1
|
Ayala I, Hebbale SK, Mononen J, Brearley-Sholto MC, Shannon CE, Valdez I, Fourcaudot M, Bakewell TM, Zagorska A, Romero G, Asmis M, Musa FA, Sily JT, Smelter AA, Hinostroza EA, Freitas Lima LC, de Aguiar Vallim TQ, Heikkinen S, Norton L. The Spatial Transcriptional Activity of Hepatic TCF7L2 Regulates Zonated Metabolic Pathways that Contribute to Liver Fibrosis. Nat Commun 2025; 16:3408. [PMID: 40210847 DOI: 10.1038/s41467-025-58714-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 03/20/2025] [Indexed: 04/12/2025] Open
Abstract
The molecular mechanisms regulating the zonal distribution of metabolism in liver are incompletely understood. Here we use single nuclei genomics techniques to examine the spatial transcriptional function of transcription factor 7-like 2 (TCF7L2) in mouse liver, and determine the consequences of TCF7L2 transcriptional inactivation on the metabolic architecture of the liver and the function of zonated metabolic pathways. We report that while Tcf7l2 mRNA expression is ubiquitous across the liver lobule, accessibility of the consensus TCF/LEF DNA binding motif is restricted to pericentral (PC) hepatocytes in zone 3. In mice expressing functionally inactive TCF7L2 in liver, PC hepatocyte-specific gene expression is absent, which we demonstrate promotes hepatic cholesterol accumulation, impaired bile acid synthesis, disruption to glutamine/glutamate homeostasis and pronounced dietary-induced hepatic fibrosis. In summary, TCF7L2 is a key regulator of hepatic zonal gene expression and regulates several zonated metabolic pathways that may contribute to the development of fibrotic liver disease.
Collapse
Affiliation(s)
- Iriscilla Ayala
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Skanda K Hebbale
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Juho Mononen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | | | - Christopher E Shannon
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Ivan Valdez
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Marcel Fourcaudot
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Terry M Bakewell
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | | | - Giovanna Romero
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Mara Asmis
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Fatima A Musa
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Jonah T Sily
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Annie A Smelter
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Edgar A Hinostroza
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Leandro C Freitas Lima
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Thomas Q de Aguiar Vallim
- Department of Cardiology, School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Sami Heikkinen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Luke Norton
- Diabetes Division, Department of Medicine, University of Texas Health San Antonio, San Antonio, TX, USA.
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
2
|
Sugimoto A, Saito Y, Wang G, Sun Q, Yin C, Lee KH, Geng Y, Rajbhandari P, Hernandez C, Steffani M, Qie J, Savage T, Goyal DM, Ray KC, Neelakantan TV, Yin D, Melms J, Lehrich BM, Yasaka TM, Liu S, Oertel M, Lan T, Guillot A, Peiseler M, Filliol A, Kanzaki H, Fujiwara N, Ravi S, Izar B, Brosch M, Hampe J, Remotti H, Argemi J, Sun Z, Kendall TJ, Hoshida Y, Tacke F, Fallowfield JA, Blockley-Powell SK, Haeusler RA, Steinman JB, Pajvani UB, Monga SP, Bataller R, Masoodi M, Arpaia N, Lee YA, Stockwell BR, Augustin HG, Schwabe RF. Hepatic stellate cells control liver zonation, size and functions via R-spondin 3. Nature 2025:10.1038/s41586-025-08677-w. [PMID: 40074890 DOI: 10.1038/s41586-025-08677-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 01/21/2025] [Indexed: 03/14/2025]
Abstract
Hepatic stellate cells (HSCs) have a central pathogenetic role in the development of liver fibrosis. However, their fibrosis-independent and homeostatic functions remain poorly understood1-5. Here we demonstrate that genetic depletion of HSCs changes WNT activity and zonation of hepatocytes, leading to marked alterations in liver regeneration, cytochrome P450 metabolism and injury. We identify R-spondin 3 (RSPO3), an HSC-enriched modulator of WNT signalling, as responsible for these hepatocyte-regulatory effects of HSCs. HSC-selective deletion of Rspo3 phenocopies the effects of HSC depletion on hepatocyte gene expression, zonation, liver size, regeneration and cytochrome P450-mediated detoxification, and exacerbates alcohol-associated and metabolic dysfunction-associated steatotic liver disease. RSPO3 expression decreases with HSC activation and is inversely associated with outcomes in patients with alcohol-associated and metabolic dysfunction-associated steatotic liver disease. These protective and hepatocyte-regulating functions of HSCs via RSPO3 resemble the R-spondin-expressing stromal niche in other organs and should be integrated into current therapeutic concepts.
Collapse
Affiliation(s)
- Atsushi Sugimoto
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
| | - Yoshinobu Saito
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
- Department of Gastroenterology and Hepatology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Guanxiong Wang
- Division of Vascular Oncology and Metastasis Research, German Cancer Research Center, Heidelberg, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Qiuyan Sun
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
| | - Chuan Yin
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
| | - Ki Hong Lee
- Division of Vascular Oncology and Metastasis Research, German Cancer Research Center, Heidelberg, Germany
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Yana Geng
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
| | - Presha Rajbhandari
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY, USA
| | - Celine Hernandez
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
| | - Marcella Steffani
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
| | - Jingran Qie
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
| | - Thomas Savage
- Department of Microbiology & Immunology, Columbia University, New York, NY, USA
| | - Dhruv M Goyal
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
| | - Kevin C Ray
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Taruna V Neelakantan
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY, USA
| | - Deqi Yin
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
| | - Johannes Melms
- Department of Medicine, Columbia University, New York, NY, USA
| | - Brandon M Lehrich
- Department of Pharmacology and Chemical Biology, Pittsburgh Liver Research Center, and Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tyler M Yasaka
- Department of Pharmacology and Chemical Biology, Pittsburgh Liver Research Center, and Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Silvia Liu
- Department of Pharmacology and Chemical Biology, Pittsburgh Liver Research Center, and Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael Oertel
- Department of Pharmacology and Chemical Biology, Pittsburgh Liver Research Center, and Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tian Lan
- Department of Hepatology & Gastroenterology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Adrien Guillot
- Department of Hepatology & Gastroenterology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Moritz Peiseler
- Department of Hepatology & Gastroenterology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Aveline Filliol
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
| | - Hiroaki Kanzaki
- Liver Tumour Translational Research Program, Harold C. Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Naoto Fujiwara
- Liver Tumour Translational Research Program, Harold C. Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Samhita Ravi
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Benjamin Izar
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, New York, NY, USA
| | - Mario Brosch
- Department of Internal Medicine I, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Jochen Hampe
- Department of Internal Medicine I, University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Helen Remotti
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Josepmaria Argemi
- Liver Unit and RNA Biology and Therapies Program, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III, Madrid, Spain
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Timothy J Kendall
- Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK
| | - Yujin Hoshida
- Liver Tumour Translational Research Program, Harold C. Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Frank Tacke
- Department of Hepatology & Gastroenterology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Storm K Blockley-Powell
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
| | - Rebecca A Haeusler
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
| | | | - Utpal B Pajvani
- Department of Medicine, Columbia University, New York, NY, USA
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
- Institute of Human Nutrition, New York, NY, USA
| | - Satdarshan P Monga
- Department of Pharmacology and Chemical Biology, Pittsburgh Liver Research Center, and Organ Pathobiology and Therapeutics Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ramon Bataller
- Liver Unit,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clinic, Barcelona, Spain
| | - Mojgan Masoodi
- Institute of Clinical Chemistry, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Nicholas Arpaia
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
- Columbia Center for Translational Immunology, Department of Medicine, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, New York, NY, USA
| | - Youngmin A Lee
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Brent R Stockwell
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY, USA
- Herbert Irving Comprehensive Cancer Center, New York, NY, USA
| | - Hellmut G Augustin
- Division of Vascular Oncology and Metastasis Research, German Cancer Research Center, Heidelberg, Germany.
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Robert F Schwabe
- Department of Medicine, Columbia University, New York, NY, USA.
- Columbia University Digestive and Liver Disease Research Center, New York, NY, USA.
