1
|
Zhao Y, Zheng G, Yang S, Liu S, Wu Y, Miao Y, Liang Z, Hua Y, Zhang J, Shi J, Li D, Cheng Y, Zhang Y, Chen Y, Fan G, Ma C. The plant extract PNS mitigates atherosclerosis via promoting Nrf2-mediated inhibition of ferroptosis through reducing USP2-mediated Keap1 deubiquitination. Br J Pharmacol 2024; 181:4822-4844. [PMID: 39228119 DOI: 10.1111/bph.17311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/04/2024] [Accepted: 06/23/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND AND PURPOSE Atherosclerosis is the basis of cardiovascular disease. Ferroptosis is a form of programmed cell death characterized by lipid peroxidation, which contributes to atherogenesis. The plant extract PNS (Panax notoginseng saponins), containing the main active ingredients of Panax notoginseng, exhibits anti-atherogenic properties. Herein, we determined whether PNS and its major components could attenuate atherosclerosis by suppressing ferroptosis and revealed the underlying mechanism(s). EXPERIMENTAL APPROACH The anti-atherogenic effects of PNS and their association with inhibition of ferroptosis was determined in apoE-/- mice. In vitro, the anti-ferroptotic effect and mechanism(s) of PNS components were demonstrated in the presence of ferroptosis inducers. Expression of ferroptosis markers and the ubiquitination of Keap1 were evaluated in USP2-/- macrophages. Finally, the anti-atherogenic effect of USP2 knockout was determined by using USP2-/- mice treated with high-fat diet (HFD) and AAV-PCSK9. KEY RESULTS PNS inhibited ferroptosis and atherosclerosis in vivo. PNS suppressed ferroptosis and ferroptosis-aggravated foam cell formation and inflammation in vitro. Mechanistically, PNS and its components activated Nrf2 by antagonizing Keap1, which was attributed to the inhibition of USP2 expression. USP2 knockout antagonized ferroptosis and ferroptosis-aggravated foam cell formation and inflammation, thus mitigating atherosclerosis. USP2 knockout abolished inhibitory effects of PNS on foam cell formation and inflammation in vitro. CONCLUSION AND IMPLICATIONS PNS reduced USP2-mediated Keap1 de-ubiquitination and promoted Keap1 degradation, thereby activating Nrf2, improving iron metabolism and reducing lipid peroxidation, thus contributing to an anti-atherosclerotic outcome. Our study revealed the mechanism(s) underlying inhibition of ferroptosis and atherosclerosis by PNS.
Collapse
Affiliation(s)
- Yun Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Guobin Zheng
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Shu Yang
- Department of Geriatrics, The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China
| | - Shangjing Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yifan Wu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yaodong Miao
- Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhen Liang
- Department of Geriatrics, The First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China
| | - Yunqing Hua
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jing Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Jia Shi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Dan Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yanfei Cheng
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yunsha Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Yuanli Chen
- Anhui Provincial International Science and Technology Cooperation Base for Major Metabolic Diseases and Nutritional Interventions, Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Guanwei Fan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Chuanrui Ma
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| |
Collapse
|
2
|
Zeng L, Huang J, Wang Y, Hu Y, Zhou S, Lu Y. Oleanolic acid induces hepatic injury by disrupting hepatocyte tight junction and dysregulation of farnesoid X receptor-mediated bile acid efflux transporters. J Appl Toxicol 2024; 44:1725-1741. [PMID: 39030772 DOI: 10.1002/jat.4667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/09/2024] [Accepted: 06/20/2024] [Indexed: 07/22/2024]
Abstract
Oleanolic acid (OA) is a naturally occurring pentacyclic triterpene compound that has been reported to cause cholestatic liver injury. However, the regulation and pathogenic role of bile acids in OA-induced development of cholestatic liver injury remains largely unclear. Farnesoid X receptor (FXR) is a metabolic nuclear receptor that plays an important role in bile acid homeostasis in the liver by regulating efflux transporters bile salt export pump (BSEP) and multidrug resistance-associated protein 2 (MRP2). The aim of this study was to investigate the effect of OA on hepatocyte tight junction function and determine the role of FXR, BSEP, and MRP2 in the mechanism of impairment of transport of bile acids induced by OA. Both in vivo and in vitro models were used to characterize the OA-induced liver injury. The liquid chromatography-tandem mass spectrometry (LC-MS) was employed to characterize the efflux function of the transporters, and the results showed that OA caused a blockage of bile acids efflux. OA treatment resulted in decreased expression levels of the tight junction proteins zonula occludens-1 and occludin. Immunofluorescence results showed that OA treatment significantly reduced the number of bile ducts and the immunofluorescence intensity. Pretreatment with agonists of FXR and MRP2, respectively, in animal experiments attenuated OA-induced liver injury, while pretreatment with inhibitors of BSEP and MRP2 further aggravated OA-induced liver injury. These results suggest that OA inhibits FXR-mediated BSEP and MRP2, leading to impaired bile acid efflux and disruption of tight junctions between liver cells, resulting in liver damage.
