1
|
Jiang H, Zeng Y, He P, Zhu X, Zhu J, Gao Y. Aberrant resting-state voxel-mirrored homotopic connectivity in major depressive disorder with and without anxiety. J Affect Disord 2025; 368:191-199. [PMID: 39173924 DOI: 10.1016/j.jad.2024.08.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 08/17/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
OBJECTIVE Prior researchers have identified distinct differences in functional connectivity neuroimaging characteristics among MDD patients. However, the auxiliary diagnosis and subtype differentiation roles of VMHC values in MDD patients have yet to be fully understood. We aim to explore the separating ability of VMHC values in patients with anxious MDD or with non-anxious MDD and HCs. METHODS We recruited 90 patients with anxious MDD, 69 patients with non-anxious MDD and 84 HCs. We collected a set of clinical variables included HAMD-17 scores, HAMA scores and rs-fMRI data. The data were analyzed combining difference analysis, SVM, correlation analysis and ROC analysis. RESULTS Relative to HCs, non-anxious MDD patients displayed significant lower VMHC values in the insula and PCG, and anxious MDD patients displayed a significant decrease in VMHC values in the cerebellum_crus2, STG, postCG, MFG and IFG. Compared with non-anxious MDD patients, the anxious MDD showed significant enhanced VMHC values in the PCG. The VMHC values in the insula and cerebellum_crus2 regions showed a better ability to discriminate HCs from patients with non-anxious MDD or with anxious MDD. The VMHC values in PCG showed a better ability to discriminate patients with anxious MDD and non-anxious MDD patients. CONCLUSION The VMHC values in the insula and cerebellum_crus2 regions could be served as imaging markers to differentiate HCs from patients with non-anxious MDD or with anxious MDD respectively. And the VMHC values in the PCG could be used to discriminate patients with anxious MDD from the non-anxious MDD patients.
Collapse
Affiliation(s)
- Hongxiang Jiang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, China
| | - YanPing Zeng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Peidong He
- Department of Neurosurgery, Renmin Hospital of Wuhan University, China
| | - Xiwei Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, China
| | - Jiangrui Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, China
| | - Yujun Gao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China; Department of Psychiatry, Wuhan Wuchang Hospital, Wuhan University of Science and Technology, Wuhan 430063, China; Yichang City Clinical Research Center for Mental Disorders, China.
| |
Collapse
|
2
|
Ding J, Peng J, Zhang Q. Influence of depression severity on interhemispheric functional integration: an analysis from the REST-meta-MDD database. Brain Imaging Behav 2024:10.1007/s11682-024-00960-0. [PMID: 39614038 DOI: 10.1007/s11682-024-00960-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/24/2024] [Indexed: 12/01/2024]
Abstract
Major depressive disorder (MDD) is a pervasive mental disorder that significantly impairs functional capabilities, underscoring the necessity for precise stratification of its severity to facilitate tailored treatment. This study investigated the utility of voxel-mirrored homotopic connectivity (VMHC) derived from resting-state functional magnetic resonance imaging (fMRI) data as a neuroimaging biomarker to differentiate varying severities of MDD in a sample drawn from the REST-meta-MDD project, which included 392 first-episode MDD patients and 440 healthy controls (HC) from 9 sites. Patients were classified into mild to moderate and severe depression groups according to the 17-item Hamilton Depression Scale (HAMD) scores. VMHC differences between these subgroups and their associations with HAMD scores were further examined. The results revealed significant reductions in VMHC within the fusiform gyrus for patients with mild to moderate depression compared to HCs, alongside more extensive reductions across the insula, postcentral gyrus, and angular gyrus in severe depression. Notably, increased VMHC in the middle cingulate cortex was identified in severe MDD patients relative to those with mild to moderate depression, with this increase showed a significant positive correlation with the HAMD scores. Additionally, receiver operating characteristic (ROC) curve analysis demonstrated that VMHC values in these regions effectively differentiate patients from HCs and across varying severities of MDD. These findings suggest that VMHC could serve as a valuable metric for clinical diagnosis and the stratification of depression severity, providing insights into the underlying neurobiological mechanisms associated with the disorder.
Collapse
Affiliation(s)
- Jie Ding
- College Student Mental Health Education Center, Xinyang Vocational and Technical College, Xinyang, China
| | - Junfeng Peng
- Student Affairs Office, Xinyang Vocational and Technical College, Xinyang, China
| | - Qian Zhang
- Department of Geriatric Medicine, Henan Provincial People's Hospital, Zhengzhou, China.
| |
Collapse
|
3
|
Harel M, Amiaz R, Raizman R, Leibovici A, Golan Y, Mesika D, Bodini R, Tsarfaty G, Weiser M, Livny A. Distinct homotopic functional connectivity patterns of the amygdalar sub-regions as biomarkers in major depressive disorder. J Affect Disord 2024; 365:285-292. [PMID: 39134155 DOI: 10.1016/j.jad.2024.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 07/10/2024] [Accepted: 08/09/2024] [Indexed: 08/25/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) affects multiple functional neural networks. Neuroimaging studies using resting-state functional connectivity (FC) have focused on the amygdala but did not assess changes in connectivity between the left and right amygdala. The current study aimed to examine the inter-hemispheric functional connectivity (homotopic FC, HoFC) between different amygdalar sub-regions in patients with MDD compared to healthy controls, and to examine whether amygdalar sub-regions' HoFC also predicts response to Serotonin Selective Reuptake Inhibitors (SSRIs). METHOD Sixty-seven patients with MDD and 64 matched healthy controls were recruited. An MRI scan focusing on resting state fMRI and clinical and cognitive evaluations were performed. An atlas seed-based approach was used to identify the lateral and medial sub-regions of the amygdala. HoFC of these sub-regions was compared between groups and correlated with severity of depression, and emotional processing performance. Baseline HoFC levels were used to predict response to SSRIs after 2 months of treatment. RESULTS Patients with MDD demonstrated decreased inter-hemispheric FC in the medial (F3,120 = 4.11, p = 0.008, η2 = 0.096) but not in the lateral (F3,119 = 0.29, p = 0.82, η2 = 0.008) amygdala compared with healthy controls. The inter-hemispheric FC of the medial sub-region correlated with symptoms severity (r = -0.33, p < 0.001) and emotional processing performance (r = 0.38, p < 0.001). Moreover, it predicted treatment response to SSRIs 65.4 % of the cases. LIMITATIONS The current study did not address FC changes in MDD biotypes. In addition, structural connectivity was not examined. CONCLUSIONS Using a unique perspective of the amygdalar distinct areas elucidated differential inter-hemispheric FC patterns in MDD patients, emphasizing the role of interhemispheric communication in depression.
Collapse
Affiliation(s)
- Maayan Harel
- Division of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Israel
| | - Revital Amiaz
- Department of Psychiatry, Sheba Medical Center, Tel-Hashomer, Israel; Department of Psychiatry, Faculty of Medical & Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Reut Raizman
- Division of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Israel; Department of Anatomy and Anthropology, Faculty of Medical & Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Anat Leibovici
- Division of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Israel
| | - Yael Golan
- Division of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Israel; Department of Psychology, Bar Ilan University, Ramat Gan, Israel
| | - David Mesika
- Division of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Israel
| | - Raffaella Bodini
- Division of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Israel
| | - Galia Tsarfaty
- Division of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Israel
| | - Mark Weiser
- Department of Psychiatry, Sheba Medical Center, Tel-Hashomer, Israel; Department of Psychiatry, Faculty of Medical & Health Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Abigail Livny
- Division of Diagnostic Imaging, Sheba Medical Center, Tel-Hashomer, Israel; Department of Imaging, Faculty of Medical & Health Sciences, Tel-Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
4
|
Han S, Zheng Q, Zheng Z, Su J, Liu X, Shi C, Li B, Zhang X, Zhang M, Yu Q, Hou Z, Li T, Zhang B, Lin Y, Wen G, Deng Y, Liu K, Xu K. Exosomal miR-1202 mediates Brodmann Area 44 functional connectivity changes in medication-free patients with major depressive disorder: An fMRI study. J Affect Disord 2024; 356:470-476. [PMID: 38608766 DOI: 10.1016/j.jad.2024.04.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/28/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024]
Abstract
Previous large-sample postmortem study revealed that the expression of miR-1202 in brain tissues from Brodmann area 44 (BA44) was dysregulated in patients with major depressive disorder (MDDs). However, the specific in vivo neuropathological mechanism of miR-1202 as well as its interplay with BA44 circuits in the depressed brain are still unclear. Here, we performed a case-control study with imaging-genetic approach based on resting-state functional magnetic resonance imaging (MRI) data and miR-1202 quantification from 110 medication-free MDDs and 102 healthy controls. Serum-derived circulating exosomes that readily cross the blood-brain barrier were isolated to quantify miR-1202. For validation, repeated MR scans were performed after a six-week follow-up of antidepressant treatment on a cohort of MDDs. Voxelwise factorial analysis revealed two brain areas (including the striatal-thalamic region) in which the effect of depression on the functional connectivity with BA44 was significantly dependent on the expression level of exosomal miR-1202. Moreover, longitudinal change of the BA44 connectivity with the striatal-thalamic region in MDDs after antidepressant treatment was found to be significantly related to the level of miR-1202 expression. These findings revealed that the in vivo neuropathological effect of miR-1202 dysregulation in depression is possibly exerted by mediating neural functional abnormalities in BA44-striatal-thalamic circuits.
Collapse
Affiliation(s)
- Shuguang Han
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China; Research Center for Psychological Crisis Prevention and Intervention of College Students in Jiangsu Province, Jiangsu, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Qingtong Zheng
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Zixuan Zheng
- School of Anesthesiology, Xuzhou Medical University, Xuzhou, China
| | - Jie Su
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Xiaohua Liu
- Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China
| | - Changzhou Shi
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Bo Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Xuanxuan Zhang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Minghao Zhang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Qian Yu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Ziwei Hou
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Ting Li
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China
| | - Bin Zhang
- Department of Psychiatry, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yong Lin
- The Fifth Affiliated Hospital of Sun-Yat Sen University, Sun-Yat Sen University, Zhuhai, China; The Affiliated Brain Hospital of Guangzhou Medical University (Guangzhou Huiai Hospital), Guangzhou, China
| | - Ge Wen
- Medical Imaging Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanjia Deng
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China; Research Center for Psychological Crisis Prevention and Intervention of College Students in Jiangsu Province, Jiangsu, China.
| | - Kai Liu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.
| | - Kai Xu
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, China; Department of Radiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
5
|
Zhang J, Wang Q, Wang X, Qiao L, Liu M. Preserving specificity in federated graph learning for fMRI-based neurological disorder identification. Neural Netw 2024; 169:584-596. [PMID: 37956575 DOI: 10.1016/j.neunet.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/22/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023]
Abstract
Resting-state functional magnetic resonance imaging (rs-fMRI) offers a non-invasive approach to examining abnormal brain connectivity associated with brain disorders. Graph neural network (GNN) gains popularity in fMRI representation learning and brain disorder analysis with powerful graph representation capabilities. Training a general GNN often necessitates a large-scale dataset from multiple imaging centers/sites, but centralizing multi-site data generally faces inherent challenges related to data privacy, security, and storage burden. Federated Learning (FL) enables collaborative model training without centralized multi-site fMRI data. Unfortunately, previous FL approaches for fMRI analysis often ignore site-specificity, including demographic factors such as age, gender, and education level. To this end, we propose a specificity-aware federated graph learning (SFGL) framework for rs-fMRI analysis and automated brain disorder identification, with a server and multiple clients/sites for federated model aggregation and prediction. At each client, our model consists of a shared and a personalized branch, where parameters of the shared branch are sent to the server while those of the personalized branch remain local. This can facilitate knowledge sharing among sites and also helps preserve site specificity. In the shared branch, we employ a spatio-temporal attention graph isomorphism network to learn dynamic fMRI representations. In the personalized branch, we integrate vectorized demographic information (i.e., age, gender, and education years) and functional connectivity networks to preserve site-specific characteristics. Representations generated by the two branches are then fused for classification. Experimental results on two fMRI datasets with a total of 1218 subjects suggest that SFGL outperforms several state-of-the-art approaches.
Collapse
Affiliation(s)
- Junhao Zhang
- School of Mathematics Science, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Qianqian Wang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Xiaochuan Wang
- School of Mathematics Science, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Lishan Qiao
- School of Mathematics Science, Liaocheng University, Liaocheng, Shandong, 252000, China; School of Computer Science and Technology, Shandong Jianzhu University, Jinan, Shandong, 250101, China.
| | - Mingxia Liu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
6
|
Wang X, Chu Y, Wang Q, Cao L, Qiao L, Zhang L, Liu M. Unsupervised contrastive graph learning for resting-state functional MRI analysis and brain disorder detection. Hum Brain Mapp 2023; 44:5672-5692. [PMID: 37668327 PMCID: PMC10619386 DOI: 10.1002/hbm.26469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/08/2023] [Accepted: 08/11/2023] [Indexed: 09/06/2023] Open
Abstract
Resting-state functional magnetic resonance imaging (rs-fMRI) helps characterize regional interactions that occur in the human brain at a resting state. Existing research often attempts to explore fMRI biomarkers that best predict brain disease progression using machine/deep learning techniques. Previous fMRI studies have shown that learning-based methods usually require a large amount of labeled training data, limiting their utility in clinical practice where annotating data is often time-consuming and labor-intensive. To this end, we propose an unsupervised contrastive graph learning (UCGL) framework for fMRI-based brain disease analysis, in which a pretext model is designed to generate informative fMRI representations using unlabeled training data, followed by model fine-tuning to perform downstream disease identification tasks. Specifically, in the pretext model, we first design a bi-level fMRI augmentation strategy to increase the sample size by augmenting blood-oxygen-level-dependent (BOLD) signals, and then employ two parallel graph convolutional networks for fMRI feature extraction in an unsupervised contrastive learning manner. This pretext model can be optimized on large-scale fMRI datasets, without requiring labeled training data. This model is further fine-tuned on to-be-analyzed fMRI data for downstream disease detection in a task-oriented learning manner. We evaluate the proposed method on three rs-fMRI datasets for cross-site and cross-dataset learning tasks. Experimental results suggest that the UCGL outperforms several state-of-the-art approaches in automated diagnosis of three brain diseases (i.e., major depressive disorder, autism spectrum disorder, and Alzheimer's disease) with rs-fMRI data.