- Department of Hepatology & Gastroenterology, Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Institute of Human Nutrition, New York, NY, USA.
- Burch-Lodge Center for Human Longevity, Columbia University, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, New York, NY, USA.
| |
Collapse
|
3
|
Zhang P, Li X, Liang J, Zheng Y, Tong Y, Shen J, Chen Y, Han P, Chu S, Liu R, Zheng M, Zhai Y, Tang X, Zhang C, Qu H, Mi P, Chai J, Yuan D, Li S. Chenodeoxycholic acid modulates cholestatic niche through FXR/Myc/P-selectin axis in liver endothelial cells. Nat Commun 2025; 16:2093. [PMID: 40025016 PMCID: PMC11873286 DOI: 10.1038/s41467-025-57351-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/18/2025] [Indexed: 03/04/2025] Open
Abstract
Cholestatic liver diseases are characterized by excessive bile acid accumulation in the liver. Endothelial cells (ECs) shape the local microenvironment in both normal conditions and liver injury, yet their role in cholestasis is unclear. Through a comparative analysis of single-cell RNA sequencing data from various murine models of liver injury, we identify distinctive Myc activation within ECs during obstructive cholestasis resulting from bile duct ligation (BDL). Myc overexpression in ECs significantly upregulates P-selectin, increasing neutrophil infiltration and worsening cholestatic liver injury. This process occurs through the FXR, activated by chenodeoxycholic acid (CDCA) and its conjugate TCDCA. Inhibiting P-selectin with PSI-697 reduces neutrophil recruitment and alleviates injury. Cholestatic patient liver samples also show elevated Myc and P-selectin in ECs, along with increased neutrophils. The findings identify ECs as key drivers of cholestatic liver injury through a Myc-driven program and suggest that targeting the CDCA/FXR/Myc/P-selectin axis may offer a therapeutic approach.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xinying Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jinyuan Liang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yuanwen Zheng
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yao Tong
- School of Medicine, Chongqing University, Chongqing, China
| | - Jing Shen
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Yatai Chen
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Penghu Han
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Shuzheng Chu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ruirui Liu
- Institute of Pathology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mengqi Zheng
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Yunjiao Zhai
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Xiaolong Tang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Cuijuan Zhang
- Institute of Pathology and Pathophysiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hui Qu
- Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China.
| | - Ping Mi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Jin Chai
- Department of Gastroenterology, Institute of Digestive Diseases of PLA, Cholestatic Liver Diseases Center and Metabolic Dysfunction-Associated Fatty Liver Disease (MASLD) Medical Research Center, The First Affiliated Hospital (Southwest Hospital) of Third Military Medical University (Army Medical University), Chongqing, China.
| | - Detian Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Shiyang Li
- Advanced Medical Research Institute, Shandong University, Jinan, China.
| |
Collapse
|
4
|
Ma X, Huang T, Chen X, Li Q, Liao M, Fu L, Huang J, Yuan K, Wang Z, Zeng Y. Molecular mechanisms in liver repair and regeneration: from physiology to therapeutics. Signal Transduct Target Ther 2025; 10:63. [PMID: 39920130 PMCID: PMC11806117 DOI: 10.1038/s41392-024-02104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 09/02/2024] [Accepted: 12/12/2024] [Indexed: 02/09/2025] Open
Abstract
Liver repair and regeneration are crucial physiological responses to hepatic injury and are orchestrated through intricate cellular and molecular networks. This review systematically delineates advancements in the field, emphasizing the essential roles played by diverse liver cell types. Their coordinated actions, supported by complex crosstalk within the liver microenvironment, are pivotal to enhancing regenerative outcomes. Recent molecular investigations have elucidated key signaling pathways involved in liver injury and regeneration. Viewed through the lens of metabolic reprogramming, these pathways highlight how shifts in glucose, lipid, and amino acid metabolism support the cellular functions essential for liver repair and regeneration. An analysis of regenerative variability across pathological states reveals how disease conditions influence these dynamics, guiding the development of novel therapeutic strategies and advanced techniques to enhance liver repair and regeneration. Bridging laboratory findings with practical applications, recent clinical trials highlight the potential of optimizing liver regeneration strategies. These trials offer valuable insights into the effectiveness of novel therapies and underscore significant progress in translational research. In conclusion, this review intricately links molecular insights to therapeutic frontiers, systematically charting the trajectory from fundamental physiological mechanisms to innovative clinical applications in liver repair and regeneration.
Collapse
Affiliation(s)
- Xiao Ma
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tengda Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiangzheng Chen
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Qian Li
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Mingheng Liao
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Li Fu
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jiwei Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Kefei Yuan
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Zhen Wang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Yong Zeng
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
5
|
Follert P, Große‐Segerath L, Lammert E. Blood flow-induced angiocrine signals promote organ growth and regeneration. Bioessays 2025; 47:e2400207. [PMID: 39529434 PMCID: PMC11755702 DOI: 10.1002/bies.202400207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/15/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024]
Abstract
Recently, we identified myeloid-derived growth factor (MYDGF) as a blood flow-induced angiocrine signal that promotes human and mouse hepatocyte proliferation and survival. Here, we review literature reporting changes in blood flow after partial organ resection in the liver, lung, and kidney, and we describe the angiocrine signals released by endothelial cells (ECs) upon blood flow alterations in these organs. While hepatocyte growth factor (HGF) and MYDGF are important angiocrine signals for liver regeneration, by now, angiocrine signals have also been reported to stimulate hyperplasia and/or hypertrophy during the regeneration of lungs and kidneys. In addition, angiocrine signals play a critical role in tumor growth. Understanding the mechano-elastic properties and flow-mediated alterations in the organ-specific microvasculature is crucial for therapeutic approaches to maintain organ health and initiate organ renewal.
Collapse
Affiliation(s)
- Paula Follert
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural SciencesInstitute of Metabolic PhysiologyDüsseldorfGermany
| | - Linda Große‐Segerath
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural SciencesInstitute of Metabolic PhysiologyDüsseldorfGermany
- German Diabetes Center (DDZ)Leibniz Center for Diabetes Research at Heinrich Heine University DüsseldorfDüsseldorfGermany
- German Center for Diabetes Research (DZD e.V.)NeuherbergGermany
| | - Eckhard Lammert
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural SciencesInstitute of Metabolic PhysiologyDüsseldorfGermany
- German Diabetes Center (DDZ)Leibniz Center for Diabetes Research at Heinrich Heine University DüsseldorfDüsseldorfGermany
- German Center for Diabetes Research (DZD e.V.)NeuherbergGermany
| |
Collapse
|
6
|
Gomez-Salinero JM, Redmond D, Rafii S. Microenvironmental determinants of endothelial cell heterogeneity. Nat Rev Mol Cell Biol 2025:10.1038/s41580-024-00825-w. [PMID: 39875728 DOI: 10.1038/s41580-024-00825-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2024] [Indexed: 01/30/2025]
Abstract
During development, endothelial cells (ECs) undergo an extraordinary specialization by which generic capillary microcirculatory networks spanning from arteries to veins transform into patterned organotypic zonated blood vessels. These capillary ECs become specialized to support the cellular and metabolic demands of each specific organ, including supplying tissue-specific angiocrine factors that orchestrate organ development, maintenance of organ-specific functions and regeneration of injured adult organs. Here, we illustrate the mechanisms by which microenvironmental signals emanating from non-vascular niche cells induce generic ECs to acquire specific inter-organ and intra-organ functional attributes. We describe how perivascular, parenchymal and immune cells dictate vascular heterogeneity and capillary zonation, and how this system is maintained through tissue-specific signalling activated by vasculogenic and angiogenic factors and deposition of matrix components. We also discuss how perturbation of organotypic vascular niche cues lead to erasure of EC signatures, contributing to the pathogenesis of disease processes. We also describe approaches that use reconstitution of tissue-specific signatures of ECs to promote regeneration of damaged organs.
