1
|
Wang Y, Cao A, Wang J, Bai H, Liu T, Sun C, Li Z, Tang Y, Xu F, Liu S. Abnormalities in cerebellar subregions' volume and cerebellocerebral structural covariance in autism spectrum disorder. Autism Res 2025; 18:83-97. [PMID: 39749789 PMCID: PMC11782717 DOI: 10.1002/aur.3287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 01/04/2025]
Abstract
The cerebellum plays a crucial role in functions, including sensory-motor coordination, cognition, and emotional processing. Compared to the neocortex, the human cerebellum exhibits a protracted developmental trajectory. This delayed developmental timeline may lead to increased sensitivity of the cerebellum to external influences, potentially extending the vulnerability period for neurological disorders. Abnormal cerebellar development in individuals with autism has been confirmed, and these atypical cerebellar changes may affect the development of the neocortex. However, due to the heterogeneity of autism spectrum disorder (ASD), the regional changes in the cerebellum and cerebellocerebral structural relationship remain unknown. To address these issues, we utilized imaging methods optimized for the cerebellum and cerebrum on 817 individuals aged 5-18 years in the ABIDE II dataset. After FDR correction, significant differences between groups were found in the right crus II/VIIB and vermis VI-VII. Structural covariance analysis revealed enhanced structural covariance in individuals with autism between the cerebellum and parahippocampal gyrus, pars opercularis, and transverse temporal gyrus in the right hemisphere after FDR correction. Furthermore, the structural covariance between the cerebellum and some regions of the cerebrum varied across sexes. A significant increase in structural covariance between the cerebellum and specific subcortical structures was also observed in individuals with ASD. Our study found atypical patterns in the structural covariance between the cerebellum and cerebrum in individuals with autism, which suggested that the underlying pathological processes of ASD might concurrently affect these brain regions. This study provided insight into the potential of cerebellocerebral pathways as therapeutic targets for ASD.
Collapse
Affiliation(s)
- Yu Wang
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandongChina
| | - Aihua Cao
- Department of PediatricsShandong University Qilu HospitalJinanShandongChina
| | - Jing Wang
- Children's Hospital Affiliated to Shandong UniversityJinanShandongChina
- Jinan Children's HospitalJinanShandongChina
| | - He Bai
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandongChina
| | - Tianci Liu
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandongChina
| | - Chenxi Sun
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandongChina
| | - Zhuoran Li
- Department of UltrasoundShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
| | - Yuchun Tang
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandongChina
| | - Feifei Xu
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandongChina
| | - Shuwei Liu
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of MedicineShandong UniversityJinanShandongChina
- Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinanShandongChina
| |
Collapse
|
2
|
Hicks TH, Magalhães TNC, Jackson TB, Ballard HK, Herrejon IA, Bernard JA. Functional and structural cerebellar-behavior relationships in aging. Brain Struct Funct 2024; 230:10. [PMID: 39692877 DOI: 10.1007/s00429-024-02862-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 12/03/2024] [Indexed: 12/19/2024]
Abstract
Healthy aging is associated with deficits in cognitive performance and brain changes, including in the cerebellum. Cerebellar communication with the cortex via closed-loop circuits through the thalamus have been established and these circuits are closely related to the functional topography of the cerebellum. In this study, we sought to elucidate relationships between cerebellar structure and function with cognition in healthy aging. We explored this relationship in 138 healthy adults (aged 35-86, 53% female) using resting-state functional connectivity MRI (fcMRI), cerebellar volume, and cognitive and motor assessments. Behavioral tasks assessed attention, processing speed, working memory, episodic memory, and motor abilities. We expected to find negative relationships between lobular volume with age, and positive relationships between specific lobular volumes with motor and cognitive behavior, respectively. We predicted lower cerebello-cortical fcMRI with increased age. Behaviorally, we expected higher cerebello-frontal and cerebello-association area fcMRI cerebellar connectivity to correlate with better behavioral performance. Correlations were conducted between cerebellar lobules I-IV, V, Crus I, Crus II, vermis VI and behavioral measures. We found lower volumes with increased age as well as both higher and lower cerebellar connectivity relationships with increased age, consistent with literature on functional connectivity and network segregation in aging. Further, we revealed unique associations between cerebellar structure and connectivity with comprehensive behavioral measures in a healthy aging population. Our findings further highlight the role of the cerebellum in aging.
Collapse
Affiliation(s)
- Tracey H Hicks
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA
| | - Thamires N C Magalhães
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA
| | - T Bryan Jackson
- Vanderbilt Memory and Alzheimer's Center, Nashville, TN, USA
| | - Hannah K Ballard
- Department of Psychological Sciences, William Marsh Rice University, Houston, TX, USA
| | - Ivan A Herrejon
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA
| | - Jessica A Bernard
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, Texas, USA.
- Texas A&M Institute for Neuroscience, Texas A&M University, 4235 TAMU, College Station, Texas, TX, 77840, USA.
| |
Collapse
|
3
|
Sefik E, Duan K, Li Y, Sholar B, Evans L, Pincus J, Ammar Z, Murphy MM, Klaiman C, Saulnier CA, Pulver SL, Goldman-Yassen AE, Guo Y, Walker EF, Li L, Mulle JG, Shultz S. Structural deviations of the posterior fossa and the cerebellum and their cognitive links in a neurodevelopmental deletion syndrome. Mol Psychiatry 2024; 29:3395-3411. [PMID: 38744992 PMCID: PMC11541222 DOI: 10.1038/s41380-024-02584-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024]
Abstract
High-impact genetic variants associated with neurodevelopmental disorders provide biologically-defined entry points for mechanistic investigation. The 3q29 deletion (3q29Del) is one such variant, conferring a 40-100-fold increased risk for schizophrenia, as well as high risk for autism and intellectual disability. However, the mechanisms leading to neurodevelopmental disability remain largely unknown. Here, we report the first in vivo quantitative neuroimaging study in individuals with 3q29Del (N = 24) and neurotypical controls (N = 1608) using structural MRI. Given prior radiology reports of posterior fossa abnormalities in 3q29Del, we focused our investigation on the cerebellum and its tissue-types and lobules. Additionally, we compared the prevalence of cystic/cyst-like malformations of the posterior fossa between 3q29Del and controls and examined the association between neuroanatomical findings and quantitative traits to probe gene-brain-behavior relationships. 3q29Del participants had smaller cerebellar cortex volumes than controls, before and after correction for intracranial volume (ICV). An anterior-posterior gradient emerged in finer grained lobule-based and voxel-wise analyses. 3q29Del participants also had larger cerebellar white matter volumes than controls following ICV-correction and displayed elevated rates of posterior fossa arachnoid cysts and mega cisterna magna findings independent of cerebellar volume. Cerebellar white matter and subregional gray matter volumes were associated with visual-perception and visual-motor integration skills as well as IQ, while cystic/cyst-like malformations yielded no behavioral link. In summary, we find that abnormal development of cerebellar structures may represent neuroimaging-based biomarkers of cognitive and sensorimotor function in 3q29Del, adding to the growing evidence identifying cerebellar pathology as an intersection point between syndromic and idiopathic forms of neurodevelopmental disabilities.
Collapse
Affiliation(s)
- Esra Sefik
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Kuaikuai Duan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Yiheng Li
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Brittney Sholar
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Lindsey Evans
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Jordan Pincus
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Zeena Ammar
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Melissa M Murphy
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Cheryl Klaiman
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Celine A Saulnier
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Neurodevelopmental Assessment & Consulting Services, Atlanta, GA, USA
| | - Stormi L Pulver
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Adam E Goldman-Yassen
- Department of Radiology, Children's Healthcare of Atlanta, Atlanta, GA, USA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Ying Guo
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Elaine F Walker
- Department of Psychology, Emory University, Atlanta, GA, USA
| | - Longchuan Li
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA
| | - Jennifer G Mulle
- Department of Psychiatry, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA.
| | - Sarah Shultz
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.
