1
|
Maximov II, Westlye LT. Comparison of different neurite density metrics with brain asymmetry evaluation. Z Med Phys 2025; 35:177-192. [PMID: 37562999 DOI: 10.1016/j.zemedi.2023.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023]
Abstract
The standard diffusion MRI model with intra- and extra-axonal water pools offers a set of microstructural parameters describing brain white matter architecture. However, non-linearities in the standard model and diffusion data contamination by noise and imaging artefacts make estimation of diffusion metrics challenging. In order to develop reliable diffusion approaches and to avoid computational model degeneracy, additional theoretical assumptions allowing stable numerical implementations are required. Advanced diffusion approaches allow for estimation of intra-axonal water fraction (AWF), describing a key structural characteristic of brain tissue. AWF can be interpreted as an indirect measure or proxy of neurite density and has a potential as useful clinical biomarker. Established diffusion approaches such as white matter tract integrity, neurite orientation dispersion and density imaging (NODDI), and spherical mean technique provide estimates of AWF within their respective theoretical frameworks. In the present study, we estimated AWF metrics using different diffusion approaches and compared measures of brain asymmetry between the different metrics in a sub-sample of 182 subjects from the UK Biobank. Multivariate decomposition by mean of linked independent component analysis revealed that the various AWF proxies derived from the different diffusion approaches reflect partly non-overlapping variance of independent components, with distinct anatomical distributions and sensitivity to age. Further, voxel-wise analysis revealed age-related differences in AWF-based brain asymmetry, indicating less apparent left-right hemisphere difference with higher age. Finally, we demonstrated that NODDI metrics suffer from a quite strong dependence on used numerical algorithms and post-processing pipeline. The analysis based on AWF metrics strongly depends on the used diffusion approach and leads to poorly reproducible results.
Collapse
Affiliation(s)
- Ivan I Maximov
- Department of Psychology, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Department of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway.
| | - Lars T Westlye
- Department of Psychology, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Department of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; KG Jensen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Hakhu S, Hareesh P, Hooyman A, VanGilder JL, Yalim J, Baxter L, Hu L, Zhou Y, Schilling K, Beeman SC. White matter characterization in regions of edema surrounding meningioma brain tumor using diffusion MRI: A comparative study of DTI and NODDI. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.07.25325393. [PMID: 40297436 PMCID: PMC12036425 DOI: 10.1101/2025.04.07.25325393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
White matter (WM) tract detection is critical in presurgical planning of tumor resection; however, standard-of-care diffusion tensor imaging (DTI) often fails to characterize white matter tracts through regions of edema. This is because the presence of edema has the effect of increasing the isotropic volume fraction within a voxel and thus marginalizing the anisotropic volume fraction associated with white matter presence and directionality. More recent biophysical models of diffusion, such as neurite orientation dispersion and density imaging (NODDI), account for isotropic and anisotropic volume fractions within voxels by compartmentalizing the diffusion signal based on an assumed tissue microenvironment, e.g., "free water" (cerebrospinal fluid (CSF), interstitial fluid (ISF), edema), "intra-neurite", and "extra-neurite" tissue, as a sphere, stick, and tensor, respectively. We hypothesize that a low fractional anisotropy (FA), low orientation dispersion index (ODI) value and high fractional isotropic volume (FISO) would be observed in white matter regions containing edema but a high FA, low ODI value and low FISO would be observed in healthy-appearing contralateral white matter. In our study, we test this hypothesis using multi-shell diffusion MRI data collected from patients bearing meningioma brains tumors. Brains bearing meningioma tumors are selected in this study as meningiomas rarely invade the brain parenchyma and we can thus assume that our analyses of edematous regions are not confounded by infiltrating tumor cells. Here, we show that NODDI-based characterization of white matter is more sensitive than that of standard-of-care DTI through regions of edema. Future studies will focus on implementation of biophysical model-based tractography in cases of glioma and translation of biophysical model-based tractography to the operating room.
Collapse
Affiliation(s)
- Sasha Hakhu
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ
| | - Parvathy Hareesh
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ
| | - Andrew Hooyman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ
| | | | - Jason Yalim
- Computational Research Accelerator, Arizona State University, Tempe, AZ
| | | | | | | | | | - Scott C Beeman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ
| |
Collapse
|
3
|
Blasco MB, Nisha Aji K, Ramos-Jiménez C, Leppert IR, Tardif CL, Cohen J, Rusjan PM, Mizrahi R. Synaptic Density in Early Stages of Psychosis and Clinical High Risk. JAMA Psychiatry 2025; 82:171-180. [PMID: 39535765 PMCID: PMC11561726 DOI: 10.1001/jamapsychiatry.2024.3608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/09/2024] [Indexed: 11/16/2024]
Abstract
Importance Synaptic dysfunction is involved in schizophrenia pathophysiology. However, whether in vivo synaptic density is reduced in early stages of psychosis, including its high-risk states, remains unclear. Objective To investigate whether synaptic density (synaptic vesicle glycoprotein 2A [SV2A] binding potential) is reduced in first-episode psychosis (FEP) and in clinical high risk (CHR) and investigate the effect of cannabis use on synaptic density and examine its relationship with psychotic symptoms and gray matter microstructure across groups. Design, Setting, and Participants This cross-sectional study was performed in a tertiary care psychiatric hospital from July 2021 to October 2023. Participants were patients with antipsychotic-free or minimally exposed FEP or CHR and healthy controls with a clean urine drug screen (except cannabis). Main Outcomes and Measures Synaptic density was quantified with dynamic 90-minute [18F]SynVesT-1 positron emission tomography (PET) scans across prioritized brain regions of interest (ROIs) delineated in individual magnetic resonance images (MRIs). Cannabis use was confirmed with urine drug screens. Gray matter microstructure was assessed using diffusion-weighted MRI to estimate neurite density. Results A total of 49 participants were included, including 16 patients with FEP (mean [SD] age, 26.1 [4.6] years; 9 males and 7 females), 17 patients at CHR (mean [SD] age, 21.2 [3.5] years; 8 males and 9 females), and 16 healthy controls (mean [SD] age, 23.4 [3.6] years; 7 males and 9 females). Synaptic density was significantly different between groups (F2,273 = 4.02, P = .02, Cohen F = 0.17; ROI: F5,273 = 360.18, P < .01, Cohen F = 2.55) with a group × ROI interaction (F10,273 = 2.67, P < .01, Cohen F = 0.32). Synaptic density was lower in cannabis users (F1,272 = 5.31, P = .02, Cohen F = 0.14). Lower synaptic density across groups was associated with more negative symptoms (Positive and Negative Syndrome Scale negative scores: F1,81 = 4.31, P = .04, Cohen F = 0.23; Scale of Psychosis-Risk Symptoms negative scores: F1,90 = 4.12, P = .04, Cohen F = 0.21). SV2A binding potential was significantly associated with neurite density index (F1,138 = 6.76, P = .01, Cohen F = 0.22). Conclusions and Relevance This study found that synaptic density reductions were present during the early stages of psychosis and its risk states and associated with negative symptoms. The implications of SV2A for negative symptoms in psychosis and CHR warrant further investigation. Future studies should investigate the impact of cannabis use on synaptic density in CHR longitudinally.
Collapse
Affiliation(s)
- M. Belen Blasco
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Douglas Research Centre, Clinical and Translational Sciences Lab, Montreal, Quebec, Canada
| | - Kankana Nisha Aji
- Douglas Research Centre, Clinical and Translational Sciences Lab, Montreal, Quebec, Canada
| | - Christian Ramos-Jiménez
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
- Douglas Research Centre, Clinical and Translational Sciences Lab, Montreal, Quebec, Canada
| | - Ilana Ruth Leppert
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Christine Lucas Tardif
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada
| | - Johan Cohen
- Douglas Mental Health University Institute, McGill University, Verdun, Quebec, Canada
| | - Pablo M. Rusjan
- Douglas Research Centre, Clinical and Translational Sciences Lab, Montreal, Quebec, Canada
- Douglas Mental Health University Institute, McGill University, Verdun, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Romina Mizrahi
- Douglas Research Centre, Clinical and Translational Sciences Lab, Montreal, Quebec, Canada
- Douglas Mental Health University Institute, McGill University, Verdun, Quebec, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
4
|
Jiang X, Harkins KD, Xie J, Wang J, Zu Z, Gore JC, Xu J. Joint estimation of compartment-specific T 2 relaxation and tumor microstructure using multi-TE IMPULSED MRI. Magn Reson Med 2025; 93:96-107. [PMID: 39164611 PMCID: PMC11518654 DOI: 10.1002/mrm.30254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/08/2024] [Accepted: 07/30/2024] [Indexed: 08/22/2024]
Abstract
PURPOSE This study aims to assess how T2 heterogeneity biases IMPULSED-derived metrics of tissue microstructure in solid tumors and evaluate the potential of estimating multi-compartmental T2 and microstructural parameters simultaneously. METHODS This study quantifies the impact of T2 relaxation on IMPULSED-derived microstructural parameters using computer simulations and in vivo multi-TE IMPULSED MRI in five tumor models, including brain, breast, prostate, melanoma, and colon cancer. A comprehensive T2 + IMPULSED method was developed to fit multi-compartmental T2 and microstructural parameters simultaneously. A Bayesian model selection approach was carried out voxel-wisely to determine if the T2 heterogeneity needs to be included in IMPULSED MRI in cancer. RESULTS Simulations suggest that T2 heterogeneity has a minor effect on the estimation of d in tissues with intermediate or high cell density, but significantly biases the estimation ofv in $$ {v}_{in} $$ with low cell density. For the in vivo animal experiments, all IMPULSED metrics exceptv in $$ {v}_{in} $$ are statistically independent on TE. For B16 tumors, the IMPULSED-derivedv in $$ {v}_{in} $$ exhibited a notable increase with longer TEs. For MDA-MB-231 tumors, IMPULSED-derivedv in $$ {v}_{in} $$ showed a significant increase with increasing TEs. The T2 + IMPULSED-derivedT 2 in $$ {T}_2^{in} $$ of all five tumor models are consistently smaller thanT 2 ex $$ {T}_2^{ex} $$ . CONCLUSIONS The findings from this study highlight two key observations: (i) TE has a negligible impact on IMPULSED-derived cell sizes, and (ii) the TE-dependence of IMPULSED-derived intracellular volume fractions used in T2 + IMPULSED modeling to estimateT 2 in $$ {T}_2^{in} $$ andT 2 ex $$ {T}_2^{ex} $$ . These insights contribute to the ongoing development and refinement of non-invasive MRI techniques for measuring cell sizes.
Collapse
Affiliation(s)
- Xiaoyu Jiang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kevin D. Harkins
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jingping Xie
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jian Wang
- Department of Radiation Oncology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - John C. Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee
| | - Junzhong Xu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
5
|
Uddin MN, Singh MV, Faiyaz A, Szczepankiewicz F, Nilsson M, Boodoo ZD, Sutton KR, Tivarus ME, Zhong J, Wang L, Qiu X, Weber MT, Schifitto G. Tensor-valued diffusion MRI detects brain microstructural abnormalities in HIV infected individuals with cognitive impairment. Sci Rep 2024; 14:28839. [PMID: 39572727 PMCID: PMC11582667 DOI: 10.1038/s41598-024-80372-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024] Open
Abstract
Despite advancements, the prevalence of HIV-associated neurocognitive impairment remains at approximately 40%, attributed to factors like pre-cART (combination antiretroviral therapy) irreversible brain injury. People with HIV (PWH) treated with cART do not show significant neurocognitive changes over relatively short follow-up periods. However, quantitative neuroimaging may be able to detect ongoing subtle microstructural changes. In this study, we hypothesized that tensor-valued diffusion encoding metrics would provide greater sensitivity than conventional diffusion tensor imaging (DTI) metrics in detecting HIV-associated brain microstructural injury. We further hypothesized that tensor-valued metrics would exhibit stronger associations with blood markers of neuronal and glial injury, such as neurofilament light chain (NFL) and glial fibrillary acidic protein (GFAP), as well as with cognitive performance. Using MRI at 3T, 24 PWH and 31 healthy controls underwent cross-sectional examination. The results revealed significant variations in tensor-valued diffusion encoding metrics across white matter regions, with associations observed between these metrics, cognitive performance, NFL and GFAP. Moreover, a significant interaction between HIV status and imaging metrics in gray and white matter was observed, particularly impacting total cognitive scores. Of interest, DTI metrics were less likely to be associated with HIV status than tensor-valued diffusion metrics. These findings suggest that tensor-valued diffusion encoding metrics offer heightened sensitivity in detecting subtle changes associated with axonal injury in HIV infection. Longitudinal studies are needed to further evaluate responsiveness of tensor-valued diffusion b-tensor encoding metrics in the contest HIV-associate mild chronic neuroinflammation.
Collapse
Affiliation(s)
- Md Nasir Uddin
- Department of Neurology, University of Rochester, 601 Elmwood Ave, Rochester, NY, 14642, USA.
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA.
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA.
| | - Meera V Singh
- Department of Neurology, University of Rochester, 601 Elmwood Ave, Rochester, NY, 14642, USA
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | - Abrar Faiyaz
- Department of Neurology, University of Rochester, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | | | - Markus Nilsson
- Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden
| | - Zachary D Boodoo
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | - Karli R Sutton
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, USA
| | - Madalina E Tivarus
- Department of Imaging Sciences, University of Rochester, Rochester, NY, USA
- Department of Neuroscience, University of Rochester, Rochester, NY, USA
| | - Jianhui Zhong
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Department of Imaging Sciences, University of Rochester, Rochester, NY, USA
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, USA
| | - Lu Wang
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, USA
| | - Xing Qiu
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, USA
| | - Miriam T Weber
- Department of Neurology, University of Rochester, 601 Elmwood Ave, Rochester, NY, 14642, USA
- Department of Obstetrics and Gynecology, University of Rochester, Rochester, NY, USA
| | - Giovanni Schifitto
- Department of Neurology, University of Rochester, 601 Elmwood Ave, Rochester, NY, 14642, USA
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA
- Department of Imaging Sciences, University of Rochester, Rochester, NY, USA
| |
Collapse
|
6
|
Rizor EJ, Babenko V, Dundon NM, Beverly‐Aylwin R, Stump A, Hayes M, Herschenfeld‐Catalan L, Jacobs EG, Grafton ST. Menstrual cycle-driven hormone concentrations co-fluctuate with white and gray matter architecture changes across the whole brain. Hum Brain Mapp 2024; 45:e26785. [PMID: 39031470 PMCID: PMC11258887 DOI: 10.1002/hbm.26785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 07/22/2024] Open
Abstract
Cyclic fluctuations in hypothalamic-pituitary-gonadal axis (HPG-axis) hormones exert powerful behavioral, structural, and functional effects through actions on the mammalian central nervous system. Yet, very little is known about how these fluctuations alter the structural nodes and information highways of the human brain. In a study of 30 naturally cycling women, we employed multidimensional diffusion and T1-weighted imaging during three estimated menstrual cycle phases (menses, ovulation, and mid-luteal) to investigate whether HPG-axis hormone concentrations co-fluctuate with alterations in white matter (WM) microstructure, cortical thickness (CT), and brain volume. Across the whole brain, 17β-estradiol and luteinizing hormone (LH) concentrations were directly proportional to diffusion anisotropy (μFA; 17β-estradiol: β1 = 0.145, highest density interval (HDI) = [0.211, 0.4]; LH: β1 = 0.111, HDI = [0.157, 0.364]), while follicle-stimulating hormone (FSH) was directly proportional to CT (β1 = 0 .162, HDI = [0.115, 0.678]). Within several individual regions, FSH and progesterone demonstrated opposing relationships with mean diffusivity (Diso) and CT. These regions mainly reside within the temporal and occipital lobes, with functional implications for the limbic and visual systems. Finally, progesterone was associated with increased tissue (β1 = 0.66, HDI = [0.607, 15.845]) and decreased cerebrospinal fluid (CSF; β1 = -0.749, HDI = [-11.604, -0.903]) volumes, with total brain volume remaining unchanged. These results are the first to report simultaneous brain-wide changes in human WM microstructure and CT coinciding with menstrual cycle-driven hormone rhythms. Effects were observed in both classically known HPG-axis receptor-dense regions (medial temporal lobe, prefrontal cortex) and in other regions located across frontal, occipital, temporal, and parietal lobes. Our results suggest that HPG-axis hormone fluctuations may have significant structural impacts across the entire brain.