Collapse
Affiliation(s)
- Jesus M Gomez-Salinero
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration and Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - David Redmond
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration and Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Shahin Rafii
- Division of Regenerative Medicine, Hartman Institute for Therapeutic Organ Regeneration and Ansary Stem Cell Institute, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
7
|
Watson BR, Paul B, Rahman RU, Amir-Zilberstein L, Segerstolpe Å, Epstein ET, Murphy S, Geistlinger L, Lee T, Shih A, Deguine J, Xavier RJ, Moffitt JR, Mullen AC. Spatial transcriptomics of healthy and fibrotic human liver at single-cell resolution. Nat Commun 2025; 16:319. [PMID: 39747812 PMCID: PMC11697218 DOI: 10.1038/s41467-024-55325-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) has advanced our understanding of cell types and their heterogeneity within the human liver, but the spatial organization at single-cell resolution has not yet been described. Here we apply multiplexed error robust fluorescent in situ hybridization (MERFISH) to map the zonal distribution of hepatocytes, spatially resolve subsets of macrophage and mesenchymal populations, and investigate the relationship between hepatocyte ploidy and gene expression within the healthy human liver. Integrating spatial information from MERFISH with the more complete transcriptome produced by single-nucleus RNA sequencing (snRNA-seq), also reveals zonally enriched receptor-ligand interactions. Finally, MERFISH and snRNA-seq analysis of fibrotic liver samples identify two hepatocyte populations that expand with injury and do not have clear zonal distributions. Together these spatial maps of the healthy and fibrotic liver provide a deeper understanding of the cellular and spatial remodeling that drives disease which, in turn, could provide new avenues for intervention and further study.
Collapse
Affiliation(s)
- Brianna R Watson
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Biplab Paul
- Division of Gastroenterology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Raza Ur Rahman
- Division of Gastroenterology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | | | - Åsa Segerstolpe
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | | | - Shane Murphy
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Ludwig Geistlinger
- Core for Computational Biomedicine, Department for Biomedical Informatics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Tyrone Lee
- Core for Computational Biomedicine, Department for Biomedical Informatics, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Angela Shih
- Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Jacques Deguine
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
| | - Ramnik J Xavier
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA
- Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Jeffrey R Moffitt
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA.
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
| | - Alan C Mullen
- Division of Gastroenterology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, 02142, USA.
| |
Collapse
|
8
|
Uno K, Uchino T, Suzuki T, Sayama Y, Edo N, Uno-Eder K, Morita K, Ishikawa T, Koizumi M, Honda H, Katagiri H, Tsukamoto K. Rspo3-mediated metabolic liver zonation regulates systemic glucose metabolism and body mass in mice. PLoS Biol 2025; 23:e3002955. [PMID: 39854351 PMCID: PMC11759367 DOI: 10.1371/journal.pbio.3002955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/27/2024] [Indexed: 01/26/2025] Open
Abstract
The unique architecture of the liver consists of hepatic lobules, dividing the hepatic features of metabolism into 2 distinct zones, namely the pericentral and periportal zones, the spatial characteristics of which are broadly defined as metabolic zonation. R-spondin3 (Rspo3), a bioactive protein promoting the Wnt signaling pathway, regulates metabolic features especially around hepatic central veins. However, the functional impact of hepatic metabolic zonation, regulated by the Rspo3/Wnt signaling pathway, on whole-body metabolism homeostasis remains poorly understood. In this study, we analyze the local functions of Rspo3 in the liver and the remote actions of hepatic Rspo3 on other organs of the body by using murine models. Rspo3 expression analysis shows that Rspo3 expression patterns are spatiotemporally controlled in the murine liver such that it locates in the pericentral zones and converges after feeding, and the dynamics of these processes are disturbed in obesity. We find that viral-mediated induction of Rspo3 in hepatic tissue of obesity improves insulin resistance and prevents body weight gain by restoring attenuated organ insulin sensitivities, reducing adipose tissue enlargement and reversing overstimulated adaptive thermogenesis. Denervation of the hepatic vagus suppresses these remote effects, derived from hepatic Rspo3 induction, toward adipose tissues and skeletal muscle, suggesting that signals are transduced via the neuronal communication consisting of afferent vagal and efferent sympathetic nerves. Furthermore, the non-neuronal inter-organ communication up-regulating muscle lipid utilization is partially responsible for the ameliorations of both fatty liver development and reduced skeletal muscle quality in obesity. In contrast, hepatic Rspo3 suppression through Cre-LoxP-mediated recombination system exacerbates diabetes due to glucose intolerance and insulin resistance, promotes fatty liver development and decreases skeletal muscle quality, resulting in obesity. Taken together, our study results reveal that modulation of hepatic Rspo3 contributes to maintaining systemic glucose metabolism and body composition via a newly identified inter-organ communication mechanism.
Collapse
Affiliation(s)
- Kenji Uno
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Takuya Uchino
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Takashi Suzuki
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Yohei Sayama
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Naoki Edo
- Teikyo Academic Research Center, Tokyo, Japan
| | | | - Koji Morita
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Toshio Ishikawa
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Miho Koizumi
- Field of Human Disease Models, Tokyo Women’s Medical University, Tokyo, Japan
| | - Hiroaki Honda
- Field of Human Disease Models, Tokyo Women’s Medical University, Tokyo, Japan
| | - Hideki Katagiri
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kazuhisa Tsukamoto
- Department of Internal Medicine, Teikyo University School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Ye B, Yue M, Chen H, Sun C, Shao Y, Jin Q, Zhang C, Yu G. YAP/TAZ as master regulators in liver regeneration and disease: insights into mechanisms and therapeutic targets. Mol Biol Rep 2024; 52:78. [PMID: 39718664 DOI: 10.1007/s11033-024-10177-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 12/12/2024] [Indexed: 12/25/2024]
Abstract
Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are key downstream effectors of the Hippo pathway that regulate organ size, tissue homeostasis, and cancer development. YAP/TAZ play crucial regulatory roles in organ growth, cell proliferation, cell renewal, and regeneration. Mechanistically, YAP/TAZ influence the occurrence and progression of liver regeneration (LR) through various signaling pathways, including Notch, Wnt/β-catenin, TGF-β/Smad. While the activation of YAP/TAZ can promote the regeneration of damaged liver tissue, their mechanisms of action may differ under various LR conditions. Furthermore, excessive activation of YAP/TAZ may also lead to severe liver damage, manifesting as alcoholic hepatitis, liver fibrosis, and even liver cancer. Here, we review the role and mechanisms of YAP/TAZ in LR and liver disease, highlighting the potential for advancements in clinical diagnosis and treatment targeting YAP/TAZ in these contexts.
Collapse
Affiliation(s)
- Bingyu Ye
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
| | - Meijuan Yue
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Hu Chen
- Anyang Food and Drug Inspection and Testing Center, Anyang, 455000, China
| | - Caifang Sun
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Yongle Shao
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Qinpeng Jin
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Chunyan Zhang
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China
| | - Guoying Yu
- State Key Laboratory of Cell Differentiation and Regulation, College of Life Sciences, Henan Normal University, Xinxiang, 453007, China.
| |
Collapse
|
10
|
Sun Z, Chen G. Impact of heterogeneity in liver matrix and intrahepatic cells on the progression of hepatic fibrosis. Tissue Cell 2024; 91:102559. [PMID: 39293139 DOI: 10.1016/j.tice.2024.102559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/05/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024]
Abstract
Liver fibrosis is a disease with a high prevalence worldwide. The development of hepatic fibrosis results from a combination of factors within the liver, such as extracellular matrix (ECM) deposition, hepatic stellate cells (HSCs) activation, collagen cross-linking, and inflammatory response. Heterogeneity in fibrotic liver is the result of a combination of heterogeneity in the intrahepatic microenvironment as well as heterogeneous expression of fibrosis-associated enzymes and cells, complicating the study of the mechanisms underlying the progression of liver fibrosis. The role of this heterogeneity on the crosstalk between cells and matrix and on the fibrotic process is worth exploring. In this paper, we will describe the phenomenon and mechanism of heterogeneity of liver matrix and intrahepatic cells in the process of hepatic fibrosis and discuss the crosstalk between heterogeneous factors on the development of fibrosis. The elucidation of heterogeneity is important for a deeper understanding of the pathological mechanisms of liver fibrosis as well as for clinical diagnosis and targeted therapies.
