tu
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dongze Zhang
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Aaron N Barksdale
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Kaushik P Patel
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Michael C Wadman
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Yu-Long Li
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
30
|
Chitu V, Biundo F, Stanley ER. Colony stimulating factors in the nervous system. Semin Immunol 2021; 54:101511. [PMID: 34743926 DOI: 10.1016/j.smim.2021.101511] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/23/2021] [Indexed: 01/02/2023]
Abstract
Although traditionally seen as regulators of hematopoiesis, colony-stimulating factors (CSFs) have emerged as important players in the nervous system, both in health and disease. This review summarizes the cellular sources, patterns of expression and physiological roles of the macrophage (CSF-1, IL-34), granulocyte-macrophage (GM-CSF) and granulocyte (G-CSF) colony stimulating factors within the nervous system, with a particular focus on their actions on microglia. CSF-1 and IL-34, via the CSF-1R, are required for the development, proliferation and maintenance of essentially all CNS microglia in a temporal and regional specific manner. In contrast, in steady state, GM-CSF and G-CSF are mainly involved in regulation of microglial function. The alterations in expression of these growth factors and their receptors, that have been reported in several neurological diseases, are described and the outcomes of their therapeutic targeting in mouse models and humans are discussed.
Collapse
Affiliation(s)
- Violeta Chitu
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - Fabrizio Biundo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | - E Richard Stanley
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| |
Collapse
|
31
|
Amor S, Nutma E, Marzin M, Puentes F. Imaging immunological processes from blood to brain in amyotrophic lateral sclerosis. Clin Exp Immunol 2021; 206:301-313. [PMID: 34510431 PMCID: PMC8561688 DOI: 10.1111/cei.13660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/18/2021] [Accepted: 08/29/2021] [Indexed: 12/12/2022] Open
Abstract
Neuropathology studies of amyotrophic lateral sclerosis (ALS) and animal models of ALS reveal a strong association between aberrant protein accumulation and motor neurone damage, as well as activated microglia and astrocytes. While the role of neuroinflammation in the pathology of ALS is unclear, imaging studies of the central nervous system (CNS) support the idea that innate immune activation occurs early in disease in both humans and rodent models of ALS. In addition, emerging studies also reveal changes in monocytes, macrophages and lymphocytes in peripheral blood as well as at the neuromuscular junction. To more clearly understand the association of neuroinflammation (innate and adaptive) with disease progression, the use of biomarkers and imaging modalities allow monitoring of immune parameters in the disease process. Such approaches are important for patient stratification, selection and inclusion in clinical trials, as well as to provide readouts of response to therapy. Here, we discuss the different imaging modalities, e.g. magnetic resonance imaging, magnetic resonance spectroscopy and positron emission tomography as well as other approaches, including biomarkers of inflammation in ALS, that aid the understanding of the underlying immune mechanisms associated with motor neurone degeneration in ALS.
Collapse
Affiliation(s)
- Sandra Amor
- Department of Pathology, Amsterdam UMC Location VUmc, Amsterdam, the Netherlands.,Department of Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Erik Nutma
- Department of Pathology, Amsterdam UMC Location VUmc, Amsterdam, the Netherlands
| | - Manuel Marzin
- Department of Pathology, Amsterdam UMC Location VUmc, Amsterdam, the Netherlands
| | - Fabiola Puentes
- Department of Neuroscience and Trauma, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
32
|
Mora JS, Bradley WG, Chaverri D, Hernández-Barral M, Mascias J, Gamez J, Gargiulo-Monachelli GM, Moussy A, Mansfield CD, Hermine O, Ludolph AC. Long-term survival analysis of masitinib in amyotrophic lateral sclerosis. Ther Adv Neurol Disord 2021; 14:17562864211030365. [PMID: 34457038 PMCID: PMC8388186 DOI: 10.1177/17562864211030365] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022] Open
Abstract