Collapse
Affiliation(s)
- Elizabeth J. Rizor
- Department of Psychological & Brain SciencesUniversity of CaliforniaSanta BarbaraCaliforniaUSA
- Institute for Collaborative BiotechnologiesUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Viktoriya Babenko
- Department of Psychological & Brain SciencesUniversity of CaliforniaSanta BarbaraCaliforniaUSA
- BIOPAC Systems, IncGoletaCaliforniaUSA
| | - Neil M. Dundon
- Department of Psychological & Brain SciencesUniversity of CaliforniaSanta BarbaraCaliforniaUSA
- Institute for Collaborative BiotechnologiesUniversity of CaliforniaSanta BarbaraCaliforniaUSA
- Department of Child and Adolescent Psychiatry, Psychotherapy and PsychosomaticsUniversity of FreiburgFreiburgGermany
| | - Renee Beverly‐Aylwin
- Department of Psychological & Brain SciencesUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Alexandra Stump
- Department of Psychological & Brain SciencesUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Margaret Hayes
- Department of Psychological & Brain SciencesUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | | | - Emily G. Jacobs
- Department of Psychological & Brain SciencesUniversity of CaliforniaSanta BarbaraCaliforniaUSA
- Neuroscience Research InstituteUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Scott T. Grafton
- Department of Psychological & Brain SciencesUniversity of CaliforniaSanta BarbaraCaliforniaUSA
- Institute for Collaborative BiotechnologiesUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| |
Collapse
|
7
|
Uddin MN, Singh MV, Faiyaz A, Szczepankiewicz F, Nilsson M, Boodoo ZD, Sutton KR, Tivarus ME, Zhong J, Wang L, Qiu X, Weber MT, Schifitto G. Tensor-valued diffusion MRI detects brain microstructure changes in HIV infected individuals with cognitive impairment. RESEARCH SQUARE 2024:rs.3.rs-4482269. [PMID: 38946952 PMCID: PMC11213220 DOI: 10.21203/rs.3.rs-4482269/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Despite advancements, the prevalence of HIV-associated neurocognitive impairment remains at approximately 40%, attributed to factors like pre-cART (combination antiretroviral therapy) irreversible brain injury. People with HIV (PWH) treated with cART do not show significant neurocognitive changes over relatively short follow-up periods. However, quantitative neuroimaging may be able to detect ongoing subtle microstructural changes. This study aimed to investigate the sensitivity of tensor-valued diffusion encoding in detecting such changes in brain microstructural integrity in cART-treated PWH. Additionally, it explored relationships between these metrics, neurocognitive scores, and plasma levels of neurofilament light (NFL) chain and glial fibrillary acidic protein (GFAP). Using MRI at 3T, 24 PWH and 31 healthy controls underwent cross-sectional examination. The results revealed significant variations in b-tensor encoding metrics across white matter regions, with associations observed between these metrics, cognitive performance, and blood markers of neuronal and glial injury (NFL and GFAP). Moreover, a significant interaction between HIV status and imaging metrics was observed, particularly impacting total cognitive scores in both gray and white matter. These findings suggest that b-tensor encoding metrics offer heightened sensitivity in detecting subtle changes associated with axonal injury in HIV infection, underscoring their potential clinical relevance in understanding neurocognitive impairment in PWH.
Collapse
|
8
|
Barsoum S, Latimer CS, Nolan AL, Barrett A, Chang K, Troncoso J, Keene CD, Benjamini D. Resiliency to Alzheimer's disease neuropathology can be distinguished from dementia using cortical astrogliosis imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.06.592719. [PMID: 38766087 PMCID: PMC11100587 DOI: 10.1101/2024.05.06.592719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Despite the presence of significant Alzheimer's disease (AD) pathology, characterized by amyloid β (Aβ) plaques and phosphorylated tau (pTau) tangles, some cognitively normal elderly individuals do not inevitably develop dementia. These findings give rise to the notion of cognitive 'resilience', suggesting maintained cognitive function despite the presence of AD neuropathology, highlighting the influence of factors beyond classical pathology. Cortical astroglial inflammation, a ubiquitous feature of symptomatic AD, shows a strong correlation with cognitive impairment severity, potentially contributing to the diversity of clinical presentations. However, noninvasively imaging neuroinflammation, particularly astrogliosis, using MRI remains a significant challenge. Here we sought to address this challenge and to leverage multidimensional (MD) MRI, a powerful approach that combines relaxation with diffusion MR contrasts, to map cortical astrogliosis in the human brain by accessing sub-voxel information. Our goal was to test whether MD-MRI can map astroglial pathology in the cerebral cortex, and if so, whether it can distinguish cognitive resiliency from dementia in the presence of hallmark AD neuropathological changes. We adopted a multimodal approach by integrating histological and MRI analyses using human postmortem brain samples. Ex vivo cerebral cortical tissue specimens derived from three groups comprised of non-demented individuals with significant AD pathology postmortem, individuals with both AD pathology and dementia, and non-demented individuals with minimal AD pathology postmortem as controls, underwent MRI at 7 T. We acquired and processed MD-MRI, diffusion tensor, and quantitative T 1 and T 2 MRI data, followed by histopathological processing on slices from the same tissue. By carefully co-registering MRI and microscopy data, we performed quantitative multimodal analyses, leveraging targeted immunostaining to assess MD-MRI sensitivity and specificity towards Aβ, pTau, and glial fibrillary acidic protein (GFAP), a marker for astrogliosis. Our findings reveal a distinct MD-MRI signature of cortical astrogliosis, enabling the creation of predictive maps for cognitive resilience amid AD neuropathological changes. Multiple linear regression linked histological values to MRI changes, revealing that the MD-MRI cortical astrogliosis biomarker was significantly associated with GFAP burden (standardized β=0.658, pFDR<0.0001), but not with Aβ (standardized β=0.009, p FDR =0.913) or pTau (standardized β=-0.196, p FDR =0.051). Conversely, none of the conventional MRI parameters showed significant associations with GFAP burden in the cortex. While the extent to which pathological glial activation contributes to neuronal damage and cognitive impairment in AD is uncertain, developing a noninvasive imaging method to see its affects holds promise from a mechanistic perspective and as a potential predictor of cognitive outcomes.
Collapse
|
9
|
Zhou M, Stobbe R, Szczepankiewicz F, Budde M, Buck B, Kate M, Lloret M, Fairall P, Butcher K, Shuaib A, Emery D, Nilsson M, Westin CF, Beaulieu C. Tensor-valued diffusion MRI of human acute stroke. Magn Reson Med 2024; 91:2126-2141. [PMID: 38156813 DOI: 10.1002/mrm.29975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/18/2023] [Accepted: 11/27/2023] [Indexed: 01/03/2024]
Abstract
PURPOSE Tensor-valued diffusion encoding can disentangle orientation dispersion and subvoxel anisotropy, potentially offering insight into microstructural changes after cerebral ischemia. The purpose was to evaluate tensor-valued diffusion MRI in human acute ischemic stroke, assess potential confounders from diffusion time dependencies, and compare to Monte Carlo diffusion simulations of axon beading. METHODS Linear (LTE) and spherical (STE) b-tensor encoding with inherently different effective diffusion times were acquired in 21 acute ischemic stroke patients between 3 and 57 h post-onset at 3 T in 2.5 min. In an additional 10 patients, STE with 2 LTE yielding different effective diffusion times were acquired for comparison. Diffusional variance decomposition (DIVIDE) was used to estimate microscopic anisotropy (μFA), as well as anisotropic, isotropic, and total diffusional variance (MKA , MKI , MKT ). DIVIDE parameters, and diffusion tensor imaging (DTI)-derived mean diffusivity and fractional anisotropy (FA) were compared in lesion versus contralateral white matter. Monte Carlo diffusion simulations of various cylindrical geometries for all b-tensor protocols were used to interpret parameter measurements. RESULTS MD was ˜40% lower in lesions for all LTE/STE protocols. The DIVIDE parameters varied with effective diffusion time: higher μFA and MKA in lesion versus contralateral white matter for STE with longer effective diffusion time LTE, whereas the shorter effective diffusion time LTE protocol yielded lower μFA and MKA in lesions. Both protocols, regardless of diffusion time, were consistent with simulations of greater beading amplitude and intracellular volume fraction. CONCLUSION DIVIDE parameters depend on diffusion time in acute stroke but consistently indicate neurite beading and larger intracellular volume fraction.
Collapse
Affiliation(s)
- Mi Zhou
- Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Robert Stobbe
- Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
- Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, Canada
| | | | - Matthew Budde
- Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Brian Buck
- Neurology, University of Alberta, Edmonton, Alberta, Canada
| | - Mahesh Kate
- Neurology, University of Alberta, Edmonton, Alberta, Canada
| | - Mar Lloret
- Neurology, University of Alberta, Edmonton, Alberta, Canada
| | - Paige Fairall
- Neurology, University of Alberta, Edmonton, Alberta, Canada
| | - Ken Butcher
- School of Clinical Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Ashfaq Shuaib
- Neurology, University of Alberta, Edmonton, Alberta, Canada
| | - Derek Emery
- Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, Canada
| | - Markus Nilsson
- Clinical Sciences Lund, Lund University, Lund, Scania, Sweden
| | - Carl-Fredrik Westin
- Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christian Beaulieu
- Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
- Radiology and Diagnostic Imaging, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
10
|
Papazoglou S, Ashtarayeh M, Oeschger JM, Callaghan MF, Does MD, Mohammadi S. Insights and improvements in correspondence between axonal volume fraction measured with diffusion-weighted MRI and electron microscopy. NMR IN BIOMEDICINE 2024; 37:e5070. [PMID: 38098204 PMCID: PMC11475374 DOI: 10.1002/nbm.5070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 09/25/2023] [Accepted: 10/19/2023] [Indexed: 02/17/2024]
Abstract
Biophysical diffusion-weighted imaging (DWI) models are increasingly used in neuroscience to estimate the axonal water fraction (f AW ), which in turn is key for noninvasive estimation of the axonal volume fraction (f A ). These models require thorough validation by comparison with a reference method, for example, electron microscopy (EM). While EM studies often neglect the unmyelinated axons and solely report the fraction of myelinated axons, in DWI both myelinated and unmyelinated axons contribute to the DWI signal. However, DWI models often include simplifications, for example, the neglect of differences in the compartmental relaxation times or fixed diffusivities, which in turn might affect the estimation off AW . We investigate whether linear calibration parameters (scaling and offset) can improve the comparability between EM- and DWI-based metrics off A . To this end, we (a) used six DWI models based on the so-called standard model of white matter (WM), including two models with fixed compartmental diffusivities (e.g., neurite orientation dispersion and density imaging, NODDI) and four models that fitted the compartmental diffusivities (e.g., white matter tract integrity, WMTI), and (b) used a multimodal data set including ex vivo diffusion DWI and EM data in mice with a broad dynamic range of fibre volume metrics. We demonstrated that the offset is associated with the volume fraction of unmyelinated axons and the scaling factor is associated with different compartmentalT 2 and can substantially enhance the comparability between EM- and DWI-based metrics off A . We found that DWI models that fitted compartmental diffusivities provided the most accurate estimates of the EM-basedf A . Finally, we introduced a more efficient hybrid calibration approach, where only the offset is estimated but the scaling is fixed to a theoretically predicted value. Using this approach, a similar one-to-one correspondence to EM was achieved for WMTI. The method presented can pave the way for use of validated DWI-based models in clinical research and neuroscience.
Collapse
Affiliation(s)
- Sebastian Papazoglou
- Department of Systems NeuroscienceUniversity Medical Center Hamburg–EppendorfHamburgGermany
- Max Planck Research Group MR PhysicsMax Planck Institute for Human DevelopmentBerlinGermany
| | - Mohammad Ashtarayeh
- Department of Systems NeuroscienceUniversity Medical Center Hamburg–EppendorfHamburgGermany
| | - Jan Malte Oeschger
- Department of Systems NeuroscienceUniversity Medical Center Hamburg–EppendorfHamburgGermany
| | - Martina F. Callaghan
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Mark D. Does
- Department of Biomedical EngineeringVanderbilt UniversityNashvilleTennesseeUSA
- Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of Electrical EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Siawoosh Mohammadi
- Department of Systems NeuroscienceUniversity Medical Center Hamburg–EppendorfHamburgGermany
- Max Planck Research Group MR PhysicsMax Planck Institute for Human DevelopmentBerlinGermany
- Department of NeurophysicsMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| |
Collapse
|
11
|
Coelho S, Liao Y, Szczepankiewicz F, Veraart J, Chung S, Lui YW, Novikov DS, Fieremans E. Assessment of Precision and Accuracy of Brain White Matter Microstructure using Combined Diffusion MRI and Relaxometry. ARXIV 2024:arXiv:2402.17175v1. [PMID: 38463511 PMCID: PMC10925389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Joint modeling of diffusion and relaxation has seen growing interest due to its potential to provide complementary information about tissue microstructure. For brain white matter, we designed an optimal diffusion-relaxometry MRI protocol that samples multiple b-values, B-tensor shapes, and echo times (TE). This variable-TE protocol (27 min) has as subsets a fixed-TE protocol (15 min) and a 2-shell dMRI protocol (7 min), both characterizing diffusion only. We assessed the sensitivity, specificity and reproducibility of these protocols with synthetic experiments and in six healthy volunteers. Compared with the fixed-TE protocol, the variable-TE protocol enables estimation of free water fractions while also capturing compartmental T 2 relaxation times. Jointly measuring diffusion and relaxation offers increased sensitivity and specificity to microstructure parameters in brain white matter with voxelwise coefficients of variation below 10%.
Collapse
Affiliation(s)
- Santiago Coelho
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Ying Liao
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | | | - Jelle Veraart
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Sohae Chung
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Yvonne W Lui
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Dmitry S Novikov
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Els Fieremans
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
12
|
Spotorno N, Najac C, Strandberg O, Stomrud E, van Westen D, Nilsson M, Ronen I, Hansson O. Diffusion weighted magnetic resonance spectroscopy revealed neuronal specific microstructural alterations in Alzheimer's disease. Brain Commun 2024; 6:fcae026. [PMID: 38370447 PMCID: PMC10873577 DOI: 10.1093/braincomms/fcae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 12/19/2023] [Accepted: 01/31/2024] [Indexed: 02/20/2024] Open
Abstract
In Alzheimer's disease, reconfiguration and deterioration of tissue microstructure occur before substantial degeneration become evident. We explored the diffusion properties of both water, a ubiquitous marker measured by diffusion MRI, and N-acetyl-aspartate, a neuronal metabolite probed by diffusion-weighted magnetic resonance spectroscopy, for investigating cortical microstructural changes downstream of Alzheimer's disease pathology. To this aim, 50 participants from the Swedish BioFINDER-2 study were scanned on both 7 and 3 T MRI systems. We found that in cognitively impaired participants with evidence of both abnormal amyloid-beta (CSF amyloid-beta42/40) and tau accumulation (tau-PET), the N-acetyl-aspartate diffusion rate was significantly lower than in cognitively unimpaired participants (P < 0.05). This supports the hypothesis that intraneuronal tau accumulation hinders diffusion in the neuronal cytosol. Conversely, water diffusivity was higher in cognitively impaired participants (P < 0.001) and was positively associated with the concentration of myo-inositol, a preferentially astrocytic metabolite (P < 0.001), suggesting that water diffusion is sensitive to alterations in the extracellular space and in glia. In conclusion, measuring the diffusion properties of both water and N-acetyl-aspartate provides rich information on the cortical microstructure in Alzheimer's disease, and can be used to develop new sensitive and specific markers to microstructural changes occurring during the disease course.
