1
|
Klaassen FH, de Voogd LD, Hulsman AM, O'Reilly JX, Klumpers F, Figner B, Roelofs K. The neurocomputational link between defensive cardiac states and approach-avoidance arbitration under threat. Commun Biol 2024; 7:576. [PMID: 38755409 PMCID: PMC11099143 DOI: 10.1038/s42003-024-06267-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/30/2024] [Indexed: 05/18/2024] Open
Abstract
Avoidance, a hallmark of anxiety-related psychopathology, often comes at a cost; avoiding threat may forgo the possibility of a reward. Theories predict that optimal approach-avoidance arbitration depends on threat-induced psychophysiological states, like freezing-related bradycardia. Here we used model-based fMRI analyses to investigate whether and how bradycardia states are linked to the neurocomputational underpinnings of approach-avoidance arbitration under varying reward and threat magnitudes. We show that bradycardia states are associated with increased threat-induced avoidance and more pronounced reward-threat value comparison (i.e., a stronger tendency to approach vs. avoid when expected reward outweighs threat). An amygdala-striatal-prefrontal circuit supports approach-avoidance arbitration under threat, with specific involvement of the amygdala and dorsal anterior cingulate (dACC) in integrating reward-threat value and bradycardia states. These findings highlight the role of human freezing states in value-based decision making, relevant for optimal threat coping. They point to a specific role for amygdala/dACC in state-value integration under threat.
Collapse
Affiliation(s)
- Felix H Klaassen
- Radboud University, Donders Institute for Brain, Cognition, and Behaviour, Thomas van Aquinostraat 4, 6525 GD, Nijmegen, The Netherlands.
| | - Lycia D de Voogd
- Radboud University, Donders Institute for Brain, Cognition, and Behaviour, Thomas van Aquinostraat 4, 6525 GD, Nijmegen, The Netherlands
- Radboud University, Behavioural Science Institute (BSI), Thomas van Aquinostraat 4, 6525 GD, Nijmegen, The Netherlands
- Leiden University, Institute of Psychology and Leiden Institute for Brain and Cognition (LIBC), Rapenburg 70, 2311 EZ, Leiden, The Netherlands
| | - Anneloes M Hulsman
- Radboud University, Donders Institute for Brain, Cognition, and Behaviour, Thomas van Aquinostraat 4, 6525 GD, Nijmegen, The Netherlands
- Radboud University, Behavioural Science Institute (BSI), Thomas van Aquinostraat 4, 6525 GD, Nijmegen, The Netherlands
| | - Jill X O'Reilly
- Department of Experimental Psychology, University of Oxford, Woodstock Road, OX2 6GG, Oxford, UK
| | - Floris Klumpers
- Radboud University, Donders Institute for Brain, Cognition, and Behaviour, Thomas van Aquinostraat 4, 6525 GD, Nijmegen, The Netherlands
- Radboud University, Behavioural Science Institute (BSI), Thomas van Aquinostraat 4, 6525 GD, Nijmegen, The Netherlands
| | - Bernd Figner
- Radboud University, Donders Institute for Brain, Cognition, and Behaviour, Thomas van Aquinostraat 4, 6525 GD, Nijmegen, The Netherlands
- Radboud University, Behavioural Science Institute (BSI), Thomas van Aquinostraat 4, 6525 GD, Nijmegen, The Netherlands
| | - Karin Roelofs
- Radboud University, Donders Institute for Brain, Cognition, and Behaviour, Thomas van Aquinostraat 4, 6525 GD, Nijmegen, The Netherlands.
- Radboud University, Behavioural Science Institute (BSI), Thomas van Aquinostraat 4, 6525 GD, Nijmegen, The Netherlands.
| |
Collapse
|
2
|
Tzovara A, Fedele T, Sarnthein J, Ledergerber D, Lin JJ, Knight RT. Predictable and unpredictable deviance detection in the human hippocampus and amygdala. Cereb Cortex 2024; 34:bhad532. [PMID: 38216528 PMCID: PMC10839835 DOI: 10.1093/cercor/bhad532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/15/2023] [Accepted: 12/16/2023] [Indexed: 01/14/2024] Open
Abstract
Our brains extract structure from the environment and form predictions given past experience. Predictive circuits have been identified in wide-spread cortical regions. However, the contribution of medial temporal structures in predictions remains under-explored. The hippocampus underlies sequence detection and is sensitive to novel stimuli, sufficient to gain access to memory, while the amygdala to novelty. Yet, their electrophysiological profiles in detecting predictable and unpredictable deviant auditory events remain unknown. Here, we hypothesized that the hippocampus would be sensitive to predictability, while the amygdala to unexpected deviance. We presented epileptic patients undergoing presurgical monitoring with standard and deviant sounds, in predictable or unpredictable contexts. Onsets of auditory responses and unpredictable deviance effects were detected earlier in the temporal cortex compared with the amygdala and hippocampus. Deviance effects in 1-20 Hz local field potentials were detected in the lateral temporal cortex, irrespective of predictability. The amygdala showed stronger deviance in the unpredictable context. Low-frequency deviance responses in the hippocampus (1-8 Hz) were observed in the predictable but not in the unpredictable context. Our results reveal a distributed network underlying the generation of auditory predictions and suggest that the neural basis of sensory predictions and prediction error signals needs to be extended.