Collapse
Affiliation(s)
- Xiaochuan Wang
- The School of Mathematics ScienceLiaocheng UniversityLiaochengChina
| | - Ying Chu
- The School of Mathematics ScienceLiaocheng UniversityLiaochengChina
| | - Qianqian Wang
- The Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Liang Cao
- Taian Tumor Prevention and Treatment HospitalTaianChina
| | - Lishan Qiao
- The School of Mathematics ScienceLiaocheng UniversityLiaochengChina
| | - Limei Zhang
- School of Computer Science and TechnologyShandong Jianzhu UniversityJinanChina
| | - Mingxia Liu
- The Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
7
|
Chen Q, Bi Y, Yan W, Wu S, Xia T, Wang Y, Huang S, Zhou C, Xie S, Kuang S, Kong W, Lv Z. Abnormal voxel-mirrored homotopic connectivity in first-episode major depressive disorder using fMRI: a machine learning approach. Front Psychiatry 2023; 14:1241670. [PMID: 37766927 PMCID: PMC10520785 DOI: 10.3389/fpsyt.2023.1241670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Objective To explore the interhemispheric information synergy ability of the brain in major depressive disorder (MDD) patients by applying the voxel-mirrored homotopic connectivity (VMHC) method and further explore the potential clinical diagnostic value of VMHC metric by a machine learning approach. Methods 52 healthy controls and 48 first-episode MDD patients were recruited in the study. We performed neuropsychological tests and resting-state fMRI scanning on all subjects. The VMHC values of the symmetrical interhemispheric voxels in the whole brain were calculated. The VMHC alterations were compared between two groups, and the relationship between VMHC values and clinical variables was analyzed. Then, abnormal brain regions were selected as features to conduct the classification model by using the support vector machine (SVM) approach. Results Compared to the healthy controls, MDD patients exhibited decreased VMHC values in the bilateral middle frontal gyrus, fusiform gyrus, medial superior frontal gyrus and precentral gyrus. Furthermore, the VMHC value of the bilateral fusiform gyrus was positively correlated with the total Hamilton Depression Scale (HAMD). Moreover, SVM analysis displayed that a combination of all clusters demonstrated the highest area under the curve (AUC) of 0.87 with accuracy, sensitivity, and specificity values of 86.17%, 76.74%, and 94.12%, respectively. Conclusion MDD patients had reduced functional connectivity in the bilateral middle frontal gyrus, fusiform gyrus, medial superior frontal gyrus and precentral gyrus, which may be related to depressive symptoms. The abnormality in these brain regions could represent potential imaging markers to distinguish MDD patients from healthy controls.
Collapse
Affiliation(s)
- Qing Chen
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yanmeng Bi
- College of Integrated Traditional Chinese and Western Medicine, Jining Medical University, Jining, China
| | - Weixin Yan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuhui Wu
- The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Ting Xia
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yuhua Wang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Sha Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chuying Zhou
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Shuwen Xie
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Shanshan Kuang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Wen Kong
- Guangzhou Hospital of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Zhiping Lv
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
8
|
Guo ZP, Chen L, Tang LR, Gao Y, Chand T, Sen ZD, Li M, Walter M, Wang L, Liu CH. Association between decreased interhemispheric functional connectivity of the insula and duration of illness in recurrent depression. J Affect Disord 2023; 329:88-95. [PMID: 36841304 DOI: 10.1016/j.jad.2023.02.083] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 02/27/2023]
Abstract
OBJECTIVE To investigate the altered interhemispheric functional connectivity in the resting state in patients with recurrent major depressive disorder (MDD). METHODS Voxel-mirrored homotopic connectivity (VMHC), a measure of the functional connectivity between any pair of symmetrical interhemispheric voxels, and pattern classification were examined in 41 recurrent MDD patients (22 during the depressive state and 19 during the remitted state) and 60 age, sex, and education level-matched healthy controls (HC) using resting-state functional magnetic resonance imaging (fMRI). RESULTS Compared with HC, the recurrent MDD patients exhibited decreased VMHC values in the bilateral fusiform, inferior occipital gyrus, posterior insula, precentral gyrus, precuneus, superior temporal gyrus, and thalamus. A significant negative correlation between the VMHC value of the bilateral posterior insula and illness duration in recurrent MDD was identified. Support vector machine (SVM) analysis showed that VMHC in the fusiform and posterior insula could be used to distinguish recurrent MDD patients from HC with a sensitivity and accuracy >0.6. CONCLUSION Our findings revealed a reduction in the resting-state brain activity across several neural networks in patients with recurrent MDD, including within the posterior insula. Lower VMHC values in the posterior insula were associated with longer illness duration, suggesting that impairment in interhemispheric synchronization within the salience network may be due to the accumulated pathology of depression and may contribute to future depression relapse. VMHC changes in the posterior insula may serve as a potential imaging marker to discriminate recurrent MDD patients from HC.
Collapse
Affiliation(s)
- Zhi-Peng Guo
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Lei Chen
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Li-Rong Tang
- Beijing Hospital of Anding, Capital Medical University, Beijing 100088, China
| | - Yue Gao
- Beijing Hospital of Anding, Capital Medical University, Beijing 100088, China
| | - Tara Chand
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg 39120, Germany; Department of Clinical Psychology, Friedrich Schiller University, Jena, Germany
| | - Zümrüt Duygu Sen
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Meng Li
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg 39120, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena 07743, Germany; Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg 39120, Germany; Center for Intervention and Research on adaptive and maladaptive brain Circuits underlying mental health (C-I-R-C), Jena-Magdeburg-Halle, Germany; German Center for Mental Health (DZPG), Site Halle-Jena-Magdeburg, Germany; Department of Psychiatry and Psychotherapy, University of Tuebingen, Tuebingen 72074, Germany; Department Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Lihong Wang
- Department of Psychiatry, University of Connecticut Health Center, Farmington, CT 06030, USA.
| | - Chun-Hong Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China.
| |
Collapse
|
9
|
Ayyash S, Sunderji A, Gallant HD, Hall A, Davis AD, Pokhvisneva I, Meaney MJ, Silveira PP, Sassi RB, Hall GB. Examining resting-state network connectivity in children exposed to perinatal maternal adversity using anatomically weighted functional connectivity (awFC) analyses; A preliminary report. Front Neurosci 2023; 17:1066373. [PMID: 37008220 PMCID: PMC10060836 DOI: 10.3389/fnins.2023.1066373] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/16/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionEnvironmental perturbations during critical periods can have pervasive, organizational effects on neurodevelopment. To date, the literature examining the long-term impact of early life adversity has largely investigated structural and functional imaging data outcomes independently. However, emerging research points to a relationship between functional connectivity and the brain’s underlying structural architecture. For instance, functional connectivity can be mediated by the presence of direct or indirect anatomical pathways. Such evidence warrants the use of structural and functional imaging in tandem to study network maturation. Accordingly, this study examines the impact of poor maternal mental health and socioeconomic context during the perinatal period on network connectivity in middle childhood using an anatomically weighted functional connectivity (awFC) approach. awFC is a statistical model that identifies neural networks by incorporating information from both structural and functional imaging data.MethodsResting-state fMRI and DTI scans were acquired from children aged 7–9 years old.ResultsOur results indicate that maternal adversity during the perinatal period can affect offspring’s resting-state network connectivity during middle childhood. Specifically, in comparison to controls, children of mothers who had poor perinatal maternal mental health and/or low socioeconomic status exhibited greater awFC in the ventral attention network.DiscussionThese group differences were discussed in terms of the role this network plays in attention processing and maturational changes that may accompany the consolidation of a more adult-like functional cortical organization. Furthermore, our results suggest that there is value in using an awFC approach as it may be more sensitive in highlighting connectivity differences in developmental networks associated with higher-order cognitive and emotional processing, as compared to stand-alone FC or SC analyses.
Collapse
Affiliation(s)
- Sondos Ayyash
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Aleeza Sunderji
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Heather D. Gallant
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Alexander Hall
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
| | - Andrew D. Davis
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Irina Pokhvisneva
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Michael J. Meaney
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Faculty of Medicine and Health Sciences, Department of Psychiatry, McGill University, Montreal, QC, Canada
- Translational Neuroscience Program, Agency for Science, Technology and Research (A*STAR), Singapore Yong Loo Lin School of Medicine, Singapore Institute for Clinical Sciences and Brain – Body Initiative, National University of Singapore, Singapore, Singapore
| | - Patricia Pelufo Silveira
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
- Faculty of Medicine and Health Sciences, Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Roberto B. Sassi
- Department of Psychiatry, The University of British Columbia, Vancouver, BC, Canada
| | - Geoffrey B. Hall
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, ON, Canada
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
- *Correspondence: Geoffrey B. Hall,
| |
Collapse
|
10
|
Tarchi L, Damiani S, Vittori PLT, Frick A, Castellini G, Politi P, Fusar-Poli P, Ricca V. Progressive Voxel-Wise Homotopic Connectivity from childhood to adulthood: Age-related functional asymmetry in resting-state functional magnetic resonance imaging. Dev Psychobiol 2023; 65:e22366. [PMID: 36811370 DOI: 10.1002/dev.22366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 10/11/2022] [Accepted: 09/21/2022] [Indexed: 01/12/2023]
Abstract
Homotopic connectivity during resting state has been proposed as a risk marker for neurologic and psychiatric conditions, but a precise characterization of its trajectory through development is currently lacking. Voxel-Mirrored Homotopic Connectivity (VMHC) was evaluated in a sample of 85 neurotypical individuals aged 7-18 years. VMHC associations with age, handedness, sex, and motion were explored at the voxel-wise level. VMHC correlates were also explored within 14 functional networks. Primary and secondary outcomes were repeated in a sample of 107 adults aged 21-50 years. In adults, VMHC was negatively correlated with age only in the posterior insula (false discovery rate p < .05, >30-voxel clusters), while a distributed effect among the medial axis was observed in minors. Four out of 14 considered networks showed significant negative correlations between VMHC and age in minors (basal ganglia r = -.280, p = .010; anterior salience r = -.245, p = .024; language r = -.222, p = .041; primary visual r = -.257, p = .017), but not adults. In minors, a positive effect of motion on VMHC was observed only in the putamen. Sex did not significantly influence age effects on VMHC. The current study showed a specific decrease in VMHC for minors as a function of age, but not adults, supporting the notion that interhemispheric interactions can shape late neurodevelopment.
Collapse
Affiliation(s)
- Livio Tarchi
- Psychiatry Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - Stefano Damiani
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | - Andreas Frick
- Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Giovanni Castellini
- Psychiatry Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - Pierluigi Politi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Paolo Fusar-Poli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.,Early Psychosis: Interventions and Clinical-detection (EPIC) Lab, Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.,OASIS Service, South London and Maudsley NHS Foundation Trust, London, UK
| | - Valdo Ricca
- Psychiatry Unit, Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
11
|
Raizman R, Itzhaki N, Sirkin J, Meningher I, Tsarfaty G, Keren O, Zibli Z, Silberg T, Pick CG, Livny A. Decreased homotopic functional connectivity in traumatic brain injury. Cereb Cortex 2023; 33:1207-1216. [PMID: 35353131 DOI: 10.1093/cercor/bhac130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 11/12/2022] Open
Abstract
INTRODUCTION Homotopic functional connectivity (HoFC), the synchrony in activity patterns between homologous brain regions, is a fundamental characteristic of resting-state functional connectivity (RsFC). METHODS We examined the difference in HoFC, computed as the correlation between atlas-based regions and their counterpart on the opposite hemisphere, in 16 moderate-severe traumatic brain injury patients (msTBI) and 36 healthy controls. Regions of decreased HoFC in msTBI patients were further used as seeds for examining differences between groups in correlations with other brain regions. Finally, we computed logistic regression models of regional HoFC and fractional anisotropy (FA) of the corpus callosum (CC). RESULTS TBI patients exhibited decreased HoFC in the middle and posterior cingulate cortex, thalamus, superior temporal pole, and cerebellum III. Furthermore, decreased RsFC was found between left cerebellum III and right parahippocampal cortex and vermis, between superior temporal pole and left caudate and medial left and right frontal orbital gyri. Thalamic HoFC and FA of the CC discriminate patients as msTBI with a high accuracy of 96%. CONCLUSION TBI is associated with regionally decreased HoFC. Moreover, a multimodality model of interhemispheric connectivity allowed for a high degree of accuracy in disease discrimination and enabled a deeper understanding of TBI effects on brain interhemispheric reorganization post-TBI.
