1
|
Schönberg J, Borlak J. miRNA biomarkers to predict risk of primary non-function of fatty allografts and drug induced acute liver failures. Mol Cell Biochem 2024:10.1007/s11010-024-05129-3. [PMID: 39424772 DOI: 10.1007/s11010-024-05129-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/29/2024] [Indexed: 10/21/2024]
Abstract
Primary non-function (PNF) of an allograft defines an irreversible graft failure and although rare, constitutes a life-threatening condition that requires high-urgency re-transplantation. Equally, drug induced acute liver failures (ALF) are seldom but the rapid loss of hepatic function may require orthotropic liver transplantation (OLT). Recently, we reported the development of a rodent PNF-disease model of fatty allografts and showed that a dysfunctional Cori and Krebs cycle and inhibition of lactate transporters constitute a mechanism of PNF. Based on findings from the rat PNF-disease model, we selected 15 miRNA-biomarker candidates for clinical validation and performed RT-qPCRs in well-documented PNF cases following OLT of fatty allografts. To assess specificity and selectivity, we compared their regulation in pre- and intraoperative liver biopsies and pre- and post-operative blood samples of patients undergoing elective hepatobiliary surgery. Additionally, we assessed their regulation in drug induced ALF. We confirmed clinical relevance for 11 PNF-associated miRNAs and found expression of miRNA-27b-3p, miRNA-122-3p, miRNA-125a-5p, miRNA-125b-5p and miRNA-192-5p to correlate with the hepatic steatosis grades. Furthermore, we demonstrate selectivity and specificity for the biomarker candidates with opposite regulation of let-7b-5p, miRNA-122-5p, miRNA-125b-5p and miRNA-194-5p in blood samples of patients following successful OLTs and/or liver resection. Moreover, by considering findings from 21 independent ALF-studies, we observed nine PNF-associated miRNAs regulated in common. We report miRNAs highly regulated in PNF and ALF, and their common regulation in different diseases broadens the perspective as biomarker candidates. Our study warrants independent confirmation in randomized clinical trials.
Collapse
Affiliation(s)
- Juliette Schönberg
- Hannover Medical School, Centre for Pharmacology and Toxicology, Carl-Neuberg-Str.1, 30625, Hannover, Germany
| | - Jürgen Borlak
- Hannover Medical School, Centre for Pharmacology and Toxicology, Carl-Neuberg-Str.1, 30625, Hannover, Germany.
| |
Collapse
|
2
|
Jia X, Liu J, Jiang W, Chang L, Shen X, Jiang G, Li X, Chi C, Liu W, Zhang D. Binding site redundancy is critical for the regulation of fas by miR-30c in blunt snout bream (Megalobrama amblycephala). Comp Biochem Physiol A Mol Integr Physiol 2024; 299:111763. [PMID: 39395751 DOI: 10.1016/j.cbpa.2024.111763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
MiR-30c and fatty acid synthase (fas) both play important roles in physiological processes such as lipid synthesis and fat metabolism. Predictive analysis revealed that fas is a target gene of miR-30c with multiple seed sites. Seed sites are useful to predict miRNA targeting relationships; however, detailed analyses of seed sites in fish genomes remain poorly studied. In this study, the regulatory relationship between miR-30c and fas, number and effect of seed regions, and mechanism by which miR-30c regulates lipid metabolism were evaluated in blunt snout bream (Megalobrama amblycephala). Four miR-30c target sites for fas were identified using various prediction tools. miR-30c mimics were transfected into 293 T cells, and dual-luciferase reporter assays were used to evaluate the roles of different fas target sites. When a single target site was mutated, relative luciferase activity was higher than that in the control group, with different activity levels depending on the mutation site. When multiple target sites were mutated, relative luciferase activity increased significantly as the number of mutation sites increased and was the highest when the four sites were mutated simultaneously. The miR-30c agomir was injected into the abdominal cavity of M. amblycephala at various concentrations for analyses of physiological and biochemical parameters in the liver and blood and the expression of genes related to lipid metabolism in the liver. Total cholesterol, free fatty acid, triglyceride, and low density lipoprotein levels were significantly lower after miR-30c agomir injection comparing to the control (P < 0.05). Additionally, the expression levels of genes related to lipid metabolism were significantly lower after miR-30c agomir injection than in the control (P < 0.05). In summary, this study identified four specific miR-30c target sites in the 3' UTR of fas mRNA; the effects of these sites are cumulative, and the redundancy ensures the accurate regulation of fas during evolution. In addition, miR-30c has a negative regulatory effect on fas and regulates lipid metabolism via various genes related to this process. Therefore, the regulation of miR-30c can effectively ameliorate the side effects of a high-fat diet on liver function in M. amblycephala.
Collapse
Affiliation(s)
- Xiaoyan Jia
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Weibo Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Le Chang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoxue Shen
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guangzhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangfei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Cheng Chi
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenbin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Dingdong Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
3
|
Vartak T, Giardini E, Kelly D, Moran B, Kennedy C, Barry M, Godson C, Brennan E. Induction of let-7d-5p miRNA modulates aortic smooth muscle inflammatory signaling and phenotypic switching. Atherosclerosis 2024; 395:117573. [PMID: 38796407 DOI: 10.1016/j.atherosclerosis.2024.117573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 03/12/2024] [Accepted: 04/30/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND AND AIMS Activation of vascular smooth muscle cell inflammation is recognised as an important early driver of vascular disease. We have previously identified the let-7 miRNA family as important regulators of inflammation in in vitro and in vivo models of atherosclerosis. Here we investigated a dual statin/let-7d-5p miRNA combination therapy approach to target human aortic SMC (HAoSMC) activation and inflammation. METHODS In vitro studies using primary HAoSMCs were performed to investigate the effects of let-7d-5p miRNA overexpression and inhibition. HAoSMCs were treated with combinations of the inflammatory cytokine tumor necrosis factor-α (TNF-α), and atorvastatin or lovastatin. HAoSMC Bulk RNA-seq transcriptomics of HAoSMCs revealed downstream regulatory networks modulated by let-7d-5p miRNA overexpression and statins. Proteome profiler cytokine array, Western blotting and quantitative PCR analyses were performed on HAoSMCs to validate key findings. RESULTS Let-7d-5p overexpression significantly attenuated TNF-α-induced upregulation of IL-6, ICAM1, VCAM1, CCL2, CD68, MYOCD gene expression in HAoSMCs (p<0.05). Statins (atorvastatin, lovastatin) significantly attenuated inflammatory gene expression and upregulated Let-7d levels in HAoSMCs (p<0.05). Bulk RNA-seq analysis of a dual Let-7d-5p overexpression/statin therapy in HAoSMCs revealed that let-7d-5p activation and statins converge on key inflammatory pathways (IL-6, IL-1β, TNF-α, IFN-γ). Let-7d-5p overexpression led to reduced expression of the ox-LDL receptor OLR1, and this was associated with lower ox-LDL uptake in HAoSMCs. In silico analysis of smooth muscle cell phenotypic switching shows that overexpression of let-7d-5p in HAoSMCs maintains a contractile phenotype. CONCLUSIONS Targeting the Let-7 network alongside statins can modulate HAoSMC activation and attenuate key inflammatory pathway signals.
Collapse
Affiliation(s)
- Tanwi Vartak
- Diabetes Complications Research Centre, Conway Institute & UCD School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Elena Giardini
- Diabetes Complications Research Centre, Conway Institute & UCD School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Daniel Kelly
- Diabetes Complications Research Centre, Conway Institute & UCD School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Bruce Moran
- St. Vincent's University Hospital, Dublin, Ireland
| | - Ciarán Kennedy
- Diabetes Complications Research Centre, Conway Institute & UCD School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Mary Barry
- Department of Vascular Surgery, St. Vincent's University Hospital, Dublin, Ireland
| | - Catherine Godson
- Diabetes Complications Research Centre, Conway Institute & UCD School of Medicine, University College Dublin, Dublin 4, Ireland
| | - Eoin Brennan
- Diabetes Complications Research Centre, Conway Institute & UCD School of Medicine, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
4
|
Lee J, Hong I, Lee C, Kim D, Kim S, Lee Y. SNPs in microRNA seed region and impact of miR-375 in concurrent regulation of multiple lipid accumulation-related genes. Sci Rep 2024; 14:10924. [PMID: 38740866 PMCID: PMC11091151 DOI: 10.1038/s41598-024-61673-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024] Open
Abstract
Bovine intramuscular fat (IMF), commonly referred to as marbling, is regulated by lipid metabolism, which includes adipogenesis, lipogenesis, glycerolipid synthesis, and lipolysis. In recent years, breeding researchers have identified single nucleotide polymorphisms (SNPs) as useful marker-assisted selection tools for improving marbling scores in national breeding programs. These included causal SNPs that induce phenotypic variation. MicroRNAs (miRNAs) are small highly conserved non-coding RNA molecules that bind to multiple non-coding regions. They are involved in post-transcriptional regulation. Multiple miRNAs may regulate a given target. Previously, three SNPs in the GPAM 3' UTR and four miRNAs were identified through in silico assays. The aim of this study is to verify the binding ability of the four miRNAs to the SNPs within the 3'UTR of GPAM, and to identify the regulatory function of miR-375 in the expression of genes related to lipid metabolism in mammalian adipocytes. It was verified that the four miRNAs bind to the GPAM 3'UTR, and identified that the miR-375 sequence is highly conserved. Furthermore, it was founded that miR-375 upregulated the GPAM gene, C/EBPα, PPARγ and lipid metabolism-related genes and promoted lipid droplet accumulation in 3T3-L1 cells. In conclusion, these results suggest that miR-375 is a multifunctional regulator of multiple lipid metabolism-related genes and may aid in obesity research as a biomarker.
Collapse
Affiliation(s)
- Jiyeon Lee
- School of Biotechnology, Hankyong National University, Anseong, Gyeonggi-do, South Korea
| | - Inpyo Hong
- School of Biotechnology, Hankyong National University, Anseong, Gyeonggi-do, South Korea
| | - Chanwoo Lee
- Nuonbio Inc., 906, A, 302 Galmachi-ro, Jungwon-gu, Seongnam-si, South Korea
| | - Daehyun Kim
- Department of Animal Science, Chonnam National University, Gwangju, South Korea
| | - Sunghak Kim
- Department of Animal Science, Chonnam National University, Gwangju, South Korea.
| | - Yoonseok Lee
- School of Biotechnology, Hankyong National University, Anseong, Gyeonggi-do, South Korea.
- Center for Genetic Information, Hankyong National University, Anseong, Gyeonggi-do, South Korea.
| |
Collapse
|
5
|
Searles CD. MicroRNAs and Cardiovascular Disease Risk. Curr Cardiol Rep 2024; 26:51-60. [PMID: 38206553 PMCID: PMC10844442 DOI: 10.1007/s11886-023-02014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/10/2023] [Indexed: 01/12/2024]
Abstract
PURPOSE OF REVIEW MicroRNAs (miRNAs)-short, non-coding RNAs-play important roles in almost all aspects of cardiovascular biology, and changes in intracellular miRNA expression are indicative of cardiovascular disease development and progression. Extracellular miRNAs, which are easily measured in blood and can be reflective of changes in intracellular miRNA levels, have emerged as potential non-invasive biomarkers for disease. This review summarizes current knowledge regarding miRNAs as biomarkers for assessing cardiovascular disease risk and prognosis. RECENT FINDINGS Numerous studies over the last 10-15 years have identified associations between extracellular miRNA profiles and cardiovascular disease, supporting the potential use of extracellular miRNAs as biomarkers for risk stratification. However, clinical application of extracellular miRNA profiles has been hampered by poor reproducibility and inter-study variability that is due largely to methodological differences between studies. While recent studies indicate that circulating extracellular miRNAs are promising biomarkers for cardiovascular disease, evidence for clinical implementation is lacking. This highlights the need for larger, well-designed studies that use standardized methods for sample preparation, miRNA isolation, quantification, and normalization.
Collapse
Affiliation(s)
- Charles D Searles
- Emory University School of Medicine and Atlanta VA Health Care System, 1670 Clairmont Road, Decatur, GA, 30033, USA.
| |
Collapse
|
6
|
Jia Q, Cao Y, Zhang M, Xing Y, Xia T, Guo Y, Yue Y, Li X, Liu X, Zhang Y, Li D, Li Z, Tian Y, Kang X, Li H. miR-19b-3p regulated by estrogen controls lipid synthesis through targeting MSMO1 and ELOVL5 in LMH cells. Poult Sci 2024; 103:103200. [PMID: 37939591 PMCID: PMC10665931 DOI: 10.1016/j.psj.2023.103200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/10/2023] [Accepted: 10/12/2023] [Indexed: 11/10/2023] Open
Abstract
miR-19b-3p is reported to undertake various biological role, while its function and action mechanism in chicken hepatic lipid metabolism is unclear. Conservation analysis and tissue expression pattern of miR-19b-3p and its target gene were evaluated, respectively. Dual luciferase reporter system and Western blot technologies were adopted to validate miR-19b-3p target gene. Overexpression and knockdown assays were done to explore the biological functions of miR-19b-3p and target gene in Leghorn Male Hepatoma cell line (LMH). Regulatory approaches of estrogen on miR-19b-3p and target gene expressions are analyzed through site-directed mutation combined with estrogen receptors antagonist treatment assays. The results showed that chicken miR-19b-3p mature sequences are highly conserved among Capra hircus, Columba livia, Rattus norvegicus, Mus musculus, Cricetulus griseus, Danio rerio, Danio novaehollandiae, Orycodylus porosus, Crocodylus porosus, Gadus morhua, and widely expressed in lung, ovary, spleen, duodenum, kidney, heart, liver, leg muscle, and pectoral muscle tissues. miR-19b-3p could significantly increase intracellular triglyceride (TG) content and decrease intracellular cholesterol (TC) content via targeting methylsterol monooxygenase 1 (MSMO1) and elongase of very long chain fatty acids 5 (ELOVL5), which are highly conserved among species, in both mRNA and protein levels. Estrogen could inhibit miR-19b-3p expression, but directly promoted MSMO1 transcription via estrogen receptor α (ERα) and indirectly regulated ELOVL5 expression at the transcription level. Meanwhile, estrogen could also upregulate MSMO1 and ELOVL5 expression through inhibiting miR-19b-3p expression at the post-transcription level. Taken together, these results highlight the role and regulatory mechanism of miR-19b-3p in hepatic lipid metabolism in chicken, and might produce useful comparative information for human obesity studies and biomedical research.