- Marcus Autism Center, Children's Healthcare of Atlanta and Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
4
|
Bischoff-Grethe A, Stoner SA, Riley EP, Moore EM. Subcortical volume in middle-aged adults with fetal alcohol spectrum disorders. Brain Commun 2024; 6:fcae273. [PMID: 39229493 PMCID: PMC11369821 DOI: 10.1093/braincomms/fcae273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 05/06/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024] Open
Abstract
Studies of youth and young adults with prenatal alcohol exposure (PAE) have most consistently reported reduced volumes of the corpus callosum, cerebellum and subcortical structures. However, it is unknown whether this continues into middle adulthood or if individuals with PAE may experience premature volumetric decline with aging. Forty-eight individuals with fetal alcohol spectrum disorders (FASD) and 28 healthy comparison participants aged 30 to 65 participated in a 3T MRI session that resulted in usable T1-weighted and T2-weighted structural images. Primary analyses included volumetric measurements of the caudate, putamen, pallidum, cerebellum and corpus callosum using FreeSurfer software. Analyses were conducted examining both raw volumetric measurements and subcortical volumes adjusted for overall intracranial volume (ICV). Models tested for main effects of age, sex and group, as well as interactions of group with age and group with sex. We found the main effects for group; all regions were significantly smaller in participants with FASD for models using raw volumes (P's < 0.001) as well as for models using volumes adjusted for ICV (P's < 0.046). Although there were no significant interactions of group with age, females with FASD had smaller corpus callosum volumes relative to both healthy comparison females and males with FASD (P's < 0.001). As seen in children and adolescents, adults aged 30 to 65 with FASD showed reduced volumes of subcortical structures relative to healthy comparison adults, suggesting persistent impact of PAE. Moreover, the observed volumetric reduction of the corpus callosum in females with FASD could suggest more rapid degeneration, which may have implications for cognition as these individuals continue to age.
Collapse
Affiliation(s)
| | - Susan A Stoner
- Department of Psychiatry and Behavioral Sciences, Fetal Alcohol and Drug Unit, University of Washington School of Medicine, Seattle, Washington 98105, USA
| | - Edward P Riley
- Department of Psychology, Center for Behavioral Teratology, San Diego State University, San Diego, CA, 92120, USA
| | - Eileen M Moore
- Department of Psychology, Center for Behavioral Teratology, San Diego State University, San Diego, CA, 92120, USA
| |
Collapse
|
5
|
Hicks TH, Magalhães TNC, Jackson TB, Ballard HK, Herrejon IA, Bernard JA. Functional and Structural Cerebellar-Behavior Relationships in Aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.598916. [PMID: 38979254 PMCID: PMC11230148 DOI: 10.1101/2024.06.19.598916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Healthy aging is associated with deficits in cognitive performance and brain changes, including in the cerebellum. Yet, the precise link between cerebellar function/structure and cognition in aging remains poorly understood. We explored this relationship in 138 healthy adults (aged 35-86, 53% female) using resting-state functional connectivity MRI (fcMRI), cerebellar volume, and cognitive and motor assessments in an aging sample. We expected to find negative relationships between lobular volume for with age, and positive relationships between specific lobular volumes with motor and cognition respectively. We predicted lower cerebellar fcMRI to cortical networks and circuits with increased age. Behaviorally, we expected higher cerebello-frontal fcMRI cerebellar connectivity with association areas to correlate with better behavioral performance. Behavioral tasks broadly assessed attention, processing speed, working memory, episodic memory, and motor abilities. Correlations were conducted between cerebellar lobules I-IV, V, Crus I, Crus II, vermis VI and behavioral measures. We found lower volumes with increased age as well as bidirectional cerebellar connectivity relationships with increased age, consistent with literature on functional connectivity and network segregation in aging. Further, we revealed unique associations for both cerebellar structure and connectivity with comprehensive behavioral measures in a healthy aging population. Our findings underscore cerebellar involvement in behavior during aging.
Collapse
|
6
|
Hodgdon EA, Anderson R, Azzawi HA, Wilson TW, Calhoun VD, Wang YP, Solis I, Greve DN, Stephen JM, Ciesielski KTR. MRI morphometry of the anterior and posterior cerebellar vermis and its relationship to sensorimotor and cognitive functions in children. Dev Cogn Neurosci 2024; 67:101385. [PMID: 38713999 PMCID: PMC11096723 DOI: 10.1016/j.dcn.2024.101385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 05/09/2024] Open
Abstract
INTRODUCTION The human cerebellum emerges as a posterior brain structure integrating neural networks for sensorimotor, cognitive, and emotional processing across the lifespan. Developmental studies of the cerebellar anatomy and function are scant. We examine age-dependent MRI morphometry of the anterior cerebellar vermis, lobules I-V and posterior neocortical lobules VI-VII and their relationship to sensorimotor and cognitive functions. METHODS Typically developing children (TDC; n=38; age 9-15) and healthy adults (HAC; n=31; 18-40) participated in high-resolution MRI. Rigorous anatomically informed morphometry of the vermis lobules I-V and VI-VII and total brain volume (TBV) employed manual segmentation computer-assisted FreeSurfer Image Analysis Program [http://surfer.nmr.mgh.harvard.edu]. The neuropsychological scores (WASI-II) were normalized and related to volumes of anterior, posterior vermis, and TBV. RESULTS TBVs were age independent. Volumes of I-V and VI-VII were significantly reduced in TDC. The ratio of VI-VII to I-V (∼60%) was stable across age-groups; I-V correlated with visual-spatial-motor skills; VI-VII with verbal, visual-abstract and FSIQ. CONCLUSIONS In TDC neither anterior I-V nor posterior VI-VII vermis attained adult volumes. The "inverted U" developmental trajectory of gray matter peaking in adolescence does not explain this finding. The hypothesis of protracted development of oligodendrocyte/myelination is suggested as a contributor to TDC's lower cerebellar vermis volumes.
Collapse
Affiliation(s)
- Elizabeth A Hodgdon
- Pediatric Neuroscience Laboratory, Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Ryan Anderson
- Pediatric Neuroscience Laboratory, Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Hussein Al Azzawi
- Pediatric Neuroscience Laboratory, Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Tony W Wilson
- Institute of Human Neuroscience, Boys Town National Research Hospital, 14090 Mother Teresa Lane, Boys Town, NE 68010, USA
| | - Vince D Calhoun
- Mind Research Network and Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd N.E., Albuquerque, NM 87106, USA; Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, GA, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, 6823 St. Charles Ave, New Orleans, LA 70118, USA
| | - Isabel Solis
- Pediatric Neuroscience Laboratory, Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Douglas N Greve
- MGH/MIT Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Julia M Stephen
- Mind Research Network and Lovelace Biomedical and Environmental Research Institute, 1101 Yale Blvd N.E., Albuquerque, NM 87106, USA
| | - Kristina T R Ciesielski
- Pediatric Neuroscience Laboratory, Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; MGH/MIT Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Strike LT, Kerestes R, McMahon KL, de Zubicaray GI, Harding IH, Medland SE. Heritability of cerebellar subregion volumes in adolescent and young adult twins. Hum Brain Mapp 2024; 45:e26717. [PMID: 38798116 PMCID: PMC11128777 DOI: 10.1002/hbm.26717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
Twin studies have found gross cerebellar volume to be highly heritable. However, whether fine-grained regional volumes within the cerebellum are similarly heritable is still being determined. Anatomical MRI scans from two independent datasets (QTIM: Queensland Twin IMaging, N = 798, mean age 22.1 years; QTAB: Queensland Twin Adolescent Brain, N = 396, mean age 11.3 years) were combined with an optimised and automated cerebellum parcellation algorithm to segment and measure 28 cerebellar regions. We show that the heritability of regional volumetric measures varies widely across the cerebellum (h 2 $$ {h}^2 $$ 47%-91%). Additionally, the good to excellent test-retest reliability for a subsample of QTIM participants suggests that non-genetic variance in cerebellar volumes is due primarily to unique environmental influences rather than measurement error. We also show a consistent pattern of strong associations between the volumes of homologous left and right hemisphere regions. Associations were predominantly driven by genetic effects shared between lobules, with only sparse contributions from environmental effects. These findings are consistent with similar studies of the cerebrum and provide a first approximation of the upper bound of heritability detectable by genome-wide association studies.
