1
|
Rabiu L, Zhang P, Afolabi LO, Saliu MA, Dabai SM, Suleiman RB, Gidado KI, Ige MA, Ibrahim A, Zhang G, Wan X. Immunological dynamics in MASH: from landscape analysis to therapeutic intervention. J Gastroenterol 2024; 59:1053-1078. [PMID: 39400718 DOI: 10.1007/s00535-024-02157-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH), previously known as nonalcoholic steatohepatitis (NASH), is a multifaceted liver disease characterized by inflammation and fibrosis that develops from simple steatosis. Immune and inflammatory pathways have a central role in the pathogenesis of MASH, yet, how to target immune pathways to treat MASH remains perplexed. This review emphasizes the intricate role that immune cells play in the etiology and pathophysiology of MASH and highlights their significance as targets for therapeutic approaches. It discusses both current strategies and novel therapies aimed at modulating the immune response in MASH. It also highlights challenges in liver-specific drug delivery, potential off-target effects, and difficulties in targeting diverse immune cell populations within the liver. This review is a comprehensive resource that integrates current knowledge with future perspectives in the evolving field of MASH, with the goal of driving forward progress in medical therapies designed to treat this complex liver disease.
Collapse
Affiliation(s)
- Lawan Rabiu
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
- Federal University Dutse, Jigawa, Nigeria
| | - Pengchao Zhang
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Lukman O Afolabi
- Department of Pediatrics, Indiana University School of Medicine, 1234 Notre Dame Ave, S Bend, IN, 46617, USA
| | - Muhammad A Saliu
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Salisu M Dabai
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Rabiatu B Suleiman
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Khalid I Gidado
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Mark A Ige
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Abdulrahman Ibrahim
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China
| | - Guizhong Zhang
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China.
| | - Xiaochun Wan
- Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100864, People's Republic of China.
| |
Collapse
|
2
|
Azariadis K, Gatselis NK, Lyberopoulou A, Arvaniti P, Zachou K, Gabeta S, Dalekos GN. PNPLA3 I148 M genetic variant in autoimmune hepatitis characterises advanced disease at diagnosis and reduced survival free of cirrhotic events and liver-related mortality. J Transl Autoimmun 2024; 9:100243. [PMID: 38974691 PMCID: PMC11225017 DOI: 10.1016/j.jtauto.2024.100243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/22/2024] [Accepted: 06/02/2024] [Indexed: 07/09/2024] Open
Abstract
Background Autoimmune hepatitis (AIH) is a relatively rare autoimmune disease with a strong genetic background. The patatin-like phospholipase domain-containing protein 3 (PNPLA3) I148 M (rs738409 C/G) variant has been associated with hepatic inflammation and fibrosis in chronic hepatic diseases beyond metabolic dysfunction-associated steatotic liver disease (MASLD). Aim Our aim was to investigate the significance of PNPLA3 I148 M variant in AIH. Method Two hundred AIH patients, followed in our centre, were evaluated while 100 healthy subjects served as controls. Genotyping was performed with allelic discrimination end-point polymerase chain reaction (PCR). Results The I148 M variant was present in 95/200 (47.5 %) AIH patients compared to 47/100 (47 %) healthy controls (p = 1.000). Patients with GG/CG genotypes were more likely to present with decompensated cirrhosis at diagnosis (GG/CG 6.3 % vs. CC 1 %, p = 0.039). Comorbidity with cardiometabolic risk factors and concurrence of MASLD was similar across genotypes. Simple steatosis was present in 37/186 (19.9 %) and steatohepatitis in 14/186 (7.5 %) patients with available liver biopsy without correlation with PNPLA3 genotype. Fibrosis stage and grade of inflammation were not correlated with any genotype. Response to treatment was also independent of the presence of the I148 M variant, even though a longer time was needed to achieve complete biochemical response in those carrying the GG/CG genotypes (p = 0.07). On Kaplan Meier analysis homozygosity for the G allele corelated with reduced survival free of decompensation (p = 0.006), cirrhotic events (decompensation, liver transplantation, hepatocellular carcinoma; p = 0.001) and liver-related death or liver transplantation (p = 0.011) in treated patients. Conclusions The PNPLA3 I148 M variant in AIH patients is associated with increased risk of advanced disease at diagnosis and reduced survival free of cirrhotic events and liver-related death or liver transplantation, regardless of the presence of MASLD. This signifies a potential role for the PNPLA3 I148 M variant as a new AIH biomarker allowing to identify patients at increased risk of disease progression.
Collapse
Affiliation(s)
- Kalliopi Azariadis
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece
- European Reference Network on Hepatological Diseases (ERN Rare-Liver), General University Hospital of Larissa, Larissa, Greece
| | - Nikolaos K. Gatselis
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece
- European Reference Network on Hepatological Diseases (ERN Rare-Liver), General University Hospital of Larissa, Larissa, Greece
| | - Aggeliki Lyberopoulou
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece
- European Reference Network on Hepatological Diseases (ERN Rare-Liver), General University Hospital of Larissa, Larissa, Greece
| | - Pinelopi Arvaniti
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece
- European Reference Network on Hepatological Diseases (ERN Rare-Liver), General University Hospital of Larissa, Larissa, Greece
| | - Kalliopi Zachou
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece
- European Reference Network on Hepatological Diseases (ERN Rare-Liver), General University Hospital of Larissa, Larissa, Greece
| | - Stella Gabeta
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece
- European Reference Network on Hepatological Diseases (ERN Rare-Liver), General University Hospital of Larissa, Larissa, Greece
| | - George N. Dalekos
- Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece
- European Reference Network on Hepatological Diseases (ERN Rare-Liver), General University Hospital of Larissa, Larissa, Greece
| |
Collapse
|
3
|
Wang Y, Hong S, Hudson H, Kory N, Kinch LN, Kozlitina J, Cohen JC, Hobbs HH. PNPLA3(148M) is a gain-of-function mutation that promotes hepatic steatosis by inhibiting ATGL-mediated triglyceride hydrolysis. J Hepatol 2024:S0168-8278(24)02707-7. [PMID: 39550037 DOI: 10.1016/j.jhep.2024.10.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND & AIMS PNPLA3(148M) (patatin-like phospholipase domain-containing protein 3) is the most impactful genetic risk factor for steatotic liver disease (SLD). A key unresolved issue is whether PNPLA3(148M) confers a loss- or gain-of-function. Here we test the hypothesis that PNPLA3 causes steatosis by sequestering ABHD5 (α/β hydrolase domain containing protein 5), the cofactor of ATGL (adipose TG lipase), thus limiting mobilization of hepatic triglyceride (TG). METHODS We quantified and compared the physical interactions between ABHD5 and PNPLA3/ATGL in cultured hepatocytes using NanoBiT complementation assays and immunocytochemistry. Recombinant proteins purified from human cells were used to compare TG hydrolytic activities of PNPLA3 and ATGL in the presence or absence of ABHD5. Adenoviruses and adeno-associated viruses were used to express PNPLA3 in liver-specific Atgl-/- mice and to express ABHD5 in livers of Pnpla3M/M mice, respectively. RESULTS ABHD5 interacted preferentially with PNPLA3 relative to ATGL in cultured hepatocytes. No differences were seen in the strength of the interactions between ABHD5 with PNPLA3(WT) and PNPLA3(148M). In contrast to prior findings, we found that PNPLA3, like ATGL, is activated by ABHD5 in in vitro assays using purified proteins. PNPLA3(148M)-associated inhibition of TG hydrolysis required that ATGL be expressed and that PNPLA3 be located on LDs. Finally, overexpression of ABHD5 reversed the hepatic steatosis in Pnpla3M/M mice. CONCLUSIONS These findings support the premise that PNPLA3(148M) is a gain-of-function mutation that promotes hepatic steatosis by accumulating on LDs and inhibiting ATGL-mediated lipolysis in an ABHD5-dependent manner. Our results predict that reducing, rather that increasing, PNPLA3 expression will be the best strategy to treat PNPLA3(148M)-associated SLD. IMPACT AND IMPLICATIONS Steatotic liver disease (SLD) is a common complex disorder associated with both environmental and genetic risk factors. PNPLA3(148M) is the most impactful genetic risk factor for SLD and yet its pathogenic mechanism remains controversial. Here we provide evidence that PNPLA3(148M) promotes triglyceride (TG) accumulation by sequestering ABHD5, thus limiting its availability to activate ATGL. Although the substitution of methionine for isoleucine reduces the TG hydrolase activity of PNPLA3, the loss of enzymatic function is not directly related to the steatotic effect of the variant. It is the resulting accumulation of PNPLA3 on LDs that confers a gain-of-function by interfering with ATGL-mediated TG hydrolysis. These findings have implications for the design of potential PNPLA3(148M)-based therapies. Reducing, rather than increasing, PNPLA3 levels is predicted to reverse steatosis in susceptible individuals.
Collapse
Affiliation(s)
- Yang Wang
- Department of Molecular Genetics, University of Texas Southwestern Medical Center (UTSW), Dallas, TX 75390-9046, USA.
| | - Sen Hong
- Department of Molecular Genetics, University of Texas Southwestern Medical Center (UTSW), Dallas, TX 75390-9046, USA; Howard Hughes Medical Institute, UTSW, Dallas, TX 75390, USA
| | - Hannah Hudson
- Department of Molecular Genetics, University of Texas Southwestern Medical Center (UTSW), Dallas, TX 75390-9046, USA
| | - Nora Kory
- Department of Molecular Metabolism, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Lisa N Kinch
- Department of Molecular Genetics, University of Texas Southwestern Medical Center (UTSW), Dallas, TX 75390-9046, USA; Howard Hughes Medical Institute, UTSW, Dallas, TX 75390, USA
| | - Julia Kozlitina
- The Eugene McDermott Center for Human Growth and Development, UTSW, Dallas, TX, 75390, USA
| | - Jonathan C Cohen
- Department of Molecular Genetics, University of Texas Southwestern Medical Center (UTSW), Dallas, TX 75390-9046, USA; Center for Human Nutrition, UTSW, Dallas, TX 75390, USA
| | - Helen H Hobbs
- Department of Molecular Genetics, University of Texas Southwestern Medical Center (UTSW), Dallas, TX 75390-9046, USA; Howard Hughes Medical Institute, UTSW, Dallas, TX 75390, USA; The Eugene McDermott Center for Human Growth and Development, UTSW, Dallas, TX, 75390, USA.
| |
Collapse
|
4
|
Sookoian S, Rotman Y, Valenti L. Genetics of Metabolic Dysfunction-associated Steatotic Liver Disease: The State of the Art Update. Clin Gastroenterol Hepatol 2024; 22:2177-2187.e3. [PMID: 39094912 PMCID: PMC11512675 DOI: 10.1016/j.cgh.2024.05.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/18/2024] [Accepted: 05/28/2024] [Indexed: 08/04/2024]
Abstract
Recent advances in the genetics of metabolic dysfunction-associated steatotic liver disease (MASLD) are gradually revealing the mechanisms underlying the heterogeneity of the disease and have shown promising results in patient stratification. Genetic characterization of the disease has been rapidly developed using genome-wide association studies, exome-wide association studies, phenome-wide association studies, and whole exome sequencing. These advances have been powered by the increase in computational power, the development of new analytical algorithms, including some based on artificial intelligence, and the recruitment of large and well-phenotyped cohorts. This review presents an update on genetic studies that emphasize new biological insights from next-generation sequencing approaches. Additionally, we discuss innovative methods for discovering new genetic loci for MASLD, including rare variants. To comprehensively manage MASLD, it is important to stratify risks. Therefore, we present an update on phenome-wide association study associations, including extreme phenotypes. Additionally, we discuss whether polygenic risk scores and targeted sequencing are ready for clinical use. With particular focus on precision medicine, we introduce concepts such as the interplay between genetics and the environment in modulating genetic risk with lifestyle or standard therapies. A special chapter is dedicated to gene-based therapeutics. The limitations of approved pharmacological approaches are discussed, and the potential of gene-related mechanisms in therapeutic development is reviewed, including the decision to perform genetic testing in patients with MASLD.
Collapse
Affiliation(s)
- Silvia Sookoian
- Clinical and Molecular Hepatology. Translational Health Research Center (CENITRES). Maimónides University. Buenos Aires, Argentina
- Faculty of Health Science. Maimónides University. Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Yaron Rotman
- Liver & Energy Metabolism Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Luca Valenti
- Precision Medicine - Biological Resource Center, Department of Transfusion Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
5
|
Hermanson JB, Tolba SA, Chrisler EA, Leone VA. Gut microbes, diet, and genetics as drivers of metabolic liver disease: a narrative review outlining implications for precision medicine. J Nutr Biochem 2024; 133:109704. [PMID: 39029595 PMCID: PMC11480923 DOI: 10.1016/j.jnutbio.2024.109704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 07/21/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is rapidly increasing in prevalence, impacting over a third of the global population. The advanced form of MASLD, Metabolic dysfunction-associated steatohepatitis (MASH), is on track to become the number one indication for liver transplant. FDA-approved pharmacological agents are limited for MASH, despite over 400 ongoing clinical trials, with only a single drug (resmetirom) currently on the market. This is likely due to the heterogeneous nature of disease pathophysiology, which involves interactions between highly individualized genetic and environmental factors. To apply precision medicine approaches that overcome interpersonal variability, in-depth insights into interactions between genetics, nutrition, and the gut microbiome are needed, given that each have emerged as dynamic contributors to MASLD and MASH pathogenesis. Here, we discuss the associations and molecular underpinnings of several of these factors individually and outline their interactions in the context of both patient-based studies and preclinical animal model systems. Finally, we highlight gaps in knowledge that will require further investigation to aid in successfully implementing precision medicine to prevent and alleviate MASLD and MASH.