Collapse
Affiliation(s)
- Athina Tzovara
- Helen Wills Neuroscience Institute, University of California, 450 Li Ka Shing Biomedical Center, Berkeley, CA 94720-3370, United States
- Institute of Computer Science, University of Bern, Bern, Neubrückstrasse 3012, Switzerland
- Center for Experimental Neurology - Sleep Wake Epilepsy Center | NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Freiburgstrasse 3010, Switzerland
| | - Tommaso Fedele
- Neurosurgery Department, University Hospital Zürich, Zürich, Frauenklinikstrasse 8091, Switzerland
| | - Johannes Sarnthein
- Neurosurgery Department, University Hospital Zürich, Zürich, Frauenklinikstrasse 8091, Switzerland
| | - Debora Ledergerber
- Swiss Epilepsy Center, Klinik Lengg, Zürich, Bleulerstrasse 8008, Switzerland
| | - Jack J Lin
- Department of Neurology, University of California, Davis, Folsom Boulevard, Davis, CA 95816, USA
- The Center of Mind and Brain, University of California, Davis, Cousteau Pl, Davis, CA 95618, USA
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California, 450 Li Ka Shing Biomedical Center, Berkeley, CA 94720-3370, United States
- Department of Psychology, University of California, Berkeley, CA 94720-1650, USA
| |
Collapse
|
3
|
Takasu K, Yawata Y, Tashima R, Aritomi H, Shimada S, Onodera T, Taishi T, Ogawa K. Distinct mechanisms of allopregnanolone and diazepam underlie neuronal oscillations and differential antidepressant effect. Front Cell Neurosci 2024; 17:1274459. [PMID: 38259500 PMCID: PMC10800935 DOI: 10.3389/fncel.2023.1274459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/29/2023] [Indexed: 01/24/2024] Open
Abstract
The rapid relief of depressive symptoms is a major medical requirement for effective treatments for major depressive disorder (MDD). A decrease in neuroactive steroids contributes to the pathophysiological mechanisms associated with the neurological symptoms of MDD. Zuranolone (SAGE-217), a neuroactive steroid that acts as a positive allosteric modulator of synaptic and extrasynaptic δ-subunit-containing GABAA receptors, has shown rapid-onset, clinically effective antidepressant action in patients with MDD or postpartum depression (PPD). Benzodiazepines, on the other hand, act as positive allosteric modulators of synaptic GABAA receptors but are not approved for the treatment of patients with MDD. It remains unclear how differences in molecular mechanisms contribute to the alleviation of depressive symptoms and the regulation of associated neuronal activity. Focusing on the antidepressant-like effects and neuronal activity of the basolateral amygdala (BLA) and medial prefrontal cortex (mPFC), we conducted a head-to-head comparison study of the neuroactive steroid allopregnanolone and the benzodiazepine diazepam using a mouse social defeat stress (SDS) model. Allopregnanolone but not diazepam exhibited antidepressant-like effects in a social interaction test in SDS mice. This antidepressant-like effect of allopregnanolone was abolished in extrasynaptic GABAA receptor δ-subunit knockout mice (δko mice) subjected to the same SDS protocol. Regarding the neurophysiological mechanism associated with these antidepressant-like effects, allopregnanolone but not diazepam increased theta oscillation in the BLA of SDS mice. This increase did not occur in δko mice. Consistent with this, allopregnanolone potentiated tonic inhibition in BLA interneurons via δ-subunit-containing extrasynaptic GABAA receptors. Theta oscillation in the mPFC of SDS mice was also increased by allopregnanolone but not by diazepam. Finally, allopregnanolone but not diazepam increased frontal theta activity in electroencephalography recordings in naïve and SDS mice. Neuronal network alterations associated with MDD showed decreased frontal theta and beta activity in depressed SDS mice. These results demonstrated that, unlike benzodiazepines, neuroactive steroids increased theta oscillation in the BLA and mPFC through the activation of δ-subunit-containing GABAA receptors, and this change was associated with antidepressant-like effects in the SDS model. Our findings support the notion that the distinctive mechanism of neuroactive steroids may contribute to the rapid antidepressant effects in MDD.