Collapse
Affiliation(s)
- Li Zeng
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Jianxiang Huang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- Department of Pharmacy, Chongqing University Jiangjin Hospital, Chongqing, China
| | - Yi Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yan Hu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Shaoyu Zhou
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| | - Yuanfu Lu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- School of Pharmacy, Zunyi Medical University, Zunyi, China
| |
Collapse
|
3
|
Bouchab H, Ishaq A, Limami Y, Saretzki G, Nasser B, El Kebbaj R. Antioxidant Effects of Cactus Seed Oil against Iron-Induced Oxidative Stress in Mouse Liver, Brain and Kidney. Molecules 2024; 29:4463. [PMID: 39339457 PMCID: PMC11433720 DOI: 10.3390/molecules29184463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
In recent times, exploring the protective potential of medicinal plants has attracted increasing attention. To fight reactive oxygen species (ROS), which are key players in hepatic, cerebral and renal diseases, scientists have directed their efforts towards identifying novel compounds with antioxidant effects. Due to its unique composition, significant attention has been given to Cactus Seed Oil (CSO). Iron, as a metal, can be a potent generator of reactive oxygen species, especially hydroxyl radicals, via the Fenton and Haber-Weiss reactions. Here, we employed ferrous sulfate (FeSO4) to induce oxidative stress and DNA damage in mice. Then, we used CSO and Colza oil (CO) and evaluated the levels of the antioxidants (superoxide dismutase [SOD], glutathione peroxidase [GPx] and glutathione [GSH]) as well as a metabolite marker for lipid peroxidation (malondialdehyde [MDA]) relating to the antioxidant balance in the liver, brain and kidney. In addition, we measured DNA damage levels in hepatic tissue and the effects of CSO on it. Our study found that iron-dependent GPx activity decreases in the liver and the kidney tissues. Additionally, while iron decreased SOD activity in the liver, it increased it in the kidney. Interestingly, iron treatment resulted in a significant increase in hepatic MDA levels. In contrast, in brain tissue, there was a significant decrease under iron treatment. In addition, we found varying protective effects of CSO in alleviating oxidative stress in the different tissues with ameliorating DNA damage after iron overload in a mouse liver model, adding compelling evidence to the protective potential of CSO.
Collapse
Affiliation(s)
- Habiba Bouchab
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat 26000, Morocco; (H.B.); (Y.L.)
- Higher Institute of Nursing Professions and Technical Health (ISPITS), Errachidia 52000, Morocco
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Science and Technology, Hassan First University of Settat, Settat 26000, Morocco;
- Biosciences Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE2 4HH, UK; (A.I.); (G.S.)
| | - Abbas Ishaq
- Biosciences Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE2 4HH, UK; (A.I.); (G.S.)
| | - Youness Limami
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat 26000, Morocco; (H.B.); (Y.L.)
| | - Gabriele Saretzki
- Biosciences Institute, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne NE2 4HH, UK; (A.I.); (G.S.)
| | - Boubker Nasser
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Science and Technology, Hassan First University of Settat, Settat 26000, Morocco;
| | - Riad El Kebbaj
- Laboratory of Health Sciences and Technologies, Higher Institute of Health Sciences, Hassan First University of Settat, Settat 26000, Morocco; (H.B.); (Y.L.)
| |
Collapse
|
4
|
Liu Y, Wu A, Yu B, He J, Yu J, Mao X, Zheng P, Luo Y, Luo J, Pu J, Yan H, Chen D. The influence of iron nutrition on the development of intestine and immune cell divergency in neonatal pigs. J Anim Sci Biotechnol 2024; 15:111. [PMID: 39127747 DOI: 10.1186/s40104-024-01068-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/24/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Appropriate iron supplementation is essential for neonatal growth and development. However, there are few reports on the effects of iron overload on neonatal growth and immune homeostasis. Thus, the aim of this study was to investigate the effects of iron nutrition on neonatal growth and intestinal immunity by administering different levels of iron to neonatal pigs. RESULTS We found that iron deficiency and iron overload resulted in slow growth in neonatal pigs. Iron deficiency and iron overload led to down-regulation of jejunum intestinal barrier and antioxidant marker genes, and promoted CD8+ T cell differentiation in jejunum and mesenteric lymph nodes (MLN) of pigs, disrupting intestinal health. Moreover, iron levels altered serum iron and tissue iron status leading to disturbances in redox state, affecting host innate and adaptive immunity. CONCLUSIONS These findings emphasized the effect of iron nutrition on host health and elucidated the importance of iron in regulating redox state and immunity development. This study provided valuable insights into the regulation of redox state and immune function by iron metabolism in early life, thus contributing to the development of targeted interventions and nutritional strategies to optimize iron nutrition in neonates.
Collapse
Affiliation(s)
- Yao Liu
- Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Aimin Wu
- Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Bing Yu
- Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Jun He
- Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Jie Yu
- Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Xiangbing Mao
- Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Ping Zheng
- Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Yuheng Luo
- Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Junqiu Luo
- Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Junning Pu
- Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Hui Yan
- Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China.
| | - Daiwen Chen
- Key Laboratory of Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China.
| |
Collapse
|
5
|
Luo Z, Zhou W, Xie T, Xu W, Shi C, Xiao Z, Si Y, Ma Y, Ren Q, Di L, Shan J. The role of botanical triterpenoids and steroids in bile acid metabolism, transport, and signaling: Pharmacological and toxicological implications. Acta Pharm Sin B 2024; 14:3385-3415. [PMID: 39220868 PMCID: PMC11365449 DOI: 10.1016/j.apsb.2024.04.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/28/2024] [Accepted: 04/22/2024] [Indexed: 09/04/2024] Open
Abstract
Bile acids (BAs) are synthesized by the host liver from cholesterol and are delivered to the intestine, where they undergo further metabolism by gut microbes and circulate between the liver and intestines through various transporters. They serve to emulsify dietary lipids and act as signaling molecules, regulating the host's metabolism and immune homeostasis through specific receptors. Therefore, disruptions in BA metabolism, transport, and signaling are closely associated with cholestasis, metabolic disorders, autoimmune diseases, and others. Botanical triterpenoids and steroids share structural similarities with BAs, and they have been found to modulate BA metabolism, transport, and signaling, potentially exerting pharmacological or toxicological effects. Here, we have updated the research progress on BA, with a particular emphasis on new-found microbial BAs. Additionally, the latest advancements in targeting BA metabolism and signaling for disease treatment are highlighted. Subsequently, the roles of botanical triterpenoids in BA metabolism, transport, and signaling are examined, analyzing their potential pharmacological, toxicological, or drug interaction effects through these mechanisms. Finally, a research paradigm is proposed that utilizes the gut microbiota as a link to interpret the role of these important natural products in BA signaling.