Collapse
Affiliation(s)
- Lachlan T. Strike
- Psychiatric Genetics, QIMR Berghofer Medical Research InstituteBrisbaneAustralia
- School of Psychology and Counselling, Faculty of HealthQueensland University of TechnologyKelvin GroveQueenslandAustralia
- School of Biomedical Sciences, Faculty of MedicineUniversity of QueenslandBrisbaneAustralia
| | - Rebecca Kerestes
- Department of Neuroscience, Central Clinical SchoolMonash UniversityMelbourneAustralia
| | - Katie L. McMahon
- School of Clinical Sciences, Centre for Biomedical TechnologiesQueensland University of TechnologyBrisbaneQueenslandAustralia
| | - Greig I. de Zubicaray
- School of Psychology and Counselling, Faculty of HealthQueensland University of TechnologyKelvin GroveQueenslandAustralia
| | - Ian H. Harding
- Department of Neuroscience, Central Clinical SchoolMonash UniversityMelbourneAustralia
- Cerebellum and Neurodegeneration, QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Sarah E. Medland
- Psychiatric Genetics, QIMR Berghofer Medical Research InstituteBrisbaneAustralia
- School of Psychology and Counselling, Faculty of HealthQueensland University of TechnologyKelvin GroveQueenslandAustralia
- School of PsychologyUniversity of QueenslandBrisbaneAustralia
| |
Collapse
|
8
|
Wang X, Zhou B. Motor development-focused exercise training enhances gross motor skills more effectively than ordinary physical activity in healthy preschool children: an updated meta-analysis. Front Public Health 2024; 12:1414152. [PMID: 38835603 PMCID: PMC11148274 DOI: 10.3389/fpubh.2024.1414152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024] Open
Abstract
Purpose The growth of certain human brain structures peaks at early ages, and complex motor interventions could positively facilitate this process. This study aims to offer an updated meta-analysis regarding the effectiveness of motor development-focused exercise training on gross motor skills in preschool children. Methods We searched English- and Chinese-language electronic databases as of March 2024. The main eligibility criteria were as follows: participants were healthy children aged 3 to 6 years old, and the experimental design was a randomized controlled trial, with the control arm participating in either free play or ordinary physical education curriculum. We conducted a Hartung-Knapp random-effects meta-analysis of the standardized mean difference for locomotor, object control, or gross motor quotient. Results The search identified 23 eligible studies, of which approximately 75% were considered to have a low risk of bias. Compared with active control, exercise training showed a large to very large effect size. Cohen's d values were 1.13, 1.55, and 1.53 for locomotor, object control, and gross motor quotient, respectively. From a probabilistic viewpoint, these effect sizes correspond to events that are "very likely to occur" and "almost sure to occur." Due to variations in intervention programs, all outcome measures showed high heterogeneity. Conclusion This updated meta-analysis offers a realistic synthesis of the current evidence, leading to the conclusion that targeted motor skill exercise training can almost certainly enhance preschool children's gross motor skills. Practical implications are discussed regarding the refinement of the instructional framework and the dissemination of these findings in preschool settings.
Collapse
Affiliation(s)
| | - Bo Zhou
- College of Physical Education, Hunan Normal University, Changsha, China
| |
Collapse
|
9
|
Kent RD. The Feel of Speech: Multisystem and Polymodal Somatosensation in Speech Production. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2024; 67:1424-1460. [PMID: 38593006 DOI: 10.1044/2024_jslhr-23-00575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
PURPOSE The oral structures such as the tongue and lips have remarkable somatosensory capacities, but understanding the roles of somatosensation in speech production requires a more comprehensive knowledge of somatosensation in the speech production system in its entirety, including the respiratory, laryngeal, and supralaryngeal subsystems. This review was conducted to summarize the system-wide somatosensory information available for speech production. METHOD The search was conducted with PubMed/Medline and Google Scholar for articles published until November 2023. Numerous search terms were used in conducting the review, which covered the topics of psychophysics, basic and clinical behavioral research, neuroanatomy, and neuroscience. RESULTS AND CONCLUSIONS The current understanding of speech somatosensation rests primarily on the two pillars of psychophysics and neuroscience. The confluence of polymodal afferent streams supports the development, maintenance, and refinement of speech production. Receptors are both canonical and noncanonical, with the latter occurring especially in the muscles innervated by the facial nerve. Somatosensory representation in the cortex is disproportionately large and provides for sensory interactions. Speech somatosensory function is robust over the lifespan, with possible declines in advanced aging. The understanding of somatosensation in speech disorders is largely disconnected from research and theory on speech production. A speech somatoscape is proposed as the generalized, system-wide sensation of speech production, with implications for speech development, speech motor control, and speech disorders.
Collapse
|
10
|
Wang Y, Teng Y, Liu T, Tang Y, Liang W, Wang W, Li Z, Xia Q, Xu F, Liu S. Morphological changes in the cerebellum during aging: evidence from convolutional neural networks and shape analysis. Front Aging Neurosci 2024; 16:1359320. [PMID: 38694258 PMCID: PMC11061448 DOI: 10.3389/fnagi.2024.1359320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/06/2024] [Indexed: 05/04/2024] Open
Abstract
The morphology and function of the cerebellum are associated with various developmental disorders and healthy aging. Changes in cerebellar morphology during the aging process have been extensively investigated, with most studies focusing on changes in cerebellar regional volume. The volumetric method has been used to quantitatively demonstrate the decrease in the cerebellar volume with age, but it has certain limitations in visually presenting the morphological changes of cerebellar atrophy from a three-dimensional perspective. Thus, we comprehensively described cerebellar morphological changes during aging through volume measurements of subregions and shape analysis. This study included 553 healthy participants aged 20-80 years. A novel cerebellar localized segmentation algorithm based on convolutional neural networks was utilized to analyze the volume of subregions, followed by shape analysis for localized atrophy assessment based on the cerebellar thickness. The results indicated that out of the 28 subregions in the absolute volume of the cerebellum, 15 exhibited significant aging trends, and 16 exhibited significant sex differences. Regarding the analysis of relative volume, only 11 out of the 28 subregions of the cerebellum exhibited significant aging trends, and 4 exhibited significant sex differences. The results of the shape analysis revealed region-specific atrophy of the cerebellum with increasing age. Regions displaying more significant atrophy were predominantly located in the vermis, the lateral portions of bilateral cerebellar hemispheres, lobules I-III, and the medial portions of the posterior lobe. This atrophy differed between sexes. Men exhibited slightly more severe atrophy than women in most of the cerebellar regions. Our study provides a comprehensive perspective for observing cerebellar atrophy during the aging process.