Collapse
Affiliation(s)
- Keiko Takasu
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Osaka, Japan
| | - Yosuke Yawata
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Osaka, Japan
| | - Ryoichi Tashima
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Osaka, Japan
| | | | | | - Tsukasa Onodera
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Osaka, Japan
| | - Teruhiko Taishi
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Osaka, Japan
| | - Koichi Ogawa
- Laboratory for Drug Discovery and Disease Research, Shionogi Pharmaceutical Research Center, Shionogi & Co., Ltd., Osaka, Japan
| |
Collapse
|
4
|
Stubbendorff C, Hale E, Day HLL, Smith J, Alvaro GS, Large CH, Stevenson CW. Pharmacological modulation of Kv3 voltage-gated potassium channels regulates fear discrimination and expression in a response-dependent manner. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110829. [PMID: 37451593 DOI: 10.1016/j.pnpbp.2023.110829] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Various psychiatric diseases are characterized by aberrant cognition and emotional regulation. This includes inappropriately attributing affective salience to innocuous cues, which can be investigated using translationally relevant preclinical models of fear discrimination. Activity in the underpinning corticolimbic circuitry is governed by parvalbumin-expressing GABAergic interneurons, which also regulate fear discrimination. Kv3 voltage-gated potassium channels are highly expressed in these neurons and are important for controlling their activity, suggesting that pharmacological Kv3 modulation may regulate fear discrimination. We determined the effect of the positive Kv3 modulator AUT00206 given systemically to female rats undergoing limited or extended auditory fear discrimination training, which we have previously shown results in more discrimination or generalization, respectively, based on freezing at retrieval. We also characterized darting and other active fear-related responses. We found that limited training resulted in more discrimination based on freezing, which was unaffected by AUT00206. In contrast, extended training resulted in more generalization based on freezing and the emergence of discrimination based on darting during training and, to a lesser extent, at retrieval. Importantly, AUT00206 given before extended training had dissociable effects on fear discrimination and expression at retrieval depending on the response examined. While AUT00206 mitigated generalization without affecting expression based on freezing, it reduced expression without affecting discrimination based on darting, although darting levels were low overall. These results indicate that pharmacological Kv3 modulation regulates fear discrimination and expression in a response-dependent manner. They also raise the possibility that targeting Kv3 channels may ameliorate perturbed cognition and emotional regulation in psychiatric disease.
Collapse
Affiliation(s)
- Christine Stubbendorff
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Ed Hale
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Harriet L L Day
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Jessica Smith
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Giuseppe S Alvaro
- Autifony Therapeutics Limited, Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage SG1 2FX, UK
| | - Charles H Large
- Autifony Therapeutics Limited, Stevenage Bioscience Catalyst, Gunnels Wood Road, Stevenage SG1 2FX, UK
| | - Carl W Stevenson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
| |
Collapse
|
5
|
Cusinato R, Alnes SL, van Maren E, Boccalaro I, Ledergerber D, Adamantidis A, Imbach LL, Schindler K, Baud MO, Tzovara A. Intrinsic Neural Timescales in the Temporal Lobe Support an Auditory Processing Hierarchy. J Neurosci 2023; 43:3696-3707. [PMID: 37045604 PMCID: PMC10198454 DOI: 10.1523/jneurosci.1941-22.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 04/14/2023] Open
Abstract
During rest, intrinsic neural dynamics manifest at multiple timescales, which progressively increase along visual and somatosensory hierarchies. Theoretically, intrinsic timescales are thought to facilitate processing of external stimuli at multiple stages. However, direct links between timescales at rest and sensory processing, as well as translation to the auditory system are lacking. Here, we measured intracranial EEG in 11 human patients with epilepsy (4 women), while listening to pure tones. We show that, in the auditory network, intrinsic neural timescales progressively increase, while the spectral exponent flattens, from temporal to entorhinal cortex, hippocampus, and amygdala. Within the neocortex, intrinsic timescales exhibit spatial gradients that follow the temporal lobe anatomy. Crucially, intrinsic timescales at baseline can explain the latency of auditory responses: as intrinsic timescales increase, so do the single-electrode response onset and peak latencies. Our results suggest that the human auditory network exhibits a repertoire of intrinsic neural dynamics, which manifest in cortical gradients with millimeter resolution and may provide a variety of temporal windows to support auditory processing.SIGNIFICANCE STATEMENT Endogenous neural dynamics are often characterized by their intrinsic timescales. These are thought to facilitate processing of external stimuli. However, a direct link between intrinsic timing at rest and sensory processing is missing. Here, with intracranial EEG, we show that intrinsic timescales progressively increase from temporal to entorhinal cortex, hippocampus, and amygdala. Intrinsic timescales at baseline can explain the variability in the timing of intracranial EEG responses to sounds: cortical electrodes with fast timescales also show fast- and short-lasting responses to auditory stimuli, which progressively increase in the hippocampus and amygdala. Our results suggest that a hierarchy of neural dynamics in the temporal lobe manifests across cortical and limbic structures and can explain the temporal richness of auditory responses.