Collapse
Affiliation(s)
- Qihui Jia
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yuzhu Cao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Mengmeng Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yuxin Xing
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Tian Xia
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yulong Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yaxin Yue
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xin Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Yanhua Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China; Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China; International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou 450046, China.
| |
Collapse
|
7
|
Gao P, Li M, Lu J, Xiang D, Wang X, Xu Y, Zu Y, Guan X, Li G, Zhang C. IL-33 Downregulates Hepatic Carboxylesterase 1 in Acute Liver Injury via Macrophage-derived Exosomal miR-27b-3p. J Clin Transl Hepatol 2023; 11:1130-1142. [PMID: 37577217 PMCID: PMC10412689 DOI: 10.14218/jcth.2022.00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/19/2023] [Accepted: 02/23/2023] [Indexed: 07/03/2023] Open
Abstract
Background and Aims We previously reported that carboxylesterase 1 (CES1) expression was suppressed following liver injury. The study aimed to explore the role of interleukin (IL)-33 in liver injury and examine the mechanism by which IL-33 regulates CES1. Methods IL-33 and CES1 levels were determined in the livers of patients and lipopolysaccharide (LPS)-, acetaminophen (APAP)-treated mice. We constructed IL-33 and ST2 knockout (KO) mice. ST2-enriched immune cells in livers were screened to identify the responsible cells. Macrophage-derived exosome (MDE) activity was tested by adding exosome inhibitors. Micro-RNAs (miRs) were extracted from control and IL-33-stimulated MDEs (IL-33-MDEs) and subjected miR sequencing (miR-Seq). Candidate miR was tested in vitro and in vivo and its binding of a target gene was assessed by luciferase reporter assays. Lentivirus-vector cellular transfection and transcript silencing were used to examine pathways mediating IL-33 suppression of miR-27b-3p. Results Patient liver IL-33 and CES1 expression levels were inversely correlated. CES1 downregulation in liver injury was rescued in both IL-33-deficient and ST2 KO mice. Macrophages were shown to be responsible for IL-33 effects. IL-33-MDEs reduced CES1 levels in hepatocytes. Exosomal miR-Seq and qRT-PCR demonstrated increased miR-27b-3p levels in IL-33-MDEs; miR-27b-3p was implicated in Nrf2 targeting. IL-33 inhibition of miR-27b-3p was found to be GATA3-dependent. Conclusions IL-33-ST2-GATA3 pathway signaling increases miR-27b-3p content in MDEs, which upon being internalized by hepatocytes reduce CES1 expression by inhibiting Nrf2. The elucidation of this mechanism in this study contributes to a better understanding of CES1 dysregulation in liver injury.
Collapse
Affiliation(s)
- Ping Gao
- Wuhan Children’s Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Min Li
- Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jingli Lu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Daochun Xiang
- The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ximin Wang
- Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yanjiao Xu
- Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yue Zu
- Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | | | - Guodong Li
- Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chengliang Zhang
- Tongji Hospital Affiliated with Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
8
|
Saadatian Z, Mansoori Y, Nariman-Saleh-Fam L, Daraei A, Vahed SZ, Navid S, Nariman-Saleh-Fam Z. Peripheral blood mononuclear cells expression of miR-200c, miR-125b, miR-27b, miR-203, and miR-155 in patients with significant or insignificant coronary artery stenosis. Sci Rep 2023; 13:18438. [PMID: 37891322 PMCID: PMC10611722 DOI: 10.1038/s41598-023-45146-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Coronary artery disease (CAD) is one of the principal causes of death worldwide. Among several predisposing factors, inflammation and inflammatory genes play a significant role in disease pathogenesis. Inflammatory microRNAs, small noncoding RNAs involved in regulating inflammation, are promising candidates for understanding pathogenesis of CAD and developing diagnostic biomarkers. The aim of the study was to evaluate the alteration of miR-200c, miR-125b, miR-27b, miR-203 and, miR-155 in patients suffering from coronary artery stenosis and insignificant coronary artery stenosis compared to healthy subjects. In this study we compared expressions of five inflammatory miRNAs in peripheral blood mononuclear cells (PBMCs) of 72 patients suffering significant coronary artery stenosis (CAD), 74 individuals without coronary artery disease and 30 individuals with insignificant coronary artery stenosis (ICAD). After blood collection, PBMCs were isolated and RNA was extracted. Gene expression levels were assessed by SYBR green based real-time PCR. Statistical analysis was performed using R program. Expression levels of miR-200c, miR-203, and miR-155 were lower in subjects with ICAD than that in CAD patients and subjects of the control group. MiR-125b was downregulated in CAD and ICAD groups compared to the control group. PBMC miR-27b was upregulated in the CAD group as compared to the ICAD and control groups. Receiver operating characteristic curve analysis verified potential of three miRNAs in separating subjects with ICAD from CAD patients and healthy individuals. In conclusion, this original investigation suggested that altered expression of these five miRNAs may serve as a novel diagnostic biomarker discriminating clinical presentations of coronary artery diseases.
Collapse
Affiliation(s)
- Zahra Saadatian
- Department of Physiology, Faculty of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran.
| | - Yaser Mansoori
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Abdolreza Daraei
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | | | - Shadan Navid
- Department of Anatomy, Faculty of Medicine, Social Determinants of Health Research Center, Gonabad University of Medical Science, Gonabad, Iran
| | - Ziba Nariman-Saleh-Fam
- Women's Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Clinical Research Development Unit, Shohada Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Saliani N, Montasser Kouhsari S, Izad M. The Potential Hepatoprotective Effect of Vaccinium arctostaphylos L. Fruit Extract in Diabetic Rat. CELL JOURNAL 2023; 25:717-726. [PMID: 37865880 PMCID: PMC10591264 DOI: 10.22074/cellj.2023.2004742.1328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/08/2023] [Accepted: 08/28/2023] [Indexed: 10/23/2023]
Abstract
OBJECTIVE Vaccinium arctostaphylos has traditionally been employed in Iranian folk medicine to treat diabetes. However, the precise molecular mechanisms underlying its antidiabetic properties remain incompletely understood. The current experiment intended to explore the modulatory effects of V. arctostaphylos fruit ethanolic extract (VAE) on biochemical and molecular events in the livers of diabetic rats. MATERIALS AND METHODS In this experimental study, male Wistar rats were randomly assigned to four groups: normal control, normal rats with VAE treatment, diabetic control, and diabetic rats with VAE treatment. Following 42 days of treatment, the impact of VAE on diabetes-induced rats was assessed by measuring various serum biochemical parameters, including insulin, free fatty acids (FFA), tumor necrosis factor-α (TNF-α), reactive oxygen species (ROS), and adiponectin levels. The activities of hepatic carbohydrate metabolic enzymes and glycogen content were determined. Additionally, expression levels of selected genes implicated in carbohydrate/lipid metabolism and miR-27b expression were evaluated. H and E-stained liver sections were prepared for light microscopy examination. RESULTS Treatment with VAE elevated levels of insulin and adiponectin that reduced levels of FFA, ROS, and TNF-α in the serum of diabetic rats. VAE-treated rats exhibited increased activities of hepatic glucokinase (GK), glucose-6-phosphate dehydrogenase (G6PD), and glycogen concentrations, in conjunction with decreased activities of glucose-6-phosphatase (G6Pase) and fructose-1,6-bisphosphatase (FBPase). Furthermore, VAE significantly upregulated the transcription levels of hepatic insulin receptor substrate 1 (Irs1) and glucose transporter 2 (Glut2), while considerably downregulated the expression of peroxisome proliferator-activated receptor gamma (Pparg) and sterol regulatory element-binding protein 1c (Srebp1c). VAE remarkably enhanced the expression of miR27-b in the hepatic tissues of diabetic rats. Abnormal histological signs were dramatically normalized in diabetic rats receiving VAE compared to those in the diabetic control group. CONCLUSION Our findings underscore the hypoglycemic and hypolipidemic activities of V. arctostaphylos and assist in better comprehension of its antidiabetic properties.
Collapse
Affiliation(s)
- Negar Saliani
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Shideh Montasser Kouhsari
- Department of Cellular and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Maryam Izad
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Wang Z, Wang Y, Li Z, Xue W, Hu S, Kong X. Lipid metabolism as a target for cancer drug resistance: progress and prospects. Front Pharmacol 2023; 14:1274335. [PMID: 37841917 PMCID: PMC10571713 DOI: 10.3389/fphar.2023.1274335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
Cancer is the world's leading cause of human death today, and the treatment process of cancer is highly complex. Chemotherapy and targeted therapy are commonly used in cancer treatment, and the emergence of drug resistance is a significant problem in cancer treatment. Therefore, the mechanism of drug resistance during cancer treatment has become a hot issue in current research. A series of studies have found that lipid metabolism is closely related to cancer drug resistance. This paper details the changes of lipid metabolism in drug resistance and how lipid metabolism affects drug resistance. More importantly, most studies have reported that combination therapy may lead to changes in lipid-related metabolic pathways, which may reverse the development of cancer drug resistance and enhance or rescue the sensitivity to therapeutic drugs. This paper summarizes the progress of drug design targeting lipid metabolism in improving drug resistance, and providing new ideas and strategies for future tumor treatment. Therefore, this paper reviews the issues of combining medications with lipid metabolism and drug resistance.
Collapse
Affiliation(s)
- Zi’an Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Yueqin Wang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Zeyun Li
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Wenhua Xue
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Shousen Hu
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiangzhen Kong
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
11
|
Tiberti N, Longoni SS, Combes V, Piubelli C. Host-Derived Extracellular Vesicles in Blood and Tissue Human Protozoan Infections. Microorganisms 2023; 11:2318. [PMID: 37764162 PMCID: PMC10536481 DOI: 10.3390/microorganisms11092318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Blood and tissue protozoan infections are responsible for an enormous burden in tropical and subtropical regions, even though they can also affect people living in high-income countries, mainly as a consequence of migration and travel. These pathologies are responsible for heavy socio-economic issues in endemic countries, where the lack of proper therapeutic interventions and effective vaccine strategies is still hampering their control. Moreover, the pathophysiological mechanisms associated with the establishment, progression and outcome of these infectious diseases are yet to be fully described. Among all the players, extracellular vesicles (EVs) have raised significant interest during the last decades due to their capacity to modulate inter-parasite and host-parasite interactions. In the present manuscript, we will review the state of the art of circulating host-derived EVs in clinical samples or in experimental models of human blood and tissue protozoan diseases (i.e., malaria, leishmaniasis, Chagas disease, human African trypanosomiasis and toxoplasmosis) to gain novel insights into the mechanisms of pathology underlying these conditions and to identify novel potential diagnostic markers.
Collapse
Affiliation(s)
- Natalia Tiberti
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar di Valpolicella, Italy; (S.S.L.); (C.P.)
| | - Silvia Stefania Longoni
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar di Valpolicella, Italy; (S.S.L.); (C.P.)
| | - Valéry Combes
- Microvesicles and Malaria Research Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Chiara Piubelli
- Department of Infectious, Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, 37024 Negrar di Valpolicella, Italy; (S.S.L.); (C.P.)
| |
Collapse
|
12
|
Kramna D, Riedlova P, Jirik V. MicroRNAs as a Potential Biomarker in the Diagnosis of Cardiovascular Diseases. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1329. [PMID: 37512140 PMCID: PMC10386031 DOI: 10.3390/medicina59071329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/01/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
Cardiovascular diseases (CVD) are the leading cause of death in most developed countries. MicroRNAs (miRNAs) are highly investigated molecules not only in CVD but also in other diseases. Several studies on miRNAs continue to reveal novel miRNAs that may play a role in CVD, in their pathogenesis in diagnosis or prognosis, but evidence for clinical implementation is still lacking. The aim of this study is to clarify the diagnostic potential of miRNAs in some CVDs.
Collapse
Affiliation(s)
- Dagmar Kramna
- Centre for Epidemiological Research, Faculty of Medicine, University of Ostrava, 70103 Ostrava, Czech Republic; (P.R.); (V.J.)
- Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, 70103 Ostrava, Czech Republic
| | - Petra Riedlova
- Centre for Epidemiological Research, Faculty of Medicine, University of Ostrava, 70103 Ostrava, Czech Republic; (P.R.); (V.J.)
- Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, 70103 Ostrava, Czech Republic
| | - Vitezslav Jirik
- Centre for Epidemiological Research, Faculty of Medicine, University of Ostrava, 70103 Ostrava, Czech Republic; (P.R.); (V.J.)
- Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, 70103 Ostrava, Czech Republic
| |
Collapse
|
13
|
Zhang L, Li D, Yi P, Shi J, Guo M, Yin Q, Liu D, Zhuang P, Zhang Y. Peripheral origin exosomal microRNAs aggravate glymphatic system dysfunction in diabetic cognitive impairment. Acta Pharm Sin B 2023; 13:2817-2825. [PMID: 37521866 PMCID: PMC10372831 DOI: 10.1016/j.apsb.2023.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/09/2023] [Accepted: 03/02/2023] [Indexed: 08/01/2023] Open
Abstract
Cognitive dysfunction is one of the common central nervous systems (CNS) complications of diabetes mellitus, which seriously affects the quality of life of patients and results in a huge economic burden. The glymphatic system dysfunction mediated by aquaporin-4 (AQP4) loss or redistribution in perivascular astrocyte endfeet plays a crucial role in diabetes-induced cognitive impairment (DCI). However, the mechanism of AQP4 loss or redistribution in the diabetic states remains unclear. Accumulating evidence suggests that peripheral insulin resistance target tissues and CNS communication affect brain homeostasis and that exosomal miRNAs are key mediators. Glucose and lipid metabolism disorder is an important pathological feature of diabetes mellitus, and skeletal muscle, liver and adipose tissue are the key target insulin resistance organs. In this review, the changes in exosomal miRNAs induced by peripheral metabolism disorders in diabetes mellitus were systematically reviewed. We focused on exosomal miRNAs that could induce low AQP4 expression and redistribution in perivascular astrocyte endfeet, which could provide an interorgan communication pathway to illustrate the pathogenesis of DCI. Furthermore, the mechanisms of exosome secretion from peripheral insulin resistance target tissue and absorption to the CNS were summarized, which will be beneficial for proposing novel and feasible strategies to optimize DCI prevention and/or treatment in diabetic patients.
