1
|
Kumar N, Sharma S, Kumar R, Meena VK, Barua S. Evolution of drug resistance against antiviral agents that target cellular factors. Virology 2024; 600:110239. [PMID: 39276671 DOI: 10.1016/j.virol.2024.110239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/29/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Antiviral drugs have classically been developed by directly disrupting the functions of viral proteins. However, this strategy has been largely unsuccessful due to the rapid generation of viral escape mutants. It has been well established that as compared to the virus-centric approach, the strategy of developing antiviral drugs by targeting host-dependency factors (HDFs) minimizes drug resistance. However, recent reports have indicated that drug resistance against some of the host-targeting antiviral agents can in fact occur under some circumstances. Long-term selection pressure of a host-targeting antiviral agent may induce the virus to use an alternate cellular factor or alters its affinity towards the target that confers resistance. Alternatively, virus may synchronize its life cycle with the patterns of drug therapy. In addition, virus may subvert host's immune system to perpetuate under the limiting conditions of the targeted cellular factor. This review describes novel potential mechanisms that may account for the acquiring resistance against agents that target HDFs.
Collapse
Affiliation(s)
- Naveen Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India.
| | - Shalini Sharma
- Department of Veterinary Physiology and Biochemistry, College of Veterinary Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology (SKAUST), Jammu, India.
| | - Ram Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | | | - Sanjay Barua
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| |
Collapse
|
2
|
Mittal P, Khandelwal N, Chander Y, Verma A, Kumar R, Putatunda C, Barua S, Gulati BR, Kumar N. p38-MAPK is prerequisite for the synthesis of SARS-CoV-2 protein. Virusdisease 2024; 35:329-337. [PMID: 39071879 PMCID: PMC11269555 DOI: 10.1007/s13337-024-00873-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/15/2024] [Indexed: 07/30/2024] Open
Abstract
The inhibition of p38 mitogen-activated protein kinase (p38-MAPK) by small molecule chemical inhibitors was previously shown to impair severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication, however, mechanisms underlying antiviral activity remains unexplored. In this study, reduced growth of SARS-CoV-2 in p38-α knockout Vero cells, together with enhanced viral yield in cells transfected with construct expressing p38α, suggested that p38-MAPK is essential for the propagation of SARS-CoV-2. The SARS-CoV-2 was also shown to induce phosphorylation (activation) of p38, at time when transcription/translational activities are considered to be at the peak levels. Further, we demonstrated that p38 supports viral RNA/protein synthesis without affecting viral attachment, entry, and budding in the target cells. In conclusion, we provide mechanistic insights on the regulation of SARS-CoV-2 replication by p38 MAPK.
Collapse
Affiliation(s)
- Priyasi Mittal
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001 India
- Om Sterling Global University (OSGU), Hisar, Haryana 125001 India
| | - Nitin Khandelwal
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001 India
| | - Yogesh Chander
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001 India
| | - Assim Verma
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001 India
| | - Ram Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001 India
| | | | - Sanjay Barua
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001 India
| | - Baldev Raj Gulati
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001 India
| | - Naveen Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana 125001 India
| |
Collapse
|
3
|
Schreiber A, Rodner F, Oberberg N, Anhlan D, Bletz S, Mellmann A, Planz O, Ludwig S. The host-targeted antiviral drug Zapnometinib exhibits a high barrier to the development of SARS-CoV-2 resistance. Antiviral Res 2024; 225:105840. [PMID: 38438015 DOI: 10.1016/j.antiviral.2024.105840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024]
Abstract
Host targeting antiviral drugs (HTA) are directed against cellular mechanisms which can be exploited by viruses. These mechanisms are essential for viral replication, because missing functions cannot be compensated by the virus. However, this assumption needs experimental proof. Here we compared the HTA Zapnometinib (ZMN), with direct acting antivirals (DAA) (Remdesivir (RDV), Molnupiravir (MPV), Nirmatrelvir (NTV), Ritonavir (RTV), Paxlovid PAX)), in terms of their potency to induce reduced drug susceptibilities in SARS-CoV-2. During serial passage of δ-B1.617.2 adaptation to all DAAs occurred, while the inhibitory capacity of ZMN was not altered. Known single nucleotide polymorphisms (SNPs) responsible for partial resistances were found for RDV, NTV and PAX. Additionally, the high mutagenic potential of MPV was confirmed and decreased drug efficacies were found for the first time. Reduced DAA efficacy did not alter the inhibitory potential of ZMN. These results show that ZMN confers a high barrier towards the development of viral resistance and has the potential to act against partially DAA-insensitive viruses.
Collapse
Affiliation(s)
- André Schreiber
- Institute of Virology (IVM), University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Franziska Rodner
- Institute of Virology (IVM), University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Nicole Oberberg
- Institute of Virology (IVM), University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Darisuren Anhlan
- Institute of Virology (IVM), University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Stefan Bletz
- Institute of Hygiene, University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Alexander Mellmann
- Institute of Hygiene, University Hospital Muenster, University of Muenster, Muenster, Germany
| | - Oliver Planz
- Interfaculty Institute for Cell Biology, Department of Immunology, Eberhard Karls University Tuebingen, Germany
| | - Stephan Ludwig
- Institute of Virology (IVM), University Hospital Muenster, University of Muenster, Muenster, Germany.
| |
Collapse
|
4
|
Casiano Matos J, Harichandran K, Tang J, Sviridov DO, Sidoti Migliore G, Suzuki M, Olano LR, Hobbs A, Kumar A, Paskel MU, Bonsignori M, Dearborn AD, Remaley AT, Marcotrigiano J. Hepatitis C virus E1 recruits high-density lipoprotein to support infectivity and evade antibody recognition. J Virol 2024; 98:e0084923. [PMID: 38174935 PMCID: PMC10804985 DOI: 10.1128/jvi.00849-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
Hepatitis C virus (HCV) is a member of the Flaviviridae family; however, unlike other family members, the HCV virion has an unusually high lipid content. HCV has two envelope glycoproteins, E1 and E2. E2 contributes to receptor binding, cell membrane attachment, and immune evasion. In contrast, the functions of E1 are poorly characterized due, in part, to challenges in producing the protein. This manuscript describes the expression and purification of a soluble E1 ectodomain (eE1) that is recognized by conformational, human monoclonal antibodies. eE1 forms a complex with apolipoproteins AI and AII, cholesterol, and phospholipids by recruiting high-density lipoprotein (HDL) from the extracellular media. We show that HDL binding is a function specific to eE1 and HDL hinders recognition of E1 by a neutralizing monoclonal antibody. Either low-density lipoprotein or HDL increases the production and infectivity of cell culture-produced HCV, but E1 preferentially selects HDL, influencing both viral life cycle and antibody evasion.IMPORTANCEHepatitis C virus (HCV) infection is a significant burden on human health, but vaccine candidates have yet to provide broad protection against this infection. We have developed a method to produce high quantities of soluble E1 or E2, the viral proteins located on the surface of HCV. HCV has an unusually high lipid content due to the recruitment of apolipoproteins. We found that E1 (and not E2) preferentially recruits host high-density lipoprotein (HDL) extracellularly. This recruitment of HDL by E1 prevents binding of E1 by a neutralizing antibody and furthermore prevents antibody-mediated neutralization of the virus. By comparison, low-density lipoprotein does not protect the virus from antibody-mediated neutralization. Our findings provide mechanistic insight into apolipoprotein recruitment, which may be critical for vaccine development.
Collapse
Affiliation(s)
- Jennifer Casiano Matos
- Structural Virology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kaneemozhe Harichandran
- Structural Virology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Jingrong Tang
- Lipoprotein Metabolism Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Denis O. Sviridov
- Lipoprotein Metabolism Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Giacomo Sidoti Migliore
- Translational Immunobiology Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Motoshi Suzuki
- Protein Chemistry Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Lisa R. Olano
- Protein Chemistry Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Alvaro Hobbs
- Structural Virology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ashish Kumar
- Structural Virology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Myeisha U. Paskel
- Structural Virology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Mattia Bonsignori
- Translational Immunobiology Unit, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Altaira D. Dearborn
- Structural Virology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Alan T. Remaley
- Lipoprotein Metabolism Laboratory, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Joseph Marcotrigiano
- Structural Virology Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Bartosh UI, Dome AS, Zhukova NV, Karitskaya PE, Stepanov GA. CRISPR/Cas9 as a New Antiviral Strategy for Treating Hepatitis Viral Infections. Int J Mol Sci 2023; 25:334. [PMID: 38203503 PMCID: PMC10779197 DOI: 10.3390/ijms25010334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Hepatitis is an inflammatory liver disease primarily caused by hepatitis A (HAV), B (HBV), C (HCV), D (HDV), and E (HEV) viruses. The chronic forms of hepatitis resulting from HBV and HCV infections can progress to cirrhosis or hepatocellular carcinoma (HCC), while acute hepatitis can lead to acute liver failure, sometimes resulting in fatality. Viral hepatitis was responsible for over 1 million reported deaths annually. The treatment of hepatitis caused by viral infections currently involves the use of interferon-α (IFN-α), nucleoside inhibitors, and reverse transcriptase inhibitors (for HBV). However, these methods do not always lead to a complete cure for viral infections, and chronic forms of the disease pose significant treatment challenges. These facts underscore the urgent need to explore novel drug developments for the treatment of viral hepatitis. The discovery of the CRISPR/Cas9 system and the subsequent development of various modifications of this system have represented a groundbreaking advance in the quest for innovative strategies in the treatment of viral infections. This technology enables the targeted disruption of specific regions of the genome of infectious agents or the direct manipulation of cellular factors involved in viral replication by introducing a double-strand DNA break, which is targeted by guide RNA (spacer). This review provides a comprehensive summary of our current knowledge regarding the application of the CRISPR/Cas system in the regulation of viral infections caused by HAV, HBV, and HCV. It also highlights new strategies for drug development aimed at addressing both acute and chronic forms of viral hepatitis.
Collapse
Affiliation(s)
| | | | | | | | - Grigory A. Stepanov
- The Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk 630090, Russia; (U.I.B.); (A.S.D.); (N.V.Z.); (P.E.K.)
| |
Collapse
|
6
|
Toon K, Kalemera MD, Palor M, Rose NJ, Takeuchi Y, Grove J, Mattiuzzo G. GB Virus B and Hepatitis C Virus, Distantly Related Hepaciviruses, Share an Entry Factor, Claudin-1. J Virol 2023; 97:e0046923. [PMID: 37310242 PMCID: PMC10373534 DOI: 10.1128/jvi.00469-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/10/2023] [Indexed: 06/14/2023] Open
Abstract
Due to increased and broadened screening efforts, the last decade has seen a rapid expansion in the number of viral species classified into the Hepacivirus genus. Conserved genetic features of hepaciviruses suggest that they have undergone specific adaptation and have evolved to hijack similar host proteins for efficient propagation in the liver. Here, we developed pseudotyped viruses to elucidate the entry factors of GB virus B (GBV-B), the first hepacivirus described in an animal after hepatitis C virus (HCV). GBV-B-pseudotyped viral particles (GBVBpp) were shown to be uniquely sensitive to the sera of tamarins infected with GBV-B, validating their usefulness as a surrogate for GBV-B entry studies. We screened GBVBpp infection of human hepatoma cell lines that were CRISPR/Cas9 engineered to ablate the expression of individual HCV receptors/entry factors and found that claudin-1 is essential for GBV-B infection, indicating the GBV-B and HCV share an entry factor. Our data suggest that claudin-1 facilitates HCV and GBV-B entry through distinct mechanisms since the former requires the first extracellular loop and the latter is reliant on a C-terminal region containing the second extracellular loop. The observation that claudin-1 is an entry factor shared between these two hepaciviruses suggests that the tight junction protein is of fundamental mechanistic importance during cell entry. IMPORTANCE Hepatitis C virus (HCV) is a major public health burden; approximately 58 million individuals have chronic HCV infection and are at risk of developing cirrhosis and liver cancer. To achieve the World Health Organization's target of eliminating hepatitis by 2030, new therapeutics and vaccines are needed. Understanding how HCV enters cells can inform the design of new vaccines and treatments targeting the first stage of infection. However, the HCV cell entry mechanism is complex and has been sparsely described. Studying the entry of related hepaciviruses will increase the knowledge of the molecular mechanisms of the first stages of HCV infection, such as membrane fusion, and inform structure-guided HCV vaccine design; in this work, we have identified a protein, claudin-1, that facilitates the entry of an HCV-related hepacivirus but with a mechanism not described for HCV. Similar work on other hepaciviruses may unveil a commonality of entry factors and, possibly, new mechanisms.