Collapse
Affiliation(s)
- Nicola Spotorno
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Lund 22184, Sweden
| | - Chloé Najac
- Department of Radiology, C.J. Gorter MRI Center, Leiden University Medical Center, Leiden 2333, The Netherlands
| | - Olof Strandberg
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Lund 22184, Sweden
| | - Erik Stomrud
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Lund 22184, Sweden
- Memory Clinic, Skåne University Hospital, Malmö 20502, Sweden
| | - Danielle van Westen
- Image and Function, Skane University Hospital, Lund 22185, Sweden
- Diagnostic Radiology, Institution for Clinical Sciences, Lund University, Lund 22185, Sweden
| | - Markus Nilsson
- Diagnostic Radiology, Institution for Clinical Sciences, Lund University, Lund 22185, Sweden
| | - Itamar Ronen
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Falmer BN1 9RR, UK
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Lund 22184, Sweden
- Memory Clinic, Skåne University Hospital, Malmö 20502, Sweden
| |
Collapse
|
13
|
Lampinen B, Szczepankiewicz F, Lätt J, Knutsson L, Mårtensson J, Björkman-Burtscher IM, van Westen D, Sundgren PC, Ståhlberg F, Nilsson M. Probing brain tissue microstructure with MRI: principles, challenges, and the role of multidimensional diffusion-relaxation encoding. Neuroimage 2023; 282:120338. [PMID: 37598814 DOI: 10.1016/j.neuroimage.2023.120338] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/30/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023] Open
Abstract
Diffusion MRI uses the random displacement of water molecules to sensitize the signal to brain microstructure and to properties such as the density and shape of cells. Microstructure modeling techniques aim to estimate these properties from acquired data by separating the signal between virtual tissue 'compartments' such as the intra-neurite and the extra-cellular space. A key challenge is that the diffusion MRI signal is relatively featureless compared with the complexity of brain tissue. Another challenge is that the tissue microstructure is wildly different within the gray and white matter of the brain. In this review, we use results from multidimensional diffusion encoding techniques to discuss these challenges and their tentative solutions. Multidimensional encoding increases the information content of the data by varying not only the b-value and the encoding direction but also additional experimental parameters such as the shape of the b-tensor and the echo time. Three main insights have emerged from such encoding. First, multidimensional data contradict common model assumptions on diffusion and T2 relaxation, and illustrates how the use of these assumptions cause erroneous interpretations in both healthy brain and pathology. Second, many model assumptions can be dispensed with if data are acquired with multidimensional encoding. The necessary data can be easily acquired in vivo using protocols optimized to minimize Cramér-Rao lower bounds. Third, microscopic diffusion anisotropy reflects the presence of axons but not dendrites. This insight stands in contrast to current 'neurite models' of brain tissue, which assume that axons in white matter and dendrites in gray matter feature highly similar diffusion. Nevertheless, as an axon-based contrast, microscopic anisotropy can differentiate gray and white matter when myelin alterations confound conventional MRI contrasts.
Collapse
Affiliation(s)
- Björn Lampinen
- Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden.
| | | | - Jimmy Lätt
- Department of Medical Imaging and Physiology, Skåne University Hospital Lund, Lund, Sweden
| | - Linda Knutsson
- Clinical Sciences Lund, Medical Radiation Physics, Lund University, Lund, Sweden; Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Johan Mårtensson
- Clinical Sciences Lund, Logopedics, Phoniatrics and Audiology, Lund University, Lund, Sweden
| | - Isabella M Björkman-Burtscher
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Danielle van Westen
- Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden; Department of Medical Imaging and Physiology, Skåne University Hospital Lund, Lund, Sweden
| | - Pia C Sundgren
- Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden; Department of Medical Imaging and Physiology, Skåne University Hospital Lund, Lund, Sweden; Lund University BioImaging Centre (LBIC), Lund University, Lund, Sweden
| | - Freddy Ståhlberg
- Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden; Clinical Sciences Lund, Medical Radiation Physics, Lund University, Lund, Sweden
| | - Markus Nilsson
- Clinical Sciences Lund, Diagnostic Radiology, Lund University, Lund, Sweden
| |
Collapse
|
14
|
Farzi M, Coveney S, Afzali M, Zdora M, Lygate CA, Rau C, Frangi AF, Dall'Armellina E, Teh I, Schneider JE. Measuring cardiomyocyte cellular characteristics in cardiac hypertrophy using diffusion-weighted MRI. Magn Reson Med 2023; 90:2144-2157. [PMID: 37345727 PMCID: PMC10962572 DOI: 10.1002/mrm.29775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/05/2023] [Accepted: 06/02/2023] [Indexed: 06/23/2023]
Abstract
PURPOSE This paper presents a hierarchical modeling approach for estimating cardiomyocyte major and minor diameters and intracellular volume fraction (ICV) using diffusion-weighted MRI (DWI) data in ex vivo mouse hearts. METHODS DWI data were acquired on two healthy controls and two hearts 3 weeks post transverse aortic constriction (TAC) using a bespoke diffusion scheme with multiple diffusion times (Δ $$ \Delta $$ ), q-shells and diffusion encoding directions. Firstly, a bi-exponential tensor model was fitted separately at each diffusion time to disentangle the dependence on diffusion times from diffusion weightings, that is, b-values. The slow-diffusing component was attributed to the restricted diffusion inside cardiomyocytes. ICV was then extrapolated atΔ = 0 $$ \Delta =0 $$ using linear regression. Secondly, given the secondary and the tertiary diffusion eigenvalue measurements for the slow-diffusing component obtained at different diffusion times, major and minor diameters were estimated assuming a cylinder model with an elliptical cross-section (ECS). High-resolution three-dimensional synchrotron X-ray imaging (SRI) data from the same specimen was utilized to evaluate the biophysical parameters. RESULTS Estimated parameters using DWI data were (control 1/control 2 vs. TAC 1/TAC 2): major diameter-17.4μ $$ \mu $$ m/18.0μ $$ \mu $$ m versus 19.2μ $$ \mu $$ m/19.0μ $$ \mu $$ m; minor diameter-10.2μ $$ \mu $$ m/9.4μ $$ \mu $$ m versus 12.8μ $$ \mu $$ m/13.4μ $$ \mu $$ m; and ICV-62%/62% versus 68%/47%. These findings were consistent with SRI measurements. CONCLUSION The proposed method allowed for accurate estimation of biophysical parameters suggesting cardiomyocyte diameters as sensitive biomarkers of hypertrophy in the heart.
Collapse
Affiliation(s)
- Mohsen Farzi
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Sam Coveney
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Maryam Afzali
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of PsychologyCardiff UniversityCardiffUK
| | - Marie‐Christine Zdora
- Diamond Light Source Ltd.Harwell Science and Innovation CampusDidcotUK
- Department of Physics & AstronomyUniversity College LondonLondonUK
| | - Craig A. Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Christoph Rau
- Diamond Light Source Ltd.Harwell Science and Innovation CampusDidcotUK
| | - Alejandro F. Frangi
- Centre for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), School of ComputingUniversity of LeedsLeedsUK
| | - Erica Dall'Armellina
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Irvin Teh
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| | - Jürgen E. Schneider
- Biomedical Imaging Science Department, Leeds Institute of Cardiovascular and Metabolic MedicineUniversity of LeedsLeedsUK
| |
Collapse
|
15
|
Boito D, Eklund A, Tisell A, Levi R, Özarslan E, Blystad I. MRI with generalized diffusion encoding reveals damaged white matter in patients previously hospitalized for COVID-19 and with persisting symptoms at follow-up. Brain Commun 2023; 5:fcad284. [PMID: 37953843 PMCID: PMC10638510 DOI: 10.1093/braincomms/fcad284] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/25/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023] Open
Abstract
There is mounting evidence of the long-term effects of COVID-19 on the central nervous system, with patients experiencing diverse symptoms, often suggesting brain involvement. Conventional brain MRI of these patients shows unspecific patterns, with no clear connection of the symptomatology to brain tissue abnormalities, whereas diffusion tensor studies and volumetric analyses detect measurable changes in the brain after COVID-19. Diffusion MRI exploits the random motion of water molecules to achieve unique sensitivity to structures at the microscopic level, and new sequences employing generalized diffusion encoding provide structural information which are sensitive to intravoxel features. In this observational study, a total of 32 persons were investigated: 16 patients previously hospitalized for COVID-19 with persisting symptoms of post-COVID condition (mean age 60 years: range 41-79, all male) at 7-month follow-up and 16 matched controls, not previously hospitalized for COVID-19, with no post-COVID symptoms (mean age 58 years, range 46-69, 11 males). Standard MRI and generalized diffusion encoding MRI were employed to examine the brain white matter of the subjects. To detect possible group differences, several tissue microstructure descriptors obtainable with the employed diffusion sequence, the fractional anisotropy, mean diffusivity, axial diffusivity, radial diffusivity, microscopic anisotropy, orientational coherence (Cc) and variance in compartment's size (CMD) were analysed using the tract-based spatial statistics framework. The tract-based spatial statistics analysis showed widespread statistically significant differences (P < 0.05, corrected for multiple comparisons using the familywise error rate) in all the considered metrics in the white matter of the patients compared to the controls. Fractional anisotropy, microscopic anisotropy and Cc were lower in the patient group, while axial diffusivity, radial diffusivity, mean diffusivity and CMD were higher. Significant changes in fractional anisotropy, microscopic anisotropy and CMD affected approximately half of the analysed white matter voxels located across all brain lobes, while changes in Cc were mainly found in the occipital parts of the brain. Given the predominant alteration in microscopic anisotropy compared to Cc, the observed changes in diffusion anisotropy are mostly due to loss of local anisotropy, possibly connected to axonal damage, rather than white matter fibre coherence disruption. The increase in radial diffusivity is indicative of demyelination, while the changes in mean diffusivity and CMD are compatible with vasogenic oedema. In summary, these widespread alterations of white matter microstructure are indicative of vasogenic oedema, demyelination and axonal damage. These changes might be a contributing factor to the diversity of central nervous system symptoms that many patients experience after COVID-19.
Collapse
Affiliation(s)
- Deneb Boito
- Department of Biomedical Engineering, Linköping University, S-58183 Linköping, Sweden
- Centre for Medical Image Science and Visualization (CMIV), Linköping University, S-58183 Linköping, Sweden
| | - Anders Eklund
- Department of Biomedical Engineering, Linköping University, S-58183 Linköping, Sweden
- Centre for Medical Image Science and Visualization (CMIV), Linköping University, S-58183 Linköping, Sweden
- Division of Statistics and Machine learning, Department of Computer and Information Science, Linköping University, S-58183 Linköping, Sweden
| | - Anders Tisell
- Centre for Medical Image Science and Visualization (CMIV), Linköping University, S-58183 Linköping, Sweden
- Department of Radiation Physics, Linköping University, S-58185 Linköping, Sweden
- Department of Health, Medicine and Caring Sciences, Linköping University, S58183 Linköping, Sweden
| | - Richard Levi
- Centre for Medical Image Science and Visualization (CMIV), Linköping University, S-58183 Linköping, Sweden
- Department of Health, Medicine and Caring Sciences, Linköping University, S58183 Linköping, Sweden
- Department of Rehabilitation Medicine in Linköping, Linköping University, S-58185 Linköping, Sweden
| | - Evren Özarslan
- Department of Biomedical Engineering, Linköping University, S-58183 Linköping, Sweden
- Centre for Medical Image Science and Visualization (CMIV), Linköping University, S-58183 Linköping, Sweden
| | - Ida Blystad
- Centre for Medical Image Science and Visualization (CMIV), Linköping University, S-58183 Linköping, Sweden
- Department of Health, Medicine and Caring Sciences, Linköping University, S58183 Linköping, Sweden
- Department of Radiology in Linköping, Linköping University, S-58185 Linköping, Sweden
| |
Collapse
|
16
|
Barakovic M, Pizzolato M, Tax CMW, Rudrapatna U, Magon S, Dyrby TB, Granziera C, Thiran JP, Jones DK, Canales-Rodríguez EJ. Estimating axon radius using diffusion-relaxation MRI: calibrating a surface-based relaxation model with histology. Front Neurosci 2023; 17:1209521. [PMID: 37638307 PMCID: PMC10457121 DOI: 10.3389/fnins.2023.1209521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Axon radius is a potential biomarker for brain diseases and a crucial tissue microstructure parameter that determines the speed of action potentials. Diffusion MRI (dMRI) allows non-invasive estimation of axon radius, but accurately estimating the radius of axons in the human brain is challenging. Most axons in the brain have a radius below one micrometer, which falls below the sensitivity limit of dMRI signals even when using the most advanced human MRI scanners. Therefore, new MRI methods that are sensitive to small axon radii are needed. In this proof-of-concept investigation, we examine whether a surface-based axonal relaxation process could mediate a relationship between intra-axonal T2 and T1 times and inner axon radius, as measured using postmortem histology. A unique in vivo human diffusion-T1-T2 relaxation dataset was acquired on a 3T MRI scanner with ultra-strong diffusion gradients, using a strong diffusion-weighting (i.e., b = 6,000 s/mm2) and multiple inversion and echo times. A second reduced diffusion-T2 dataset was collected at various echo times to evaluate the model further. The intra-axonal relaxation times were estimated by fitting a diffusion-relaxation model to the orientation-averaged spherical mean signals. Our analysis revealed that the proposed surface-based relaxation model effectively explains the relationship between the estimated relaxation times and the histological axon radius measured in various corpus callosum regions. Using these histological values, we developed a novel calibration approach to predict axon radius in other areas of the corpus callosum. Notably, the predicted radii and those determined from histological measurements were in close agreement.
Collapse
Affiliation(s)
- Muhamed Barakovic
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, United Kingdom
- Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center, Basel, Switzerland
| | - Marco Pizzolato
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Chantal M. W. Tax
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, United Kingdom
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
| | - Umesh Rudrapatna
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, United Kingdom
| | - Stefano Magon
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center, Basel, Switzerland
| | - Tim B. Dyrby
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jean-Philippe Thiran
- Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
- Centre d’Imagerie Biomédicale (CIBM), EPFL, Lausanne, Switzerland
| | - Derek K. Jones
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, United Kingdom
| | - Erick J. Canales-Rodríguez
- Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
17
|
Alsameen MH, Gong Z, Qian W, Kiely M, Triebswetter C, Bergeron CM, Cortina LE, Faulkner ME, Laporte JP, Bouhrara M. C-NODDI: a constrained NODDI model for axonal density and orientation determinations in cerebral white matter. Front Neurol 2023; 14:1205426. [PMID: 37602266 PMCID: PMC10435293 DOI: 10.3389/fneur.2023.1205426] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
Purpose Neurite orientation dispersion and density imaging (NODDI) provides measures of neurite density and dispersion through computation of the neurite density index (NDI) and the orientation dispersion index (ODI). However, NODDI overestimates the cerebrospinal fluid water fraction in white matter (WM) and provides physiologically unrealistic high NDI values. Furthermore, derived NDI values are echo-time (TE)-dependent. In this work, we propose a modification of NODDI, named constrained NODDI (C-NODDI), for NDI and ODI mapping in WM. Methods Using NODDI and C-NODDI, we investigated age-related alterations in WM in a cohort of 58 cognitively unimpaired adults. Further, NDI values derived using NODDI or C-NODDI were correlated with the neurofilament light chain (NfL) concentration levels, a plasma biomarker of axonal degeneration. Finally, we investigated the TE dependence of NODDI or C-NODDI derived NDI and ODI. Results ODI derived values using both approaches were virtually identical, exhibiting constant trends with age. Further, our results indicated a quadratic relationship between NDI and age suggesting that axonal maturation continues until middle age followed by a decrease. This quadratic association was notably significant in several WM regions using C-NODDI, while limited to a few regions using NODDI. Further, C-NODDI-NDI values exhibited a stronger correlation with NfL concentration levels as compared to NODDI-NDI, with lower NDI values corresponding to higher levels of NfL. Finally, we confirmed the previous finding that NDI estimation using NODDI was dependent on TE, while NDI derived values using C-NODDI exhibited lower sensitivity to TE in WM. Conclusion C-NODDI provides a complementary method to NODDI for determination of NDI in white matter.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
18
|
Bouhrara M, Avram AV, Kiely M, Trivedi A, Benjamini D. Adult lifespan maturation and degeneration patterns in gray and white matter: A mean apparent propagator (MAP) MRI study. Neurobiol Aging 2023; 124:104-116. [PMID: 36641369 PMCID: PMC9985137 DOI: 10.1016/j.neurobiolaging.2022.12.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/02/2023]
Abstract
The relationship between brain microstructure and aging has been the subject of intense study, with diffusion MRI perhaps the most effective modality for elucidating these associations. Here, we used the mean apparent propagator (MAP)-MRI framework, which is suitable to characterize complex microstructure, to investigate age-related cerebral differences in a cohort of cognitively unimpaired participants and compared the results to those derived using diffusion tensor imaging. We studied MAP-MRI metrics, among them the non-Gaussianity (NG) and propagator anisotropy (PA), and established an opposing pattern in white matter of higher NG alongside lower PA among older adults, likely indicative of axonal degradation. In gray matter, however, these two indices were consistent with one another, and exhibited regional pattern heterogeneity compared to other microstructural parameters, which could indicate fewer neuronal projections across cortical layers along with an increased glial concentration. In addition, we report regional variations in the magnitude of age-related microstructural differences consistent with the posterior-anterior shift in aging paradigm. These results encourage further investigations in cognitive impairments and neurodegeneration.