Collapse
Affiliation(s)
- Zhongtao Sun
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China
| | - Guobao Chen
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing 400054, China.
| |
Collapse
|
11
|
Kluiver TA, Lu Y, Schubert SA, Kraaier LJ, Ringnalda F, Lijnzaad P, DeMartino J, Megchelenbrink WL, Amo-Addae V, Eising S, de Faria FW, Münter D, van de Wetering M, Kerl K, Duiker E, van den Heuvel MC, de Meijer VE, de Kleine RH, Molenaar JJ, Margaritis T, Stunnenberg HG, de Krijger RR, Zsiros J, Clevers H, Peng WC. Divergent WNT signaling and drug sensitivity profiles within hepatoblastoma tumors and organoids. Nat Commun 2024; 15:8576. [PMID: 39567475 PMCID: PMC11579375 DOI: 10.1038/s41467-024-52757-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 09/20/2024] [Indexed: 11/22/2024] Open
Abstract
Hepatoblastoma, the most prevalent pediatric liver cancer, almost always carries a WNT-activating CTNNB1 mutation, yet exhibits notable molecular heterogeneity. To characterize this heterogeneity and identify novel targeted therapies, we perform comprehensive analysis of hepatoblastomas and tumor-derived organoids using single-cell RNA-seq/ATAC-seq, spatial transcriptomics, and high-throughput drug profiling. We identify two distinct tumor epithelial signatures: hepatic 'fetal' and WNT-high 'embryonal', displaying divergent WNT signaling patterns. The fetal group is enriched for liver-specific WNT targets, while the embryonal group is enriched in canonical WNT target genes. Gene regulatory network analysis reveals enrichment of regulons related to hepatic functions such as bile acid, lipid and xenobiotic metabolism in the fetal subtype but not in the embryonal subtype. In addition, the dichotomous expression pattern of the transcription factors HNF4A and LEF1 allows for a clear distinction between the fetal and embryonal tumor cells. We also perform high-throughput drug screening using patient-derived tumor organoids and identify sensitivity to HDAC inhibitors. Intriguingly, embryonal and fetal tumor organoids are sensitive to FGFR and EGFR inhibitors, respectively, indicating a dependency on EGF/FGF signaling in hepatoblastoma tumorigenesis. In summary, our data uncover the molecular and drug sensitivity landscapes of hepatoblastoma and pave the way for the development of targeted therapies.
Collapse
Affiliation(s)
- Thomas A Kluiver
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
| | - Yuyan Lu
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
- Department of Hepatobiliary Surgery, Xiamen Hospital of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Xiamen, China
| | - Stephanie A Schubert
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
| | - Lianne J Kraaier
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
| | - Femke Ringnalda
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
| | - Philip Lijnzaad
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
| | - Jeff DeMartino
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
| | - Wouter L Megchelenbrink
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Vico L. De Crecchio 7, Naples, Italy
| | - Vicky Amo-Addae
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
| | - Selma Eising
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
| | - Flavia W de Faria
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, Münster, Germany
| | - Daniel Münter
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, Münster, Germany
| | - Marc van de Wetering
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
| | - Kornelius Kerl
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Albert-Schweitzer-Campus 1, Münster, Germany
| | - Evelien Duiker
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
| | - Marius C van den Heuvel
- Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
| | - Vincent E de Meijer
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ruben H de Kleine
- Department of Surgery, Section of Hepatobiliary Surgery and Liver Transplantation, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jan J Molenaar
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
| | - Thanasis Margaritis
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
| | - Hendrik G Stunnenberg
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
| | - Ronald R de Krijger
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
- Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht, the Netherlands
| | - József Zsiros
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
| | - Hans Clevers
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands
- Oncode Institute, Utrecht, the Netherlands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Utrecht, the Netherlands
- Pharma, Research and Early Development (pRED) of F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Weng Chuan Peng
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, the Netherlands.
| |
Collapse
|
12
|
Gao J, Lan T, Kostallari E, Guo Y, Lai E, Guillot A, Ding B, Tacke F, Tang C, Shah VH. Angiocrine signaling in sinusoidal homeostasis and liver diseases. J Hepatol 2024; 81:543-561. [PMID: 38763358 PMCID: PMC11906189 DOI: 10.1016/j.jhep.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/21/2024]
Abstract
The hepatic sinusoids are composed of liver sinusoidal endothelial cells (LSECs), which are surrounded by hepatic stellate cells (HSCs) and contain liver-resident macrophages called Kupffer cells, and other patrolling immune cells. All these cells communicate with each other and with hepatocytes to maintain sinusoidal homeostasis and a spectrum of hepatic functions under healthy conditions. Sinusoidal homeostasis is disrupted by metabolites, toxins, viruses, and other pathological factors, leading to liver injury, chronic liver diseases, and cirrhosis. Alterations in hepatic sinusoids are linked to fibrosis progression and portal hypertension. LSECs are crucial regulators of cellular crosstalk within their microenvironment via angiocrine signaling. This review discusses the mechanisms by which angiocrine signaling orchestrates sinusoidal homeostasis, as well as the development of liver diseases. Here, we summarise the crosstalk between LSECs, HSCs, hepatocytes, cholangiocytes, and immune cells in health and disease and comment on potential novel therapeutic methods for treating liver diseases.
Collapse
Affiliation(s)
- Jinhang Gao
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Tian Lan
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China; Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Enis Kostallari
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Yangkun Guo
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Enjiang Lai
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Adrien Guillot
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| | - Bisen Ding
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany.
| | - Chengwei Tang
- Laboratory of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China.
| | - Vijay H Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
13
|
Liu Q, Wang S, Fu J, Chen Y, Xu J, Wei W, Song H, Zhao X, Wang H. Liver regeneration after injury: Mechanisms, cellular interactions and therapeutic innovations. Clin Transl Med 2024; 14:e1812. [PMID: 39152680 PMCID: PMC11329751 DOI: 10.1002/ctm2.1812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/27/2024] [Accepted: 08/03/2024] [Indexed: 08/19/2024] Open
Abstract
The liver possesses a distinctive capacity for regeneration within the human body. Under normal circumstances, liver cells replicate themselves to maintain liver function. Compensatory replication of healthy hepatocytes is sufficient for the regeneration after acute liver injuries. In the late stage of chronic liver damage, a large number of hepatocytes die and hepatocyte replication is blocked. Liver regeneration has more complex mechanisms, such as the transdifferentiation between cell types or hepatic progenitor cells mediated. Dysregulation of liver regeneration causes severe chronic liver disease. Gaining a more comprehensive understanding of liver regeneration mechanisms would facilitate the advancement of efficient therapeutic approaches. This review provides an overview of the signalling pathways linked to different aspects of liver regeneration in various liver diseases. Moreover, new knowledge on cellular interactions during the regenerative process is also presented. Finally, this paper explores the potential applications of new technologies, such as nanotechnology, stem cell transplantation and organoids, in liver regeneration after injury, offering fresh perspectives on treating liver disease.