Collapse
Affiliation(s)
- Kamilla Toon
- Science Research and Innovation, Medicines and Healthcare Products Regulatory Agency, South Mimms, United Kingdom
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Mphatso D. Kalemera
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Machaela Palor
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Nicola J. Rose
- Science Research and Innovation, Medicines and Healthcare Products Regulatory Agency, South Mimms, United Kingdom
| | - Yasuhiro Takeuchi
- Science Research and Innovation, Medicines and Healthcare Products Regulatory Agency, South Mimms, United Kingdom
- Division of Infection and Immunity, University College London, London, United Kingdom
| | - Joe Grove
- Division of Infection and Immunity, University College London, London, United Kingdom
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Giada Mattiuzzo
- Science Research and Innovation, Medicines and Healthcare Products Regulatory Agency, South Mimms, United Kingdom
| |
Collapse
|
7
|
Gomez-Escobar E, Roingeard P, Beaumont E. Current Hepatitis C Vaccine Candidates Based on the Induction of Neutralizing Antibodies. Viruses 2023; 15:1151. [PMID: 37243237 PMCID: PMC10220683 DOI: 10.3390/v15051151] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The introduction of direct-acting antivirals (DAAs) has revolutionized hepatitis C treatment. Short courses of treatment with these drugs are highly beneficial to patients, eliminating hepatitis C virus (HCV) without adverse effects. However, this outstanding success is tempered by the continuing difficulty of eradicating the virus worldwide. Thus, access to an effective vaccine against HCV is strongly needed to reduce the burden of the disease and contribute to the elimination of viral hepatitis. The recent failure of a T-cell vaccine based on the use of viral vectors expressing the HCV non-structural protein sequences to prevent chronic hepatitis C in drug users has pointed out that the induction of neutralizing antibodies (NAbs) will be essential in future vaccine candidates. To induce NAbs, vaccines must contain the main target of this type of antibody, the HCV envelope glycoproteins (E1 and E2). In this review, we summarize the structural regions in E1 and E2 proteins that are targeted by NAbs and how these proteins are presented in the vaccine candidates currently under development.
Collapse
Affiliation(s)
| | - Philippe Roingeard
- Inserm U1259 MAVIVH, Université de Tours and CHRU de Tours, 37000 Tours, France;
| | - Elodie Beaumont
- Inserm U1259 MAVIVH, Université de Tours and CHRU de Tours, 37000 Tours, France;
| |
Collapse
|
8
|
A single mutation in the E2 glycoprotein of hepatitis C virus broadens the claudin specificity for its infection. Sci Rep 2022; 12:20243. [PMID: 36424447 PMCID: PMC9691748 DOI: 10.1038/s41598-022-23824-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 11/07/2022] [Indexed: 11/27/2022] Open
Abstract
Entry of the hepatitis C virus (HCV) into host cells is a multistep process mediated by several host factors, including a tight junction protein claudin-1 (CLDN1). We repeatedly passaged HCV-JFH1-tau, an HCV substrain with higher infectivity, on Huh7.5.1-8 cells. A multi-passaged HCV-JFH1-tau lot was infectious to CLDN1-defective S7-A cells, non-permissive to original HCV-JFH1-tau infection. We identified a single mutation, M706L, in the E2 glycoprotein of the HCV-JFH1-tau lot as an essential mutation for infectivity to S7-A cells. The pseudovirus JFH1/M706L mutant could not infect human embryonic kidney 293 T (HEK293T) cells lacking CLDN family but infected HEK293T cells expressing CLDN1, CLDN6, or CLDN9. Thus, this mutant virus could utilize CLDN1, and other CLDN6 and CLDN9, making HCV possible to infect cells other than hepatocytes. iPS cells, one of the stem cells, do not express CLDN1 but express CLDN6 and other host factors required for HCV infection. We confirmed that the HCV-JFH1-tau-derived mutant with an M706L mutation infected iPS cells in a CLDN6-dependent manner. These results demonstrated that a missense mutation in E2 could broaden the CLDN member specificity for HCV infection. HCV may change its receptor requirement through a single amino acid mutation and infect non-hepatic cells.
Collapse
|
9
|
WTAP Targets the METTL3 m 6A-Methyltransferase Complex to Cytoplasmic Hepatitis C Virus RNA to Regulate Infection. J Virol 2022; 96:e0099722. [PMID: 36314819 PMCID: PMC9683008 DOI: 10.1128/jvi.00997-22] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Modification of the hepatitis C virus (HCV) positive-strand RNA genome by N6-methyladenosine (m6A) regulates the viral life cycle. This life cycle takes place solely in the cytoplasm, while m6A addition on cellular mRNA takes place in the nucleus. Thus, the mechanisms by which m6A is deposited on the viral RNA have been unclear. In this work, we find that m6A modification of HCV RNA by the m6A-methyltransferase proteins methyltransferase-like 3 and 14 (METTL3 and METTL14) is regulated by Wilms' tumor 1-associating protein (WTAP). WTAP, a predominantly nuclear protein, is an essential member of the cellular mRNA m6A-methyltransferase complex and known to target METTL3 to mRNA. We found that HCV infection induces localization of WTAP to the cytoplasm. Importantly, we found that WTAP is required for both METTL3 interaction with HCV RNA and m6A modification across the viral RNA genome. Further, we found that WTAP, like METTL3 and METTL14, negatively regulates the production of infectious HCV virions, a process that we have previously shown is regulated by m6A. Excitingly, WTAP regulation of both HCV RNA m6A modification and virion production was independent of its ability to localize to the nucleus. Together, these results reveal that WTAP is critical for HCV RNA m6A modification by METTL3 and METTL14 in the cytoplasm. IMPORTANCE Positive-strand RNA viruses such as HCV represent a significant global health burden. Previous work has described that HCV RNA contains the RNA modification m6A and how this modification regulates viral infection. Yet, how this modification is targeted to HCV RNA has remained unclear due to the incompatibility of the nuclear cellular processes that drive m6A modification with the cytoplasmic HCV life cycle. In this study, we present evidence for how m6A modification is targeted to HCV RNA in the cytoplasm by a mechanism in which WTAP recruits the m6A-methyltransferase METTL3 to HCV RNA. This targeting strategy for m6A modification of cytoplasmic RNA viruses is likely relevant for other m6A-modified positive-strand RNA viruses with cytoplasmic life cycles such as enterovirus 71 and SARS-CoV-2 and provides an exciting new target for potential antiviral therapies.
Collapse
|
10
|
Host Cell Receptors Implicated in the Cellular Tropism of BVDV. Viruses 2022; 14:v14102302. [PMID: 36298858 PMCID: PMC9607657 DOI: 10.3390/v14102302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 12/02/2022] Open
Abstract
Bovine viral diarrhea virus (BVDV) is one of the most hazardous viruses, which causes huge economic losses in the cattle industry around the world. In recent years, there has been a continuous increase in the diversity of pestivirus worldwide. As a member of the genus Pestivirus in the Flaviviridae family, BVDV has a wide range of host animals including cattle, goat, sheep, pig, camel and other cloven-hoofed animals, and it has multi-tissue tropism as well. The recognition of their permissive cells by viruses via interaction with the cellular receptors is a prerequisite for successful infection. So far, little is known about the cellular receptors essential for BVDV entry and their detailed functions during BVDV infection. Thus, discovery of the cellular receptors involved in the entry of BVDV and other pestiviruses is significant for development of the novel intervention. The viral envelope glycoprotein Erns and E2 are crucial determinants of the cellular tropism of BVDV. The cellular proteins bound with Erns and E2 potentially participate in BVDV entry, and their abundance might determine the cellular tropism of BVDV. Here, we summarize current knowledge regarding the cellular molecules have been described for BVDV entry, such as, complement regulatory protein 46 (CD46), heparan sulfate (HS), the low-density lipoprotein (LDL) receptor, and a disintegrin and metalloproteinase 17 (ADAM17). Furthermore, we focus on their implications of the recently identified cellular receptors for pestiviruses in BVDV life cycle. This knowledge provides a theoretical basis for BVDV prevention and treatment by targeting the cellular receptors essential for BVDV infection.
Collapse
|
11
|
Chander Y, Kumar R, Verma A, Khandelwal N, Nagori H, Singh N, Sharma S, Pal Y, Puvar A, Pandit R, Shukla N, Chavada P, Tripathi BN, Barua S, Kumar N. Resistance evolution against host-directed antiviral agents: Buffalopox virus switches to use p38-ϒ under long-term selective pressure of an inhibitor targeting p38-α. Mol Biol Evol 2022; 39:6668988. [PMID: 35975687 PMCID: PMC9435063 DOI: 10.1093/molbev/msac177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Host-dependency factors have increasingly been targeted to minimize antiviral drug resistance. In this study, we have demonstrated that inhibition of p38 mitogen-activated protein kinase (a cellular protein) suppresses buffalopox virus (BPXV) protein synthesis by targeting p38-MNK1-eIF4E signaling pathway. In order to provide insights into the evolution of drug resistance, we selected resistant mutants by long-term sequential passages (P; n = 60) in the presence of p38 inhibitor (SB239063). The P60-SB239063 virus exhibited significant resistance to SB239063 as compared to the P60-Control virus. To provide mechanistic insights on the acquisition of resistance by BPXV-P60-SB239063, we generated p38-α and p38-ϒ (isoforms of p38) knockout Vero cells by CRISPR/Cas9-mediated genome editing. It was demonstrated that unlike the wild type (WT) virus which is dependent on p38-α isoform, the resistant virus (BPXV-P60-SB239063) switches over to use p38-ϒ so as to efficiently replicate in the target cells. This is a rare evidence wherein a virus was shown to bypass the dependency on a critical cellular factor under selective pressure of a drug.