Collapse
Affiliation(s)
- Reut Raizman
- Division of Diagnostic Imaging, Sheba Medical Center, 5262000 Tel-Hashomer, Israel.,Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, 69979 Tel-Aviv, Israel
| | - Nofar Itzhaki
- Division of Diagnostic Imaging, Sheba Medical Center, 5262000 Tel-Hashomer, Israel
| | - Johanna Sirkin
- Department of Psychology, Reichman University, Herzelia, Israel
| | - Inbar Meningher
- Division of Diagnostic Imaging, Sheba Medical Center, 5262000 Tel-Hashomer, Israel
| | - Galia Tsarfaty
- Division of Diagnostic Imaging, Sheba Medical Center, 5262000 Tel-Hashomer, Israel.,Department of imaging, Sackler Faculty of Medicine, Tel-Aviv University, 69979 Tel-Aviv, Israel
| | - Ofer Keren
- Department of Brain Injury Rehabilitation, Sheba Medical Center, 5262000 Tel-Hashomer, Israel
| | - Zion Zibli
- Department of Neurosurgery, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, 69979 Ramat Gan, Israel
| | - Tamar Silberg
- Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, Israel.,Department of Psychology, Bar Ilan University, 5290002 Ramat Gan, Israel
| | - Chaim G Pick
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel-Aviv University, 69979 Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, 69979 Tel Aviv, Israel.,The Dr. Miriam and Sheldon G. Adelson, Chair and Center for the Biology of Addictive Diseases, Tel-Aviv University, 69979 Tel-Aviv, Israel.,Sylvan Adams Sports Institute, Tel Aviv University, 69979 Tel Aviv, Israel
| | - Abigail Livny
- Division of Diagnostic Imaging, Sheba Medical Center, 5262000 Tel-Hashomer, Israel.,Department of imaging, Sackler Faculty of Medicine, Tel-Aviv University, 69979 Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel Aviv University, 69979 Tel Aviv, Israel
| |
Collapse
|
12
|
Fang Y, Wang M, Potter GG, Liu M. Unsupervised cross-domain functional MRI adaptation for automated major depressive disorder identification. Med Image Anal 2023; 84:102707. [PMID: 36512941 PMCID: PMC9850278 DOI: 10.1016/j.media.2022.102707] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 11/21/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
Resting-state functional magnetic resonance imaging (rs-fMRI) data have been widely used for automated diagnosis of brain disorders such as major depressive disorder (MDD) to assist in timely intervention. Multi-site fMRI data have been increasingly employed to augment sample size and improve statistical power for investigating MDD. However, previous studies usually suffer from significant inter-site heterogeneity caused for instance by differences in scanners and/or scanning protocols. To address this issue, we develop a novel discrepancy-based unsupervised cross-domain fMRI adaptation framework (called UFA-Net) for automated MDD identification. The proposed UFA-Net is designed to model spatio-temporal fMRI patterns of labeled source and unlabeled target samples via an attention-guided graph convolution module, and also leverage a maximum mean discrepancy constrained module for unsupervised cross-site feature alignment between two domains. To the best of our knowledge, this is one of the first attempts to explore unsupervised rs-fMRI adaptation for cross-site MDD identification. Extensive evaluation on 681 subjects from two imaging sites shows that the proposed method outperforms several state-of-the-art methods. Our method helps localize disease-associated functional connectivity abnormalities and is therefore well interpretable and can facilitate fMRI-based analysis of MDD in clinical practice.
Collapse
Affiliation(s)
- Yuqi Fang
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| | - Mingliang Wang
- School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Guy G Potter
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC 27710, United States.
| | - Mingxia Liu
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States.
| |
Collapse
|
13
|
Abnormal dynamic functional network connectivity in first-episode, drug-naïve patients with major depressive disorder. J Affect Disord 2022; 319:336-343. [PMID: 36084757 DOI: 10.1016/j.jad.2022.08.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/25/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022]
Abstract
Dynamic functional network connectivity (dFNC) could capture temporal features of spontaneous brain activity during MRI scanning, and it might be a powerful tool to examine functional brain network alters in major depressive disorder (MDD). Therefore, this study investigated the changes in temporal properties of dFNC of first-episode, drug-naïve patients with MDD. A total of 48 first-episode, drug-naïve MDD patients and 46 age- and gender-matched healthy controls were recruited in this study. Sliding windows were implied to construct dFNC. We assessed the relationships between altered dFNC temporal properties and depressive symptoms. Receiver operating characteristic (ROC) curve analyses were used to examine the diagnostic performance of these altered temporal properties. The results showed that patients with MDD have more occurrences and spent more time in a weak connection state, but with fewer occurrences and shorter dwell time in a strong connection state. Importantly, the fractional time and mean dwell time of state 2 was negatively correlated with Hamilton Depression Rating Scale (HDRS) scores. ROC curve analysis demonstrated that these temporal properties have great identified power including the fractional time and mean dwell time in state 2, and the AUC is 0.872, 0.837, respectively. The AUC of the combination of fractional time and mean dwell time in state 2 with age, gender is 0.881. Our results indicated the temporal properties of dFNC are altered in first-episode, drug-naïve patients with MDD, and these changes' properties could serve as a potential biomarker in MDD.
Collapse
|
14
|
Yao S, Kendrick KM. Reduced homotopic interhemispheric connectivity in psychiatric disorders: evidence for both transdiagnostic and disorder specific features. PSYCHORADIOLOGY 2022; 2:129-145. [PMID: 38665271 PMCID: PMC11003433 DOI: 10.1093/psyrad/kkac016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 04/28/2024]
Abstract
There is considerable interest in the significance of structural and functional connections between the two brain hemispheres in terms of both normal function and in relation to psychiatric disorders. In recent years, many studies have used voxel mirrored homotopic connectivity analysis of resting state data to investigate the importance of connectivity between homotopic regions in the brain hemispheres in a range of neuropsychiatric disorders. The current review summarizes findings from these voxel mirrored homotopic connectivity studies in individuals with autism spectrum disorder, addiction, attention deficit hyperactivity disorder, anxiety and depression disorders, and schizophrenia, as well as disorders such as Alzheimer's disease, mild cognitive impairment, epilepsy, and insomnia. Overall, other than attention deficit hyperactivity disorder, studies across psychiatric disorders report decreased homotopic resting state functional connectivity in the default mode, attention, salience, sensorimotor, social cognition, visual recognition, primary visual processing, and reward networks, which are often associated with symptom severity and/or illness onset/duration. Decreased homotopic resting state functional connectivity may therefore represent a transdiagnostic marker for general psychopathology. In terms of disorder specificity, the extensive decreases in homotopic resting state functional connectivity in autism differ markedly from attention deficit hyperactivity disorder, despite both occurring during early childhood and showing extensive co-morbidity. A pattern of more posterior than anterior regions showing reductions in schizophrenia is also distinctive. Going forward, more studies are needed to elucidate the functions of these homotopic functional connections in both health and disorder and focusing on associations with general psychopathology, and not only on disorder specific symptoms.
Collapse
Affiliation(s)
- Shuxia Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Keith M Kendrick
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
15
|
Deng K, Yue JH, Xu J, Ma PP, Chen X, Li L, Bai TJ, Bo QJ, Cao J, Chen GM, Chen NX, Chen W, Cheng C, Cui XL, Duan J, Fang YR, Gong QY, Guo WB, Hou ZH, Hu L, Kuang L, Li F, Li T, Liu YS, Liu ZN, Long YC, Luo QH, Meng HQ, Peng DH, Qiu HT, Qiu J, Shi YS, Si TM, Tang YQ, Wang F, Wang K, Wang L, Wang X, Wang Y, Wu XP, Wu XR, Xie CM, Xie GR, Xie HY, Xie P, Yang H, Yang J, Yao JS, Yao SQ, Yin YY, Yuan YG, Zhang AX, Zhang H, Zhang KR, Zhang L, Zhang ZJ, Zhou RB, Zhou YT, Zhu JJ, Zou CJ, Zhou C, Zuo XN, Yan CG, Xu XF, Cheng YQ, Cheng YQ. Impaired robust interhemispheric function integration of depressive brain from REST-meta-MDD database in China. Bipolar Disord 2022; 24:400-411. [PMID: 34606159 DOI: 10.1111/bdi.13139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/22/2021] [Accepted: 09/25/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Recently, functional homotopy (FH) architecture, defined as robust functional connectivity (FC) between homotopic regions, has been frequently reported to be altered in MDD patients (MDDs) but with divergent locations. METHODS In this study, we obtained resting-state functional magnetic resonance imaging (R-fMRI) data from 1004 MDDs (mean age, 33.88 years; age range, 18-60 years) and 898 matched healthy controls (HCs) from an aggregated dataset from 20 centers in China. We focused on interhemispheric function integration in MDDs and its correlation with clinical characteristics using voxel-mirrored homotopic connectivity (VMHC) devised to inquire about FH patterns. RESULTS As compared with HCs, MDDs showed decreased VMHC in visual, motor, somatosensory, limbic, angular gyrus, and cerebellum, particularly in posterior cingulate gyrus/precuneus (PCC/PCu) (false discovery rate [FDR] q < 0.002, z = -7.07). Further analysis observed that the reduction in SMG and insula was more prominent with age, of which SMG reflected such age-related change in males instead of females. Besides, the reduction in MTG was found to be a male-special abnormal pattern in MDDs. VMHC alterations were markedly related to episode type and illness severity. The higher Hamilton Depression Rating Scale score, the more apparent VMHC reduction in the primary visual cortex. First-episode MDDs revealed stronger VMHC reduction in PCu relative to recurrent MDDs. CONCLUSIONS We confirmed a significant VMHC reduction in MDDs in broad areas, especially in PCC/PCu. This reduction was affected by gender, age, episode type, and illness severity. These findings suggest that the depressive brain tends to disconnect information exchange across hemispheres.
Collapse
Affiliation(s)
- Ke Deng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.,Department of Psychiatry, The First Hospital of Jiaxing or The First Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Ji-Hui Yue
- Department of Psychiatry, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China.,Research Center of Molecular Imaging, Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jian Xu
- Department of Rheumatology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ping-Ping Ma
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China.,Fifth People's Hospital of Zigong City, Zigong, Sichuan, China
| | - Xiao Chen
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Le Li
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | | | - Qi-Jing Bo
- Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Jun Cao
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guan-Mao Chen
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Ning-Xuan Chen
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Wei Chen
- Department of Psychiatry, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Chang Cheng
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xi-Long Cui
- Department of Psychiatry, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Jia Duan
- Department of Psychiatry, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Yi-Ru Fang
- Department of Psychiatry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi-Yong Gong
- Department of Radiology, Huaxi MR Research Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China.,Psychoradiology Research Unit of Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wen-Bin Guo
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zheng-Hua Hou
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Lan Hu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Kuang
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Feng Li
- Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Tao Li
- Mental Health Center, West China Hospital, Sichuan University Chengdu, Sichuan, China
| | - Yan-Song Liu
- Department of Clinical Psychology, Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Zhe-Ning Liu
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yi-Cheng Long
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qing-Hua Luo
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hua-Qing Meng
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dai-Hui Peng
- Department of Psychiatry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hai-Tang Qiu
- Department of Psychiatry, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiang Qiu
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Yu-Shu Shi
- Department of Radiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tian-Mei Si
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China.,Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Yan-Qin Tang
- Department of Psychiatry, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Fei Wang
- Department of Psychiatry, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China
| | - Kai Wang
- Anhui Medical University, Hefei, Anhui, China
| | - Li Wang
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital, Beijing, China.,Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Xiang Wang
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ying Wang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | | | - Xin-Ran Wu
- Faculty of Psychology, Southwest University, Chongqing, China
| | - Chun-Ming Xie
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, Jiangsu, China
| | - Guang-Rong Xie
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Hai-Yan Xie
- Department of Psychiatry, The Fourth Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Peng Xie
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Neurobiology, Chongqing, China.,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hong Yang
- Department of Radiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian Yang
- The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Jia-Shu Yao
- Department of Psychiatry, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shu-Qiao Yao
- Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ying-Ying Yin
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Yong-Gui Yuan
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Ai-Xia Zhang
- The First Affiliated Hospital of Xi'an Jiaotong University, Shaanxi, China
| | - Hong Zhang
- Xi'an Central Hospital, Xi'an, Shaanxi, China
| | - Ke-Rang Zhang
- First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Lei Zhang
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Zhi-Jun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, Nanjing, Jiangsu, China
| | - Ru-Bai Zhou
- Department of Psychiatry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Ting Zhou
- Mental Health Center, West China Hospital, Sichuan University Chengdu, Sichuan, China
| | - Jun-Juan Zhu
- Department of Psychiatry, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao-Jie Zou
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Cong Zhou
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xi-Nian Zuo
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Chao-Gan Yan
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Xiu-Feng Xu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yu-Qi Cheng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yu-Qi Cheng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China
| |
Collapse
|
16
|
Zheng G, Yingli Z, Shengli C, Zhifeng Z, Bo P, Gangqiang H, Yingwei Q. Aberrant Inter-hemispheric Connectivity in Patients With Recurrent Major Depressive Disorder: A Multimodal MRI Study. Front Neurol 2022; 13:852330. [PMID: 35463118 PMCID: PMC9028762 DOI: 10.3389/fneur.2022.852330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/11/2022] [Indexed: 01/19/2023] Open
Abstract
Objective Inter-hemispheric network dysconnectivity has been well-documented in patients with recurrent major depressive disorder (MDD). However, it has remained unclear how structural networks between bilateral hemispheres relate to inter-hemispheric functional dysconnectivity and depression severity in MDD. Our study attempted to investigate the alterations in corpus callosum macrostructural and microstructural as well as inter-hemispheric homotopic functional connectivity (FC) in patients with recurrent MDD and to determine how these alterations are related with depressive severity. Materials and Methods Resting-state functional MRI (fMRI), T1WI anatomical images and diffusion tensor MRI of the whole brain were performed in 140 MDD patients and 44 normal controls matched for age, sex, years of education. We analyzed the macrostructural and microstructural integrity as well as voxel-mirrored homotopic functional connectivity (VMHC) of corpus callosum (CC) and its five subregion. Two-sample t-test was used to investigate the differences between the two groups. Significant subregional metrics were correlated with depression severity by spearman's correlation analysis, respectively. Results Compared with control subjects, MDD patients had significantly attenuated inter-hemispheric homotopic FC in the bilateral medial prefrontal cortex, and impaired anterior CC microstructural integrity (each comparison had a corrected P < 0.05), whereas CC macrostructural measurements remained stable. In addition, disruption of anterior CC microstructural integrity correlated with a reduction in FC in the bilateral medial prefrontal cortex, which correlated with depression severity in MDD patients. Furthermore, disruption of anterior CC integrity exerted an indirect influence on depression severity in MDD patients through an impairment of inter-hemispheric homotopic FC. Conclusion These findings may help to advance our understanding of the neurobiological basis of depression by identifying region-specific interhemispheric dysconnectivity.