Collapse
Affiliation(s)
- Zichen Luo
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Zhou
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Tong Xie
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Weichen Xu
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chen Shi
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zihan Xiao
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yu Si
- Jiangsu CM Clinical Medicine Innovation Center for Obstetrics, Gynecology, and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210001, China
| | - Yan Ma
- National Institute of Biological Sciences, Beijing 102206, China
| | - Qingling Ren
- Jiangsu CM Clinical Medicine Innovation Center for Obstetrics, Gynecology, and Reproduction, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210001, China
| | - Liuqing Di
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jinjun Shan
- Medical Metabolomics Center, Institute of Pediatrics, Jiangsu Key Laboratory of Children’s Health and Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
6
|
Ding C, Wang Z, Dou X, Yang Q, Ning Y, Kao S, Sang X, Hao M, Wang K, Peng M, Zhang S, Han X, Cao G. Farnesoid X receptor: From Structure to Function and Its Pharmacology in Liver Fibrosis. Aging Dis 2024; 15:1508-1536. [PMID: 37815898 PMCID: PMC11272191 DOI: 10.14336/ad.2023.0830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/30/2023] [Indexed: 10/12/2023] Open
Abstract
The farnesoid X receptor (FXR), a ligand-activated transcription factor, plays a crucial role in regulating bile acid metabolism within the enterohepatic circulation. Beyond its involvement in metabolic disorders and immune imbalances affecting various tissues, FXR is implicated in microbiota modulation, gut-to-brain communication, and liver disease. The liver, as a pivotal metabolic and detoxification organ, is susceptible to damage from factors such as alcohol, viruses, drugs, and high-fat diets. Chronic or recurrent liver injury can culminate in liver fibrosis, which, if left untreated, may progress to cirrhosis and even liver cancer, posing significant health risks. However, therapeutic options for liver fibrosis remain limited in terms of FDA-approved drugs. Recent insights into the structure of FXR, coupled with animal and clinical investigations, have shed light on its potential pharmacological role in hepatic fibrosis. Progress has been achieved in both fundamental research and clinical applications. This review critically examines recent advancements in FXR research, highlighting challenges and potential mechanisms underlying its role in liver fibrosis treatment.
Collapse
Affiliation(s)
- Chuan Ding
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
- Jinhua Institute, Zhejiang Chinese Medical University, Jinhua, China.
| | - Zeping Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Xinyue Dou
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Qiao Yang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Yan Ning
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Shi Kao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Xianan Sang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Min Hao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Kuilong Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Mengyun Peng
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
| | - Shuosheng Zhang
- College of Chinese Materia Medica and Food Engineering, Shanxi University of Chinese Medicine, Jinzhong, China.
| | - Xin Han
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
- Jinhua Institute, Zhejiang Chinese Medical University, Jinhua, China.
| | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China.
- Jinhua Institute, Zhejiang Chinese Medical University, Jinhua, China.
| |
Collapse
|
7
|
Shan D, Chen Q, Xie Y, Dai S, Hu Y. Current understanding of essential trace elements in intrahepatic cholestasis of pregnancy. Biometals 2024; 37:943-953. [PMID: 38367126 DOI: 10.1007/s10534-024-00586-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/19/2024] [Indexed: 02/19/2024]
Abstract
Trace elements are important components in the body and have fundamental roles in maintaining a healthy and balanced pregnancy process. Either deficiency or excess of trace elements, including selenium, iron, zinc, copper, and magnesium can lead to pregnancy complications. As a rare disorder during pregnancy of unknown aetiology, intrahepatic cholestasis of pregnancy (ICP) poses a significant risk to the fetus of perinatal mortality. ICP is a multifactorial complication of which the pathogenesis is still an enigma. Epidemiological studies have demonstrated the association of ICP with some trace elements. Evidence from retrospective studies in humans further revealed the possible contributing roles of trace elements in the pathogenesis of ICP. The published literature on the association of trace elements with ICP was reviewed. Recent advances in molecular biological techniques from animal studies have helped to elucidate the possible mechanisms by how these trace elements function in regulating oxidative reactions, inflammatory reactions and immune balance in the maternal-fetal interface, as well as the influence on hepato-intestinal circulation of bile acid. The scenario regarding the role of trace elements in the pathogenesis of ICP is still developing. The administration or depletion of these trace elements may have promising effects in alleviating the symptoms and improving the pregnancy outcomes of ICP.
Collapse
Affiliation(s)
- Dan Shan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, South Renmin Road, Section 3, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, China
| | - Qian Chen
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, South Renmin Road, Section 3, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, China
| | - Yupei Xie
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, South Renmin Road, Section 3, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, China
| | - Siyu Dai
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, South Renmin Road, Section 3, Chengdu, 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, China
| | - Yayi Hu
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, No. 20, South Renmin Road, Section 3, Chengdu, 610041, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
8
|
Gou Z, Tang K, Zeng C, Yuan H, Zhang C, Huang Y, Qu T, Xin Q, Zhao Y, Zeng G, Yang J, Xie P, Yang ST, Tang X. Photothermal therapy of xenografted tumor by carbon nanoparticles-Fe(II) complex. Colloids Surf B Biointerfaces 2024; 240:113968. [PMID: 38788472 DOI: 10.1016/j.colsurfb.2024.113968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/03/2024] [Accepted: 05/11/2024] [Indexed: 05/26/2024]
Abstract
Due to the unique structure, carbon nanomaterials could convert near-infrared (NIR) light into heat efficiently in tumor ablation using photothermal therapy (PTT). However, none of them has been applied in clinical treatment, because they have not been approved for clinical evaluations and the precise temperature control facility is scarce. In this study, we designed a temperature-responsive controller for PTT and used carbon nanoparticles-Fe(II) complex (CNSI-Fe) as photothermal conversion agent (PTA) for PTT of tumor in vitro and in vivo. CNSI-Fe was an innovative drug under the evaluations in clinical trials. CNSI-Fe showed excellent photothermal conversion ability in water to increase the water temperature by 40 °C within 5 min under irradiation of 808 nm laser at 0.5 W/cm2. The temperature was precisely controlled at 52 °C for both in vitro and in vivo tumor inhibition. CNSI-Fe with NIR irradiation showed higher tumor cell inhibition than CNSI. In tumor bearing mice, CNSI-Fe with NIR irradiation achieved an inhibition rate of 84.7 % and 71.4 % of them were completely cured. Mechanistically, CNSI-Fe under NIR irradiation induced the radical generation, oxidative damage and ferroptosis to kill tumor. In addition, CNSI-Fe showed good biosafety during PTT according to hematological, serum biological and histopathological examinations. These results indicated that the combination of chemotherapy and PTT provided higher antitumor efficiency using CNSI-Fe as PTA.