Collapse
Affiliation(s)
- Yogesh Chander
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India.,Department of Bio and Nano Technology, Guru Jambeshwar University of Science and Technology, Hisar, Haryana, India
| | - Ram Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Assim Verma
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India.,Department of Bio and Nano Technology, Guru Jambeshwar University of Science and Technology, Hisar, Haryana, India
| | - Nitin Khandelwal
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Himanshu Nagori
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Namita Singh
- Department of Bio and Nano Technology, Guru Jambeshwar University of Science and Technology, Hisar, Haryana, India
| | - Shalini Sharma
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hiar, Haryana, India
| | - Yash Pal
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Apurvasinh Puvar
- Gujarat Biotechnology Research Centre, Department of Science & Technology, Government of Gujarat, India
| | - Rameshchandra Pandit
- Gujarat Biotechnology Research Centre, Department of Science & Technology, Government of Gujarat, India
| | - Nitin Shukla
- Gujarat Biotechnology Research Centre, Department of Science & Technology, Government of Gujarat, India
| | - Priyank Chavada
- Gujarat Biotechnology Research Centre, Department of Science & Technology, Government of Gujarat, India
| | - Bhupendra N Tripathi
- Gujarat Biotechnology Research Centre, Department of Science & Technology, Government of Gujarat, India
| | - Sanjay Barua
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Naveen Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| |
Collapse
|
12
|
Sacco MT, Bland KM, Horner SM. WTAP targets the METTL3 m 6 A-methyltransferase complex to cytoplasmic hepatitis C virus RNA to regulate infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.06.27.497872. [PMID: 35794896 PMCID: PMC9258289 DOI: 10.1101/2022.06.27.497872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
UNLABELLED Modification of the hepatitis C virus (HCV) positive-strand RNA genome by N6-methyladenosine (m 6 A) regulates the viral lifecycle. This lifecycle takes place solely in the cytoplasm, while m 6 A addition on cellular mRNA takes place in the nucleus. Thus, the mechanisms by which m 6 A is deposited on the viral RNA have been unclear. In this work, we find that m 6 A modification of HCV RNA by the m 6 A-methyltransferase proteins METTL3 and METTL14 is regulated by WTAP. WTAP, a predominantly nuclear protein, is an essential member of the cellular mRNA m 6 A-methyltransferase complex and known to target METTL3 to mRNA. We found that HCV infection induces localization of WTAP to the cytoplasm. Importantly, we found that WTAP is required for both METTL3 interaction with HCV RNA and for m 6 A modification across the viral RNA genome. Further, we found that WTAP, like METTL3 and METTL14, negatively regulates the production of infectious HCV virions, a process that we have previously shown is regulated by m 6 A. Excitingly, WTAP regulation of both HCV RNA m 6 A modification and virion production were independent of its ability to localize to the nucleus. Together, these results reveal that WTAP is critical for HCV RNA m 6 A modification by METTL3 and METTL14 in the cytoplasm. IMPORTANCE Positive-strand RNA viruses such as HCV represent a significant global health burden. Previous work has described how HCV RNA contains the RNA modification m 6 A and how this modification regulates viral infection. Yet, how this modification is targeted to HCV RNA has remained unclear due to the incompatibility of the nuclear cellular processes that drive m 6 A modification with the cytoplasmic HCV lifecycle. In this study, we present evidence for how m 6 A modification is targeted to HCV RNA in the cytoplasm by a mechanism in which WTAP recruits the m 6 A-methyltransferase METTL3 to HCV RNA. This targeting strategy for m 6 A modification of cytoplasmic RNA viruses is likely relevant for other m 6 A-modified positive-strand RNA viruses with cytoplasmic lifecycles such as enterovirus 71 and SARS-CoV-2 and provides an exciting new target for potential antiviral therapies.
Collapse
|
13
|
Investigating virus-host cell interactions: Comparative binding forces between hepatitis C virus-like particles and host cell receptors in 2D and 3D cell culture models. J Colloid Interface Sci 2021; 592:371-384. [PMID: 33677197 DOI: 10.1016/j.jcis.2021.02.067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 12/25/2022]
Abstract
Cell cultures have been successfully used to study hepatitis C virus (HCV) for many years. However, most work has been done using traditional, 2-dimensional (2D) cell cultures (cells grown as a monolayer in growth flasks or dishes). Studies have shown that when cells are grown suspended in an extra-cellular-matrix-like material, they develop into spherical, 'organoid' arrangements of cells (3D growth) that display distinct differences in morphological and functional characteristics compared to 2D cell cultures. In liver organoids, one key difference is the development of clearly differentiated apical and basolateral surfaces separated and maintained by cellular tight junctions. This phenomenon, termed polarity, is vital to normal barrier function of hepatocytes in vivo. It has also been shown that viruses, and virus-like particles, interact very differently with cells derived from 2D as compared to 3D cell cultures, bringing into question the usefulness of 2D cell cultures to study virus-host cell interactions. Here, we investigate differences in cellular architecture as a function of cell culture system, using confocal scanning laser microscopy, and determine differences in binding interactions between HCV virus-like particles (VLPs) and their cognate receptors in the different cell culture systems using atomic force microscopy (AFM). We generated organoid cultures that were polarized, as determined by localization of key apical and basolateral markers. We found that, while uptake of HCV VLPs by both 2D and 3D Huh7 cells was observed by flow cytometry, binding interactions between HCV VLPs and cells were measurable by AFM only on polarized cells. The work presented here adds to the growing body of research suggesting that polarized cell systems are more suitable for the study of HCV infection and dynamics than non-polarized systems.
Collapse
|
14
|
Chander Y, Kumar R, Khandelwal N, Singh N, Shringi BN, Barua S, Kumar N. Role of p38 mitogen-activated protein kinase signalling in virus replication and potential for developing broad spectrum antiviral drugs. Rev Med Virol 2021; 31:1-16. [PMID: 33450133 DOI: 10.1002/rmv.2217] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 12/11/2022]
Abstract
Mitogen-activated protein kinases (MAPKs) play a key role in complex cellular processes such as proliferation, development, differentiation, transformation and apoptosis. Mammals express at least four distinctly regulated groups of MAPKs which include extracellular signal-related kinases (ERK)-1/2, p38 proteins, Jun amino-terminal kinases (JNK1/2/3) and ERK5. p38 MAPK is activated by a wide range of cellular stresses and modulates activity of several downstream kinases and transcription factors which are involved in regulating cytoskeleton remodeling, cell cycle modulation, inflammation, antiviral response and apoptosis. In viral infections, activation of cell signalling pathways is part of the cellular defense mechanism with the basic aim of inducing an antiviral state. However, viruses can exploit enhanced cell signalling activities to support various stages of their replication cycles. Kinase activity can be inhibited by small molecule chemical inhibitors, so one strategy to develop antiviral drugs is to target these cellular signalling pathways. In this review, we provide an overview on the current understanding of various cellular and viral events regulated by the p38 signalling pathway, with a special emphasis on targeting these events for antiviral drug development which might identify candidates with broad spectrum activity.
Collapse
Affiliation(s)
- Yogesh Chander
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India.,Department of Bio and Nano Technology, Guru Jambeshwar University of Science and Technology, Hisar, Haryana, India
| | - Ram Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India.,Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, India
| | - Nitin Khandelwal
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India.,Department of Biotechnology, GLA University, Mathura, India
| | - Namita Singh
- Department of Bio and Nano Technology, Guru Jambeshwar University of Science and Technology, Hisar, Haryana, India
| | - Brij Nandan Shringi
- Department of Veterinary Microbiology and Biotechnology, Rajasthan University of Veterinary and Animal Sciences, Bikaner, India
| | - Sanjay Barua
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India
| | - Naveen Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, Haryana, India
| |
Collapse
|
15
|
Khandelwal N, Chander Y, Kumar R, Riyesh T, Dedar RK, Kumar M, Gulati BR, Sharma S, Tripathi BN, Barua S, Kumar N. Antiviral activity of Apigenin against buffalopox: Novel mechanistic insights and drug-resistance considerations. Antiviral Res 2020; 181:104870. [PMID: 32707051 DOI: 10.1016/j.antiviral.2020.104870] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 12/13/2022]
Abstract
We describe herein that Apigenin, which is a dietary flavonoid, exerts a strong in vitro and in ovo antiviral efficacy against buffalopox virus (BPXV). Apigenin treatment was shown to inhibit synthesis of viral DNA, mRNA and proteins, without affecting other steps of viral life cycle such as attachment, entry and budding. Although the major mode of antiviral action of Apigenin was shown to be mediated via targeting certain cellular factors, a modest inhibitory effect of Apigenin was also observed directly on viral polymerase. We also evaluated the selection of drug-resistant virus variants under long-term selection pressure of Apigenin. Wherein Apigenin-resistant mutants were not observed up to ~ P20 (passage 20), a significant resistance was observed to the antiviral action of Apigenin at ~ P30. However, a high degree resistance could not be observed even up to P60. To the best of our knowledge, this is the first report describing in vitro and in ovo antiviral efficacy of Apigenin against poxvirus infection. The study also provides mechanistic insights on the antiviral activity of Apigenin and selection of potential Apigenin-resistant mutants upon long-term culture.
Collapse
Affiliation(s)
- Nitin Khandelwal
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India; Department of Biotechnology, GLA University, Mathura, UP, India
| | - Yogesh Chander
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Ram Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Thachamvally Riyesh
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Ramesh Kumar Dedar
- Equine Production Campus, ICAR-National Research Centre on Equines, Hisar, India
| | - Manoj Kumar
- Department of Mathematics and Statistics, College of Basic Science and Humanities, CCS Haryana Agricultural University, Hisar, Haryana, India
| | - Baldev R Gulati
- Equine Health Unit, ICAR-National Research Centre on Equines, Hisar, India
| | - Shalini Sharma
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | - Bhupendra N Tripathi
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Sanjay Barua
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India.
| | - Naveen Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India.
| |
Collapse
|
16
|
Abstract
Antiviral drugs have traditionally been developed by directly targeting essential viral components. However, this strategy often fails due to the rapid generation of drug-resistant viruses. Recent genome-wide approaches, such as those employing small interfering RNA (siRNA) or clustered regularly interspaced short palindromic repeats (CRISPR) or those using small molecule chemical inhibitors targeting the cellular "kinome," have been used successfully to identify cellular factors that can support virus replication. Since some of these cellular factors are critical for virus replication, but are dispensable for the host, they can serve as novel targets for antiviral drug development. In addition, potentiation of immune responses, regulation of cytokine storms, and modulation of epigenetic changes upon virus infections are also feasible approaches to control infections. Because it is less likely that viruses will mutate to replace missing cellular functions, the chance of generating drug-resistant mutants with host-targeted inhibitor approaches is minimized. However, drug resistance against some host-directed agents can, in fact, occur under certain circumstances, such as long-term selection pressure of a host-directed antiviral agent that can allow the virus the opportunity to adapt to use an alternate host factor or to alter its affinity toward the target that confers resistance. This review describes novel approaches for antiviral drug development with a focus on host-directed therapies and the potential mechanisms that may account for the acquisition of antiviral drug resistance against host-directed agents.
Collapse
|
17
|
Hepatitis C Virus Entry: An Intriguingly Complex and Highly Regulated Process. Int J Mol Sci 2020; 21:ijms21062091. [PMID: 32197477 PMCID: PMC7140000 DOI: 10.3390/ijms21062091] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/15/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) is a major cause of chronic hepatitis and liver disease worldwide. Its tissue and species tropism are largely defined by the viral entry process that is required for subsequent productive viral infection and establishment of chronic infection. This review provides an overview of the viral and host factors involved in HCV entry into hepatocytes, summarizes our understanding of the molecular mechanisms governing this process and highlights the therapeutic potential of host-targeting entry inhibitors.