Collapse
Affiliation(s)
- Riccardo Cusinato
- Institute of Computer Science, University of Bern, Bern 3012, Switzerland
- Center for Experimental Neurology, Sleep Wake Epilepsy Center, NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Sigurd L Alnes
- Institute of Computer Science, University of Bern, Bern 3012, Switzerland
- Center for Experimental Neurology, Sleep Wake Epilepsy Center, NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Ellen van Maren
- Center for Experimental Neurology, Sleep Wake Epilepsy Center, NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Ida Boccalaro
- Center for Experimental Neurology, Sleep Wake Epilepsy Center, NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | | | - Antoine Adamantidis
- Center for Experimental Neurology, Sleep Wake Epilepsy Center, NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Lukas L Imbach
- Swiss Epilepsy Center, Klinik Lengg, Zurich 8008, Switzerland
| | - Kaspar Schindler
- Center for Experimental Neurology, Sleep Wake Epilepsy Center, NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Maxime O Baud
- Center for Experimental Neurology, Sleep Wake Epilepsy Center, NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Athina Tzovara
- Institute of Computer Science, University of Bern, Bern 3012, Switzerland
- Center for Experimental Neurology, Sleep Wake Epilepsy Center, NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
- Helen Wills Neuroscience Institute, University of California-Berkeley, Berkeley 94720, California
| |
Collapse
|
6
|
The non-human perspective on the neurobiology of temperament, personality, and psychopathology: what’s next? Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2021.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
East BS, Fleming G, Vervoordt S, Shah P, Sullivan RM, Wilson DA. Basolateral amygdala to posterior piriform cortex connectivity ensures precision in learned odor threat. Sci Rep 2021; 11:21746. [PMID: 34741138 PMCID: PMC8571329 DOI: 10.1038/s41598-021-01320-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/20/2021] [Indexed: 12/24/2022] Open
Abstract
Odor perception can both evoke emotional states and be shaped by emotional or hedonic states. The amygdala complex plays an important role in recognition of, and response to, hedonically valenced stimuli, and has strong, reciprocal connectivity with the primary olfactory (piriform) cortex. Here, we used differential odor-threat conditioning in rats to test the role of basolateral amygdala (BLA) input to the piriform cortex in acquisition and expression of learned olfactory threat responses. Using local field potential recordings, we demonstrated that functional connectivity (high gamma band coherence) between the BLA and posterior piriform cortex (pPCX) is enhanced after differential threat conditioning. Optogenetic suppression of activity within the BLA prevents learned threat acquisition, as do lesions of the pPCX prior to threat conditioning (without inducing anosmia), suggesting that both regions are critical for acquisition of learned odor threat responses. However, optogenetic BLA suppression during testing did not impair threat response to the CS+ , but did induce generalization to the CS-. A similar loss of stimulus control and threat generalization was induced by selective optogenetic suppression of BLA input to pPCX. These results suggest an important role for amygdala-sensory cortical connectivity in shaping responses to threatening stimuli.
Collapse
Affiliation(s)
- Brett S East
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Child and Adolescent Psychiatry, New York University Langone Medical Center, 1 Park Avenue, 7th Floor, New York, NY, 10016, USA
| | - Gloria Fleming
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Samantha Vervoordt
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Prachi Shah
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Regina M Sullivan
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Child and Adolescent Psychiatry, New York University Langone Medical Center, 1 Park Avenue, 7th Floor, New York, NY, 10016, USA
| | - Donald A Wilson
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA.