Collapse
Affiliation(s)
- Lin Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Dongna Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Pengrong Yi
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiangwei Shi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| | - Mengqing Guo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Qingsheng Yin
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Dingbin Liu
- State Key Laboratory of Medicinal Chemical Biology, Research Center for Analytical Sciences, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Pengwei Zhuang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yanjun Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300193, China
| |
Collapse
|
14
|
Sakai E, Imaizumi T, Suzuki R, Taracena-Gándara M, Fujimoto T, Sakurai F, Mizuguchi H. miR-27b targets MAIP1 to mediate lipid accumulation in cultured human and mouse hepatic cells. Commun Biol 2023; 6:669. [PMID: 37355744 PMCID: PMC10290684 DOI: 10.1038/s42003-023-05049-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 06/16/2023] [Indexed: 06/26/2023] Open
Abstract
Non-alcoholic liver disease (NAFLD) is a condition caused by excessive fat accumulation in the liver and developed via multiple pathways. miR-27b has been suggested to play crucial roles in the development of NAFLD, assuming via targeting genes involved in lipid catabolism and anabolism. However, other pathways regulated by miR-27b are largely unknown. Here we show that lipid accumulation was induced in miR-27b-transfected human and mouse hepatic cells and that knockdowns of three miR-27b-target genes, β-1,4-galactosyltransferase 3 (B4GALT3), matrix AAA peptidase interacting protein 1 (MAIP1) and PH domain and leucine rich repeat protein phosphatase 2 (PHLPP2), induced lipid accumulation. We also show that B4GALT3 and MAIP1 were direct targets of miR-27b and overexpression of MAIP1 ameliorated miR-27b-induced lipid accumulation. In addition, we show that hepatic Maip1 expression declined in mice fed a high-fat diet, suggesting the involvement of decreased Maip1 expression in the condition of fatty liver. Overall, we identified MAIP1/miR-27b axis as a mediator of hepatic lipid accumulation, a potential therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Eiko Sakai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tsutomu Imaizumi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ruruka Suzuki
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Marcos Taracena-Gándara
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Toshiki Fujimoto
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Laboratory of Functional Organoid for Drug Discovery, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito, Asagi, Ibaraki, Osaka, 567-0085, Japan.
- Global Center for Advanced Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka, 565-0871, Japan.
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Osaka, 565-0871, Japan.
| |
Collapse
|
15
|
Evers P, Pezacki JP. Unraveling Complex MicroRNA Signaling Pathways with Activity‐Based Protein Profiling to Guide Therapeutic Discovery**. Isr J Chem 2023. [DOI: 10.1002/ijch.202200088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Parrish Evers
- Department of Chemistry and Biomolecular Sciences University of Ottawa 150 Louis-Pasteur Pvt. K1N 6N5 Ottawa Canada
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Sciences University of Ottawa 150 Louis-Pasteur Pvt. K1N 6N5 Ottawa Canada
- Department of Biochemistry Microbiology, and Immunology University of Ottawa 451 Smyth Rd. K1H 8M5 Ottawa Canada
| |
Collapse
|
16
|
Ataei S, Ganjali S, Banach M, Karimi E, Sahebkar A. The effect of PCSK9 immunization on the hepatic level of microRNAs associated with the PCSK9/LDLR pathway. Arch Med Sci 2023; 19:203-208. [PMID: 36817686 PMCID: PMC9897094 DOI: 10.5114/aoms/152000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/09/2022] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION MicroRNAs (miRNAs) are a class of gene expression epigenetic regulators that play roles in regulating genes involved in cholesterol homeostasis, including low-density lipoprotein receptor (LDLR) and PCSK9; therefore, miRNAs have been suggested as potential therapeutic targets for treating cardiometabolic disorders. Thus, the present study aimed to assess the effect of immunotherapy with the PCSK9 peptide vaccine on the hepatic expression levels of microRNAs associated with the LDLR pathway, including miRNA-27a, miRNA-30c, and miRNA-191, in normal vaccinated mice. MATERIAL AND METHODS PCSK9 immunogenic peptide and 0.4% alum adjuvant were mixed at a 1 : 1 ratio and used as a vaccine formulation. Male albino mice were randomly assigned to the vaccine or control group. Mice in the vaccine group were injected four times at two-week intervals with a PCSK9 peptide vaccine, and mice in the control group were injected with phosphate-buffered saline (PBS). Animal livers were sampled 2 weeks after the last injection to assess miRNA expression levels. The hepatic expression levels of miRNA-27a, miRNA-30c, and miRNA-191 were evaluated by SYBR Green real-time PCR, quantified by a comparative (2- Δ Δ CT) method (fold change (FC)) and normalized to U6 small nuclear RNA (U6snRNA) expression as an internal control. RESULTS The hepatic expression level of miRNA-27a was significantly lower in mice following immunotherapy with the PCSK9 peptide vaccine compared to the control group (FC: 0.731 ±0.1, p = 0.027). Also, there was a borderline significantly lower hepatic expression level of miRNA-30c in the vaccinated group compared to the control (FC: 0.569 ±0.1, p = 0.078). However, no significant differences were found in the hepatic expression level of miRNA-191 between the two studied groups (FC: 0.852 ±0.1, p = 0.343). CONCLUSIONS According to the findings, the PCSK9 peptide vaccine could effectively reduce the hepatic expression level of miRNA-27a and may be helpful in the management of LDL-C level and atherosclerosis, which may be mediated through the LDLR pathway.
Collapse
Affiliation(s)
- Sarina Ataei
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shiva Ganjali
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz (MUL), Lodz, Poland
- Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland
| | - Ehsan Karimi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Medicine, The University of Western Australia, Perth, Australia
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
17
|
Sumaiya K, Ponnusamy T, Natarajaseenivasan K, Shanmughapriya S. Cardiac Metabolism and MiRNA Interference. Int J Mol Sci 2022; 24:50. [PMID: 36613495 PMCID: PMC9820363 DOI: 10.3390/ijms24010050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The aberrant increase in cardio-metabolic diseases over the past couple of decades has drawn researchers' attention to explore and unveil the novel mechanisms implicated in cardiometabolic diseases. Recent evidence disclosed that the derangement of cardiac energy substrate metabolism plays a predominant role in the development and progression of chronic cardiometabolic diseases. Hence, in-depth comprehension of the novel molecular mechanisms behind impaired cardiac metabolism-mediated diseases is crucial to expand treatment strategies. The complex and dynamic pathways of cardiac metabolism are systematically controlled by the novel executor, microRNAs (miRNAs). miRNAs regulate target gene expression by either mRNA degradation or translational repression through base pairing between miRNA and the target transcript, precisely at the 3' seed sequence and conserved heptametrical sequence in the 5' end, respectively. Multiple miRNAs are involved throughout every cardiac energy substrate metabolism and play a differential role based on the variety of target transcripts. Novel theoretical strategies have even entered the clinical phase for treating cardiometabolic diseases, but experimental evidence remains inadequate. In this review, we identify the potent miRNAs, their direct target transcripts, and discuss the remodeling of cardiac metabolism to cast light on further clinical studies and further the expansion of novel therapeutic strategies. This review is categorized into four sections which encompass (i) a review of the fundamental mechanism of cardiac metabolism, (ii) a divulgence of the regulatory role of specific miRNAs on cardiac metabolic pathways, (iii) an understanding of the association between miRNA and impaired cardiac metabolism, and (iv) summary of available miRNA targeting therapeutic approaches.
Collapse
Affiliation(s)
- Krishnamoorthi Sumaiya
- Medical Microbiology Laboratory, Department of Microbiology, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Thiruvelselvan Ponnusamy
- Department of Medicine, Department of Cellular and Molecular Physiology, Heart and Vascular Institute, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | - Kalimuthusamy Natarajaseenivasan
- Medical Microbiology Laboratory, Department of Microbiology, Centre for Excellence in Life Sciences, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
- Department of Neural Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Santhanam Shanmughapriya
- Department of Medicine, Department of Cellular and Molecular Physiology, Heart and Vascular Institute, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| |
Collapse
|
18
|
Singh D, Rai V, Agrawal DK. Non-Coding RNAs in Regulating Plaque Progression and Remodeling of Extracellular Matrix in Atherosclerosis. Int J Mol Sci 2022; 23:13731. [PMID: 36430208 PMCID: PMC9692922 DOI: 10.3390/ijms232213731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/31/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
Non-coding RNAs (ncRNAs) regulate cell proliferation, migration, differentiation, inflammation, metabolism of clinically important biomolecules, and other cellular processes. They do not encode proteins but are involved in the regulatory network of various proteins that are directly related to the pathogenesis of diseases. Little is known about the ncRNA-associated mechanisms of atherosclerosis and related cardiovascular disorders. Remodeling of the extracellular matrix (ECM) is critical in the pathogenesis of atherosclerosis and related disorders; however, its regulatory proteins are the potential subjects to explore with special emphasis on epigenetic regulatory components. The activity of regulatory proteins involved in ECM remodeling is regulated by various ncRNA molecules, as evident from recent research. Thus, it is important to critically evaluate the existing literature to enhance the understanding of nc-RNAs-regulated molecular mechanisms regulating ECM components, remodeling, and progression of atherosclerosis. This is crucial since deregulated ECM remodeling contributes to atherosclerosis. Thus, an in-depth understanding of ncRNA-associated ECM remodeling may identify novel targets for the treatment of atherosclerosis and other cardiovascular diseases.
Collapse
Affiliation(s)
| | | | - Devendra K. Agrawal
- Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
19
|
Wang Y, Liao XL, Chen K, Zhang Z, Liu Y, Yang J, Wu D. Analysis of the miRNA expression profile of laboratory red crucian carp under low-dose caesium-137 irradiation. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:1276-1286. [PMID: 36125661 DOI: 10.1007/s10646-022-02578-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Radiation can cause the differential expression of biological miRNA molecules. This research was based on the development of the laboratory red crucian carp (LRCC) to explore the feasibility of its application in the detection of low-dose ionizing radiation-induced biological damage in aquatic environments and the development of related molecular markers. Adult LRCC were irradiated with caesium-137 at 0.3 Gy, while RNA-seq and bioinformatics techniques were used to identify miRNAs that were differentially expressed relative to their levels in the nonirradiation group. Analysis of liver sections showed that liver cells in the radiation group showed nuclear pyknosis. In this study, 34 miRNAs differentially expressed in the liver of LRCC after irradiation were identified, among which seven were new crucian carp miRNAs; a total of 632 target genes were predicted in the prediction analysis. The results of comprehensive GO enrichment and KEGG pathway analyses showed that these target genes were mainly involved in energy transfer and material catabolism, especially malonyl-CoA biosynthesis, acetyl-CoA carboxylase activity, fatty acid biosynthesis and metabolism, and pyruvate metabolism; in addition, the AMPK signalling pathway was the most active pathway. This study shows that the LRCC is sensitive to radiation, or can be used as a candidate experimental animal to study the biological effects of radiation, and the screened miRNA can be used as a pre-selected biomarker for radiation damage detection and radiation biological environmental monitoring. CLINICAL TRIALS REGISTRATION: None.
Collapse
Affiliation(s)
- Yude Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Xiao-Li Liao
- Hunan Institute of Traffic Engineering, School of Medical Technology and Nursing, Hengyang, 421001, China
- University of South China, Hengyang Medical College, Hengyang, 421001, China
- University of South China, Department of Laboratory Animal Science, Hengyang, 421001, China
| | - KeJie Chen
- University of South China, Hengyang Medical College, Hengyang, 421001, China
- University of South China, Department of Laboratory Animal Science, Hengyang, 421001, China
| | - Zhaohui Zhang
- University of South China, Hengyang Medical College, Hengyang, 421001, China
- University of South China, Department of Laboratory Animal Science, Hengyang, 421001, China
| | - Yuxin Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - JingPing Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - DuanSheng Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.
- University of South China, Hengyang Medical College, Hengyang, 421001, China.
- University of South China, Department of Laboratory Animal Science, Hengyang, 421001, China.
| |
Collapse
|
20
|
Rotllan N, Zhang X, Canfrán-Duque A, Goedeke L, Griñán R, Ramírez CM, Suárez Y, Fernández-Hernando C. Antagonism of miR-148a attenuates atherosclerosis progression in APOB TGApobec -/-Ldlr +/- mice: A brief report. Biomed Pharmacother 2022; 153:113419. [PMID: 36076541 PMCID: PMC11140622 DOI: 10.1016/j.biopha.2022.113419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE miR-148a-3p (miR-148a) is a hepatic and immune-enriched microRNA (miRNA) that regulates macrophage-related lipoprotein metabolism, cholesterol homeostasis, and inflammation. The contribution of miR-148a-3p to the progression of atherosclerosis is unknown. In this study, we determined whether miR-148a silencing mitigated atherogenesis in APOBTGApobec-/-Ldlr+/- mice. METHODS APOBTGApobec-/-Ldlr+/- mice were fed a typical Western-style diet for 22 weeks and injected with a nontargeting locked nucleic acid (LNA; LNA control) or miR-148a LNA (LNA 148a) for the last 10 weeks. At the end of the treatment, the mice were sacrificed, and circulating lipids, hepatic gene expression, and atherosclerotic lesions were analyzed. RESULTS Examination of atherosclerotic lesions revealed a significant reduction in plaque size, with marked remodeling of the lesions toward a more stable phenotype. Mechanistically, miR-148a levels influenced macrophage cholesterol efflux and the inflammatory response. Suppression of miR-148a in murine primary macrophages decreased mRNA levels of proinflammatory M1-like markers (Nos2, Il6, Cox2, and Tnf) and increased the expression of anti-inflammatory genes (Arg1, Retlna, and Mrc1). CONCLUSIONS Therapeutic silencing of miR148a mitigated the progression of atherosclerosis and promoted plaque stability. The antiatherogenic effect of miR-148a antisense therapy is likely mediated by the anti-inflammatory effects observed in macrophages treated with miR-148 LNA and independent of significant changes in circulating low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C).