Collapse
|
18
|
Use of Modified Clostridium perfringens Enterotoxin Fragments for Claudin Targeting in Liver and Skin Cells. Int J Mol Sci 2019; 20:ijms20194774. [PMID: 31561440 PMCID: PMC6801472 DOI: 10.3390/ijms20194774] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/11/2019] [Accepted: 09/22/2019] [Indexed: 12/15/2022] Open
Abstract
Claudins regulate paracellular permeability in different tissues. The claudin-binding domain of Clostridium perfringens enterotoxin (cCPE) is a known modulator of a claudin subset. However, it does not efficiently bind to claudin-1 (Cldn1). Cldn1 is a pharmacological target since it is (i) an essential co-receptor for hepatitis C virus (HCV) infections and (ii) a key element of the epidermal barrier limiting drug delivery. In this study, we investigated the potential of a Cldn1-binding cCPE mutant (i) to inhibit HCV entry into hepatocytes and (ii) to open the epidermal barrier. Inhibition of HCV infection by blocking of Cldn1 with cCPE variants was analyzed in the Huh7.5 hepatoma cell line. A model of reconstructed human epidermis was used to investigate modulation of the epidermal barrier by cCPE variants. In contrast to cCPEwt, the Cldn1-binding cCPE-S305P/S307R/S313H inhibited infection of Huh7.5 cells with HCV in a dose-dependent manner. In addition, TJ modulation by cCPE variant-mediated targeting of Cldn1 and Cldn4 opened the epidermal barrier in reconstructed human epidermis. cCPE variants are potent claudin modulators. They can be applied for mechanistic in vitro studies and might also be used as biologics for therapeutic claudin targeting including HCV treatment (host-targeting antivirals) and improvement of drug delivery.
Collapse
|
19
|
Zeisel MB, Dhawan P, Baumert TF. Tight junction proteins in gastrointestinal and liver disease. Gut 2019; 68:547-561. [PMID: 30297438 PMCID: PMC6453741 DOI: 10.1136/gutjnl-2018-316906] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/16/2018] [Accepted: 08/19/2018] [Indexed: 12/11/2022]
Abstract
Over the past two decades a growing body of evidence has demonstrated an important role of tight junction (TJ) proteins in the physiology and disease biology of GI and liver disease. On one side, TJ proteins exert their functional role as integral proteins of TJs in forming barriers in the gut and the liver. Furthermore, TJ proteins can also be expressed outside TJs where they play important functional roles in signalling, trafficking and regulation of gene expression. A hallmark of TJ proteins in disease biology is their functional role in epithelial-to-mesenchymal transition. A causative role of TJ proteins has been established in the pathogenesis of colorectal cancer and gastric cancer. Among the best characterised roles of TJ proteins in liver disease biology is their function as cell entry receptors for HCV-one of the most common causes of hepatocellular carcinoma. At the same time TJ proteins are emerging as targets for novel therapeutic approaches for GI and liver disease. Here we review our current knowledge of the role of TJ proteins in the pathogenesis of GI and liver disease biology and discuss their potential as therapeutic targets.
Collapse
Affiliation(s)
- Mirjam B. Zeisel
- Inserm U1052, CNRS UMR 5286, Cancer Research Center of Lyon (CRCL), Université de Lyon (UCBL), Lyon, France
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE
- VA Nebraska-Western Iowa Health Care System, Omaha, NE
| | - Thomas F. Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France
- Université de Strasbourg, Strasbourg, France
- Institut Hospitalo-Universitaire, Pôle hépato-digestif, Nouvel Hôpital Civil, Strasbourg, France
| |
Collapse
|
20
|
Moustafa RI, Dubuisson J, Lavie M. Function of the HCV E1 envelope glycoprotein in viral entry and assembly. Future Virol 2019. [DOI: 10.2217/fvl-2018-0180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
HCV envelope glycoproteins, E1 and E2, are multifunctional proteins. Until recently, E2 glycoprotein was thought to be the fusion protein and was the focus of investigations. However, the recently obtained partial structures of E2 and E1 rather support a role for E1 alone or in association with E2 in HCV fusion. Moreover, they suggest that HCV harbors a new fusion mechanism, distinct from that of other members of the Flaviviridae family. In this context, E1 aroused a renewed interest. Recent functional characterizations of E1 revealed a more important role than previously thought in entry and assembly. Thus, E1 is involved in the viral genome encapsidation step and influences the association of the virus with lipoprotein components. Moreover, E1 modulates HCV–receptor interaction and participates in a late entry step potentially fusion. In this review, we outline our current knowledge on E1 functions in HCV assembly and entry.
Collapse
Affiliation(s)
- Rehab I Moustafa
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 8204 – CIIL– Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
- Department of Microbial Biotechnology, Genetic Engineering & Biotechnology Division, National Research Center, Dokki, Cairo, Egypt
| | - Jean Dubuisson
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 8204 – CIIL– Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Muriel Lavie
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR 8204 – CIIL– Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| |
Collapse
|
21
|
Kumar N, Khandelwal N, Kumar R, Chander Y, Rawat KD, Chaubey KK, Sharma S, Singh SV, Riyesh T, Tripathi BN, Barua S. Inhibitor of Sarco/Endoplasmic Reticulum Calcium-ATPase Impairs Multiple Steps of Paramyxovirus Replication. Front Microbiol 2019; 10:209. [PMID: 30814986 PMCID: PMC6381065 DOI: 10.3389/fmicb.2019.00209] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/24/2019] [Indexed: 12/31/2022] Open
Abstract
Sarco/endoplasmic reticulum calcium-ATPase (SERCA) is a membrane-bound cytosolic enzyme which is known to regulate the uptake of calcium into the sarco/endoplasmic reticulum. Herein, we demonstrate for the first time that SERCA can also regulate virus replication. Treatment of Vero cells with SERCA-specific inhibitor (Thapsigargin) at a concentration that is nontoxic to the cells significantly reduced Peste des petits ruminants virus (PPRV) and Newcastle disease virus (NDV) replication. Conversely, overexpression of SERCA rescued the inhibitory effect of Thapsigargin on virus replication. PPRV and NDV infection induced SERCA expression in Vero cells, which could be blocked by Thapsigargin. Besides inducing enhanced formation of cytoplasmic foci, Thapsigargin was shown to block viral entry into the target cells as well as synthesis of viral proteins. Furthermore, NDV was shown to acquire significant resistance to Thapsigargin upon long-term passage (P) in Vero cells. As compared to the P0 and P70-Control, the fusion (F) protein of P70-Thapsigargin virus exhibited a unique mutation at amino acid residue 104 (E104K), whereas no Thapsigargin-associated mutations were observed in HN gene. To the best of our knowledge, this is the first report describing the virus-supportive role of SERCA and a rare report suggesting that viruses may acquire resistance even in the presence of an inhibitor that targets a cellular factor.
Collapse
Affiliation(s)
- Naveen Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Nitin Khandelwal
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Ram Kumar
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Yogesh Chander
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Krishan Dutt Rawat
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | | | - Shalini Sharma
- Department of Veterinary Physiology and Biochemistry, Lala Lajpat Rai University of Veterinary and Animal Sciences, Hisar, India
| | | | - Thachamvally Riyesh
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Bhupendra N Tripathi
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| | - Sanjay Barua
- National Centre for Veterinary Type Cultures, ICAR-National Research Centre on Equines, Hisar, India
| |
Collapse
|
22
|
Similarities and Differences Between HCV Pseudoparticle (HCVpp) and Cell Culture HCV (HCVcc) in the Study of HCV. Methods Mol Biol 2019; 1911:33-45. [PMID: 30593616 DOI: 10.1007/978-1-4939-8976-8_2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For a long time, the study of the HCV infectious cycle has been a major challenge for researchers because of the difficulties in generating an efficient cell culture system leading to a productive viral infection. The development of HCVpp and later on HCVcc model allowing for functional studies of HCV in cell culture completely revolutionized HCV research. The aim of this review is to provide the reader with a brief overview of the development of these two models. We describe the advantages of each model as well as their limitations in the study of the HCV life cycle, with a particular emphasis on virus entry. A comparison between these two models is presented in terms of virion composition and their use as tools for the characterization of entry factors, envelope glycoprotein functions, and antibody neutralization. We also compare the production and biosafety level of these two types of viral particles. Globally, this review provides a general description of the most adequate applications for HCVpp and HCVcc in HCV research.
Collapse
|
23
|
Moustafa RI, Haddad JG, Linna L, Hanoulle X, Descamps V, Mesalam AA, Baumert TF, Duverlie G, Meuleman P, Dubuisson J, Lavie M. Functional Study of the C-Terminal Part of the Hepatitis C Virus E1 Ectodomain. J Virol 2018; 92:e00939-18. [PMID: 30068644 PMCID: PMC6158422 DOI: 10.1128/jvi.00939-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/26/2018] [Indexed: 12/24/2022] Open
Abstract
In the hepatitis C virus (HCV) envelope glycoproteins E1 and E2, which form a heterodimer, E2 is the receptor binding protein and the major target of neutralizing antibodies, whereas the function of E1 remains less characterized. To investigate E1 functions, we generated a series of mutants in the conserved residues of the C-terminal region of the E1 ectodomain in the context of an infectious clone. We focused our analyses on two regions of interest. The first region is located in the middle of the E1 glycoprotein (between amino acid [aa] 270 and aa 291), which contains a conserved hydrophobic sequence and was proposed to constitute a putative fusion peptide. The second series of mutants was generated in the region from aa 314 to aa 342 (the aa314-342 region), which has been shown to contain two α helices (α2 and α3) by nuclear magnetic resonance studies. Of the 22 generated mutants, 20 were either attenuated or noninfectious. Several mutations modulated the virus's dependence on claudin-1 and the scavenger receptor BI coreceptors for entry. Most of the mutations in the putative fusion peptide region affected virus assembly. Conversely, mutations in the α-helix aa 315 to 324 (315-324) residues M318, W320, D321, and M322 resulted in a complete loss of infectivity without any impact on E1E2 folding and on viral assembly. Further characterization of the W320A mutant in the HCVpp model indicated that the loss of infectivity was due to a defect in viral entry. Together, these results support a role for E1 in modulating HCV interaction with its coreceptors and in HCV assembly. They also highlight the involvement of α-helix 315-324 in a late step of HCV entry.IMPORTANCE HCV is a major public health problem worldwide. The virion harbors two envelope proteins, E1 and E2, which are involved at different steps of the viral life cycle. Whereas E2 has been extensively characterized, the function of E1 remains poorly defined. We characterized here the function of the putative fusion peptide and the region containing α helices of the E1 ectodomain, which had been previously suggested to be important for virus entry. We could confirm the importance of these regions for the virus infectivity. Interestingly, we found several residues modulating the virus's dependence on several HCV receptors, thus highlighting the role of E1 in the interaction of the virus with cellular receptors. Whereas mutations in the putative fusion peptide affected HCV infectivity and morphogenesis, several mutations in the α2-helix region led to a loss of infectivity with no effect on assembly, indicating a role of this region in virus entry.