Collapse
Affiliation(s)
- Zehui Gou
- Department of Medical Ultrasound, West China Hospital/West China School of Medicine, Sichuan University, Chengdu, China
| | - Kexin Tang
- Sichuan Enray Pharmaceutical Sciences Company, Chengdu, China
| | - Cheng Zeng
- Sichuan Enray Pharmaceutical Sciences Company, Chengdu, China
| | - Huahui Yuan
- Sichuan Enray Pharmaceutical Sciences Company, Chengdu, China
| | - Chun Zhang
- Sichuan Enray Pharmaceutical Sciences Company, Chengdu, China
| | - Yuanfang Huang
- Sichuan Enray Pharmaceutical Sciences Company, Chengdu, China
| | - Ting Qu
- Sichuan Enray Pharmaceutical Sciences Company, Chengdu, China
| | - Qian Xin
- Sichuan Enray Pharmaceutical Sciences Company, Chengdu, China
| | - Yufeng Zhao
- Sichuan Enray Pharmaceutical Sciences Company, Chengdu, China
| | - Guangfu Zeng
- Sichuan Enray Pharmaceutical Sciences Company, Chengdu, China
| | - Jinmei Yang
- Sichuan Enray Pharmaceutical Sciences Company, Chengdu, China
| | - Ping Xie
- State Key Laboratory of Oral Diseases, West China, College of Stomatology, Sichuan University, Chengdu, China
| | - Sheng-Tao Yang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China.
| | - Xiaohai Tang
- Sichuan Enray Pharmaceutical Sciences Company, Chengdu, China.
| |
Collapse
|
9
|
Xiong A, Lu L, Jiang K, Wang X, Chen Y, Wang X, Zhang W, Zhuge Y, Huang W, Li L, Liao Q, Yang F, Liu P, Ding L, Wang Z, Yang L. Functional metabolomics characterizes the contribution of farnesoid X receptor in pyrrolizidine alkaloid-induced hepatic sinusoidal obstruction syndrome. Arch Toxicol 2024; 98:2557-2576. [PMID: 38703205 DOI: 10.1007/s00204-024-03762-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/10/2024] [Indexed: 05/06/2024]
Abstract
Consumption of herbal products containing pyrrolizidine alkaloids (PAs) is one of the major causes for hepatic sinusoidal obstruction syndrome (HSOS), a deadly liver disease. However, the crucial metabolic variation and biomarkers which can reflect these changes remain amphibious and thus to result in a lack of effective prevention, diagnosis and treatments against this disease. The aim of the study was to determine the impact of HSOS caused by PA exposure, and to translate metabolomics-derived biomarkers to the mechanism. In present study, cholic acid species (namely, cholic acid, taurine conjugated-cholic acid, and glycine conjugated-cholic acid) were identified as the candidate biomarkers (area under the ROC curve 0.968 [95% CI 0.908-0.994], sensitivity 83.87%, specificity 96.55%) for PA-HSOS using two independent cohorts of patients with PA-HSOS. The increased primary bile acid biosynthesis and decreased liver expression of farnesoid X receptor (FXR, which is known to inhibit bile acid biosynthesis in hepatocytes) were highlighted in PA-HSOS patients. Furtherly, a murine PA-HSOS model induced by senecionine (50 mg/kg, p.o.), a hepatotoxic PA, showed increased biosynthesis of cholic acid species via inhibition of hepatic FXR-SHP singling and treatment with the FXR agonist obeticholic acid restored the cholic acid species to the normal levels and protected mice from senecionine-induced HSOS. This work elucidates that increased levels of cholic acid species can serve as diagnostic biomarkers in PA-HSOS and targeting FXR may represent a therapeutic strategy for treating PA-HSOS in clinics.
Collapse
Affiliation(s)
- Aizhen Xiong
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
- Shanghai R & D Center for Standardization of Traditional Chinese Medicines, Shanghai, 201210, China.
| | - Longhui Lu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Kaiyuan Jiang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Xiaoning Wang
- E-Institute of Shanghai Municipal Education Committee, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yan Chen
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Xunjiang Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Wei Zhang
- Department of Gastroenterology, The Drum Tower Hospital of Nanjing, Affiliated to Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Yuzheng Zhuge
- Department of Gastroenterology, The Drum Tower Hospital of Nanjing, Affiliated to Nanjing University Medical School, Nanjing, 210008, Jiangsu, China
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Lujin Li
- Center for Drug of Clinical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Qi Liao
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China
| | - Fan Yang
- Department of Obstetrics and Gynecology, and Shanghai Key Laboratory of Gynecologic Oncology Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Ping Liu
- E-Institute of Shanghai Municipal Education Committee, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lili Ding
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
- Shanghai R & D Center for Standardization of Traditional Chinese Medicines, Shanghai, 201210, China.
| | - Zhengtao Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
- Shanghai R & D Center for Standardization of Traditional Chinese Medicines, Shanghai, 201210, China.
| | - Li Yang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201210, China.