Collapse
Affiliation(s)
- Jake B Hermanson
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Samar A Tolba
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Evan A Chrisler
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Vanessa A Leone
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
6
|
Lin KH, Vilar-Gomez E, Corey KE, Connelly MA, Gupta SK, Lake JE, Chalasani N, Gawrieh S. MASLD in persons with HIV is associated with high cardiometabolic risk as evidenced by altered advanced lipoprotein profiles and targeted metabolomics. Lipids Health Dis 2024; 23:339. [PMID: 39420356 PMCID: PMC11484191 DOI: 10.1186/s12944-024-02317-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Metabolic dysfunction associated steatotic liver disease (MASLD) is associated with increased cardiovascular disease (CVD) risk in persons with HIV (PWH). The lipidomic and metabolomic alterations contributing to this risk are poorly understood. We aimed to characterize the advanced lipoprotein and targeted metabolomic profiles in PWH and assess if the presence and severity of MASLD influence these profiles. METHODS This is a cross-sectional analysis of a prospectively enrolled multicenter cohort. PWH without alcohol abuse or known liver disease underwent vibration-controlled transient elastography for controlled attenuation parameter (CAP) and liver stiffness measurement (LSM). Lipidomic and metabolomic profiling was undertaken with nuclear magnetic resonance (NMR) spectroscopy. Hepatic steatosis was defined as CAP ≥ 263 dB/m and clinically significant fibrosis (CSF) as LSM ≥ 8 kPa. Logistic regression models assessed associations between MASLD, CSF and lipidomic and metabolic parameters. RESULTS Of 190 participants (71% cisgender male, 96% on antiretroviral therapy), 58% had MASLD and 12% CSF. Mean (SD) age was 48.9 (12.1) years and body mass index (BMI) 29.9 (6.4) kg/m2. Compared to PWH without MASLD (controls), PWH with MASLD had lower HDL-C but higher total triglyceride, VLDL-C, branched-chain amino acids, GlycA, trimethylamine N-oxide levels, Lipoprotein-Insulin Resistance and Diabetes Risk Indices. There were no significant differences in these parameters between participants with MASLD with or without CSF. In a multivariable regression analysis, MASLD was independently associated with changes in most of these parameters after adjustment for age, gender, race/ethnicity, type 2 diabetes mellitus, BMI, and lipid lowering medications use. CONCLUSIONS MASLD in PWH is independently associated with altered advanced lipoprotein and targeted metabolic profiles, indicating a higher CVD risk in this population.
Collapse
Affiliation(s)
- Kung-Hung Lin
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, 702 Rotary Circle, Indianapolis, Indianapolis, IN, 46202, USA
| | - Eduardo Vilar-Gomez
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, 702 Rotary Circle, Indianapolis, Indianapolis, IN, 46202, USA
| | - Kathleen E Corey
- Division of Gastroenterology, Department of Medicine, Liver Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Samir K Gupta
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jordan E Lake
- Division of Infectious Diseases, Department of Medicine, UTHealth Science Center at Houston, Houston, TX, USA
| | - Naga Chalasani
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, 702 Rotary Circle, Indianapolis, Indianapolis, IN, 46202, USA
| | - Samer Gawrieh
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, 702 Rotary Circle, Indianapolis, Indianapolis, IN, 46202, USA.
| |
Collapse
|
7
|
Cherubini A, Rosso C, Della Torre S. Sex-specific effects of PNPLA3 I148M. Liver Int 2024. [PMID: 39262132 DOI: 10.1111/liv.16088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD, previously termed NAFLD, nonalcoholic fatty liver disease) is a complex multifactorial disease showing generally higher prevalence and severity in men than in women. With respect to women, men are also more prone to develop metabolic dysfunction-associated steatohepatitis, fibrosis and liver-related complications. Several genetic, hormonal, environmental and lifestyle factors may contribute to sex differences in MASLD development, progression and outcomes. However, after menopause, the sex-specific prevalence of MASLD shows an opposite trend between men and women, pointing to the relevance of oestrogen signalling in the sexual dimorphism of MASLD. The patatin-like phospholipase domain-containing protein 3 (PNPLA3) gene, that encodes a triacylglycerol lipase that plays a crucial role in lipid metabolism, has emerged as a key player in the pathogenesis of MASLD, with the I148M variant being strongly associated with increased liver fat content and disease severity. Recent advances indicate that carrying the PNPLA3 I148M variant can be a risk factor for MASLD especially for women. To elucidate the molecular mechanisms underlying the sex-specific role of PNPLA3 I148M in the development of MASLD, several in vitro, ex vivo and in vivo models have been developed.
Collapse
Affiliation(s)
- Alessandro Cherubini
- Department of Transfusion Medicine, Precision Medicine-Biological Resource Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Chiara Rosso
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Sara Della Torre
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
8
|
Rashu EB, Werge MP, Hetland LE, Thing M, Nabilou P, Kimer N, Junker AE, Jensen ASH, Nordestgaard BG, Stender S, Gluud LL. Use of PNPLA3, TM6SF2, and HSD17B13 for detection of fibrosis in MASLD in the general population. Clin Res Hepatol Gastroenterol 2024; 48:102389. [PMID: 38830575 DOI: 10.1016/j.clinre.2024.102389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Genetic testing can be used to evaluate disease risk. We evaluated if the use of three Single Nucleotide Polymorphisms (SNPs), alone or combined into a genetic risk score (GRS), can aid identify significant fibrosis in subjects with metabolic dysfunction-associated steatotic liver disease (MASLD). METHODS We assessed three known risk variants: PNPLA3 rs738409, TM6SF2 rs58542926, and HSD17B13 rs72613567. The study included 414 adult individuals invited from the Danish population, who were defined as at-risk of MASLD due to elevated ALT and body mass index (BMI) >25 kg/m2. Participants were assessed clinically and by the Fibrosis-4 (FIB-4) index and Fibroscan. RESULTS In total, 17 participants (4.1 %) had alcohol-related liver disease, 79 (19.1 %) had no evidence of liver disease, and four (1.0 %) were diagnosed with other liver diseases, including malignant disease. The remaining 314 participants (75.8 %) were diagnosed with MASLD. Of the 27 who underwent a liver biopsy for suspected fibrosis, 15 had significant fibrosis (≥F2) and 12 had no/mild fibrosis (F0/F1). The GRS was not associated with significant fibrosis (p = 0.09) but PNPLA3 was with an odds ratio of 6.75 (95 % CI 1.29 - 50.7; p = 0.039) risk allele CG/GG versus CC. The diagnostic accuracy of PNPLA3 combined with an increased Fib-4 (>1.3) was excellent for detecting significant fibrosis with a sensitivity of 1.00 (95 % CI 0.72-1.00), but the specificity was no better than for FIB-4 alone. CONCLUSIONS This study found no evidence to support the use of GRS for diagnosing significant fibrosis in MASLD. However, the combination of PNPLA3 and Fib-4 increased sensitivity considerably. In addition, ALT remains a useful tool for screening diagnosing other liver diseases than MASLD.
Collapse
Affiliation(s)
| | | | | | - Mira Thing
- Gastro Unit, Copenhagen University Hospital Hvidovre, Denmark
| | - Puria Nabilou
- Gastro Unit, Copenhagen University Hospital Hvidovre, Denmark
| | - Nina Kimer
- Gastro Unit, Copenhagen University Hospital Hvidovre, Denmark
| | | | - Anne-Sofie Houlberg Jensen
- Gastro Unit, Copenhagen University Hospital Hvidovre, Denmark; Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Børge Grønne Nordestgaard
- Department of Clinical Biochemistry, Copenhagen University Hospital - Herlev and Gentofte, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stefan Stender
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Biochemistry, Rigshospitalet, Copenhagen, Denmark
| | - Lise Lotte Gluud
- Gastro Unit, Copenhagen University Hospital Hvidovre, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Doueiry C, Kappler CS, Martinez-Morant C, Duncan SA. A PNPLA3-Deficient iPSC-Derived Hepatocyte Screen Identifies Pathways to Potentially Reduce Steatosis in Metabolic Dysfunction-Associated Fatty Liver Disease. Int J Mol Sci 2024; 25:7277. [PMID: 39000384 PMCID: PMC11242544 DOI: 10.3390/ijms25137277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/25/2024] [Accepted: 06/29/2024] [Indexed: 07/16/2024] Open
Abstract
The incidence of nonalcoholic fatty liver disease (NAFLD), or metabolic dysfunction-associated fatty liver disease (MAFLD), is increasing in adults and children. Unfortunately, effective pharmacological treatments remain unavailable. Single nucleotide polymorphisms (SNPs) in the patatin-like phospholipase domain-containing protein (PNPLA3 I148M) have the most significant genetic association with the disease at all stages of its progression. A roadblock to identifying potential treatments for PNPLA3-induced NAFLD is the lack of a human cell platform that recapitulates the PNPLA3 I148M-mediated onset of lipid accumulation. Hepatocyte-like cells were generated from PNPLA3-/- and PNPLA3I148M/M-induced pluripotent stem cells (iPSCs). Lipid levels were measured by staining with BODIPY 493/503 and were found to increase in PNPLA3 variant iPSC-derived hepatocytes. A small-molecule screen identified multiple compounds that target Src/PI3K/Akt signaling and could eradicate lipid accumulation in these cells. We found that drugs currently in clinical trials for cancer treatment that target the same pathways also reduced lipid accumulation in PNPLA3 variant cells.
Collapse
Affiliation(s)
- Caren Doueiry
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (C.D.); (C.M.-M.)
- Medical Scientist Training Program, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Christiana S. Kappler
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (C.D.); (C.M.-M.)
| | - Carla Martinez-Morant
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (C.D.); (C.M.-M.)
| | - Stephen A. Duncan
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA; (C.D.); (C.M.-M.)
| |
Collapse
|
10
|
Li S, Xiong F, Zhang S, Liu J, Gao G, Xie J, Wang Y. Oligonucleotide therapies for nonalcoholic steatohepatitis. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102184. [PMID: 38665220 PMCID: PMC11044058 DOI: 10.1016/j.omtn.2024.102184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Nonalcoholic steatohepatitis (NASH) represents a severe disease subtype of nonalcoholic fatty liver disease (NAFLD) that is thought to be highly associated with systemic metabolic abnormalities. It is characterized by a series of substantial liver damage, including hepatocellular steatosis, inflammation, and fibrosis. The end stage of NASH, in some cases, may result in cirrhosis and hepatocellular carcinoma (HCC). Nowadays a large number of investigations are actively under way to test various therapeutic strategies, including emerging oligonucleotide drugs (e.g., antisense oligonucleotide, small interfering RNA, microRNA, mimic/inhibitor RNA, and small activating RNA) that have shown high potential in treating this fatal liver disease. This article systematically reviews the pathogenesis of NASH/NAFLD, the promising druggable targets proven by current studies in chemical compounds or biological drug development, and the feasibility and limitations of oligonucleotide-based therapeutic approaches under clinical or pre-clinical studies.
Collapse
Affiliation(s)
- Sixu Li
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610066, China
| | - Feng Xiong
- Department of Cardiology, The Third People’s Hospital of Chengdu, Chengdu 610031, China
| | - Songbo Zhang
- Department of Breast Surgery, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Jinghua Liu
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
| | - Yi Wang
- Department of Pathophysiology, West China College of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610066, China
| |
Collapse
|
11
|
Bansal SK, Bansal MB. Pathogenesis of MASLD and MASH - role of insulin resistance and lipotoxicity. Aliment Pharmacol Ther 2024; 59 Suppl 1:S10-S22. [PMID: 38451123 DOI: 10.1111/apt.17930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/26/2023] [Accepted: 02/20/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND Insulin resistance and lipotoxicity are extremely interconnected but fundamental in setting the stage for the development of MASLD/MASH. AIM/METHODS A comprehensive literature search was performed and key themes were synthesised to provide insight into the underlying molecular mechanisms of insulin resistance and lipotoxicity in the liver, muscle, pancreas and adipose tissue and how organ cross-talk is fundamental to driving disease pathogenesis. RESULTS Classical thinking postulates that excess FFA load exceeds the storage capacity of adipose tissue, which is predicated upon both genetic and environmental factors. This results in insulin resistance and compensatory hyperinsulinaemia by pancreatic beta cells to overcome target organ insulin resistance. As adipocyte dysfunction worsens, not only are excess FFA delivered to other organs, including skeletal muscle, pancreas and liver but a pro-inflammatory milieu is established with increases in IL-6, TNF-α and changes in adipokine levels (increased leptin and decreased adiponectin). With increased intramuscular lipid accumulation, lipotoxic species decrease insulin signalling, reduce glucose uptake by downregulation of GLUT4 and decrease glycogen synthesis. With this additional reduced capacity, hyperglycaemia is further exacerbated and increased FFA are delivered to the liver. The liver has the largest capacity to oxidise fat and to adapt to these stressors and, therefore, has become the last line of defence for excess lipid storage and utilisation, the capacity of which may be impacted by genetic and environmental factors. However, when the liver can no longer keep up with increasing FFA delivery and DNL, lipotoxic species accumulate with ensuing mitochondrial dysfunction, increased ER stress, oxidant stress and inflammasome activation, all of which drive hepatocyte injury and apoptosis. The resulting wound healing response, marked by stellate cell activation, drives collagen accumulation, progressive fibrosis, and, ultimately, end organ failure and death. This vicious cycle and complex interplay between insulin resistance, hyperinsulinaemia, lipotoxicity and multi-directional cross-talk among different target organs are critical drivers of MASLD/MASH. CONCLUSIONS Targeting tissue-specific insulin resistance and hyperinsulinaemia while decreasing FFA load (lipotoxicity) through dietary and lifestyle changes remain the best upstream interventions.