- Child and Adolescent Psychiatry, New York University Langone Medical Center, 1 Park Avenue, 7th Floor, New York, NY, 10016, USA.
| |
Collapse
|
8
|
Cao F, An N, Xu W, Wang W, Yang Y, Xiang M, Gao Y, Ning X. Co-registration Comparison of On-Scalp Magnetoencephalography and Magnetic Resonance Imaging. Front Neurosci 2021; 15:706785. [PMID: 34483827 PMCID: PMC8414551 DOI: 10.3389/fnins.2021.706785] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
Magnetoencephalography (MEG) can non-invasively measure the electromagnetic activity of the brain. A new type of MEG, on-scalp MEG, has attracted the attention of researchers recently. Compared to the conventional SQUID-MEG, on-scalp MEG constructed with optically pumped magnetometers is wearable and has a high signal-to-noise ratio. While the co-registration between MEG and magnetic resonance imaging (MRI) significantly influences the source localization accuracy, co-registration error requires assessment, and quantification. Recent studies have evaluated the co-registration error of on-scalp MEG mainly based on the surface fit error or the repeatability error of different measurements, which do not reflect the true co-registration error. In this study, a three-dimensional-printed reference phantom was constructed to provide the ground truth of MEG sensor locations and orientations relative to MRI. The co-registration performances of commonly used three devices—electromagnetic digitization system, structured-light scanner, and laser scanner—were compared and quantified by the indices of final co-registration errors in the reference phantom and human experiments. Furthermore, the influence of the co-registration error on the performance of source localization was analyzed via simulations. The laser scanner had the best co-registration accuracy (rotation error of 0.23° and translation error of 0.76 mm based on the phantom experiment), whereas the structured-light scanner had the best cost performance. The results of this study provide recommendations and precautions for researchers regarding selecting and using an appropriate device for the co-registration of on-scalp MEG and MRI.
Collapse
Affiliation(s)
- Fuzhi Cao
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China
| | - Nan An
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China
| | - Weinan Xu
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China
| | - Wenli Wang
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China
| | - Yanfei Yang
- School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing, China
| | - Min Xiang
- Hangzhou Innovation Institute, Beihang University, Hangzhou, China.,Research Institute for Frontier Science, Beihang University, Beijing, China
| | - Yang Gao
- Hangzhou Innovation Institute, Beihang University, Hangzhou, China.,Beijing Academy of Quantum Information Sciences, Beijing, China
| | - Xiaolin Ning
- Hangzhou Innovation Institute, Beihang University, Hangzhou, China.,Research Institute for Frontier Science, Beihang University, Beijing, China
| |
Collapse
|
9
|
Bénar CG, Velmurugan J, López-Madrona VJ, Pizzo F, Badier JM. Detection and localization of deep sources in magnetoencephalography: A review. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2021.100285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
10
|
Wolf RC, Hildebrandt V, Schmitgen MM, Pycha R, Kirchler E, Macina C, Karner M, Hirjak D, Kubera KM, Romanov D, Freudenmann RW, Huber M. Aberrant Gray Matter Volume and Cortical Surface in Paranoid-Type Delusional Disorder. Neuropsychobiology 2021; 79:335-344. [PMID: 32160619 DOI: 10.1159/000505601] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 12/24/2019] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Delusions are core symptoms of schizophrenia-spectrum and related disorders. Despite their clinical relevance, the neural correlates underlying such phenomena are unclear. Recent research suggests that specific delusional content may be associated with distinct neural substrates. OBJECTIVE Here, we used structural magnetic resonance imaging to investigate multiple parameters of brain morphology in patients presenting with paranoid type delusional disorder (pt-DD, n = 14) compared to those of healthy controls (HC, n = 25). METHODS Voxel- and surface-based morphometry for structural data was used to investigate gray matter volume (GMV), cortical thickness (CT) and gyrification. RESULTS Compared to HC, patients with pt-DD showed reduced GMV in bilateral amygdala and right inferior frontal gyrus. Higher GMV in patients was found in bilateral orbitofrontal and in left superior frontal cortices. Patients also had lower CT in frontal and temporal regions. Abnormal gyrification in patients was evident in frontal and temporal areas, as well as in bilateral insula. CONCLUSIONS The data suggest the presence of aberrant GMV in a right prefrontal region associated with belief evaluation, as well as distinct structural abnormalities in areas that essentially subserve processing of fear, anxiety and threat in patients with pt-DD. It is possible that cortical features of distinct evolutionary and genetic origin, i.e. CT and gyrification, contribute differently to the pathogenesis of pt-DD.