Collapse
Affiliation(s)
- Mustapha Bouhrara
- Magnetic Resonance Physics of Aging and Dementia Unit, National Institute on Aging, NIH, Baltimore, MD 21224, USA.
| | - Alexandru V. Avram
- Section on Quantitative Imaging and Tissue Sciences,Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA,Center for Neuroscience and Regenerative Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Matthew Kiely
- Magnetic Resonance Physics of Aging and Dementia Unit, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Aparna Trivedi
- Multiscale Imaging and Integrative Biophysics Unit, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Dan Benjamini
- Multiscale Imaging and Integrative Biophysics Unit, National Institute on Aging, NIH, Baltimore, MD 21224, USA.
| |
Collapse
|
19
|
Ferizi U, Müller-Oehring EM, Peterson ET, Pohl KM. The distortions of the free water model for diffusion MRI data when assuming single compartment relaxometry and proton density. Phys Med Biol 2023; 68:10.1088/1361-6560/acb30b. [PMID: 36638532 PMCID: PMC10100575 DOI: 10.1088/1361-6560/acb30b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 01/13/2023] [Indexed: 01/15/2023]
Abstract
Objective.To document the bias of thesimplifiedfree water model of diffusion MRI (dMRI) signal vis-à-vis aspecificmodel which, in addition to diffusion, incorporates compartment-specific proton density (PD), T1 recovery during repetition time (TR), and T2 decay during echo time (TE).Approach.Both models assume that volume fractionfof the total signal in any voxel arises from the free water compartment (fw) such as cerebrospinal fluid or edema, and the remainder (1-f) from hindered water (hw) which is constrained by cellular structures such as white matter (WM). Thespecificandsimplifiedmodels are compared on a synthetic dataset, using a range of PD, T1 and T2 values. We then fit the models to anin vivohealthy brain dMRI dataset. For bothsyntheticandin vivodata we use experimentally feasible TR, TE, signal-to-noise ratio (SNR) and physiologically plausible diffusion profiles.Main results.From the simulations we see that the difference between the estimatedsimplified fandspecific fis largest for mid-range ground-truthf, and it increases as SNR increases. The estimation of volume fractionfis sensitive to the choice of model,simplifiedorspecific, but the estimated diffusion parameters are robust to small perturbations in the simulation.Specific fis more accurate and precise thansimplified f. In the white matter (WM) regions of thein vivoimages,specific fis lower thansimplified f.Significance.In dMRI models for free water, accounting for compartment specific PD, T1 and T2, in addition to diffusion, improves the estimation of model parameters. This extra model specification attenuates the estimation bias of compartmental volume fraction without affecting the estimation of other diffusion parameters.
Collapse
Affiliation(s)
- Uran Ferizi
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Eva M Müller-Oehring
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States of America
| | - Eric T Peterson
- Center for Health Sciences, SRI International, Menlo Park, CA, United States of America
| | - Kilian M Pohl
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States of America
- Center for Health Sciences, SRI International, Menlo Park, CA, United States of America
| |
Collapse
|
20
|
Howes OD, Cummings C, Chapman GE, Shatalina E. Neuroimaging in schizophrenia: an overview of findings and their implications for synaptic changes. Neuropsychopharmacology 2023; 48:151-167. [PMID: 36056106 PMCID: PMC9700830 DOI: 10.1038/s41386-022-01426-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/09/2022]
Abstract
Over the last five decades, a large body of evidence has accrued for structural and metabolic brain alterations in schizophrenia. Here we provide an overview of these findings, focusing on measures that have traditionally been thought to reflect synaptic spine density or synaptic activity and that are relevant for understanding if there is lower synaptic density in the disorder. We conducted literature searches to identify meta-analyses or other relevant studies in patients with chronic or first-episode schizophrenia, or in people at high genetic or clinical risk for psychosis. We identified 18 meta-analyses including over 50,000 subjects in total, covering: structural MRI measures of gyrification index, grey matter volume, grey matter density and cortical thickness, neurite orientation dispersion and density imaging, PET imaging of regional glucose metabolism and magnetic resonance spectroscopy measures of N-acetylaspartate. We also review preclinical evidence on the relationship between ex vivo synaptic measures and structural MRI imaging, and PET imaging of synaptic protein 2A (SV2A). These studies show that schizophrenia is associated with lower grey matter volumes and cortical thickness, accelerated grey matter loss over time, abnormal gyrification patterns, and lower regional SV2A levels and metabolic markers in comparison to controls (effect sizes from ~ -0.11 to -1.0). Key regions affected include frontal, anterior cingulate and temporal cortices and the hippocampi. We identify several limitations for the interpretation of these findings in terms of understanding synaptic alterations. Nevertheless, taken with post-mortem findings, they suggest that schizophrenia is associated with lower synaptic density in some brain regions. However, there are several gaps in evidence, in particular whether SV2A findings generalise to other cohorts.
Collapse
Affiliation(s)
- Oliver D Howes
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK.
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- South London and Maudsley NHS Foundation Trust, London, UK.
| | - Connor Cummings
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
- Clare Hall (College), University of Cambridge, Cambridge, UK
| | - George E Chapman
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Ekaterina Shatalina
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK
| |
Collapse
|
21
|
Chakwizira A, Westin C, Brabec J, Lasič S, Knutsson L, Szczepankiewicz F, Nilsson M. Diffusion MRI with pulsed and free gradient waveforms: Effects of restricted diffusion and exchange. NMR IN BIOMEDICINE 2023; 36:e4827. [PMID: 36075110 PMCID: PMC10078514 DOI: 10.1002/nbm.4827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 08/27/2022] [Accepted: 09/06/2022] [Indexed: 05/06/2023]
Abstract
Monitoring time dependence with diffusion MRI yields observables sensitive to compartment sizes (restricted diffusion) and membrane permeability (water exchange). However, restricted diffusion and exchange have opposite effects on the diffusion-weighted signal, which can lead to errors in parameter estimates. In this work, we propose a signal representation that incorporates the effects of both restricted diffusion and exchange up to second order in b-value and is compatible with gradient waveforms of arbitrary shape. The representation features mappings from a gradient waveform to two scalars that separately control the sensitivity to restriction and exchange. We demonstrate that these scalars span a two-dimensional space that can be used to choose waveforms that selectively probe restricted diffusion or exchange, eliminating the correlation between the two phenomena. We found that waveforms with specific but unconventional shapes provide an advantage over conventional pulsed and oscillating gradient acquisitions. We also show that parametrization of waveforms into a two-dimensional space can be used to understand protocols from other approaches that probe restricted diffusion and exchange. For example, we found that the variation of mixing time in filter-exchange imaging corresponds to variation of our exchange-weighting scalar at a fixed value of the restriction-weighting scalar. The proposed signal representation was evaluated using Monte Carlo simulations in identical parallel cylinders with hexagonal and random packing as well as parallel cylinders with gamma-distributed radii. Results showed that the approach is sensitive to sizes in the interval 4-12 μm and exchange rates in the simulated range of 0 to 20 s - 1 , but also that there is a sensitivity to the extracellular geometry. The presented theory constitutes a simple and intuitive description of how restricted diffusion and exchange influence the signal as well as a guide to protocol design capable of separating the two effects.
Collapse
Affiliation(s)
- Arthur Chakwizira
- Department of Medical Radiation Physics, LundLund UniversityLundSweden
| | - Carl‐Fredrik Westin
- Department of Radiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Jan Brabec
- Department of Medical Radiation Physics, LundLund UniversityLundSweden
| | - Samo Lasič
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital ‐ Amager and HvidovreCopenhagenDenmark
- Random Walk Imaging ABLundSweden
| | - Linda Knutsson
- Department of Medical Radiation Physics, LundLund UniversityLundSweden
- Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- F. M. Kirby Research Center for Functional Brain ImagingKennedy Krieger InstituteBaltimoreMarylandUSA
| | | | - Markus Nilsson
- Department of Clinical Sciences Lund, RadiologyLund UniversityLundSweden
| |
Collapse
|
22
|
Ali TS, Lv J, Calamante F. Gradual changes in microarchitectural properties of cortex and juxtacortical white matter: Observed by anatomical and diffusion MRI. Magn Reson Med 2022; 88:2485-2503. [PMID: 36045582 DOI: 10.1002/mrm.29413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Characterization of cerebral cortex is challenged by the complexity and heterogeneity of its cyto- and myeloarchitecture. This study evaluates quantitative MRI metrics, measured across two cortical depths and in subcortical white matter (WM) adjacent to cortex (juxtacortical WM), indicative of myelin content, neurite density, and diffusion microenvironment, for a comprehensive characterization of cortical microarchitecture. METHODS High-quality structural and diffusion MRI data (N = 30) from the Human Connectome Project were processed to compute myelin index, neurite density index, fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity from superficial cortex, deep cortex, and juxtacortical WM. The distributional patterns of these metrics were analyzed individually, correlated to one another, and were compared to established parcellations. RESULTS Our results supported that myeloarchitectonic and the coexisting cytoarchitectonic structures influence the diffusion properties of water molecules residing in cortex. Full cortical thickness showed myelination patterns similar to those previously observed in humans. Higher myelin indices with similar distributional patterns were observed in deep cortex whereas lower myelin indices were observed in superficial cortex. Neurite density index and other diffusion MRI derived parameters provided complementary information to myelination. Reliable and reproducible correlations were identified among the cortical microarchitectural properties and fiber distributional patterns in proximal WM structures. CONCLUSION We demonstrated gradual changes across the cortical sheath by assessing depth-specific cortical micro-architecture using anatomical and diffusion MRI. Mutually independent but coexisting features of cortical layers and juxtacortical WM provided new insights towards structural organizational units and variabilities across cortical regions and through depth.
Collapse
Affiliation(s)
- Tonima S Ali
- School of Biomedical Engineering, The University of Sydney, Sydney, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Jinglei Lv
- School of Biomedical Engineering, The University of Sydney, Sydney, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, Australia.,Sydney Imaging, The University of Sydney, Sydney, Australia
| | - Fernando Calamante
- School of Biomedical Engineering, The University of Sydney, Sydney, Australia.,Brain and Mind Centre, The University of Sydney, Sydney, Australia.,Sydney Imaging, The University of Sydney, Sydney, Australia
| |
Collapse
|
23
|
Reveley C, Ye FQ, Mars RB, Matrov D, Chudasama Y, Leopold DA. Diffusion MRI anisotropy in the cerebral cortex is determined by unmyelinated tissue features. Nat Commun 2022; 13:6702. [PMID: 36335105 PMCID: PMC9637141 DOI: 10.1038/s41467-022-34328-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/19/2022] [Indexed: 11/07/2022] Open
Abstract
Diffusion magnetic resonance imaging (dMRI) is commonly used to assess the tissue and cellular substructure of the human brain. In the white matter, myelinated axons are the principal neural elements that shape dMRI through the restriction of water diffusion; however, in the gray matter the relative contributions of myelinated axons and other tissue features to dMRI are poorly understood. Here we investigate the determinants of diffusion in the cerebral cortex. Specifically, we ask whether myelinated axons significantly shape dMRI fractional anisotropy (dMRI-FA), a measure commonly used to characterize tissue properties in humans. We compared ultra-high resolution ex vivo dMRI data from the brain of a marmoset monkey with both myelin- and Nissl-stained histological sections obtained from the same brain after scanning. We found that the dMRI-FA did not match the spatial distribution of myelin in the gray matter. Instead dMRI-FA was more closely related to the anisotropy of stained tissue features, most prominently those revealed by Nissl staining and to a lesser extent those revealed by myelin staining. Our results suggest that unmyelinated neurites such as large caliber apical dendrites are the primary features shaping dMRI measures in the cerebral cortex.
Collapse
Affiliation(s)
- Colin Reveley
- grid.4991.50000 0004 1936 8948Wellcome Centre for Integrative Neuroimaging, Centre for fMRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Headington, Oxford, OX9 3DU UK ,grid.12082.390000 0004 1936 7590Department of Informatics, University of Sussex, Falmer, Brighton, BN1 9QJ UK
| | - Frank Q. Ye
- grid.94365.3d0000 0001 2297 5165Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, National Institutes of Health, Bethesda, MD USA
| | - Rogier B. Mars
- grid.4991.50000 0004 1936 8948Wellcome Centre for Integrative Neuroimaging, Centre for fMRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Headington, Oxford, OX9 3DU UK ,grid.5590.90000000122931605Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Denis Matrov
- grid.94365.3d0000 0001 2297 5165Section on Behavioral Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD USA
| | - Yogita Chudasama
- grid.94365.3d0000 0001 2297 5165Section on Behavioral Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD USA
| | - David A. Leopold
- grid.94365.3d0000 0001 2297 5165Neurophysiology Imaging Facility, National Institute of Mental Health, National Institute of Neurological Disorders and Stroke, National Eye Institute, National Institutes of Health, Bethesda, MD USA ,grid.94365.3d0000 0001 2297 5165Section on Cognitive Neurophysiology and Imaging, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
24
|
Rafipoor H, Zheng YQ, Griffanti L, Jbabdi S, Cottaar M. Identifying microstructural changes in diffusion MRI; How to circumvent parameter degeneracy. Neuroimage 2022; 260:119452. [PMID: 35803473 PMCID: PMC10933779 DOI: 10.1016/j.neuroimage.2022.119452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 06/28/2022] [Accepted: 07/02/2022] [Indexed: 01/27/2023] Open
Abstract
Biophysical models that attempt to infer real-world quantities from data usually have many free parameters. This over-parameterisation can result in degeneracies in model inversion and render parameter estimation ill-posed. However, in many applications, we are not interested in quantifying the parameters per se, but rather in identifying changes in parameters between experimental conditions (e.g. patients vs controls). Here we present a Bayesian framework to make inference on changes in the parameters of biophysical models even when model inversion is degenerate, which we refer to as Bayesian EstimatioN of CHange (BENCH). We infer the parameter changes in two steps; First, we train models that can estimate the pattern of change in the measurements given any hypothetical direction of change in the parameters using simulations. Next, for any pair of real data sets, we use these pre-trained models to estimate the probability that an observed difference in the data can be explained by each model of change. BENCH is applicable to any type of data and models and particularly useful for biophysical models with parameter degeneracies, where we can assume the change is sparse. In this paper, we apply the approach in the context of microstructural modelling of diffusion MRI data, where the models are usually over-parameterised and not invertible without injecting strong assumptions. Using simulations, we show that in the context of the standard model of white matter our approach is able to identify changes in microstructural parameters from conventional multi-shell diffusion MRI data. We also apply our approach to a subset of subjects from the UK-Biobank Imaging to identify the dominant standard model parameter change in areas of white matter hyperintensities under the assumption that the standard model holds in white matter hyperintensities.
Collapse
Affiliation(s)
- Hossein Rafipoor
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, Oxford, UK.
| | - Ying-Qiu Zheng
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, Oxford, UK
| | - Ludovica Griffanti
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, Oxford, UK; Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Human Brain Activity, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, Oxford, UK
| | - Michiel Cottaar
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, Oxford, UK
| |
Collapse
|
25
|
Rosenberg JT, Grant SC, Topgaard D. Nonparametric 5D D-R 2 distribution imaging with single-shot EPI at 21.1 T: Initial results for in vivo rat brain. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2022; 341:107256. [PMID: 35753184 PMCID: PMC9339475 DOI: 10.1016/j.jmr.2022.107256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/27/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
In vivo human diffusion MRI is by default performed using single-shot EPI with greater than 50-ms echo times and associated signal loss from transverse relaxation. The individual benefits of the current trends of increasing B0 to boost SNR and employing more advanced signal preparation schemes to improve the specificity for selected microstructural properties eventually may be cancelled by increased relaxation rates at high B0 and echo times with advanced encoding. Here, initial attempts to translate state-of-the-art diffusion-relaxation correlation methods from 3 T to 21.1 T are made to identify hurdles that need to be overcome to fulfill the promises of both high SNR and readily interpretable microstructural information.