Collapse
Affiliation(s)
- Noemi Rotllan
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT, USA; Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain.
| | - Xinbo Zhang
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Alberto Canfrán-Duque
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Leigh Goedeke
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Raquel Griñán
- Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Barcelona, Spain; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma De Barcelona, Barcelona, Spain
| | - Cristina M Ramírez
- Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT, USA; IMDEA Research Institute of Food and Health Sciences, Madrid, Spain
| | - Yajaira Suárez
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
21
|
Meng H, Ruan J, Yan Z, Chen Y, Liu J, Li X, Meng F. New Progress in Early Diagnosis of Atherosclerosis. Int J Mol Sci 2022; 23:ijms23168939. [PMID: 36012202 PMCID: PMC9409135 DOI: 10.3390/ijms23168939] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/30/2022] [Accepted: 08/06/2022] [Indexed: 11/18/2022] Open
Abstract
Coronary atherosclerosis is a potentially chronic circulatory condition that endangers human health. The biological cause underpinning cardiovascular disease is coronary atherosclerosis, and acute cardiovascular events can develop due to thrombosis, platelet aggregation, and unstable atherosclerotic plaque rupture. Coronary atherosclerosis is progressive, and three specific changes appear, with fat spots and stripes, atherosclerosis and thin-walled fiber atherosclerosis, and then complex changes in arteries. The progression and severity of cardiovascular disease are correlated with various levels of calcium accumulation in the coronary artery. The therapy and diagnosis of coronary atherosclerosis benefit from the initial assessment of the size and degree of calcification. This article will discuss the new progress in the early diagnosis of coronary atherosclerosis in terms of three aspects: imaging, gene and protein markers, and trace elements. This study intends to present the latest methods for diagnosing patients with early atherosclerosis through a literature review.
Collapse
Affiliation(s)
- Heyu Meng
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
| | - Jianjun Ruan
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
| | - Zhaohan Yan
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
| | - Yanqiu Chen
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
| | - Jinsha Liu
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
| | - Xiangdong Li
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
| | - Fanbo Meng
- Jilin Provincial Precision Medicine Key Laboratory for Cardiovascular Genetic Diagnosis, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Engineering Laboratory for Endothelial Function and Genetic Diagnosis of Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Jilin Provincial Molecular Biology Research Center for Precision Medicine of Major Cardiovascular Disease, Jilin Provincial Cardiovascular Research Institute, Jilin University, Changchun 130033, China
- Correspondence: ; Tel.: +86-15948346855
| |
Collapse
|
22
|
Decoding microRNA drivers in Atherosclerosis. Biosci Rep 2022; 42:231479. [PMID: 35758143 PMCID: PMC9289798 DOI: 10.1042/bsr20212355] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/17/2022] [Accepted: 06/26/2022] [Indexed: 11/17/2022] Open
Abstract
An estimated 97% of the human genome consists of non-protein-coding sequences. As our understanding of genome regulation improves, this has led to the characterization of a diverse array of non-coding RNAs (ncRNA). Among these, micro-RNAs (miRNAs) belong to the short ncRNA class (22–25 nucleotides in length), with approximately 2500 miRNA genes encoded within the human genome. From a therapeutic perspective, there is interest in exploiting miRNA as biomarkers of disease progression and response to treatments, as well as miRNA mimics/repressors as novel medicines. miRNA have emerged as an important class of RNA master regulators with important roles identified in the pathogenesis of atherosclerotic cardiovascular disease. Atherosclerosis is characterized by a chronic inflammatory build-up, driven largely by low-density lipoprotein cholesterol accumulation within the artery wall and vascular injury, including endothelial dysfunction, leukocyte recruitment and vascular remodelling. Conventional therapy focuses on lifestyle interventions, blood pressure-lowering medications, high-intensity statin therapy and antiplatelet agents. However, a significant proportion of patients remain at increased risk of cardiovascular disease. This continued cardiovascular risk is referred to as residual risk. Hence, a new drug class targeting atherosclerosis could synergise with existing therapies to optimise outcomes. Here, we review our current understanding of the role of ncRNA, with a focus on miRNA, in the development and progression of atherosclerosis, highlighting novel biological mechanisms and therapeutic avenues.
Collapse
|
23
|
Ru L, Wang XM, Niu JQ. The miR-23-27-24 cluster: an emerging target in NAFLD pathogenesis. Acta Pharmacol Sin 2022; 43:1167-1179. [PMID: 34893685 PMCID: PMC9061717 DOI: 10.1038/s41401-021-00819-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
The incidence of non-alcoholic fatty liver disease (NAFLD) is increasing globally, being the most widespread form of chronic liver disease in the west. NAFLD includes a variety of disease states, the mildest being non-alcoholic fatty liver that gradually progresses to non-alcoholic steatohepatitis, fibrosis, cirrhosis, and eventually hepatocellular carcinoma. Small non-coding single-stranded microRNAs (miRNAs) regulate gene expression at the miRNA or translational level. Numerous miRNAs have been shown to promote NAFLD pathogenesis and progression through increasing lipid accumulation, oxidative stress, mitochondrial damage, and inflammation. The miR-23-27-24 clusters, composed of miR-23a-27a-24-2 and miR-23b-27b-24-1, have been implicated in various biological processes as well as many diseases. Herein, we review the current knowledge on miR-27, miR-24, and miR-23 in NAFLD pathogenesis and discuss their potential significance in NAFLD diagnosis and therapy.
Collapse
Affiliation(s)
- Lin Ru
- grid.430605.40000 0004 1758 4110Department of Hepatology, The First Hospital of Jilin University, Changchun, 130021 China
| | - Xiao-mei Wang
- grid.430605.40000 0004 1758 4110Department of Hepatology, The First Hospital of Jilin University, Changchun, 130021 China ,grid.430605.40000 0004 1758 4110Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, 130021 China
| | - Jun-qi Niu
- grid.430605.40000 0004 1758 4110Department of Hepatology, The First Hospital of Jilin University, Changchun, 130021 China ,grid.430605.40000 0004 1758 4110Key Laboratory of Zoonosis Research, Ministry of Education, The First Hospital of Jilin University, Changchun, 130021 China
| |
Collapse
|
24
|
Desrochers GF, Filip R, Bastianelli M, Stern T, Pezacki JP. microRNA-27b regulates hepatic lipase enzyme LIPC and reduces triglyceride degradation during hepatitis C virus infection. J Biol Chem 2022; 298:101983. [PMID: 35483451 PMCID: PMC9163519 DOI: 10.1016/j.jbc.2022.101983] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 11/26/2022] Open
Abstract
miRNAs are short, noncoding RNAs that negatively and specifically regulate protein expression, the cumulative effects of which can result in broad changes to cell systems and architecture. The miRNA miR-27b is known to regulate lipid regulatory pathways in the human liver and is also induced by the hepatitis C virus (HCV). However, the functional targets of miR-27b are not well established. Herein, an activity-based protein profiling method using a serine hydrolase probe, coupled with stable isotope labeling and mass spectrometry identified direct and indirect targets of miR-27b. The hepatic lipase C (LIPC) stood out as both highly dependent on miR-27b and as a major modulator of lipid pathway misregulation. Modulation of miR-27b using both exogenous miRNA mimics and inhibitors demonstrated that transcription factors Jun, PPARα, and HNF4α, all of which also influence LIPC levels and activity, are regulated by miR-27b. LIPC was furthermore shown to affect the progress of the life cycle of HCV and to decrease levels of intracellular triglycerides, upon which HCV is known to depend. In summary, this work has demonstrated that miR-27b mediates HCV infection by downregulating LIPC, thereby reducing triglyceride degradation, which in turn increases cellular lipid levels.
Collapse
Affiliation(s)
| | - Roxana Filip
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - Micheal Bastianelli
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada
| | - Tiffany Stern
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada; Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, Canada.
| |
Collapse
|
25
|
Banik SK, Baishya S, Das Talukdar A, Choudhury MD. Network analysis of atherosclerotic genes elucidates druggable targets. BMC Med Genomics 2022; 15:42. [PMID: 35241081 PMCID: PMC8893053 DOI: 10.1186/s12920-022-01195-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/18/2021] [Indexed: 11/22/2022] Open
Abstract
Background Atherosclerosis is one of the major causes of cardiovascular disease. It is characterized by the accumulation of atherosclerotic plaque in arteries under the influence of inflammatory responses, proliferation of smooth muscle cell, accumulation of modified low density lipoprotein. The pathophysiology of atherosclerosis involves the interplay of a number of genes and metabolic pathways. In traditional translation method, only a limited number of genes and pathways can be studied at once. However, the new paradigm of network medicine can be explored to study the interaction of a large array of genes and their functional partners and their connections with the concerned disease pathogenesis. Thus, in our study we employed a branch of network medicine, gene network analysis as a tool to identify the most crucial genes and the miRNAs that regulate these genes at the post transcriptional level responsible for pathogenesis of atherosclerosis. Result From NCBI database 988 atherosclerotic genes were retrieved. The protein–protein interaction using STRING database resulted in 22,693 PPI interactions among 872 nodes (genes) at different confidence score. The cluster analysis of the 872 genes using MCODE, a plug-in of Cytoscape software revealed a total of 18 clusters, the topological parameter and gene ontology analysis facilitated in the selection of four influential genes viz., AGT, LPL, ITGB2, IRS1 from cluster 3. Further, the miRNAs (miR-26, miR-27, and miR-29 families) targeting these genes were obtained by employing MIENTURNET webtool. Conclusion Gene network analysis assisted in filtering out the 4 probable influential genes and 3 miRNA families in the pathogenesis of atherosclerosis. These genes, miRNAs can be targeted to restrict the occurrence of atherosclerosis. Given the importance of atherosclerosis, any approach in the understanding the genes involved in its pathogenesis can substantially enhance the health care system. Supplementary Information The online version contains supplementary material available at 10.1186/s12920-022-01195-y.
Collapse
Affiliation(s)
- Sheuli Kangsa Banik
- Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | - Somorita Baishya
- Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | - Anupam Das Talukdar
- Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | | |
Collapse
|
26
|
Zhang F, Liu J, Yu J, Sun W, Wang Y, Fan T, Sun Y, Han X. Effect of Nephropathy Prescription I on the Expression of Angptl3 and Podocyte-Associated Protein in Mice with Adriamycin-Induced Nephropathy. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:9921679. [PMID: 38149181 PMCID: PMC10751164 DOI: 10.1155/2022/9921679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 12/12/2021] [Accepted: 12/23/2021] [Indexed: 12/28/2023]
Abstract
Objective This study aimed to investigate the effects of Nephropathy Prescription I on the expression of angptl3, nephrin, and podocin, in addition to its protective effects on podocytes in mice with adriamycin-induced nephropathy. Methods BALB/c mice were randomly divided into the control (C), adriamycin (Model or M), adriamycin + Nephropathy Prescription I (M + Z), adriamycin + prednisone acetate (M + S), and adriamycin + Nephropathy Prescription I + prednisone acetate groups (M + Z + S). All mice except those in the C group in the experimental groups were treated with a single tail vein injection of adriamycin. The urine albumin-creatinine ratio was measured before model establishment and on the 7th day, 14th day, 21st day, and 28th day of doxorubicin injection. All the mice were sacrificed on the 29th day. Blood samples were collected to observe biochemical indicators in the serum. The morphological structure and podocyte ultrastructure in the kidney were observed using light and electron microscopy, respectively. The expression of angptl3, nephrin, and podocin at the mRNA and protein levels was detected by real-time PCR and western blotting, respectively. Results Following modeling with adriamycin, albuminuria was observed in urine samples in the first week, and the urinary protein/creatinine ratio increased maximally in the fourth week in the M group (P < 0.05). In contrast, the urinary protein/creatinine ratio significantly decreased (P < 0.05) in the third week in the (M + Z) group compared to that in the M group. Similarly, this ratio decreased in the (M + S) and (M + Z + S) groups compared to that in the M group throughout the experiment. Compared with the C group, serum albumin content and the expression of nephrin and podocin decreased (P < 0.05), whereas blood lipid level and the expression of angptl3 increased (P < 0.05) in the M group. Glomerular foot process fusion was observed in this group using electron microscopy. In all the intervention groups, serum albumin content and the expression of nephrin and podocin increased (P < 0.05), whereas blood lipid level and the expression of angptl3 decreased (P < 0.05), with alleviated glomerular foot process injury observed particularly in the (M + Z + S) group. Conclusion The Nephropathy Prescription I can alleviate albuminuria, increase serum albumin levels, lower blood lipid levels, and reduce the fusion of foot processes of podocytes in mice with adriamycin-induced nephropathy. The protective effects of the Nephropathy Prescription I may function by reducing Angptl3 expression and increasing nephrin and podocin expression.
Collapse
Affiliation(s)
- Feifei Zhang
- Children's Hosptial of Fudan University Department of Traditional Chinese Medicine, Shanghai 201102, China
| | - Junchao Liu
- Children's Hosptial of Fudan University Department of Traditional Chinese Medicine, Shanghai 201102, China
| | - Jian Yu
- Children's Hosptial of Fudan University Department of Traditional Chinese Medicine, Shanghai 201102, China
| | - Wen Sun
- Children's Hosptial of Fudan University Department of Traditional Chinese Medicine, Shanghai 201102, China
| | - Yonghong Wang
- Children's Hosptial of Fudan University Department of Traditional Chinese Medicine, Shanghai 201102, China
| | - Teng Fan
- Children's Hosptial of Fudan University Department of Traditional Chinese Medicine, Shanghai 201102, China
| | - Yanyan Sun
- Children's Hosptial of Fudan University Department of Traditional Chinese Medicine, Shanghai 201102, China
| | - Xinghui Han
- Children's Hosptial of Fudan University Department of Traditional Chinese Medicine, Shanghai 201102, China
| |
Collapse
|
27
|
Rodríguez-Sanabria JS, Escutia-Gutiérrez R, Rosas-Campos R, Armendáriz-Borunda JS, Sandoval-Rodríguez A. An Update in Epigenetics in Metabolic-Associated Fatty Liver Disease. Front Med (Lausanne) 2022; 8:770504. [PMID: 35087844 PMCID: PMC8787199 DOI: 10.3389/fmed.2021.770504] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/02/2021] [Indexed: 12/17/2022] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is characterized by hepatic steatosis accompanied by one of three features: overweight or obesity, T2DM, or lean or normal weight with evidence of metabolic dysregulation. It is distinguished by excessive fat accumulation in hepatocytes, and a decrease in the liver's ability to oxidize fats, the accumulation of ectopic fat, and the activation of proinflammatory pathways. Chronic damage will keep this pathophysiologic cycle active causing progression from hepatic steatosis to cirrhosis and eventually, hepatocarcinoma. Epigenetics affecting gene expression without altering DNA sequence allows us to study MAFLD pathophysiology from a different perspective, in which DNA methylation processes, histone modifications, and miRNAs expression have been closely associated with MAFLD progression. However, these considerations also faced us with the circumstance that modifying those epigenetics patterns might lead to MAFLD regression. Currently, epigenetics is an area of great interest because it could provide new insights in therapeutic targets and non-invasive biomarkers. This review comprises an update on the role of epigenetic patterns, as well as innovative therapeutic targets and biomarkers in MAFLD.