Background: A randomized, placebo-controlled phase III study (AB10015) previously demonstrated that orally administered masitinib (4.5 mg/kg/day) slowed rate of functional decline, with acceptable safety, in amyotrophic lateral sclerosis (ALS) patients having an ALS Functional Rating Scale-revised (ALSFRS-R) progression rate from disease onset to baseline of <1.1 points/month. Here we assess long-term overall survival (OS) data of all participants from study AB10015 and test whether a signal in OS is evident in an enriched patient population similar to that prospectively defined for confirmatory study AB19001. Methods: Survival status of all patients originally randomized in AB10015 was collected from participating investigational sites. Survival analysis (using the multivariate log-rank test and Cox proportional hazards model, with stratification factors as covariates) was performed on the intention-to-treat population and enriched subgroups, which were defined according to initial randomization, baseline ALSFRS-R progression rate and baseline disease severity. Results: A significant survival benefit of 25 months (p = 0.037) and 47% reduced risk of death (p = 0.025) was observed for patients receiving 4.5 mg/kg/day masitinib (n = 45) versus placebo (n = 62) in an enriched cohort with ⩾2 on each baseline ALSFRS-R individual component score (i.e. prior to any complete loss or severe impairment of functionality) and post-onset ALSFRS-R progression rate <1.1 (i.e. exclusion of very fast progressors) [median OS of 69 versus 44 months, respectively; hazard ratio, 0.53 [95% CI (0.31–0.92)]]. This corresponds to the population enrolled in confirmatory phase III study, AB19001. Conclusions: Analysis of long-term OS (75 months average follow-up from diagnosis) indicates that oral masitinib (4.5 mg/kg/day) could prolong survival by over 2 years as compared with placebo, provided that treatment starts prior to severe impairment of functionality. This trial was registered at www.ClinicalTrials.gov under identifier NCT02588677 (28 October 2015).
Collapse
Affiliation(s)
| | - Walter G Bradley
- Department of Neurology, University of Miami School of Medicine, Miami, FL, USA
| | - Delia Chaverri
- ALS Unit, Department of Neurology, University Hospital La Paz-Carlos III, Madrid, Spain
| | | | - Javier Mascias
- ALS Unit, Department of Neurology, University Hospital La Paz-Carlos III, Madrid, Spain
| | - Josep Gamez
- Neurology Department, GMA Clinic, Autonomous University of Barcelona, European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Barcelona, Spain
| | | | | | | | - Olivier Hermine
- Department of Hematology, Necker Hospital, University of Paris, 149 Rue de Sèvres, Paris 75015, France
| | - Albert C Ludolph
- Department of Neurology, University of Ulm, Oberer Eselsberg 45, Ulm 89081, Germany
| |
Collapse
|
33
|
Kovacs M, Alamón C, Maciel C, Varela V, Ibarburu S, Tarragó L, King PH, Si Y, Kwon Y, Hermine O, Barbeito L, Trias E. The pathogenic role of c-Kit+ mast cells in the spinal motor neuron-vascular niche in ALS. Acta Neuropathol Commun 2021; 9:136. [PMID: 34389060 PMCID: PMC8361844 DOI: 10.1186/s40478-021-01241-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 12/14/2022] Open
Abstract
Degeneration of motor neurons, glial cell reactivity, and vascular alterations in the CNS are important neuropathological features of amyotrophic lateral sclerosis (ALS). Immune cells trafficking from the blood also infiltrate the affected CNS parenchyma and contribute to neuroinflammation. Mast cells (MCs) are hematopoietic-derived immune cells whose precursors differentiate upon migration into tissues. Upon activation, MCs undergo degranulation with the ability to increase vascular permeability, orchestrate neuroinflammation and modulate the neuroimmune response. However, the prevalence, pathological significance, and pharmacology of MCs in the CNS of ALS patients remain largely unknown. In autopsy ALS spinal cords, we identified for the first time that MCs express c-Kit together with chymase, tryptase, and Cox-2 and display granular or degranulating morphology, as compared with scarce MCs in control cords. In ALS, MCs were mainly found in the niche between spinal motor neuron somas and nearby microvascular elements, and they displayed remarkable pathological abnormalities. Similarly, MCs accumulated in the motor neuron-vascular niche of ALS murine models, in the vicinity of astrocytes and motor neurons expressing the c-Kit ligand stem cell factor (SCF), suggesting an SCF/c-Kit-dependent mechanism of MC differentiation from precursors. Mechanistically, we provide evidence that fully differentiated MCs in cell cultures can be generated from the murine ALS spinal cord tissue, further supporting the presence of c-Kit+ MC precursors. Moreover, intravenous administration of bone marrow-derived c-Kit+ MC precursors infiltrated the spinal cord in ALS mice but not in controls, consistent with aberrant trafficking through a defective microvasculature. Pharmacological inhibition of c-Kit with masitinib in ALS mice reduced the MC number and the influx of MC precursors from the periphery. Our results suggest a previously unknown pathogenic mechanism triggered by MCs in the ALS motor neuron-vascular niche that might be targeted pharmacologically.