Collapse
Affiliation(s)
- Guo Zheng
- Department of Hematology and Oncology, International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of Shenzhen University, Shenzhen University General Hospital, Shenzhen University Health Science Center, Shenzhen University, Shenzhen, China
| | - Zhang Yingli
- Department of Depressive Disorder, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
| | - Chen Shengli
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
| | - Zhou Zhifeng
- Department of Radiology, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
| | - Peng Bo
- Department of Depressive Disorder, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
| | - Hou Gangqiang
- Department of Radiology, Shenzhen Kangning Hospital, Shenzhen Mental Health Center, Shenzhen, China
- *Correspondence: Hou Gangqiang
| | - Qiu Yingwei
- Department of Radiology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- Qiu Yingwei
| |
Collapse
|
17
|
Jiang Y, Chen Y, Zheng R, Zhou B, Wei Y, Gao A, Wei Y, Li S, Guo J, Han S, Zhang Y, Cheng J. More Than Just Statics: Temporal Dynamic Changes in Inter- and Intrahemispheric Functional Connectivity in First-Episode, Drug-Naive Patients With Major Depressive Disorder. Front Hum Neurosci 2022; 16:868135. [PMID: 35463932 PMCID: PMC9024080 DOI: 10.3389/fnhum.2022.868135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Several functional magnetic resonance imaging (fMRI) studies have demonstrated abnormalities in static intra- and interhemispheric functional connectivity among diverse brain regions in patients with major depressive disorder (MDD). However, the dynamic changes in intra- and interhemispheric functional connectivity patterns in patients with MDD remain unclear. Fifty-eight first-episode, drug-naive patients with MDD and 48 age-, sex-, and education level-matched healthy controls (HCs) underwent resting-state fMRI. Whole-brain functional connectivity, analyzed using the functional connectivity density (FCD) approach, was decomposed into ipsilateral and contralateral functional connectivity. We computed the intra- and interhemispheric dynamic FCD (dFCD) using a sliding window analysis to capture the dynamic patterns of functional connectivity. The temporal variability in functional connectivity was quantified as the variance of the dFCD over time. In addition, intra- and interhemispheric static FCD (sFCD) patterns were calculated. Associations between the dFCD variance and sFCD in abnormal brain regions and the severity of depressive symptoms were analyzed. Compared to HCs, patients with MDD showed lower interhemispheric dFCD variability in the inferior/middle frontal gyrus and decreased sFCD in the medial prefrontal cortex/anterior cingulate cortex and posterior cingulate cortex/precuneus in both intra- and interhemispheric comparisons. No significant correlations were found between any abnormal dFCD variance or sFCD at the intra- and interhemispheric levels and the severity of depressive symptoms. Our results suggest intra- and interhemispheric functional connectivity alterations in the dorsolateral prefrontal cortex (DLPFC) and default mode network regions involved in cognition, execution and emotion. Furthermore, our study emphasizes the essential role of altered interhemispheric communication dynamics in the DLPFC in patients with MDD. These findings contribute to our understanding of the pathophysiology of MDD.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Yuan Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Ruiping Zheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Bingqian Zhou
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Ying Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Ankang Gao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
| | - Shuying Li
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | | | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- *Correspondence: Shaoqiang Han,
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Yong Zhang,
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging of Zhengzhou, Zhengzhou, China
- Key Laboratory of Imaging Intelligence Research Medicine of Henan Province, Zhengzhou, China
- Jingliang Cheng,
| |
Collapse
|
18
|
Hu G, Ge H, Yang K, Liu D, Liu Y, Jiang Z, Hu X, Xiao C, Zou Y, Liu H, Hu X, Chen J. Altered static and dynamic voxel-mirrored homotopic connectivity in patients with frontal glioma. Neuroscience 2022; 490:79-88. [PMID: 35278629 DOI: 10.1016/j.neuroscience.2022.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/19/2022] [Accepted: 03/04/2022] [Indexed: 01/02/2023]
Abstract
Contralateral regions play critical role in functional compensation in glioma patients. Voxel-mirrored homotopic connectivity (VMHC) characterizes the intrinsic functional connectivity (FC) of the brain, considered to have a regional functional basis. We aimed to investigate the alterations of brain regional function and VMHC in patients with frontal glioma, and further investigated the correlation between these alterations and cognition. We enrolled patients with frontal glioma and matched healthy controls (HC). We chose degree centrality (DC), regional homogeneity (ReHo), and VMHC to investigate the alterations of regional function and intrinsic FC in patients. Furthermore, partial correlation analyses were conducted to explore the relationship between imaging functional indicators and cognitions. Compared with HC, patients showed decreased static VMHC within right and left middle frontal gyrus (MFG.R, MFG.L), left superior frontal gyrus (SFG.L), right precuneus (PCUN.R), and left precuneus (PCUN.L), decreased static DC within left cingulate gyrus (CG.L), right superior frontal gyrus (SFG.R), and right postcentral gyrus (POCG.R), decreased static ReHo within CG.L, decreased dynamic ReHo within right inferior parietal lobule (IPL.R), but increased dynamic VMHC (dVMHC) within PCUN.R and PCUN.L. Furthermore, values of decreased VMHC within MFG.R, decreased DC within CG.L, decreased ReHo within CG.L, and increased dVMHC within PCUN.R were significantly positively correlated with cognitive functions. We preliminarily confirmed glioma causes regional dysfunction and disturbs long-distance FC, and long-distance FC showed strong instability in patients with frontal glioma. Meanwhile, the correlation analyses indicated directions for cognitive protection in patients with frontal glioma.
Collapse
Affiliation(s)
- Guanjie Hu
- Department of Neurosurgery, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Honglin Ge
- Department of Neurosurgery, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Kun Yang
- Department of Neurosurgery, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Dongming Liu
- Department of Neurosurgery, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yong Liu
- Department of Neurosurgery, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Zijuan Jiang
- Department of Neurosurgery, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Xiao Hu
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Chaoyong Xiao
- Department of Radiology, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Yuanjie Zou
- Department of Neurosurgery, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Hongyi Liu
- Department of Neurosurgery, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
| | - Xinhua Hu
- Department of Neurosurgery, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| | - Jiu Chen
- Institute of Neuropsychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Fourth Clinical College of Nanjing Medical University, Nanjing, Jiangsu, 210029, China; Institute of Brain Functional Imaging, Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
19
|
Revisiting Hemispheric Asymmetry in Mood Regulation: Implications for rTMS for Major Depressive Disorder. Brain Sci 2022; 12:brainsci12010112. [PMID: 35053856 PMCID: PMC8774216 DOI: 10.3390/brainsci12010112] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Abstract
Hemispheric differences in emotional processing have been observed for over half a century, leading to multiple theories classifying differing roles for the right and left hemisphere in emotional processing. Conventional acceptance of these theories has had lasting clinical implications for the treatment of mood disorders. The theory that the left hemisphere is broadly associated with positively valenced emotions, while the right hemisphere is broadly associated with negatively valenced emotions, drove the initial application of repetitive transcranial magnetic stimulation (rTMS) for the treatment of major depressive disorder (MDD). Subsequent rTMS research has led to improved response rates while adhering to the same initial paradigm of administering excitatory rTMS to the left prefrontal cortex (PFC) and inhibitory rTMS to the right PFC. However, accumulating evidence points to greater similarities in emotional regulation between the hemispheres than previously theorized, with potential implications for how rTMS for MDD may be delivered and optimized in the near future. This review will catalog the range of measurement modalities that have been used to explore and describe hemispheric differences, and highlight evidence that updates and advances knowledge of TMS targeting and parameter selection. Future directions for research are proposed that may advance precision medicine and improve efficacy of TMS for MDD.
Collapse
|
20
|
Gao Y, Wang X, Xiong Z, Ren H, Liu R, Wei Y, Li D. Abnormal Fractional Amplitude of Low-Frequency Fluctuation as a Potential Imaging Biomarker for First-Episode Major Depressive Disorder: A Resting-State fMRI Study and Support Vector Machine Analysis. Front Neurol 2021; 12:751400. [PMID: 34912284 PMCID: PMC8666416 DOI: 10.3389/fneur.2021.751400] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/27/2021] [Indexed: 12/24/2022] Open
Abstract
Objective: Major depressive disorder (MDD) is a psychiatric disorder with serious negative health outcomes; however, there is no reliable method of diagnosis. This study explored the clinical diagnostic value of the fractional amplitude of low-frequency fluctuation (fALFF) based on the support vector machine (SVM) method for the diagnosis of MDD. Methods: A total of 198 first-episode MDD patients and 234 healthy controls were involved in this study, and all participants underwent resting-state functional magnetic resonance imaging (fMRI) scanning. Imaging data were analyzed with the fALFF and SVM methods. Results: Compared with the healthy controls, the first-episode MDD patients showed higher fALFF in the left mid cingulum, right precuneus, and left superior frontal gyrus (SFG). The increased fALFF in these three brain regions was positively correlated with the executive control reaction time (ECRT), and the increased fALFF in the left mid cingulum and left SFG was positively correlated with the 17-item Hamilton Rating Scale for Depression (HRSD-17) scores. The SVM results showed that increased fALFF in the left mid cingulum, right precuneus, and left SFG exhibited high diagnostic accuracy of 72.92% (315/432), 71.76% (310/432), and 73.84% (319/432), respectively. The highest diagnostic accuracy of 76.39% (330/432) was demonstrated for the combination of increased fALFF in the right precuneus and left SFG, along with a sensitivity of 84.34% (167/198), and a specificity of 70.51% (165/234). Conclusion: Increased fALFF in the left mid cingulum, right precuneus, and left SFG may serve as a neuroimaging marker for first-episode MDD. The use of the increased fALFF in the right precuneus and left SFG in combination showed the best diagnostic value.
Collapse
Affiliation(s)
- Yujun Gao
- Department of Psychiatry, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xi Wang
- Department of Mental Health, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zhenying Xiong
- Department of Psychiatry, Jiangxia District Mental Hospital, Wuhan, China
| | - Hongwei Ren
- Department of Medical Imaging, Tianyou Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Ruoshi Liu
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yafen Wei
- First Department of Neurology and Neuroscience Center, Heilongjiang Provincial Hospital, Harbin, China
| | - Dongbin Li
- First Department of Neurology and Neuroscience Center, Heilongjiang Provincial Hospital, Harbin, China.,Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
21
|
Liu Y, Ou Y, Zhao J, Guo W. Abnormal interhemispheric homotopic functional connectivity is correlated with gastrointestinal symptoms in patients with major depressive disorder. J Psychiatr Res 2021; 144:234-240. [PMID: 34700211 DOI: 10.1016/j.jpsychires.2021.10.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/06/2021] [Accepted: 10/18/2021] [Indexed: 10/20/2022]
Abstract
The severity of major depressive disorder (MDD) can be aggravated by gastrointestinal (GI) symptoms, but the neuroimaging mechanism underlying GI symptoms still remains unclear. In this study, we recruited 52 medication-free and first-episode MDD patients (35 with GI symptoms and 17 without GI symptoms) and 28 age-, sex-, and education-matched healthy controls to explore the inter-group differences in neuroimaging findings. All the participants underwent resting-state functional magnetic resonance imaging (fMRI) scan, and the functional connectivities that were reported to be abnormal in MDD were our focus of exploration. Voxel-mirrored homotopic connectivity (VMHC) method was used to explore the interhemispheric homotopic functional connectivity of all the subjects. Patients with MDD showed significantly different VMHC in brain regions in the default mode network (DMN), including the middle frontal gyrus, precuneus, inferior parietal lobule, and posterior cingulate cortex. Patients with GI symptoms exhibited significantly decreased interhemispheric homotopic functional connectivity in the middle frontal gyrus and superior frontal gyrus, compared with patients without GI symptoms. These results suggested that the DMN is involved in the neuropathology of MDD. Interhemispheric homotopic connectivity in specific regions could be applied as a biomarker to distinguish MDD patients with GI symptoms from those without GI symptoms.
Collapse
Affiliation(s)
- Yi Liu
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yangpan Ou
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jingping Zhao
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Wenbin Guo
- National Clinical Research Center for Mental Disorders, and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
22
|
Tan SW, Cai GQ, Li QY, Guo Y, Pan YC, Zhang LJ, Ge QM, Shu HY, Zeng XJ, Shao Y. Interhemispheric Functional Connectivity Alterations in Diabetic Optic Neuropathy: A Resting-State Functional Magnetic Resonance Imaging Study. Diabetes Metab Syndr Obes 2021; 14:2077-2086. [PMID: 34007194 PMCID: PMC8123950 DOI: 10.2147/dmso.s303782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/16/2021] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Previous research suggests that diabetic optic neuropathy (DON) can cause marked anatomical and functional variations in the brain, but to date altered functional synchronization between two functional hemispheres remains uncharacterized in DON patients. Voxel mirrored homotopic connectivity (VMHC) is a voxel-based method to evaluate the synchronism between two mirrored hemispheric by determining the functional connectivity between each voxel in one hemisphere and its counterpart. In this study, we aim to assess abnormal changes in interhemispheric functional connectivity in DON patients via the VMHC method. METHODS The study included 28 adult DON patients (12 male, 16 female) and 28 healthy controls (12 male, 16 female) who were closely matched for sex and age. Participants were examined using resting-state functional magnetic resonance imaging. The VMHC method was applied to investigate the abnormal state in bilateral hemispheres in DON patients and the same regions in healthy controls, as well as the receiver operating characteristic (ROC) curves were used to evaluate characteristics. Associations between altered VMHC values in distinct cerebral regions and clinical features were assessed via correlational analysis. RESULTS Markedly lower VMHC values were evident in the right temporal inferior, the left temporal inferior, the right mid-cingulum, the left mid-cingulum, the right supplementary motor region, and the left supplementary motor region in DON patients compared with healthy controls. ROC curve analysis suggested that the application of VMHC is reliable for the diagnosis of DON. CONCLUSION Anomalous interhemispheric functional connectivity in specific brain areas caused by DON may indicate neuropathologic mechanisms of vision loss and blurry vision in patients with DON.