Collapse
Affiliation(s)
- J Samael Rodríguez-Sanabria
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara, Mexico
| | - Rebeca Escutia-Gutiérrez
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara, Mexico
| | - Rebeca Rosas-Campos
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara, Mexico
| | - Juan S Armendáriz-Borunda
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara, Mexico.,School of Medicine and Health Sciences, Tecnologico de Monterrey, Campus Guadalajara, Zapopan, Mexico
| | - Ana Sandoval-Rodríguez
- Department of Molecular Biology and Genomics, Institute for Molecular Biology in Medicine and Gene Therapy, CUCS, University of Guadalajara, Guadalajara, Mexico
| |
Collapse
|
28
|
Burrows K, Figueroa-Hall LK, Kuplicki R, Stewart JL, Alarbi AM, Ramesh R, Savitz JB, Teague TK, Risbrough VB, Paulus MP. Neuronally-enriched exosomal microRNA-27b mediates acute effects of ibuprofen on reward-related brain activity in healthy adults: a randomized, placebo-controlled, double-blind trial. Sci Rep 2022; 12:861. [PMID: 35039595 PMCID: PMC8764091 DOI: 10.1038/s41598-022-04875-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/03/2022] [Indexed: 01/01/2023] Open
Abstract
This double-blind, randomized, within-subjects design evaluated whether acute administration of an anti-inflammatory drug modulates neuron-specific, inflammation-modulating microRNAs linked to macroscopic changes in reward processing. Twenty healthy subjects (10 females, 10 males) underwent a functional magnetic resonance imaging scan while performing a monetary incentive delay (MID) task and provided blood samples after administration of placebo, 200 mg, or 600 mg of ibuprofen. Neuronally-enriched exosomal microRNAs were extracted from serum and sequenced. Results showed that: (1) 600 mg of ibuprofen exhibited higher miR-27b-3p, miR-320b, miR-23b and miR-203a-3p expression than placebo; (2) higher mir-27b-3p was associated with lower insula activation during MID loss anticipation; and (3) there was an inverse relationship between miR-27b-3p and MID gain anticipation in bilateral putamen during placebo, a pattern attenuated by both 200 mg and 600 mg of ibuprofen. These findings are consistent with the hypothesis that miR-27b could be an important messaging molecule that is associated with regulating the processing of positive or negative valenced information.
Collapse
Affiliation(s)
- Kaiping Burrows
- Laureate Institute for Brain Research, 6655 South Yale Ave, Tulsa, OK, 74136, USA.
| | | | - Rayus Kuplicki
- Laureate Institute for Brain Research, 6655 South Yale Ave, Tulsa, OK, 74136, USA
| | - Jennifer L Stewart
- Laureate Institute for Brain Research, 6655 South Yale Ave, Tulsa, OK, 74136, USA
- Department of Community Medicine, University of Tulsa, Tulsa, OK, USA
| | - Ahlam M Alarbi
- Departments of Surgery and Psychiatry, School of Community Medicine, The University of Oklahoma, Tulsa, OK, USA
| | - Rajagopal Ramesh
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jonathan B Savitz
- Laureate Institute for Brain Research, 6655 South Yale Ave, Tulsa, OK, 74136, USA
- Department of Community Medicine, University of Tulsa, Tulsa, OK, USA
| | - T Kent Teague
- Departments of Surgery and Psychiatry, School of Community Medicine, The University of Oklahoma, Tulsa, OK, USA
- Department of Biochemistry and Microbiology, The Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
- Department of Pharmaceutical Sciences, The University of Oklahoma College of Pharmacy, Oklahoma City, OK, USA
| | - Victoria B Risbrough
- Center of Excellence for Stress and Mental Health, La Jolla, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Martin P Paulus
- Laureate Institute for Brain Research, 6655 South Yale Ave, Tulsa, OK, 74136, USA
- Department of Community Medicine, University of Tulsa, Tulsa, OK, USA
| |
Collapse
|
29
|
Rozhkova AV, Dmitrieva VG, Nosova EV, Dergunov AD, Limborska SA, Dergunova LV. Genomic Variants and Multilevel Regulation of ABCA1, ABCG1, and SCARB1 Expression in Atherogenesis. J Cardiovasc Dev Dis 2021; 8:jcdd8120170. [PMID: 34940525 PMCID: PMC8707585 DOI: 10.3390/jcdd8120170] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Atheroprotective properties of human plasma high-density lipoproteins (HDLs) are determined by their involvement in reverse cholesterol transport (RCT) from the macrophage to the liver. ABCA1, ABCG1, and SR-BI cholesterol transporters are involved in cholesterol efflux from macrophages to lipid-free ApoA-I and HDL as a first RCT step. Molecular determinants of RCT efficiency that may possess diagnostic and therapeutic meaning remain largely unknown. This review summarizes the progress in studying the genomic variants of ABCA1, ABCG1, and SCARB1, and the regulation of their function at transcriptional and post-transcriptional levels in atherosclerosis. Defects in the structure and function of ABCA1, ABCG1, and SR-BI are caused by changes in the gene sequence, such as single nucleotide polymorphism or various mutations. In the transcription initiation of transporter genes, in addition to transcription factors, long noncoding RNA (lncRNA), transcription activators, and repressors are also involved. Furthermore, transcription is substantially influenced by the methylation of gene promoter regions. Post-transcriptional regulation involves microRNAs and lncRNAs, including circular RNAs. The potential biomarkers and targets for atheroprotection, based on molecular mechanisms of expression regulation for three transporter genes, are also discussed in this review.
Collapse
Affiliation(s)
- Alexandra V. Rozhkova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Veronika G. Dmitrieva
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Elena V. Nosova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Alexander D. Dergunov
- Laboratory of Structural Fundamentals of Lipoprotein Metabolism, National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
- Correspondence:
| | - Svetlana A. Limborska
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| | - Liudmila V. Dergunova
- Department of Molecular Bases of Human Genetics, Institute of Molecular Genetics of National Research Center “Kurchatov Institute”, 123182 Moscow, Russia; (A.V.R.); (V.G.D.); (E.V.N.); (S.A.L.); (L.V.D.)
| |
Collapse
|
30
|
Corso D, Chemello F, Alessio E, Urso I, Ferrarese G, Bazzega M, Romualdi C, Lanfranchi G, Sales G, Cagnin S. MyoData: An expression knowledgebase at single cell/nucleus level for the discovery of coding-noncoding RNA functional interactions in skeletal muscle. Comput Struct Biotechnol J 2021; 19:4142-4155. [PMID: 34527188 PMCID: PMC8342900 DOI: 10.1016/j.csbj.2021.07.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022] Open
Abstract
Regulation of gene expression through non-coding RNAs at single myofiber and nucleus resolution. Reinterpretation of KEGG pathways with microRNA and long non-coding RNA activities. miR-149, -214, and let-7e alter mitochondrial shape. The long non-coding RNA Pvt1 is a sponge for miR-27a. miR-208b regulates Sox6; miR-214 regulates both Sox6 and Slc16a3.
Non-coding RNAs represent the largest part of transcribed mammalian genomes and prevalently exert regulatory functions. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) can modulate the activity of each other. Skeletal muscle is the most abundant tissue in mammals. It is composed of different cell types with myofibers that represent the smallest complete contractile system. Considering that lncRNAs and miRNAs are more cell type-specific than coding RNAs, to understand their function it is imperative to evaluate their expression and action within single myofibers. In this database, we collected gene expression data for coding and non-coding genes in single myofibers and used them to produce interaction networks based on expression correlations. Since biological pathways are more informative than networks based on gene expression correlation, to understand how altered genes participate in the studied phenotype, we integrated KEGG pathways with miRNAs and lncRNAs. The database also integrates single nucleus gene expression data on skeletal muscle in different patho-physiological conditions. We demonstrated that these networks can serve as a framework from which to dissect new miRNA and lncRNA functions to experimentally validate. Some interactions included in the database have been previously experimentally validated using high throughput methods. These can be the basis for further functional studies. Using database information, we demonstrate the involvement of miR-149, -214 and let-7e in mitochondria shaping; the ability of the lncRNA Pvt1 to mitigate the action of miR-27a via sponging; and the regulatory activity of miR-214 on Sox6 and Slc16a3. The MyoData is available at https://myodata.bio.unipd.it.
Collapse
Affiliation(s)
- Davide Corso
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Francesco Chemello
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Enrico Alessio
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Ilenia Urso
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Giulia Ferrarese
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Martina Bazzega
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Chiara Romualdi
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Gerolamo Lanfranchi
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy.,CRIBI Biotechnology Centre, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy.,CIR-Myo Myology Center, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Gabriele Sales
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| | - Stefano Cagnin
- Department of Biology, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy.,CRIBI Biotechnology Centre, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy.,CIR-Myo Myology Center, University of Padova, Via Ugo Bassi 58/b, 35131 Padova, Italy
| |
Collapse
|
31
|
Ling P, Zheng X, Luo S, Ge J, Xu S, Weng J. Targeting angiopoietin-like 3 in atherosclerosis: From bench to bedside. Diabetes Obes Metab 2021; 23:2020-2034. [PMID: 34047441 DOI: 10.1111/dom.14450] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/10/2021] [Accepted: 05/23/2021] [Indexed: 12/13/2022]
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is the largest cause of morbidity and mortality worldwide. Lipid-lowering therapies are the current major cornerstone of ASCVD management. Statins, ezetimibe, fibrates and proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors effectively reduce the plasma low-density lipoprotein cholesterol (LDL-C) level in most individuals at risk of atherosclerosis. Still, some patients (such as those with homozygous familial hypercholesterolaemia), who do not respond to standard therapies, and other patients who cannot take these agents, remain at a high risk of ASCVD. In recent years there has been tremendous progress in understanding the mechanism and efficacy of lipid-lowering strategies. Apart from the recently approved PCSK9 and ATP citrate lyase inhibitors, angiopoietin-like 3 (ANGPTL3) is another potential target for the treatment of dyslipidaemia and its clinical sequalae of atherosclerosis. ANGPTL3 is a pivotal modulator of plasma triglycerides (TG), LDL-C and high-density lipoprotein cholesterol (HDL-C) levels, achieved by inhibiting the activities of lipoprotein lipase and endothelial lipase. Familial combined hypolipidaemia is derived from the Angptl3 loss-of-function mutations, which leads to low levels of LDL-C, HDL-C and TG, and has a 34% decreased risk of ASCVD compared with non-carriers. To date, monoclonal antibodies (evinacumab) and antisense oligonucleotides against ANGPTL3 have been investigated in clinical trials for dyslipidaemia therapy. Herein, we review the biology and function of ANGPTL3, as well as the latest developments of ANGPTL3-targeted therapies. We also summarize evidence from basic research to clinical trials, with the aim of providing novel insights into the biological functions of ANGPTL3 and related targeted therapies.
Collapse
Affiliation(s)
- Ping Ling
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xueying Zheng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Sihui Luo
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Junbo Ge
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Cardiology, Zhong Shan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jianping Weng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
32
|
Bhattarai A, Likos EM, Weyman CM, Shukla GC. Regulation of cholesterol biosynthesis and lipid metabolism: A microRNA management perspective. Steroids 2021; 173:108878. [PMID: 34174291 DOI: 10.1016/j.steroids.2021.108878] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/07/2021] [Accepted: 06/11/2021] [Indexed: 12/14/2022]
Abstract
Cellular disruption of lipid and cholesterol metabolism results in pathological processes linked to metabolic and cardiovascular diseases. Classically, at the transcription stages, the Cholesterol levels are controlled by two cellular pathways. First, the SREBP transcription factor family controls Cholesterol biosynthesis via transcriptional regulation of critical rate-limiting cholesterogenic and lipogenic proteins. Secondly, The LXR/RXR transcription factor family controls cholesterol shuttling via transcriptional regulation of cholesterol transport proteins. In addition, the posttranscriptional control of gene expression of various enzymes and proteins of cholesterol biosynthesis pathways is mediated by small non-coding microRNAs. Regulatory noncoding miRNAs are critical regulators of biological processes, including developmental and metabolic functions. miRNAs function to fine-tune lipid and cholesterol metabolism pathways by controlling the mRNA levels and translation of critical molecules in each pathway. This review discusses the regulatory roles of miRNAs in cholesterol and lipid metabolism via direct and indirect effects on their target genes, including SREBP, LXR, HDL, LDL, and ABCA transporters. We also discuss the therapeutic implications of miRNA functions and their purported role in the potentiation of small molecule therapies.