Collapse
Affiliation(s)
| | | | - Cecilia Maciel
- Institut Pasteur de Montevideo, 2020, Montevideo, Uruguay
| | | | - Sofía Ibarburu
- Institut Pasteur de Montevideo, 2020, Montevideo, Uruguay
| | - Lucas Tarragó
- Institut Pasteur de Montevideo, 2020, Montevideo, Uruguay
| | - Peter H King
- Department of Neurology, University of Alabama, Birmingham, AL, 35294, USA
- Birmingham Veterans Affairs Medical Center, Birmingham, AL, 35295, USA
| | - Ying Si
- Department of Neurology, University of Alabama, Birmingham, AL, 35294, USA
- Birmingham Veterans Affairs Medical Center, Birmingham, AL, 35295, USA
| | - Yuri Kwon
- Department of Neurology, University of Alabama, Birmingham, AL, 35294, USA
| | - Olivier Hermine
- Imagine Institute, Hôpital Necker, Paris, France
- INSERM UMR 1163, Laboratory of Cellular and Molecular Mechanisms of Hematological Disorders and Therapeutic Implications, Paris, France
- Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France
- CNRS ERL 8254, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
- Equipe Labélisée par la Ligue Nationale contre le cancer; AB Science; Department of Hematology, Necker Hospital, Paris, France
- Centre national de référence des mastocytoses (CEREMAST), Paris, France
| | - Luis Barbeito
- Institut Pasteur de Montevideo, 2020, Montevideo, Uruguay
| | - Emiliano Trias
- Institut Pasteur de Montevideo, 2020, Montevideo, Uruguay.
| |
Collapse
|
34
|
Si Y, Kazamel M, Benatar M, Wuu J, Kwon Y, Kwan T, Jiang N, Kentrup D, Faul C, Alesce L, King PH. FGF23, a novel muscle biomarker detected in the early stages of ALS. Sci Rep 2021; 11:12062. [PMID: 34103575 PMCID: PMC8187665 DOI: 10.1038/s41598-021-91496-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/27/2021] [Indexed: 01/17/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive muscle weakness. Skeletal muscle is a prime source for biomarker discovery since it is one of the earliest sites to manifest disease pathology. From a prior RNA sequencing project, we identified FGF23 as a potential muscle biomarker in ALS. Here, we validate this finding with a large collection of ALS muscle samples and found a 13-fold increase over normal controls. FGF23 was also increased in the SOD1G93A mouse, beginning at a very early stage and well before the onset of clinical symptoms. FGF23 levels progressively increased through end-stage in the mouse. Immunohistochemistry of ALS muscle showed prominent FGF23 immunoreactivity in the endomysial connective tissue and along the muscle membrane and was significantly higher around grouped atrophic fibers compared to non-atrophic fibers. ELISA of plasma samples from the SOD1G93A mouse showed an increase in FGF23 at end-stage whereas no increase was detected in a large cohort of ALS patients. In conclusion, FGF23 is a novel muscle biomarker in ALS and joins a molecular signature that emerges in very early preclinical stages. The early appearance of FGF23 and its progressive increase with disease progression offers a new direction for exploring the molecular basis and response to the underlying pathology of ALS.