Collapse
Affiliation(s)
- Qi Liu
- Translational Medicine CentreThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Senyan Wang
- Translational Medicine CentreThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Jing Fu
- International Cooperation Laboratory on Signal TransductionNational Center for Liver CancerMinistry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver CancerShanghai Key Laboratory of Hepato‐biliary Tumor BiologyEastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical UniversityShanghaiChina
| | - Yao Chen
- International Cooperation Laboratory on Signal TransductionNational Center for Liver CancerMinistry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver CancerShanghai Key Laboratory of Hepato‐biliary Tumor BiologyEastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical UniversityShanghaiChina
| | - Jing Xu
- Translational Medicine CentreThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Wenjuan Wei
- Translational Medicine CentreThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Hao Song
- Translational Medicine CentreThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Xiaofang Zhao
- Translational Medicine CentreThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan ProvinceChina
| | - Hongyang Wang
- International Cooperation Laboratory on Signal TransductionNational Center for Liver CancerMinistry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver CancerShanghai Key Laboratory of Hepato‐biliary Tumor BiologyEastern Hepatobiliary Surgery Hospital, Second Military Medical University/NAVAL Medical UniversityShanghaiChina
| |
Collapse
|
14
|
Saiki N, Nio Y, Yoneyama Y, Kawamura S, Iwasawa K, Kawakami E, Araki K, Fukumura J, Sakairi T, Kono T, Ohmura R, Koido M, Funata M, Thompson WL, Cruz-Encarnacion P, Chen YW, Takebe T. Self-Organization of Sinusoidal Vessels in Pluripotent Stem Cell-derived Human Liver Bud Organoids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601804. [PMID: 39005378 PMCID: PMC11245015 DOI: 10.1101/2024.07.02.601804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The induction of tissue-specific vessels in in vitro living tissue systems remains challenging. Here, we directly differentiated human pluripotent stem cells into CD32b+ putative liver sinusoidal progenitors (iLSEP) by dictating developmental pathways. By devising an inverted multilayered air-liquid interface (IMALI) culture, hepatic endoderm, septum mesenchyme, arterial and sinusoidal quadruple progenitors self-organized to generate and sustain hepatocyte-like cells neighbored by divergent endothelial subsets composed of CD32blowCD31high, LYVE1+STAB1+CD32bhighCD31lowTHBD-vWF-, and LYVE1-THBD+vWF+ cells. Wnt2 mediated sinusoidal-to-hepatic intercellular crosstalk potentiates hepatocyte differentiation and branched endothelial network formation. Intravital imaging revealed iLSEP developed fully patent human vessels with functional sinusoid-like features. Organoid-derived hepatocyte- and sinusoid-derived coagulation factors enabled correction of in vitro clotting time with Factor V, VIII, IX, and XI deficient patients' plasma and rescued the severe bleeding phenotype in hemophilia A mice upon transplantation. Advanced organoid vascularization technology allows for interrogating key insights governing organ-specific vessel development, paving the way for coagulation disorder therapeutics.
Collapse
Affiliation(s)
- Norikazu Saiki
- Institute of Research, Tokyo Medical and Dental University (TMDU), Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Organoid Medicine project, T-CiRA joint program, Fujisawa, Kanagawa 251-8555, Japan
| | - Yasunori Nio
- T-CiRA Discovery, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
- Organoid Medicine project, T-CiRA joint program, Fujisawa, Kanagawa 251-8555, Japan
| | - Yosuke Yoneyama
- Institute of Research, Tokyo Medical and Dental University (TMDU), Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Shuntaro Kawamura
- Institute of Research, Tokyo Medical and Dental University (TMDU), Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Kentaro Iwasawa
- Division of Gastroenterology, Hepatology and Nutrition & Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | - Eri Kawakami
- T-CiRA Discovery, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
- Organoid Medicine project, T-CiRA joint program, Fujisawa, Kanagawa 251-8555, Japan
| | - Kohei Araki
- T-CiRA Discovery, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
- Organoid Medicine project, T-CiRA joint program, Fujisawa, Kanagawa 251-8555, Japan
| | - Junko Fukumura
- T-CiRA Discovery, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
- Organoid Medicine project, T-CiRA joint program, Fujisawa, Kanagawa 251-8555, Japan
| | - Tsuyoshi Sakairi
- T-CiRA Discovery, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
- Organoid Medicine project, T-CiRA joint program, Fujisawa, Kanagawa 251-8555, Japan
| | - Tamaki Kono
- T-CiRA Discovery, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
- Organoid Medicine project, T-CiRA joint program, Fujisawa, Kanagawa 251-8555, Japan
| | - Rio Ohmura
- Institute of Research, Tokyo Medical and Dental University (TMDU), Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Organoid Medicine project, T-CiRA joint program, Fujisawa, Kanagawa 251-8555, Japan
| | - Masaru Koido
- Organoid Medicine project, T-CiRA joint program, Fujisawa, Kanagawa 251-8555, Japan
| | - Masaaki Funata
- T-CiRA Discovery, Takeda Pharmaceutical Company Ltd, Fujisawa, Kanagawa 251-8555, Japan
- Organoid Medicine project, T-CiRA joint program, Fujisawa, Kanagawa 251-8555, Japan
| | - Wendy L. Thompson
- Division of Gastroenterology, Hepatology and Nutrition & Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
| | | | - Ya-Wen Chen
- Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY
- Institute for Airway Sciences, Icahn School of Medicine at Mount Sinai, New York, NY
- Center for Epithelial and Airway Biology and Regeneration, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Takanori Takebe
- Institute of Research, Tokyo Medical and Dental University (TMDU), Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
- Organoid Medicine project, T-CiRA joint program, Fujisawa, Kanagawa 251-8555, Japan
- Division of Gastroenterology, Hepatology and Nutrition & Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
- The Center for Stem Cell and Organoid Medicine (CuSTOM), Cincinnati Children’s Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA
- Communication Design Center, Advanced Medical Research Center, Yokohama City University, Yokohama, Kanagawa, Japan
- Department of Genome Biology, Graduate School of Medicine, and Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
15
|
Zhou Y, Zhao Y, Carbonaro M, Chen H, Germino M, Adler C, Ni M, Zhu YO, Kim SY, Altarejos J, Li Z, Burczynski ME, Glass DJ, Sleeman MW, Lee AH, Halasz G, Cheng X. Perturbed liver gene zonation in a mouse model of non-alcoholic steatohepatitis. Metabolism 2024; 154:155830. [PMID: 38428673 DOI: 10.1016/j.metabol.2024.155830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/23/2024] [Accepted: 02/24/2024] [Indexed: 03/03/2024]
Abstract
Liver zonation characterizes the separation of metabolic pathways along the lobules and is required for optimal hepatic function. Wnt signaling is a master regulator of spatial liver zonation. A perivenous-periportal Wnt activity gradient orchestrates metabolic zonation by activating gene expression in perivenous hepatocytes, while suppressing gene expression in their periportal counterparts. However, the understanding as to the liver gene zonation and zonation regulators in diseases is limited. Non-alcoholic steatohepatitis (NASH) is a chronic liver disease characterized by fat accumulation, inflammation, and fibrosis. Here, we investigated the perturbation of liver gene zonation in a mouse NASH model by combining spatial transcriptomics, bulk RNAseq and in situ hybridization. Wnt-target genes represented a major subset of genes showing altered spatial expression in the NASH liver. The altered Wnt-target gene expression levels and zonation spatial patterns were in line with the up regulation of Wnt regulators and the augmentation of Wnt signaling. Particularly, we found that the Wnt activator Rspo3 expression was restricted to the perivenous zone in control liver but expanded to the periportal zone in NASH liver. AAV8-mediated RSPO3 overexpression in controls resulted in zonation changes, and further amplified the disturbed zonation of Wnt-target genes in NASH, similarly Rspo3 knockdown in Rspo3+/- mice resulted in zonation changes of Wnt-target genes in both chow and HFD mouse. Interestingly, there were no impacts on steatosis, inflammation, or fibrosis NASH pathology from RSPO3 overexpression nor Rspo3 knockdown. In summary, our study demonstrated the alteration of Wnt signaling in a mouse NASH model, leading to perturbed liver zonation.
Collapse
Affiliation(s)
- Ye Zhou
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Yuanqi Zhao
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Marisa Carbonaro
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Helen Chen
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Mary Germino
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Christina Adler
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Min Ni
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Yuan O Zhu
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Sun Y Kim
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Judith Altarejos
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Zhe Li
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | | | - David J Glass
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Mark W Sleeman
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Ann-Hwee Lee
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Gabor Halasz
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America
| | - Xiping Cheng
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, United States of America.
| |
Collapse
|
16
|
Santos AA, Delgado TC, Marques V, Ramirez-Moncayo C, Alonso C, Vidal-Puig A, Hall Z, Martínez-Chantar ML, Rodrigues CM. Spatial metabolomics and its application in the liver. Hepatology 2024; 79:1158-1179. [PMID: 36811413 PMCID: PMC11020039 DOI: 10.1097/hep.0000000000000341] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/05/2023] [Indexed: 02/24/2023]
Abstract
Hepatocytes work in highly structured, repetitive hepatic lobules. Blood flow across the radial axis of the lobule generates oxygen, nutrient, and hormone gradients, which result in zoned spatial variability and functional diversity. This large heterogeneity suggests that hepatocytes in different lobule zones may have distinct gene expression profiles, metabolic features, regenerative capacity, and susceptibility to damage. Here, we describe the principles of liver zonation, introduce metabolomic approaches to study the spatial heterogeneity of the liver, and highlight the possibility of exploring the spatial metabolic profile, leading to a deeper understanding of the tissue metabolic organization. Spatial metabolomics can also reveal intercellular heterogeneity and its contribution to liver disease. These approaches facilitate the global characterization of liver metabolic function with high spatial resolution along physiological and pathological time scales. This review summarizes the state of the art for spatially resolved metabolomic analysis and the challenges that hinder the achievement of metabolome coverage at the single-cell level. We also discuss several major contributions to the understanding of liver spatial metabolism and conclude with our opinion on the future developments and applications of these exciting new technologies.