Collapse
Affiliation(s)
- Yu Wang
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Ye Teng
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Tianci Liu
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Yuchun Tang
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Wenjia Liang
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Wenjun Wang
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Zhuoran Li
- Department of Ultrasound, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qing Xia
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Feifei Xu
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| | - Shuwei Liu
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
| |
Collapse
|
11
|
Arleo A, Bareš M, Bernard JA, Bogoian HR, Bruchhage MMK, Bryant P, Carlson ES, Chan CCH, Chen LK, Chung CP, Dotson VM, Filip P, Guell X, Habas C, Jacobs HIL, Kakei S, Lee TMC, Leggio M, Misiura M, Mitoma H, Olivito G, Ramanoël S, Rezaee Z, Samstag CL, Schmahmann JD, Sekiyama K, Wong CHY, Yamashita M, Manto M. Consensus Paper: Cerebellum and Ageing. CEREBELLUM (LONDON, ENGLAND) 2024; 23:802-832. [PMID: 37428408 PMCID: PMC10776824 DOI: 10.1007/s12311-023-01577-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 07/11/2023]
Abstract
Given the key roles of the cerebellum in motor, cognitive, and affective operations and given the decline of brain functions with aging, cerebellar circuitry is attracting the attention of the scientific community. The cerebellum plays a key role in timing aspects of both motor and cognitive operations, including for complex tasks such as spatial navigation. Anatomically, the cerebellum is connected with the basal ganglia via disynaptic loops, and it receives inputs from nearly every region in the cerebral cortex. The current leading hypothesis is that the cerebellum builds internal models and facilitates automatic behaviors through multiple interactions with the cerebral cortex, basal ganglia and spinal cord. The cerebellum undergoes structural and functional changes with aging, being involved in mobility frailty and related cognitive impairment as observed in the physio-cognitive decline syndrome (PCDS) affecting older, functionally-preserved adults who show slowness and/or weakness. Reductions in cerebellar volume accompany aging and are at least correlated with cognitive decline. There is a strongly negative correlation between cerebellar volume and age in cross-sectional studies, often mirrored by a reduced performance in motor tasks. Still, predictive motor timing scores remain stable over various age groups despite marked cerebellar atrophy. The cerebello-frontal network could play a significant role in processing speed and impaired cerebellar function due to aging might be compensated by increasing frontal activity to optimize processing speed in the elderly. For cognitive operations, decreased functional connectivity of the default mode network (DMN) is correlated with lower performances. Neuroimaging studies highlight that the cerebellum might be involved in the cognitive decline occurring in Alzheimer's disease (AD), independently of contributions of the cerebral cortex. Grey matter volume loss in AD is distinct from that seen in normal aging, occurring initially in cerebellar posterior lobe regions, and is associated with neuronal, synaptic and beta-amyloid neuropathology. Regarding depression, structural imaging studies have identified a relationship between depressive symptoms and cerebellar gray matter volume. In particular, major depressive disorder (MDD) and higher depressive symptom burden are associated with smaller gray matter volumes in the total cerebellum as well as the posterior cerebellum, vermis, and posterior Crus I. From the genetic/epigenetic standpoint, prominent DNA methylation changes in the cerebellum with aging are both in the form of hypo- and hyper-methylation, and the presumably increased/decreased expression of certain genes might impact on motor coordination. Training influences motor skills and lifelong practice might contribute to structural maintenance of the cerebellum in old age, reducing loss of grey matter volume and therefore contributing to the maintenance of cerebellar reserve. Non-invasive cerebellar stimulation techniques are increasingly being applied to enhance cerebellar functions related to motor, cognitive, and affective operations. They might enhance cerebellar reserve in the elderly. In conclusion, macroscopic and microscopic changes occur in the cerebellum during the lifespan, with changes in structural and functional connectivity with both the cerebral cortex and basal ganglia. With the aging of the population and the impact of aging on quality of life, the panel of experts considers that there is a huge need to clarify how the effects of aging on the cerebellar circuitry modify specific motor, cognitive, and affective operations both in normal subjects and in brain disorders such as AD or MDD, with the goal of preventing symptoms or improving the motor, cognitive, and affective symptoms.
Collapse
Affiliation(s)
- Angelo Arleo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Martin Bareš
- First Department of Neurology, Faculty of Medicine, Masaryk University and St. Anne's Teaching Hospital, Brno, Czech Republic
- Department of Neurology, School of Medicine, University of Minnesota, Minneapolis, USA
| | - Jessica A Bernard
- Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX, 77843, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Hannah R Bogoian
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Muriel M K Bruchhage
- Department of Psychology, Stavanger University, Institute of Social Sciences, Kjell Arholms Gate 41, 4021, Stavanger, Norway
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Centre for Neuroimaging Sciences, Box 89, De Crespigny Park, London, PO, SE5 8AF, UK
- Rhode Island Hospital, Department for Diagnostic Imaging, 1 Hoppin St, Providence, RI, 02903, USA
- Department of Paediatrics, Warren Alpert Medical School of Brown University, 222 Richmond St, Providence, RI, 02903, USA
| | - Patrick Bryant
- Freie Universität Berlin, Fachbereich Mathematik und Informatik, Arnimallee 12, 14195, Berlin, Germany
| | - Erik S Carlson
- Department of Psychiatry and Behavioural Sciences, University of Washington, Seattle, WA, USA
- Geriatric Research, Education and Clinical Center, Veteran's Affairs Medical Center, Puget Sound, Seattle, WA, USA
| | - Chetwyn C H Chan
- Department of Psychology, The Education University of Hong Kong, New Territories, Tai Po, Hong Kong, China
| | - Liang-Kung Chen
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
- Center for Geriatric and Gerontology, Taipei Veterans General Hospital, Taipei, Taiwan
- Taipei Municipal Gan-Dau Hospital (managed by Taipei Veterans General Hospital), Taipei, Taiwan
| | - Chih-Ping Chung
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Vonetta M Dotson
- Department of Psychology, Georgia State University, Atlanta, GA, USA
- Gerontology Institute, Georgia State University, Atlanta, GA, USA
| | - Pavel Filip
- Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
| | - Xavier Guell
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Laboratory for Neuroanatomy and Cerebellar Neurobiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Christophe Habas
- CHNO Des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 rue de Charenton, 75012, Paris, France
- Université Versailles St Quentin en Yvelines, Paris, France
| | - Heidi I L Jacobs
- School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, PO BOX 616, 6200, MD, Maastricht, The Netherlands
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, PO BOX 616, 6200, MD, Maastricht, The Netherlands
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Tatia M C Lee
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- Laboratory of Neuropsychology and Human Neuroscience, Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Maria Leggio
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Ataxia Laboratory, I.R.C.C.S. Santa Lucia Foundation, Rome, Italy
| | - Maria Misiura
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Hiroshi Mitoma
- Department of Medical Education, Tokyo Medical University, Tokyo, Japan
| | - Giusy Olivito
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Ataxia Laboratory, I.R.C.C.S. Santa Lucia Foundation, Rome, Italy
| | - Stephen Ramanoël
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
- Université Côte d'Azur, LAMHESS, Nice, France
| | - Zeynab Rezaee
- Noninvasive Neuromodulation Unit, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, NIH, Bethesda, USA
| | - Colby L Samstag
- Department of Psychiatry and Behavioural Sciences, University of Washington, Seattle, WA, USA
- Geriatric Research, Education and Clinical Center, Veteran's Affairs Medical Center, Puget Sound, Seattle, WA, USA
| | - Jeremy D Schmahmann
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Laboratory for Neuroanatomy and Cerebellar Neurobiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ataxia Center, Cognitive Behavioural neurology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kaoru Sekiyama
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, Japan
| | - Clive H Y Wong
- Department of Psychology, The Education University of Hong Kong, New Territories, Tai Po, Hong Kong, China
| | - Masatoshi Yamashita
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
| | - Mario Manto
- Service de Neurologie, Médiathèque Jean Jacquy, CHU-Charleroi, Charleroi, Belgium.
- Service des Neurosciences, University of Mons, Mons, Belgium.