Collapse
Affiliation(s)
- Ying Si
- Department of Neurology, University of Alabama at Birmingham, Civitan 545C, 1530 3rd Avenue South, Birmingham, AL, 35294, USA
- Birmingham Veterans Affairs Medical Center, Birmingham, AL, 35294, USA
| | - Mohamed Kazamel
- Department of Neurology, University of Alabama at Birmingham, Civitan 545C, 1530 3rd Avenue South, Birmingham, AL, 35294, USA
| | - Michael Benatar
- Department of Neurology, University of Miami, Miami, FL, 33136, USA
| | - Joanne Wuu
- Department of Neurology, University of Miami, Miami, FL, 33136, USA
| | - Yuri Kwon
- Department of Neurology, University of Alabama at Birmingham, Civitan 545C, 1530 3rd Avenue South, Birmingham, AL, 35294, USA
| | - Thaddaeus Kwan
- Department of Neurology, University of Alabama at Birmingham, Civitan 545C, 1530 3rd Avenue South, Birmingham, AL, 35294, USA
| | - Nan Jiang
- Department of Neurology, University of Alabama at Birmingham, Civitan 545C, 1530 3rd Avenue South, Birmingham, AL, 35294, USA
- Birmingham Veterans Affairs Medical Center, Birmingham, AL, 35294, USA
| | - Dominik Kentrup
- Department of Medicine (Division of Nephrology and Hypertension), University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Christian Faul
- Department of Medicine (Division of Nephrology and Hypertension), University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Lyndsy Alesce
- Department of Neurology, University of Alabama at Birmingham, Civitan 545C, 1530 3rd Avenue South, Birmingham, AL, 35294, USA
| | - Peter H King
- Department of Neurology, University of Alabama at Birmingham, Civitan 545C, 1530 3rd Avenue South, Birmingham, AL, 35294, USA.
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
- Birmingham Veterans Affairs Medical Center, Birmingham, AL, 35294, USA.
| |
Collapse
|
35
|
De Logu F, Marini M, Landini L, Souza Monteiro de Araujo D, Bartalucci N, Trevisan G, Bruno G, Marangoni M, Schmidt BL, Bunnett NW, Geppetti P, Nassini R. Peripheral Nerve Resident Macrophages and Schwann Cells Mediate Cancer-Induced Pain. Cancer Res 2021; 81:3387-3401. [PMID: 33771895 DOI: 10.1158/0008-5472.can-20-3326] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 02/13/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022]
Abstract
Although macrophages (MΦ) are known to play a central role in neuropathic pain, their contribution to cancer pain has not been established. Here we report that depletion of sciatic nerve resident MΦs (rMΦ) in mice attenuates mechanical/cold hypersensitivity and spontaneous pain evoked by intraplantar injection of melanoma or lung carcinoma cells. MΦ-colony stimulating factor (M-CSF) was upregulated in the sciatic nerve trunk and mediated cancer-evoked pain via rMΦ expansion, transient receptor potential ankyrin 1 (TRPA1) activation, and oxidative stress. Targeted deletion of Trpa1 revealed a key role for Schwann cell TRPA1 in sciatic nerve rMΦ expansion and pain-like behaviors. Depletion of rMΦs in a medial portion of the sciatic nerve prevented pain-like behaviors. Collectively, we identified a feed-forward pathway involving M-CSF, rMΦ, oxidative stress, and Schwann cell TRPA1 that operates throughout the nerve trunk to signal cancer-evoked pain. SIGNIFICANCE: Schwann cell TRPA1 sustains cancer pain through release of M-CSF and oxidative stress, which promote the expansion and the proalgesic actions of intraneural macrophages. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/12/3387/F1.large.jpg.
Collapse
Affiliation(s)
- Francesco De Logu
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy
| | - Matilde Marini
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy
| | - Lorenzo Landini
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy
| | | | - Niccolò Bartalucci
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Gabriela Trevisan
- Graduated Program in Pharmacology, Federal University of Santa Maria (UFSM), Avenida Roraima, Santa Maria, Brazil
| | - Gennaro Bruno
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy.,Division of Pediatric Oncology/Hematology, Meyer University Children's Hospital, Florence, Italy
| | - Martina Marangoni
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy
| | - Brian L Schmidt
- Department of Oral and Maxillofacial Surgery, Bluestone Center for Clinical Research, New York University College of Dentistry, New York, New York
| | - Nigel W Bunnett
- Department of Molecular Pathobiology, College of Dentistry, Department of Neuroscience and Physiology, and Neuroscience Institute, School of Medicine, New York University, New York
| | - Pierangelo Geppetti
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy.
| | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology Unit, University of Florence, Florence, Italy
| |
Collapse
|
36
|
Puigdomenech-Poch M, Martínez-Muriana A, Andrés-Benito P, Ferrer I, Chun J, López-Vales R. Dual Role of Lysophosphatidic Acid Receptor 2 (LPA 2) in Amyotrophic Lateral Sclerosis. Front Cell Neurosci 2021; 15:600872. [PMID: 33841099 PMCID: PMC8026865 DOI: 10.3389/fncel.2021.600872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 03/01/2021] [Indexed: 11/13/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a pleiotropic extracellular lipid mediator with many physiological functions that signal through six known G protein-coupled receptors (LPA1-6). In the central nervous system (CNS), LPA mediates a wide range of effects including neural progenitor cell physiology, neuronal cell death, axonal retraction, and inflammation. Since inflammation is a hallmark of most neurological conditions, we hypothesized that LPA could be involved in the physiopathology of amyotrophic lateral sclerosis (ALS). We found that LPA2 RNA was upregulated in post-mortem spinal cord samples of ALS patients and in the sciatic nerve and skeletal muscle of SOD1G93A mouse, the most widely used ALS mouse model. To assess the contribution of LPA2 to ALS, we generated a SOD1G93A mouse that was deficient in Lpar2. This animal revealed that LPA2 signaling accelerates disease onset and neurological decline but, unexpectedly, extended the lifespan. To gain insights into the early harmful actions of LPA2 in ALS, we studied the effects of this receptor in the spinal cord, peripheral nerve, and skeletal muscle of ALS mice. We found that LPA2 gene deletion increased microglial activation but did not contribute to motoneuron death, astrogliosis, degeneration, and demyelination of motor axons. However, we observed that Lpar2 deficiency protected against muscle atrophy. Moreover, we also found the deletion of Lpar2 reduced the invasion of macrophages into the skeletal muscle of SOD1G93A mice, linking LPA2 signaling with muscle inflammation and atrophy in ALS. Overall, these results suggest for the first time that LPA2 contributes to ALS, and its genetic deletion results in protective actions at the early stages of the disease but shortens survival thereafter.
Collapse
Affiliation(s)
- Maria Puigdomenech-Poch
- Departament de Biologia Cellular, Fisiologia i Immunologia, Institut de Neurociències, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Anna Martínez-Muriana
- Departament de Biologia Cellular, Fisiologia i Immunologia, Institut de Neurociències, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Pol Andrés-Benito
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Universitat de Barcelona, Barcelona, Spain
| | - Isidre Ferrer
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
- Departament de Patologia i Terapèutica Experimental, Hospital Universitari de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Universitat de Barcelona, Barcelona, Spain
| | - Jerold Chun
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, United States
| | - Rubèn López-Vales
- Departament de Biologia Cellular, Fisiologia i Immunologia, Institut de Neurociències, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
37
|
Abstract
Background: Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease of upper and lower motor neurons with high burden on society. Despite tremendous efforts over the last several decades, there is still no definite cure for ALS. Up to now, only two disease-modifying agents, riluzole and edaravone, are approved by U.S. Food and Drug Administration (FDA) for ALS treatment, which only modestly improves survival and disease progression. Major challenging issues to find an effective therapy are heterogeneity in the pathogenesis and genetic variability of ALS. As such, stem cell therapy has been recently a focus of both preclinical and clinical investigations of ALS. This is because stem cells have multifaceted features that can potentially target multiple pathogenic mechanisms in ALS even though its underlying mechanisms are not completely elucidated. Methods & Results: Here, we will have an overview of stem cell therapy in ALS, including their therapeutic mechanisms, the results of recent clinical trials as well as ongoing clinical trials. In addition, we will further discuss complications and limitations of stem cell therapy in ALS. Conclusion: The determination of whether stem cells offer a viable treatment strategy for ALS rests on well-designed and appropriately powered future clinical trials. Randomized, double-blinded, and sham-controlled studies would be valuable.