Collapse
Affiliation(s)
- Asmita Bhattarai
- Center for Gene Regulation, Department of Biological, Geo and EVS Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44114, USA
| | - Eviania M Likos
- Center for Gene Regulation, Department of Biological, Geo and EVS Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44114, USA
| | - Crystal M Weyman
- Center for Gene Regulation, Department of Biological, Geo and EVS Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44114, USA
| | - Girish C Shukla
- Center for Gene Regulation, Department of Biological, Geo and EVS Sciences, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44114, USA
| |
Collapse
|
33
|
Li T, Zhu L, Zhu L, Wang P, Xu W, Huang J. Recent Developments in Delivery of MicroRNAs Utilizing Nanosystems for Metabolic Syndrome Therapy. Int J Mol Sci 2021; 22:ijms22157855. [PMID: 34360621 PMCID: PMC8346175 DOI: 10.3390/ijms22157855] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic syndrome (MetS) is a set of complex, chronic inflammatory conditions that are characterized by central obesity and associated with an increased risk of cardiovascular diseases. In recent years, microRNAs (miRNAs) have become an important type of endocrine factors, which play crucial roles in maintaining energy balance and metabolic homeostasis. However, its unfavorable properties such as easy degradation in blood and off-target effect are still a barrier for clinical application. Nanosystem based delivery possess strong protection, high bioavailability and control release rate, which is beneficial for success of gene therapy. This review first describes the current progress and advances on miRNAs associated with MetS, then provides a summary of the therapeutic potential and targets of miRNAs in metabolic organs. Next, it discusses recent advances in the functionalized development of classic delivery systems (exosomes, liposomes and polymers), including their structures, properties, functions and applications. Furthermore, this work briefly discusses the intelligent strategies used in emerging novel delivery systems (selenium nanoparticles, DNA origami, microneedles and magnetosomes). Finally, challenges and future directions in this field are discussed provide a comprehensive overview of the future development of targeted miRNAs delivery for MetS treatment. With these contributions, it is expected to address and accelerate the development of effective NA delivery systems for the treatment of MetS.
Collapse
Affiliation(s)
- Tong Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.Z.); (L.Z.); (P.W.); (W.X.)
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Liye Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.Z.); (L.Z.); (P.W.); (W.X.)
| | - Longjiao Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.Z.); (L.Z.); (P.W.); (W.X.)
| | - Pengjie Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.Z.); (L.Z.); (P.W.); (W.X.)
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Wentao Xu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.Z.); (L.Z.); (P.W.); (W.X.)
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Jiaqiang Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (T.L.); (L.Z.); (L.Z.); (P.W.); (W.X.)
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
- Correspondence:
| |
Collapse
|
34
|
MicroRNA-mediated regulation of glucose and lipid metabolism. Nat Rev Mol Cell Biol 2021; 22:425-438. [PMID: 33772227 PMCID: PMC8853826 DOI: 10.1038/s41580-021-00354-w] [Citation(s) in RCA: 170] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2021] [Indexed: 02/01/2023]
Abstract
In animals, systemic control of metabolism is conducted by metabolic tissues and relies on the regulated circulation of a plethora of molecules, such as hormones and lipoprotein complexes. MicroRNAs (miRNAs) are a family of post-transcriptional gene repressors that are present throughout the animal kingdom and have been widely associated with the regulation of gene expression in various contexts, including virtually all aspects of systemic control of metabolism. Here we focus on glucose and lipid metabolism and review current knowledge of the role of miRNAs in their systemic regulation. We survey miRNA-mediated regulation of healthy metabolism as well as the contribution of miRNAs to metabolic dysfunction in disease, particularly diabetes, obesity and liver disease. Although most miRNAs act on the tissue they are produced in, it is now well established that miRNAs can also circulate in bodily fluids, including their intercellular transport by extracellular vesicles, and we discuss the role of such extracellular miRNAs in systemic metabolic control and as potential biomarkers of metabolic status and metabolic disease.
Collapse
|
35
|
McGruer V, Tanabe P, Vliet SMF, Dasgupta S, Qian L, Volz DC, Schlenk D. Effects of Phenanthrene Exposure on Cholesterol Homeostasis and Cardiotoxicity in Zebrafish Embryos. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1586-1595. [PMID: 33523501 DOI: 10.1002/etc.5002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/29/2020] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are pervasive pollutants in aquatic ecosystems, and developing fish embryos are especially sensitive to PAH exposure. Exposure to crude oil or phenanthrene (a reference PAH found in oil) produces an array of gross morphological abnormalities in developing fish embryos, including cardiotoxicity. Recently, studies utilizing transcriptomic analyses in several oil-exposed fish embryos found significant changes in the abundance of transcripts involved in cholesterol biosynthesis. Given the vital role of cholesterol availability in embryonic heart development, we hypothesized that cholesterol dysregulation in early development contributes to phenanthrene-induced cardiotoxicity. We exposed zebrafish embryos to 12 or 15 µM phenanthrene from 6 to 72 h post fertilization (hpf) and demonstrated that, in conjunction with pericardial edema and bradycardia, several genes (fdft1 and hmgcra) in the cholesterol biosynthetic pathway were significantly altered. When embryos were pretreated with a cholesterol solution from 6 to 24 hpf followed by exposure to phenanthrene from 24 to 48 hpf, the effects of phenanthrene on heart rate were partially mitigated. Despite changes in gene expression, whole-mount in situ staining of cholesterol was not significantly affected in embryos exposed to phenanthrene ranging in stage from 24 to 72 hpf. However, the 2-dimensional yolk area was significantly increased with phenanthrene exposure at 72 hpf, suggesting that lipid transport from the yolk to the developing embryo was impaired. Environ Toxicol Chem 2021;40:1586-1595. © 2021 SETAC.
Collapse
Affiliation(s)
- Victoria McGruer
- Environmental Toxicology Graduate Program, University of California, Riverside, California, USA
- Department of Environmental Sciences, University of California, Riverside, California, USA
| | - Philip Tanabe
- Environmental Toxicology Graduate Program, University of California, Riverside, California, USA
- Department of Environmental Sciences, University of California, Riverside, California, USA
| | - Sara M F Vliet
- Environmental Toxicology Graduate Program, University of California, Riverside, California, USA
- Department of Environmental Sciences, University of California, Riverside, California, USA
| | - Subham Dasgupta
- Department of Environmental Sciences, University of California, Riverside, California, USA
| | - Le Qian
- College of Sciences, China Agricultural University, Beijing, China
| | - David C Volz
- Department of Environmental Sciences, University of California, Riverside, California, USA
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, California, USA
| |
Collapse
|
36
|
Paul S, Bravo Vázquez LA, Uribe SP, Manzanero Cárdenas LA, Ruíz Aguilar MF, Chakraborty S, Sharma A. Roles of microRNAs in carbohydrate and lipid metabolism disorders and their therapeutic potential. Biochimie 2021; 187:83-93. [PMID: 34082043 DOI: 10.1016/j.biochi.2021.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/19/2021] [Accepted: 05/25/2021] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are small (∼21 nucleotides), endogenous, non-coding RNA molecules implicated in the post-transcriptional gene regulation performed through target mRNA cleavage or translational inhibition. In recent years, several investigations have demonstrated that miRNAs are involved in regulating both carbohydrate and lipid homeostasis in humans and other organisms. Moreover, it has been observed that the dysregulation of these metabolism-related miRNAs leads to the development of several metabolic disorders, such as type 2 diabetes, obesity, nonalcoholic fatty liver, insulin resistance, and hyperlipidemia. Hence, in this current review, with the aim to impulse the research arena of the micro-transcriptome implications in vital metabolic pathways as well as to highlight the remarkable potential of miRNAs as therapeutic targets for metabolic disorders in humans, we provide an overview of the regulatory roles of metabolism-associated miRNAs in humans and murine models.
Collapse
Affiliation(s)
- Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc, San Pablo, CP 76130, Querétaro, Mexico.
| | - Luis Alberto Bravo Vázquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc, San Pablo, CP 76130, Querétaro, Mexico
| | - Samantha Pérez Uribe
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc, San Pablo, CP 76130, Querétaro, Mexico
| | - Luis Aarón Manzanero Cárdenas
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Ciudad de Mexico, Calle del Puente, No. 222 Col. Ejidos de Huipulco, Tlalpan, CP 14380, Mexico City, Mexico
| | - María Fernanda Ruíz Aguilar
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Ciudad de Mexico, Calle del Puente, No. 222 Col. Ejidos de Huipulco, Tlalpan, CP 14380, Mexico City, Mexico
| | - Samik Chakraborty
- Division of Nephrology, Boston Children's Hospital, Harvard Medical School, MA, 02115, USA
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc, San Pablo, CP 76130, Querétaro, Mexico.
| |
Collapse
|
37
|
Su X, Nie M, Zhang G, Wang B. MicroRNA in cardio-metabolic disorders. Clin Chim Acta 2021; 518:134-141. [PMID: 33823149 DOI: 10.1016/j.cca.2021.03.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/15/2021] [Accepted: 03/29/2021] [Indexed: 12/23/2022]
Abstract
Hyperlipidemia is correlated with several health problems that contain the combination of hypertension, obesity, and diabetes mellitus, which are grouped as metabolic syndrome. Though the lipid-lowering agents, such as statins, which aims to reduce serum low-density lipoprotein cholesterol (LDL-C) has been considered as one of the most effective therapeutics in treating hyperlipidemia and coronary artery diseases, the persistent high risk of atherosclerosis after intensive lipid-lowering therapy could not be simply explained by hyperlipidemia. Therefore, it is necessary to identify novel factors to manage treatment and to predict risk of cardio-metabolic events. Endeavor over the past several decades has demonstrated the important functions of microRNAs in modulating macrophage activation, lipid metabolism, and hyperlipidemia. In the present review, we summarized the recent findings which highlighted the contributions of microRNAs in regulating serum lipid metabolism. Furthermore, we also provided the potential mechanisms whereby microRNAs controlled lipid metabolism and the risk of cardio-metabolic disorders, which could help us to identify microRNAs as a promising therapeutic target for hyperlipidemia and its related cardiovascular diseases.
Collapse
Affiliation(s)
- Xin Su
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Meiling Nie
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China
| | - Guoming Zhang
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China.
| | - Bin Wang
- Department of Cardiology, The Xiamen Cardiovascular Hospital of Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
38
|
Kinoo SM, Chuturgoon AA, Singh B, Nagiah S. Hepatic expression of cholesterol regulating genes favour increased circulating low-density lipoprotein in HIV infected patients with gallstone disease: a preliminary study. BMC Infect Dis 2021; 21:294. [PMID: 33757439 PMCID: PMC7986270 DOI: 10.1186/s12879-021-05977-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/04/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND HIV endemic populations are displaying higher incidence of metabolic disorders. HIV and the standard treatment are both associated with altered lipid and cholesterol metabolism, however gallstone disease (a cholesterol related disorder) in Sub-Saharan African populations is rarely investigated. METHODS This study sought to evaluate hepatic expression of key genes in cholesterol metabolism (LDLr, HMGCR, ABCA1) and transcriptional regulators of these genes (microRNA-148a, SREBP2) in HIV positive patients on antiretroviral therapy presenting with gallstones. Liver biopsies from HIV positive patients (cases: n = 5) and HIV negative patients (controls: n = 5) were analysed for miR-148a and mRNA expression using quantitative PCR. RESULTS Circulating total cholesterol was elevated in the HIV positive group with significantly elevated LDL-c levels(3.16 ± 0.64 mmol/L) relative to uninfected controls (2.10 ± 0.74 mmol/L; p = 0.04). A scavenging receptor for LDL-c, LDLr was significantly decreased (0.18-fold) in this group, possibly contributing to higher LDL-c levels. Transcriptional regulator of LDLr, SREBP2 was also significantly lower (0.13-fold) in HIV positive patients. Regulatory microRNA, miR-148a-3p, was reduced in HIV positive patients (0.39-fold) with a concomitant increase in target ABCA1 (1.5-fold), which regulates cholesterol efflux. CONCLUSIONS Collectively these results show that HIV patients on antiretroviral therapy display altered hepatic regulation of cholesterol metabolizing genes, reducing cholesterol scavenging, and increasing cholesterol efflux.
Collapse
Affiliation(s)
- Suman Mewa Kinoo
- Department of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Science, University of KwaZulu Natal, Durban, Glenwood 4041 South Africa
- Discipline of General Surgery, School of Clinical Medicine, College of Health Science, University of KwaZulu Natal, Umbilo, Durban, 4001 South Africa
| | - Anil A. Chuturgoon
- Department of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Science, University of KwaZulu Natal, Durban, Glenwood 4041 South Africa
| | - Bugwan Singh
- Discipline of General Surgery, School of Clinical Medicine, College of Health Science, University of KwaZulu Natal, Umbilo, Durban, 4001 South Africa
| | - Savania Nagiah
- Department of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Science, University of KwaZulu Natal, Durban, Glenwood 4041 South Africa
- Present address: Department of Human Biology, Medical Programme, Faculty of Health Sciences, Nelson Mandela University Missionvale Campus, Room 113, 2nd floor, Road, Salt Pan, Bethelsdorp, Port Elizabeth, 6059 South Africa
| |
Collapse
|
39
|
Javadifar A, Rastgoo S, Banach M, Jamialahmadi T, Johnston TP, Sahebkar A. Foam Cells as Therapeutic Targets in Atherosclerosis with a Focus on the Regulatory Roles of Non-Coding RNAs. Int J Mol Sci 2021; 22:ijms22052529. [PMID: 33802600 PMCID: PMC7961492 DOI: 10.3390/ijms22052529] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 02/24/2021] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis is a major cause of human cardiovascular disease, which is the leading cause of mortality around the world. Various physiological and pathological processes are involved, including chronic inflammation, dysregulation of lipid metabolism, development of an environment characterized by oxidative stress and improper immune responses. Accordingly, the expansion of novel targets for the treatment of atherosclerosis is necessary. In this study, we focus on the role of foam cells in the development of atherosclerosis. The specific therapeutic goals associated with each stage in the formation of foam cells and the development of atherosclerosis will be considered. Processing and metabolism of cholesterol in the macrophage is one of the main steps in foam cell formation. Cholesterol processing involves lipid uptake, cholesterol esterification and cholesterol efflux, which ultimately leads to cholesterol equilibrium in the macrophage. Recently, many preclinical studies have appeared concerning the role of non-encoding RNAs in the formation of atherosclerotic lesions. Non-encoding RNAs, especially microRNAs, are considered regulators of lipid metabolism by affecting the expression of genes involved in the uptake (e.g., CD36 and LOX1) esterification (ACAT1) and efflux (ABCA1, ABCG1) of cholesterol. They are also able to regulate inflammatory pathways, produce cytokines and mediate foam cell apoptosis. We have reviewed important preclinical evidence of their therapeutic targeting in atherosclerosis, with a special focus on foam cell formation.