Collapse
Affiliation(s)
- Shalini K Bansal
- Sidney Kimmel College of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Meena B Bansal
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
12
|
Enkler L, Spang A. Functional interplay of lipid droplets and mitochondria. FEBS Lett 2024; 598:1235-1251. [PMID: 38268392 DOI: 10.1002/1873-3468.14809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/12/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024]
Abstract
Our body stores energy mostly in form of fatty acids (FAs) in lipid droplets (LDs). From there the FAs can be mobilized and transferred to peroxisomes and mitochondria. This transfer is dependent on close opposition of LDs and mitochondria and peroxisomes and happens at membrane contact sites. However, the composition and the dynamics of these contact sites is not well understood, which is in part due to the dependence on the metabolic state of the cell and on the cell- and tissue-type. Here, we summarize the current knowledge on the contacts between lipid droplets and mitochondria both in mammals and in the yeast Saccharomyces cerevisiae, in which various contact sites are well studied. We discuss possible functions of the contact site and their implication in disease.
Collapse
Affiliation(s)
| | - Anne Spang
- Biozentrum, University of Basel, Switzerland
| |
Collapse
|
13
|
Kodama T, Takehara T. Molecular Genealogy of Metabolic-associated Hepatocellular Carcinoma. Semin Liver Dis 2024; 44:147-158. [PMID: 38499207 PMCID: PMC11245329 DOI: 10.1055/a-2289-2298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
This review examines the latest epidemiological and molecular pathogenic findings of metabolic-associated hepatocellular carcinoma (HCC). Its increasing prevalence is a significant concern and reflects the growing burden of obesity and metabolic diseases, including metabolic dysfunction-associated steatotic liver disease, formerly known as nonalcoholic fatty liver disease, and type 2 diabetes. Metabolic-associated HCC has unique molecular abnormality and distinctive gene expression patterns implicating aberrations in bile acid, fatty acid metabolism, oxidative stress, and proinflammatory pathways. Furthermore, a notable frequency of single nucleotide polymorphisms in genes such as patatin-like phospholipase domain-containing 3, transmembrane 6 superfamily member 2, glucokinase regulator, and membrane-bound O-acyltransferase domain-containing 7 has been observed. The tumor immune microenvironment of metabolic-associated HCC is characterized by unique phenotypes of macrophages, neutrophils, and T lymphocytes. Additionally, the pathogenesis of metabolic-associated HCC is influenced by abnormal lipid metabolism, insulin resistance, and dysbiosis. In conclusion, deciphering the intricate interactions among metabolic processes, genetic predispositions, inflammatory responses, immune regulation, and microbial ecology is imperative for the development of novel therapeutic and preventative measures against metabolic-associated HCC.
Collapse
Affiliation(s)
- Takahiro Kodama
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Tetsuo Takehara
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
14
|
Zhang G, Jiang W, He F, Fu J, Xu X, Luo X, Cao Z. LDL-C and TC mediate the risk of PNPLA3 inhibition on cardiovascular diseases. J Clin Endocrinol Metab 2024:dgae264. [PMID: 38636099 DOI: 10.1210/clinem/dgae264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/02/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND PNPLA3 is a promising target for the treatment of Metabolic Dysfunction-Associated Steatotic Liver Disease. ARO-PNPLA3 is a drug that efficiently lowers PNPLA3 expression in hepatocytes at the mRNA level, resulting in a significant reduction in liver fat in Phase I clinical trials. However, the long-term effects and potential side effects of ARO-PNPLA3 are not well understood. METHODS We conducted a two-sample, two-step Mendelian randomization (MR) analysis to investigate the association between PNPLA3 inhibition and 10 cardiovascular diseases (CVDs), as well as the role of lipid traits as mediators. We identified genetic variants near the PNPLA3 gene, which are linked to liver fat percentage, as instrumental variables for inhibiting PNPLA3. Additionally, positive control analyses on liver diseases were conducted to validate the selection of the genetic instruments. RESULTS Genetically predicted PNPLA3 inhibition significantly increased the risk of coronary atherosclerosis (1.14, 95% CI 1.06, 1.23), coronary heart disease (1.14, 95% CI 1.08, 1.21), and myocardial infarction (1.16, 95% CI 1.08, 1.26). Suggestive associations were observed for increased risk of heart failure (1.09, 95% CI 1.02, 1.17, P = 0.0143) and atrial fibrillation (1.17, 95% CI 1.00, 1.36, P = 0.0468). Blood low-density lipoprotein cholesterol (LDL-C) and total cholesterol (TC) mediated approximately 16-25%, 16-30%, and 14-22% of the associations between PNPLA3 inhibition and coronary atherosclerosis, myocardial infarction, and coronary heart disease, respectively. CONCLUSION This study suggests that PNPLA3 inhibition increases the risk of major CVDs. Moreover, blood LDL-C and TC may mediate a significant proportion of the associations between PNPLA3 inhibition and coronary atherosclerosis, coronary heart disease, or myocardial infarction.
Collapse
Affiliation(s)
- Genshan Zhang
- Department of Gastrointestinal Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Wei Jiang
- Department of Gastrointestinal Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Fangxun He
- Department of Gastrointestinal Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Jie Fu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Xiangshang Xu
- Department of Gastrointestinal Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Xuelai Luo
- Department of Gastrointestinal Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| | - Zhixin Cao
- Department of Gastrointestinal Surgery, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China
| |
Collapse
|
15
|
Dawood RM, Salum GM, Abd El-Meguid M, Fotouh BES. Molecular Insights of Nonalcoholic Fatty Liver Disease Pathogenesis. J Interferon Cytokine Res 2024; 44:111-123. [PMID: 38301145 DOI: 10.1089/jir.2023.0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is now the most prevalent chronic liver disease. Many hepatic abnormalities are associated with NAFLD such as nonalcoholic steatohepatitis, progressive fibrosis, cirrhosis, and liver failure. Moreover, the pathogenesis of NAFLD has numerous etiologies and can be explained due to the existence of several of stimulus that act simultaneously on genetically susceptible patients. These stimuli include obesity, diabetes, and insulin resistance. In addition, identifying the role of gut microbiota on NAFLD progression has been illustrated. In this review, we clarified the several factors that lead to the development of NAFLD and identify those who are most at risk of developing liver end-stage disease. Highlighting the noninvasive diagnostic NAFLD markers could be helpful in the disease prevention and treatment approaches.
Collapse
Affiliation(s)
- Reham Mohammed Dawood
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Center, Giza, Egypt
| | - Ghada Maher Salum
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Center, Giza, Egypt
| | - Mai Abd El-Meguid
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Center, Giza, Egypt
| | - Basma El-Sayed Fotouh
- Department of Microbial Biotechnology, Biotechnology Research Institute, National Research Center, Giza, Egypt
| |
Collapse
|
16
|
Montero-Vallejo R, Maya-Miles D, Ampuero J, Martín F, Romero-Gómez M, Gallego-Durán R. Novel insights into metabolic-associated steatotic liver disease preclinical models. Liver Int 2024; 44:644-662. [PMID: 38291855 DOI: 10.1111/liv.15830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/02/2023] [Accepted: 12/18/2023] [Indexed: 02/01/2024]
Abstract
Metabolic-associated steatotic liver disease (MASLD) encompasses a wide spectrum of metabolic conditions associated with an excess of fat accumulation in the liver, ranging from simple hepatic steatosis to cirrhosis and hepatocellular carcinoma. Finding appropriate tools to study its development and progression is essential to address essential unmet therapeutic and staging needs. This review discusses advantages and shortcomings of different dietary, chemical and genetic factors that can be used to mimic this disease and its progression in mice from a hepatic and metabolic point of view. Also, this review will highlight some additional factors and considerations that could have a strong impact on the outcomes of our model to end up providing recommendations and a checklist to facilitate the selection of the appropriate MASLD preclinical model based on clinical aims.
Collapse
Affiliation(s)
- Rocío Montero-Vallejo
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Sevilla, Spain
| | - Douglas Maya-Miles
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Sevilla, Spain
| | - Javier Ampuero
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Sevilla, Spain
- Digestive Diseases Unit, Hospital Universitario Virgen Del Rocío, Sevilla, Spain
| | - Franz Martín
- Andalusian Center of Molecular Biology and Regenerative Medicine-CABIMER, University Pablo Olavide-University of Seville-CSIC, Seville, Spain
- Biomedical Research Network on Diabetes and Related Metabolic Diseases-CIBERDEM, Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Romero-Gómez
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Sevilla, Spain
- Digestive Diseases Unit, Hospital Universitario Virgen Del Rocío, Sevilla, Spain
| | - Rocío Gallego-Durán
- SeLiver Group, Instituto de Biomedicina de Sevilla/CSIC/Hospital Virgen del Rocío, Sevilla, Spain
- Hepatic and Digestive Diseases Networking Biomedical Research Centre (CIBERehd), Sevilla, Spain
| |
Collapse
|
17
|
Xu Q, Zhang J, Lu Y, Wu L. Association of metabolic-dysfunction associated steatotic liver disease with polycystic ovary syndrome. iScience 2024; 27:108783. [PMID: 38292434 PMCID: PMC10825666 DOI: 10.1016/j.isci.2024.108783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), which has a prevalence of over 25% in adults, encompasses a wide spectrum of liver diseases. Metabolic-dysfunction associated steatotic liver disease (MASLD), the new term for NAFLD, is characterized by steatotic liver disease accompanied by cardiometabolic criteria, showing a strong correlation with metabolic diseases. Polycystic ovary syndrome (PCOS) is a common reproductive endocrine disease affecting 4-21% of women of reproductive age. Numerous studies have indicated that NAFLD and PCOS often occur together. However, as MASLD is a new term, there is still a lack of reports describing the effects of MASLD on the development of PCOS. In this review article, we have summarized the complex and multifaceted connections between MASLD and PCOS. Understanding the pathogenesis and treatment methods could not only guide the clinical prevention, diagnosis, and treatment of PCOS in patients with MASLD, but also increase the clinical attention of reproductive doctors to MASLD.
Collapse
Affiliation(s)
- Qiuyu Xu
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Metabolism and Regenerative Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zhang
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Lu
- Institute of Metabolism and Regenerative Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Wu
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
18
|
Das A, Cheng H, Wang Y, Kinch LN, Liang G, Hong S, Hobbs HH, Cohen JC. The ubiquitin E3 ligase BFAR promotes degradation of PNPLA3. Proc Natl Acad Sci U S A 2024; 121:e2312291121. [PMID: 38294943 PMCID: PMC10861911 DOI: 10.1073/pnas.2312291121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/26/2023] [Indexed: 02/02/2024] Open
Abstract
A missense variant in patatin-like phospholipase domain-containing protein 3 [PNPLA3(I148M)] is the most impactful genetic risk factor for fatty liver disease (FLD). We previously showed that PNPLA3 is ubiquitylated and subsequently degraded by proteasomes and autophagosomes and that the PNPLA3(148M) variant interferes with this process. To define the machinery responsible for PNPLA3 turnover, we used small interfering (si)RNAs to inactivate components of the ubiquitin proteasome system. Inactivation of bifunctional apoptosis regulator (BFAR), a membrane-bound E3 ubiquitin ligase, reproducibly increased PNPLA3 levels in two lines of cultured hepatocytes. Conversely, overexpression of BFAR decreased levels of endogenous PNPLA3 in HuH7 cells. BFAR and PNPLA3 co-immunoprecipitated when co-expressed in cells. BFAR promoted ubiquitylation of PNPLA3 in vitro in a reconstitution assay using purified, epitope-tagged recombinant proteins. To confirm that BFAR targets PNPLA3, we inactivated Bfar in mice. Levels of PNPLA3 protein were increased twofold in hepatic lipid droplets of Bfar-/- mice with no associated increase in PNPLA3 mRNA levels. Taken together these data are consistent with a model in which BFAR plays a role in the post-translational degradation of PNPLA3. The identification of BFAR provides a potential target to enhance PNPLA3 turnover and prevent FLD.
Collapse
Affiliation(s)
- Avash Das
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Haili Cheng
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Yang Wang
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Lisa N. Kinch
- HHMI, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Guosheng Liang
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Sen Hong
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Helen H. Hobbs
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
- HHMI, University of Texas Southwestern Medical Center, Dallas, TX75390
| | - Jonathan C. Cohen
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX75390
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX75390
| |
Collapse
|
19
|
Cherubini A, Casirati E, Pelusi S, Valenti L. Estrogen-ER-α axis induces PNPLA3 p.I148M protein variant to promote steatotic liver disease susceptibility in women. Clin Transl Med 2024; 14:e1524. [PMID: 38224202 PMCID: PMC10788875 DOI: 10.1002/ctm2.1524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 01/16/2024] Open
Affiliation(s)
- Alessandro Cherubini
- Department of Transfusion MedicinePrecision Medicine Lab, Biological Resource Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Elia Casirati
- Department of Pathophysiology and TransplantationUniversità Degli Studi di MilanoMilanItaly
| | - Serena Pelusi
- Department of Transfusion MedicinePrecision Medicine Lab, Biological Resource Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
| | - Luca Valenti
- Department of Transfusion MedicinePrecision Medicine Lab, Biological Resource Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore PoliclinicoMilanItaly
- Department of Pathophysiology and TransplantationUniversità Degli Studi di MilanoMilanItaly
| |
Collapse
|
20
|
Pourteymour S, Drevon CA, Dalen KT, Norheim FA. Mechanisms Behind NAFLD: a System Genetics Perspective. Curr Atheroscler Rep 2023; 25:869-878. [PMID: 37812367 DOI: 10.1007/s11883-023-01158-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2023] [Indexed: 10/10/2023]
Abstract
PURPOSE OF REVIEW To summarize the key factors contributing to the onset and progress of nonalcoholic fatty liver disease (NAFLD) and put them in a system genetics context. We particularly focus on how genetic regulation of hepatic lipids contributes to NAFLD. RECENT FINDINGS NAFLD is characterized by excessive accumulation of fat in the liver. This can progress to steatohepatitis (inflammation and hepatocyte injury) and eventually, cirrhosis. The severity of NAFLD is determined by a combination of factors including obesity, insulin resistance, and lipotoxic lipids, along with genetic susceptibility. Numerous studies have been conducted on large human cohorts and mouse panels, to identify key determinants in the genome, transcriptome, proteome, lipidome, microbiome and different environmental conditions contributing to NAFLD. We review common factors contributing to NAFLD and put them in a systems genetics context. In particular, we describe how genetic regulation of liver lipids contributes to NAFLD. The combination of an unhealthy lifestyle and genetic predisposition increases the likelihood of accumulating lipotoxic specie lipids that may be one of the driving forces behind developing severe forms of NAFLD.