Collapse
Affiliation(s)
- Rehab I Moustafa
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL/Centre d'Infection et d'Immunité de Lille, Lille, France
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Division, National Research Centre, Dokki, Cairo, Egypt
| | - Juliano G Haddad
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL/Centre d'Infection et d'Immunité de Lille, Lille, France
- Laboratoire Microbiologie Santé et Environnement, Ecole Doctorale en Sciences et Technologie, Faculté de Santé Publique, Université Libanaise, Tripoli, Liban
| | - Lydia Linna
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL/Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Xavier Hanoulle
- University of Lille, CNRS, UMR 8576, Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Véronique Descamps
- Equipe AGIR EA4294, Laboratoire de Virologie du Centre Hospitalier Universitaire d'Amiens, Université de Picardie Jules Verne, Amiens, France
| | - Ahmed Atef Mesalam
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Cairo, Egypt
- Research Group Immune- and Bio-markers for Infection, Centre of Excellence for Advanced Sciences, National Research Centre, Dokki, Cairo, Egypt
| | - Thomas F Baumert
- INSERM, U1110, University of Strasbourg, Pôle Hépato-digestif-Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Gilles Duverlie
- Equipe AGIR EA4294, Laboratoire de Virologie du Centre Hospitalier Universitaire d'Amiens, Université de Picardie Jules Verne, Amiens, France
| | - Philip Meuleman
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, Ghent, Belgium
| | - Jean Dubuisson
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL/Centre d'Infection et d'Immunité de Lille, Lille, France
| | - Muriel Lavie
- University Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL/Centre d'Infection et d'Immunité de Lille, Lille, France
| |
Collapse
|
24
|
Ramirez L, Betanzos A, Raya-Sandino A, González-Mariscal L, Del Angel RM. Dengue virus enters and exits epithelial cells through both apical and basolateral surfaces and perturbs the apical junctional complex. Virus Res 2018; 258:39-49. [PMID: 30278191 DOI: 10.1016/j.virusres.2018.09.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/17/2018] [Accepted: 09/26/2018] [Indexed: 01/06/2023]
Abstract
Dengue is the most relevant mosquito-borne viral disease in the world. It has been estimated that 390 million infections of dengue occur each year. Dengue virus (DENV) infection can be asymptomatic or can produce a self-limited febrile illness called dengue fever (DF) or a severe form of the infection called severe dengue. In some viruses, the entry and egress from cells, occur in a specific domain of polarized endothelial and epithelial cells. In this study, we investigated whether the entry and release of DENV was polarized in epithelial cells, and evaluated the effect of DENV infection on cellular junctions of epithelial cells. We used MDCK epithelial cells, which serve as an excellent model to study a functional barrier due to the presence of an apical junctional complex (AJC), and showed that entry and release of DENV from the cells, is bipolar. Additionally, we performed paracellular flux, diffusion of membrane lipid, immunofluorescence and immunoblotting assays to evaluate the integrity of the AJC during DENV infection. We observed that at later stages of infection, DENV altered the barrier function causing a decrease in the transepithelial electrical resistance and the degradation and delocalization of TJ and AJ proteins. The present study contributes to understand how DENV traverse epithelia in order to cause a productive infection, and provides insights into the mechanism of DENV pathogenesis.
Collapse
Affiliation(s)
| | - Abigail Betanzos
- Departamento de Infectómica y Patogénesis Molecular, Mexico; Conacyt, Mexico
| | - Arturo Raya-Sandino
- Departamento de Fisiología, Biofísicay Neurociencias. CINVESTAV-IPN, Mexico, D.F., Mexico
| | | | | |
Collapse
|
25
|
Baktash Y, Madhav A, Coller KE, Randall G. Single Particle Imaging of Polarized Hepatoma Organoids upon Hepatitis C Virus Infection Reveals an Ordered and Sequential Entry Process. Cell Host Microbe 2018; 23:382-394.e5. [PMID: 29544098 DOI: 10.1016/j.chom.2018.02.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 01/30/2018] [Accepted: 02/16/2018] [Indexed: 12/12/2022]
Abstract
Hepatitis C virus (HCV) enters hepatocytes via various entry factors, including scavenger receptor BI (SR-B1), cluster of differentiation 81 (CD81), epidermal growth factor receptor (EGFR), claudin-1 (CLDN1), and occludin (OCLN). As CLDN1 and OCLN are not readily accessible due to their tight junctional localization, HCV likely accesses them by either disrupting cellular polarity or migrating to the tight junction. In this study, we image HCV entry into a three-dimensional polarized hepatoma system and reveal that the virus sequentially engages these entry factors through actin-dependent mechanisms. HCV initially localizes with the early entry factors SR-B1, CD81, and EGFR at the basolateral membrane and then accumulates at the tight junction in an actin-dependent manner. HCV associates with CLDN1 and then OCLN at the tight junction and is internalized via clathrin-mediated endocytosis by an active process requiring EGFR. Thus, HCV uses a dynamic and multi-step process to engage and enter host cells.
Collapse
Affiliation(s)
- Yasmine Baktash
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Anisha Madhav
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Kelly E Coller
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA
| | - Glenn Randall
- Department of Microbiology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
26
|
Tong Y, Lavillette D, Li Q, Zhong J. Role of Hepatitis C Virus Envelope Glycoprotein E1 in Virus Entry and Assembly. Front Immunol 2018; 9:1411. [PMID: 29971069 PMCID: PMC6018474 DOI: 10.3389/fimmu.2018.01411] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/06/2018] [Indexed: 12/22/2022] Open
Abstract
Hepatitis C virus (HCV) glycoproteins E1 and E2 form a heterodimer to constitute viral envelope proteins, which play an essential role in virus entry. E1 does not directly interact with host receptors, and its functions in viral entry are exerted mostly through its interaction with E2 that directly binds the receptors. HCV enters the host cell via receptor-mediated endocytosis during which the fusion of viral and host endosomal membranes occurs to release viral genome to cytoplasm. A putative fusion peptide in E1 has been proposed to participate in membrane fusion, but its exact role and underlying molecular mechanisms remain to be deciphered. Recently solved crystal structures of the E2 ectodomains and N-terminal of E1 fail to reveal a classical fusion-like structure in HCV envelope glycoproteins. In addition, accumulating evidence suggests that E1 also plays an important role in virus assembly. In this mini-review, we summarize current knowledge on HCV E1 including its structure and biological functions in virus entry, fusion, and assembly, which may provide clues for developing HCV vaccines and more effective antivirals.
Collapse
Affiliation(s)
- Yimin Tong
- Unit of Viral Hepatitis, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Dimitri Lavillette
- Unit of Interspecies Transmission of Arboviruses and Antivirals, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qingchao Li
- Unit of Viral Hepatitis, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jin Zhong
- Unit of Viral Hepatitis, CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
27
|
Monoclonal Antibodies against Occludin Completely Prevented Hepatitis C Virus Infection in a Mouse Model. J Virol 2018; 92:JVI.02258-17. [PMID: 29437969 DOI: 10.1128/jvi.02258-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 02/01/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) entry into host cells is a multistep process requiring various host factors, including the tight junction protein occludin (OCLN), which has been shown to be essential for HCV infection in in vitro cell culture systems. However, it remains unclear whether OCLN is an effective and safe target for HCV therapy, owing to the lack of binders that can recognize the intact extracellular loop domains of OCLN and prevent HCV infection. In this study, we successfully generated four rat anti-OCLN monoclonal antibodies (MAbs) by the genetic immunization method and unique cell differential screening. These four MAbs bound to human OCLN with a very high affinity (antibody dissociation constant of <1 nM). One MAb recognized the second loop of human and mouse OCLN, whereas the three other MAbs recognized the first loop of human OCLN. All MAbs inhibited HCV infection in Huh7.5.1-8 cells in a dose-dependent manner without apparent cytotoxicity. Additionally, the anti-OCLN MAbs prevented both cell-free HCV infection and cell-to-cell HCV transmission. Kinetic studies with anti-OCLN and anti-claudin-1 (CLDN1) MAbs demonstrated that OCLN interacts with HCV after CLDN1 in the internalization step. Two selected MAbs completely inhibited HCV infection in human liver chimeric mice without apparent adverse effects. Therefore, OCLN would be an appropriate host target for anti-HCV entry inhibitors, and anti-OCLN MAbs may be promising candidates for novel anti-HCV agents, particularly in combination with direct-acting HCV antiviral agents.IMPORTANCE HCV entry into host cells is thought to be a very complex process involving various host entry factors, such as the tight junction proteins claudin-1 and OCLN. In this study, we developed novel functional MAbs that recognize intact extracellular domains of OCLN, which is essential for HCV entry into host cells. The established MAbs against OCLN, which had very high affinity and selectivity for intact OCLN, strongly inhibited HCV infection both in vitro and in vivo Using these anti-OCLN MAbs, we found that OCLN is necessary for the later stages of HCV entry. These anti-OCLN MAbs are likely to be very useful for understanding the OCLN-mediated HCV entry mechanism and might be promising candidates for novel HCV entry inhibitors.
Collapse
|
28
|
Riad SE, Elhelw DS, Shawer H, El-Ekiaby N, Salah A, Zekri A, Esmat G, Amleh A, Abdelaziz AI. Disruption of Claudin-1 Expression by miRNA-182 Alters the Susceptibility to Viral Infectivity in HCV Cell Models. Front Genet 2018; 9:93. [PMID: 29616082 PMCID: PMC5869927 DOI: 10.3389/fgene.2018.00093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 03/05/2018] [Indexed: 01/01/2023] Open
Abstract
HCV entry involves a complex interplay between viral and host molecules. During post-binding interactions, the viral E2 complexes with CD81 receptor for delivery to the tight junction proteins CLDN1 and OCLN, which aid in viral internalization. Targeting HCV entry receptors represents an appealing approach to inhibit viral infectivity. This study aimed at investigating the impact of targeting CLDN1 by microRNAs on HCV infectivity. miR-155 was previously shown to target the 3′UTR of CLDN1 mRNA. Therefore, miR-155 was used as a control in this study. In-silico analysis and luciferase reporter assay were utilized to identify potential targeting miRNAs. The impact of the identified miRNAs on CLDN1 mRNA and protein expression was examined by qRT-PCR, indirect immunofluorescence and western blotting, respectively. The role of the selected miRNAs on HCV infectivity was assessed by measuring the viral load following the ectopic expression of the selected miRNAs. miR-182 was identified in-silico and by experimental validation to target CLDN1. Both miR-155 and miR-182 inhibited CLDN1 mRNA and protein expression in infected Huh7 cells. Ectopic expression of miR-155 increased, while miR-182 reduced the viral load. In conclusion, despite repressing CLDN1, the impact of miR-155 and miR-182 on HCV infectivity is contradictory. Ectopic miR-182 expression is suggested as an upstream regulator of the entry factor CLDN1, harnessing HCV infection.