Collapse
Affiliation(s)
- Amin Javadifar
- Department of Allergy and Immunology, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran; (A.J.); (S.R.)
| | - Sahar Rastgoo
- Department of Allergy and Immunology, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran; (A.J.); (S.R.)
| | - Maciej Banach
- Department of Hypertension, Chair of Nephrology and Hypertension, Medical University of Lodz, 93338 Lodz, Poland
- Polish Mother’s Memorial Hospital Research Institute (PMMHRI), 93338 Lodz, Poland
- Correspondence: (M.B.); or (A.S.); Tel.: +98-5118002288 (M.B. & A.S.); Fax: +98-5118002287 (M.B. & A.S.)
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan 9479176135, Iran;
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
| | - Thomas P. Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108-2718, USA;
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad 9177948954, Iran
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 9177948564, Iran
- Correspondence: (M.B.); or (A.S.); Tel.: +98-5118002288 (M.B. & A.S.); Fax: +98-5118002287 (M.B. & A.S.)
| |
Collapse
|
40
|
Pereira-da-Silva T, Napoleão P, Costa MC, Gabriel AF, Selas M, Silva F, Enguita FJ, Ferreira RC, Carmo MM. Cigarette Smoking, miR-27b Downregulation, and Peripheral Artery Disease: Insights into the Mechanisms of Smoking Toxicity. J Clin Med 2021; 10:jcm10040890. [PMID: 33671744 PMCID: PMC7926909 DOI: 10.3390/jcm10040890] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/14/2021] [Accepted: 02/17/2021] [Indexed: 12/26/2022] Open
Abstract
Cigarette smoking is a risk factor for the development of peripheral artery disease (PAD), although the proatherosclerotic mediators of cigarette smoking are not entirely known. We explored whether circulating microRNAs (miRNAs) are dysregulated in cigarette smokers and associated with the presence of PAD. Ninety-four participants were recruited, including 58 individuals without and 36 with PAD, 51 never smokers, 28 prior smokers, and 15 active smokers. The relative expression of six circulating miRNAs with distinct biological roles (miR-21, miR-27b, miR-29a, miR-126, miR-146, and miR-218) was assessed. Cigarette smoking was associated with the presence of PAD in multivariate analysis. Active smokers, but not prior smokers, presented miR-27b downregulation and higher leukocyte, neutrophil, and lymphocyte counts; miR-27b expression levels were independently associated with active smoking. Considering the metabolic and/or inflammatory abnormalities induced by cigarette smoking, miR-27b was independently associated with the presence of PAD and downregulated in patients with more extensive PAD. In conclusion, the atheroprotective miR-27b was downregulated in active smokers, but not in prior smokers, and miR-27b expression was independently associated with the presence of PAD. These unreported data suggest that the proatherogenic properties of cigarette smoking are mediated by a downregulation of miR-27b, which may be attenuated by smoking cessation.
Collapse
Affiliation(s)
- Tiago Pereira-da-Silva
- Department of Cardiology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, 1169-024 Lisbon, Portugal; (M.S.); (F.S.); (R.C.F.)
- NOVA Doctoral School, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- Correspondence: ; Tel.: +351-919908505
| | - Patrícia Napoleão
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (P.N.); (M.C.C.); (A.F.G.); (F.J.E.)
| | - Marina C. Costa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (P.N.); (M.C.C.); (A.F.G.); (F.J.E.)
- Cardiomics Unit, Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - André F. Gabriel
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (P.N.); (M.C.C.); (A.F.G.); (F.J.E.)
- Cardiomics Unit, Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Mafalda Selas
- Department of Cardiology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, 1169-024 Lisbon, Portugal; (M.S.); (F.S.); (R.C.F.)
| | - Filipa Silva
- Department of Cardiology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, 1169-024 Lisbon, Portugal; (M.S.); (F.S.); (R.C.F.)
| | - Francisco J. Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (P.N.); (M.C.C.); (A.F.G.); (F.J.E.)
- Cardiomics Unit, Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Rui Cruz Ferreira
- Department of Cardiology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, 1169-024 Lisbon, Portugal; (M.S.); (F.S.); (R.C.F.)
| | - Miguel Mota Carmo
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal;
| |
Collapse
|
41
|
Pereira-da-Silva T, Napoleão P, Costa MC, Gabriel AF, Selas M, Silva F, Enguita FJ, Ferreira RC, Carmo MM. Circulating miRNAs Are Associated with the Systemic Extent of Atherosclerosis: Novel Observations for miR-27b and miR-146. Diagnostics (Basel) 2021; 11:318. [PMID: 33669374 PMCID: PMC7920287 DOI: 10.3390/diagnostics11020318] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/01/2021] [Accepted: 02/12/2021] [Indexed: 12/18/2022] Open
Abstract
The mechanisms that regulate the systemic extent of atherosclerosis are not fully understood. We investigated whether the expression of circulating miRNAs is associated with the extent of stable atherosclerosis to a single territory or multiple territories (polyvascular) and with the severity of atherosclerosis in each territory. Ninety-four participants were prospectively recruited and divided into five age- and sex-matched groups: presenting no atherosclerosis, isolated coronary atherosclerosis, coronary and lower extremity atherosclerosis, coronary and carotid atherosclerosis, and atherosclerosis of the coronary, lower extremity, and carotid territories. The expression of six circulating miRNAs with distinct biological roles was assessed. The expression of miR-27b and miR-146 differed across groups (p < 0.05), showing a decrease in the presence of atherosclerosis, particularly in the three territories. miR-27b and miR-146 expression decreased in association with a higher severity of coronary, lower extremity, and carotid atherosclerosis. Polyvascular atherosclerosis involving the three territories was independently associated with a decreased miR-27b and miR-146 expression. Both miRNAs presented an area under the curve of ≥0.75 for predicting polyvascular atherosclerosis involving the three territories. To conclude, miR-27b and miR-146 were associated with the presence of severe polyvascular atherosclerosis and with the atherosclerosis severity in each territory. Both are potential biomarkers of severe systemic atherosclerosis.
Collapse
Affiliation(s)
- Tiago Pereira-da-Silva
- Department of Cardiology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, 1169-024 Lisbon, Portugal; (M.S.); (F.S.); (R.C.F.)
- NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Patrícia Napoleão
- Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (P.N.); (M.C.C.); (A.F.G.); (F.J.E.)
| | - Marina C. Costa
- Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (P.N.); (M.C.C.); (A.F.G.); (F.J.E.)
- Cardiomics Unit, Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - André F. Gabriel
- Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (P.N.); (M.C.C.); (A.F.G.); (F.J.E.)
- Cardiomics Unit, Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Mafalda Selas
- Department of Cardiology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, 1169-024 Lisbon, Portugal; (M.S.); (F.S.); (R.C.F.)
| | - Filipa Silva
- Department of Cardiology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, 1169-024 Lisbon, Portugal; (M.S.); (F.S.); (R.C.F.)
| | - Francisco J. Enguita
- Instituto de Medicina Molecular João Lobo Antunes, Universidade de Lisboa, 1649-028 Lisbon, Portugal; (P.N.); (M.C.C.); (A.F.G.); (F.J.E.)
- Cardiomics Unit, Centro Cardiovascular da Universidade de Lisboa, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisbon, Portugal
| | - Rui Cruz Ferreira
- Department of Cardiology, Hospital de Santa Marta, Centro Hospitalar Universitário de Lisboa Central, 1169-024 Lisbon, Portugal; (M.S.); (F.S.); (R.C.F.)
| | - Miguel Mota Carmo
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1150-082 Lisbon, Portugal;
| |
Collapse
|
42
|
Citrin KM, Fernández-Hernando C, Suárez Y. MicroRNA regulation of cholesterol metabolism. Ann N Y Acad Sci 2021; 1495:55-77. [PMID: 33521946 DOI: 10.1111/nyas.14566] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/27/2020] [Accepted: 01/09/2021] [Indexed: 12/17/2022]
Abstract
MicroRNAs are small noncoding RNAs that regulate gene expression at the posttranscriptional level. Since many microRNAs have multiple mRNA targets, they are uniquely positioned to regulate the expression of several molecules and pathways simultaneously. For example, the multiple stages of cholesterol metabolism are heavily influenced by microRNA activity. Understanding the scope of microRNAs that control this pathway is highly relevant to diseases of perturbed cholesterol metabolism, most notably cardiovascular disease (CVD). Atherosclerosis is a common cause of CVD that involves inflammation and the accumulation of cholesterol-laden cells in the arterial wall. However, several different cell types participate in atherosclerosis, and perturbations in cholesterol homeostasis may have unique effects on the specialized functions of these various cell types. Therefore, our review discusses the current knowledge of microRNA-mediated control of cholesterol homeostasis, followed by speculation as to how these microRNA-mRNA target interactions might have distinctive effects on different cell types that participate in atherosclerosis.
Collapse
Affiliation(s)
- Kathryn M Citrin
- Department of Comparative Medicine and Department of Pathology, Integrative Cell Signaling and Neurobiology of Metabolism Program, and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut.,Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| | - Carlos Fernández-Hernando
- Department of Comparative Medicine and Department of Pathology, Integrative Cell Signaling and Neurobiology of Metabolism Program, and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut
| | - Yajaira Suárez
- Department of Comparative Medicine and Department of Pathology, Integrative Cell Signaling and Neurobiology of Metabolism Program, and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
43
|
Coordinated regulation of miR-27 by insulin/CREB/Hippo contributes to insulin resistance. Cell Signal 2021; 81:109930. [PMID: 33515696 DOI: 10.1016/j.cellsig.2021.109930] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 11/23/2022]
Abstract
MicroRNA-27 is a critical non-coding metabolic gene that is often aberrantly overexpressed in non-alcoholic fatty livers (NAFLD). However, the pathogenic role of miR-27 in NAFLD remains unknown. In this study, we attempted to identify the mechanism by which miR-27 was regulated in the context of insulin resistance, a predisposed metabolic disorder in NAFLD. Our data from cell culture and animal studies showed that insulin, CREB, and Hippo signalings coordinately regulated miR-27. First, miR-27 was upregulated in palmitate-treated cells and high fat diet-fed mouse livers, which exhibited insulin resistance and CREB overexpression. Second, miR-27 peaked in the mouse liver at the post-absorptive phase when CREB activity was increased. Also, miR-27 was increased rapidly in cell lines when CREB was deactivated by insulin treatment. Third, miR-27 was decreased in cultured cells when CREB was downregulated by siRNA or metformin treatment. In contrast, Forskolin-mediated activation of CREB promoted miR-27 expression. Fourth, Hippo signaling repressed miR-27 in a CREB-independent manner: miR-27 was reduced in cells at full confluence but was inhibited in cells transfected with siRNA against Lats2 and Nf2, which were two positive regulators of Hippo signaling. Lastly, bioinformatics and luciferase assay showed that miR-27 inhibited Akt phosphorylation by targeting Pdpk1 and Pik3r1. Overexpression of miR-27 impaired Akt phosphorylation in cell lines and primary mouse hepatocytes upon insulin stimulation. In conclusion, our data suggest that insulin, CREB, and Hippo signalings contribute to aberrant miR-27 overexpression and eventually lead to insulin resistance in NAFLD.
Collapse
|
44
|
Fumonisin B 1 alters global m6A RNA methylation and epigenetically regulates Keap1-Nrf2 signaling in human hepatoma (HepG2) cells. Arch Toxicol 2021; 95:1367-1378. [PMID: 33496827 DOI: 10.1007/s00204-021-02986-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/14/2021] [Indexed: 12/29/2022]
Abstract
FB1 is a common contaminant of cereal grains that affects human and animal health. It has become increasingly evident that epigenetic changes are implicated in FB1 toxicity. N6-methyladenosine (m6A), the most abundant post-transcriptional RNA modification, is influenced by fluctuations in redox status. Since oxidative stress is a characteristic of FB1 exposure, we determined if there is cross-talk between oxidative stress and m6A in FB1-exposed HepG2 cells. Briefly, HepG2 cells were treated with FB1 (0, 5, 50, 100, 200 µM; 24 h) and ROS, LDH and m6A levels were quantified. qPCR was used to determine the expression of m6A modulators, Nrf2, Keap1 and miR-27b, while western blotting was used to quantify Keap1 and Nrf2 protein expression. Methylation status of Keap1 and Nrf2 promoters was assessed and RNA immunoprecipitation quantified m6A-Keap1 and m6A-Nrf2 levels. FB1 induced accumulation of intracellular ROS (p ≤ 0.001) and LDH leakage (p ≤ 0.001). Elevated m6A levels (p ≤ 0.05) were accompanied by an increase in m6A "writers" [METLL3 (p ≤ 0.01) and METLL14 (p ≤ 0.01)], and "readers" [YTHDF1 (p ≤ 0.01), YTHDF2 (p ≤ 0.01), YTHDF3 (p ≤ 0.001) and YTHDC2 (p ≤ 0.01)] and a decrease in m6A "erasers" [ALKBH5 (p ≤ 0.001) and FTO (p ≤ 0.001)]. Hypermethylation and hypomethylation occurred at Keap1 (p ≤ 0.001) and Nrf2 (p ≤ 0.001) promoters, respectively. MiR-27b was reduced (p ≤ 0.001); however, m6A-Keap1 (p ≤ 0.05) and m6A-Nrf2 (p ≤ 0.01) levels were upregulated. This resulted in the ultimate decrease in Keap1 (p ≤ 0.001) and increase in Nrf2 (p ≤ 0.001) expression. Our findings reveal that m6A RNA methylation can be modified by exposure to FB1, and a cross-talk between m6A and redox regulators does occur.
Collapse
|
45
|
MicroRNA-19b predicts widespread pain and posttraumatic stress symptom risk in a sex-dependent manner following trauma exposure. Pain 2021; 161:47-60. [PMID: 31569141 DOI: 10.1097/j.pain.0000000000001709] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Posttraumatic widespread pain (PTWP) and posttraumatic stress symptoms (PTSS) are frequent comorbid sequelae of trauma that occur at different rates in women and men. We sought to identify microRNA (miRNA) that may contribute to sex-dependent differences in vulnerability to these outcomes. Monte Carlo simulations (x10,000) identified miRNA in which predicted targeting of PTWP or PTSS genes was most enriched. Expression of the leading candidate miRNA to target PTWP/PTSS-related genes, miR-19b, has been shown to be influenced by estrogen and stress exposure. We evaluated whether peritraumatic miR-19b blood expression levels predicted PTWP and PTSS development in women and men experiencing trauma of motor vehicle collision (n = 179) and in women experiencing sexual assault trauma (n = 74). A sex-dependent relationship was observed between miR-19b expression levels and both PTWP (β = -2.41, P = 0.034) and PTSS (β = -3.01, P = 0.008) development 6 months after motor vehicle collision. The relationship between miR-19b and PTSS (but not PTWP) was validated in sexual assault survivors (β = -0.91, P = 0.013). Sex-dependent expression of miR-19b was also observed in blood and nervous tissue from 2 relevant animal models. Furthermore, in support of increasing evidence indicating a role for the circadian rhythm (CR) in PTWP and PTSS pathogenesis, miR-19b targets were enriched in CR gene transcripts. Human cohort and in vitro analyses assessing miR-19b regulation of key CR transcripts, CLOCK and RORA, supported the potential importance of miR-19b to regulating the CR pathway. Together, these results highlight the potential role that sex-dependent expression of miR-19b might play in PTWP and PTSS development after trauma/stress exposure.