| |
Collapse
|
12
|
Wang Y, Ma L, Chen R, Liu N, Zhang H, Li Y, Wang J, Hu M, Zhao G, Men W, Tan S, Gao J, Qin S, He Y, Dong Q, Tao S. Emotional and behavioral problems change the development of cerebellar gray matter volume, thickness, and surface area from childhood to adolescence: A longitudinal cohort study. CNS Neurosci Ther 2023; 29:3528-3548. [PMID: 37287420 PMCID: PMC10580368 DOI: 10.1111/cns.14286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/27/2023] [Accepted: 05/21/2023] [Indexed: 06/09/2023] Open
Abstract
AIMS Increasing evidence indicates that major neurodevelopmental disorders have potential links to abnormal cerebellar development. However, the developmental trajectories of cerebellar subregions from childhood to adolescence are lacking, and it is not clear how emotional and behavioral problems affect them. We aim to map the developmental trajectories of gray matter volume (GMV), cortical thickness (CT), and surface area (SA) in cerebellar subregions from childhood to adolescence and examine how emotional and behavioral problems change the cerebellar development trajectory in a longitudinal cohort study. METHOD This population-based longitudinal cohort study used data on a representative sample of 695 children. Emotional and behavioral problems were assessed at baseline and at three annual follow-ups with the Strengths and Difficulties Questionnaire (SDQ). RESULTS Using an innovative automated image segmentation technique, we quantified the GMV, CT, and SA of the whole cerebellum and 24 subdivisions (lobules I-VI, VIIB, VIIIA&B, and IX-X plus crus I-II) with 1319 MRI scans from a large longitudinal sample of 695 subjects aged 6-15 years and mapped their developmental trajectories. We also examined sex differences and found that boys showed more linear growth, while girls showed more nonlinear growth. Boys and girls showed nonlinear growth in the cerebellar subregions; however, girls reached the peak earlier than boys. Further analysis found that emotional and behavioral problems modulated cerebellar development. Specifically, emotional symptoms impede the expansion of the SA of the cerebellar cortex, and no gender differences; conduct problems lead to inadequate cerebellar GMV development only in girls, but not boys; hyperactivity/inattention delays the development of cerebellar GMV and SA, with left cerebellar GMV, right VIIIA GMV and SA in boys and left V GMV and SA in girls; peer problems disrupt CT growth and SA expansion, resulting in delayed GMV development, with bilateral IV, right X CT in boys and right Crus I GMV, left V SA in girls; and prosocial behavior problems impede the expansion of the SA and lead to excessive CT growth, with bilateral IV, V, right VI CT, left cerebellum SA in boys and right Crus I GMV in girls. CONCLUSIONS This study maps the developmental trajectories of GMV, CT, and SA in cerebellar subregions from childhood to adolescence. In addition, we provide the first evidence for how emotional and behavioral problems affect the dynamic development of GMV, CT, and SA in the cerebellum, which provides an important basis and guidance for the prevention and intervention of cognitive and emotional behavioral problems in the future.
Collapse
Affiliation(s)
- Yanpei Wang
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Leilei Ma
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Rui Chen
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Ningyu Liu
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Haibo Zhang
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Yuanyuan Li
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Jiali Wang
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Mingming Hu
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Gai Zhao
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Weiwei Men
- Center for MRI Research, Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina
| | - Shuping Tan
- Psychiatry Research Center, Beijing HuiLongGuan HospitalPeking UniversityBeijingChina
| | - Jia‐Hong Gao
- Center for MRI Research, Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Qi Dong
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Sha Tao
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijingChina
- IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| |
Collapse
|
13
|
Işıklar S, Demir İ, Özdemir ST, Özpar R. Examination of the Development and Asymmetry of the Cerebellum and Its Lobules in Individuals Aged 1-18 Years: A Retrospective MRI Study. Brain Topogr 2023; 36:901-925. [PMID: 37550413 DOI: 10.1007/s10548-023-00997-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023]
Abstract
Developmental studies of cerebellar lobules were limited. To our knowledge, structural asymmetry has not been studied in immature cerebellar lobules in the 1-18 age group. This study investigated the effect of age and gender on the volumetric development and asymmetry of the global cerebellum and cerebellar lobules in children and adolescents. In this retrospective study, we included 670 individuals [376 (56.1%) males] aged 1-18 years with normal brain MRIs between 2012 and 2021. volBrain CERES automatically segmented the right and left sides of the cerebellar lobules on three-dimensional T1-weighted MRIs. Volume and asymmetry data from individuals in 16 different age ranges were compared with SPSS (ver.28). The absolute volumetric development of the total cerebellum was consistent with the "S" development model in both sexes. The developmental trajectories of the cerebellar lobules were different from each other and showed sexual dimorphism. In the 1-18 age group, the absolute volumes of the total cerebellum and cerebellar lobules were significantly greater in males (p < 0.05). Absolute volumes of lobules IV, VIIB, VIIIA and VIIIB in the age groups had more gender differences. However, sexual dimorphism was insignificant in the cerebellum's total and lobular relative volume. Lobules IV, V, VI, VIIIA and VIIIB had left > right asymmetry and other lobules and total cerebellum had right > left asymmetry. This study confirmed the developmental heterogeneity and sexual dimorphism in the cerebellar lobules. It also provided volumetric data of the immature cerebellum to enable comparison in various neurological and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Sefa Işıklar
- Medical Imaging Techniques Program, Vocational School of Health Services, Bursa Uludag University, 16240, Bursa, Turkey.
| | - İmren Demir
- Medical Imaging Techniques Program, Vocational School of Health Services, Bursa Uludag University, 16240, Bursa, Turkey
| | - Senem Turan Özdemir
- Department of Anatomy, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| | - Rıfat Özpar
- Department of Radiology, Faculty of Medicine, Bursa Uludag University, Bursa, Turkey
| |
Collapse
|
14
|
Christova P, Georgopoulos AP. Changes of gray matter volumes of subcortical regions across the lifespan: a Human Connectome Project study. J Neurophysiol 2023; 130:1303-1308. [PMID: 37850792 PMCID: PMC11068360 DOI: 10.1152/jn.00283.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 10/11/2023] [Indexed: 10/19/2023] Open
Abstract
We assessed changes in gray matter volume (GMV) of nine subcortical regions (accumbens, amygdala, brainstem, caudate, cerebellar cortex, pallidum, putamen, thalamus, and ventral diencephalon) across the lifespan in a large sample of participants in the Human Connectome Project (n = 2,458, 5-90 yr old, 1,113 males and 1,345 females). 3T MRI data were acquired using a harmonized protocol and were processed in an identical way for all brains. GMVs of individual regions were adjusted for estimated total intracranial volume and regressed against age. We found highly statistically significant changes in GMV with age (P < 0.001) that were distinct among areas and mostly consistent between sexes, as follows. 1) The GMVs of accumbens, caudate, putamen, and cerebellum decreased with age in a linear fashion. The rate of decrease was steeper in males than in females for all regions. 2) The GMVs of the amygdala, pallidum, thalamus, ventral diencephalon, and brainstem changed with age in a quadratic fashion, i.e., increasing first and decreasing afterward. The estimated age at the peak (vertex) of the parabola was 51.8 yr for the brainstem and 28.0-37.9 yr for the other regions. The peak occurred earlier in males than in females, by an average of 8 yr, with the exception of the brainstem, where the age at the peak was very similar in both sexes. These results confirm previous findings and offer new insights into region-specific age-related changes in subcortical brain GMVs.NEW & NOTEWORTHY We report mixed effects of age on subcortical grey matter volume (GMV) during lifespan (n = 2458, 5-90 yr old, 1113 male, 1345 female). Striatal and cerebellar GMVs decreased linearly with age, more steeply in males. In contrast, GMVs of the amygdala, pallidum, thalamus, ventral diencephalon, and brainstem changed in a quadratic fashion, increasing first and decreasing afterward, with males peaking earlier than females in all regions but the brainstem where they peaked at nearly the same time.