Collapse
Affiliation(s)
- Goun Je
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA USA
| | - Kiandokht Keyhanian
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA USA
| | - Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA USA
| |
Collapse
|
38
|
Freuchet A, Salama A, Remy S, Guillonneau C, Anegon I. IL-34 and CSF-1, deciphering similarities and differences at steady state and in diseases. J Leukoc Biol 2021; 110:771-796. [PMID: 33600012 DOI: 10.1002/jlb.3ru1120-773r] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Although IL-34 and CSF-1 share actions as key mediators of monocytes/macrophages survival and differentiation, they also display differences that should be identified to better define their respective roles in health and diseases. IL-34 displays low sequence homology with CSF-1 but has a similar general structure and they both bind to a common receptor CSF-1R, although binding and subsequent intracellular signaling shows differences. CSF-1R expression has been until now mainly described at a steady state in monocytes/macrophages and myeloid dendritic cells, as well as in some cancers. IL-34 has also 2 other receptors, protein-tyrosine phosphatase zeta (PTPζ) and CD138 (Syndecan-1), expressed in some epithelium, cells of the central nervous system (CNS), as well as in numerous cancers. While most, if not all, of CSF-1 actions are mediated through monocyte/macrophages, IL-34 has also other potential actions through PTPζ and CD138. Additionally, IL-34 and CSF-1 are produced by different cells in different tissues. This review describes and discusses similarities and differences between IL-34 and CSF-1 at steady state and in pathological situations and identifies possible ways to target IL-34, CSF-1, and its receptors.
Collapse
Affiliation(s)
- Antoine Freuchet
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Apolline Salama
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Séverine Remy
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Carole Guillonneau
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| | - Ignacio Anegon
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,LabEx IGO "Immunotherapy, Graft, Oncology", Nantes, France
| |
Collapse
|
39
|
Harcha PA, Garcés P, Arredondo C, Fernández G, Sáez JC, van Zundert B. Mast Cell and Astrocyte Hemichannels and Their Role in Alzheimer's Disease, ALS, and Harmful Stress Conditions. Int J Mol Sci 2021; 22:ijms22041924. [PMID: 33672031 PMCID: PMC7919494 DOI: 10.3390/ijms22041924] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/02/2021] [Accepted: 02/11/2021] [Indexed: 02/07/2023] Open
Abstract
Considered relevant during allergy responses, numerous observations have also identified mast cells (MCs) as critical effectors during the progression and modulation of several neuroinflammatory conditions, including Alzheimer’s disease (AD) and amyotrophic lateral sclerosis (ALS). MC granules contain a plethora of constituents, including growth factors, cytokines, chemokines, and mitogen factors. The release of these bioactive substances from MCs occurs through distinct pathways that are initiated by the activation of specific plasma membrane receptors/channels. Here, we focus on hemichannels (HCs) formed by connexins (Cxs) and pannexins (Panxs) proteins, and we described their contribution to MC degranulation in AD, ALS, and harmful stress conditions. Cx/Panx HCs are also expressed by astrocytes and are likely involved in the release of critical toxic amounts of soluble factors—such as glutamate, adenosine triphosphate (ATP), complement component 3 derivate C3a, tumor necrosis factor (TNFα), apoliprotein E (ApoE), and certain miRNAs—known to play a role in the pathogenesis of AD, ALS, and other neurodegenerative disorders. We propose that blocking HCs on MCs and glial cells offers a promising novel strategy for ameliorating the progression of neurodegenerative diseases by reducing the release of cytokines and other pro-inflammatory compounds.
Collapse
Affiliation(s)
- Paloma A. Harcha
- Instituto de Neurociencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Valparaíso 2381850, Chile
- Correspondence: (P.A.H.); (J.C.S.); (B.v.Z.)
| | - Polett Garcés
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; (P.G.); (C.A.); (G.F.)
- CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8330005, Chile
| | - Cristian Arredondo
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; (P.G.); (C.A.); (G.F.)
- CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8330005, Chile
| | - Germán Fernández
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; (P.G.); (C.A.); (G.F.)
- CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8330005, Chile
| | - Juan C. Sáez
- Instituto de Neurociencia, Centro Interdisciplinario de Neurociencia de Valparaíso, Valparaíso 2381850, Chile
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
- Correspondence: (P.A.H.); (J.C.S.); (B.v.Z.)
| | - Brigitte van Zundert
- Institute of Biomedical Sciences (ICB), Faculty of Medicine & Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile; (P.G.); (C.A.); (G.F.)