Collapse
|
46
|
Loss of miR-23b/27b/24-1 Cluster Impairs Glucose Tolerance via Glycolysis Pathway in Mice. Int J Mol Sci 2021; 22:ijms22020550. [PMID: 33430468 PMCID: PMC7826568 DOI: 10.3390/ijms22020550] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/23/2020] [Accepted: 01/05/2021] [Indexed: 01/07/2023] Open
Abstract
Alterations in miRNAs are associated with many metabolic disorders, such as type 2 diabetes (T2DM). The miR-23b/27b/24-1 cluster contains miR-23b, miR-27b, and miR-24-1, which are located within 881 bp on chromosome 9. Studies examining the roles of miR-23b, miR-27b, and miR-24-1 have demonstrated their multifaceted functions in variable metabolic disorders. However, their joint roles in metabolism in vivo remain elusive. To investigate this subject, we constructed miR-23b/27b/24-1 cluster knockout (KO) mice. Compared with wild-type (WT) mice, the KO mice exhibited impaired glucose tolerance, which was accompanied by a reduction in the respiratory exchange rate (RER). These alterations were more noticeable after a high-fat diet (HFD) induction. Hepatic metabolomic results showed decreased expression of reduced nicotinamide adenine dinucleotide (NADH), nicotinamide adenine dinucleotide (NAD), phosphoenolpyruvic acid (PEP), and phosphoric acid, which are involved in the glycolysis pathway. The transcriptomic results indicated that genes involved in glycolysis showed a downregulation trend. qPCR and Western blot revealed that pyruvate kinase (PKLR), the key rate-limiting enzyme in glycolysis, was significantly reduced after the deletion of the miR-23b/27b/24-1 cluster. Together, these observations suggest that the miR-23b/27b/24-1 cluster is involved in the regulation of glucose homeostasis via the glycolysis pathway.
Collapse
|
47
|
Research Trends in the Efficacy of Stem Cell Therapy for Hepatic Diseases Based on MicroRNA Profiling. Int J Mol Sci 2020; 22:ijms22010239. [PMID: 33383629 PMCID: PMC7795580 DOI: 10.3390/ijms22010239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 02/06/2023] Open
Abstract
Liver diseases, despite the organ’s high regenerative capacity, are caused by several environmental factors and persistent injuries. Their optimal treatment is a liver transplantation. However, this option is limited by donor shortages and immune response issues. Therefore, many researchers have been interested in identifying the therapeutic potential in treating irreversible liver damage based on stem cells and developing suitable therapeutic agents. Mesenchymal stem cells (MSCs), which are representative multipotent stem cells, are known to be highly potential stem cell therapy compared to other stem cells in the clinical trial worldwide. MSCs have therapeutic potentials for several hepatic diseases such as anti-fibrosis, proliferation of hepatocytes injured, anti-inflammation, autophagic mechanism, and inactivation of hepatic stellate cells. There are much data regarding clinical treatments, however, the data for examining the efficacy of stem cell treatment and the correlation between the stem cell engraftment and the efficacy in liver diseases is limited due to the lack of monitoring system for treatment effectiveness. Therefore, this paper introduces the characteristics of microRNAs (miRNAs) and liver disease-specific miRNA profiles, and the possibility of a biomarker that miRNA can monitor stem cell treatment efficacy by comparing miRNAs changed in liver diseases following stem cell treatment. Additionally, we also discuss the miRNA profiling in liver diseases when treated with stem cell therapy and suggest the candidate miRNAs that can be used as a biomarker that can monitor treatment efficacy in liver diseases based on MSCs therapy.
Collapse
|
48
|
Guo J, Mei H, Sheng Z, Meng Q, Véniant MM, Yin H. Hsa-miRNA-23a-3p promotes atherogenesis in a novel mouse model of atherosclerosis. J Lipid Res 2020; 61:1764-1775. [PMID: 33008925 PMCID: PMC7707179 DOI: 10.1194/jlr.ra120001121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Of the known regulators of atherosclerosis, miRNAs have been demonstrated to play critical roles in lipoprotein homeostasis and plaque formation. Here, we generated a novel animal model of atherosclerosis by knocking in LDLRW483X in C57BL/6 mice, as the W483X mutation in LDLR is considered the most common newly identified pathogenic mutation in Chinese familial hypercholesterolemia (FH) individuals. Using the new in vivo mouse model combined with a well-established atherosclerotic in vitro human cell model, we identified a novel atherosclerosis-related miRNA, miR-23a-3p, by microarray analysis of mouse aortic tissue specimens and human aortic endothelial cells (HAECs). miR-23a-3p was consistently downregulated in both models, which was confirmed by qPCR. Bioinformatics analysis and further validation experiments revealed that the TNFα-induced protein 3 (TNFAIP3) gene was the key target of miR-23a-3p. The miR-23a-3p-related functional pathways were then analyzed in HAECs. Collectively, the present results suggest that miR-23a-3p regulates inflammatory and apoptotic pathways in atherogenesis by targeting TNFAIP3 through the NF-κB and p38/MAPK signaling pathways.
Collapse
Affiliation(s)
- Jiayan Guo
- Amgen Biopharmaceutical Research and Development (Shanghai) Co., Ltd., Shanghai, China
| | - Hanbing Mei
- Amgen Biopharmaceutical Research and Development (Shanghai) Co., Ltd., Shanghai, China
| | - Zhen Sheng
- Amgen Biopharmaceutical Research and Development (Shanghai) Co., Ltd., Shanghai, China
| | - Qingyuan Meng
- Amgen Biopharmaceutical Research and Development (Shanghai) Co., Ltd., Shanghai, China
| | - Murielle M Véniant
- Department of Cardiometabolic Disorders, Amgen Research, Amgen Inc., Thousand Oaks, CA, USA.
| | - Hong Yin
- Amgen Biopharmaceutical Research and Development (Shanghai) Co., Ltd., Shanghai, China.
| |
Collapse
|
49
|
Yang Z, Qin W, Huo J, Zhuo Q, Wang J, Wang L. MiR-22 modulates the expression of lipogenesis-related genes and promotes hepatic steatosis in vitro. FEBS Open Bio 2020; 11:322-332. [PMID: 33159388 PMCID: PMC7780092 DOI: 10.1002/2211-5463.13026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/15/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is highly correlated with obesity, and lifestyle changes to reduce weight remain the main therapeutic approach. The noncoding RNA miR-22 has previously been reported to be highly abundant in the sera of NAFLD patients. In addition, miR-22 directly targets peroxisome proliferative-activated receptor, Pgc-1α, peroxisome proliferator-activated receptor α, and sirtuin 1 (Sirt1), which are important factors involved in fatty acid metabolism. Given that miR-22 directly targets genes involved in the control of metabolism and obesity, we investigated whether miR-22 contributes to metabolic alterations induced by obesity. We observed increased expression of miR-22, decreased expression of Sirt1, and alterations in the expression of adipogenesis-related genes in a mouse model of obesity and a human hepatocyte cell line. We identified that miR-22 and the 3'-UTR of Sirt1 are complementary. Mutation of the complementary fragment abolishes the ability of miR-22 to regulate the Sirt1 gene. Furthermore, treatment of hepatic steatosis cells with miR-22 mimics or inhibitors showed that miR-22 can promote hepatic steatosis, and miR-22 inhibitors effectively reduced triglyceride levels without affecting cell activity. Finally, we validated that miR-22 has similar effects on downstream lipid metabolism-related genes. Our data reveal the pathways and mechanisms through which miR-22 regulates lipid metabolism and suggest that miR-22 inhibitors may have potential as candidate drugs for NAFLD and obesity.
Collapse
Affiliation(s)
- Zhuo Yang
- National Institute for Nutrition and HealthChinese Center for Disease Control and PreventionKey Laboratory of Trace Element and NutritionNational Health Commission of ChinaBeijingChina
| | - Wen Qin
- National Institute for Nutrition and HealthChinese Center for Disease Control and PreventionKey Laboratory of Trace Element and NutritionNational Health Commission of ChinaBeijingChina
| | - Junsheng Huo
- National Institute for Nutrition and HealthChinese Center for Disease Control and PreventionKey Laboratory of Trace Element and NutritionNational Health Commission of ChinaBeijingChina
| | - Qin Zhuo
- National Institute for Nutrition and HealthChinese Center for Disease Control and PreventionKey Laboratory of Trace Element and NutritionNational Health Commission of ChinaBeijingChina
| | - Jingbo Wang
- National Institute for Nutrition and HealthChinese Center for Disease Control and PreventionKey Laboratory of Trace Element and NutritionNational Health Commission of ChinaBeijingChina
| | - Liyuan Wang
- National Institute for Nutrition and HealthChinese Center for Disease Control and PreventionKey Laboratory of Trace Element and NutritionNational Health Commission of ChinaBeijingChina
| |
Collapse
|
50
|
Benito-Vicente A, Uribe KB, Rotllan N, Ramírez CM, Jebari-Benslaiman S, Goedeke L, Canfrán-Duque A, Galicia-García U, Saenz De Urturi D, Aspichueta P, Suárez Y, Fernández-Hernando C, Martín C. miR-27b Modulates Insulin Signaling in Hepatocytes by Regulating Insulin Receptor Expression. Int J Mol Sci 2020; 21:ijms21228675. [PMID: 33212990 PMCID: PMC7698485 DOI: 10.3390/ijms21228675] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023] Open
Abstract
Insulin resistance (IR) is one of the key contributing factors in the development of type 2 diabetes mellitus (T2DM). However, the molecular mechanisms leading to IR are still unclear. The implication of microRNAs (miRNAs) in the pathophysiology of multiple cardiometabolic pathologies, including obesity, atherosclerotic heart failure and IR, has emerged as a major focus of interest in recent years. Indeed, upregulation of several miRNAs has been associated with obesity and IR. Among them, miR-27b is overexpressed in the liver in patients with obesity, but its role in IR has not yet been thoroughly explored. In this study, we investigated the role of miR-27b in regulating insulin signaling in hepatocytes, both in vitro and in vivo. Therefore, assessment of the impact of miR-27b on insulin resistance through the hepatic tissue is of special importance due to the high expression of miR-27b in the liver together with its known role in regulating lipid metabolism. Notably, we found that miR-27b controls post-transcriptional expression of numerous components of the insulin signaling pathway including the insulin receptor (INSR) and insulin receptor substrate 1 (IRS1) in human hepatoma cells. These results were further confirmed in vivo showing that overexpression and inhibition of hepatic miR-27 enhances and suppresses hepatic INSR expression and insulin sensitivity, respectively. This study identified a novel role for miR-27 in regulating insulin signaling, and this finding suggests that elevated miR-27 levels may contribute to early development of hepatic insulin resistance.
Collapse
Affiliation(s)
- Asier Benito-Vicente
- Biofisika Institute (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain; (A.B.-V.); (K.B.U.); (S.J.-B.); (U.G.-G.)
| | - Kepa B. Uribe
- Biofisika Institute (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain; (A.B.-V.); (K.B.U.); (S.J.-B.); (U.G.-G.)
| | - Noemi Rotllan
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT 06520-8066, USA; (N.R.); (C.M.R.); (L.G.); (A.C.-D.); (Y.S.)
| | - Cristina M. Ramírez
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT 06520-8066, USA; (N.R.); (C.M.R.); (L.G.); (A.C.-D.); (Y.S.)
- IMDEA Research Institute of Food and Health Sciences, 28049 Madrid, Spain
| | - Shifa Jebari-Benslaiman
- Biofisika Institute (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain; (A.B.-V.); (K.B.U.); (S.J.-B.); (U.G.-G.)
| | - Leigh Goedeke
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT 06520-8066, USA; (N.R.); (C.M.R.); (L.G.); (A.C.-D.); (Y.S.)
| | - Alberto Canfrán-Duque
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT 06520-8066, USA; (N.R.); (C.M.R.); (L.G.); (A.C.-D.); (Y.S.)
| | - Unai Galicia-García
- Biofisika Institute (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain; (A.B.-V.); (K.B.U.); (S.J.-B.); (U.G.-G.)
- Fundación Biofisika Bizkaia, 48940 Leioa, Spain
| | - Diego Saenz De Urturi
- Department of Physiology, Faculty of Medicine and Nursing, University of Basque Country UPV/EHU, 48940 Leioa, Spain; (D.S.D.U.); (P.A.)
| | - Patricia Aspichueta
- Department of Physiology, Faculty of Medicine and Nursing, University of Basque Country UPV/EHU, 48940 Leioa, Spain; (D.S.D.U.); (P.A.)
| | - Yajaira Suárez
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT 06520-8066, USA; (N.R.); (C.M.R.); (L.G.); (A.C.-D.); (Y.S.)
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Integrative Cell Signaling and Neurobiology of Metabolism Program, Department of Comparative Medicine and Department of Pathology, Yale University School of Medicine, New Haven, CT 06520-8066, USA; (N.R.); (C.M.R.); (L.G.); (A.C.-D.); (Y.S.)
- Correspondence: (C.F.-H.); (C.M.)
| | - Cesar Martín
- Biofisika Institute (UPV/EHU, CSIC) and Departamento de Bioquímica, Universidad del País Vasco, 48940 Leioa, Spain; (A.B.-V.); (K.B.U.); (S.J.-B.); (U.G.-G.)
- Correspondence: (C.F.-H.); (C.M.)
| |
Collapse
|