- Shanghai R & D Center for Standardization of Traditional Chinese Medicines, Shanghai, 201210, China.
| |
Collapse
|
10
|
Liu S, Sun C, Tang H, Peng C, Peng F. Leonurine: a comprehensive review of pharmacokinetics, pharmacodynamics, and toxicology. Front Pharmacol 2024; 15:1428406. [PMID: 39101131 PMCID: PMC11294146 DOI: 10.3389/fphar.2024.1428406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 06/27/2024] [Indexed: 08/06/2024] Open
Abstract
Leonurine is an alkaloid unique to the Leonurus genus, which has many biological activities, such as uterine contraction, anti-inflammation, anti-oxidation, regulation of cell apoptosis, anti-tumor, angiogenesis, anti-platelet aggregation, and inhibition of vasoconstriction. This paper summarizes the extraction methods, synthetic pathways, biosynthetic mechanisms, pharmacokinetic properties, pharmacological effects in various diseases, toxicology, and clinical trials of leonurine. To facilitate a successful transition into clinical application, intensified efforts are required in several key areas: structural modifications of leonurine to optimize its properties, comprehensive pharmacokinetic assessments to understand its behavior within the body, thorough mechanistic studies to elucidate how it works at the molecular level, rigorous safety evaluations and toxicological investigations to ensure patient wellbeing, and meticulously conducted clinical trials to validate its efficacy and safety profile.
Collapse
Affiliation(s)
- Siyu Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Chen Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Li Y, Zhang K, Feng Y, Wu L, Jia Y, Zhao R. Alisma Orientalis Extract Ameliorates Hepatic Iron Deregulation in MAFLD Mice via FXR-Mediated Gene Repression. Nutrients 2024; 16:2272. [PMID: 39064715 PMCID: PMC11279993 DOI: 10.3390/nu16142272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Iron is a vital trace element for our bodies and its imbalance can lead to various diseases. The progression of metabolic-associated fatty liver disease (MAFLD) is often accompanied by disturbances in iron metabolism. Alisma orientale extract (AOE) has been reported to alleviate MAFLD. However, research on its specific lipid metabolism targets and its potential impact on iron metabolism during the progression of MAFLD remains limited. To establish a model of MAFLD, mice were fed either a standard diet (CON) or a high-fat diet (HFD) for 9 weeks. The mice nourished on the HFD were then randomly assigned to the HF group and the HFA group, with the HFA group receiving AOE by gavage on a daily basis for 13 weeks. Supplementation with AOE remarkably reduced overabundant lipid accumulation in the liver and restored the iron content of the liver. AOE partially but significantly reversed dysregulated lipid metabolizing genes (SCD1, PPAR γ, and CD36) and iron metabolism genes (TFR1, FPN, and HAMP) induced by HFD. Chromatin immunoprecipitation assays indicated that the reduced enrichment of FXR on the promoters of SCD1 and FPN genes induced by HFD was significantly reversed by AOE. These findings suggest that AOE may alleviate HFD-induced disturbances in liver lipid and iron metabolism through FXR-mediated gene repression.
Collapse
Affiliation(s)
- Yanlin Li
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (K.Z.); (Y.F.); (L.W.); (Y.J.)
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ke Zhang
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (K.Z.); (Y.F.); (L.W.); (Y.J.)
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yue Feng
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (K.Z.); (Y.F.); (L.W.); (Y.J.)
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Wu
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (K.Z.); (Y.F.); (L.W.); (Y.J.)
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yimin Jia
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (K.Z.); (Y.F.); (L.W.); (Y.J.)
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruqian Zhao
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China; (Y.L.); (K.Z.); (Y.F.); (L.W.); (Y.J.)
- Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- National Key Laboratory of Meat Quality Control and Cultured Meat Development, Nanjing 210095, China
| |
Collapse
|
12
|
Li H, Xiong H, Wang X, Xu T, Zhang C, Zhang W, Zhang Y. Ibuprofen induces hepatic Cyp7a1 expression in mice via the intestinal FXR-FGF15 signaling. Toxicol Lett 2024; 398:1-12. [PMID: 38815664 DOI: 10.1016/j.toxlet.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/13/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) may cause drug-induced liver injury (DILI). However, the molecular mechanisms underlying NSAIDs hepatotoxicity remain elusive. Dysregulations of bile acids (BAs) have been implicated in various DILI. In this study, we systematically investigated the effects of ibuprofen, the most commonly used NSAID, on BA metabolism and signaling in adult male C57/BL6 mice after oral administration of ibuprofen (IBU) at clinically relevant doses (30, 100, and 200 mg/kg) for one week. Notably, IBU significantly decreased BA concentrations in the liver in a dose-dependent manner, with a concomitant increase in both mRNA and protein expression of cholesterol 7alpha-hydoxylase (CYP7A1), the rate-limiting enzyme for BA synthesis. Mechanically, IBU altered the composition of gut microbiota and increased cecal BAs, leading to reduced intestinal absorption of BAs and thus deactivated ileal farnesoid X receptor-fibroblast growth factor 15 (FXR-FGF15) signaling. Additionally, diclofenac and indomethacin also induced hepatic Cyp7a1 expression in mice via their effects on gut microbiota and intestinal BA signaling. To conclude, the current findings suggest that NSAIDs-induced liver injury could be at least partially attributable to the dysregulation of BA metabolism and signaling.
Collapse
Affiliation(s)
- Huixiang Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Hui Xiong
- Department of Physiology and Pathophysiology, School of Basic Medicine, Tianjin Medical University, Tianjin 300070, China.
| | - Xue Wang
- Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, HI 96813, USA
| | - Tong Xu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Chunze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin 30021, China
| | | | - Youcai Zhang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
13
|
Du K, Wang L, Jun JH, Dutta RK, Maeso-Díaz R, Oh SH, Ko DC, Diehl AM. Aging promotes metabolic dysfunction-associated steatotic liver disease by inducing ferroptotic stress. NATURE AGING 2024; 4:949-968. [PMID: 38918603 DOI: 10.1038/s43587-024-00652-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/17/2024] [Indexed: 06/27/2024]
Abstract
Susceptibility to the biological consequences of aging varies among organs and individuals. We analyzed hepatocyte transcriptomes of healthy young and aged male mice to generate an aging hepatocyte gene signature, used it to deconvolute transcriptomic data from humans and mice with metabolic dysfunction-associated liver disease, validated findings with functional studies in mice and applied the signature to transcriptomic data from other organs to determine whether aging-sensitive degenerative mechanisms are conserved. We discovered that the signature enriches in diseased livers in parallel with degeneration. It is also enriched in failing human hearts, diseased kidneys and pancreatic islets from individuals with diabetes. The signature includes genes that control ferroptosis. Aged mice develop more hepatocyte ferroptosis and liver degeneration than young mice when fed diets that induce metabolic stress. Inhibiting ferroptosis shifts the liver transcriptome of old mice toward that of young mice and reverses aging-exacerbated liver damage, identifying ferroptosis as a tractable, conserved mechanism for aging-related tissue degeneration.