Collapse
Affiliation(s)
- Shirin Pourteymour
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Blindern, PO Box 1046, 0317, Oslo, Norway
| | - Christian A Drevon
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Blindern, PO Box 1046, 0317, Oslo, Norway
- Vitas Ltd. Oslo Science Park, Oslo, Norway
| | - Knut Tomas Dalen
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Blindern, PO Box 1046, 0317, Oslo, Norway
| | - Frode A Norheim
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Blindern, PO Box 1046, 0317, Oslo, Norway.
| |
Collapse
|
21
|
Huneault HE, Ramirez Tovar A, Sanchez-Torres C, Welsh JA, Vos MB. The Impact and Burden of Dietary Sugars on the Liver. Hepatol Commun 2023; 7:e0297. [PMID: 37930128 PMCID: PMC10629746 DOI: 10.1097/hc9.0000000000000297] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/25/2023] [Indexed: 11/07/2023] Open
Abstract
NAFLD, or metabolic dysfunction-associated steatotic liver disease, has increased in prevalence hand in hand with the rise in obesity and increased free sugars in the food supply. The causes of NAFLD are genetic in origin combined with environmental drivers of the disease phenotype. Dietary intake of added sugars has been shown to have a major role in the phenotypic onset and progression of the disease. Simple sugars are key drivers of steatosis, likely through fueling de novo lipogenesis, the conversion of excess carbohydrates into fatty acids, but also appear to upregulate lipogenic metabolism and trigger hyperinsulinemia, another driver. NAFLD carries a clinical burden as it is associated with obesity, type 2 diabetes, metabolic syndrome, and cardiovascular disease. Patient quality of life is also impacted, and there is an enormous economic burden due to healthcare use, which is likely to increase in the coming years. This review aims to discuss the role of dietary sugar in NAFLD pathogenesis, the health and economic burden, and the promising potential of sugar reduction to improve health outcomes for patients with this chronic liver disease.
Collapse
Affiliation(s)
- Helaina E. Huneault
- Nutrition and Health Sciences Program, Laney Graduate School, Emory University, Atlanta, Georgia, USA
| | - Ana Ramirez Tovar
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Cristian Sanchez-Torres
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Jean A. Welsh
- Nutrition and Health Sciences Program, Laney Graduate School, Emory University, Atlanta, Georgia, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| | - Miriam B. Vos
- Nutrition and Health Sciences Program, Laney Graduate School, Emory University, Atlanta, Georgia, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
22
|
Khaznadar F, Petrovic A, Khaznadar O, Roguljic H, Bojanic K, Kuna Roguljic L, Siber S, Smolic R, Bilic-Curcic I, Wu GY, Smolic M. Biomarkers for Assessing Non-Alcoholic Fatty Liver Disease in Patients with Type 2 Diabetes Mellitus on Sodium-Glucose Cotransporter 2 Inhibitor Therapy. J Clin Med 2023; 12:6561. [PMID: 37892698 PMCID: PMC10607797 DOI: 10.3390/jcm12206561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
In the current modern era of unhealthy lifestyles, non-alcoholic fatty liver disease (NAFLD) is the most prevalent liver disease and has become a serious global health problem. To date, there is no approved pharmacotherapy for the treatment of NAFLD, and necessary lifestyle changes such as weight loss, diet, and exercise are usually not sufficient to manage this disease. Patients with type 2 diabetes mellitus (T2DM) have a significantly higher risk of developing NAFLD and vice versa. Sodium-glucose cotransporter 2 (SGLT2) inhibitors are antidiabetic agents that have recently been approved for two other indications: chronic kidney disease and heart failure in diabetics and non-diabetics. They are also emerging as promising new agents for NAFLD treatment, as they have shown beneficial effects on hepatic inflammation, steatosis, and fibrosis. Studies in animals have reported favorable effects of SGLT2 inhibitors, and studies in patients also found positive effects on body mass index (BMI), insulin resistance, glucose levels, liver enzymes, apoptosis, and transcription factors. There are some theories regarding how SGLT2 inhibitors affect the liver, but the exact mechanism is not yet fully understood. Therefore, biomarkers to evaluate underlying mechanisms of action of SGLT2 inhibitors on the liver have now been scrutinized to assess their potential as a future in-label therapy for NAFLD. In addition, finding suitable non-invasive biomarkers could be helpful in clinical practice for the early detection of NAFLD in patients. This is crucial for a positive disease outcome. The aim of this review is to provide an overview of the most recent findings on the effects of SGLT2 inhibitors on NAFLD biomarkers and the potential of SGLT2 inhibitors to successfully treat NAFLD.
Collapse
Affiliation(s)
- Farah Khaznadar
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (F.K.); (A.P.); (H.R.); (K.B.); (L.K.R.); (S.S.); (R.S.)
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
| | - Ana Petrovic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (F.K.); (A.P.); (H.R.); (K.B.); (L.K.R.); (S.S.); (R.S.)
| | - Omar Khaznadar
- Department of Radiology, “Dr. Juraj Njavro” National Memorial Hospital Vukovar, 32000 Vukovar, Croatia;
| | - Hrvoje Roguljic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (F.K.); (A.P.); (H.R.); (K.B.); (L.K.R.); (S.S.); (R.S.)
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
- Clinical Hospital Center, 31000 Osijek, Croatia
| | - Kristina Bojanic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (F.K.); (A.P.); (H.R.); (K.B.); (L.K.R.); (S.S.); (R.S.)
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
- Health Center Osijek-Baranja County, 31000 Osijek, Croatia
| | - Lucija Kuna Roguljic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (F.K.); (A.P.); (H.R.); (K.B.); (L.K.R.); (S.S.); (R.S.)
| | - Stjepan Siber
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (F.K.); (A.P.); (H.R.); (K.B.); (L.K.R.); (S.S.); (R.S.)
| | - Robert Smolic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (F.K.); (A.P.); (H.R.); (K.B.); (L.K.R.); (S.S.); (R.S.)
| | - Ines Bilic-Curcic
- Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
- Clinical Hospital Center, 31000 Osijek, Croatia
| | - George Y. Wu
- Department of Medicine, Division of Gastrenterology/Hepatology, University of Connecticut Health Center, Farmington, CT 06030, USA;
| | - Martina Smolic
- Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (F.K.); (A.P.); (H.R.); (K.B.); (L.K.R.); (S.S.); (R.S.)
| |
Collapse
|
23
|
Wang S, Friedman SL. Found in translation-Fibrosis in metabolic dysfunction-associated steatohepatitis (MASH). Sci Transl Med 2023; 15:eadi0759. [PMID: 37792957 PMCID: PMC10671253 DOI: 10.1126/scitranslmed.adi0759] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 09/15/2023] [Indexed: 10/06/2023]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a severe form of liver disease that poses a global health threat because of its potential to progress to advanced fibrosis, leading to cirrhosis and liver cancer. Recent advances in single-cell methodologies, refined disease models, and genetic and epigenetic insights have provided a nuanced understanding of MASH fibrogenesis, with substantial cellular heterogeneity in MASH livers providing potentially targetable cell-cell interactions and behavior. Unlike fibrogenesis, mechanisms underlying fibrosis regression in MASH are still inadequately understood, although antifibrotic targets have been recently identified. A refined antifibrotic treatment framework could lead to noninvasive assessment and targeted therapies that preserve hepatocellular function and restore the liver's architectural integrity.
Collapse
Affiliation(s)
- Shuang Wang
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Scott L. Friedman
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
24
|
Cherubini A, Ostadreza M, Jamialahmadi O, Pelusi S, Rrapaj E, Casirati E, Passignani G, Norouziesfahani M, Sinopoli E, Baselli G, Meda C, Dongiovanni P, Dondossola D, Youngson N, Tourna A, Chokshi S, Bugianesi E, Della Torre S, Prati D, Romeo S, Valenti L. Interaction between estrogen receptor-α and PNPLA3 p.I148M variant drives fatty liver disease susceptibility in women. Nat Med 2023; 29:2643-2655. [PMID: 37749332 PMCID: PMC10579099 DOI: 10.1038/s41591-023-02553-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/21/2023] [Indexed: 09/27/2023]
Abstract
Fatty liver disease (FLD) caused by metabolic dysfunction is the leading cause of liver disease and the prevalence is rising, especially in women. Although during reproductive age women are protected against FLD, for still unknown and understudied reasons some develop rapidly progressive disease at the menopause. The patatin-like phospholipase domain-containing 3 (PNPLA3) p.I148M variant accounts for the largest fraction of inherited FLD variability. In the present study, we show that there is a specific multiplicative interaction between female sex and PNPLA3 p.I148M in determining FLD in at-risk individuals (steatosis and fibrosis, P < 10-10; advanced fibrosis/hepatocellular carcinoma, P = 0.034) and in the general population (P < 10-7 for alanine transaminase levels). In individuals with obesity, hepatic PNPLA3 expression was higher in women than in men (P = 0.007) and in mice correlated with estrogen levels. In human hepatocytes and liver organoids, PNPLA3 was induced by estrogen receptor-α (ER-α) agonists. By chromatin immunoprecipitation and luciferase assays, we identified and characterized an ER-α-binding site within a PNPLA3 enhancer and demonstrated via CRISPR-Cas9 genome editing that this sequence drives PNPLA3 p.I148M upregulation, leading to lipid droplet accumulation and fibrogenesis in three-dimensional multilineage spheroids with stellate cells. These data suggest that a functional interaction between ER-α and PNPLA3 p.I148M variant contributes to FLD in women.
Collapse
Affiliation(s)
- Alessandro Cherubini
- Precision Medicine-Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mahnoosh Ostadreza
- Precision Medicine-Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Oveis Jamialahmadi
- Department of Molecular and Clinical Medicine, Gothenburg University, Gothenburg, Sweden
| | - Serena Pelusi
- Precision Medicine-Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Eniada Rrapaj
- Precision Medicine-Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elia Casirati
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Giulia Passignani
- Precision Medicine-Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marjan Norouziesfahani
- Precision Medicine-Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Sinopoli
- Precision Medicine-Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Guido Baselli
- Precision Medicine-Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Clara Meda
- Department of Health Sciences, Università degli Studi di Milano, Milan, Italy
| | - Paola Dongiovanni
- Medicine and Metabolic Diseases, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Daniele Dondossola
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
- General and Liver Transplant Surgery, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico and University of Milan, Centre of Preclinical Research, Milan, Italy
| | - Neil Youngson
- Foundation for Liver Research, The Roger Williams Institute of Hepatology, London, UK
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Aikaterini Tourna
- Foundation for Liver Research, The Roger Williams Institute of Hepatology, London, UK
| | - Shilpa Chokshi
- Foundation for Liver Research, The Roger Williams Institute of Hepatology, London, UK
- Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Elisabetta Bugianesi
- Department of Medical Sciences, Division of Gastroenterology, University of Turin, Turin, Italy
| | - Sara Della Torre
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milan, Italy
| | - Daniele Prati
- Precision Medicine-Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, Gothenburg University, Gothenburg, Sweden
- Cardiology Department, Sahlgrenska Hospital, Gothenburg, Sweden
- Department of Medical and Surgical Science, Magna Græcia University, Catanzaro, Italy
| | - Luca Valenti
- Precision Medicine-Biological Resource Center and Department of Transfusion Medicine, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
25
|
Abstract
Non-Alcoholic Fatty Liver Disease (NAFLD) refers to the accumulation of lipid laden vacuoles in hepatocytes, occurring in the context of visceral adiposity, insulin resistance and other features of the metabolic syndrome. Its more severe form (NASH, Non-Alcoholic Steatohepatitis) is becoming the leading aetiology of end-stage liver disease and hepatocellular carcinoma, and also contributes to cardiovascular disease, diabetes and extrahepatic malignancy. Management is currently limited to lifestyle modification and optimisation of the metabolic co-morbidities, with some of the drugs used for the latter also having shown some benefit for the liver. Licensed treatment modalities are currently lacking. A particular difficulty is the notorious heterogeneity of the patient population, which is poorly understood. A spectrum of disease severity associates in a non-linear way with a spectrum of severity of underlying metabolic factors. Heterogeneity of the liver in terms of mechanisms to cope with the metabolic and inflammatory stress and in terms of repair mechanisms, and a lack of knowledge hereof, further complicate the understanding of inter-individual variability. Genetic factors act as disease modifiers and potentially allow for some risk stratification, but also only explain a minor fraction of disease heterogeneity. Response to treatment shows a large variation in treatment response, again with little understanding of what is driving the absence of response in individual patients. Management can be tailored to patient's preferences in terms of diet modification, but tailoring treatment to knowledge on disease driving mechanisms in an individual patient is still in its infancy. Recent progress in analysing liver tissue as well as non-invasive tests hold, however, promise to rapidly improve our understanding of disease heterogeneity in NAFLD and provide individualised management.
Collapse
Affiliation(s)
- Sven M Francque
- Department of Gastroenterology Hepatology, Antwerp University Hospital, Drie Eikenstraat 655, B-2650, Edegem, Belgium.