Collapse
Affiliation(s)
- Sarah E Riad
- Pharmacology and Toxicology Department, German University in Cairo, New Cairo, Egypt
| | - Dalia S Elhelw
- Pharmaceutical Chemistry Department, German University in Cairo, New Cairo, Egypt
| | - Heba Shawer
- Biology Department, School of Science and Engineering, American University in Cairo, New Cairo, Egypt
| | - Nada El-Ekiaby
- Pharmacology and Toxicology Department, German University in Cairo, New Cairo, Egypt.,School of Medicine, NewGiza University, Cairo, Egypt
| | - Ayman Salah
- Department of Surgery, Cairo University, Cairo, Egypt
| | - Abdelrahman Zekri
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Gamal Esmat
- Department of Endemic Medicine and Hepatology, Cairo University, Cairo, Egypt
| | - Asma Amleh
- Biology Department, School of Science and Engineering, American University in Cairo, New Cairo, Egypt
| | - Ahmed I Abdelaziz
- Pharmacology and Toxicology Department, German University in Cairo, New Cairo, Egypt.,School of Medicine, NewGiza University, Cairo, Egypt
| |
Collapse
|
29
|
Sec24C-Dependent Transport of Claudin-1 Regulates Hepatitis C Virus Entry. J Virol 2017; 91:JVI.00629-17. [PMID: 28679754 DOI: 10.1128/jvi.00629-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/26/2017] [Indexed: 02/07/2023] Open
Abstract
Claudin-1 is a hepatitis C virus (HCV) coreceptor required for viral entry. Although extensive studies have focused on claudin-1 as an anti-HCV target, little is known about how the level of claudin-1 at the cell surface is regulated by host vesicular transport. Here, we identified an interaction between claudin-1 and Sec24C, a cargo-sorting component of the coat protein complex II (COPII) vesicular transport system. By interacting with Sec24C through its C-terminal YV, claudin-1 is transported from the endoplasmic reticulum (ER) and is eventually targeted to the cell surface. Blocking COPII transport inhibits HCV entry by reducing the level of claudin-1 at the cell surface. These findings provide mechanistic insight into the role of COPII vesicular transport in HCV entry.IMPORTANCE Tight junction protein claudin-1 is one of the cellular receptors for hepatitis C virus, which infects 185 million people globally. Its cellular distribution plays important role in HCV entry; however, it is unclear how the localization of claudin-1 to the cell surface is controlled by host transport pathways. In this paper, we not only identified Sec24C as a key host factor for HCV entry but also uncovered a novel mechanism by which the COPII machinery transports claudin-1 to the cell surface. This mechanism might be extended to other claudins that contain a C-terminal YV or V motif.
Collapse
|
30
|
Anti-hepatitis C virus strategy targeting host entry factor claudin-1. Uirusu 2017; 65:245-254. [PMID: 27760923 DOI: 10.2222/jsv.65.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Chronic hepatitis C virus (HCV) infection is a major threat to global public health, because it is significantly correlated with the development of severe liver diseases including cirrhosis and hepatocellular carcinomas. Host molecules as well as viral factors are promising targets for anti-HCV preventive and therapeutic strategies. Multiple host factors such as CD81, SRBI, claudin-1, and occludin are involved in HCV entry into hepatocytes. In this paper, I first introduce our anti-HCV strategy targeting for host tight junction protein claudin-1. And this review also summarizes developments of other entry inhibitors to prevent initiation of HCV infection and spread. Entry inhibitors might be useful in blocking primary infections, such those as after liver transplantation, and in combination therapies with other anti-HCV agents such as direct-acting antivirals.
Collapse
|
31
|
Identification of Novel Functions for Hepatitis C Virus Envelope Glycoprotein E1 in Virus Entry and Assembly. J Virol 2017; 91:JVI.00048-17. [PMID: 28179528 DOI: 10.1128/jvi.00048-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/31/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV) envelope glycoprotein complex is composed of E1 and E2 subunits. E2 is the receptor-binding protein as well as the major target of neutralizing antibodies, whereas the functions of E1 remain poorly defined. Here, we took advantage of the recently published structure of the N-terminal region of the E1 ectodomain to interrogate the functions of this glycoprotein by mutating residues within this 79-amino-acid region in the context of an infectious clone. The phenotypes of the mutants were characterized to determine the effects of the mutations on virus entry, replication, and assembly. Furthermore, biochemical approaches were also used to characterize the folding and assembly of E1E2 heterodimers. Thirteen out of 19 mutations led to viral attenuation or inactivation. Interestingly, two attenuated mutants, T213A and I262A, were less dependent on claudin-1 for cellular entry in Huh-7 cells. Instead, these viruses relied on claudin-6, indicating a shift in receptor dependence for these two mutants in the target cell line. An unexpected phenotype was also observed for mutant D263A which was no longer infectious but still showed a good level of core protein secretion. Furthermore, genomic RNA was absent from these noninfectious viral particles, indicating that the D263A mutation leads to the assembly and release of viral particles devoid of genomic RNA. Finally, a change in subcellular colocalization between HCV RNA and E1 was observed for the D263A mutant. This unique observation highlights for the first time cross talk between HCV glycoprotein E1 and the genomic RNA during HCV morphogenesis.IMPORTANCE Hepatitis C virus (HCV) infection is a major public health problem worldwide. It encodes two envelope proteins, E1 and E2, which play a major role in the life cycle of this virus. E2 has been extensively characterized, whereas E1 remains poorly understood. Here, we investigated E1 functions by using site-directed mutagenesis in the context of the viral life cycle. Our results identify unique phenotypes. Unexpectedly, two mutants clearly showed a shift in receptor dependence for cell entry, highlighting a role for E1 in modulating HCV particle interaction with a cellular receptor(s). More importantly, another mutant led to the assembly and release of viral particles devoid of genomic RNA. This unique phenotype was further characterized, and we observed a change in subcellular colocalization between HCV RNA and E1. This unique observation highlights for the first time cross talk between a viral envelope protein and genomic RNA during morphogenesis.
Collapse
|
32
|
White MK, Hu W, Khalili K. Gene Editing Approaches against Viral Infections and Strategy to Prevent Occurrence of Viral Escape. PLoS Pathog 2016; 12:e1005953. [PMID: 27930735 PMCID: PMC5145235 DOI: 10.1371/journal.ppat.1005953] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Martyn K. White
- Department of Neuroscience, Center for Neurovirology and Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States of America
| | - Wenhui Hu
- Department of Neuroscience, Center for Neurovirology and Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States of America
| | - Kamel Khalili
- Department of Neuroscience, Center for Neurovirology and Comprehensive NeuroAIDS Center, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
33
|
Colpitts CC, Baumert TF. Claudins in viral infection: from entry to spread. Pflugers Arch 2016; 469:27-34. [PMID: 27885488 DOI: 10.1007/s00424-016-1908-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/14/2016] [Accepted: 11/16/2016] [Indexed: 12/20/2022]
Abstract
Tight junctions are critically important for many physiological functions, including the maintenance of cell polarity, regulation of paracellular permeability, and involvement in signal transduction pathways to regulate integral cellular processes. Furthermore, tight junctions enable epithelial cells to form physical barriers, which act as an innate immune mechanism that can impede viral infection. Viruses, in turn, have evolved mechanisms to exploit tight junction proteins to gain access to cells or spread through tissues in an infected host. Claudin family proteins are integral components of tight junctions and are thought to play crucial roles in regulating their permeability. Claudins have been implicated in the infection process of several medically important human pathogens, including hepatitis C virus, dengue virus, West Nile virus, and human immunodeficiency virus, among others. In this review, we summarize the role of claudins in viral infections and discuss their potential as novel antiviral targets. A better understanding of claudins during viral infection may provide insight into physiological roles of claudins and uncover novel therapeutic antiviral strategies.
Collapse
Affiliation(s)
- Che C Colpitts
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 3 Rue Koeberlé, 67000, Strasbourg, France.
- Université de Strasbourg, 67000, Strasbourg, France.
| | - Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, 3 Rue Koeberlé, 67000, Strasbourg, France.
- Université de Strasbourg, 67000, Strasbourg, France.
- Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hopitaux Universitaires de Strasbourg, 67000, Strasbourg, France.
| |
Collapse
|
34
|
A Library of Infectious Hepatitis C Viruses with Engineered Mutations in the E2 Gene Reveals Growth-Adaptive Mutations That Modulate Interactions with Scavenger Receptor Class B Type I. J Virol 2016; 90:10499-10512. [PMID: 27630236 DOI: 10.1128/jvi.01011-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 09/07/2016] [Indexed: 02/07/2023] Open
Abstract
While natural hepatitis C virus (HCV) infection results in highly diverse quasispecies of related viruses over time, mutations accumulate more slowly in tissue culture, in part because of the inefficiency of replication in cells. To create a highly diverse population of HCV particles in cell culture and identify novel growth-enhancing mutations, we engineered a library of infectious HCV with all codons represented at most positions in the ectodomain of the E2 gene. We identified many putative growth-adaptive mutations and selected nine highly represented E2 mutants for further study: Q412R, T416R, S449P, T563V, A579R, L619T, V626S, K632T, and L644I. We evaluated these mutants for changes in particle-to-infectious-unit ratio, sensitivity to neutralizing antibody or CD81 large extracellular loop (CD81-LEL) inhibition, entry factor usage, and buoyant density profiles. Q412R, T416R, S449P, T563V, and L619T were neutralized more efficiently by anti-E2 antibodies and T416R, T563V, and L619T by CD81-LEL. Remarkably, all nine variants showed reduced dependence on scavenger receptor class B type I (SR-BI) for infection. This shift from SR-BI usage did not correlate with a change in the buoyant density profiles of the variants, suggesting an altered E2-SR-BI interaction rather than changes in the virus-associated lipoprotein-E2 interaction. Our results demonstrate that residues influencing SR-BI usage are distributed across E2 and support the development of large-scale mutagenesis studies to identify viral variants with unique functional properties. IMPORTANCE Characterizing variant viruses can reveal new information about the life cycle of HCV and the roles played by different viral genes. However, it is difficult to recapitulate high levels of diversity in the laboratory because of limitations in the HCV culture system. To overcome this limitation, we engineered a library of mutations into the E2 gene in the context of an infectious clone of the virus. We used this library of viruses to identify nine mutations that enhance the growth rate of HCV. These growth-enhancing mutations reduced the dependence on a key entry receptor, SR-BI. By generating a highly diverse library of infectious HCV, we mapped regions of the E2 protein that influence a key virus-host interaction and provide proof of principle for the generation of large-scale mutant libraries for the study of pathogens with great sequence variability.