Collapse
Affiliation(s)
- Robert Christian Wolf
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany,
| | - Viviane Hildebrandt
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Mike M Schmitgen
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Roger Pycha
- Department of Psychiatry, General Hospital Bruneck, Bruneck, Italy
| | - Erwin Kirchler
- Department of Psychiatry, General Hospital Bruneck, Bruneck, Italy
| | - Christian Macina
- Department of Psychiatry, General Hospital Bruneck, Bruneck, Italy
| | - Martin Karner
- Department of Radiology, General Hospital Bruneck, Bruneck, Italy
| | - Dusan Hirjak
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Katharina M Kubera
- Center for Psychosocial Medicine, Department of General Psychiatry, Heidelberg University, Heidelberg, Germany
| | - Dmitry Romanov
- Department of Psychiatry and Psychosomatics, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | | | - Markus Huber
- Department of Psychiatry, General Hospital Bruneck, Bruneck, Italy
| |
Collapse
|
11
|
Tierney TM, Mellor S, O'Neill GC, Holmes N, Boto E, Roberts G, Hill RM, Leggett J, Bowtell R, Brookes MJ, Barnes GR. Pragmatic spatial sampling for wearable MEG arrays. Sci Rep 2020; 10:21609. [PMID: 33303793 PMCID: PMC7729945 DOI: 10.1038/s41598-020-77589-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 11/09/2020] [Indexed: 12/16/2022] Open
Abstract
Several new technologies have emerged promising new Magnetoencephalography (MEG) systems in which the sensors can be placed close to the scalp. One such technology, Optically Pumped MEG (OP-MEG) allows for a scalp mounted system that provides measurements within millimetres of the scalp surface. A question that arises in developing on-scalp systems is: how many sensors are necessary to achieve adequate performance/spatial discrimination? There are many factors to consider in answering this question such as the signal to noise ratio (SNR), the locations and depths of the sources, density of spatial sampling, sensor gain errors (due to interference, subject movement, cross-talk, etc.) and, of course, the desired spatial discrimination. In this paper, we provide simulations which show the impact these factors have on designing sensor arrays for wearable MEG. While OP-MEG has the potential to provide high information content at dense spatial samplings, we find that adequate spatial discrimination of sources (< 1 cm) can be achieved with relatively few sensors (< 100) at coarse spatial samplings (~ 30 mm) at high SNR. After this point approximately 50 more sensors are required for every 1 mm improvement in spatial discrimination. Comparable discrimination for traditional cryogenic systems require more channels by these same metrics. We also show that sensor gain errors have the greatest impact on discrimination between deep sources at high SNR. Finally, we also examine the limitation that aliasing due to undersampling has on the effective SNR of on-scalp sensors.
Collapse
Affiliation(s)
- Tim M Tierney
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, WC1N 3AR, UK.
| | - Stephanie Mellor
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, WC1N 3AR, UK
| | - George C O'Neill
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, WC1N 3AR, UK
| | - Niall Holmes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Elena Boto
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Gillian Roberts
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Ryan M Hill
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - James Leggett
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Richard Bowtell
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Gareth R Barnes
- Wellcome Centre for Human Neuroimaging, UCL Institute of Neurology, London, WC1N 3AR, UK
| |
Collapse
|
12
|
Castegnetti G, Tzovara A, Khemka S, Melinščak F, Barnes GR, Dolan RJ, Bach DR. Representation of probabilistic outcomes during risky decision-making. Nat Commun 2020; 11:2419. [PMID: 32415145 PMCID: PMC7229012 DOI: 10.1038/s41467-020-16202-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 04/21/2020] [Indexed: 12/19/2022] Open
Abstract
Goal-directed behaviour requires prospectively retrieving and evaluating multiple possible action outcomes. While a plethora of studies suggested sequential retrieval for deterministic choice outcomes, it remains unclear whether this is also the case when integrating multiple probabilistic outcomes of the same action. We address this question by capitalising on magnetoencephalography (MEG) in humans who made choices in a risky foraging task. We train classifiers to distinguish MEG field patterns during presentation of two probabilistic outcomes (reward, loss), and then apply these to decode such patterns during deliberation. First, decoded outcome representations have a temporal structure, suggesting alternating retrieval of the outcomes. Moreover, the probability that one or the other outcome is being represented depends on loss magnitude, but not on loss probability, and it predicts the chosen action. In summary, we demonstrate decodable outcome representations during probabilistic decision-making, which are sequentially structured, depend on task features, and predict subsequent action.
Collapse
Affiliation(s)
- Giuseppe Castegnetti
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy, and Psychosomatics, University of Zurich, Zurich, Switzerland.