Collapse
Affiliation(s)
- Si-Wen Tan
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, People’s Republic of China
- The First Clinical Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, People’s Republic of China
| | - Guo-Qian Cai
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, People’s Republic of China
| | - Qiu-Yu Li
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, People’s Republic of China
| | - Yu Guo
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, People’s Republic of China
| | - Yi-Cong Pan
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, People’s Republic of China
| | - Li-Juan Zhang
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, People’s Republic of China
| | - Qian-Min Ge
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, People’s Republic of China
| | - Hui-Ye Shu
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, People’s Republic of China
| | - Xian-Jun Zeng
- Department of Radiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, People’s Republic of China
| | - Yi Shao
- Department of Ophthalmology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi Province, People’s Republic of China
| |
Collapse
|
23
|
Jin Z, Huyang S, Jiang L, Yan Y, Xu M, Wang J, Li Q, Wu D. Increased Resting-State Interhemispheric Functional Connectivity of Posterior Superior Temporal Gyrus and Posterior Cingulate Cortex in Congenital Amusia. Front Neurosci 2021; 15:653325. [PMID: 33994929 PMCID: PMC8120159 DOI: 10.3389/fnins.2021.653325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 04/06/2021] [Indexed: 11/26/2022] Open
Abstract
Interhemispheric connectivity of the two cerebral hemispheres is crucial for a broad repertoire of cognitive functions including music and language. Congenital amusia has been reported as a neurodevelopment disorder characterized by impaired music perception and production. However, little is known about the characteristics of the interhemispheric functional connectivity (FC) in amusia. In the present study, we used a newly developed voxel-mirrored homotopic connectivity (VMHC) method to investigate the interhemispheric FC of the whole brain in amusia at resting-state. Thirty amusics and 29 matched participants underwent a resting-state functional magnetic resonance imaging (fMRI) scanning. An automated VMHC approach was used to analyze the fMRI data. Compared to the control group, amusics showed increased VMHC within the posterior part of the default mode network (DMN) mainly in the posterior superior temporal gyrus (pSTG) and posterior cingulate cortex (PCC). Correlation analyses revealed negative correlations between the VMHC value in pSTG/PCC and the music perception ability among amusics. Further ROC analyses showed that the VMHC value of pSTG/PCC showed a good sensibility/specificity to differentiate the amusics from the controls. These findings provide a new perspective for understanding the neural basis of congenital amusia and imply the immature state of DMN may be a credible neural marker of amusia.
Collapse
Affiliation(s)
- Zhishuai Jin
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Sizhu Huyang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lichen Jiang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yajun Yan
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ming Xu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jinyu Wang
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qixiong Li
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Daxing Wu
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China.,Medical Psychological Institute, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorders, Changsha, China
| |
Collapse
|
24
|
Yan M, He Y, Cui X, Liu F, Li H, Huang R, Tang Y, Chen J, Zhao J, Xie G, Guo W. Disrupted Regional Homogeneity in Melancholic and Non-melancholic Major Depressive Disorder at Rest. Front Psychiatry 2021; 12:618805. [PMID: 33679477 PMCID: PMC7928375 DOI: 10.3389/fpsyt.2021.618805] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/25/2021] [Indexed: 12/17/2022] Open
Abstract
Background: Melancholic depression has been viewed as one severe subtype of major depressive disorder (MDD). However, it is unclear whether melancholic depression has distinct changes in brain imaging. We aimed to explore specific or distinctive alterations in melancholic MDD and whether the alterations could be used to separate melancholic MDD from non-melancholic MDD or healthy controls. Materials and Methods: Thirty-one outpatients with melancholic MDD and thirty-three outpatients with non-melancholic MDD and thirty-two age- and gender-matched healthy controls were recruited. All participants were scanned by resting-state functional magnetic resonance imaging (fMRI). Imaging data were analyzed with the regional homogeneity (ReHo) and support vector machine (SVM) methods. Results: Melancholic MDD patients exhibited lower ReHo in the right superior occipital gyrus/middle occipital gyrus than non-melancholic MDD patients and healthy controls. Merely for non-melancholic MDD patients, decreased ReHo in the right middle frontal gyrus was negatively correlated with the total HRSD-17 scores. SVM analysis results showed that a combination of abnormal ReHo in the right fusiform gyrus/cerebellum Crus I and the right superior occipital gyrus/middle occipital gyrus exhibited the highest accuracy of 83.05% (49/59), with a sensitivity of 90.32% (28/31), and a specificity of 75.00% (21/28) for discriminating patients with melancholic MDD from patients with non-melancholic MDD. And a combination of abnormal ReHo in the right fusiform gyrus/cerebellum VI and left postcentral gyrus/precentral gyrus exhibited the highest accuracy of 98.41% (62/63), with a sensitivity of 96.77% (30/31), and a specificity of 100.00%(32/32) for separating patients with melancholic MDD from healthy controls. Conclusion: Our findings showed the distinctive ReHo pattern in patients with melancholic MDD and found brain area that may be associated with the pathophysiology of non-melancholic MDD. Potential imaging markers for discriminating melancholic MDD from non-melancholic MDD or healthy controls were reported.
Collapse
Affiliation(s)
- Meiqi Yan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yuqiong He
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Xilong Cui
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Renzhi Huang
- Hunan Key Laboratory of Children's Psychological Development and Brain Cognitive Science, Changsha, China
| | - Yanqing Tang
- Department of Psychiatry, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jindong Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jingping Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Guangrong Xie
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China.,Department of Psychiatry, The Third People's Hospital of Foshan, Foshan, China
| |
Collapse
|
25
|
Enhanced functional connectivity between insular subregions correlates with the efficacy of music and instruction-guided relaxation in depression. Neuroreport 2020; 31:1215-1224. [PMID: 33105441 DOI: 10.1097/wnr.0000000000001534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Music and instruction-guided relaxation (MIGR) is a complementary therapeutic tool used in the treatment of the major depressive disorder (MDD). However, the neural mechanism that underlies the effect of MIGR on MDD patients is not known. Twenty-three right-handed MDD patients and 23 age-, sex-, handedness-, and educational level-matched healthy controls were enrolled. Resting-state functional MRI data were acquired from patients before and after MIGR and from healthy controls. The relationships between insular subregion-based functional connectivity and Hamilton Depression Rating Scale, Hamilton Anxiety Rating Scale (HAM-A), Automatic Thoughts Questionnaire, and Ruminative Responses Scale scores were examined. One-way analysis of variance exhibited significant differences among the three groups in functional connectivity between the left dorsal anterior insula (dAI) and left superior medial frontal gyrus (SMFG), left dAI and left precuneus, left posterior insula and left gyrus rectus, right ventral anterior insula (vAI) and left posterior cingulate cortex (PCC), right vAI and right inferior frontal gyrus (R-IFG). Further comparisons in regions of interest showed that MDD patients before MIGR showed decreased functional connectivity between the left dAI and left SMFG, left dAI and left precuneus, left posterior insula, and left gyrus rectus, right vAI and left PCC, right vAI and R-IFG relative to those in healthy controls. The strength of functional connectivity between the right dAI and left putamen also exhibited a negative correlation with the HAM-A score in MDD cases before MIGR. MIGR may result in enhanced functional connectivity in insular subregions, thereby potentially increasing the regulatory influence of cognitive reappraisal.
Collapse
|
26
|
Jin X, Liang X, Gong G. Functional Integration Between the Two Brain Hemispheres: Evidence From the Homotopic Functional Connectivity Under Resting State. Front Neurosci 2020; 14:932. [PMID: 33122984 PMCID: PMC7566168 DOI: 10.3389/fnins.2020.00932] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
Functional integration among neural units is one of the fundamental principles in brain organization that could be examined using resting-state functional connectivity (rs-FC). Interhemispheric functional integration plays a critical role in human cognition. Homotopic functional connectivity (HoFC) under resting state provide an avenue to investigate functional integration between the two brain hemispheres, which can improve the present understanding of how interhemispheric interactions affect cognitive processing. In this review, we summarize the progress of HoFC studies under resting state and highlight how these findings have enhanced our understanding of interhemispheric functional organization of the human brain. Future studies are encouraged to address particular methodological issues and to further ascertain behavioral correlates, brain disease's modulation, task influence, and genetic basis of HoFC.
Collapse
Affiliation(s)
- Xinhu Jin
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xinyu Liang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| |
Collapse
|
27
|
Brain Functional Specialization Is Enhanced Among Tai Chi Chuan Practitioners. Arch Phys Med Rehabil 2020; 101:1176-1182. [PMID: 32109436 DOI: 10.1016/j.apmr.2020.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/31/2020] [Accepted: 02/07/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To investigate the effect of long-term Tai Chi Chuan (TCC) practice on practitioners' brain functional specialization compare with the TCC novices. DESIGN A cross-sectional study. SETTING A psychology Institute. PARTICIPANTS TCC practitioners (N=22) (52.4±6.8y; 7 men; educated years: 12.18±3.03y) and 18 healthy adults (54.8±6.8y; 8 men; education years: 11.78±2.90y) matched by age, sex, and education were enrolled. MAIN OUTCOME MEASURES Participants underwent functional magnetic resonance imaging scanning and cognitive test to measure the differences in functional specialization and cognitive function. Functional specialization was evaluated by voxel-mirrored homotopic connectivity (VMHC) method. RESULTS Lower middle frontal gyrus VMHC in TCC practitioners compared to controls. For TCC practitioners, the longer they practice, the lower their VMHC in precentral and precuneus. TCC practitioners showed better cognition performance. CONCLUSIONS Changed VMHC indicated that TCC practice could enhance functional specialization in the middle frontal cortex of practitioners, which may be associated with higher-order cognitive ability.
Collapse
|
28
|
Aberrant interhemispheric functional connectivity in first-episode, drug-naïve major depressive disorder. Brain Imaging Behav 2020; 13:1302-1310. [PMID: 30145713 DOI: 10.1007/s11682-018-9917-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Many studies have indicated that depression is associated with impairment of the topological organization of the brain functional network, which may lead to disruption of mood and cognition in depressive patients. The abnormality of homotopic connectivity provides a basis for the clinical manifestations of depression, such as emotional and cognitive disorders. Several studies have investigated the abnormal imbalance of homotopic regions between the hemispheres in depressive patients. However, the reported findings are inconsistent. Additionally, the published studies have focused on only the grey matter when investigating functional connectivity abnormalities of the bilateral cerebral hemispheres in major depressive disorder (MDD). The aim of this study is to investigate functional connectivity abnormalities of the bilateral cerebral hemispheres in patients with first-episode, drug-naïve MDD using a voxel-mirrored homotopic connectivity (VMHC) method. Based on DSM-IV diagnostic criteria, 23 first-episode, drug-naïve MDD patients were recruited, together with 20 gender- and age-matched healthy normal controls. A Philips Achieva 3.0 T MRI scanner was used to acquire brain functional images at resting state as well as high-resolution structural images. The functional images were preprocessed by using Data Processing Assistant for Resting-State Functional MR Imaging toolkit and SPM8.VMHC between the bilateral hemispheres was computed and compared between the MDD and control groups. The correlation between the VMHC values of the abnormal homotopy function areas and the Hamilton Depression Rating Scale (HAMD) was evaluated in the MDD patients. Compared with the control group, the MDD patients showed significantly decreased VMHC values in the bilateral brain regions including the insular, putamen, and frontal white matter. The MDD patients did not exhibit increased VMHC values in any brain regions compared with the normal controls. In addition, a negative correlation was observed between the VMHC value in the frontal lobe white-matter and the HAMD in the MDD patients. Abnormalities in brain homotopic functional connectivity observed in this study may indicate abnormal neural circuits related to aberrant cognition and emotional processing in MDD. Although the physiological significance underlaying abnormal VMHC in white matter in the frontal lobe needs further research, our study new angle to investigate the role of white-matter abnormalities in MDD as well as other psychiatric disorders.
Collapse
|
29
|
Wang M, Hu Z, Liu L, Li H, Qian Q, Niu H. Disrupted functional brain connectivity networks in children with attention-deficit/hyperactivity disorder: evidence from resting-state functional near-infrared spectroscopy. NEUROPHOTONICS 2020; 7:015012. [PMID: 32206679 PMCID: PMC7064804 DOI: 10.1117/1.nph.7.1.015012] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 02/20/2020] [Indexed: 05/19/2023]
Abstract
Significance: Attention-deficit/hyperactivity disorder (ADHD) is the most common psychological disease in childhood. Currently, widely used neuroimaging techniques require complete body confinement and motionlessness and thus are extremely hard for brain scanning of ADHD children. Aim: We present resting-state functional near-infrared spectroscopy (fNIRS) as an imaging technique to record spontaneous brain activity in children with ADHD. Approach: The brain functional connectivity was calculated, and the graph theoretical analysis was further applied to investigate alterations in the global and regional properties of the brain network in the patients. In addition, the relationship between brain network features and core symptoms was examined. Results: ADHD patients exhibited significant decreases in both functional connectivity and global network efficiency. Meanwhile, the nodal efficiency in children with ADHD was also found to be altered, e.g., increase in the visual and dorsal attention networks and decrease in somatomotor and default mode networks, compared to the healthy controls. More importantly, the disrupted functional connectivity and nodal efficiency significantly correlated with dimensional ADHD scores. Conclusions: We clearly demonstrate the feasibility and potential of fNIRS-based connectome technique in ADHD or other neurological diseases in the future.