Collapse
|
35
|
N6-Methyladenosine in Flaviviridae Viral RNA Genomes Regulates Infection. Cell Host Microbe 2016; 20:654-665. [PMID: 27773535 PMCID: PMC5123813 DOI: 10.1016/j.chom.2016.09.015] [Citation(s) in RCA: 353] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 08/31/2016] [Accepted: 09/28/2016] [Indexed: 01/01/2023]
Abstract
The RNA modification N6-methyladenosine (m6A) post-transcriptionally regulates RNA function. The cellular machinery that controls m6A includes methyltransferases and demethylases that add or remove this modification, as well as m6A-binding YTHDF proteins that promote the translation or degradation of m6A-modified mRNA. We demonstrate that m6A modulates infection by hepatitis C virus (HCV). Depletion of m6A methyltransferases or an m6A demethylase, respectively, increases or decreases infectious HCV particle production. During HCV infection, YTHDF proteins relocalize to lipid droplets, sites of viral assembly, and their depletion increases infectious viral particles. We further mapped m6A sites across the HCV genome and determined that inactivating m6A in one viral genomic region increases viral titer without affecting RNA replication. Additional mapping of m6A on the RNA genomes of other Flaviviridae, including dengue, Zika, yellow fever, and West Nile virus, identifies conserved regions modified by m6A. Altogether, this work identifies m6A as a conserved regulatory mark across Flaviviridae genomes. The RNA genomes of HCV, ZIKV, DENV, YFV, and WNV contain m6A modification The cellular m6A machinery regulates HCV infectious particle production YTHDF proteins reduce HCV particle production and localize at viral assembly sites m6A-abrogating mutations in HCV E1 increase infectious particle production
Collapse
|
36
|
Rescue of the 1947 Zika Virus Prototype Strain with a Cytomegalovirus Promoter-Driven cDNA Clone. mSphere 2016; 1:mSphere00246-16. [PMID: 27704051 PMCID: PMC5040786 DOI: 10.1128/msphere.00246-16] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 09/06/2016] [Indexed: 12/22/2022] Open
Abstract
The study of ZIKV, which has become increasingly important with the recent association of this virus with microcephaly and Guillain-Barré syndrome, would benefit from an efficient strategy to genetically manipulate the virus. This work describes a model system to produce infectious virus in cell culture. We created a plasmid carrying the prototype 1947 Uganda MR766 ZIKV genome that both was stable in bacteria and could produce high levels of infectious virus in mammalian cells through direct delivery of this DNA. Furthermore, growth properties of this rescued virus closely resembled those of the viral isolate from which it was derived. This model system will provide a simple and effective means to study how ZIKV genetics impact viral replication and pathogenesis. The recent Zika virus (ZIKV) outbreak has been linked to severe pathogenesis. Here, we report the construction of a plasmid carrying a cytomegalovirus (CMV) promoter-expressed prototype 1947 Uganda MR766 ZIKV cDNA that can initiate infection following direct plasmid DNA transfection of mammalian cells. Incorporation of a synthetic intron in the nonstructural protein 1 (NS1) region of the ZIKV polyprotein reduced viral cDNA-associated toxicity in bacteria. High levels of infectious virus were produced following transfection of the plasmid bearing the wild-type MR766 ZIKV genome, but not one with a disruption to the viral nonstructural protein 5 (NS5) polymerase active site. Multicycle growth curve and plaque assay experiments indicated that the MR766 virus resulting from plasmid transfection exhibited growth characteristics that were more similar to its parental isolate than previously published 2010 Cambodia and 2015 Brazil cDNA-rescued ZIKV. This ZIKV infectious clone will be useful for investigating the genetic determinants of ZIKV infection and pathogenesis and should be amenable to construction of diverse infectious clones expressing reporter proteins and representing a range of ZIKV isolates. IMPORTANCE The study of ZIKV, which has become increasingly important with the recent association of this virus with microcephaly and Guillain-Barré syndrome, would benefit from an efficient strategy to genetically manipulate the virus. This work describes a model system to produce infectious virus in cell culture. We created a plasmid carrying the prototype 1947 Uganda MR766 ZIKV genome that both was stable in bacteria and could produce high levels of infectious virus in mammalian cells through direct delivery of this DNA. Furthermore, growth properties of this rescued virus closely resembled those of the viral isolate from which it was derived. This model system will provide a simple and effective means to study how ZIKV genetics impact viral replication and pathogenesis.
Collapse
|
37
|
Liver transplantation and hepatitis B virus infection: towards an immunoglobulin-free antiviral treatment after transplantation. Curr Opin Organ Transplant 2016; 21:219-23. [PMID: 26859222 DOI: 10.1097/mot.0000000000000293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW This article provides an update on the latest development on deploying oral nucleosides in an immunoglobulin-free regime against hepatitis B virus (HBV) recurrence after liver transplantation. RECENT FINDINGS Entecavir and tenofovir are the two newer oral nucleosides that are associated with a low virological rebound rate at less than 2% at 5 years. As a result, they have been applied as standalone treatment against HBV recurrence after liver transplantation without immunoglobulin. Recent evidence has shown that a hepatitis B surface antigen seroclearance rate of 86% and 91% after 1 and 2 years was achievable with entecavir monotherapy. Moreover, none of the patients had histological graft damage because of HBV recurrence and an overall survival over 80% at 7 years has been reported. SUMMARY With newer and more potent oral nucleos(t)ide (NA) available, a hepatitis B immune globulin-free regimen after liver transplantation has become safe and feasible for suppression of HBV recurrence after liver transplantation, and for avoidance of HBV-related graft complications.
Collapse
|
38
|
Sugiyama M, Kanto T. Dual blockade of hepatitis C virus entry at a gatekeeper of hepatocytes: Not only a preventive, but also therapeutic target of claudin 1. Hepatology 2016; 64:979-82. [PMID: 27405253 DOI: 10.1002/hep.28726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Masaya Sugiyama
- Genome Medical Science Project, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan.,Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | - Tatsuya Kanto
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| |
Collapse
|
39
|
Felmlee DJ, Coilly A, Chung RT, Samuel D, Baumert TF. New perspectives for preventing hepatitis C virus liver graft infection. THE LANCET. INFECTIOUS DISEASES 2016; 16:735-745. [PMID: 27301929 PMCID: PMC4911897 DOI: 10.1016/s1473-3099(16)00120-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 01/29/2016] [Accepted: 02/15/2016] [Indexed: 02/07/2023]
Abstract
Hepatitis C virus (HCV) infection is a leading cause of end-stage liver disease that necessitates liver transplantation. The incidence of virus-induced cirrhosis and hepatocellular carcinoma continues to increase, making liver transplantation increasingly common. Infection of the engrafted liver is universal and accelerates progression to advanced liver disease, with 20-30% of patients having cirrhosis within 5 years of transplantation. Treatments of chronic HCV infection have improved dramatically, albeit with remaining challenges of failure and access, and therapeutic options to prevent graft infection during liver transplantation are emerging. Developments in directed use of new direct-acting antiviral agents (DAAs) to eliminate circulating HCV before or after transplantation in the past 5 years provide renewed hope for prevention and treatment of liver graft infection. Identification of the ideal regimen and use of DAAs reveals new ways to treat this specific population of patients. Complementing DAAs, viral entry inhibitors have been shown to prevent liver graft infection in animal models and delay graft infection in clinical trials, which shows their potential for use concomitant to transplantation. We review the challenges and pathology associated with HCV liver graft infection, highlight current and future strategies of DAA treatment timing, and discuss the potential role of entry inhibitors that might be used synergistically with DAAs to prevent or treat graft infection.
Collapse
Affiliation(s)
- Daniel J Felmlee
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Hepatology Research Group, Peninsula School of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| | - Audrey Coilly
- AP-HP Hôpital Paul Brousse, Centre Hépato-Biliaire, Villejuif, France; University Paris-Sud, UMR-S 1193, Villejuif, France; Inserm Unit 1193, Villejuif F-94800, France
| | - Raymond T Chung
- Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Didier Samuel
- AP-HP Hôpital Paul Brousse, Centre Hépato-Biliaire, Villejuif, France; University Paris-Sud, UMR-S 1193, Villejuif, France; Inserm Unit 1193, Villejuif F-94800, France.
| | - Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France; Université de Strasbourg, Strasbourg, France; Gastrointestinal Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| |
Collapse
|
40
|
Abstract
The past decade has seen tremendous progress in understanding hepatitis C virus (HCV) biology and its related disease, hepatitis C. Major advances in characterizing viral replication have led to the development of direct-acting anti-viral therapies that have considerably improved patient treatment outcome and can even cure chronic infection. However, the high cost of these treatments, their low barrier to viral resistance, and their inability to prevent HCV-induced liver cancer, along with the absence of an effective HCV vaccine, all underscore the need for continued efforts to understand the biology of this virus. Moreover, beyond informing therapies, enhanced knowledge of HCV biology is itself extremely valuable for understanding the biology of related viruses, such as dengue virus, which is becoming a growing global health concern. Major advances have been realized over the last few years in HCV biology and pathogenesis, such as the discovery of the envelope glycoprotein E2 core structure, the generation of the first mouse model with inheritable susceptibility to HCV, and the characterization of virus-host interactions that regulate viral replication or innate immunity. Here, we review the recent findings that have significantly advanced our understanding of HCV and highlight the major challenges that remain.
Collapse
Affiliation(s)
- Florian Douam
- Department of Molecular Biology, Princeton University, 110 Lewis Thomas Laboratory, Washington Road, Princeton, NJ, 08544, USA
| | - Qiang Ding
- Department of Molecular Biology, Princeton University, 110 Lewis Thomas Laboratory, Washington Road, Princeton, NJ, 08544, USA
| | - Alexander Ploss
- Department of Molecular Biology, Princeton University, 110 Lewis Thomas Laboratory, Washington Road, Princeton, NJ, 08544, USA
| |
Collapse
|
41
|
Liu F, Koval M, Ranganathan S, Fanayan S, Hancock WS, Lundberg EK, Beavis RC, Lane L, Duek P, McQuade L, Kelleher NL, Baker MS. Systems Proteomics View of the Endogenous Human Claudin Protein Family. J Proteome Res 2016; 15:339-59. [PMID: 26680015 DOI: 10.1021/acs.jproteome.5b00769] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Claudins are the major transmembrane protein components of tight junctions in human endothelia and epithelia. Tissue-specific expression of claudin members suggests that this protein family is not only essential for sustaining the role of tight junctions in cell permeability control but also vital in organizing cell contact signaling by protein-protein interactions. How this protein family is collectively processed and regulated is key to understanding the role of junctional proteins in preserving cell identity and tissue integrity. The focus of this review is to first provide a brief overview of the functional context, on the basis of the extensive body of claudin biology research that has been thoroughly reviewed, for endogenous human claudin members and then ascertain existing and future proteomics techniques that may be applicable to systematically characterizing the chemical forms and interacting protein partners of this protein family in human. The ability to elucidate claudin-based signaling networks may provide new insight into cell development and differentiation programs that are crucial to tissue stability and manipulation.