- Neuroscience Centre Zurich, University of Zurich, Zurich, Switzerland.
- Institute of Cognitive Neuroscience, University College London, London, UK.
| | - Athina Tzovara
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy, and Psychosomatics, University of Zurich, Zurich, Switzerland
- Neuroscience Centre Zurich, University of Zurich, Zurich, Switzerland
- Department of Computer Science & Faculty of Medicine, University of Bern, Bern, Switzerland
- Helen Wills Neuroscience Institute, University of California, Berkeley, USA
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Saurabh Khemka
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy, and Psychosomatics, University of Zurich, Zurich, Switzerland
- Neuroscience Centre Zurich, University of Zurich, Zurich, Switzerland
| | - Filip Melinščak
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy, and Psychosomatics, University of Zurich, Zurich, Switzerland
- Neuroscience Centre Zurich, University of Zurich, Zurich, Switzerland
| | - Gareth R Barnes
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Raymond J Dolan
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
- Max Planck UCL Centre for Computational Psychiatry and Ageing, University College London, London, UK
| | - Dominik R Bach
- Computational Psychiatry Research, Department of Psychiatry, Psychotherapy, and Psychosomatics, University of Zurich, Zurich, Switzerland
- Neuroscience Centre Zurich, University of Zurich, Zurich, Switzerland
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
- Max Planck UCL Centre for Computational Psychiatry and Ageing, University College London, London, UK
| |
Collapse
|
13
|
Fedele T, Tzovara A, Steiger B, Hilfiker P, Grunwald T, Stieglitz L, Jokeit H, Sarnthein J. The relation between neuronal firing, local field potentials and hemodynamic activity in the human amygdala in response to aversive dynamic visual stimuli. Neuroimage 2020; 213:116705. [PMID: 32165266 DOI: 10.1016/j.neuroimage.2020.116705] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/11/2020] [Accepted: 03/03/2020] [Indexed: 10/24/2022] Open
Abstract
The amygdala is a central part of networks of brain regions underlying perception and cognition, in particular related to processing of emotionally salient stimuli. Invasive electrophysiological and hemodynamic measurements are commonly used to evaluate functions of the human amygdala, but a comprehensive understanding of their relation is still lacking. Here, we aimed at investigating the link between fast and slow frequency amygdalar oscillations, neuronal firing and hemodynamic responses. To this aim, we recorded intracranial electroencephalography (iEEG), hemodynamic responses and single neuron activity from the amygdala of patients with epilepsy. Patients were presented with dynamic visual sequences of fearful faces (aversive condition), interleaved with sequences of neutral landscapes (neutral condition). Comparing responses to aversive versus neutral stimuli across participants, we observed enhanced high gamma power (HGP, >60 Hz) during the first 2 s of aversive sequence viewing, and reduced delta power (1-4 Hz) lasting up to 18 s. In 5 participants with implanted microwires, neuronal firing rates were enhanced following aversive stimuli, and exhibited positive correlation with HGP and hemodynamic responses. Our results show that high gamma power, neuronal firing and BOLD responses from the human amygdala are co-modulated. Our findings provide, for the first time, a comprehensive investigation of amygdalar responses to aversive stimuli, ranging from single-neuron spikes to local field potentials and hemodynamic responses.
Collapse
Affiliation(s)
- Tommaso Fedele
- National Research University Higher School of Economics, Moscow, Russian Federation.
| | - Athina Tzovara
- Institute for Computer Science, University of Bern, Switzerland
| | | | | | | | - Lennart Stieglitz
- Klinik für Neurochirurgie, UniversitätsSpital Zürich und Universität Zürich, Zurich, Switzerland
| | - Hennric Jokeit
- Schweizerische Epilepsie-Klinik, Zurich, Switzerland; Zentrum für Neurowissenschaften Zürich, Switzerland
| | - Johannes Sarnthein
- Klinik für Neurochirurgie, UniversitätsSpital Zürich und Universität Zürich, Zurich, Switzerland; Zentrum für Neurowissenschaften Zürich, Switzerland.