Collapse
Affiliation(s)
- Mengjing Wang
- Beijing Normal University, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing, China
| | - Zhishan Hu
- Beijing Normal University, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing, China
| | - Lu Liu
- Peking University Sixth Hospital, Institute of Mental Health, Beijing, China
- Peking University Sixth Hospital, National Clinical Research Center for Mental Disorders, Beijing, China
- Peking University, National Health Commission Key Laboratory of Mental Health, Beijing, China
| | - Haimei Li
- Peking University Sixth Hospital, Institute of Mental Health, Beijing, China
- Peking University Sixth Hospital, National Clinical Research Center for Mental Disorders, Beijing, China
- Peking University, National Health Commission Key Laboratory of Mental Health, Beijing, China
| | - Qiujin Qian
- Peking University Sixth Hospital, Institute of Mental Health, Beijing, China
- Peking University Sixth Hospital, National Clinical Research Center for Mental Disorders, Beijing, China
- Peking University, National Health Commission Key Laboratory of Mental Health, Beijing, China
| | - Haijing Niu
- Beijing Normal University, State Key Laboratory of Cognitive Neuroscience and Learning, Beijing, China
- Beijing Normal University, Center of Social Welfare Studies, Beijing, China
| |
Collapse
|
30
|
Scheepens DS, van Waarde JA, Lok A, de Vries G, Denys DAJP, van Wingen GA. The Link Between Structural and Functional Brain Abnormalities in Depression: A Systematic Review of Multimodal Neuroimaging Studies. Front Psychiatry 2020; 11:485. [PMID: 32581868 PMCID: PMC7283615 DOI: 10.3389/fpsyt.2020.00485] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 05/12/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Adequate and timely identification of depression is essential to improve patient care. A potential method to achieve this is by using neuroimaging. Many neuroimaging studies have revealed widespread abnormalities in brain structure and function in patients with depression, but in most studies only single neuroimaging modalities were used. Links between abnormalities in brain structure and function need to be therefore further explored in order to define diagnostic and therapeutic applications. METHODS A systematic literature review according to preferred reporting items for systematic reviews and meta-analyses (PRISMA) guidelines was conducted. RESULTS Out of 2,516 articles, only 14 studies were eligible to be included. These studies combined structural and functional neuroimaging methods in depressed patients compared to controls. Four studies reported a negative relationship between brain structure and function within the default mode network: reduced gray or white matter integrity in depressed patients compared to healthy controls was associated with enhanced neural activity or connectivity. The other studies reported positive relationships (two studies), mixed relationships (two studies), or no link (six studies) between structural and functional brain abnormalities. CONCLUSION This systematic literature review revealed no robust relationship between abnormalities in brain structure and function in patients with depression. Remarkably, only 14 studies could be included and four of these suggested enhanced default mode network connectivity associated with reduced structural brain integrity. In the ongoing development of the diagnostic and treatment applications of neuroimaging, large-scale studies that combine structural with functional neuroimaging are required to determine the relationship between structural and functional abnormalities in depression.
Collapse
Affiliation(s)
- Dominique S Scheepens
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | | | - Anja Lok
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Glenn de Vries
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Damiaan A J P Denys
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| | - Guido A van Wingen
- Department of Psychiatry, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
31
|
Layden EA, Schertz KE, London SE, Berman MG. Interhemispheric functional connectivity in the zebra finch brain, absent the corpus callosum in normal ontogeny. Neuroimage 2019; 195:113-127. [PMID: 30940612 DOI: 10.1016/j.neuroimage.2019.03.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/19/2019] [Accepted: 03/27/2019] [Indexed: 11/25/2022] Open
Abstract
Bilaterally symmetric intrinsic brain activity (homotopic functional connectivity; FC) is a fundamental feature of the mammalian brain's functional architecture. In mammals, homotopic FC is primarily mediated by the corpus callosum (CC), a large interhemispheric white matter tract thought to balance the bilateral coordination and hemispheric specialization critical for many complex brain functions, including human language. The CC first emerged with the Eutherian (placental) mammals ∼160 MYA and is not found among other vertebrates. Despite this, other vertebrates also exhibit complex brain functions requiring hemispheric specialization and coordination. For example, the zebra finch (Taeniopygia guttata) songbird learns to sing from tutors much as humans acquire speech and must balance hemispheric specialization and coordination to successfully learn and produce song. We therefore tested whether the zebra finch also exhibits homotopic FC, despite lacking the CC. Resting-state fMRI analyses demonstrated widespread homotopic FC throughout the zebra finch brain across development, including within a network required for learned song that lacks direct interhemispheric structural connectivity. The presence of homotopic FC in a non-Eutherian suggests that ancestral pathways, potentially including indirect connectivity via the anterior commissure, are sufficient for maintaining a homotopic functional architecture, an insight with broad implications for understanding interhemispheric coordination across phylogeny.
Collapse
Affiliation(s)
- Elliot A Layden
- Department of Psychology, The University of Chicago, Chicago, IL, 60637, USA.
| | - Kathryn E Schertz
- Department of Psychology, The University of Chicago, Chicago, IL, 60637, USA
| | - Sarah E London
- Department of Psychology, The University of Chicago, Chicago, IL, 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, 60637, USA; The Institute for Mind and Biology, The University of Chicago, Chicago, IL, 60637, USA
| | - Marc G Berman
- Department of Psychology, The University of Chicago, Chicago, IL, 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
32
|
Zhu J, Zhang Y, Zhang B, Yang Y, Wang Y, Zhang C, Zhao W, Zhu DM, Yu Y. Abnormal coupling among spontaneous brain activity metrics and cognitive deficits in major depressive disorder. J Affect Disord 2019; 252:74-83. [PMID: 30981059 DOI: 10.1016/j.jad.2019.04.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 03/07/2019] [Accepted: 04/07/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND A variety of functional metrics derived from resting-state functional magnetic resonance imaging (rs-fMRI) have been employed to explore spontaneous brain activity changes in major depressive disorder (MDD) and have enjoyed significant success in unraveling the neurobiological mechanisms underlying this disorder. However, it is unclear whether spatial and temporal coupling relationships among these rs-fMRI metrics are altered in MDD. METHODS 50 patients with MDD and 36 well-matched healthy controls underwent rs-fMRI scans. A dynamic analysis was applied to compute multiple frequently used metrics including fractional amplitude of low frequency fluctuations, regional homogeneity, voxel-mirrored homotopic connectivity, degree centrality and global signal connectivity. Kendall's W was used to calculate volume-wise (across voxels) and voxel-wise (across time windows) concordance among these metrics. Inter-group differences in the concordance and their associations with clinical and cognitive variables were tested. RESULTS Compared to healthy controls, patients with MDD showed decreased whole gray matter volume-wise concordance. Despite similar spatial distributions, quantitative comparison analysis revealed that MDD patients exhibited reduced voxel-wise concordance in multiple cortical and subcortical regions. Moreover, the lower concordance was associated with worse performances in prospective memory and sustained attention in the MDD group. LIMITATIONS The study design of fairly modest sample size did not allow us to perform a full analysis of the potential effects of medication and illness duration. CONCLUSIONS Our findings suggest that spatial and temporal decoupling of multiple resting-state brain activity metrics may help elucidate the neural mechanisms of cognitive deficits in depression.
Collapse
Affiliation(s)
- Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yu Zhang
- Department of Sleep Disorders, Hefei Fourth People's Hospital, Hefei 230022, China; Anhui Mental Health Center, Hefei 230022, China
| | - Biao Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Ying Yang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Yajun Wang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Cun Zhang
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Wenming Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Dao-Min Zhu
- Department of Sleep Disorders, Hefei Fourth People's Hospital, Hefei 230022, China; Anhui Mental Health Center, Hefei 230022, China.
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
| |
Collapse
|
33
|
Wang W, Peng Z, Wang X, Wang P, Li Q, Wang G, Chen F, Chen X, Liu S. Disrupted interhemispheric resting-state functional connectivity and structural connectivity in first-episode, treatment-naïve generalized anxiety disorder. J Affect Disord 2019; 251:280-286. [PMID: 30953893 DOI: 10.1016/j.jad.2019.03.082] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/25/2019] [Accepted: 03/29/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Aberrant functional and structural connectivity are considered to be involved in the underlying neural mechanism of generalized anxiety disorder (GAD). However, alterations in functional and structural interactions between the bilateral hemispheres are rarely examined. The current study aimed to characterized interhemispheric resting-state functional connectivity and white matter microstructural integrity of the corpus callosum in patients with GAD. METHODS Resting-state Blood oxygen level-dependent and diffusion tensor image were acquired for patients with GAD and healthy subjects. The two groups were matched in age, gender, education years. The voxel-mirrored homotopic connectivity (VMHC) of whole brain and white matter integrity of the corpus callosum (CC) were compared between the two groups. Their correlations with clinical measures were further performed. RESULTS Compare to controls, decreased resting-state VMHC were found in the precentral gyrus, middle cingulate gyrus and insula/putamen in patients with GAD. No regions of increased VMHC were detected in GAD. Compared to controls, GAD patients showed decreased fractional anisotropy (FA) values in CC2. In GAD group, further Pearson's correlation analyses showed that VMHC of the midcingulate gyrus positively correlated with FA of CC2, FA of CC2 negatively correlated with anxiety severity. Further mediation analyses demonstrated that attenuated VMHC in bilateral midcingulate gyrus partly mediated the association between white matter integrity of CC2 sub-region and anxiety severity. CONCLUSION Our findings suggested impairment of interhemispheric coordination in GAD. Moreover, disrupted interhemispheric connectivity correlated with anxiety severity in GAD. Our findings provided a novel clue about the neural mechanism of GAD, and may contribute to further deep exploration and treatment of GAD. LIMITATIONS The study was lack of comparison with non-GAD anxiety disorders.
Collapse
Affiliation(s)
- Wei Wang
- Department of Radilogy, Changzheng Hospital, The Navy Military Medical University, No.415 Fengyang Road, Huangpu District, Shanghai 200003, China; 71282 Hospital, Baoding 071052, China
| | - Zhaohui Peng
- Department of Radilogy, Changzheng Hospital, The Navy Military Medical University, No.415 Fengyang Road, Huangpu District, Shanghai 200003, China; Department of Radilogy, The 960th Hospital of the PLA Joint Logistice Support Force, Jinan, Shandong Province 250031, China
| | - Xiang Wang
- Department of Radilogy, Changzheng Hospital, The Navy Military Medical University, No.415 Fengyang Road, Huangpu District, Shanghai 200003, China
| | - Peng Wang
- Department of Radilogy, Changzheng Hospital, The Navy Military Medical University, No.415 Fengyang Road, Huangpu District, Shanghai 200003, China
| | - Qingchu Li
- Department of Radilogy, Changzheng Hospital, The Navy Military Medical University, No.415 Fengyang Road, Huangpu District, Shanghai 200003, China
| | - Gang Wang
- The Second Community Healthcare Service Center of Zhengzhou Road, Luoyang 471000, China
| | - Fangni Chen
- Department of Radilogy, Changzheng Hospital, The Navy Military Medical University, No.415 Fengyang Road, Huangpu District, Shanghai 200003, China
| | | | - Shiyuan Liu
- Department of Radilogy, Changzheng Hospital, The Navy Military Medical University, No.415 Fengyang Road, Huangpu District, Shanghai 200003, China.
| |
Collapse
|
34
|
Jiang X, Shen Y, Yao J, Zhang L, Xu L, Feng R, Cai L, Liu J, Chen W, Wang J. Connectome analysis of functional and structural hemispheric brain networks in major depressive disorder. Transl Psychiatry 2019; 9:136. [PMID: 30979866 PMCID: PMC6461612 DOI: 10.1038/s41398-019-0467-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 02/01/2019] [Accepted: 03/23/2019] [Indexed: 12/23/2022] Open
Abstract
Neuroimaging studies have shown topological disruptions of both functional and structural whole-brain networks in major depressive disorder (MDD). This study examined common and specific alterations between these two types of networks and whether the alterations were differentially involved in the two hemispheres. Multimodal MRI data were collected from 35 MDD patients and 35 healthy controls, whose functional and structural hemispheric networks were constructed, characterized, and compared. We found that functional brain networks were profoundly altered at multiple levels, while structural brain networks were largely intact in patients with MDD. Specifically, the functional alterations included decreases in intra-hemispheric (left and right) and inter-hemispheric (heterotopic) functional connectivity; decreases in local, global and normalized global efficiency for both hemispheric networks; increases in normalized local efficiency for the left hemispheric networks; and decreases in intra-hemispheric integration and inter-hemispheric communication in the dorsolateral superior frontal gyrus, anterior cingulate gyrus and hippocampus. Regarding hemispheric asymmetry, largely similar patterns were observed between the functional and structural networks: the right hemisphere was over-connected and more efficient than the left hemisphere globally; the occipital and partial regions exhibited leftward asymmetry, and the frontal and temporal sites showed rightward lateralization with regard to regional connectivity profiles locally. Finally, the functional-structural coupling of intra-hemispheric connections was significantly decreased and correlated with the disease severity in the patients. Overall, this study demonstrates modality- and hemisphere-dependent and invariant network alterations in MDD, which are helpful for understanding elaborate and characteristic patterns of integrative dysfunction in this disease.