- InflaMed Centre of Excellence, Laboratory for Experimental Medicine and Paediatrics, Translational Sciences in Inflammation and Immunology, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium.
| |
Collapse
|
26
|
Seko Y, Yamaguchi K, Shima T, Iwaki M, Takahashi H, Kawanaka M, Tanaka S, Mitsumoto Y, Yoneda M, Nakajima A, Fjellström O, Blau JE, Carlsson B, Okanoue T, Itoh Y. The greater impact of PNPLA3 polymorphism on liver-related events in Japanese non-alcoholic fatty liver disease patients: A multicentre cohort study. Liver Int 2023; 43:2210-2219. [PMID: 37470077 DOI: 10.1111/liv.15678] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/25/2023] [Accepted: 07/06/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND & AIMS PNPLA3 rs738409 has been associated with an increased risk of liver-related events in patients with non-alcoholic fatty liver disease (NAFLD). In this study, we investigated the epidemiology of NAFLD and the impact of PNPLA3 on prognosis in Japan. METHODS A longitudinal multicentre cohort study, the JAGUAR study, includes 1550 patients with biopsy-proven NAFLD in Japan. We performed genetic testing and evaluated outcomes from this cohort. Liver-related events were defined as hepatocellular carcinoma (HCC) and decompensated liver cirrhosis events. RESULTS During follow-up (median [range], 7.1 [1.0-24.0] years), 80 patients developed HCC, 104 developed liver-related events, and 59 died of any cause. The 5-year rate of liver-related events for each single-nucleotide polymorphism was 0.5% for CC, 3.8% for CG, and 5.8% for GG. Liver-related deaths were the most common (n = 28); only three deaths were due to cardiovascular disease. Multivariate analysis identified carriage of PNPLA3 CG/GG (hazard ratio [HR] 16.04, p = .006) and FIB-4 index >2.67 (HR 10.70, p < .01) as predictors of liver-related event development. No HCC or liver-related death was found among patients with PNPLA3 CC. There was a significantly increased risk of HCC, liver-related events, and mortality for CG/GG versus CC, but no difference between the CG and GG genotypes. CONCLUSIONS In Japanese individuals, the main cause of death from NAFLD is liver-related death. The greater risk of liver-related events incurred by PNPLA3 G allele was shown in Japan. Risk stratification for NAFLD in Japan is best accomplished by integrating PNPLA3 with the FIB-4 index.
Collapse
Affiliation(s)
- Yuya Seko
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kanji Yamaguchi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Toshihide Shima
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Suita, Japan
| | - Michihiro Iwaki
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | - Miwa Kawanaka
- General Internal Medicine 2, General Medical Center, Kawasaki Medical School, Okayama, Japan
| | - Saiyu Tanaka
- Center for Digestive and Liver Diseases, Nara City Hospital, Nara, Japan
| | - Yasuhide Mitsumoto
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Suita, Japan
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ola Fjellström
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Jenny E Blau
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, USA
| | - Björn Carlsson
- Research and Early Development, Cardiovascular, Renal and Metabolism, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Takeshi Okanoue
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Suita, Japan
| | - Yoshito Itoh
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
27
|
Lindén D, Romeo S. Therapeutic opportunities for the treatment of NASH with genetically validated targets. J Hepatol 2023; 79:1056-1064. [PMID: 37207913 DOI: 10.1016/j.jhep.2023.05.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/21/2023]
Abstract
The identification of genetic variants associated with fatty liver disease (FLD) from genome-wide association studies started in 2008 when single nucleotide polymorphisms in PNPLA3, the gene encoding patatin-like phospholipase domain-containing 3, were found to be associated with altered hepatic fat content. Since then, several genetic variants associated with protection from, or an increased risk of, FLD have been identified. The identification of these variants has provided insight into the metabolic pathways that cause FLD and enabled the identification of potential therapeutic targets. In this mini-review, we will examine the therapeutic opportunities derived from genetically validated targets in FLD, including oligonucleotide-based therapies targeting PNPLA3 and HSD17B13 that are currently being evaluated in clinical trials for the treatment of NASH (non-alcoholic steatohepatitis).
Collapse
Affiliation(s)
- Daniel Lindén
- Bioscience Metabolism, Research and Early Development Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden; Division of Endocrinology, Department of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden.
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden; Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden; Clinical Nutrition Unit, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy.
| |
Collapse
|
28
|
Shi F, Zhao M, Zheng S, Zheng L, Wang H. Advances in genetic variation in metabolism-related fatty liver disease. Front Genet 2023; 14:1213916. [PMID: 37753315 PMCID: PMC10518415 DOI: 10.3389/fgene.2023.1213916] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
Metabolism-related fatty liver disease (MAFLD) is the most common form of chronic liver disease in the world. Its pathogenesis is influenced by both environmental and genetic factors. With the upgrading of gene screening methods and the development of human genome project, whole genome scanning has been widely used to screen genes related to MAFLD, and more and more genetic variation factors related to MAFLD susceptibility have been discovered. There are genetic variants that are highly correlated with the occurrence and development of MAFLD, and there are genetic variants that are protective of MAFLD. These genetic variants affect the development of MAFLD by influencing lipid metabolism and insulin resistance. Therefore, in-depth analysis of different mechanisms of genetic variation and targeting of specific genetic variation genes may provide a new idea for the early prediction and diagnosis of diseases and individualized precision therapy, which may be a promising strategy for the treatment of MAFLD.
Collapse
Affiliation(s)
- Fan Shi
- School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Mei Zhao
- School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Shudan Zheng
- School of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lihong Zheng
- Department of Internal Medicine, Fourth Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Haiqiang Wang
- Department of Internal Medicine, First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
29
|
Vitulo M, Gnodi E, Rosini G, Meneveri R, Giovannoni R, Barisani D. Current Therapeutical Approaches Targeting Lipid Metabolism in NAFLD. Int J Mol Sci 2023; 24:12748. [PMID: 37628929 PMCID: PMC10454602 DOI: 10.3390/ijms241612748] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/07/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD, including nonalcoholic fatty liver (NAFL) and nonalcoholic steatohepatitis (NASH)) is a high-prevalence disorder, affecting about 1 billion people, which can evolve to more severe conditions like cirrhosis or hepatocellular carcinoma. NAFLD is often concomitant with conditions of the metabolic syndrome, such as central obesity and insulin-resistance, but a specific drug able to revert NAFL and prevent its evolution towards NASH is still lacking. With the liver being a key organ in metabolic processes, the potential therapeutic strategies are many, and range from directly targeting the lipid metabolism to the prevention of tissue inflammation. However, side effects have been reported for the drugs tested up to now. In this review, different approaches to the treatment of NAFLD are presented, including newer therapies and ongoing clinical trials. Particular focus is placed on the reverse cholesterol transport system and on the agonists for nuclear factors like PPAR and FXR, but also drugs initially developed for other conditions such as incretins and thyromimetics along with validated natural compounds that have anti-inflammatory potential. This work provides an overview of the different therapeutic strategies currently being tested for NAFLD, other than, or along with, the recommendation of weight loss.
Collapse
Affiliation(s)
- Manuela Vitulo
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (M.V.); (E.G.); (R.M.)
| | - Elisa Gnodi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (M.V.); (E.G.); (R.M.)
| | - Giulia Rosini
- Department of Biology, University of Pisa, 56021 Pisa, Italy; (G.R.); (R.G.)
| | - Raffaella Meneveri
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (M.V.); (E.G.); (R.M.)
| | - Roberto Giovannoni
- Department of Biology, University of Pisa, 56021 Pisa, Italy; (G.R.); (R.G.)
| | - Donatella Barisani
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (M.V.); (E.G.); (R.M.)
| |
Collapse
|
30
|
Grander C, Grabherr F, Tilg H. Non-alcoholic fatty liver disease: pathophysiological concepts and treatment options. Cardiovasc Res 2023; 119:1787-1798. [PMID: 37364164 PMCID: PMC10405569 DOI: 10.1093/cvr/cvad095] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/30/2022] [Accepted: 06/23/2023] [Indexed: 06/28/2023] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) is continually increasing due to the global obesity epidemic. NAFLD comprises a systemic metabolic disease accompanied frequently by insulin resistance and hepatic and systemic inflammation. Whereas simple hepatic steatosis is the most common disease manifestation, a more progressive disease course characterized by liver fibrosis and inflammation (i.e. non-alcoholic steatohepatitis) is present in 10-20% of affected individuals. NAFLD furthermore progresses in a substantial number of patients towards liver cirrhosis and hepatocellular carcinoma. Whereas this disease now affects almost 25% of the world's population and is mainly observed in obesity and type 2 diabetes, NAFLD also affects lean individuals. Pathophysiology involves lipotoxicity, hepatic immune disturbances accompanied by hepatic insulin resistance, a gut dysbiosis, and commonly hepatic and systemic insulin resistance defining this disorder a prototypic systemic metabolic disorder. Not surprisingly many affected patients have other disease manifestations, and indeed cardiovascular disease, chronic kidney disease, and extrahepatic malignancies are all contributing substantially to patient outcome. Weight loss and lifestyle change reflect the cornerstone of treatment, and several medical treatment options are currently under investigation. The most promising treatment strategies include glucagon-like peptide 1 receptor antagonists, sodium-glucose transporter 2 inhibitors, Fibroblast Growth Factor analogues, Farnesoid X receptor agonists, and peroxisome proliferator-activated receptor agonists. Here, we review epidemiology, pathophysiology, and therapeutic options for NAFLD.
Collapse
Affiliation(s)
- Christoph Grander
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Anichstrasse 35, Innsbruck 6020, Austria
| | - Felix Grabherr
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Anichstrasse 35, Innsbruck 6020, Austria
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Anichstrasse 35, Innsbruck 6020, Austria
| |
Collapse
|
31
|
Gou Y, Wang L, Zhao J, Xu X, Xu H, Xie F, Wang Y, Feng Y, Zhang J, Zhang Y. PNPLA3-I148M Variant Promotes the Progression of Liver Fibrosis by Inducing Mitochondrial Dysfunction. Int J Mol Sci 2023; 24:ijms24119681. [PMID: 37298640 DOI: 10.3390/ijms24119681] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Patatin-like phospholipase domain-containing 3 (PNPLA3) rs738409 polymorphism (I148M) is strongly associated with non-alcoholic steatohepatitis and advanced fibrosis; however, the underlying mechanisms remain largely unknown. In this study, we investigated the effect of PNPLA3-I148M on the activation of hepatic stellate cell line LX-2 and the progression of liver fibrosis. Immunofluorescence staining and enzyme-linked immunosorbent assay were used to detect lipid accumulation. The expression levels of fibrosis, cholesterol metabolism, and mitochondria-related markers were measured via real-time PCR or western blotting. Electron microscopy was applied to analyze the ultrastructure of the mitochondria. Mitochondrial respiration was measured by a Seahorse XFe96 analyzer. PNPLA3-I148M significantly promoted intracellular free cholesterol aggregation in LX-2 cells by decreasing cholesterol efflux protein (ABCG1) expression; it subsequently induced mitochondrial dysfunction characterized by attenuated ATP production and mitochondrial membrane potential, elevated ROS levels, caused mitochondrial structural damage, altered the oxygen consumption rate, and decreased the expression of mitochondrial-function-related proteins. Our results demonstrated for the first time that PNPLA3-I148M causes mitochondrial dysfunction of LX-2 cells through the accumulation of free cholesterol, thereby promoting the activation of LX-2 cells and the development of liver fibrosis.
Collapse
Affiliation(s)
- Yusong Gou
- The Third Unit, The Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Lifei Wang
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jinhan Zhao
- The Third Unit, The Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Xiaoyi Xu
- The Third Unit, The Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Hangfei Xu
- The Third Unit, The Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Fang Xie
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
- Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing 100069, China
| | - Yanjun Wang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
- Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing 100069, China
| | - Yingmei Feng
- Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Jing Zhang
- The Third Unit, The Department of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| | - Yang Zhang
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
- Beijing Engineering Research Center for Precision Medicine and Transformation of Hepatitis and Liver Cancer, Beijing 100069, China
| |
Collapse
|
32
|
Lulić AM, Katalinić M. The PNPLA family of enzymes: characterisation and biological role. Arh Hig Rada Toksikol 2023; 74:75-89. [PMID: 37357879 PMCID: PMC10291501 DOI: 10.2478/aiht-2023-74-3723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/01/2023] [Accepted: 05/01/2023] [Indexed: 06/27/2023] Open
Abstract
This paper brings a brief review of the human patatin-like phospholipase domain-containing protein (PNPLA) family. Even though it consists of only nine members, their physiological roles and mechanisms of their catalytic activity are not fully understood. However, the results of a number of knock-out and gain- or loss-of-function research models suggest that these enzymes have an important role in maintaining the homeostasis and integrity of organelle membranes, in cell growth, signalling, cell death, and the metabolism of lipids such as triacylglycerol, phospholipids, ceramides, and retinyl esters. Research has also revealed a connection between PNPLA family member mutations or irregular catalytic activity and the development of various diseases. Here we summarise important findings published so far and discuss their structure, localisation in the cell, distribution in the tissues, specificity for substrates, and their potential physiological role, especially in view of their potential as drug targets.
Collapse
Affiliation(s)
- Ana-Marija Lulić
- Institute for Medical Research and Occupational Health, Biochemistry and Organic Analytical Chemistry Unit, Zagreb, Croatia
| | - Maja Katalinić
- Institute for Medical Research and Occupational Health, Biochemistry and Organic Analytical Chemistry Unit, Zagreb, Croatia
| |
Collapse
|
33
|
Zadoorian A, Du X, Yang H. Lipid droplet biogenesis and functions in health and disease. Nat Rev Endocrinol 2023:10.1038/s41574-023-00845-0. [PMID: 37221402 DOI: 10.1038/s41574-023-00845-0] [Citation(s) in RCA: 106] [Impact Index Per Article: 106.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/25/2023] [Indexed: 05/25/2023]
Abstract
Ubiquitous yet unique, lipid droplets are intracellular organelles that are increasingly being recognized for their versatility beyond energy storage. Advances uncovering the intricacies of their biogenesis and the diversity of their physiological and pathological roles have yielded new insights into lipid droplet biology. Despite these insights, the mechanisms governing the biogenesis and functions of lipid droplets remain incompletely understood. Moreover, the causal relationship between the biogenesis and function of lipid droplets and human diseases is poorly resolved. Here, we provide an update on the current understanding of the biogenesis and functions of lipid droplets in health and disease, highlighting a key role for lipid droplet biogenesis in alleviating cellular stresses. We also discuss therapeutic strategies of targeting lipid droplet biogenesis, growth or degradation that could be applied in the future to common diseases, such as cancer, hepatic steatosis and viral infection.