| |
Collapse
|
14
|
Threat Memory Reminder Under Matrix Metalloproteinase 9 Inhibitor Doxycycline Globally Reduces Subsequent Memory Plasticity. J Neurosci 2019; 39:9424-9434. [PMID: 31615840 PMCID: PMC6867817 DOI: 10.1523/jneurosci.1285-19.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/16/2019] [Accepted: 09/11/2019] [Indexed: 11/21/2022] Open
Abstract
Associative memory can be rendered malleable by a reminder. Blocking the ensuing reconsolidation process is suggested as a therapeutic target for unwanted aversive memories. Matrix metalloproteinase-9 (MMP-9) is required for structural synapse remodeling involved in memory consolidation. Inhibiting MMP-9 with doxycycline is suggested to attenuate human threat conditioning. Here, we investigated whether MMP-9 inhibition also interferes with threat memory reconsolidation. Male and female human participants (N = 78) learned the association between two visual conditioned stimuli (CS+) and a 50% chance of an unconditioned nociceptive stimulus (US), and between CS- and the absence of US. On day 7, one CS+ was reminded without reinforcement 3.5 h after ingesting either 200 mg of doxycycline or placebo. On day 14, retention of CS memory was assessed under extinction by fear-potentiated startle. Contrary to our expectations, we observed a greater CS+/CS- difference in participants who were reminded under doxycycline compared with placebo. Participants who were reminded under placebo showed extinction learning during the retention test, which was not observed in the doxycycline group. There was no difference between the reminded and the nonreminded CS+ in either group. In contrast, during relearning after the retention test, the CS+/CS- difference was more pronounced in the placebo group than in the doxycycline group. To summarize, a single dose of doxycycline before threat memory reminder appeared to have no specific impact on reconsolidation, but to globally impair extinction learning, and threat relearning, beyond drug clearance.SIGNIFICANCE STATEMENT Matrix metalloproteinase-9 inhibition appears to attenuate memory consolidation. It could also be a target for blocking reconsolidation. Here, we test this hypothesis in human threat conditioning. We find that doxycycline has no specific impact on a reminded cue, but confers a global reduction in extinction learning and threat learning beyond the clearance of the drug. This may point toward a more long-lasting impact of doxycycline treatment on memory plasticity.
Collapse
|
15
|
Tzovara A, Meyer SS, Bonaiuto JJ, Abivardi A, Dolan RJ, Barnes GR, Bach DR. High-precision magnetoencephalography for reconstructing amygdalar and hippocampal oscillations during prediction of safety and threat. Hum Brain Mapp 2019; 40:4114-4129. [PMID: 31257708 PMCID: PMC6772181 DOI: 10.1002/hbm.24689] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/09/2019] [Accepted: 05/27/2019] [Indexed: 02/02/2023] Open
Abstract
Learning to associate neutral with aversive events in rodents is thought to depend on hippocampal and amygdala oscillations. In humans, oscillations underlying aversive learning are not well characterised, largely due to the technical difficulty of recording from these two structures. Here, we used high‐precision magnetoencephalography (MEG) during human discriminant delay threat conditioning. We constructed generative anatomical models relating neural activity with recorded magnetic fields at the single‐participant level, including the neocortex with or without the possibility of sources originating in the hippocampal and amygdalar structures. Models including neural activity in amygdala and hippocampus explained MEG data during threat conditioning better than exclusively neocortical models. We found that in both amygdala and hippocampus, theta oscillations during anticipation of an aversive event had lower power compared to safety, both during retrieval and extinction of aversive memories. At the same time, theta synchronisation between hippocampus and amygdala increased over repeated retrieval of aversive predictions, but not during safety. Our results suggest that high‐precision MEG is sensitive to neural activity of the human amygdala and hippocampus during threat conditioning and shed light on the oscillation‐mediated mechanisms underpinning retrieval and extinction of fear memories in humans.
Collapse
Affiliation(s)
- Athina Tzovara
- Department of Psychiatry, Psychotherapy, and Psychosomatics, University of Zurich, Zurich, Switzerland.,Neuroscience Centre Zurich, University of Zurich, Zurich, Switzerland.,Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, United Kingdom.,Helen Wills Neuroscience Institute, University of California, Berkeley, California
| | - Sofie S Meyer
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, United Kingdom.,UCL Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - James J Bonaiuto
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, United Kingdom
| | - Aslan Abivardi
- Department of Psychiatry, Psychotherapy, and Psychosomatics, University of Zurich, Zurich, Switzerland.,Neuroscience Centre Zurich, University of Zurich, Zurich, Switzerland
| | - Raymond J Dolan
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, United Kingdom.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
| | - Gareth R Barnes
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, United Kingdom
| | - Dominik R Bach
- Department of Psychiatry, Psychotherapy, and Psychosomatics, University of Zurich, Zurich, Switzerland.,Neuroscience Centre Zurich, University of Zurich, Zurich, Switzerland.,Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, United Kingdom.,Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
| |
Collapse
|