Collapse
Affiliation(s)
- Jens T Rosenberg
- National High Magnetic Field Laboratory, Florida State University, Tallahassee FL, United States.
| | - Samuel C Grant
- National High Magnetic Field Laboratory, Florida State University, Tallahassee FL, United States; Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, United States.
| | | |
Collapse
|
26
|
Yendiki A, Aggarwal M, Axer M, Howard AF, van Cappellen van Walsum AM, Haber SN. Post mortem mapping of connectional anatomy for the validation of diffusion MRI. Neuroimage 2022; 256:119146. [PMID: 35346838 PMCID: PMC9832921 DOI: 10.1016/j.neuroimage.2022.119146] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 03/02/2022] [Accepted: 03/23/2022] [Indexed: 01/13/2023] Open
Abstract
Diffusion MRI (dMRI) is a unique tool for the study of brain circuitry, as it allows us to image both the macroscopic trajectories and the microstructural properties of axon bundles in vivo. The Human Connectome Project ushered in an era of impressive advances in dMRI acquisition and analysis. As a result of these efforts, the quality of dMRI data that could be acquired in vivo improved substantially, and large collections of such data became widely available. Despite this progress, the main limitation of dMRI remains: it does not image axons directly, but only provides indirect measurements based on the diffusion of water molecules. Thus, it must be validated by methods that allow direct visualization of axons but that can only be performed in post mortem brain tissue. In this review, we discuss methods for validating the various features of connectional anatomy that are extracted from dMRI, both at the macro-scale (trajectories of axon bundles), and at micro-scale (axonal orientations and other microstructural properties). We present a range of validation tools, including anatomic tracer studies, Klingler's dissection, myelin stains, label-free optical imaging techniques, and others. We provide an overview of the basic principles of each technique, its limitations, and what it has taught us so far about the accuracy of different dMRI acquisition and analysis approaches.
Collapse
Affiliation(s)
- Anastasia Yendiki
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States,Corresponding author (A. Yendiki)
| | - Manisha Aggarwal
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Markus Axer
- Forschungszentrum Jülich, Institute of Neuroscience and Medicine, Jülich, Germany,Department of Physics, University of Wuppertal Germany
| | - Amy F.D. Howard
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Anne-Marie van Cappellen van Walsum
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Nijmegen, the Netherland,Cognition and Behaviour, Donders Institute for Brain, Nijmegen, the Netherland
| | - Suzanne N. Haber
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States,McLean Hospital, Belmont, MA, United States
| |
Collapse
|
27
|
De Luca A, Karayumak SC, Leemans A, Rathi Y, Swinnen S, Gooijers J, Clauwaert A, Bahr R, Sandmo SB, Sochen N, Kaufmann D, Muehlmann M, Biessels GJ, Koerte I, Pasternak O. Cross-site harmonization of multi-shell diffusion MRI measures based on rotational invariant spherical harmonics (RISH). Neuroimage 2022; 259:119439. [PMID: 35788044 DOI: 10.1016/j.neuroimage.2022.119439] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 11/25/2022] Open
Abstract
Quantification methods based on the acquisition of diffusion magnetic resonance imaging (dMRI) with multiple diffusion weightings (e.g., multi-shell) are becoming increasingly applied to study the in-vivo brain. Compared to single-shell data for diffusion tensor imaging (DTI), multi-shell data allows to apply more complex models such as diffusion kurtosis imaging (DKI), which attempts to capture both diffusion hindrance and restriction effects, or biophysical models such as NODDI, which attempt to increase specificity by separating biophysical components. Because of the strong dependence of the dMRI signal on the measurement hardware, DKI and NODDI metrics show scanner and site differences, much like other dMRI metrics. These effects limit the implementation of multi-shell approaches in multicenter studies, which are needed to collect large sample sizes for robust analyses. Recently, a post-processing technique based on rotation invariant spherical harmonics (RISH) features was introduced to mitigate cross-scanner differences in DTI metrics. Unlike statistical harmonization methods, which require repeated application to every dMRI metric of choice, RISH harmonization is applied once on the raw data, and can be followed by any analysis. RISH features harmonization has been tested on DTI features but not its generalizability to harmonize multi-shell dMRI. In this work, we investigated whether performing the RISH features harmonization of multi-shell dMRI data removes cross-site differences in DKI and NODDI metrics while retaining longitudinal effects. To this end, 46 subjects underwent a longitudinal (up to 3 time points) two-shell dMRI protocol at 3 imaging sites. DKI and NODDI metrics were derived before and after harmonization and compared both at the whole brain level and at the voxel level. Then, the harmonization effects on cross-sectional and on longitudinal group differences were evaluated. RISH features averaged for each of the 3 sites exhibited prominent between-site differences in the frontal and posterior part of the brain. Statistically significant differences in fractional anisotropy, mean diffusivity and mean kurtosis were observed both at the whole brain and voxel level between all the acquisition sites before harmonization, but not after. The RISH method also proved effective to harmonize NODDI metrics, particularly in white matter. The RISH based harmonization maintained the magnitude and variance of longitudinal changes as compared to the non-harmonized data of all considered metrics. In conclusion, the application of RISH feature based harmonization to multi-shell dMRI data can be used to remove cross-site differences in DKI metrics and NODDI analyses, while retaining inherent relations between longitudinal acquisitions.
Collapse
Affiliation(s)
- Alberto De Luca
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands; PROVIDI Lab, Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands; Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia.
| | | | - Alexander Leemans
- PROVIDI Lab, Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Yogesh Rathi
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Stephan Swinnen
- Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium; KU Leuven Brain Institute (LBI), Leuven, Belgium
| | - Jolien Gooijers
- Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium; KU Leuven Brain Institute (LBI), Leuven, Belgium
| | - Amanda Clauwaert
- Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium; KU Leuven Brain Institute (LBI), Leuven, Belgium
| | - Roald Bahr
- Oslo Sports Trauma Research Center, Norwegian School of Sport Sciences, Oslo, Norway
| | - Stian Bahr Sandmo
- Oslo Sports Trauma Research Center, Norwegian School of Sport Sciences, Oslo, Norway
| | - Nir Sochen
- Department of Applied Mathematics, Tel Aviv University, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - David Kaufmann
- Radiology Department, Charite University Hospital, Berlin, Germany
| | - Marc Muehlmann
- Department of Radiology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Geert-Jan Biessels
- Department of Neurology, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Inga Koerte
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; cBRAIN, Department of Child and Adolescent Psychiatry, Ludwig-Maximilians-Universität, Munich, Germany
| | - Ofer Pasternak
- Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Syed Nasser N, Rajan S, Venugopal VK, Lasič S, Mahajan V, Mahajan H. A review on investigation of the basic contrast mechanism underlying multidimensional diffusion MRI in assessment of neurological disorders. J Clin Neurosci 2022; 102:26-35. [PMID: 35696817 DOI: 10.1016/j.jocn.2022.05.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/20/2022] [Accepted: 05/30/2022] [Indexed: 12/26/2022]
Abstract
INTRODUCTION Multidimensional diffusion MRI (MDD MRI) is a novel diffusion technique that uses advanced gradient waveforms for microstructural tissue characterization to provide information about average rate, anisotropy and orientation of the diffusion and to disentangle the signal fraction from specific cell types i.e., elongated cells, isotropic cells and free water. AIM To review the diagnostic potential of MDD MRI in the clinical setting for microstructural tissue characterization in patients with neurological disorders to aid in patient care and treatment. METHOD A scoping review on the clinical applications of MDD MRI was conducted from original articles published in PubMed and Scopus from 2015 to 2021 using the keywords "Multidimensional diffusion MRI" OR "diffusion tensor distribution" OR "Tensor-Valued Diffusion" OR "b-tensor encoding" OR "microscopic diffusion anisotropy" OR "microscopic anisotropy" OR "microscopic fractional anisotropy" OR "double diffusion encoding" OR "triple diffusion encoding" OR "double pulsed field gradients" OR "double wave vector" OR "correlation tensor imaging" AND "brain" OR "axons". RESULTS Initially 145 articles were screened and after applying inclusion and exclusion criteria, nine articles were included in the final analysis. In most of these studies, microscopic diffusion anisotropy within the lesion showed deviation from the normal-appearing tissue. CONCLUSION Multidimensional diffusion MRI can provide better quantification and visualization of tissue microstructure than conventional diffusion MRI and can be used in the clinical setting for diagnosis of neurological disorders.
Collapse
Affiliation(s)
| | - Sriram Rajan
- Department of Radiology, Mahajan Imaging, New Delhi, India
| | | | | | | | - Harsh Mahajan
- CARPL.ai, New Delhi, India; Department of Radiology, Mahajan Imaging, New Delhi, India
| |
Collapse
|
29
|
Radhakrishnan H, Bennett IJ, Stark CE. Higher-order multi-shell diffusion measures complement tensor metrics and volume in gray matter when predicting age and cognition. Neuroimage 2022; 253:119063. [PMID: 35272021 PMCID: PMC10538083 DOI: 10.1016/j.neuroimage.2022.119063] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022] Open
Abstract
Recent advances in diffusion-weighted imaging have enabled us to probe the microstructure of even gray matter non-invasively. However, these advanced multi-shell protocols are often not included in large-scale studies as they significantly increase scan time. In this study, we investigated whether one set of multi-shell diffusion metrics commonly used in gray matter (as derived from Neurite Orientation Dispersion and Density Imaging, NODDI) provide enough additional information over typical tensor and volume metrics to justify the increased acquisition time, using the cognitive aging framework in the human hippocampus as a testbed. We first demonstrated that NODDI metrics are robust and reliable by replicating previous findings from our lab in a larger population of 79 younger (20.41 ± 1.89 years, 46 females) and 75 older (73.56 ± 6.26 years, 45 females) adults, showing that these metrics in the hippocampal subfields are sensitive to age and memory performance. We then asked how these subfield specific hippocampal NODDI metrics compared with standard tensor metrics and volume in predicting age and memory ability. We discovered that both NODDI and tensor measures separately predicted age and cognition in comparable capacities. However, integrating these modalities together considerably increased the predictive power of our logistic models, indicating that NODDI and tensor measures may be capturing independent microstructural information. We use these findings to encourage neuroimaging data collection consortiums to include a multi-shell diffusion sequence in their protocols since existing NODDI measures (and potential future multi-shell measures) may be able to capture microstructural variance that is missed by traditional approaches, even in studies exclusively examining gray matter.
Collapse
Affiliation(s)
- Hamsanandini Radhakrishnan
- Mathematical, Computational and Systems Biology, University of California, Postal Address: 1400 Biological Sciences III, Irvine, CA 92697, United States
| | - Ilana J Bennett
- Department of Psychology, University of California Riverside, Riverside, California, United States
| | - Craig El Stark
- Mathematical, Computational and Systems Biology, University of California, Postal Address: 1400 Biological Sciences III, Irvine, CA 92697, United States; Department of Neurobiology and Behavior, University of California, Irvine, California 92697, United States.
| |
Collapse
|
30
|
Rydelius A, Lampinen B, Rundcrantz A, Bengzon J, Engelholm S, van Westen D, Kinhult S, Knutsson L, Lätt J, Nilsson M, Sundgren PC. Diffusion tensor imaging in glioblastoma patients treated with volumetric modulated arc radiotherapy: a longitudinal study. Acta Oncol 2022; 61:680-687. [PMID: 35275512 DOI: 10.1080/0284186x.2022.2045036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
BACKGROUND Chemo- and radiotherapy (RT) is standard treatment for patients with high-grade glioma, but may cause side-effects on the patient's cognitive function. AIM Use of diffusion tensor imaging (DTI) to investigate the longitudinal changes in normal-appearing brain tissue in glioblastoma patients undergoing modern arc-based RT with volumetric modulated arc therapy (VMAT) or helical tomotherapy. MATERIALS AND METHODS The study included 27 patients newly diagnosed with glioblastoma and planned for VMAT or tomotherapy. All subjects underwent magnetic resonance imaging at the start of RT and at week 3, 6, 15, and 26. Fourteen subjects were additionally imaged at week 52. The DTI data were co-registered to the dose distribution maps. Longitudinal changes in fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD) were assessed in the corpus callosum, the centrum semiovale, the hippocampus, and the amygdala. RESULTS Significant longitudinal changes in FA, MD, and RD were mainly found in the corpus callosum. In the other examined brain structures, only sparse and transient changes were seen. No consistent correlations were found between biodose, age, or gender and changes in DTI parameters. CONCLUSION Longitudinal changes in MD, FA, and RD were observed but only in a limited number of brain structures and the changes were smaller than expected from literature. The results suggest that modern, arc-based RT may have less negative effect on normal-appearing parts of the brain tissue up to 12 months after radiotherapy.
Collapse
Affiliation(s)
- Anna Rydelius
- Department of Radiology, Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Neurology, Skane University Hospital, Lund, Sweden
| | - Björn Lampinen
- Department of Medical Radiation Physics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Andreas Rundcrantz
- Department of Radiology, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Johan Bengzon
- Department of Neurosurgery, Clinical Sciences Lund, Lund University and Skane University Hospital, Lund, Sweden
| | - Silke Engelholm
- Deptarments of Hematology, Oncology and Radiation Physics, Skane University Hospital, Lund, Sweden
| | - Danielle van Westen
- Department of Radiology, Clinical Sciences Lund, Lund University, Lund, Sweden
- Department for Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| | - Sara Kinhult
- Department of Oncology, Department of Clinical Sciences, Lund University, Skane University Hospital, Lund, Sweden
| | - Linda Knutsson
- Department of Medical Radiation Physics, Clinical Sciences Lund, Lund University, Lund, Sweden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jimmy Lätt
- Lund University BioImaging Centre (LBIC), Lund University, Lund, Sweden
| | - Markus Nilsson
- Department of Radiology, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Pia C. Sundgren
- Department of Radiology, Clinical Sciences Lund, Lund University, Lund, Sweden
- Department for Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
- Lund University BioImaging Centre (LBIC), Lund University, Lund, Sweden
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
31
|
Olesen JL, Østergaard L, Shemesh N, Jespersen SN. Diffusion time dependence, power-law scaling, and exchange in gray matter. Neuroimage 2022; 251:118976. [PMID: 35168088 PMCID: PMC8961002 DOI: 10.1016/j.neuroimage.2022.118976] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/24/2021] [Accepted: 02/04/2022] [Indexed: 12/27/2022] Open
Abstract
Characterizing neural tissue microstructure is a critical goal for future neuroimaging. Diffusion MRI (dMRI) provides contrasts that reflect diffusing spins' interactions with myriad microstructural features of biological systems. However, the specificity of dMRI remains limited due to the ambiguity of its signals vis-à-vis the underlying microstructure. To improve specificity, biophysical models of white matter (WM) typically express dMRI signals according to the Standard Model (SM) and have more recently in gray matter (GM) taken spherical compartments into account (the SANDI model) in attempts to represent cell soma. The validity of the assumptions underlying these models, however, remains largely undetermined, especially in GM. To validate these assumptions experimentally, observing their unique, functional properties, such as the b-1/2 power-law associated with one-dimensional diffusion, has emerged as a fruitful strategy. The absence of this signature in GM, in turn, has been explained by neurite water exchange, non-linear morphology, and/or by obscuring soma signal contributions. Here, we present diffusion simulations in realistic neurons demonstrating that curvature and branching does not destroy the stick power-law behavior in impermeable neurites, but also that their signal is drowned by the soma signal under typical experimental conditions. Nevertheless, by studying the GM dMRI signal's behavior as a function of diffusion weighting as well as time, we identify an attainable experimental regime in which the neurite signal dominates. Furthermore, we find that exchange-driven time dependence produces a signal behavior opposite to that which would be expected from restricted diffusion, thereby providing a functional signature that disambiguates the two effects. We present data from dMRI experiments in ex vivo rat brain at ultrahigh field of 16.4T and observe a time dependence that is consistent with substantial exchange but also with a GM stick power-law. The first finding suggests significant water exchange between neurites and the extracellular space while the second suggests a small sub-population of impermeable neurites. To quantify these observations, we harness the Kärger exchange model and incorporate the corresponding signal time dependence in the SM and SANDI models.