Collapse
Affiliation(s)
| | - Michael Koval
- Department of Medicine, Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, and Department of Cell Biology, Emory University School of Medicine , 205 Whitehead Biomedical Research Building, 615 Michael Street, Atlanta, Georgia 30322, United States
| | | | | | - William S Hancock
- Barnett Institute and Department of Chemistry and Chemical Biology, Northeastern University , Boston, Massachusetts 02115, United States
| | - Emma K Lundberg
- SciLifeLab, School of Biotechnology, Royal Institute of Technology (KTH) , SE-171 21 Solna, Stockholm, Sweden
| | - Ronald C Beavis
- Department of Biochemistry and Medical Genetics, University of Manitoba , 744 Bannatyne Avenue, Winnipeg, Manitoba R3E 0W3, Canada
| | - Lydie Lane
- SIB-Swiss Institute of Bioinformatics , CMU - Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | - Paula Duek
- SIB-Swiss Institute of Bioinformatics , CMU - Rue Michel-Servet 1, 1211 Geneva, Switzerland
| | | | - Neil L Kelleher
- Department of Chemistry, Department of Molecular Biosciences, and Proteomics Center of Excellence, Northwestern University , 2145 North Sheridan Road, Evanston, Illinois 60208, United States
| | | |
Collapse
|
42
|
Viral Determinants of miR-122-Independent Hepatitis C Virus Replication. mSphere 2015; 1:mSphere00009-15. [PMID: 27303683 PMCID: PMC4863629 DOI: 10.1128/msphere.00009-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/28/2015] [Indexed: 01/20/2023] Open
Abstract
Hepatitis C virus (HCV) is the leading cause of liver cancer in the Western Hemisphere. HCV infection requires miR-122, which is expressed only in liver cells, and thus is one reason that replication of this virus occurs efficiently only in cells of hepatic origin. To understand how HCV genetics impact miR-122 usage, we knocked out miR-122 using clustered regularly interspaced short palindromic repeat (CRISPR) technology and adapted virus to replicate in the presence of noncognate miR-122 RNAs. In doing so, we identified viral mutations that allow replication in the complete absence of miR-122. This work provides new insights into how HCV genetics influence miR-122 requirements and proves that replication can occur without this miRNA, which has broad implications for how HCV tropism is maintained. Hepatitis C virus (HCV) replication requires binding of the liver-specific microRNA (miRNA) miR-122 to two sites in the HCV 5′ untranslated region (UTR). Although we and others have shown that viral genetics impact the amount of active miR-122 required for replication, it is unclear if HCV can replicate in the complete absence of this miRNA. To probe the absolute requirements for miR-122 and the genetic basis for those requirements, we used clustered regularly interspaced short palindromic repeat (CRISPR) technology to knock out miR-122 in Huh-7.5 cells and reconstituted these knockout (KO) cells with either wild-type miR-122 or a mutated version of this miRNA. We then characterized the replication of the wild-type virus, as well as a mutated HCV bearing 5′ UTR substitutions to restore binding to the mutated miR-122, in miR-122 KO Huh-7.5 cells expressing no, wild-type, or mutated miR-122. We found that while replication was most efficient when wild-type or mutated HCV was provided with the matched miR-122, inefficient replication could be observed in cells expressing the mismatched miR-122 or no miR-122. We then selected viruses capable of replicating in cells expressing noncognate miR-122 RNAs. Unexpectedly, these viruses contained multiple mutations throughout their first 42 nucleotides that would not be predicted to enhance binding of the provided miR-122. These mutations increased HCV RNA replication in cells expressing either the mismatched miR-122 or no miR-122. These data provide new evidence that HCV replication can occur independently of miR-122 and provide unexpected insights into how HCV genetics influence miR-122 requirements. IMPORTANCE Hepatitis C virus (HCV) is the leading cause of liver cancer in the Western Hemisphere. HCV infection requires miR-122, which is expressed only in liver cells, and thus is one reason that replication of this virus occurs efficiently only in cells of hepatic origin. To understand how HCV genetics impact miR-122 usage, we knocked out miR-122 using clustered regularly interspaced short palindromic repeat (CRISPR) technology and adapted virus to replicate in the presence of noncognate miR-122 RNAs. In doing so, we identified viral mutations that allow replication in the complete absence of miR-122. This work provides new insights into how HCV genetics influence miR-122 requirements and proves that replication can occur without this miRNA, which has broad implications for how HCV tropism is maintained.
Collapse
|
43
|
Host-Targeting Agents to Prevent and Cure Hepatitis C Virus Infection. Viruses 2015; 7:5659-85. [PMID: 26540069 PMCID: PMC4664971 DOI: 10.3390/v7112898] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 09/25/2015] [Accepted: 10/19/2015] [Indexed: 12/13/2022] Open
Abstract
Chronic hepatitis C virus (HCV) infection is a major cause of liver cirrhosis and hepatocellular carcinoma (HCC) which are leading indications of liver transplantation (LT). To date, there is no vaccine to prevent HCV infection and LT is invariably followed by infection of the liver graft. Within the past years, direct-acting antivirals (DAAs) have had a major impact on the management of chronic hepatitis C, which has become a curable disease in the majority of DAA-treated patients. In contrast to DAAs that target viral proteins, host-targeting agents (HTAs) interfere with cellular factors involved in the viral life cycle. By acting through a complementary mechanism of action and by exhibiting a generally higher barrier to resistance, HTAs offer a prospective option to prevent and treat viral resistance. Indeed, given their complementary mechanism of action, HTAs and DAAs can act in a synergistic manner to reduce viral loads. This review summarizes the different classes of HTAs against HCV infection that are in preclinical or clinical development and highlights their potential to prevent HCV infection, e.g., following LT, and to tailor combination treatments to cure chronic HCV infection.
Collapse
|
44
|
Colpitts CC, Zeisel MB, Baumert TF. When one receptor closes, another opens: claudins and the hepatitis C virus E1 glycoprotein. Hepatology 2015; 62:991-3. [PMID: 25930717 DOI: 10.1002/hep.27876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 04/25/2015] [Indexed: 01/21/2023]
Affiliation(s)
- Che C Colpitts
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France.,Université de Strasbourg, Strasbourg, France
| | - Mirjam B Zeisel
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France.,Université de Strasbourg, Strasbourg, France
| | - Thomas F Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies Virales et Hépatiques, Strasbourg, France.,Université de Strasbourg, Strasbourg, France.,Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
45
|
Colpitts CC, Verrier ER, Baumert TF. Targeting Viral Entry for Treatment of Hepatitis B and C Virus Infections. ACS Infect Dis 2015; 1:420-7. [PMID: 27617925 DOI: 10.1021/acsinfecdis.5b00039] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hepatitis B virus (HBV) and hepatitis C virus (HCV) infections remain major health problems worldwide, with 400-500 million chronically infected people worldwide. Chronic infection results in liver cirrhosis and hepatocellular carcinoma, the second leading cause of cancer death. Current treatments for HBV limit viral replication without efficiently curing infection. HCV treatment has markedly progressed with the licensing of direct-acting antivirals (DAAs) for HCV cure, yet limited access for the majority of patients is a major challenge. Preventative and curative treatment strategies, aimed at novel targets, are needed for both viruses. Viral entry represents one such target, although detailed knowledge of the entry mechanisms is a prerequisite. For HBV, the recent discovery of the NTCP cell entry factor enabled the establishment of an HBV cell culture model and showed that cyclosporin A and Myrcludex B are NTCP-targeting entry inhibitors. Advances in the understanding of HCV entry revealed it to be a complex process involving many factors, offering several antiviral targets. These include viral envelope proteins E1 and E2, virion-associated lipoprotein ApoE, and cellular factors CD81, SRBI, EGFR, claudin-1, occludin, and the cholesterol transporter NPC1L1. Small molecules targeting SR-BI, EGFR, and NPC1L1 have entered clinical trials, whereas other viral- and host-targeted small molecules, peptides, and antibodies show promise in preclinical models. This review summarizes the current understanding of HBV and HCV entry and describes novel antiviral targets and compounds in different stages of clinical development. Overall, proof-of-concept studies indicate that entry inhibitors are a promising class of antivirals to prevent and treat HBV and HCV infections.
Collapse
Affiliation(s)
- Che C. Colpitts
- Inserm, U1110, Institut de Recherche sur les Maladies
Virales et Hépatiques, 67000 Strasbourg, France
- Université de Strasbourg, 67000 Strasbourg, France
| | - Eloi R. Verrier
- Inserm, U1110, Institut de Recherche sur les Maladies
Virales et Hépatiques, 67000 Strasbourg, France
- Université de Strasbourg, 67000 Strasbourg, France
| | - Thomas F. Baumert
- Inserm, U1110, Institut de Recherche sur les Maladies
Virales et Hépatiques, 67000 Strasbourg, France
- Université de Strasbourg, 67000 Strasbourg, France
- Institut Hospitalo-Universitaire,
Pôle Hépato-digestif, Hopitaux Universitaires de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
46
|
Tarr AW, Khera T, Hueging K, Sheldon J, Steinmann E, Pietschmann T, Brown RJP. Genetic Diversity Underlying the Envelope Glycoproteins of Hepatitis C Virus: Structural and Functional Consequences and the Implications for Vaccine Design. Viruses 2015; 7:3995-4046. [PMID: 26193307 PMCID: PMC4517138 DOI: 10.3390/v7072809] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/19/2015] [Accepted: 07/08/2015] [Indexed: 12/13/2022] Open
Abstract
In the 26 years since the discovery of Hepatitis C virus (HCV) a major global research effort has illuminated many aspects of the viral life cycle, facilitating the development of targeted antivirals. Recently, effective direct-acting antiviral (DAA) regimens with >90% cure rates have become available for treatment of chronic HCV infection in developed nations, representing a significant advance towards global eradication. However, the high cost of these treatments results in highly restricted access in developing nations, where the disease burden is greatest. Additionally, the largely asymptomatic nature of infection facilitates continued transmission in at risk groups and resource constrained settings due to limited surveillance. Consequently a prophylactic vaccine is much needed. The HCV envelope glycoproteins E1 and E2 are located on the surface of viral lipid envelope, facilitate viral entry and are the targets for host immunity, in addition to other functions. Unfortunately, the extreme global genetic and antigenic diversity exhibited by the HCV glycoproteins represents a significant obstacle to vaccine development. Here we review current knowledge of HCV envelope protein structure, integrating knowledge of genetic, antigenic and functional diversity to inform rational immunogen design.
Collapse
Affiliation(s)
- Alexander W Tarr
- School of Life Sciences, Nottingham Digestive Diseases Biomedical Research Unit, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Tanvi Khera
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
| | - Kathrin Hueging
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
| | - Julie Sheldon
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
| | - Eike Steinmann
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
| | - Thomas Pietschmann
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
- German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Braunschweig 38124, Germany.
| | - Richard J P Brown
- Institute of Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centrefor Infection Research (HZI), Hannover D-30625, Germany.
| |
Collapse
|
47
|
Tawar RG, Colpitts CC, Lupberger J, El-Saghire H, Zeisel MB, Baumert TF. Claudins and pathogenesis of viral infection. Semin Cell Dev Biol 2015; 42:39-46. [PMID: 25960372 DOI: 10.1016/j.semcdb.2015.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 04/29/2015] [Accepted: 04/29/2015] [Indexed: 01/06/2023]
Abstract
Since their discovery, tremendous progress has been made in our understanding of the roles of claudins in tight junction physiology. In addition, interactions between claudins and other cellular proteins have highlighted their novel roles in cell physiology. Moreover, the importance of claudins is becoming apparent in the pathophysiology of several diseases, including viral infections. Notable is the discovery of CLDN1 as an essential host factor for hepatitis C virus (HCV) entry, which led to detailed characterization of CLDN1 and its association with tetraspanin CD81 for the initiation of HCV infection. CLDN1 has also been shown to facilitate dengue virus entry. Furthermore, owing to the roles of claudins in forming anatomical barriers, several viruses have been shown to alter claudin expression at the tight junction. This review summarizes the role of claudins in viral infection, with particular emphasis on HCV.
Collapse
Affiliation(s)
- Rajiv G Tawar
- Inserm, U1110, Institut des Maladies Virales et Hépatiques, Strasbourg, France; University of Strasbourg, Strasbourg, France
| | - Che C Colpitts
- Inserm, U1110, Institut des Maladies Virales et Hépatiques, Strasbourg, France; University of Strasbourg, Strasbourg, France
| | - Joachim Lupberger
- Inserm, U1110, Institut des Maladies Virales et Hépatiques, Strasbourg, France; University of Strasbourg, Strasbourg, France
| | - Hussein El-Saghire
- Inserm, U1110, Institut des Maladies Virales et Hépatiques, Strasbourg, France; University of Strasbourg, Strasbourg, France
| | - Mirjam B Zeisel
- Inserm, U1110, Institut des Maladies Virales et Hépatiques, Strasbourg, France; University of Strasbourg, Strasbourg, France
| | - Thomas F Baumert
- Inserm, U1110, Institut des Maladies Virales et Hépatiques, Strasbourg, France; University of Strasbourg, Strasbourg, France; Institut Hospitalo-Universitaire, Pôle Hépato-digestif, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
| |
Collapse
|