Collapse
Affiliation(s)
- Armella Zadoorian
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Ximing Du
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Hongyuan Yang
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
34
|
Ajmera V, Loomba R. Advances in the genetics of nonalcoholic fatty liver disease. Curr Opin Gastroenterol 2023; 39:150-155. [PMID: 37144531 PMCID: PMC10167543 DOI: 10.1097/mog.0000000000000927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
PURPOSE OF REVIEW Nonalcoholic fatty liver disease (NAFLD) is the most common cause of liver disease in the United States and has a strong heritable component. Advances in understanding the genetic underpinnings of NAFLD have revealed important insights into NAFLD pathogenesis, prognosis, and potential therapeutic targets. The purpose of this review is to summarize data on common and rare variants associated with NAFLD, combining risk variants into polygenic scores to predict NAFLD and cirrhosis as well as emerging evidence on using gene silencing as a novel therapeutic target in NAFLD. RECENT FINDINGS Protective variants in HSD17B13, MARC1 and CIDEB have been identified and a confer 10-50% lower risk of cirrhosis. Together, these as well as other NAFLD risk variants, including those in PNPLA3 and TM6SF2, can be combined to create polygenic risk scores associated with liver fat, cirrhosis, and hepatocellular carcinoma. Genomic analysis of extreme phenotypes including patients with lean NAFLD without visceral adiposity may uncover rare monogenic disorders with pathogenic and therapeutic implications and gene silencing strategies targeting HSD17B13 and PNPLA3 are being evaluated in early phase human studies as treatments for NAFLD. SUMMARY Advances in our understanding of the genetics of NAFLD will enable clinical risk stratification and yield potential therapeutic targets.
Collapse
Affiliation(s)
- Veeral Ajmera
- NAFLD Research Center, Division of Gastroenterology. University of California at San Diego, La Jolla, CA, USA
- Division of Gastroenterology and Hepatology, University of California at San Diego, La Jolla, CA, USA
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology. University of California at San Diego, La Jolla, CA, USA
- Division of Gastroenterology and Hepatology, University of California at San Diego, La Jolla, CA, USA
- School of Public Health, University of California at San Diego, La Jolla, CA, USA
| |
Collapse
|
35
|
Francque S, Ratziu V. Future Treatment Options and Regimens for Nonalcoholic Fatty Liver Disease. Clin Liver Dis 2023; 27:429-449. [PMID: 37024217 DOI: 10.1016/j.cld.2023.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Recent progress in our understanding of the pathogenic mechanisms that drive progression of nonalcoholic steatohepatitis as well as lessons learned from several clinical trials that have been conducted over the past 15 years guide our current regulatory framework and trial design. Targeting the metabolic drivers should probably be the backbone of therapy in most of the patients, with some requiring more specific intrahepatic antiinflammatory and antifibrotic actions to achieve success. New and innovative targets and approaches as well as combination therapies are currently explored, while awaiting a better understanding of disease heterogeneity that should allow for future individualized medicine.
Collapse
Affiliation(s)
- Sven Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium; Laboratory of Experimental Medicine and Paediatrics (LEMP), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; InflaMed Centre of Excellence, University of Antwerp, Antwerp, Belgium; Translational Sciences in Inflammation and Immunology, University of Antwerp, Antwerp, Belgium; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Antwerp University Hospital, Drie Eikenstraat 665, Edegem B-2650, Belgium.
| | - Vlad Ratziu
- Sorbonne Université, Paris, France; Institute of Cardiometabolism and Nutrition, Assistance Publique-Hôpitaux De Paris, Hôpital Pitié-Salpêtrière, 47-83 Boulevard de l'Hôpital, Paris Cedex 13 75651, France; INSERM UMRS 1138 CRC, Paris, France.
| |
Collapse
|
36
|
Amorim R, Magalhães CC, Borges F, Oliveira PJ, Teixeira J. From Non-Alcoholic Fatty Liver to Hepatocellular Carcinoma: A Story of (Mal)Adapted Mitochondria. BIOLOGY 2023; 12:biology12040595. [PMID: 37106795 PMCID: PMC10135755 DOI: 10.3390/biology12040595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a global pandemic affecting 25% of the world's population and is a serious health and economic concern worldwide. NAFLD is mainly the result of unhealthy dietary habits combined with sedentary lifestyle, although some genetic contributions to NAFLD have been documented. NAFLD is characterized by the excessive accumulation of triglycerides (TGs) in hepatocytes and encompasses a spectrum of chronic liver abnormalities, ranging from simple steatosis (NAFL) to steatohepatitis (NASH), significant liver fibrosis, cirrhosis, and hepatocellular carcinoma. Although the molecular mechanisms that cause the progression of steatosis to severe liver damage are not fully understood, metabolic-dysfunction-associated fatty liver disease is strong evidence that mitochondrial dysfunction plays a significant role in the development and progression of NAFLD. Mitochondria are highly dynamic organelles that undergo functional and structural adaptations to meet the metabolic requirements of the cell. Alterations in nutrient availability or cellular energy needs can modify mitochondria formation through biogenesis or the opposite processes of fission and fusion and fragmentation. In NAFL, simple steatosis can be seen as an adaptive response to storing lipotoxic free fatty acids (FFAs) as inert TGs due to chronic perturbation in lipid metabolism and lipotoxic insults. However, when liver hepatocytes' adaptive mechanisms are overburdened, lipotoxicity occurs, contributing to reactive oxygen species (ROS) formation, mitochondrial dysfunction, and endoplasmic reticulum (ER) stress. Impaired mitochondrial fatty acid oxidation, reduction in mitochondrial quality, and disrupted mitochondrial function are associated with a decrease in the energy levels and impaired redox balance and negatively affect mitochondria hepatocyte tolerance towards damaging hits. However, the sequence of events underlying mitochondrial failure from steatosis to hepatocarcinoma is still yet to be fully clarified. This review provides an overview of our understanding of mitochondrial adaptation in initial NAFLD stages and highlights how hepatic mitochondrial dysfunction and heterogeneity contribute to disease pathophysiology progression, from steatosis to hepatocellular carcinoma. Improving our understanding of different aspects of hepatocytes' mitochondrial physiology in the context of disease development and progression is crucial to improving diagnosis, management, and therapy of NAFLD/NASH.
Collapse
Affiliation(s)
- Ricardo Amorim
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Carina C Magalhães
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Fernanda Borges
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - José Teixeira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
37
|
Schmalz F, Fischer J, Innes H, Buch S, Möller C, Matz-Soja M, von Schönfels W, Krämer B, Langhans B, Klüners A, Soyka M, Stickel F, Nattermann J, Strassburg CP, Berg T, Lutz P, Nischalke HD. High producer variant of lipoprotein lipase may protect from hepatocellular carcinoma in alcohol-associated cirrhosis. JHEP Rep 2023; 5:100684. [PMID: 36879887 PMCID: PMC9985032 DOI: 10.1016/j.jhepr.2023.100684] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 01/11/2023] [Accepted: 01/14/2023] [Indexed: 01/26/2023] Open
Abstract
Background & Aims Progression of alcohol-associated liver disease (ALD) is driven by genetic predisposition. The rs13702 variant in the lipoprotein lipase (LPL) gene is linked to non-alcoholic fatty liver disease. We aimed at clarifying its role in ALD. Methods Patients with alcohol-associated cirrhosis, with (n = 385) and without hepatocellular carcinoma (HCC) (n = 656), with HCC attributable to viral hepatitis C (n = 280), controls with alcohol abuse without liver damage (n = 366), and healthy controls (n = 277) were genotyped regarding the LPL rs13702 polymorphism. Furthermore, the UK Biobank cohort was analysed. LPL expression was investigated in human liver specimens and in liver cell lines. Results Frequency of the LPL rs13702 CC genotype was lower in ALD with HCC in comparison to ALD without HCC both in the initial (3.9% vs. 9.3%) and the validation cohort (4.7% vs. 9.5%; p <0.05 each) and compared with patients with viral HCC (11.4%), alcohol misuse without cirrhosis (8.7%), or healthy controls (9.0%). This protective effect (odds ratio [OR] = 0.5) was confirmed in multivariate analysis including age (OR = 1.1/year), male sex (OR = 3.0), diabetes (OR = 1.8), and carriage of the PNPLA3 I148M risk variant (OR = 2.0). In the UK Biobank cohort, the LPL rs13702 C allele was replicated as a risk factor for HCC. Liver expression of LPL mRNA was dependent on LPL rs13702 genotype and significantly higher in patients with ALD cirrhosis compared with controls and alcohol-associated HCC. Although hepatocyte cell lines showed negligible LPL protein expression, hepatic stellate cells and liver sinusoidal endothelial cells expressed LPL. Conclusions LPL is upregulated in the liver of patients with alcohol-associated cirrhosis. The LPL rs13702 high producer variant confers protection against HCC in ALD, which might help to stratify people for HCC risk. Impact and implications Hepatocellular carcinoma is a severe complication of liver cirrhosis influenced by genetic predisposition. We found that a genetic variant in the gene encoding lipoprotein lipase reduces the risk for hepatocellular carcinoma in alcohol-associated cirrhosis. This genetic variation may directly affect the liver, because, unlike in healthy adult liver, lipoprotein lipase is produced from liver cells in alcohol-associated cirrhosis.
Collapse
Key Words
- ALD, alcohol-associated liver disease
- ALT, alanine aminotransferase
- AST, aspartate aminotransferase
- Alcohol-associated liver disease
- BCLC, Barcelona Clinic Liver Cancer
- BSA, bovine serum albumin
- Cirrhosis
- FCS, foetal calf serum
- FIB-4, fibrosis 4
- GADPH, glyceraldehyde 3-phosphate dehydrogenase
- GGT, gamma-glutamyl transferase
- HCC
- HCC, hepatocellular carcinoma
- HSCs, hepatic stellate cells
- HbA1c, glycated haemoglobin
- LPL
- LPL, lipoprotein lipase
- LSECs, liver sinusoidal endothelial cells
- MAF, minor allele frequency
- NAFLD, non-alcoholic fatty liver disease
- NASH, non-alcoholic steatohepatitis
- OR, odds ratio
- PNPLA3, patatin-like phospholipase domain-containing protein 3
- T2DM, type 2 diabetes mellitus
- UKB, UK Biobank
- rs13702
- rs328
Collapse
Affiliation(s)
- Franziska Schmalz
- Department of Internal Medicine I, University Hospital, University of Bonn, Germany
| | - Janett Fischer
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Hamish Innes
- School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, UK
| | - Stephan Buch
- Medical Department 1, University Hospital Dresden, Technische Universität Dresden, Dresden, Germany
| | - Christine Möller
- Department of Internal Medicine I, University Hospital, University of Bonn, Germany
| | - Madlen Matz-Soja
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Witigo von Schönfels
- Department of General, Visceral-, Thoracic-, Transplantation- and Pediatric Surgery, University Medical Center Schleswig-Holstein (UKSH), Campus Kiel, and Christian-Albrecht University (CAU), Kiel, Germany
| | - Benjamin Krämer
- Department of Internal Medicine I, University Hospital, University of Bonn, Germany
| | - Bettina Langhans
- Department of Internal Medicine I, University Hospital, University of Bonn, Germany
| | - Alexandra Klüners
- Department of Internal Medicine I, University Hospital, University of Bonn, Germany
| | - Michael Soyka
- Psychiatric Hospital, Ludwig Maximilians University, Munich, Germany
| | - Felix Stickel
- Department of Gastroenterology and Hepatology, University Hospital of Zürich, Switzerland
| | - Jacob Nattermann
- Department of Internal Medicine I, University Hospital, University of Bonn, Germany
| | | | - Thomas Berg
- Division of Hepatology, Department of Medicine II, Leipzig University Medical Center, Leipzig, Germany
| | - Philipp Lutz
- Department of Internal Medicine I, University Hospital, University of Bonn, Germany
| | | |
Collapse
|
38
|
Nonalcoholic steatohepatitis-related hepatocellular carcinoma: pathogenesis and treatment. Nat Rev Gastroenterol Hepatol 2023:10.1038/s41575-023-00754-7. [PMID: 36932227 DOI: 10.1038/s41575-023-00754-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 93.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/03/2023] [Indexed: 03/19/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), including its more severe manifestation, nonalcoholic steatohepatitis (NASH), has a global prevalence of 20-25% and is a major public health problem. Its incidence is increasing in parallel to the rise in obesity, diabetes and metabolic syndrome. Progression from NASH to NASH-related hepatocellular carcinoma (HCC) (~2% of cases per year) is influenced by many factors, including the tissue and immune microenvironment, germline mutations in PNPLA3, and the microbiome. NASH-HCC has unique molecular and immune traits compared with other aetiologies of HCC and is equally prevalent in men and women. Comorbidities associated with NASH, such as obesity and diabetes mellitus, can prevent the implementation of potentially curative therapies in certain patients; nonetheless, outcomes are similar in patients who receive treatment. NASH-HCC at the early to intermediate stages is managed with surgery and locoregional therapies, whereas advanced HCC is treated with systemic therapies, including anti-angiogenic therapies and immune-checkpoint inhibitors. In this Review, we present the latest knowledge of the pathogenic mechanisms and clinical management of NASH-HCC. We discuss data highlighting the controversy over varying responses to immune-checkpoint inhibitors according to underlying aetiology and suggest that the future of NASH-HCC management lies in improved surveillance, targeted combination therapies to overcome immune evasion, and identifying biomarkers to recognize treatment responders.