Collapse
Affiliation(s)
- Jonas L Olesen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Noam Shemesh
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Sune N Jespersen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
32
|
Brabec J, Durmo F, Szczepankiewicz F, Brynolfsson P, Lampinen B, Rydelius A, Knutsson L, Westin CF, Sundgren PC, Nilsson M. Separating Glioma Hyperintensities From White Matter by Diffusion-Weighted Imaging With Spherical Tensor Encoding. Front Neurosci 2022; 16:842242. [PMID: 35527815 PMCID: PMC9069143 DOI: 10.3389/fnins.2022.842242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Background Tumor-related hyperintensities in high b-value diffusion-weighted imaging (DWI) are radiologically important in the workup of gliomas. However, the white matter may also appear as hyperintense, which may conflate interpretation. Purpose To investigate whether DWI with spherical b-tensor encoding (STE) can be used to suppress white matter and enhance the conspicuity of glioma hyperintensities unrelated to white matter. Materials and Methods Twenty-five patients with a glioma tumor and at least one pathology-related hyperintensity on DWI underwent conventional MRI at 3 T. The DWI was performed both with linear and spherical tensor encoding (LTE-DWI and STE-DWI). The LTE-DWI here refers to the DWI obtained with conventional diffusion encoding and averaged across diffusion-encoding directions. Retrospectively, the differences in contrast between LTE-DWI and STE-DWI, obtained at a b-value of 2,000 s/mm2, were evaluated by comparing hyperintensities and contralateral normal-appearing white matter (NAWM) both visually and quantitatively in terms of the signal intensity ratio (SIR) and contrast-to-noise ratio efficiency (CNReff). Results The spherical tensor encoding DWI was more effective than LTE-DWI at suppressing signals from white matter and improved conspicuity of pathology-related hyperintensities. The median SIR improved in all cases and on average by 28%. The median (interquartile range) SIR was 1.9 (1.6 – 2.1) for STE and 1.4 (1.3 – 1.7) for LTE, with a significant difference of 0.4 (0.3 –0.5) (p < 10–4, paired U-test). In 40% of the patients, the SIR was above 2 for STE-DWI, but with LTE-DWI, the SIR was below 2 for all patients. The CNReff of STE-DWI was significantly higher than of LTE-DWI: 2.5 (2 – 3.5) vs. 2.3 (1.7 – 3.1), with a significant difference of 0.4 (−0.1 –0.6) (p < 10–3, paired U-test). The STE improved CNReff in 70% of the cases. We illustrate the benefits of STE-DWI in three patients, where STE-DWI may facilitate an improved radiological description of tumor-related hyperintensity, including one case that could have been missed out if only LTE-DWI was inspected. Conclusion The contrast mechanism of high b-value STE-DWI results in a stronger suppression of white matter than conventional LTE-DWI, and may, therefore, be more sensitive and specific for assessment of glioma tumors and DWI-hyperintensities.
Collapse
Affiliation(s)
- Jan Brabec
- Medical Radiation Physics, Lund University, Lund, Sweden
- *Correspondence: Jan Brabec,
| | - Faris Durmo
- Diagnostic Radiology, Lund University, Lund, Sweden
| | - Filip Szczepankiewicz
- Diagnostic Radiology, Lund University, Lund, Sweden
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Patrik Brynolfsson
- Division of Medical Radiation Physics, Department of Translational Medicine, Lund University, Lund, Sweden
| | - Björn Lampinen
- Medical Radiation Physics, Lund University, Lund, Sweden
| | - Anna Rydelius
- Department of Neurology, Lund University, Lund, Sweden
| | - Linda Knutsson
- Medical Radiation Physics, Lund University, Lund, Sweden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Carl-Fredrik Westin
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Pia C. Sundgren
- Diagnostic Radiology, Lund University, Lund, Sweden
- Lund University Bioimaging Center, Lund University, Lund, Sweden
- Department of Imaging and Physiology, Skåne University Hospital, Lund University, Lund, Sweden
| | | |
Collapse
|
33
|
Tax CMW, Bastiani M, Veraart J, Garyfallidis E, Okan Irfanoglu M. What's new and what's next in diffusion MRI preprocessing. Neuroimage 2022; 249:118830. [PMID: 34965454 PMCID: PMC9379864 DOI: 10.1016/j.neuroimage.2021.118830] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/26/2021] [Accepted: 12/15/2021] [Indexed: 02/07/2023] Open
Abstract
Diffusion MRI (dMRI) provides invaluable information for the study of tissue microstructure and brain connectivity, but suffers from a range of imaging artifacts that greatly challenge the analysis of results and their interpretability if not appropriately accounted for. This review will cover dMRI artifacts and preprocessing steps, some of which have not typically been considered in existing pipelines or reviews, or have only gained attention in recent years: brain/skull extraction, B-matrix incompatibilities w.r.t the imaging data, signal drift, Gibbs ringing, noise distribution bias, denoising, between- and within-volumes motion, eddy currents, outliers, susceptibility distortions, EPI Nyquist ghosts, gradient deviations, B1 bias fields, and spatial normalization. The focus will be on "what's new" since the notable advances prior to and brought by the Human Connectome Project (HCP), as presented in the predecessing issue on "Mapping the Connectome" in 2013. In addition to the development of novel strategies for dMRI preprocessing, exciting progress has been made in the availability of open source tools and reproducible pipelines, databases and simulation tools for the evaluation of preprocessing steps, and automated quality control frameworks, amongst others. Finally, this review will consider practical considerations and our view on "what's next" in dMRI preprocessing.
Collapse
Affiliation(s)
- Chantal M W Tax
- Image Sciences Institute, University Medical Center Utrecht, The Netherlands; Cardiff University Brain Research Imaging Centre, School of Physics and Astronomy, Cardiff University, UK.
| | - Matteo Bastiani
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, UK; Wellcome Centre for Integrative Neuroimaging (WIN), Centre for Functional Magnetic Resonance Imaging of the Brain (FMRIB), University of Oxford, UK
| | - Jelle Veraart
- Center for Biomedical Imaging, New York University Grossman School of Medicine, NY, USA
| | | | - M Okan Irfanoglu
- Quantitative Medical Imaging Section, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
34
|
Novello L, Henriques RN, Ianuş A, Feiweier T, Shemesh N, Jovicich J. In vivo Correlation Tensor MRI reveals microscopic kurtosis in the human brain on a clinical 3T scanner. Neuroimage 2022; 254:119137. [PMID: 35339682 DOI: 10.1016/j.neuroimage.2022.119137] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/17/2022] [Accepted: 03/22/2022] [Indexed: 12/15/2022] Open
Abstract
Diffusion MRI (dMRI) has become one of the most important imaging modalities for noninvasively probing tissue microstructure. Diffusional Kurtosis MRI (DKI) quantifies the degree of non-gaussian diffusion, which in turn has been shown to increase sensitivity towards, e.g., disease and orientation mapping in neural tissue. However, the specificity of DKI is limited as different sources can contribute to the total intravoxel diffusional kurtosis, including: variance in diffusion tensor magnitudes (Kiso), variance due to diffusion anisotropy (Kaniso), and microscopic kurtosis (μK) related to restricted diffusion, microstructural disorder, and/or exchange. Interestingly, μK is typically ignored in diffusion MRI signal modeling as it is assumed to be negligible in neural tissues. However, recently, Correlation Tensor MRI (CTI) based on Double-Diffusion-Encoding (DDE) was introduced for kurtosis source separation, revealing non negligible μK in preclinical imaging. Here, we implemented CTI for the first time on a clinical 3T scanner and investigated the sources of total kurtosis in healthy subjects. A robust framework for kurtosis source separation in humans is introduced, followed by estimation of μK (and the other kurtosis sources) in the healthy brain. Using this clinical CTI approach, we find that μK significantly contributes to total diffusional kurtosis both in gray and white matter tissue but, as expected, not in the ventricles. The first μK maps of the human brain are presented, revealing that the spatial distribution of μK provides a unique source of contrast, appearing different from isotropic and anisotropic kurtosis counterparts. Moreover, group average templates of these kurtosis sources have been generated for the first time, which corroborated our findings at the underlying individual-level maps. We further show that the common practice of ignoring μK and assuming the multiple gaussian component approximation for kurtosis source estimation introduces significant bias in the estimation of other kurtosis sources and, perhaps even worse, compromises their interpretation. Finally, a twofold acceleration of CTI is discussed in the context of potential future clinical applications. We conclude that CTI has much potential for future in vivo microstructural characterizations in healthy and pathological tissue.
Collapse
Affiliation(s)
- Lisa Novello
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy.
| | | | - Andrada Ianuş
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | | | - Noam Shemesh
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Jorge Jovicich
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy
| |
Collapse
|
35
|
de Almeida Martins JP, Nilsson M, Lampinen B, Palombo M, While PT, Westin CF, Szczepankiewicz F. Neural networks for parameter estimation in microstructural MRI: Application to a diffusion-relaxation model of white matter. Neuroimage 2021; 244:118601. [PMID: 34562578 PMCID: PMC9651573 DOI: 10.1016/j.neuroimage.2021.118601] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/26/2021] [Accepted: 09/18/2021] [Indexed: 12/14/2022] Open
Abstract
Specific features of white matter microstructure can be investigated by using biophysical models to interpret relaxation-diffusion MRI brain data. Although more intricate models have the potential to reveal more details of the tissue, they also incur time-consuming parameter estimation that may converge to inaccurate solutions due to a prevalence of local minima in a degenerate fitting landscape. Machine-learning fitting algorithms have been proposed to accelerate the parameter estimation and increase the robustness of the attained estimates. So far, learning-based fitting approaches have been restricted to microstructural models with a reduced number of independent model parameters where dense sets of training data are easy to generate. Moreover, the degree to which machine learning can alleviate the degeneracy problem is poorly understood. For conventional least-squares solvers, it has been shown that degeneracy can be avoided by acquisition with optimized relaxation-diffusion-correlation protocols that include tensor-valued diffusion encoding. Whether machine-learning techniques can offset these acquisition requirements remains to be tested. In this work, we employ artificial neural networks to vastly accelerate the parameter estimation for a recently introduced relaxation-diffusion model of white matter microstructure. We also develop strategies for assessing the accuracy and sensitivity of function fitting networks and use those strategies to explore the impact of the acquisition protocol. The developed learning-based fitting pipelines were tested on relaxation-diffusion data acquired with optimal and sub-optimal acquisition protocols. Networks trained with an optimized protocol were observed to provide accurate parameter estimates within short computational times. Comparing neural networks and least-squares solvers, we found the performance of the former to be less affected by sub-optimal protocols; however, model fitting networks were still susceptible to degeneracy issues and their use could not fully replace a careful design of the acquisition protocol.
Collapse
Affiliation(s)
- João P de Almeida Martins
- Department of Clinical Sciences, Radiology, Lund University, Lund, Sweden; Department of Radiology and Nuclear Medicine, St. Olav's University Hospital, Trondheim, Norway.
| | - Markus Nilsson
- Department of Clinical Sciences, Radiology, Lund University, Lund, Sweden
| | - Björn Lampinen
- Department of Clinical Sciences, Medical Radiation Physics, Lund University, Lund, Sweden
| | - Marco Palombo
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, United Kingdom
| | - Peter T While
- Department of Radiology and Nuclear Medicine, St. Olav's University Hospital, Trondheim, Norway; Department of Circulation and Medical Imaging, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Carl-Fredrik Westin
- Radiology, Brigham and Women's Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | - Filip Szczepankiewicz
- Department of Clinical Sciences, Radiology, Lund University, Lund, Sweden; Radiology, Brigham and Women's Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| |
Collapse
|
36
|
Andersson M, Pizzolato M, Kjer HM, Skodborg KF, Lundell H, Dyrby TB. Does powder averaging remove dispersion bias in diffusion MRI diameter estimates within real 3D axonal architectures? Neuroimage 2021; 248:118718. [PMID: 34767939 DOI: 10.1016/j.neuroimage.2021.118718] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 10/26/2021] [Accepted: 11/08/2021] [Indexed: 11/26/2022] Open
Abstract
Noninvasive estimation of axon diameter with diffusion MRI holds the potential to investigate the dynamic properties of the brain network and pathology of neurodegenerative diseases. Recent studies use powder averaging to account for complex white matter architectures, but these have not been validated for real axonal geometries from regions that contain fibre crossings. Here, we present 120-304μm long segmented axons from X-ray nano-holotomography volumes of a splenium and crossing fibre region of a vervet monkey brain. We show that the axons in the complex crossing fibre region, which contains callosal, association, and corticospinal connections, are larger and exhibit a wider distribution than those of the splenium region. To accurately estimate the axon diameter in these regions, therefore, sensitivity to a wide range of diameters is required. We demonstrate how the q-value, b-value, signal-to-noise ratio and the assumed intra-axonal parallel diffusivity influence the range of measurable diameters with powder average approaches. Furthermore, we show how Gaussian distributed noise results in a wider range of measurable diameter at high b-values than Rician distributed noise, even at high signal-to-noise ratios of 100. The number of gradient directions is also shown to impose a lower bound on measurable diameter. Our results indicate that axon diameter estimation can be performed with only few b-shells, and that additional shells do not improve the accuracy of the estimate. For strong gradients available on human Connectom and preclinical scanners, Monte Carlo simulations of diffusion confirm that powder averaging techniques succeed in providing accurate estimates of axon diameter across a range of sequence parameters and diffusion times, even in complex white matter architectures. At relatively low b-values, the diameter estimate becomes sensitive to axonal microdispersion and the intra-axonal parallel diffusivity shows time dependency at both in vivo and ex vivo intrinsic diffusivities.
Collapse
Affiliation(s)
- Mariam Andersson
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre 2650, Denmark; Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Marco Pizzolato
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre 2650, Denmark; Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby 2800, Denmark; Signal Processing Laboratory (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Hans Martin Kjer
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre 2650, Denmark; Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Katrine Forum Skodborg
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre 2650, Denmark; Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Henrik Lundell
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre 2650, Denmark; Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Tim B Dyrby
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre 2650, Denmark; Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| |
Collapse
|
37
|
Huang SY, Witzel T, Keil B, Scholz A, Davids M, Dietz P, Rummert E, Ramb R, Kirsch JE, Yendiki A, Fan Q, Tian Q, Ramos-Llordén G, Lee HH, Nummenmaa A, Bilgic B, Setsompop K, Wang F, Avram AV, Komlosh M, Benjamini D, Magdoom KN, Pathak S, Schneider W, Novikov DS, Fieremans E, Tounekti S, Mekkaoui C, Augustinack J, Berger D, Shapson-Coe A, Lichtman J, Basser PJ, Wald LL, Rosen BR. Connectome 2.0: Developing the next-generation ultra-high gradient strength human MRI scanner for bridging studies of the micro-, meso- and macro-connectome. Neuroimage 2021; 243:118530. [PMID: 34464739 PMCID: PMC8863543 DOI: 10.1016/j.neuroimage.2021.118530] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/10/2021] [Accepted: 08/27/2021] [Indexed: 11/26/2022] Open
Abstract
The first phase of the Human Connectome Project pioneered advances in MRI technology for mapping the macroscopic structural connections of the living human brain through the engineering of a whole-body human MRI scanner equipped with maximum gradient strength of 300 mT/m, the highest ever achieved for human imaging. While this instrument has made important contributions to the understanding of macroscale connectional topology, it has also demonstrated the potential of dedicated high-gradient performance scanners to provide unparalleled in vivo assessment of neural tissue microstructure. Building on the initial groundwork laid by the original Connectome scanner, we have now embarked on an international, multi-site effort to build the next-generation human 3T Connectome scanner (Connectome 2.0) optimized for the study of neural tissue microstructure and connectional anatomy across multiple length scales. In order to maximize the resolution of this in vivo microscope for studies of the living human brain, we will push the diffusion resolution limit to unprecedented levels by (1) nearly doubling the current maximum gradient strength from 300 mT/m to 500 mT/m and tripling the maximum slew rate from 200 T/m/s to 600 T/m/s through the design of a one-of-a-kind head gradient coil optimized to minimize peripheral nerve stimulation; (2) developing high-sensitivity multi-channel radiofrequency receive coils for in vivo and ex vivo human brain imaging; (3) incorporating dynamic field monitoring to minimize image distortions and artifacts; (4) developing new pulse sequences to integrate the strongest diffusion encoding and highest spatial resolution ever achieved in the living human brain; and (5) calibrating the measurements obtained from this next-generation instrument through systematic validation of diffusion microstructural metrics in high-fidelity phantoms and ex vivo brain tissue at progressively finer scales with accompanying diffusion simulations in histology-based micro-geometries. We envision creating the ultimate diffusion MRI instrument capable of capturing the complex multi-scale organization of the living human brain - from the microscopic scale needed to probe cellular geometry, heterogeneity and plasticity, to the mesoscopic scale for quantifying the distinctions in cortical structure and connectivity that define cyto- and myeloarchitectonic boundaries, to improvements in estimates of macroscopic connectivity.