Collapse
Affiliation(s)
- Peka Christova
- Brain Sciences Center, Department of Veterans Affairs Health Care System, The Neuroimaging Research Group, Minneapolis, Minnesota, United States
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota, United States
| | - Apostolos P Georgopoulos
- Brain Sciences Center, Department of Veterans Affairs Health Care System, The Neuroimaging Research Group, Minneapolis, Minnesota, United States
- Department of Neuroscience, University of Minnesota Medical School, Minneapolis, Minnesota, United States
| |
Collapse
|
15
|
Ma Y, Zhu Y, Hong D, Zhao H, Li L. Association between tea drinking and disability levels in older Chinese adults: a longitudinal analysis. Front Nutr 2023; 10:1233664. [PMID: 38024372 PMCID: PMC10644393 DOI: 10.3389/fnut.2023.1233664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/12/2023] [Indexed: 12/01/2023] Open
Abstract
Objective As the global population ages, disability among the elderly presents unprecedented challenges for healthcare systems. However, limited research has examined whether dietary interventions like tea consumption may alleviate and prevent disability in older adults. As an important dietary therapy, the health benefits of tea drinking have gained recognition across research disciplines. Therefore, this study aimed to investigate the association between tea drinking habits and disability levels in the elderly Chinese population. Methods Leveraging data from the 2008 to 2018 waves of the Chinese Longitudinal Healthy Longevity Survey, we disaggregated tea drinking frequency and activities of daily living (ADL) measures and deployed fixed-effect ordered logit models to examine the tea-disability association for the first time. We statistically adjusted for potential confounders and conducted stratified analyses to assess heterogeneity across subpopulations. Results Multivariable fixed-effect ordered logistic regression suggested tea drinking has protective effects against ADL disability. However, only daily tea drinking was associated with lower risks of basic activities of daily living (BADL) disability [odds ratio (OR) = 0.61; 95% confidence interval (CI), 0.41-0.92] and lower levels of instrumental activities of daily living (IADL) disability (OR = 0.78; 95% CI, 0.64-0.95). Stratified analyses indicated heterogeneous effects across age and income groups. Daily tea drinking protected against BADL (OR = 0.26 and OR = 0.28) and IADL disability (OR = 0.48 and OR = 0.45) for adults over 83 years old and high-income households, respectively. Conclusion We found that drinking tea almost daily was protective against disability in elderly people, warranting further research into optimal dosages. Future studies should utilize more rigorous causal inference methods and control for confounders.
Collapse
Affiliation(s)
- Yinghui Ma
- School of Economics and Management, Jiangsu University of Science and Technology, Zhenjiang, China
- School of Economics and Management, Beijing Forestry University, Beijing, China
| | - Yuying Zhu
- School of Economics and Management, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Dandan Hong
- School of Economics and Management, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Haiyue Zhao
- School of Economics and Management, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Lei Li
- College of Economics and Management, Zhejiang A & F University, Hangzhou, China
- Research Academy for Rural Revitalization of Zhejiang, Zhejiang A & F University, Hangzhou, China
| |
Collapse
|
16
|
Siciliano L, Olivito G, Urbini N, Silveri MC, Leggio M. The rising role of cognitive reserve and associated compensatory brain networks in spinocerebellar ataxia type 2. J Neurol 2023; 270:5071-5084. [PMID: 37421466 PMCID: PMC10511586 DOI: 10.1007/s00415-023-11855-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023]
Abstract
Pre-existing or enhanced cognitive abilities influence symptom onset and severity in neurodegenerative diseases, which improve an individual's ability to deal with neurodegeneration. This process is named cognitive reserve (CR), and it has acquired high visibility in the field of neurodegeneration. However, the investigation of CR has been neglected in the context of cerebellar neurodegenerative disorders. The present study assessed CR and its impact on cognitive abilities in spinocerebellar ataxia type 2 (SCA2), which is a rare cerebellar neurodegenerative disease. We investigated the existence of CR networks in terms of compensatory mechanisms and neural reserve driven by increased cerebello-cerebral functional connectivity. The CR of 12 SCA2 patients was assessed using the Cognitive Reserve Index Questionnaire (CRIq), which was developed for appraising life-span CR. Patients underwent several neuropsychological tests to evaluate cognitive functioning and a functional MRI examination. Network based statistics analysis was used to assess functional brain networks. The results revealed significant correlations of CRIq measures with cognitive domains and patterns of increased connectivity in specific cerebellar and cerebral regions, which likely indicated CR networks. This study showed that CR may influence disease-related cognitive deficits, and it was related to the effective use of specific cerebello-cerebral networks that reflect a CR biomarker.
Collapse
Affiliation(s)
- Libera Siciliano
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, 00179 Rome, Italy
| | - Giusy Olivito
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, 00179 Rome, Italy
| | - Nicole Urbini
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, 00179 Rome, Italy
| | | | - Maria Leggio
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy
- Ataxia Laboratory, Fondazione Santa Lucia IRCCS, 00179 Rome, Italy
| |
Collapse
|
17
|
Rodríguez-Villalba R, Caballero-Borrego M. Normative values for the video Head Impulse Test in children without otoneurologic symptoms and their evolution across childhood by gender. Eur Arch Otorhinolaryngol 2023; 280:4037-4043. [PMID: 36892616 PMCID: PMC10382384 DOI: 10.1007/s00405-023-07900-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/22/2023] [Indexed: 03/10/2023]
Abstract
PURPOSE The video Head Impulse Test is routinely used to assess semicircular canal function in adults, but to date, pediatric reference values are scarce. This study aimed to explore the vestibulo-ocular reflex (VOR) in healthy children at different development stages and to compare the obtained gain values with reference to those in an adult population. METHODS This prospective, single-center study recruited 187 children from among patients without otoneurological diseases, healthy relatives of these patients, and staff families from a tertiary hospital. Patients were divided into three groups by age: 3-6 years, 7-10 years, and 11-16 years. The vestibulo-ocular reflex was assessed by video Head Impulse Test, using a device with a high-speed infrared camera and accelerometer (EyeSeeCam®; Interacoustics, Denmark). RESULTS We found a lower vestibulo-ocular reflex gain of both horizontal canals in the 3-6-year-old group when compared with the other age groups. No increasing trend was found in the horizontal canals from age 7-10 years to age 11-16 years, and no differences were found by sex. CONCLUSION Gain values in the horizontal canals increased with age until children reached age 7-10 years and matched the normal values for adults.
Collapse
Affiliation(s)
- Rosana Rodríguez-Villalba
- Department of Otorhinolaryngology, Hospital Sant Joan de Déu, Barcelona, Spain
- Department of Otorhinolaryngology, Althaia Xarxa Assistencial Universitària de Manresa, Manresa, Spain
| | - Miguel Caballero-Borrego
- Otorhinolaryngology-Head and Neck Surgery Department, Hospital Clínic, University of Barcelona, C/Villarroel, 170, Esc. 8, 2ª, 08036, Barcelona, Spain.
- Institut d'Investigacions Biomèdiques Agusti Pi Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain.
| |
Collapse
|
18
|
Ray B, Chen J, Fu Z, Suresh P, Thapaliya B, Farahdel B, Calhoun VD, Liu J. Replication and Refinement of Brain Age Model for adolescent development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.16.553472. [PMID: 37645839 PMCID: PMC10462059 DOI: 10.1101/2023.08.16.553472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
The discrepancy between chronological age and estimated brain age, known as the brain age gap, may serve as a biomarker to reveal brain development and neuropsychiatric problems. This has motivated many studies focusing on the accurate estimation of brain age using different features and models, of which the generalizability is yet to be tested. Our recent study has demonstrated that conventional machine learning models can achieve high accuracy on brain age prediction during development using only a small set of selected features from multimodal brain imaging data. In the current study, we tested the replicability of various brain age models on the Adolescent Brain Cognitive Development (ABCD) cohort. We proposed a new refined model to improve the robustness of brain age prediction. The direct replication test for existing brain age models derived from the age range of 8-22 years onto the ABCD participants at baseline (9 to 10 years old) and year-two follow-up (11 to 12 years old) indicate that pre-trained models could capture the overall mean age failed precisely estimating brain age variation within a narrow range. The refined model, which combined broad prediction of the pre-trained model and granular information with the narrow age range, achieved the best performance with a mean absolute error of 0.49 and 0.48 years on the baseline and year-two data, respectively. The brain age gap yielded by the refined model showed significant associations with the participants' information processing speed and verbal comprehension ability on baseline data.