Collapse
Affiliation(s)
- Kuo Du
- Department of Medicine, Duke University, Durham, NC, USA
| | - Liuyang Wang
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Ji Hye Jun
- Department of Medicine, Duke University, Durham, NC, USA
| | - Rajesh K Dutta
- Department of Medicine, Duke University, Durham, NC, USA
| | | | - Seh Hoon Oh
- Department of Medicine, Duke University, Durham, NC, USA
| | - Dennis C Ko
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| | - Anna Mae Diehl
- Department of Medicine, Duke University, Durham, NC, USA.
| |
Collapse
|
14
|
Ying Z, Yin M, Zhu Z, Shang Z, Pei Y, Liu J, Liu Q. Iron Stress Affects the Growth and Differentiation of Toxoplasma gondii. Int J Mol Sci 2024; 25:2493. [PMID: 38473741 PMCID: PMC10931281 DOI: 10.3390/ijms25052493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 03/14/2024] Open
Abstract
Iron is an indispensable nutrient for the survival of Toxoplasma gondii; however, excessive amounts can lead to toxicity. The parasite must overcome the host's "nutritional immunity" barrier and compete with the host for iron. Since T. gondii can infect most nucleated cells, it encounters increased iron stress during parasitism. This study assessed the impact of iron stress, encompassing both iron depletion and iron accumulation, on the growth of T. gondii. Iron accumulation disrupted the redox balance of T. gondii while enhancing the parasite's ability to adhere in high-iron environments. Conversely, iron depletion promoted the differentiation of tachyzoites into bradyzoites. Proteomic analysis further revealed proteins affected by iron depletion and identified the involvement of phosphotyrosyl phosphatase activator proteins in bradyzoite formation.
Collapse
Affiliation(s)
- Zhu Ying
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China; (Z.Y.); (M.Y.); (Z.Z.); (Z.S.); (Y.P.); (J.L.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
| | - Meng Yin
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China; (Z.Y.); (M.Y.); (Z.Z.); (Z.S.); (Y.P.); (J.L.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
| | - Zifu Zhu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China; (Z.Y.); (M.Y.); (Z.Z.); (Z.S.); (Y.P.); (J.L.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
| | - Zheng Shang
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China; (Z.Y.); (M.Y.); (Z.Z.); (Z.S.); (Y.P.); (J.L.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
| | - Yanqun Pei
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China; (Z.Y.); (M.Y.); (Z.Z.); (Z.S.); (Y.P.); (J.L.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
| | - Jing Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China; (Z.Y.); (M.Y.); (Z.Z.); (Z.S.); (Y.P.); (J.L.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
| | - Qun Liu
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China; (Z.Y.); (M.Y.); (Z.Z.); (Z.S.); (Y.P.); (J.L.)
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
| |
Collapse
|
15
|
Liu Y, Li G, Lu F, Guo Z, Cai S, Huo T. Excess iron intake induced liver injury: The role of gut-liver axis and therapeutic potential. Biomed Pharmacother 2023; 168:115728. [PMID: 37864900 DOI: 10.1016/j.biopha.2023.115728] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/23/2023] Open
Abstract
Excessive iron intake is detrimental to human health, especially to the liver, which is the main organ for iron storage. Excessive iron intake can lead to liver injury. The gut-liver axis (GLA) refers to the bidirectional relationship between the gut and its microbiota and the liver, which is a combination of signals generated by dietary, genetic and environmental factors. Excessive iron intake disrupts the GLA at multiple interconnected levels, including the gut microbiota, gut barrier function, and the liver's innate immune system. Excessive iron intake induces gut microbiota dysbiosis, destroys gut barriers, promotes liver exposure to gut microbiota and its derived metabolites, and increases the pro-inflammatory environment of the liver. There is increasing evidence that excess iron intake alters the levels of gut microbiota-derived metabolites such as secondary bile acids (BAs), short-chain fatty acids, indoles, and trimethylamine N-oxide, which play an important role in maintaining homeostasis of the GLA. In addition to iron chelators, antioxidants, and anti-inflammatory agents currently used in iron overload therapy, gut barrier intervention may be a potential target for iron overload therapy. In this paper, we review the relationship between excess iron intake and chronic liver diseases, the regulation of iron homeostasis by the GLA, and focus on the effects of excess iron intake on the GLA. It has been suggested that probiotics, fecal microbiota transfer, farnesoid X receptor agonists, and microRNA may be potential therapeutic targets for iron overload-induced liver injury by protecting gut barrier function.