Collapse
Affiliation(s)
- Susie Y Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | | | - Boris Keil
- Institute of Medical Physics and Radiation Protection (IMPS), TH-Mittelhessen University of Applied Sciences (THM), Giessen, Germany
| | - Alina Scholz
- Institute of Medical Physics and Radiation Protection (IMPS), TH-Mittelhessen University of Applied Sciences (THM), Giessen, Germany
| | - Mathias Davids
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | | - John E Kirsch
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anastasia Yendiki
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Qiuyun Fan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Qiyuan Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gabriel Ramos-Llordén
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hong-Hsi Lee
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Aapo Nummenmaa
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kawin Setsompop
- Radiological Sciences Laboratory, Department of Radiology, Stanford University, Stanford, CA, USA
| | - Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexandru V Avram
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Michal Komlosh
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Dan Benjamini
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Kulam Najmudeen Magdoom
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Sudhir Pathak
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Walter Schneider
- Learning Research and Development Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dmitry S Novikov
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY, USA
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA; Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY, USA
| | - Slimane Tounekti
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Choukri Mekkaoui
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jean Augustinack
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel Berger
- Department of Molecular and Cell Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Alexander Shapson-Coe
- Department of Molecular and Cell Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Jeff Lichtman
- Department of Molecular and Cell Biology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Peter J Basser
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bruce R Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
38
|
Cottaar M, Wu W, Tendler BC, Nagy Z, Miller K, Jbabdi S. Quantifying myelin in crossing fibers using diffusion-prepared phase imaging: Theory and simulations. Magn Reson Med 2021; 86:2618-2634. [PMID: 34254349 PMCID: PMC8581995 DOI: 10.1002/mrm.28907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE Myelin has long been the target of neuroimaging research. However, most available techniques can only provide a voxel-averaged estimate of myelin content. In the human brain, white matter fiber pathways connecting different brain areas and carrying different functions often cross each other in the same voxel. A measure that can differentiate the degree of myelination of crossing fibers would provide a more specific marker of myelination. THEORY AND METHODS One MRI signal property that is sensitive to myelin is the phase accumulation. This sensitivity is used by measuring the phase accumulation of the signal remaining after diffusion-weighting, which is called diffusion-prepared phase imaging (DIPPI). Including diffusion-weighting before estimating the phase accumulation has two distinct advantages for estimating the degree of myelination: (1) It increases the relative contribution of intra-axonal water, whose phase is related linearly to the thickness of the surrounding myelin (in particular the log g-ratio); and (2) it gives directional information, which can be used to distinguish between crossing fibers. Here the DIPPI sequence is described, an approach is proposed to estimate the log g-ratio, and simulations are used and DIPPI data acquired in an isotropic phantom to quantify other sources of phase accumulation. RESULTS The expected bias is estimated in the log g-ratio for reasonable in vivo acquisition parameters caused by eddy currents (~4%-10%), remaining extra-axonal signal (~15%), and gradients in the bulk off-resonance field (<10% for most of the brain). CONCLUSION This new sequence may provide a g-ratio estimate per fiber population crossing within a voxel.
Collapse
Affiliation(s)
- Michiel Cottaar
- Wellcome Centre for Integrative Neuroimaging—Centre for Functional Magnetic Resonance Imaging of the BrainJohn Radcliffe HospitalUniversity of OxfordOxfordUnited Kingdom
| | - Wenchuan Wu
- Wellcome Centre for Integrative Neuroimaging—Centre for Functional Magnetic Resonance Imaging of the BrainJohn Radcliffe HospitalUniversity of OxfordOxfordUnited Kingdom
| | - Benjamin C. Tendler
- Wellcome Centre for Integrative Neuroimaging—Centre for Functional Magnetic Resonance Imaging of the BrainJohn Radcliffe HospitalUniversity of OxfordOxfordUnited Kingdom
| | - Zoltan Nagy
- Laboratory for Social and Neural Systems ResearchUniversity of ZurichZurichSwitzerland
| | - Karla Miller
- Wellcome Centre for Integrative Neuroimaging—Centre for Functional Magnetic Resonance Imaging of the BrainJohn Radcliffe HospitalUniversity of OxfordOxfordUnited Kingdom
| | - Saad Jbabdi
- Wellcome Centre for Integrative Neuroimaging—Centre for Functional Magnetic Resonance Imaging of the BrainJohn Radcliffe HospitalUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
39
|
Henriques RN, Jespersen SN, Jones DK, Veraart J. Toward more robust and reproducible diffusion kurtosis imaging. Magn Reson Med 2021; 86:1600-1613. [PMID: 33829542 PMCID: PMC8199974 DOI: 10.1002/mrm.28730] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 01/20/2021] [Accepted: 01/24/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE The general utility of diffusion kurtosis imaging (DKI) is challenged by its poor robustness to imaging artifacts and thermal noise that often lead to implausible kurtosis values. THEORY AND METHODS A robust scalar kurtosis index can be estimated from powder-averaged diffusion-weighted data. We introduce a novel DKI estimator that uses this scalar kurtosis index as a proxy for the mean kurtosis to regularize the fit. RESULTS The regularized DKI estimator improves the robustness and reproducibility of the kurtosis metrics and results in parameter maps with enhanced quality and contrast. CONCLUSION Our novel DKI estimator promotes the wider use of DKI in clinical research and potentially diagnostics by improving the reproducibility and precision of DKI fitting and, as such, enabling enhanced visual, quantitative, and statistical analyses of DKI parameters.
Collapse
Affiliation(s)
| | - Sune N. Jespersen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLabDepartment of Clinical MedicineAarhus UniversityAarhusDenmark
- Department of Physics and AstronomyAarhus UniversityAarhusDenmark
| | - Derek K. Jones
- CUBRICSchool of PsychologyCardiff UniversityCardiffUK
- Mary MacKillop Institute for Health ResearchAustralian Catholic UniversityMelbourneVictoriaAustralia
| | - Jelle Veraart
- Center for Biomedical ImagingNew York University Grossman School of MedicineNew YorkNYUSA
| |
Collapse
|
40
|
Afzali M, Nilsson M, Palombo M, Jones DK. SPHERIOUSLY? The challenges of estimating sphere radius non-invasively in the human brain from diffusion MRI. Neuroimage 2021; 237:118183. [PMID: 34020013 PMCID: PMC8285594 DOI: 10.1016/j.neuroimage.2021.118183] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/25/2021] [Accepted: 05/16/2021] [Indexed: 11/16/2022] Open
Abstract
The Soma and Neurite Density Imaging (SANDI) three-compartment model was recently proposed to disentangle cylindrical and spherical geometries, attributed to neurite and soma compartments, respectively, in brain tissue. There are some recent advances in diffusion-weighted MRI signal encoding and analysis (including the use of multiple so-called 'b-tensor' encodings and analysing the signal in the frequency-domain) that have not yet been applied in the context of SANDI. In this work, using: (i) ultra-strong gradients; (ii) a combination of linear, planar, and spherical b-tensor encodings; and (iii) analysing the signal in the frequency domain, three main challenges to robust estimation of sphere size were identified: First, the Rician noise floor in magnitude-reconstructed data biases estimates of sphere properties in a non-uniform fashion. It may cause overestimation or underestimation of the spherical compartment size and density. This can be partly ameliorated by accounting for the noise floor in the estimation routine. Second, even when using the strongest diffusion-encoding gradient strengths available for human MRI, there is an empirical lower bound on the spherical signal fraction and radius that can be detected and estimated robustly. For the experimental setup used here, the lower bound on the sphere signal fraction was approximately 10%. We employed two different ways of establishing the lower bound for spherical radius estimates in white matter. The first, examining power-law relationships between the DW-signal and diffusion weighting in empirical data, yielded a lower bound of 7μm, while the second, pure Monte Carlo simulations, yielded a lower limit of 3μm and in this low radii domain, there is little differentiation in signal attenuation. Third, if there is sensitivity to the transverse intra-cellular diffusivity in cylindrical structures, e.g., axons and cellular projections, then trying to disentangle two diffusion-time-dependencies using one experimental parameter (i.e., change in frequency-content of the encoding waveform) makes spherical radii estimates particularly challenging. We conclude that due to the aforementioned challenges spherical radii estimates may be biased when the corresponding sphere signal fraction is low, which must be considered.
Collapse
Affiliation(s)
- Maryam Afzali
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom.
| | - Markus Nilsson
- Clinical Sciences Lund, Radiology, Lund University, Lund, Sweden.
| | - Marco Palombo
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom.
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
41
|
Tax CMW, Kleban E, Chamberland M, Baraković M, Rudrapatna U, Jones DK. Measuring compartmental T 2-orientational dependence in human brain white matter using a tiltable RF coil and diffusion-T 2 correlation MRI. Neuroimage 2021; 236:117967. [PMID: 33845062 PMCID: PMC8270891 DOI: 10.1016/j.neuroimage.2021.117967] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/15/2021] [Accepted: 03/08/2021] [Indexed: 02/08/2023] Open
Abstract
The anisotropy of brain white matter microstructure manifests itself in orientational-dependence of various MRI contrasts, and can result in significant quantification biases if ignored. Understanding the origins of this orientation-dependence could enhance the interpretation of MRI signal changes in development, ageing and disease and ultimately improve clinical diagnosis. Using a novel experimental setup, this work studies the contributions of the intra- and extra-axonal water to the orientation-dependence of one of the most clinically-studied parameters, apparent transverse relaxation T2. Specifically, a tiltable receive coil is interfaced with an ultra-strong gradient MRI scanner to acquire multidimensional MRI data with an unprecedented range of acquisition parameters. Using this setup, compartmental T2 can be disentangled based on differences in diffusional-anisotropy, and its orientation-dependence further elucidated by re-orienting the head with respect to the main magnetic field B→0. A dependence of (compartmental) T2 on the fibre orientation w.r.t. B→0 was observed, and further quantified using characteristic representations for susceptibility- and magic angle effects. Across white matter, anisotropy effects were dominated by the extra-axonal water signal, while the intra-axonal water signal decay varied less with fibre-orientation. Moreover, the results suggest that the stronger extra-axonal T2 orientation-dependence is dominated by magnetic susceptibility effects (presumably from the myelin sheath) while the weaker intra-axonal T2 orientation-dependence may be driven by a combination of microstructural effects. Even though the current design of the tiltable coil only offers a modest range of angles, the results demonstrate an overall effect of tilt and serve as a proof-of-concept motivating further hardware development to facilitate experiments that explore orientational anisotropy. These observations have the potential to lead to white matter microstructural models with increased compartmental sensitivity to disease, and can have direct consequences for longitudinal and group-wise T2- and diffusion-MRI data analysis, where the effect of head-orientation in the scanner is commonly ignored.
Collapse
Affiliation(s)
- Chantal M W Tax
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Physics and Astronomy, Cardiff University, Cardiff, UK; University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands.
| | - Elena Kleban
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Maxime Chamberland
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Muhamed Baraković
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK; Signal Processing Laboratory 5, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland; Translational Imaging in Neurology Basel, Department of Biomedical Engineering, University Hospital Basel, Basel, Switzerland
| | - Umesh Rudrapatna
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK; Mary MacKillop Institute for Health Research, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
| |
Collapse
|
42
|
Henriques RN, Jespersen SN, Shemesh N. Evidence for microscopic kurtosis in neural tissue revealed by correlation tensor MRI. Magn Reson Med 2021; 86:3111-3130. [PMID: 34329509 PMCID: PMC9290035 DOI: 10.1002/mrm.28938] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/01/2021] [Accepted: 07/04/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE The impact of microscopic diffusional kurtosis (µK), arising from restricted diffusion and/or structural disorder, remains a controversial issue in contemporary diffusion MRI (dMRI). Recently, correlation tensor imaging (CTI) was introduced to disentangle the sources contributing to diffusional kurtosis, without relying on a-priori multi-gaussian component (MGC) or other microstructural assumptions. Here, we investigated µK in in vivo rat brains and assessed its impact on state-of-the-art methods ignoring µK. THEORY AND METHODS CTI harnesses double diffusion encoding (DDE) experiments, which were here improved for speed and minimal bias using four different sets of acquisition parameters. The robustness of the improved CTI protocol was assessed via simulations. In vivo CTI acquisitions were performed in healthy rat brains using a 9.4T pre-clinical scanner equipped with a cryogenic coil, and targeted the estimation of µK, anisotropic kurtosis, and isotropic kurtosis. RESULTS The improved CTI acquisition scheme substantially reduces scan time and importantly, also minimizes higher-order-term biases, thus enabling robust µK estimation, alongside Kaniso and Kiso metrics. Our CTI experiments revealed positive µK both in white and gray matter of the rat brain in vivo; µK is the dominant kurtosis source in healthy gray matter tissue. The non-negligible µK substantially were found to bias prior MGC analyses of Kiso and Kaniso . CONCLUSIONS Correlation Tensor MRI offers a more accurate and robust characterization of kurtosis sources than its predecessors. µK is non-negligible in vivo in healthy white and gray matter tissues and could be an important biomarker for future studies. Our findings thus have both theoretical and practical implications for future dMRI research.
Collapse
Affiliation(s)
| | - Sune N Jespersen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Clinical Institute, Aarhus University, Aarhus, Denmark.,Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Noam Shemesh
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| |
Collapse
|
43
|
Ianus A, Alexander DC, Zhang H, Palombo M. Mapping complex cell morphology in the grey matter with double diffusion encoding MR: A simulation study. Neuroimage 2021; 241:118424. [PMID: 34311067 PMCID: PMC8961003 DOI: 10.1016/j.neuroimage.2021.118424] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 01/18/2023] Open
Abstract
This paper investigates the impact of cell body (namely soma) size and branching of cellular projections on diffusion MR imaging (dMRI) and spectroscopy (dMRS) signals for both standard single diffusion encoding (SDE) and more advanced double diffusion encoding (DDE) measurements using numerical simulations. The aim is to investigate the ability of dMRI/dMRS to characterize the complex morphology of brain cells focusing on these two distinctive features of brain grey matter. To this end, we employ a recently developed computational framework to create three dimensional meshes of neuron-like structures for Monte Carlo simulations, using diffusion coefficients typical of water and brain metabolites. Modelling the cellular structure as realistically connected spherical soma and cylindrical cellular projections, we cover a wide range of combinations of sphere radii and branching order of cellular projections, characteristic of various grey matter cells. We assess the impact of spherical soma size and branching order on the b-value dependence of the SDE signal as well as the time dependence of the mean diffusivity (MD) and mean kurtosis (MK). Moreover, we also assess the impact of spherical soma size and branching order on the angular modulation of DDE signal at different mixing times, together with the mixing time dependence of the apparent microscopic anisotropy (μA), a promising contrast derived from DDE measurements. The SDE results show that spherical soma size has a measurable impact on both the b-value dependence of the SDE signal and the MD and MK diffusion time dependence for both water and metabolites. On the other hand, we show that branching order has little impact on either, especially for water. In contrast, the DDE results show that spherical soma size has a measurable impact on the DDE signal's angular modulation at short mixing times and the branching order of cellular projections significantly impacts the mixing time dependence of the DDE signal's angular modulation as well as of the derived μA, for both water and metabolites. Our results confirm that SDE based techniques may be sensitive to spherical soma size, and most importantly, show for the first time that DDE measurements may be more sensitive to the dendritic tree complexity (as parametrized by the branching order of cellular projections), paving the way for new ways of characterizing grey matter morphology, non-invasively using dMRS and potentially dMRI.