Collapse
Affiliation(s)
- Xueyan Jiang
- 0000 0004 0368 7397grid.263785.dInstitute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou, China
| | - Yuedi Shen
- 0000 0001 2230 9154grid.410595.cDepartment of Diagnostics, Clinical Medical School, Hangzhou Normal University, 310036 Hangzhou, Zhejiang China
| | - Jiashu Yao
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Medical Neurobiology of Zhejiang Province, 310016 Hangzhou, Zhejiang China
| | - Lei Zhang
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Medical Neurobiology of Zhejiang Province, 310016 Hangzhou, Zhejiang China
| | - Luoyi Xu
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Medical Neurobiology of Zhejiang Province, 310016 Hangzhou, Zhejiang China
| | - Rui Feng
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Medical Neurobiology of Zhejiang Province, 310016 Hangzhou, Zhejiang China
| | - Liqiang Cai
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Medical Neurobiology of Zhejiang Province, 310016 Hangzhou, Zhejiang China
| | - Jing Liu
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Medical Neurobiology of Zhejiang Province, 310016 Hangzhou, Zhejiang China
| | - Wei Chen
- Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Key Laboratory of Medical Neurobiology of Zhejiang Province, 310016 Hangzhou, Zhejiang China
| | - Jinhui Wang
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou, China.
| |
Collapse
|
35
|
Interhemispheric functional connectivity and its relationships with creative problem solving. Neuroreport 2019; 30:415-420. [PMID: 30789389 DOI: 10.1097/wnr.0000000000001217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Creative problem solving (CPS) is a particular mental process when people solve problems. Findings from previous research, which used functional MRI, showed that CPS could involve specific neural mechanisms. However, few studies have directly explored the changes of interhemispheric resting-state functional connectivity during CPS. Recently, a validated voxel-mirrored homotopic connectivity (VMHC) method has been widely used to calculate the interhemispheric resting-state functional connectivity. In this study, we recruited 60 participants and used a revised chunk decomposing task to estimate participants' individual differences during CPS. Then, the VMHC method was used to explore neural correlates underlying individual differences of CPS. Results showed that altered VMHC in the bilateral middle frontal gyrus/precentral gyrus, bilateral hippocampus/insula/amygdala, and bilateral fusiform gyrus/cerebellum/middle occipital gyrus was related to individual differences of CPS. These brain regions reflect the information integration of both hemispheres might be critical for CPS. Therefore, our results may shed light on the neural correlates of CPS.
Collapse
|
36
|
Mancuso L, Costa T, Nani A, Manuello J, Liloia D, Gelmini G, Panero M, Duca S, Cauda F. The homotopic connectivity of the functional brain: a meta-analytic approach. Sci Rep 2019; 9:3346. [PMID: 30833662 PMCID: PMC6399443 DOI: 10.1038/s41598-019-40188-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/05/2019] [Indexed: 01/21/2023] Open
Abstract
Homotopic connectivity (HC) is the connectivity between mirror areas of the brain hemispheres. It can exhibit a marked and functionally relevant spatial variability, and can be perturbed by several pathological conditions. The voxel-mirrored homotopic connectivity (VMHC) is a technique devised to enquire this pattern of brain organization, based on resting state functional connectivity. Since functional connectivity can be revealed also in a meta-analytical fashion using co-activations, here we propose to calculate the meta-analytic homotopic connectivity (MHC) as the meta-analytic counterpart of the VMHC. The comparison between the two techniques reveals their general similarity, but also highlights regional differences associated with how HC varies from task to rest. Two main differences were found from rest to task: (i) regions known to be characterized by global hubness are more similar than regions displaying local hubness; and (ii) medial areas are characterized by a higher degree of homotopic connectivity, while lateral areas appear to decrease their degree of homotopic connectivity during task performance. These findings show that MHC can be an insightful tool to study how the hemispheres functionally interact during task and rest conditions.
Collapse
Affiliation(s)
- Lorenzo Mancuso
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Tommaso Costa
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy.
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy.
| | - Andrea Nani
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Jordi Manuello
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Donato Liloia
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Gabriele Gelmini
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Melissa Panero
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| | - Sergio Duca
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
| | - Franco Cauda
- GCS-fMRI, Koelliker Hospital and Department of Psychology, University of Turin, Turin, Italy
- Focus Lab, Department of Psychology, University of Turin, Turin, Italy
| |
Collapse
|
37
|
Deng K, Qi T, Xu J, Jiang L, Zhang F, Dai N, Cheng Y, Xu X. Reduced Interhemispheric Functional Connectivity in Obsessive-Compulsive Disorder Patients. Front Psychiatry 2019; 10:418. [PMID: 31249539 PMCID: PMC6584782 DOI: 10.3389/fpsyt.2019.00418] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 05/24/2019] [Indexed: 11/25/2022] Open
Abstract
Background: Neuroimaging studies have shown that the high synchrony of spontaneous neural activity in the homotopic regions between hemispheres is an important functional structural feature of normal human brains, and this feature is abnormal in the patients with various mental disorders. However, little is known about this feature in obsessive-compulsive disorder (OCD). This study aimed to further analyze the underlying neural mechanisms of OCD and to explore whether clinical characteristics are correlated with the alerted homotopic connectivity in patients with OCD. Methods: Using voxel-mirrored homotopic connectivity (VMHC) during resting state, we compared 46 OCD patients and 46 healthy controls (HCs) matched for age, gender, and education level. A partial correlation analysis was used to investigate the relationship between altered VMHC and clinical characteristics in patients with OCD. Results: Patients with OCD showed lower VMHC than HCs in fusiform gyrus/inferior occipital gyrus, lingual gyrus, postcentral gyrus/precentral gyrus, putamen, and orbital frontal gyrus. A significant positive correlation was observed between altered VMHC in the angular gyrus/middle occipital gyrus and illness duration in patients. Conclusions: Interhemispheric functional imbalance may be an essential aspect of the pathophysiological mechanism of OCD, which is reflected not only in the cortico-striato-thalamo-cortical (CSTC) loop but also elsewhere in the brain.
Collapse
Affiliation(s)
- Ke Deng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Tianfu Qi
- Department of Medical Imaging, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Jian Xu
- Department of Rheumatology, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Linlin Jiang
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China.,Yunan Key Laboratory of Laboratory Medicine, Kunming, China
| | - Fengrui Zhang
- Department of Medical Imaging, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Nan Dai
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuqi Cheng
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiufeng Xu
- Department of Psychiatry, First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
38
|
Disrupted prefrontal functional connectivity during post-stress adaption in high ruminators. Sci Rep 2018; 8:15588. [PMID: 30348981 PMCID: PMC6197217 DOI: 10.1038/s41598-018-33777-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 10/04/2018] [Indexed: 11/13/2022] Open
Abstract
Rumination is a perseverative thinking style that is associated with adverse mental and physical health. Stressful situations have been considered as a trigger for this kind of thinking. Until today, there are mixed findings with respect to the relations of functional connectivity (FC) and rumination. The study at hand aimed to investigate, in how far high and low ruminators would show elevated levels of state rumination after a stress induction and if these changes would show corresponding changes in FC in the cognitive control network (CCN) and dorsal attention network (DAN). 23 high and 22 low trait ruminators underwent resting-state measurements before and after a stress induction with the Trier Social Stress Test (TSST). Changes in rsFC through the TSST were measured with functional near-infrared spectroscopy within and between regions of the CCN. Stress successfully induced state rumination in both groups but stronger in the high trait ruminators. High trait ruminators showed elevated FC within the CCN at baseline, but attenuated increase in FC following the TSST. Increases in FC correlated negatively with state rumination. A lack of FC reactivity within the CCN in high ruminators might reflect reduced network integration between brain regions necessary for emotion regulation and cognitive control.
Collapse
|
39
|
Langen CD, Muetzel R, Blanken L, van der Lugt A, Tiemeier H, Verhulst F, Niessen WJ, White T. Differential patterns of age-related cortical and subcortical functional connectivity in 6-to-10 year old children: A connectome-wide association study. Brain Behav 2018; 8:e01031. [PMID: 29961267 PMCID: PMC6085897 DOI: 10.1002/brb3.1031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Typical brain development is characterized by specific patterns of maturation of functional networks. Cortico-cortical connectivity generally increases, whereas subcortico-cortical connections often decrease. Little is known about connectivity changes amongst different subcortical regions in typical development. METHODS This study examined age- and gender-related differences in functional connectivity between and within cortical and subcortical regions using two different approaches. The participants included 411 six- to ten-year-old typically developing children sampled from the population-based Generation R study. Functional connectomes were defined in native space using regions of interest from subject-specific FreeSurfer segmentations. Connections were defined as: (a) the correlation between regional mean time-series; and (b) the focal maximum of voxel-wise correlations within FreeSurfer regions. The association of age and gender with each functional connection was determined using linear regression. The preprocessing included the exclusion of children with excessive head motion and scrubbing to reduce the influence of minor head motion during scanning. RESULTS Cortico-cortical associations echoed previous findings that connectivity shifts from short to long-range with age. Subcortico-cortical associations with age were primarily negative in the focal network approach but were both positive and negative in the mean time-series network approach. Between subcortical regions, age-related associations were negative in both network approaches. Few connections had significant associations with gender. CONCLUSIONS The present study replicates previously reported age-related patterns of connectivity in a relatively narrow age-range of children. In addition, we extended these findings by demonstrating decreased connectivity within the subcortex with increasing age. Lastly, we show the utility of a more focal approach that challenges the spatial assumptions made by the traditional mean time series approach.
Collapse
Affiliation(s)
- Carolyn D Langen
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands.,Department of Medical Informatics, Erasmus MC, Rotterdam, The Netherlands
| | - Ryan Muetzel
- Department of Child and Adolescent Psychiatry, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands.,The Generation R Study Group, Erasmus MC, Rotterdam, The Netherlands
| | - Laura Blanken
- Department of Child and Adolescent Psychiatry, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands.,The Generation R Study Group, Erasmus MC, Rotterdam, The Netherlands
| | - Aad van der Lugt
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands.,Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Frank Verhulst
- Department of Child and Adolescent Psychiatry, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Wiro J Niessen
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands.,Department of Medical Informatics, Erasmus MC, Rotterdam, The Netherlands.,Imaging Physics, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Tonya White
- Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands.,Department of Child and Adolescent Psychiatry, Erasmus MC-Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
40
|
Feder S, Sundermann B, Wersching H, Teuber A, Kugel H, Teismann H, Heindel W, Berger K, Pfleiderer B. Sample heterogeneity in unipolar depression as assessed by functional connectivity analyses is dominated by general disease effects. J Affect Disord 2017; 222:79-87. [PMID: 28679115 DOI: 10.1016/j.jad.2017.06.055] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/07/2017] [Accepted: 06/26/2017] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Combinations of resting-state fMRI and machine-learning techniques are increasingly employed to develop diagnostic models for mental disorders. However, little is known about the neurobiological heterogeneity of depression and diagnostic machine learning has mainly been tested in homogeneous samples. Our main objective was to explore the inherent structure of a diverse unipolar depression sample. The secondary objective was to assess, if such information can improve diagnostic classification. MATERIALS AND METHODS We analyzed data from 360 patients with unipolar depression and 360 non-depressed population controls, who were subdivided into two independent subsets. Cluster analyses (unsupervised learning) of functional connectivity were used to generate hypotheses about potential patient subgroups from the first subset. The relationship of clusters with demographical and clinical measures was assessed. Subsequently, diagnostic classifiers (supervised learning), which incorporated information about these putative depression subgroups, were trained. RESULTS Exploratory cluster analyses revealed two weakly separable subgroups of depressed patients. These subgroups differed in the average duration of depression and in the proportion of patients with concurrently severe depression and anxiety symptoms. The diagnostic classification models performed at chance level. LIMITATIONS It remains unresolved, if subgroups represent distinct biological subtypes, variability of continuous clinical variables or in part an overfitting of sparsely structured data. CONCLUSIONS Functional connectivity in unipolar depression is associated with general disease effects. Cluster analyses provide hypotheses about potential depression subtypes. Diagnostic models did not benefit from this additional information regarding heterogeneity.
Collapse
Affiliation(s)
- Stephan Feder
- University Hospital Münster, Department of Clinical Radiology, Münster, Germany; University Hospital Heidelberg, Department of General Internal Medicine and Psychosomatics, Heidelberg, Germany
| | - Benedikt Sundermann
- University Hospital Münster, Department of Clinical Radiology, Münster, Germany.
| | - Heike Wersching
- University of Münster, Institute of Epidemiology and Social Medicine, Münster, Germany
| | - Anja Teuber
- University of Münster, Institute of Epidemiology and Social Medicine, Münster, Germany
| | - Harald Kugel
- University Hospital Münster, Department of Clinical Radiology, Münster, Germany
| | - Henning Teismann
- University of Münster, Institute of Epidemiology and Social Medicine, Münster, Germany
| | - Walter Heindel
- University Hospital Münster, Department of Clinical Radiology, Münster, Germany
| | - Klaus Berger
- University of Münster, Institute of Epidemiology and Social Medicine, Münster, Germany
| | - Bettina Pfleiderer
- University Hospital Münster, Department of Clinical Radiology, Münster, Germany; University of Münster, Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, Münster, Germany
| |
Collapse
|
41
|
Brakowski J, Spinelli S, Dörig N, Bosch OG, Manoliu A, Holtforth MG, Seifritz E. Resting state brain network function in major depression - Depression symptomatology, antidepressant treatment effects, future research. J Psychiatr Res 2017; 92:147-159. [PMID: 28458140 DOI: 10.1016/j.jpsychires.2017.04.007] [Citation(s) in RCA: 213] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/21/2017] [Accepted: 04/21/2017] [Indexed: 10/19/2022]
Abstract
The alterations of functional connectivity brain networks in major depressive disorder (MDD) have been subject of a large number of studies. Using different methodologies and focusing on diverse aspects of the disease, research shows heterogeneous results lacking integration. Disrupted network connectivity has been found in core MDD networks like the default mode network (DMN), the central executive network (CEN), and the salience network, but also in cerebellar and thalamic circuitries. Here we review literature published on resting state brain network function in MDD focusing on methodology, and clinical characteristics including symptomatology and antidepressant treatment related findings. There are relatively few investigations concerning the qualitative aspects of symptomatology of MDD, whereas most studies associate quantitative aspects with distinct resting state functional connectivity alterations. Such depression severity associated alterations are found in the DMN, frontal, cerebellar and thalamic brain regions as well as the insula and the subgenual anterior cingulate cortex. Similarly, different therapeutical options in MDD and their effects on brain function showed patchy results. Herein, pharmaceutical treatments reveal functional connectivity alterations throughout multiple brain regions notably the DMN, fronto-limbic, and parieto-temporal regions. Psychotherapeutical interventions show significant functional connectivity alterations in fronto-limbic networks, whereas electroconvulsive therapy and repetitive transcranial magnetic stimulation result in alterations of the subgenual anterior cingulate cortex, the DMN, the CEN and the dorsal lateral prefrontal cortex. While it appears clear that functional connectivity alterations are associated with the pathophysiology and treatment of MDD, future research should also generate a common strategy for data acquisition and analysis, as a least common denominator, to set the basis for comparability across studies and implementation of functional connectivity as a scientifically and clinically useful biomarker.