Collapse
Affiliation(s)
- Bhaskar Ray
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA
- Department of Computer Science, Georgia State University, Atlanta, USA
| | - Jiayu Chen
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA
| | - Zening Fu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA
| | - Pranav Suresh
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA
- Department of Computer Science, Georgia State University, Atlanta, USA
| | - Bishal Thapaliya
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA
- Department of Computer Science, Georgia State University, Atlanta, USA
| | - Britny Farahdel
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA
- Department of Computer Science, Georgia State University, Atlanta, USA
| | - Vince D. Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA
- Department of Computer Science, Georgia State University, Atlanta, USA
| | - Jingyu Liu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS) Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, USA
- Department of Computer Science, Georgia State University, Atlanta, USA
| |
Collapse
|
19
|
Ozen O, Yuksel Y, Torun E, Ergun T. Morphometric evaluation of cerebellar lobules in individuals with unilateral vertebral artery hypoplasia. Surg Radiol Anat 2023; 45:401-407. [PMID: 36813912 DOI: 10.1007/s00276-023-03108-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 02/13/2023] [Indexed: 02/24/2023]
Abstract
PURPOSE Vertebral arteries (VAs) provide blood circulation to the posterior fossa in general and are the main blood supply of the posterior fossa structures of the brain. Our aim in this study is to analyze the segmental volumetric values of cerebellar structures with the voxel-based volumetric analysis system in individuals with unilateral vertebral artery hypoplasia. METHODS In this retrospective study, segmental volumetric values/percentile ratios of cerebellar lobules were calculated using 3D fast spoiled gradient recall acquisition in steady-state (3D T1 FSPGR) MRI sequence images of the brain in individuals with unilateral vertebral artery hypoplasia (VAH) and in those without bilateral VAH and any symptoms of vertebrobasilar insufficiency as the control group was evaluated in volBrain ( http://volbrain.upv.es/ ). RESULTS The VAH group consisted of 50 (19 males/31 females) and the control group had 50 (21 males/29 females) individuals. The cerebellar lobule III, IV, VIIIA and X total volumes and the cerebellar lobule I-II, III, IV, VIIIA and X gray matter volumes were lower in the hypoplastic side than the non-hypoplastic cases and also than the contralateral side of the hypoplastic cases in the VAH group. In addition, it was found that that lobules IV and V had lower cortical thickness and lobules I-II had a higher coverage rate in the intracranial cavity in the hypoplastic side than the non-hypoplastic cases and also than the contralateral side of the hypoplastic cases (p < 0.05). CONCLUSION In this study, it was found that cerebellar lobule III, IV, VIIIA, X total volumes and cerebellar lobule I-II, III, IV, VIIIA, X gray matter volumes in addition to lobule IV, V cortical thicknesses were low in individuals with unilateral VAH. Being aware of these variations and taking them into account during future volumetric studies on the cerebellum are very important.
Collapse
Affiliation(s)
- Ozkan Ozen
- Department of Radiology, Alanya Education and Research Hospital, Alanya Alaaddin Keykubat University, Oba District, Alanya, Antalya, Turkey.
| | - Yavuz Yuksel
- Department of Radiology, Alanya Education and Research Hospital, Alanya Alaaddin Keykubat University, Oba District, Alanya, Antalya, Turkey
| | - Ebru Torun
- Department of Radiology, Alanya Education and Research Hospital, Alanya Alaaddin Keykubat University, Oba District, Alanya, Antalya, Turkey
| | - Tarkan Ergun
- Department of Radiology, Alanya Education and Research Hospital, Alanya Alaaddin Keykubat University, Oba District, Alanya, Antalya, Turkey
| |
Collapse
|
20
|
Stalter J, Yogeswaran V, Vogel W, Sörös P, Mathys C, Witt K. The impact of aging on morphometric changes in the cerebellum: A voxel-based morphometry study. Front Aging Neurosci 2023; 15:1078448. [PMID: 36743442 PMCID: PMC9895411 DOI: 10.3389/fnagi.2023.1078448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/05/2023] [Indexed: 01/22/2023] Open
Abstract
Introduction Aging influences the morphology of the central nervous system. While several previous studies focused on morphometric changes of the supratentorial parts, investigations on age-related cerebellar changes are rare. The literature concerning the morphological changes in the cerebellum is heterogenous depending (i) on the methods used (cerebellar analysis in the context of a whole brain analysis or specific methods for a cerebellar analysis), (ii) the life span that was investigated, and (iii) the analytic approach (i.e., using linear or non-linear methods). Methods We fill this research gap by investigating age-dependent cerebellar changes in the aging process occurring before the age of 70 in healthy participants, using non-linear methods and the spatially unbiased infratentorial template (SUIT) toolbox which is specifically developed to examine the cerebellum. Furthermore, to derive an overview of the possible behavioral correlates, we relate our findings to functional maps of the cerebellum. Twenty-four older participants (mean age 64.42 years, SD ± 4.8) and 25 younger participants (mean age 24.6 years, SD ± 2.14) were scanned using a 3 T-MRI, and the resulting data were processed using a SUIT. Results Gray matter (GM) volume loss was found in older participants in three clusters in the right cerebellar region, namely crus I/II and lobule VI related to the frontoparietal network, with crus I being functionally related to the default-mode network and lobule VI extending into vermis VIIa related to the ventral-attention-network. Discussion Our results underline an age-related decline in GM volume in the right cerebellar regions that are functionally predominantly related to non-motor networks and cognitive tasks regions of the cerebellum before the age of 70.
Collapse
Affiliation(s)
- Johannes Stalter
- Department of Neurology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Vinuya Yogeswaran
- Department of Neurology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Wolfgang Vogel
- Department of Neurology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Peter Sörös
- Department of Neurology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Center of Neurosensory Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Christian Mathys
- Center of Neurosensory Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Institute of Radiology and Neuroradiology, Evangelical Hospital Oldenburg, Oldenburg, Germany
| | - Karsten Witt
- Department of Neurology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
- Center of Neurosensory Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| |
Collapse
|
21
|
Nicolaisen-Sobesky E, Mihalik A, Kharabian-Masouleh S, Ferreira FS, Hoffstaedter F, Schwender H, Maleki Balajoo S, Valk SL, Eickhoff SB, Yeo BTT, Mourao-Miranda J, Genon S. A cross-cohort replicable and heritable latent dimension linking behaviour to multi-featured brain structure. Commun Biol 2022; 5:1297. [PMID: 36435870 PMCID: PMC9701210 DOI: 10.1038/s42003-022-04244-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/09/2022] [Indexed: 11/28/2022] Open
Abstract
Identifying associations between interindividual variability in brain structure and behaviour requires large cohorts, multivariate methods, out-of-sample validation and, ideally, out-of-cohort replication. Moreover, the influence of nature vs nurture on brain-behaviour associations should be analysed. We analysed associations between brain structure (grey matter volume, cortical thickness, and surface area) and behaviour (spanning cognition, emotion, and alertness) using regularized canonical correlation analysis and a machine learning framework that tests the generalisability and stability of such associations. The replicability of brain-behaviour associations was assessed in two large, independent cohorts. The load of genetic factors on these associations was analysed with heritability and genetic correlation. We found one heritable and replicable latent dimension linking cognitive-control/executive-functions and positive affect to brain structural variability in areas typically associated with higher cognitive functions, and with areas typically associated with sensorimotor functions. These results revealed a major axis of interindividual behavioural variability linking to a whole-brain structural pattern.
Collapse
Affiliation(s)
- Eliana Nicolaisen-Sobesky
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany.
| | - Agoston Mihalik
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Shahrzad Kharabian-Masouleh
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Fabio S Ferreira
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
| | - Felix Hoffstaedter
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Holger Schwender
- Mathematical Institute, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Somayeh Maleki Balajoo
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sofie L Valk
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Otto Hahn Research Group "Cognitive Neurogenetics", Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - B T Thomas Yeo
- Department of Electrical and Computer Engineering, Centre for Translational MR Research, Centre for Sleep & Cognition, N.1 Institute for Health, Institute for Digital Medicine, National University of Singapore, Singapore, Singapore
| | - Janaina Mourao-Miranda
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
- Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London, UK
| | - Sarah Genon
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany.