Collapse
Affiliation(s)
- André A. Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Teresa C. Delgado
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Bizkaia, Spain
- Congenital Metabolic Disorders, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Vanda Marques
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Carmen Ramirez-Moncayo
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | | | - Antonio Vidal-Puig
- MRC Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Centro Investigation Principe Felipe, Valencia, Spain
| | - Zoe Hall
- Division of Systems Medicine, Imperial College London, London, UK
| | - María Luz Martínez-Chantar
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Cecilia M.P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
17
|
Matsumoto S, Kikuchi A. Wnt/β-catenin signaling pathway in liver biology and tumorigenesis. In Vitro Cell Dev Biol Anim 2024; 60:466-481. [PMID: 38379098 DOI: 10.1007/s11626-024-00858-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/16/2024] [Indexed: 02/22/2024]
Abstract
The Wnt/β-catenin pathway is an evolutionarily conserved signaling pathway that controls fundamental physiological and pathological processes by regulating cell proliferation and differentiation. The Wnt/β-catenin pathway enables liver homeostasis by inducing differentiation and contributes to liver-specific features such as metabolic zonation and regeneration. In contrast, abnormalities in the Wnt/β-catenin pathway promote the development and progression of hepatocellular carcinoma (HCC). Similarly, hepatoblastoma, the most common childhood liver cancer, is frequently associated with β-catenin mutations, which activate Wnt/β-catenin signaling. HCCs with activation of the Wnt/β-catenin pathway have unique gene expression patterns and pathological and clinical features. Accordingly, they are highly differentiated with retaining hepatocyte-like characteristics and tumorigenic. Activation of the Wnt/β-catenin pathway in HCC also alters the state of immune cells, causing "immune evasion" with inducing resistance to immune checkpoint inhibitors, which have recently become widely used to treat HCC. Activated Wnt/β-catenin signaling exhibits these phenomena in liver tumorigenesis through the expression of downstream target genes, and the molecular basis is still poorly understood. In this review, we describe the physiological roles of Wnt/b-catenin signaling and then discuss their characteristic changes by the abnormal activation of Wnt/b-catenin signaling. Clarification of the mechanism would contribute to the development of therapeutic agents in the future.
Collapse
Affiliation(s)
- Shinji Matsumoto
- Departments of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan.
| | - Akira Kikuchi
- Departments of Molecular Biology and Biochemistry, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita, Osaka, 565-0871, Japan
- Center of Infectious Disease Education and Research (CiDER), Osaka University, 2-8 Yamada-Oka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
18
|
Okada J, Landgraf A, Xiaoli AM, Liu L, Horton M, Schuster VL, Yang F, Sidoli S, Qiu Y, Kurland IJ, Eliscovich C, Shinoda K, Pessin JE. Spatial hepatocyte plasticity of gluconeogenesis during the metabolic transitions between fed, fasted and starvation states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591168. [PMID: 38746329 PMCID: PMC11092462 DOI: 10.1101/2024.04.29.591168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The liver acts as a master regulator of metabolic homeostasis in part by performing gluconeogenesis. This process is dysregulated in type 2 diabetes, leading to elevated hepatic glucose output. The parenchymal cells of the liver (hepatocytes) are heterogeneous, existing on an axis between the portal triad and the central vein, and perform distinct functions depending on location in the lobule. Here, using single cell analysis of hepatocytes across the liver lobule, we demonstrate that gluconeogenic gene expression ( Pck1 and G6pc ) is relatively low in the fed state and gradually increases first in the periportal hepatocytes during the initial fasting period. As the time of fasting progresses, pericentral hepatocyte gluconeogenic gene expression increases, and following entry into the starvation state, the pericentral hepatocytes show similar gluconeogenic gene expression to the periportal hepatocytes. Similarly, pyruvate-dependent gluconeogenic activity is approximately 10-fold higher in the periportal hepatocytes during the initial fasting state but only 1.5-fold higher in the starvation state. In parallel, starvation suppresses canonical beta-catenin signaling and modulates expression of pericentral and periportal glutamine synthetase and glutaminase, resulting in an enhanced pericentral glutamine-dependent gluconeogenesis. These findings demonstrate that hepatocyte gluconeogenic gene expression and gluconeogenic activity are highly spatially and temporally plastic across the liver lobule, underscoring the critical importance of using well-defined feeding and fasting conditions to define the basis of hepatic insulin resistance and glucose production.
Collapse
|
19
|
Zhao Z, Cui T, Wei F, Zhou Z, Sun Y, Gao C, Xu X, Zhang H. Wnt/β-Catenin signaling pathway in hepatocellular carcinoma: pathogenic role and therapeutic target. Front Oncol 2024; 14:1367364. [PMID: 38634048 PMCID: PMC11022604 DOI: 10.3389/fonc.2024.1367364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignant liver tumor and one of the leading causes of cancer-related deaths worldwide. The Wnt/β-Catenin signaling pathway is a highly conserved pathway involved in several biological processes, including the improper regulation that leads to the tumorigenesis and progression of cancer. New studies have found that abnormal activation of the Wnt/β-Catenin signaling pathway is a major cause of HCC tumorigenesis, progression, and resistance to therapy. New perspectives and approaches to treating HCC will arise from understanding this pathway. This article offers a thorough analysis of the Wnt/β-Catenin signaling pathway's function and its therapeutic implications in HCC.
Collapse
Affiliation(s)
- Zekun Zhao
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Tenglu Cui
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Radiotherapy Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Fengxian Wei
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhiming Zhou
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Yuan Sun
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Chaofeng Gao
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Xiaodong Xu
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Huihan Zhang
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
20
|
Scheidecker B, Poulain S, Sugimoto M, Arakawa H, Kim SH, Kawanishi T, Kato Y, Danoy M, Nishikawa M, Sakai Y. Mechanobiological stimulation in organ-on-a-chip systems reduces hepatic drug metabolic capacity in favor of regenerative specialization. Biotechnol Bioeng 2024; 121:1435-1452. [PMID: 38184801 DOI: 10.1002/bit.28653] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/08/2024]
Abstract
Hepatic physiology depends on the liver's complex structural composition which among others, provides high oxygen supply rates, locally differential oxygen tension, endothelial paracrine signaling, as well as residual hemodynamic shear stress to resident hepatocytes. While functional improvements were shown by implementing these factors into hepatic culture systems, direct cause-effect relationships are often not well characterized-obfuscating their individual contribution in more complex microphysiological systems. By comparing increasingly complex hepatic in vitro culture systems that gradually implement these parameters, we investigate the influence of the cellular microenvironment to overall hepatic functionality in pharmacological applications. Here, hepatocytes were modulated in terms of oxygen tension and supplementation, endothelial coculture, and exposure to fluid shear stress delineated from oxygen influx. Results from transcriptomic and metabolomic evaluation indicate that particularly oxygen supply rates are critical to enhance cellular functionality-with cellular drug metabolism remaining comparable to physiological conditions after prolonged static culture. Endothelial signaling was found to be a major contributor to differential phenotype formation known as metabolic zonation, indicated by WNT pathway activity. Lastly, oxygen-delineated shear stress was identified to direct cellular fate towards increased hepatic plasticity and regenerative phenotypes at the cost of drug metabolic functionality - in line with regenerative effects observed in vivo. With these results, we provide a systematic evaluation of critical parameters and their impact in hepatic systems. Given their adherence to physiological effects in vivo, this highlights the importance of their implementation in biomimetic devices, such as organ-on-a-chip systems. Considering recent advances in basic liver biology, direct translation of physiological structures into in vitro models is a promising strategy to expand the capabilities of pharmacological models.