- CARE Biomedical Research Center, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8330005, Chile
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Correspondence: (P.A.H.); (J.C.S.); (B.v.Z.)
| |
Collapse
|
40
|
A Novel HGF/SF Receptor (MET) Agonist Transiently Delays the Disease Progression in an Amyotrophic Lateral Sclerosis Mouse Model by Promoting Neuronal Survival and Dampening the Immune Dysregulation. Int J Mol Sci 2020; 21:ijms21228542. [PMID: 33198383 PMCID: PMC7696450 DOI: 10.3390/ijms21228542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease with no effective treatment. The Hepatocyte Growth Factor/Scatter Factor (HGF/SF), through its receptor MET, is one of the most potent survival-promoting factors for motor neurons (MN) and is known as a modulator of immune cell function. We recently developed a novel recombinant MET agonist optimized for therapy, designated K1K1. K1K1 was ten times more potent than HGF/SF in preventing MN loss in an in vitro model of ALS. Treatments with K1K1 delayed the onset of muscular impairment and reduced MN loss and skeletal muscle denervation of superoxide dismutase 1 G93A (SOD1G93A) mice. This effect was associated with increased levels of phospho-extracellular signal-related kinase (pERK) in the spinal cord and sciatic nerves and the activation of non-myelinating Schwann cells. Moreover, reduced activated microglia and astroglia, lower T cells infiltration and increased interleukin 4 (IL4) levels were found in the lumbar spinal cord of K1K1 treated mice. K1K1 treatment also prevented the infiltration of T cells in skeletal muscle of SOD1G93A mice. All these protective effects were lost on long-term treatment suggesting a mechanism of drug tolerance. These data provide a rational justification for further exploring the long-term loss of K1K1 efficacy in the perspective of providing a potential treatment for ALS.
Collapse
|
41
|
CSF1R signaling is a regulator of pathogenesis in progressive MS. Cell Death Dis 2020; 11:904. [PMID: 33097690 PMCID: PMC7584629 DOI: 10.1038/s41419-020-03084-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 02/06/2023]
Abstract
Microglia serve as the innate immune cells of the central nervous system (CNS) by providing continuous surveillance of the CNS microenvironment and initiating defense mechanisms to protect CNS tissue. Upon injury, microglia transition into an activated state altering their transcriptional profile, transforming their morphology, and producing pro-inflammatory cytokines. These activated microglia initially serve a beneficial role, but their continued activation drives neuroinflammation and neurodegeneration. Multiple sclerosis (MS) is a chronic, inflammatory, demyelinating disease of the CNS, and activated microglia and macrophages play a significant role in mediating disease pathophysiology and progression. Colony-stimulating factor-1 receptor (CSF1R) and its ligand CSF1 are elevated in CNS tissue derived from MS patients. We performed a large-scale RNA-sequencing experiment and identified CSF1R as a key node of disease progression in a mouse model of progressive MS. We hypothesized that modulating microglia and infiltrating macrophages through the inhibition of CSF1R will attenuate deleterious CNS inflammation and reduce subsequent demyelination and neurodegeneration. To test this hypothesis, we generated a novel potent and selective small-molecule CSF1R inhibitor (sCSF1Rinh) for preclinical testing. sCSF1Rinh blocked receptor phosphorylation and downstream signaling in both microglia and macrophages and altered cellular functions including proliferation, survival, and cytokine production. In vivo, CSF1R inhibition with sCSF1Rinh attenuated neuroinflammation and reduced microglial proliferation in a murine acute LPS model. Furthermore, the sCSF1Rinh attenuated a disease-associated microglial phenotype and blocked both axonal damage and neurological impairments in an experimental autoimmune encephalomyelitis (EAE) model of MS. While previous studies have focused on microglial depletion following CSF1R inhibition, our data clearly show that signaling downstream of this receptor can be beneficially modulated in the context of CNS injury. Together, these data suggest that CSF1R inhibition can reduce deleterious microglial proliferation and modulate microglial phenotypes during neuroinflammatory pathogenesis, particularly in progressive MS.
Collapse
|