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
22
|
Moussa-Tooks AB, Rogers BP, Huang AS, Sheffield JM, Heckers S, Woodward ND. Cerebellar Structure and Cognitive Ability in Psychosis. Biol Psychiatry 2022; 92:385-395. [PMID: 35680432 PMCID: PMC9378489 DOI: 10.1016/j.biopsych.2022.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Dysconnectivity theories, combined with advances in fundamental cognitive neuroscience, have led to increased interest in characterizing cerebellar abnormalities in psychosis. Smaller cerebellar gray matter volume has been found in schizophrenia spectrum disorders. However, the course of these deficits across illness stage, specificity to schizophrenia (vs. psychosis more broadly), and relationship to clinical phenotypes, primarily cognitive impairment, remain unclear. METHODS The Spatially Unbiased Infratentorial toolbox, a gold standard for analyzing human neuroimaging data of the cerebellum, was used to quantify cerebellar volumes and conduct voxel-based morphometry on structural magnetic resonance images obtained from 574 individuals (249 schizophrenia spectrum, 108 bipolar with psychotic features, 217 nonpsychiatric control). Analyses examining diagnosis (schizophrenia spectrum, bipolar disorder), illness stage (early, chronic), and cognitive effects on cerebellum structure in psychosis were performed. RESULTS Cerebellar structure in psychosis did not differ significantly from healthy participants, regardless of diagnosis and illness stage (effect size = 0.01-0.14). In contrast, low premorbid cognitive functioning was associated with smaller whole and regional cerebellum volumes, including cognitive (lobules VI and VII, Crus I, frontoparietal and attention networks) and motor (lobules I-IV, V, and X; somatomotor network) regions in psychosis (effect size = 0.36-0.60). These effects were not present in psychosis cohorts with average estimated premorbid cognition. CONCLUSIONS Cerebellar structural abnormalities in psychosis are related to lower premorbid cognitive functioning implicating early antecedents, atypical neurodevelopment, or both in cerebellar dysfunction. Future research focused on identifying the impact of early-life risk factors for psychosis on the development of the cerebellum and cognition is warranted.
Collapse
Affiliation(s)
- Alexandra B Moussa-Tooks
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee.
| | - Baxter P Rogers
- Vanderbilt University Institute of Imaging Science, Nashville, Tennessee
| | - Anna S Huang
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Julia M Sheffield
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Neil D Woodward
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
23
|
Bernard JA. Don't forget the little brain: A framework for incorporating the cerebellum into the understanding of cognitive aging. Neurosci Biobehav Rev 2022; 137:104639. [PMID: 35346747 PMCID: PMC9119942 DOI: 10.1016/j.neubiorev.2022.104639] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/28/2022] [Accepted: 03/23/2022] [Indexed: 12/22/2022]
Abstract
With the rapidly growing population of older adults, an improved understanding of brain and cognitive aging is critical, given the impacts on health, independence, and quality of life. To this point, we have a well-developed literature on the cortical contributions to cognition in advanced age. However, while this work has been foundational for our understanding of brain and behavior in older adults, subcortical contributions, particularly those from the cerebellum, have not been integrated into these models and frameworks. Incorporating the cerebellum into models of cognitive aging is an important step for moving the field forward. There has also been recent interest in this structure in Alzheimer's dementia, indicating that such work may be beneficial to our understanding of neurodegenerative disease. Here, I provide an updated overview of the cerebellum in advanced age and propose that it serves as a critical source of scaffolding or reserve for cortical function. Age-related impacts on cerebellar function further impact cortical processing, perhaps resulting in many of the activation patterns commonly seen in aging.
Collapse
Affiliation(s)
- Jessica A Bernard
- Department of Psychological and Brain Sciences, USA; Texas A&M Institute for Neuroscience, Texas A&M University, USA.
| |
Collapse
|
24
|
Gordon-Murer C, Stöckel T, Sera M, Hughes CML. Developmental Differences in the Relationships Between Sensorimotor and Executive Functions. Front Hum Neurosci 2021; 15:714828. [PMID: 34456700 PMCID: PMC8387672 DOI: 10.3389/fnhum.2021.714828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/22/2021] [Indexed: 11/25/2022] Open
Abstract
Background There is evidence that sensorimotor and executive functions are inherently intertwined, but that the relationship between these functions differ depending on an individual’s stage in development (e.g., childhood, adolescence, adulthood). Objective In this study, sensorimotor and executive function performance was examined in a group of children (n = 40; 8–12 years), adolescents (n = 39; 13–17 years), and young adults (n = 83; 18–24 years) to investigate maturation of these functions, and how the relationships between these functions differ between groups. Results Adults and adolescents outperformed children on all sensorimotor and executive functions. Adults and adolescents exhibited similar levels of executive functioning, but adults outperformed adolescents on two sensorimotor functioning measures (eye-hand coordination spatial precision and proprioceptive variability). Regression analysis demonstrated that executive functions contribute to children’s sensorimotor performance, but do not contribute to adolescent’s sensorimotor performance. Conclusion These findings highlight the key role that developmental stage plays in the relationship between sensorimotor and executive functions. Specifically, executive functions appear to contribute to more successful sensorimotor function performance in childhood, but not during adolescence. It is likely that sensorimotor functions begin to develop independently from executive functions during adolescence, and therefore do not contribute to successful sensorimotor performance. The change in the relationship between sensorimotor and executive functions is important to take into consideration when developing sensorimotor and executive function interventions.
Collapse
Affiliation(s)
- Chloe Gordon-Murer
- Health Equity Institute, San Francisco, CA, United States.,Department of Kinesiology, San Francisco State University, San Francisco, CA, United States.,Sport & Exercise Psychology Unit, Department of Sport Science, University of Rostock, Rostock, Germany
| | - Tino Stöckel
- Sport & Exercise Psychology Unit, Department of Sport Science, University of Rostock, Rostock, Germany
| | - Michael Sera
- Health Equity Institute, San Francisco, CA, United States.,Department of Kinesiology, San Francisco State University, San Francisco, CA, United States
| | - Charmayne M L Hughes
- Health Equity Institute, San Francisco, CA, United States.,Department of Kinesiology, San Francisco State University, San Francisco, CA, United States
| |
Collapse
|
25
|
Romero JE, Coupe P, Lanuza E, Catheline G, Manjón JV. Toward a unified analysis of cerebellum maturation and aging across the entire lifespan: A MRI analysis. Hum Brain Mapp 2021; 42:1287-1303. [PMID: 33385303 PMCID: PMC7927303 DOI: 10.1002/hbm.25293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 12/23/2022] Open
Abstract
Previous literature about the structural characterization of the human cerebellum is related to the context of a specific pathology or focused in a restricted age range. In fact, studies about the cerebellum maturation across the lifespan are scarce and most of them considered the cerebellum as a whole without investigating each lobule. This lack of study can be explained by the lack of both accurate segmentation methods and data availability. Fortunately, during the last years, several cerebellum segmentation methods have been developed and many databases comprising subjects of different ages have been made publically available. This fact opens an opportunity window to obtain a more extensive analysis of the cerebellum maturation and aging. In this study, we have used a recent state‐of‐the‐art cerebellum segmentation method called CERES and a large data set (N = 2,831 images) from healthy controls covering the entire lifespan to provide a model for 12 cerebellum structures (i.e., lobules I‐II, III, IV, VI, Crus I, Crus II, VIIB, VIIIA, VIIIB, IX, and X). We found that lobules have generally an evolution that follows a trajectory composed by a fast growth and a slow degeneration having sometimes a plateau for absolute volumes, and a decreasing tendency (faster in early ages) for normalized volumes. Special consideration is dedicated to Crus II, where slow degeneration appears to stabilize in elder ages for absolute volumes, and to lobule X, which does not present any fast growth during childhood in absolute volumes and shows a slow growth for normalized volumes.
Collapse
Affiliation(s)
- José E Romero
- Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Valencia, Spain
| | - Pierrick Coupe
- CNRS, University of Bordeaux, Bordeaux INP, LABRI, UMR5800, Talence, France.,CNRS, EPHE PSL Research University of, INCIA, UMR 5283, University of Bordeaux, Bordeaux, France
| | - Enrique Lanuza
- Department of Cell Biology, University of Valencia, Valencia, Spain
| | - Gwenaelle Catheline
- CNRS, EPHE PSL Research University of, INCIA, UMR 5283, University of Bordeaux, Bordeaux, France
| | - José V Manjón
- Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat Politècnica de València, Valencia, Spain
| | | |
Collapse
|