Collapse
Affiliation(s)
| | - Stéphane Poulain
- Institute of Industrial Science, University of Tokyo, Tokyo, Japan
| | - Masahiro Sugimoto
- Institute for Advanced Biosciences, Keio University, Yamagata, Japan
- Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Hiroshi Arakawa
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Soo H Kim
- Institute of Industrial Science, University of Tokyo, Tokyo, Japan
| | - Takumi Kawanishi
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yukio Kato
- Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Mathieu Danoy
- Department of Chemical System Engineering, University of Tokyo, Tokyo, Japan
| | - Masaki Nishikawa
- Department of Chemical System Engineering, University of Tokyo, Tokyo, Japan
| | - Yasuyuki Sakai
- Department of Chemical System Engineering, University of Tokyo, Tokyo, Japan
| |
Collapse
|
21
|
Furtado J, Eichmann A. Vascular development, remodeling and maturation. Curr Top Dev Biol 2024; 159:344-370. [PMID: 38729681 DOI: 10.1016/bs.ctdb.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The development of the vascular system is crucial in supporting the growth and health of all other organs in the body, and vascular system dysfunction is the major cause of human morbidity and mortality. This chapter discusses three successive processes that govern vascular system development, starting with the differentiation of the primitive vascular system in early embryonic development, followed by its remodeling into a functional circulatory system composed of arteries and veins, and its final maturation and acquisition of an organ specific semi-permeable barrier that controls nutrient uptake into tissues and hence controls organ physiology. Along these steps, endothelial cells forming the inner lining of all blood vessels acquire extensive heterogeneity in terms of gene expression patterns and function, that we are only beginning to understand. These advances contribute to overall knowledge of vascular biology and are predicted to unlock the unprecedented therapeutic potential of the endothelium as an avenue for treatment of diseases associated with dysfunctional vasculature.
Collapse
Affiliation(s)
- Jessica Furtado
- Department of Molecular and Cellular Physiology, Yale University School of Medicine, New Haven, CT, United States; Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States
| | - Anne Eichmann
- Department of Molecular and Cellular Physiology, Yale University School of Medicine, New Haven, CT, United States; Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States; Paris Cardiovascular Research Center, Inserm U970, Université Paris, Paris, France.
| |
Collapse
|
22
|
Xu H, Qiu X, Wang Z, Wang K, Tan Y, Gao F, Perini MV, Xu X. Role of the portal system in liver regeneration: From molecular mechanisms to clinical management. LIVER RESEARCH 2024; 8:1-10. [PMID: 39959033 PMCID: PMC11771269 DOI: 10.1016/j.livres.2024.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/30/2023] [Accepted: 01/24/2024] [Indexed: 02/09/2025]
Abstract
The liver has a strong regenerative capacity that ensures patient recovery after hepatectomy and liver transplantation. The portal system plays a crucial role in the dual blood supply to the liver, making it a significant factor in hepatic function. Several surgical strategies, such as portal vein ligation, associating liver partition and portal vein ligation for staged hepatectomy, and dual vein embolization, have highlighted the portal system's importance in liver regeneration. Following hepatectomy or liver transplantation, the hemodynamic properties of the portal system change dramatically, triggering regeneration via shear stress and the induction of hypoxia. However, excessive portal hyperperfusion can harm the liver and negatively affect patient outcomes. Furthermore, as the importance of the gut-liver axis has gradually been revealed, the effect of metabolites and cytokines from gut microbes carried by portal blood on liver regeneration has been acknowledged. From these perspectives, this review outlines the molecular mechanisms of the portal system's role in liver regeneration and summarizes therapeutic strategies based on the portal system intervention to promote liver regeneration.
Collapse
Affiliation(s)
- Hanzhi Xu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xun Qiu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhoucheng Wang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kai Wang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Yawen Tan
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fengqiang Gao
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Marcos Vinicius Perini
- Department of Surgery, University of Melbourne, Austin Health, Heidelberg, Victoria, Australia
| | - Xiao Xu
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
23
|
Zhang L, Yang Y, Xie L, Zhou Y, Zhong Z, Ding J, Wang Z, Wang Y, Liu X, Yu F, Wu J. JCAD deficiency delayed liver regenerative repair through the Hippo-YAP signalling pathway. Clin Transl Med 2024; 14:e1630. [PMID: 38509842 PMCID: PMC10955226 DOI: 10.1002/ctm2.1630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/25/2024] [Accepted: 02/29/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND AND AIMS Liver regeneration retardation post partial hepatectomy (PH) is a common clinical problem after liver transplantation. Identification of key regulators in liver regeneration post PH may be beneficial for clinically improving the prognosis of patients after liver transplantation. This study aimed to clarify the function of junctional protein-associated with coronary artery disease (JCAD) in liver regeneration post PH and to reveal the underlying mechanisms. METHODS JCAD knockout (JCAD-KO), liver-specific JCAD-KO (Jcad△Hep) mice and their control group were subjected to 70% PH. RNA sequencing was conducted to unravel the related signalling pathways. Primary hepatocytes from KO mice were treated with epidermal growth factor (EGF) to evaluate DNA replication. Fluorescent ubiquitination-based cell cycle indicator (FUCCI) live-imaging system was used to visualise the phases of cell cycle. RESULTS Both global and liver-specific JCAD deficiency postponed liver regeneration after PH as indicated by reduced gene expression of cell cycle transition and DNA replication. Prolonged retention in G1 phase and failure to transition over the cell cycle checkpoint in JCAD-KO cell line was indicated by a FUCCI live-imaging system as well as pharmacologic blockage. JCAD replenishment by adenovirus reversed the impaired DNA synthesis in JCAD-KO primary hepatocyte in exposure to EGF, which was abrogated by a Yes-associated protein (YAP) inhibitor, verteporfin. Mechanistically, JCAD competed with large tumour suppressor 2 (LATS2) for WWC1 interaction, leading to LATS2 inhibition and thereafter YAP activation, and enhanced expression of cell cycle-associated genes. CONCLUSION JCAD deficiency led to delayed regeneration after PH as a result of blockage in cell cycle progression through the Hippo-YAP signalling pathway. These findings uncovered novel functions of JCAD and suggested a potential strategy for improving graft growth and function post liver transplantation. KEY POINTS JCAD deficiency leads to an impaired liver growth after PH due to cell division blockage. JCAD competes with LATS2 for WWC1 interaction, resulting in LATS2 inhibition, YAP activation and enhanced expression of cell cycle-associated genes. Delineation of JCADHippoYAP signalling pathway would facilitate to improve prognosis of acute liver failure and graft growth in living-donor liver transplantation.