Collapse
Affiliation(s)
- Yu Liu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Guangyan Li
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Fayu Lu
- School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Ziwei Guo
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China
| | - Shuang Cai
- The First Affiliated Hospital of China Medical University, Shenyang 110001, China.
| | - Taoguang Huo
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning 110122, China; Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang, Liaoning 110122, China.
| |
Collapse
|
16
|
Feng S, Tang D, Wang Y, Li X, Bao H, Tang C, Dong X, Li X, Yang Q, Yan Y, Yin Z, Shang T, Zheng K, Huang X, Wei Z, Wang K, Qi S. The mechanism of ferroptosis and its related diseases. MOLECULAR BIOMEDICINE 2023; 4:33. [PMID: 37840106 PMCID: PMC10577123 DOI: 10.1186/s43556-023-00142-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/23/2023] [Indexed: 10/17/2023] Open
Abstract
Ferroptosis, a regulated form of cellular death characterized by the iron-mediated accumulation of lipid peroxides, provides a novel avenue for delving into the intersection of cellular metabolism, oxidative stress, and disease pathology. We have witnessed a mounting fascination with ferroptosis, attributed to its pivotal roles across diverse physiological and pathological conditions including developmental processes, metabolic dynamics, oncogenic pathways, neurodegenerative cascades, and traumatic tissue injuries. By unraveling the intricate underpinnings of the molecular machinery, pivotal contributors, intricate signaling conduits, and regulatory networks governing ferroptosis, researchers aim to bridge the gap between the intricacies of this unique mode of cellular death and its multifaceted implications for health and disease. In light of the rapidly advancing landscape of ferroptosis research, we present a comprehensive review aiming at the extensive implications of ferroptosis in the origins and progress of human diseases. This review concludes with a careful analysis of potential treatment approaches carefully designed to either inhibit or promote ferroptosis. Additionally, we have succinctly summarized the potential therapeutic targets and compounds that hold promise in targeting ferroptosis within various diseases. This pivotal facet underscores the burgeoning possibilities for manipulating ferroptosis as a therapeutic strategy. In summary, this review enriched the insights of both investigators and practitioners, while fostering an elevated comprehension of ferroptosis and its latent translational utilities. By revealing the basic processes and investigating treatment possibilities, this review provides a crucial resource for scientists and medical practitioners, aiding in a deep understanding of ferroptosis and its effects in various disease situations.
Collapse
Affiliation(s)
- Shijian Feng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Dan Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yichang Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiang Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Hui Bao
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Chengbing Tang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiuju Dong
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xinna Li
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Qinxue Yang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Yun Yan
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zhijie Yin
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Tiantian Shang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Kaixuan Zheng
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xiaofang Huang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Zuheng Wei
- Chengdu Jinjiang Jiaxiang Foreign Languages High School, Chengdu, People's Republic of China
| | - Kunjie Wang
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| | - Shiqian Qi
- Department of Urology and Institute of Urology (Laboratory of Reconstructive Urology), State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
17
|
Li Z, Yuan H, Chu H, Yang L. The Crosstalk between Gut Microbiota and Bile Acids Promotes the Development of Non-Alcoholic Fatty Liver Disease. Microorganisms 2023; 11:2059. [PMID: 37630619 PMCID: PMC10459427 DOI: 10.3390/microorganisms11082059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
Recently the roles of gut microbiota are highly regarded in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). The intestinal bacteria regulate the metabolism of bile acids depending on bile salt hydrolase (BSH), 7-dehydroxylation, hydroxysteroid dehydrogenase (HSDH), or amide conjugation reaction, thus exerting effects on NAFLD development through bile acid receptors such as farnesoid X receptor (FXR), Takeda G-protein-coupled bile acid protein 5 (TGR5), and vitamin D receptor (VDR), which modulate nutrient metabolism and insulin sensitivity via interacting with downstream molecules. Reversely, the composition of gut microbiota is also affected by the level of bile acids in turn. We summarize the mutual regulation between the specific bacteria and bile acids in NAFLD and the latest clinical research based on microbiota and bile acids, which facilitate the development of novel treatment modalities in NAFLD.
Collapse
Affiliation(s)
| | | | | | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China; (Z.L.); (H.Y.); (H.C.)
| |
Collapse
|
18
|
Cao L, Qin R, Liu J. Farnesoid X receptor protects against lipopolysaccharide-induced endometritis by inhibiting ferroptosis and inflammatory response. Int Immunopharmacol 2023; 118:110080. [PMID: 37001382 DOI: 10.1016/j.intimp.2023.110080] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 03/31/2023]
Abstract
Endometritis is an inflammatory condition that affects the endometrium; it is induced by bacterial infection and often leads to infertility and repeated abortions. Farnesoid X receptor (FXR) is a member of the nuclear receptor superfamily that mediates a variety of inflammatory diseases. In the present study, we determined the protective effects of FXR on lipopolysaccharide (LPS)-induced endometritis in mice and the underlying mechanisms. The results showed that LPS administration reduced the expression of FXR in the uterus, and treatment with the FXR agonist GW4064 and fexaramine significantly alleviated the endometritis induced by LPS. In addition, compared with wild-type (WT) mice, FXR-knockout mice had more severe inflammatory responses in their uteri after LPS treatment. Moreover, ferroptosis was increased during LPS-induced endometritis, as shown by increased levels of malondialdehyde (MDA) and iron, and decreased levels of superoxide dismutase (SOD), glutathione (GSH), GXP4 and SLC7A11. In addition, inhibition of ferroptosis by treatment with ferrostation-1 (Fer-1) and liproxstatin (Lip-1) alleviated LPS-induced endometritis. Additionally, FXR-knockout mice were used to determine the relationship between FXR and ferroptosis. The results showed that knockout of FXR induced ferroptosis, and an FXR agonist inhibited LPS-induced ferroptosis. Finally, the regulatory effects of obeticholic acid (OCA) on FXR/ferroptosis and endometritis were assessed. The results showed that treatment with OCA increased the expression of FXR, decreased the levels of ferroptosis, and inhibited the endometritis induced by LPS. In conclusion, the results showed that activation of FXR can alleviate LPS-induced endometritis by inhibiting ferroptosis, and FXR may be a potential therapeutic target for treating endometritis.