Collapse
Affiliation(s)
- A Ianus
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, United Kingdom; Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - D C Alexander
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, United Kingdom
| | - H Zhang
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, United Kingdom
| | - M Palombo
- Centre for Medical Image Computing and Department of Computer Science, University College London, London, United Kingdom.
| |
Collapse
|
44
|
Henriques RN, Correia MM, Marrale M, Huber E, Kruper J, Koudoro S, Yeatman JD, Garyfallidis E, Rokem A. Diffusional Kurtosis Imaging in the Diffusion Imaging in Python Project. Front Hum Neurosci 2021; 15:675433. [PMID: 34349631 PMCID: PMC8327208 DOI: 10.3389/fnhum.2021.675433] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/17/2021] [Indexed: 12/28/2022] Open
Abstract
Diffusion-weighted magnetic resonance imaging (dMRI) measurements and models provide information about brain connectivity and are sensitive to the physical properties of tissue microstructure. Diffusional Kurtosis Imaging (DKI) quantifies the degree of non-Gaussian diffusion in biological tissue from dMRI. These estimates are of interest because they were shown to be more sensitive to microstructural alterations in health and diseases than measures based on the total anisotropy of diffusion which are highly confounded by tissue dispersion and fiber crossings. In this work, we implemented DKI in the Diffusion in Python (DIPY) project-a large collaborative open-source project which aims to provide well-tested, well-documented and comprehensive implementation of different dMRI techniques. We demonstrate the functionality of our methods in numerical simulations with known ground truth parameters and in openly available datasets. A particular strength of our DKI implementations is that it pursues several extensions of the model that connect it explicitly with microstructural models and the reconstruction of 3D white matter fiber bundles (tractography). For instance, our implementations include DKI-based microstructural models that allow the estimation of biophysical parameters, such as axonal water fraction. Moreover, we illustrate how DKI provides more general characterization of non-Gaussian diffusion compatible with complex white matter fiber architectures and gray matter, and we include a novel mean kurtosis index that is invariant to the confounding effects due to tissue dispersion. In summary, DKI in DIPY provides a well-tested, well-documented and comprehensive reference implementation for DKI. It provides a platform for wider use of DKI in research on brain disorders and in cognitive neuroscience.
Collapse
Affiliation(s)
| | - Marta M. Correia
- Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - Maurizio Marrale
- Department of Physics and Chemistry “Emilio Segrè”, University of Palermo, Palermo, Italy
- National Institute for Nuclear Physics (INFN), Catania Division, Catania, Italy
| | - Elizabeth Huber
- Department of Speech and Hearing, Institute for Learning and Brain Science, University of Washington, Seattle, WA, United States
| | - John Kruper
- Department of Psychology and eScience Institute, The University of Washington, Seattle, WA, United States
| | - Serge Koudoro
- Department of Intelligent Systems Engineering, Luddy School of Informatics, Computer Science and Engineering, Indiana University, Bloomington, IN, United States
| | - Jason D. Yeatman
- Department of Speech and Hearing, Institute for Learning and Brain Science, University of Washington, Seattle, WA, United States
- Department of Pediatrics, Graduate School of Education, Stanford University, Stanford, CA, United States
| | - Eleftherios Garyfallidis
- Department of Intelligent Systems Engineering, Luddy School of Informatics, Computer Science and Engineering, Indiana University, Bloomington, IN, United States
| | - Ariel Rokem
- Department of Psychology and eScience Institute, The University of Washington, Seattle, WA, United States
| |
Collapse
|
45
|
Gyori NG, Clark CA, Alexander DC, Kaden E. On the potential for mapping apparent neural soma density via a clinically viable diffusion MRI protocol. Neuroimage 2021; 239:118303. [PMID: 34174390 PMCID: PMC8363942 DOI: 10.1016/j.neuroimage.2021.118303] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 06/16/2021] [Accepted: 06/22/2021] [Indexed: 12/14/2022] Open
Abstract
B-tensor encoding enables estimation of spherical cellular structures in the brain. Spherical compartments may provide markers for apparent neural soma density. Model parameters can be estimated in a fast and robust way using deep learning. Practical acquisition times are achievable on widely available clinical scanners.
Diffusion MRI is a valuable tool for probing tissue microstructure in the brain noninvasively. Today, model-based techniques are widely available and used for white matter characterisation where their development is relatively mature. Conversely, tissue modelling in grey matter is more challenging, and no generally accepted models exist. With advances in measurement technology and modelling efforts, a clinically viable technique that reveals salient features of grey matter microstructure, such as the density of quasi-spherical cell bodies and quasi-cylindrical cell projections, is an exciting prospect. As a step towards capturing the microscopic architecture of grey matter in clinically feasible settings, this work uses a biophysical model that is designed to disentangle the diffusion signatures of spherical and cylindrical structures in the presence of orientation heterogeneity, and takes advantage of B-tensor encoding measurements, which provide additional sensitivity compared to standard single diffusion encoding sequences. For the fast and robust estimation of microstructural parameters, we leverage recent advances in machine learning and replace conventional fitting techniques with an artificial neural network that fits complex biophysical models within seconds. Our results demonstrate apparent markers of spherical and cylindrical geometries in healthy human subjects, and in particular an increased volume fraction of spherical compartments in grey matter compared to white matter. We evaluate the extent to which spherical and cylindrical geometries may be interpreted as correlates of neural soma and neural projections, respectively, and quantify parameter estimation errors in the presence of various departures from the modelling assumptions. While further work is necessary to translate the ideas presented in this work to the clinic, we suggest that biomarkers focussing on quasi-spherical cellular geometries may be valuable for the enhanced assessment of neurodevelopmental disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Noemi G Gyori
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.
| | - Christopher A Clark
- Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Daniel C Alexander
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Enrico Kaden
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
46
|
Lundell H, Najac C, Bulk M, Kan HE, Webb AG, Ronen I. Compartmental diffusion and microstructural properties of human brain gray and white matter studied with double diffusion encoding magnetic resonance spectroscopy of metabolites and water. Neuroimage 2021; 234:117981. [PMID: 33757904 PMCID: PMC8204266 DOI: 10.1016/j.neuroimage.2021.117981] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/05/2021] [Accepted: 03/13/2021] [Indexed: 02/02/2023] Open
Abstract
Double diffusion encoding (DDE) of the water signal offers a unique ability to separate the effect of microscopic anisotropic diffusion in structural units of tissue from the overall macroscopic orientational distribution of cells. However, the specificity in detected microscopic anisotropy is limited as the signal is averaged over different cell types and across tissue compartments. Performing side-by-side water and metabolite DDE spectroscopic (DDES) experiments provides complementary measures from which intracellular and extracellular microscopic fractional anisotropies (μFA) and diffusivities can be estimated. Metabolites are largely confined to the intracellular space and therefore provide a benchmark for intracellular μFA and diffusivities of specific cell types. By contrast, water DDES measurements allow examination of the separate contributions to water μFA and diffusivity from the intra- and extracellular spaces, by using a wide range of b values to gradually eliminate the extracellular contribution. Here, we aimed to estimate tissue and compartment specific human brain microstructure by combining water and metabolites DDES experiments. We performed our DDES measurements in two brain regions that contain widely different amounts of white matter (WM) and gray matter (GM): parietal white matter (PWM) and occipital gray matter (OGM) in a total of 20 healthy volunteers at 7 Tesla. Metabolite DDES measurements were performed at b = 7199 s/mm2, while water DDES measurements were performed with a range of b values from 918 to 7199 s/mm2. The experimental framework we employed here resulted in a set of insights pertaining to the morphology of the intracellular and extracellular spaces in both gray and white matter. Results of the metabolite DDES experiments in both PWM and OGM suggest a highly anisotropic intracellular space within neurons and glia, with the possible exception of gray matter glia. The water μFA obtained from the DDES results at high b values in both regions converged with that of the metabolite DDES, suggesting that the signal from the extracellular space is indeed effectively suppressed at the highest b value. The μFA measured in the OGM significantly decreased at lower b values, suggesting a considerably lower anisotropy of the extracellular space in GM compared to WM. In PWM, the water μFA remained high even at the lowest b value, indicating a high degree of organization in the interstitial space in WM. Tortuosity values in the cytoplasm for water and tNAA, obtained with correlation analysis of microscopic parallel diffusivity with respect to GM/WM tissue fraction in the volume of interest, are remarkably similar for both molecules, while exhibiting a clear difference between gray and white matter, suggesting a more crowded cytoplasm and more complex cytomorphology of neuronal cell bodies and dendrites in GM than those found in long-range axons in WM.
Collapse
Affiliation(s)
- Henrik Lundell
- Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Centre for Functional and Diagnostic Imaging and Research, Kettegaards Allé 30, 2650 Hvidovre, Denmark.
| | - Chloé Najac
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Marjolein Bulk
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Hermien E Kan
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Andrew G Webb
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| | - Itamar Ronen
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
47
|
Barakovic M, Tax CMW, Rudrapatna U, Chamberland M, Rafael-Patino J, Granziera C, Thiran JP, Daducci A, Canales-Rodríguez EJ, Jones DK. Resolving bundle-specific intra-axonal T 2 values within a voxel using diffusion-relaxation tract-based estimation. Neuroimage 2021; 227:117617. [PMID: 33301934 PMCID: PMC7615251 DOI: 10.1016/j.neuroimage.2020.117617] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/23/2020] [Accepted: 11/29/2020] [Indexed: 02/06/2023] Open
Abstract
At the typical spatial resolution of MRI in the human brain, approximately 60-90% of voxels contain multiple fiber populations. Quantifying microstructural properties of distinct fiber populations within a voxel is therefore challenging but necessary. While progress has been made for diffusion and T1-relaxation properties, how to resolve intra-voxel T2 heterogeneity remains an open question. Here a novel framework, named COMMIT-T2, is proposed that uses tractography-based spatial regularization with diffusion-relaxometry data to estimate multiple intra-axonal T2 values within a voxel. Unlike previously-proposed voxel-based T2 estimation methods, which (when applied in white matter) implicitly assume just one fiber bundle in the voxel or the same T2 for all bundles in the voxel, COMMIT-T2 can recover specific T2 values for each unique fiber population passing through the voxel. In this approach, the number of recovered unique T2 values is not determined by a number of model parameters set a priori, but rather by the number of tractography-reconstructed streamlines passing through the voxel. Proof-of-concept is provided in silico and in vivo, including a demonstration that distinct tract-specific T2 profiles can be recovered even in the three-way crossing of the corpus callosum, arcuate fasciculus, and corticospinal tract. We demonstrate the favourable performance of COMMIT-T2 compared to that of voxelwise approaches for mapping intra-axonal T2 exploiting diffusion, including a direction-averaged method and AMICO-T2, a new extension to the previously-proposed Accelerated Microstructure Imaging via Convex Optimization (AMICO) framework.
Collapse
Affiliation(s)
- Muhamed Barakovic
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, UK; Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Chantal M W Tax
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, UK
| | - Umesh Rudrapatna
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, UK
| | - Maxime Chamberland
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, UK
| | - Jonathan Rafael-Patino
- Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland; Neurologic Clinic and Policlinic, Departments of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jean-Philippe Thiran
- Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, 1005 Lausanne, Switzerland
| | | | - Erick J Canales-Rodríguez
- Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; FIDMAG Germanes Hospitalàries Research Foundation, CIBERSAM, Barcelona, Spain.
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, UK; Mary MacKillop Institute for Health Research, Faculty of Health Sciences, Australian Catholic University, Melbourne, Australia
| |
Collapse
|
48
|
Szczepankiewicz F, Westin CF, Nilsson M. Gradient waveform design for tensor-valued encoding in diffusion MRI. J Neurosci Methods 2021; 348:109007. [PMID: 33242529 PMCID: PMC8443151 DOI: 10.1016/j.jneumeth.2020.109007] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022]
Abstract
Diffusion encoding along multiple spatial directions per signal acquisition can be described in terms of a b-tensor. The benefit of tensor-valued diffusion encoding is that it unlocks the 'shape of the b-tensor' as a new encoding dimension. By modulating the b-tensor shape, we can control the sensitivity to microscopic diffusion anisotropy which can be used as a contrast mechanism; a feature that is inaccessible by conventional diffusion encoding. Since imaging methods based on tensor-valued diffusion encoding are finding an increasing number of applications we are prompted to highlight the challenge of designing the optimal gradient waveforms for any given application. In this review, we first establish the basic design objectives in creating field gradient waveforms for tensor-valued diffusion MRI. We also survey additional design considerations related to limitations imposed by hardware and physiology, potential confounding effects that cannot be captured by the b-tensor, and artifacts related to the diffusion encoding waveform. Throughout, we discuss the expected compromises and tradeoffs with an aim to establish a more complete understanding of gradient waveform design and its impact on accurate measurements and interpretations of data.
Collapse
Affiliation(s)
- Filip Szczepankiewicz
- Radiology, Brigham and Women's Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States; Clinical Sciences, Lund University, Lund, Sweden.
| | - Carl-Fredrik Westin
- Radiology, Brigham and Women's Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States
| | | |
Collapse
|
49
|
Mohammadi S, Callaghan MF. Towards in vivo g-ratio mapping using MRI: Unifying myelin and diffusion imaging. J Neurosci Methods 2021; 348:108990. [PMID: 33129894 PMCID: PMC7840525 DOI: 10.1016/j.jneumeth.2020.108990] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/21/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND The g-ratio, quantifying the comparative thickness of the myelin sheath encasing an axon, is a geometrical invariant that has high functional relevance because of its importance in determining neuronal conduction velocity. Advances in MRI data acquisition and signal modelling have put in vivo mapping of the g-ratio, across the entire white matter, within our reach. This capacity would greatly increase our knowledge of the nervous system: how it functions, and how it is impacted by disease. NEW METHOD This is the second review on the topic of g-ratio mapping using MRI. RESULTS This review summarizes the most recent developments in the field, while also providing methodological background pertinent to aggregate g-ratio weighted mapping, and discussing pitfalls associated with these approaches. COMPARISON WITH EXISTING METHODS Using simulations based on recently published data, this review reveals caveats to the state-of-the-art calibration methods that have been used for in vivo g-ratio mapping. It highlights the need to estimate both the slope and offset of the relationship between these MRI-based markers and the true myelin volume fraction if we are really to achieve the goal of precise, high sensitivity g-ratio mapping in vivo. Other challenges discussed in this review further evidence the need for gold standard measurements of human brain tissue from ex vivo histology. CONCLUSIONS We conclude that the quest to find the most appropriate MRI biomarkers to enable in vivo g-ratio mapping is ongoing, with the full potential of many novel techniques yet to be investigated.
Collapse
Affiliation(s)
- Siawoosh Mohammadi
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Martina F Callaghan
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, UK
| |
Collapse
|
50
|
Afzali M, Pieciak T, Newman S, Garyfallidis E, Özarslan E, Cheng H, Jones DK. The sensitivity of diffusion MRI to microstructural properties and experimental factors. J Neurosci Methods 2021; 347:108951. [PMID: 33017644 PMCID: PMC7762827 DOI: 10.1016/j.jneumeth.2020.108951] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/27/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022]
Abstract
Diffusion MRI is a non-invasive technique to study brain microstructure. Differences in the microstructural properties of tissue, including size and anisotropy, can be represented in the signal if the appropriate method of acquisition is used. However, to depict the underlying properties, special care must be taken when designing the acquisition protocol as any changes in the procedure might impact on quantitative measurements. This work reviews state-of-the-art methods for studying brain microstructure using diffusion MRI and their sensitivity to microstructural differences and various experimental factors. Microstructural properties of the tissue at a micrometer scale can be linked to the diffusion signal at a millimeter-scale using modeling. In this paper, we first give an introduction to diffusion MRI and different encoding schemes. Then, signal representation-based methods and multi-compartment models are explained briefly. The sensitivity of the diffusion MRI signal to the microstructural components and the effects of curvedness of axonal trajectories on the diffusion signal are reviewed. Factors that impact on the quality (accuracy and precision) of derived metrics are then reviewed, including the impact of random noise, and variations in the acquisition parameters (i.e., number of sampled signals, b-value and number of acquisition shells). Finally, yet importantly, typical approaches to deal with experimental factors are depicted, including unbiased measures and harmonization. We conclude the review with some future directions and recommendations on this topic.
Collapse
Affiliation(s)
- Maryam Afzali
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom.
| | - Tomasz Pieciak
- AGH University of Science and Technology, Kraków, Poland; LPI, ETSI Telecomunicación, Universidad de Valladolid, Valladolid, Spain.
| | - Sharlene Newman
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA; Program of Neuroscience, Indiana University, Bloomington, IN 47405, USA.
| | - Eleftherios Garyfallidis
- Program of Neuroscience, Indiana University, Bloomington, IN 47405, USA; Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN 47408, USA.
| | - Evren Özarslan
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden; Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden.
| | - Hu Cheng
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA; Program of Neuroscience, Indiana University, Bloomington, IN 47405, USA.
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|