Collapse
Affiliation(s)
- Janis Brakowski
- Psychiatric University Hospital, Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Lenggstrasse 31, 8032 Zurich, Switzerland.
| | - Simona Spinelli
- Psychiatric University Hospital, Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Lenggstrasse 31, 8032 Zurich, Switzerland.
| | - Nadja Dörig
- Psychiatric University Hospital, Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Lenggstrasse 31, 8032 Zurich, Switzerland.
| | - Oliver Gero Bosch
- Psychiatric University Hospital, Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Lenggstrasse 31, 8032 Zurich, Switzerland.
| | - Andrei Manoliu
- Psychiatric University Hospital, Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Lenggstrasse 31, 8032 Zurich, Switzerland.
| | - Martin Grosse Holtforth
- Division of Clinical Psychology and Psychotherapy, Department of Psychology, University of Bern, Fabrikstrasse 8, 3012 Bern, Switzerland.
| | - Erich Seifritz
- Psychiatric University Hospital, Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Lenggstrasse 31, 8032 Zurich, Switzerland.
| |
Collapse
|
42
|
Altered interhemispheric functional connectivity in remitted bipolar disorder: A Resting State fMRI Study. Sci Rep 2017; 7:4698. [PMID: 28680123 PMCID: PMC5498592 DOI: 10.1038/s41598-017-04937-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 05/23/2017] [Indexed: 01/10/2023] Open
Abstract
Abnormalities in structural and functional brain connectivity have been increasingly reported in patients with bipolar disorder (BD). However, alterations of remitted BD (RBD) in functional connectivity between the cerebral hemispheres are still not well understood. This study was designed to analyze the pattern of the interhemispheric functional connectivity of the whole brain in patients with remitted BD during resting state. Twenty patients with RBD and 38 healthy controls (HC) underwent the resting-state functional magnetic resonance imaging. The functional connectivity between any pair of symmetrical interhemispheric voxels (i.e., functional homotopy) was measured by voxel-mirrored homotopic connectivity (VMHC). The patients with RBD showed lower VMHC than HC in the middle frontal gyrus and precentral gyrus. No regions of increased VMHC were detected in the RBD patients. There were no significant correlations between the VMHC values in these regions and the clinical variables. These findings suggest substantial impairment of interhemispheric coordination in RBD and they may represent trait, rather than state, neurobiological feature of brain function in BD.
Collapse
|
43
|
Shared and Specific Intrinsic Functional Connectivity Patterns in Unmedicated Bipolar Disorder and Major Depressive Disorder. Sci Rep 2017; 7:3570. [PMID: 28620239 PMCID: PMC5472613 DOI: 10.1038/s41598-017-03777-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/04/2017] [Indexed: 01/10/2023] Open
Abstract
Identifying brain differences and similarities between bipolar disorder (BD) and major depressive disorder (MDD) is necessary for increasing our understanding of the pathophysiology and for developing more effective treatments. However, the features of whole-brain intrinsic functional connectivity underlying BD and MDD have not been directly compared. We collected resting-state fMRI data from 48 BD patients, 48 MDD patients, and 51 healthy subjects. We constructed voxel-wise whole-brain functional networks and computed regional functional connectivity strength (FCS) using graph-theory and further divided the regional FCS into long-range FCS (lFCS) and short-range FCS (sFCS). Relative to the controls, both the BD and MDD patients showed decreased sFCS in the bilateral precuneus. In addition, the BD patients showed increased and the MDD patients showed decreased lFCS and sFCS in the bilateral cerebellum. The BD patients also showed increased lFCS in the right middle temporal gyrus and increased sFCS in the bilateral thalamus compared to either the MDD patients or the controls. These findings suggest that BD and MDD may have some shared as well as a greater number of specific impairments in their functional connectivity patterns, providing new evidence for the pathophysiology of BD and MDD at the large-scale whole brain connectivity level.
Collapse
|
44
|
Aberrant functional connectivity in depression as an index of state and trait rumination. Sci Rep 2017; 7:2174. [PMID: 28526867 PMCID: PMC5438394 DOI: 10.1038/s41598-017-02277-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/10/2017] [Indexed: 12/13/2022] Open
Abstract
Depression has been shown to be related to a variety of aberrant brain functions and structures. Particularly the investigation of alterations in functional connectivity (FC) in major depressive disorder (MDD) has been a promising endeavor, since a better understanding of pathological brain networks may foster our understanding of the disease. However, the underling mechanisms of aberrant FC in MDD are largely unclear. Using functional near-infrared spectroscopy (fNIRS) we investigated FC in the cortical parts of the default mode network (DMN) during resting-state in patients with current MDD. Additionally, we used qualitative and quantitative measures of psychological processes (e.g., state/trait rumination, mind-wandering) to investigate their contribution to differences in FC between depressed and non-depressed subjects. Our results indicate that 40% of the patients report spontaneous rumination during resting-state. Depressed subjects showed reduced FC in parts of the DMN compared to healthy controls. This finding was linked to the process of state/trait rumination. While rumination was negatively correlated with FC in the cortical parts of the DMN, mind-wandering showed positive associations.
Collapse
|
45
|
Canna A, Prinster A, Monteleone AM, Cantone E, Monteleone P, Volpe U, Maj M, Di Salle F, Esposito F. Interhemispheric functional connectivity in anorexia and bulimia nervosa. Eur J Neurosci 2017; 45:1129-1140. [PMID: 27992088 DOI: 10.1111/ejn.13507] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 11/15/2016] [Accepted: 12/14/2016] [Indexed: 01/18/2023]
Abstract
The functional interplay between hemispheres is fundamental for behavioral, cognitive, and emotional control. Anorexia nervosa (AN) and bulimia nervosa (BN) have been largely studied with brain magnetic resonance imaging (MRI) in relation to the functional mechanisms of high-level processing, but not in terms of possible inter-hemispheric functional connectivity anomalies. Using resting-state functional MRI (fMRI), voxel-mirrored homotopic connectivity (VMHC) and regional inter-hemispheric spectral coherence (IHSC) were studied in 15 AN and 13 BN patients and 16 healthy controls (HC). Using T1-weighted and diffusion tensor imaging MRI scans, regional VMHC values were correlated with the left-right asymmetry of corresponding homotopic gray matter volumes and with the white matter callosal fractional anisotropy (FA). Compared to HC, AN patients exhibited reduced VMHC in cerebellum, insula, and precuneus, while BN patients showed reduced VMHC in dorso-lateral prefrontal and orbito-frontal cortices. The regional IHSC analysis highlighted that the inter-hemispheric functional connectivity was higher in the 'Slow-5' band in all regions except the insula. No group differences in left-right structural asymmetries and in VMHC vs. callosal FA correlations were significant in the comparisons between cohorts. These anomalies, not explained by structural changes, indicate that AN and BN, at least in their acute phase, are associated with a loss of inter-hemispheric connectivity in regions implicated in self-referential, cognitive control and reward processing. These findings may thus gather novel functional markers to explore aberrant features of these eating disorders.
Collapse
Affiliation(s)
- Antonietta Canna
- Section of Neurosciences, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Via S. Allende, 84081, Baronissi (Salerno), Italy
| | - Anna Prinster
- Biostructure and Bioimaging Institute, National Research Council, Naples, Italy.,IRCCS SDN, Istituto di Ricerca Diagnostica e Nucleare, Naples, Italy
| | | | - Elena Cantone
- Section of ENT, Department of Neurosciences, Reproductive Sciences and Odontostomatology, "Federico II" University, Naples, Italy
| | - Palmiero Monteleone
- Section of Neurosciences, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Via S. Allende, 84081, Baronissi (Salerno), Italy.,Department of Psychiatry, Second University of Naples, Naples, Italy
| | - Umberto Volpe
- Department of Psychiatry, Second University of Naples, Naples, Italy
| | - Mario Maj
- Department of Psychiatry, Second University of Naples, Naples, Italy
| | - Francesco Di Salle
- Section of Neurosciences, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Via S. Allende, 84081, Baronissi (Salerno), Italy
| | - Fabrizio Esposito
- Section of Neurosciences, Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Via S. Allende, 84081, Baronissi (Salerno), Italy
| |
Collapse
|
46
|
Diagnostic classification of unipolar depression based on resting-state functional connectivity MRI: effects of generalization to a diverse sample. J Neural Transm (Vienna) 2016; 124:589-605. [PMID: 28040847 DOI: 10.1007/s00702-016-1673-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/23/2016] [Indexed: 12/14/2022]
Abstract
In small, selected samples, an approach combining resting-state functional connectivity MRI and multivariate pattern analysis has been able to successfully classify patients diagnosed with unipolar depression. Purposes of this investigation were to assess the generalizability of this approach to a large clinically more realistic sample and secondarily to assess the replicability of previously reported methodological feasibility in a more homogeneous subgroup with pronounced depressive symptoms. Two independent subsets were drawn from the depression and control cohorts of the BiDirect study, each with 180 patients with and 180 controls without depression. Functional connectivity either among regions covering the gray matter or selected regions with known alterations in depression was assessed by resting-state fMRI. Support vector machines with and without automated feature selection were used to train classifiers differentiating between individual patients and controls in the entire first subset as well as in the subgroup. Model parameters were explored systematically. The second independent subset was used for validation of successful models. Classification accuracies in the large, heterogeneous sample ranged from 45.0 to 56.1% (chance level 50.0%). In the subgroup with higher depression severity, three out of 90 models performed significantly above chance (60.8-61.7% at independent validation). In conclusion, common classification methods previously successful in small homogenous depression samples do not immediately translate to a more realistic population. Future research to develop diagnostic classification approaches in depression should focus on more specific clinical questions and consider heterogeneity, including symptom severity as an important factor.
Collapse
|
47
|
Hou Z, Sui Y, Song X, Yuan Y. Disrupted Interhemispheric Synchrony in Default Mode Network Underlying the Impairment of Cognitive Flexibility in Late-Onset Depression. Front Aging Neurosci 2016; 8:230. [PMID: 27729858 PMCID: PMC5037230 DOI: 10.3389/fnagi.2016.00230] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/16/2016] [Indexed: 12/16/2022] Open
Abstract
The intuitive association between cognitive impairment and aberrant functional activity in the brain network has prompted interest in exploring the role of functional connectivity in late-onset depression (LOD). The relationship of altered voxel-mirrored homotopic connectivity (VMHC) and cognitive dysfunction in LOD is not yet well understood. This study was designed to examine the implicit relationship between the disruption of interhemispheric functional coordination and cognitive impairment in LOD. LOD patients (N = 31) and matched healthy controls (HCs; N = 37) underwent neuropsychological tests and functional magnetic resonance imaging (fMRI) in this study. The intergroup difference of interhemispheric coordination was determined by calculating VMHC value in the whole brain. The neuro-behavioral relevancy approach was applied to explore the association between disrupted VMHC and cognitive measures. Receiver operating characteristic (ROC) curve analysis was used to determine the capability of disrupted regional VMHC to distinguish LOD. Compared to the HC group, significantly attenuated VMHC in the superior frontal gyrus (SFG), superior temporal gyrus (STG), posterior cerebellar lobe (CePL) and post- and precentral gyri were observed in the bilateral brain of LOD patients. The interhemispheric asynchrony in bilateral CePLs was positively correlated with the performance of trail making test B (TMT-B) in LOD patients (r = 0.367, P = 0.040). ROC analysis revealed that regions with abnormal VMHC could efficiently distinguish LOD from HCs (Area Under Curve [AUC] = 0.90, P < 0.001). Altered linkage patterns of intrinsic homotopic connectivity and impaired cognitive flexibility was first investigated in LOD, and it would provide a novel clue for revealing the neural substrates underlying cognitive impairment in LOD.
Collapse
Affiliation(s)
- Zhenghua Hou
- Department of Psychosomatics and Psychiatry, Institute of Psychosomatics, Zhongda Hospital, Medical School of Southeast University Nanjing, China
| | - Yuxiu Sui
- Department of Psychiatry, Affiliated Nanjing Brain Hospital of Nanjing Medical University Nanjing, China
| | - Xiaopeng Song
- Department of Biomedical Engineering, College of Engineering, Peking University Beijing, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, Institute of Psychosomatics, Zhongda Hospital, Medical School of Southeast University Nanjing, China
| |
Collapse
|