Collapse
|
39
|
Athanasopoulou F, Manolakakis M, Vernia S, Kamaly N. Nanodrug delivery systems for metabolic chronic liver diseases: advances and perspectives. Nanomedicine (Lond) 2023; 18:67-84. [PMID: 36896958 DOI: 10.2217/nnm-2022-0261] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Nanomedicines are revolutionizing healthcare as recently demonstrated by the Pfizer/BioNTech and Moderna COVID-2019 vaccines, with billions of doses administered worldwide in a safe manner. Nonalcoholic fatty liver disease is the most common noncommunicable chronic liver disease, posing a major growing challenge to global public health. However, due to unmet diagnostic and therapeutic needs, there is great interest in the development of novel translational approaches. Nanoparticle-based approaches offer novel opportunities for efficient and specific drug delivery to liver cells, as a step toward precision medicines. In this review, the authors highlight recent advances in nanomedicines for the generation of novel diagnostic and therapeutic tools for nonalcoholic fatty liver disease and related liver diseases.
Collapse
Affiliation(s)
- Foteini Athanasopoulou
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK.,MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Michail Manolakakis
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK.,MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Santiago Vernia
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Nazila Kamaly
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London, W12 0BZ, UK
| |
Collapse
|
40
|
Ioannidou D, Makri ES, Polyzos SA, Ntenti C, Agapakis D, Germanidis G, Goulas A. An association study of the PNPLA3 I148M polymorphism (rs738409) with serum lipids in patients with dyslipidemia. EXPLORATION OF MEDICINE 2023. [DOI: 10.37349/emed.2023.00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Aim: One single nucleotide polymorphism (SNP) rs738409 in the patatin-like phospholipase domain-containing protein 3 (PNPLA3) gene has been considered a major genetic risk factor of nonalcoholic fatty liver disease (NAFLD). Data have indicated that NAFLD is related to insulin resistance and dyslipidemia, but whether rs738409 is associated with circulating lipid and lipoproteins is not fully elucidated. The main aim of this study was to assess the association of rs738409 with lipid and lipoprotein levels in patients with dyslipidemia.
Methods: This was a post-hoc analysis of a study in patients with dyslipidemia recruited on an outpatient basis. Morning blood samples were collected after a 12-h fast. Genomic DNA was extracted from whole-blood samples.
Results: One hundred seventy-five patients with dyslipidemia were included (97 women). Lipid levels [total cholesterol (TC), triglycerides (TGs), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C)] or glycosylated hemoglobin (HbA1c) were not associated with the SNP, even after adjustment for gender, body mass index (BMI) and type 2 diabetes mellitus (T2DM), using either the additive (CC vs. CG vs. GG) or the dominant (CC vs. GG + CG) inheritance model. When data were stratified for obesity, significant associations between the variant and TC (P = 0.014) or LDL-C levels (P = 0.046) in the non-obese were observed. Pairwise comparison revealed significant changes only in TC between CC and CG genotypes (P = 0.012).
Conclusions: No association was shown between rs738409 SNP and lipid/lipoprotein levels in patients with dyslipidemia. In subgroup analysis, TC was higher in non-obese, but not in obese, patients with CC, compared to CG carriers.
Collapse
Affiliation(s)
- Despoina Ioannidou
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Campus of Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Evangelia S. Makri
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Campus of Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Stergios A. Polyzos
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Campus of Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Charikleia Ntenti
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Campus of Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Dimitrios Agapakis
- First Propedeutic Department of Internal Medicine, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Georgios Germanidis
- First Department of Internal Medicine, Gastroenterology and Hepatology Section, AHEPA University Hospital, 54636 Thessaloniki, Greece
| | - Antonis Goulas
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, Campus of Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
41
|
Smyk W, Papapostoli I, Żorniak M, Sklavounos P, Blukacz Ł, Madej P, Koutsou A, Weber SN, Friesenhahn-Ochs B, Cebula M, Bosowska J, Solomayer EF, Hartleb M, Milkiewicz P, Lammert F, Stokes CS, Krawczyk M. Liver phenotypes in PCOS: Analysis of exogenous and inherited risk factors for liver injury in two European cohorts. Liver Int 2023; 43:1080-1088. [PMID: 36683562 DOI: 10.1111/liv.15527] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/17/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
BACKGROUND & AIMS Fatty liver disease (FLD) is common in women with polycystic ovary syndrome (PCOS). Here, we use non-invasive tests to quantify liver injury in women with PCOS and analyse whether FLD-associated genetic variants contribute to liver phenotypes in PCOS. METHODS Prospectively, we recruited women with PCOS and controls at two university centres in Germany and Poland. Alcohol abuse was regarded as an exclusion criterion. Genotyping of variants associated with FLD was performed using TaqMan assays. Liver stiffness measurements (LSM), controlled attenuation parameters (CAP) and non-invasive HSI, FLI, FIB-4 scores were determined to assess hepatic steatosis and fibrosis. RESULTS A total of 42 German (age range 18-53 years) and 143 Polish (age range 18-40 years) women with PCOS, as well as 245 German and 289 Polish controls were recruited. In contrast to Polish patients, Germans were older, presented with more severe metabolic profiles and had significantly higher LSM (median 5.9 kPa vs. 3.8 kPa). In the German cohort, carriers of the PNPLA3 p.I148M risk variant had an increased LSM (p = .01). In the Polish cohort, the minor MTARC1 allele was linked with significantly lower serum aminotransferases activities, whereas the HSD17B13 polymorphism was associated with lower concentrations of 17-OH progesterone, total testosterone, and androstenedione (all p < .05). CONCLUSIONS FLD is common in women with PCOS. Its extent is modulated by both genetic and metabolic risk factors. Genotyping of variants associated with FLD might help to stratify the risk of liver disease progression in women suffering from PCOS.
Collapse
Affiliation(s)
- Wiktor Smyk
- Department of Gastroenterology and Hepatology, Medical University of Gdansk, Gdansk, Poland
| | - Ifigeneia Papapostoli
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Michał Żorniak
- Department of Gastroenterology, Hepatology and Oncology, Center for Postgraduate Medical Education, Warsaw, Poland.,Department of Oncological Gastroenterology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Panagiotis Sklavounos
- Department for Gynecology, Obstetrics and Reproductive Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Łukasz Blukacz
- Department of Gynecological Endocrinology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Paweł Madej
- Department of Gynecological Endocrinology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Andreani Koutsou
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Susanne N Weber
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Bettina Friesenhahn-Ochs
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Maciej Cebula
- Department of Radiology and Nuclear Medicine, Faculty of Medicine in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Joanna Bosowska
- Department of Radiology and Nuclear Medicine, Faculty of Medicine in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Erich-Franz Solomayer
- Department for Gynecology, Obstetrics and Reproductive Medicine, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Marek Hartleb
- Department of Gastroenterology, Faculty of Medicine in Katowice, Medical University of Silesia in Katowice, Katowice, Poland
| | - Piotr Milkiewicz
- Liver and Internal Medicine Unit, Medical University of Warsaw, Warsaw, Poland.,Translational Medicine Group, Pomeranian Medical University, Szczecin, Poland
| | - Frank Lammert
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany.,Hannover Medical School, Hannover, Germany
| | - Caroline S Stokes
- Food and Health Research Group, Faculty of Life Sciences, Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Molecular Toxicology, German Institute of Human Nutrition, Potsdam-Rehbrücke, Germany
| | - Marcin Krawczyk
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany.,Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
42
|
Paolini E, Longo M, Meroni M, Tria G, Cespiati A, Lombardi R, Badiali S, Maggioni M, Fracanzani AL, Dongiovanni P. The I148M PNPLA3 variant mitigates niacin beneficial effects: How the genetic screening in non-alcoholic fatty liver disease patients gains value. Front Nutr 2023; 10:1101341. [PMID: 36937355 PMCID: PMC10018489 DOI: 10.3389/fnut.2023.1101341] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Background The PNPLA3 p.I148M impact on fat accumulation can be modulated by nutrients. Niacin (Vitamin B3) reduced triglycerides synthesis in in vitro and in vivo NAFLD models. Objectives In this study, we aimed to investigate the niacin-I148M polymorphism crosstalk in NAFLD patients and examine niacin's beneficial effect in reducing fat by exploiting hepatoma cells with different PNPLA3 genotype. Design We enrolled 172 (Discovery cohort) and 358 (Validation cohort) patients with non-invasive and histological diagnosis of NAFLD, respectively. Dietary niacin was collected from food diary, while its serum levels were quantified by ELISA. Hepatic expression of genes related to NAD metabolism was evaluated by RNAseq in bariatric NAFLD patients (n = 183; Transcriptomic cohort). Hep3B (148I/I) and HepG2 (148M/M) cells were silenced (siHep3B) or overexpressed (HepG2I148+ ) for PNPLA3, respectively. Results In the Discovery cohort, dietary niacin was significantly reduced in patients with steatosis ≥ 2 and in I148M carriers. Serum niacin was lower in subjects carrying the G at risk allele and negatively correlated with obesity. The latter result was confirmed in the Validation cohort. At multivariate analysis, the I148M polymorphism was independently associated with serum niacin, supporting that it may be directly involved in the modulation of its availability. siHep3B cells showed an impaired NAD biosynthesis comparable to HepG2 cells which led to lower niacin efficacy in clearing fat, supporting a required functional protein to guarantee its effectiveness. Conversely, the restoration of PNPLA3 Wt protein in HepG2I148+ cells recovered the NAD pathway and improved niacin efficacy. Finally, niacin inhibited de novo lipogenesis through the ERK1/2/AMPK/SIRT1 pathway, with the consequent SREBP1-driven PNPLA3 reduction only in Hep3B and HepG2I148M+ cells. Conclusions We demonstrated a niacin-PNPLA3 I148M interaction in NAFLD patients which possibly pave the way to vitamin B3 supplementation in those with a predisposing genetic background.
Collapse
Affiliation(s)
- Erika Paolini
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Miriam Longo
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Clinical Sciences and Community Health, Università Degli Studi di Milano, Milan, Italy
| | - Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giada Tria
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Annalisa Cespiati
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, Milan, Italy
| | - Rosa Lombardi
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, Milan, Italy
| | - Sara Badiali
- Department of Surgery, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marco Maggioni
- Department of Pathology, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Anna Ludovica Fracanzani
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università Degli Studi di Milano, Milan, Italy
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- *Correspondence: Paola Dongiovanni,
| |
Collapse
|
43
|
Park J, Zhao Y, Zhang F, Zhang S, Kwong AC, Zhang Y, Hoffmann HH, Bushweller L, Wu X, Ashbrook AW, Stefanovic B, Chen S, Branch AD, Mason CE, Jung JU, Rice CM, Wu X. IL-6/STAT3 axis dictates the PNPLA3-mediated susceptibility to non-alcoholic fatty liver disease. J Hepatol 2023; 78:45-56. [PMID: 36049612 PMCID: PMC9772150 DOI: 10.1016/j.jhep.2022.08.022] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 07/27/2022] [Accepted: 08/17/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS A number of genetic polymorphisms have been associated with susceptibility to or protection against non-alcoholic fatty liver disease (NAFLD), but the underlying mechanisms remain unknown. Here, we focused on the rs738409 C>G single nucleotide polymorphism (SNP), which produces the I148M variant of patatin-like phospholipase domain-containing protein 3 (PNPLA3) and is strongly associated with NAFLD. METHODS To enable mechanistic dissection, we developed a human pluripotent stem cell (hPSC)-derived multicellular liver culture by incorporating hPSC-derived hepatocytes, hepatic stellate cells, and macrophages. We first applied this liver culture to model NAFLD by utilising a lipotoxic milieu reflecting the circulating levels of disease risk factors in affected individuals. We then created an isogenic pair of liver cultures differing only at rs738049 and compared NAFLD phenotype development. RESULTS Our hPSC-derived liver culture recapitulated many key characteristics of NAFLD development and progression including lipid accumulation and oxidative stress, inflammatory response, and stellate cell activation. Under the lipotoxic conditions, the I148M variant caused the enhanced development of NAFLD phenotypes. These differences were associated with elevated IL-6/signal transducer and activator of transcription 3 (STAT3) activity in liver cultures, consistent with transcriptomic data of liver biopsies from individuals carrying the rs738409 SNP. Dampening IL-6/STAT3 activity alleviated the I148M-mediated susceptibility to NAFLD, whereas boosting it in wild-type liver cultures enhanced NAFLD development. Finally, we attributed this elevated IL-6/STAT3 activity in liver cultures carrying the rs738409 SNP to increased NF-κB activity. CONCLUSIONS Our study thus reveals a potential causal link between elevated IL-6/STAT3 activity and 148M-mediated susceptibility to NAFLD. IMPACT AND IMPLICATIONS An increasing number of genetic variants manifest in non-alcoholic fatty liver disease (NAFLD) development and progression; however, the underlying mechanisms remain elusive. To study these variants in human-relevant systems, we developed an induced pluripotent stem cell-derived multicellular liver culture and focused on a common genetic variant (i.e. rs738409 in PNPLA3). Our findings not only provide mechanistic insight, but also a potential therapeutic strategy for NAFLD driven by this genetic variant in PNPLA3. Our liver culture is therefore a useful platform for exploring genetic variants in NAFLD development.