Collapse
Affiliation(s)
- Lu Cao
- Department of Obstetrics, China-Japan Union Hospital of Jilin University, Erdao District, 126 Sendai Street, Changchun, Jilin Province 130033, China
| | - Rui Qin
- Department of Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Junbao Liu
- Department of Gynecology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China.
| |
Collapse
|
19
|
Masi D, Gangitano E, Criniti A, Ballesio L, Anzuini A, Marino L, Gnessi L, Angeloni A, Gandini O, Lubrano C. Obesity-Associated Hepatic Steatosis, Somatotropic Axis Impairment, and Ferritin Levels Are Strong Predictors of COVID-19 Severity. Viruses 2023; 15:v15020488. [PMID: 36851702 PMCID: PMC9968194 DOI: 10.3390/v15020488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/24/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
The full spectrum of SARS-CoV-2-infected patients has not yet been defined. This study aimed to evaluate which parameters derived from CT, inflammatory, and hormonal markers could explain the clinical variability of COVID-19. We performed a retrospective study including SARS-CoV-2-infected patients hospitalized from March 2020 to May 2021 at the Umberto I Polyclinic of Rome. Patients were divided into four groups according to the degree of respiratory failure. Routine laboratory examinations, BMI, liver steatosis indices, liver CT attenuation, ferritin, and IGF-1 serum levels were assessed and correlated with severity. Analysis of variance between groups showed that patients with worse prognoses had higher BMI and ferritin levels, but lower liver density, albumin, GH, and IGF-1. ROC analysis confirmed the prognostic accuracy of IGF-1 in discriminating between patients who experienced death/severe respiratory failure and those who did not (AUC 0.688, CI: 0.587 to 0.789, p < 0.001). A multivariate analysis considering the degrees of severity of the disease as the dependent variable and ferritin, liver density, and the standard deviation score of IGF-1 as regressors showed that all three parameters were significant predictors. Ferritin, IGF-1, and liver steatosis account for the increased risk of poor prognosis in COVID-19 patients with obesity.
Collapse
Affiliation(s)
- Davide Masi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy
| | - Elena Gangitano
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy
| | - Anna Criniti
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy
| | - Laura Ballesio
- Department of Radiology, Anatomo–Pathology and Oncology, Sapienza University of Rome, 00185 Rome, Italy
| | - Antonella Anzuini
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy
| | - Luca Marino
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00185 Rome, Italy
- Emergency Medicine Unit, Department of Emergency-Acceptance, Critical Areas and Trauma, Policlinico “Umberto I”, 00161 Rome, Italy
| | - Lucio Gnessi
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy
| | - Antonio Angeloni
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy
- Emergency Medicine Unit, Department of Emergency-Acceptance, Critical Areas and Trauma, Policlinico “Umberto I”, 00161 Rome, Italy
| | - Orietta Gandini
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Carla Lubrano
- Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy
- Correspondence:
| |
Collapse
|
20
|
Wang LJ, Zhao GP, Wang XF, Liu XX, Li YX, Qiu LL, Wang XY, Ren FZ. Glycochenodeoxycholate Affects Iron Homeostasis via Up-Regulating Hepcidin Expression. Nutrients 2022; 14:nu14153176. [PMID: 35956351 PMCID: PMC9370805 DOI: 10.3390/nu14153176] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/23/2022] Open
Abstract
Increasing hepcidin expression is a vital factor in iron homeostasis imbalance among patients with chronic kidney disease (CKD). Recent studies have elucidated that abnormal serum steroid levels might cause the elevation of hepcidin. Glycochenodeoxycholate (GCDCA), a steroid, is significantly elevated in patients with CKD. However, the correlation between GCDCA and hepcidin has not been elucidated. Decreased serum iron levels and increased hepcidin levels were both detected in patients with CKD in this study. Additionally, the concentrations of GCDCA in nephropathy patients were found to be higher than those in healthy subjects. HepG2 cells were used to investigate the effect of GCDCA on hepcidin in vitro. The results showed that hepcidin expression increased by nearly two-fold against control under 200 μM GCDCA treatment. The phosphorylation of SMAD1/5/8 increased remarkably, while STAT3 and CREBH remained unchanged. GCDCA triggered the expression of farnesoid X receptor (FXR), followed with the transcription and expression of both BMP6 and ALK3 (upward regulators of SMAD1/5/8). Thus, GCDCA is a potential regulator for hepcidin, which possibly acts by triggering FXR and the BMP6/ALK3-SMAD signaling pathway. Furthermore, 40 C57/BL6 mice were treated with 100 mg/kg/d, 200 mg/kg/d, and 300 mg/kg/d GCDCA to investigate its effect on hepcidin in vivo. The serum level of hepcidin increased in mice treated with 200 mg/kg/d and 300 mg/kg/d GCDCA, while hemoglobin and serum iron levels decreased. Similarly, the FXR-mediated SMAD signaling pathway was also responsible for activating hepcidin in liver. Overall, it was concluded that GCDCA could induce the expression of hepcidin and reduce serum iron level, in which FXR activation-related SMAD signaling was the main target for GCDCA. Thus, abnormal GCDCA level indicates a potential risk of iron homeostasis imbalance.
Collapse
Affiliation(s)
- Long-jiao Wang
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.-j.W.); (X.-f.W.); (X.-x.L.); (L.-l.Q.)
| | - Guo-ping Zhao
- School of Food and Health, Beijing Technology and Business University, Beijing 100048, China;
| | - Xi-fan Wang
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.-j.W.); (X.-f.W.); (X.-x.L.); (L.-l.Q.)
| | - Xiao-xue Liu
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.-j.W.); (X.-f.W.); (X.-x.L.); (L.-l.Q.)
| | - Yi-xuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China;
| | - Li-li Qiu
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.-j.W.); (X.-f.W.); (X.-x.L.); (L.-l.Q.)
| | - Xiao-yu Wang
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.-j.W.); (X.-f.W.); (X.-x.L.); (L.-l.Q.)
- Correspondence: (X.-y.W.); (F.-z.R.)
| | - Fa-zheng Ren
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; (L.-j.W.); (X.-f.W.); (X.-x.L.); (L.-l.Q.)
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China;
- Correspondence: (X.-y.W.); (F.-z.R.)
| |
Collapse
|