Collapse
Affiliation(s)
- Jiwoon Park
- Laboratory of Virology and Infectious Disease, Rockefeller University, New York, NY, USA; Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Yuanyuan Zhao
- Infection Biology Program and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Fan Zhang
- Infection Biology Program and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Shaoyan Zhang
- Infection Biology Program and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Andrew C Kwong
- Laboratory of Virology and Infectious Disease, Rockefeller University, New York, NY, USA; The Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA, USA
| | - Yujie Zhang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Hans-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, Rockefeller University, New York, NY, USA
| | - Leila Bushweller
- Infection Biology Program and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Xin Wu
- Infection Biology Program and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Alison W Ashbrook
- Laboratory of Virology and Infectious Disease, Rockefeller University, New York, NY, USA
| | - Branko Stefanovic
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, USA
| | - Shuyang Chen
- Infection Biology Program and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Andrea D Branch
- Division of Liver Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christopher E Mason
- Department of Physiology, Biophysics and Systems Biology, Weill Cornell Medicine, New York, NY, USA; The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Jae U Jung
- Infection Biology Program and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, Rockefeller University, New York, NY, USA.
| | - Xianfang Wu
- Laboratory of Virology and Infectious Disease, Rockefeller University, New York, NY, USA; Infection Biology Program and Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| |
Collapse
|
44
|
PNPLA3(I148M) Inhibits Lipolysis by Perilipin-5-Dependent Competition with ATGL. Cells 2022; 12:cells12010073. [PMID: 36611868 PMCID: PMC9818421 DOI: 10.3390/cells12010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
The single nucleotide polymorphism I148M of the lipase patatin-like phospholipase domain containing 3 (PNPLA3) is associated with an unfavorable prognosis in alcoholic and non-alcoholic steatohepatitis (ASH, NASH), with progression to liver cirrhosis and development of hepatocellular carcinoma. In this study, we investigated the mechanistic interaction of PNPLA3 with lipid droplet (LD)-associated proteins of the perilipin family, which serve as gatekeepers for LD degradation. In a collective of 106 NASH, ASH and control liver samples, immunohistochemical analyses revealed increased ballooning, inflammation and fibrosis, as well as an accumulation of PNPLA3-perilipin 5 complexes on larger LDs in patients homo- and heterozygous for PNPLA3(I148M). Co-immunoprecipitation demonstrated an interaction of PNPLA3 with perilipin 5 and the key enzyme of lipolysis, adipose triglyceride lipase (ATGL). Localization studies in cell cultures and human liver showed colocalization of perilipin 5, ATGL and PNPLA3. Moreover, the lipolytic activity of ATGL was negatively regulated by PNPLA3 and perilipin 5, whereas perilipin 1 displaced PNPLA3 from the ATGL complex. Furthermore, ballooned hepatocytes, the hallmark of steatohepatitis, were positive for PNPLA3 and perilipins 2 and 5, but showed decreased perilipin 1 expression with respect to neighboured hepatocytes. In summary, PNPLA3- and ATGL-driven lipolysis is significantly regulated by perilipin 1 and 5 in steatohepatitis.
Collapse
|
45
|
Association of PNPLA3 rs738409 and TM6SF2 rs58542926 Polymorphisms with Non-alcoholic Fatty Liver Disease in the Iranian Population. HEPATITIS MONTHLY 2022. [DOI: 10.5812/hepatmon-133330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Background: Non-alcoholic fatty liver disease (NAFLD) is a burgeoning health problem worldwide. Genetic predisposition increases susceptibility to NAFLD. The PNPLA3 rs738409 and TM6SF2 rs58542926 polymorphisms are genetic risk factors for NAFLD. Objectives: This study aimed to investigate the association of rs738409 and rs58542926 polymorphisms with NAFLD among the Iranian population in two groups: (1) Population-based NAFLD (PB-NAFLD), and (2) clinic-based NAFLD (CB-NAFLD). Methods: This case-control study included a group of healthy individuals without NAFLD as the control group and two case groups, PB-NAFLD and CB-NAFLD. All individuals underwent clinical and laboratory assessments and were also diagnosed using ultrasonography. Genotyping for rs738409 and rs58542926 polymorphisms was carried out by the PCR-RFLP method. Results: A total of 110 control, 108 PB-NAFLD, and 73 CB-NAFLD individuals were included in the study. The distribution of rs738409 GG+CG in the PB-NAFLD was 39.8% while it was 52.7% in the control group (P = 0.06, OR = 0.59). The distribution of rs738409 GG in the CB-NAFLD was 19.2%, while it was 8.2% in the control group (P = 0.04, OR = 2.66). The distribution of rs58542926 genotypes was not significantly different between the NAFLD and control groups. In multivariate analysis, metabolic syndrome (OR = 2.85) and BMI > 25 (OR = 3.32) were independent determinants of NAFLD in the PB-NAFLD group, and BMI > 25 (OR = 7.15) was an independent determinant of NAFLD in the CB-NAFLD group. Conclusions: In this study, the PNPLA3 rs738409 polymorphism was associated with NAFLD in the CB-NAFLD cohort; however, the same was not observed for the PB-NAFLD cohort. The TM6SF2 rs58542926 polymorphism was not associated with NAFLD in the Iranian population.
Collapse
|
46
|
Genetic Variation of SAMM50 Is Not an Independent Risk Factor for Alcoholic Hepatocellular Carcinoma in Caucasian Patients. Int J Mol Sci 2022; 23:ijms232315353. [PMID: 36499681 PMCID: PMC9740343 DOI: 10.3390/ijms232315353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a severe complication of advanced alcoholic liver disease, which is modulated by genetic predisposition. Identifying new genetic loci might improve screening. Genetic variation of SAMM50 was linked to HCC. We aimed to validate this finding in a large cohort of patients with advanced alcoholic liver disease (ALD). A large, well-characterised cohort of patients with alcoholic cirrhosis without (n = 674) and with (n = 386) HCC, as well as controls with HCC due to viral hepatitis (n = 134), controls with heavy alcohol abuse without liver disease (n = 266) and healthy subjects (n = 237), were genotyped for SAMM50 rs3827385 and rs3761472 and for PNPLA3 rs738409. Genotype frequencies were compared between patients with alcohol-associated cirrhosis with and without HCC by uni- and multivariate analysis. Minor variants in both SAMM50 rs3827385 and rs3761472 were significantly more frequent in patients with alcoholic HCC versus alcoholic cirrhosis and versus the control cohorts. An even stronger association was noted for PNPLA3 rs738409. The univariate analysis resulted in an odds ratio (OR) of 1.8 for carriers of at least one minor variant of SAMM50 rs3827385 and rs3761472 (each p < 0.001), but this association was lost in multivariate analysis with age (OR 1.1/year), male sex (OR 3.2), diabetes (OR 1.9) and carriage of PNPLA3 148M (OR 2.1) remaining in the final model. Although minor variants of both SAMM50 loci are strongly associated with alcoholic HCC, this association is not independent of carriage of the well-known risk variant PNPLA3 148M.
Collapse
|
47
|
NAFLD: genetics and its clinical implications. Clin Res Hepatol Gastroenterol 2022; 46:102003. [PMID: 35963605 DOI: 10.1016/j.clinre.2022.102003] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 07/28/2022] [Accepted: 08/09/2022] [Indexed: 02/04/2023]
Abstract
Worldwide non-alcoholic fatty liver disease (NAFLD) is recognized as the most common type of liver disease and its burden increasing at an alarming rate. NAFLD entails steatosis, fibrosis, cirrhosis, and, finally, hepatocellular carcinoma (HCC). The substantial inter-patient variation during disease progression is the hallmark of individuals with NAFLD. The variability of NAFLD development and related complications among individuals is determined by genetic and environmental factors. Genome-wide association studies (GWAS) have discovered reproducible and robust associations between gene variants such as PNPLA3, TM6SF2, HSD17B13, MBOAT7, GCKR and NAFLD. Evidences have provided the new insights into the NAFLD biology and underlined potential pharmaceutical targets. Ideally, the candidate genes associated with the hereditability of NAFLD are mainly involved in assembly of lipid droplets, lipid remodeling, lipoprotein packing and secretion, redox status mitochondria, and de novo lipogenesis. In recent years, the ability to translate genetics into a clinical context has emerged substantially by combining genetic variants primarily associated with NAFLD into polygenic risk scores (PRS). These score in combination with metabolic factors could be utilized to identify the severe liver diseases in patients with the gene regulatory networks (GRNs). Hereby, we even have highlighted the current understanding related to the schedule therapeutic approach of an individual based on microbial colonization and dysbiosis reversal as a therapy for NAFLD. The premise of this review is to concentrate on the potential of genetic factors and their translation into the design of novel therapeutics, as well as their implications for future research into personalized medications using microbiota.
Collapse
|
48
|
Vilar-Gomez E, Pirola CJ, Sookoian S, Wilson LA, Liang T, Chalasani N. PNPLA3 rs738409 and risk of fibrosis in NAFLD: Exploring mediation pathways through intermediate histological features. Hepatology 2022; 76:1482-1494. [PMID: 35349726 PMCID: PMC9519813 DOI: 10.1002/hep.32491] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/24/2022] [Accepted: 03/27/2022] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS It is unclear whether rs738409 (p.I148M) missense variant in patatin-like phospholipase domain-containing 3 rs738409 promotes fibrosis development by triggering specific fibrogenic pathways or by creating an unfavorable microenvironment by promoting steatosis, inflammation, and ultimately fibrosis. We tested the hypothesis that intermediate histologic traits, including steatosis, lobular and portal inflammation, and ballooning may determine the effect of rs738409 on liver fibrosis among individuals with biopsy-proven NAFLD. APPROACH AND RESULTS Causal mediation models including multiple mediators in parallel or sequentially were performed to examine the effect of rs738409, by decomposing its total effect on fibrosis severity into direct and indirect effects, mediated by histology traits in 1153 non-Hispanic White patients. Total effect of rs738409 on fibrosis was β = 0.19 (95% CI: 0.09-0.29). The direct effect of rs738409 on fibrosis after removing mediators' effects was β = 0.09 (95% CI: 0.01-0.17) and the indirect effect of rs738409 on fibrosis through all mediators' effects were β = 0.010 (95% CI: 0.04-0.15). Among all mediators, the greatest estimated effect size was displayed by portal inflammation (β = 0.09, 95% CI: 0.05-0.12). Among different sequential combinations of histology traits, the path including lobular inflammation followed by ballooning degeneration displayed the most significant indirect effect (β = 0.023, 95% CI: 0.011-0.037). Mediation analysis in a separate group of 404 individuals with biopsy-proven NAFLD from other races and ethnicity showed similar results. CONCLUSIONS In NAFLD, nearly half of the total effect of the rs738409 G allele on fibrosis severity could be explained by a direct pathway, suggesting that rs738409 may promote fibrosis development by activating specific fibrogenic pathways. A large proportion of the indirect effect of rs738409 on fibrosis severity is mediated through portal inflammation.
Collapse
Affiliation(s)
- Eduardo Vilar-Gomez
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN, US
| | - Carlos J. Pirola
- Molecular Genetics and Biology of Complex Diseases and Department of Clinical and Molecular Hepatology, Institute of Medical Research (IDIM), University of Buenos Aires-National Scientific and Technical Research Council (CONICET), Ciudad Autonoma de Buenos Aires, Argentina
| | - Silvia Sookoian
- Molecular Genetics and Biology of Complex Diseases and Department of Clinical and Molecular Hepatology, Institute of Medical Research (IDIM), University of Buenos Aires-National Scientific and Technical Research Council (CONICET), Ciudad Autonoma de Buenos Aires, Argentina
| | - Laura A. Wilson
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Tiebing Liang
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN, US
| | - Naga Chalasani
- Department of Medicine, Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, IN, US
| |
Collapse
|
49
|
Schratter M, Lass A, Radner FPW. ABHD5-A Regulator of Lipid Metabolism Essential for Diverse Cellular Functions. Metabolites 2022; 12:1015. [PMID: 36355098 PMCID: PMC9694394 DOI: 10.3390/metabo12111015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/19/2022] [Accepted: 10/23/2022] [Indexed: 11/12/2023] Open
Abstract
The α/β-Hydrolase domain-containing protein 5 (ABHD5; also known as comparative gene identification-58, or CGI-58) is the causative gene of the Chanarin-Dorfman syndrome (CDS), a disorder mainly characterized by systemic triacylglycerol accumulation and a severe defect in skin barrier function. The clinical phenotype of CDS patients and the characterization of global and tissue-specific ABHD5-deficient mouse strains have demonstrated that ABHD5 is a crucial regulator of lipid and energy homeostasis in various tissues. Although ABHD5 lacks intrinsic hydrolase activity, it functions as a co-activating enzyme of the patatin-like phospholipase domain-containing (PNPLA) protein family that is involved in triacylglycerol and glycerophospholipid, as well as sphingolipid and retinyl ester metabolism. Moreover, ABHD5 interacts with perilipins (PLINs) and fatty acid-binding proteins (FABPs), which are important regulators of lipid homeostasis in adipose and non-adipose tissues. This review focuses on the multifaceted role of ABHD5 in modulating the function of key enzymes in lipid metabolism.
Collapse
Affiliation(s)
- Margarita Schratter
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| | - Achim Lass
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
- BioTechMed-Graz, 8010 Graz, Austria
- Field of Excellence BioHealth, 8010 Graz, Austria
| | - Franz P. W. Radner
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, 8010 Graz, Austria
| |
Collapse
|
50
|
The additive effect of genetic and metabolic factors in the pathogenesis of nonalcoholic fatty liver disease. Sci Rep 2022; 12:17608. [PMID: 36266438 PMCID: PMC9584936 DOI: 10.1038/s41598-022-22729-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/18/2022] [Indexed: 01/13/2023] Open
Abstract
Both genetic and metabolic factors influence the pathology of nonalcoholic fatty liver disease (NAFLD). The aim of this retrospective study was to evaluate the impact of these factors at each stage of disease. We analysed the impact of obesity, diabetes mellitus and genetic risk factors (alleles of PNPLA3 or HSD17B13) on nonalcoholic steatohepatitis (NASH), significant fibrosis (stage ≥ 2) and advanced fibrosis (stage ≥ 3) in 346 patients. Genetic high risk was defined as having at least 2 risk alleles. The median age was 59 years, median body mass index was 27.1 kg/m2, and 46.8% had diabetes mellitus. Obesity was a risk factor for NASH, significant fibrosis, and advanced fibrosis. Diabetes mellitus increased the risk of NASH. Genetic risk increased the risk of significant and advanced fibrosis. Odds ratios for NASH, significant fibrosis and advanced fibrosis increased with the number of genetic and metabolic risk factors. The patients with both metabolic and genetic risks had an odds ratio of 12.30 for NASH, 5.50 for significant fibrosis, and 6.25 for advanced fibrosis. Factors strongly impact on the pathology of NAFLD differed according to the fibrosis stages. Synergistic effects were observed between genetic and metabolic factors at all stages.
Collapse
|