Collapse
Affiliation(s)
- Li Zhang
- Department of Medical Microbiology & ParasitologyMOE/NHC/CAMS Key Laboratory of Medical Molecular VirologySchool of Basic Medical SciencesFudan University Shanghai Medical CollegeShanghaiChina
| | - Yong‐Yu Yang
- Department of Medical Microbiology & ParasitologyMOE/NHC/CAMS Key Laboratory of Medical Molecular VirologySchool of Basic Medical SciencesFudan University Shanghai Medical CollegeShanghaiChina
| | - Li Xie
- Department of Medical Microbiology & ParasitologyMOE/NHC/CAMS Key Laboratory of Medical Molecular VirologySchool of Basic Medical SciencesFudan University Shanghai Medical CollegeShanghaiChina
| | - Yuan Zhou
- Department of Medical Microbiology & ParasitologyMOE/NHC/CAMS Key Laboratory of Medical Molecular VirologySchool of Basic Medical SciencesFudan University Shanghai Medical CollegeShanghaiChina
| | - Zhenxing Zhong
- Institute of PediatricsChildren's Hospital of Fudan UniversityShanghai Key Laboratory of Medical EpigeneticsInternational Co‐Laboratory of Medical Epigenetics and MetabolismInstitutes of Biomedical SciencesFudan University Shanghai Medical CollegeShanghaiChina
| | - Jia Ding
- Jing'an Central District HospitalShanghaiChina
| | - Zhong‐Hua Wang
- Department of Medical Microbiology & ParasitologyMOE/NHC/CAMS Key Laboratory of Medical Molecular VirologySchool of Basic Medical SciencesFudan University Shanghai Medical CollegeShanghaiChina
| | - Yu‐Li Wang
- Department of Medical Microbiology & ParasitologyMOE/NHC/CAMS Key Laboratory of Medical Molecular VirologySchool of Basic Medical SciencesFudan University Shanghai Medical CollegeShanghaiChina
| | - Xiu‐Ping Liu
- Department of Pathology and Laboratory MedicineSchool of Basic Medical SciencesFudan UniversityShanghaiChina
| | - Fa‐Xing Yu
- Institute of PediatricsChildren's Hospital of Fudan UniversityShanghai Key Laboratory of Medical EpigeneticsInternational Co‐Laboratory of Medical Epigenetics and MetabolismInstitutes of Biomedical SciencesFudan University Shanghai Medical CollegeShanghaiChina
| | - Jian Wu
- Department of Medical Microbiology & ParasitologyMOE/NHC/CAMS Key Laboratory of Medical Molecular VirologySchool of Basic Medical SciencesFudan University Shanghai Medical CollegeShanghaiChina
- Department of Gastroenterology & HepatologyZhongshan Hospital of Fudan UniversityShanghaiChina
- Shanghai Institute of Liver DiseasesFudan University Shanghai Medical CollegeShanghaiChina
| |
Collapse
|
24
|
Porat-Shliom N. Compartmentalization, cooperation, and communication: The 3Cs of Hepatocyte zonation. Curr Opin Cell Biol 2024; 86:102292. [PMID: 38064779 PMCID: PMC10922296 DOI: 10.1016/j.ceb.2023.102292] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 02/15/2024]
Abstract
The unique architecture of the liver allows for spatial compartmentalization of its functions, also known as liver zonation. In contrast to organelles and cells, this compartment is devoid of a surrounding membrane, rendering traditional biochemical tools ineffective for studying liver zonation. Recent advancements in tissue imaging and single-cell technologies have provided new insights into the complexity of tissue organization, rich cellular composition, and the gradients that shape zonation. Hepatocyte gene expression profiles and metabolic programs differ based on their location. Non-parenchymal cells further support hepatocytes from different zones through local secretion of factors that instruct hepatocyte activities. Collectively, these elements form a cohesive and dynamic network of cell-cell interactions that vary across space, time, and disease states. This review will examine the cell biology of hepatocytes in vivo, presenting the latest discoveries and emerging principles that govern tissue-level and sub-cellular compartmentalization.
Collapse
Affiliation(s)
- Natalie Porat-Shliom
- Cell Biology and Imaging Section, Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
25
|
Idrissi YA, Rajabi MR, Beumer JH, Monga SP, Saeed A. Exploring the Impact of the β-Catenin Mutations in Hepatocellular Carcinoma: An In-Depth Review. Cancer Control 2024; 31:10732748241293680. [PMID: 39428608 PMCID: PMC11528747 DOI: 10.1177/10732748241293680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/30/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024] Open
Abstract
Liver cancer, primarily hepatocellular carcinoma, represents a major global health issue with significant clinical, economic, and psychological impacts. Its incidence continues to rise, driven by risk factors such as hepatitis B and C infections, nonalcoholic steatohepatitis, and various environmental influences. The Wnt/β-Catenin signaling pathway, frequently dysregulated in HCC, emerges as a promising therapeutic target. Critical genetic alterations, particularly in the CTNNB1 gene, involve mutations at key phosphorylation sites on β-catenin's N-terminal domain (S33, S37, T41, and S45) and in armadillo repeat domains (K335I and N387 K). These mutations impede β-catenin degradation, enhancing its oncogenic potential. In addition to genetic alterations, molecular and epigenetic mechanisms, including DNA methylation, histone modifications, and noncoding RNAs, further influence β-catenin signaling and tumor progression. However, β-catenin activation alone is insufficient for hepatocarcinogenesis; additional genetic "hits" are required for tumor initiation. Mutations or alterations in genes such as Ras, c-Met, NRF2, and LKB1, when combined with β-catenin activation, significantly contribute to HCC development and progression. Understanding these cooperative mutations provides crucial insights into the disease and reveals potential therapeutic strategies. The complex interplay between genetic variations and the tumor microenvironment, coupled with novel therapeutic approaches targeting the Wnt/β-Catenin pathway, offers promise for improved treatment of HCC. Despite advances, translating preclinical findings into clinical practice remains a challenge. Future research should focus on elucidating how specific β-catenin mutations and additional genetic alterations contribute to HCC pathogenesis, leveraging genetically clengineered mouse models to explore distinct signaling impacts, and identifying downstream targets. Relevant clinical trials will be essential for advancing personalized therapies and enhancing patient outcomes. This review provides a comprehensive analysis of β-Catenin signaling in HCC, highlighting its role in pathogenesis, diagnosis, and therapeutic targeting, and identifies key research directions to improve understanding and clinical outcomes.
Collapse
Affiliation(s)
- Yassine Alami Idrissi
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Mohammad Reza Rajabi
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Jan H. Beumer
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Pharmaceutical Sciences, School of Pharmacy, Pittsburgh, PA, USA
| | - Satdarshan P. Monga
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Division of Gastroenterology, Hepatology and Nutrition; Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and UPMC, Pittsburgh, PA, USA
| | - Anwaar Saeed
- Division of Hematology-Oncology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
26
|
Hu Y, Wang R, An N, Li C, Wang Q, Cao Y, Li C, Liu J, Wang Y. Unveiling the power of microenvironment in liver regeneration: an in-depth overview. Front Genet 2023; 14:1332190. [PMID: 38152656 PMCID: PMC10751322 DOI: 10.3389/fgene.2023.1332190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 11/29/2023] [Indexed: 12/29/2023] Open
Abstract
The liver serves as a vital regulatory hub for various physiological processes, including sugar, protein, and fat metabolism, coagulation regulation, immune system maintenance, hormone inactivation, urea metabolism, and water-electrolyte acid-base balance control. These functions rely on coordinated communication among different liver cell types, particularly within the liver's fundamental hepatic lobular structure. In the early stages of liver development, diverse liver cells differentiate from stem cells in a carefully orchestrated manner. Despite its susceptibility to damage, the liver possesses a remarkable regenerative capacity, with the hepatic lobule serving as a secure environment for cell division and proliferation during liver regeneration. This regenerative process depends on a complex microenvironment, involving liver resident cells, circulating cells, secreted cytokines, extracellular matrix, and biological forces. While hepatocytes proliferate under varying injury conditions, their sources may vary. It is well-established that hepatocytes with regenerative potential are distributed throughout the hepatic lobules. However, a comprehensive spatiotemporal model of liver regeneration remains elusive, despite recent advancements in genomics, lineage tracing, and microscopic imaging. This review summarizes the spatial distribution of cell gene expression within the regenerative microenvironment and its impact on liver regeneration patterns. It offers valuable insights into understanding the complex process of liver regeneration.
Collapse
Affiliation(s)
- Yuelei Hu
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, China
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Ruilin Wang
- Department of Cadre’s Wards Ultrasound Diagnostics, Ultrasound Diagnostic Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Ni An
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Chen Li
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- College of Life Science and Bioengineering, Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, China
| | - Qi Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, China
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yannan Cao
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, China
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Chao Li
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Juan Liu
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yunfang Wang
- Hepato-Pancreato-Biliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Clinical Translational Science Center, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| |
Collapse
|
27
|
Nejak-Bowen K, Monga SP. Wnt-β-catenin in hepatobiliary homeostasis, injury, and repair. Hepatology 2023; 78:1907-1921. [PMID: 37246413 PMCID: PMC10687322 DOI: 10.1097/hep.0000000000000495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/14/2023] [Indexed: 05/30/2023]
Abstract
Wnt-β-catenin signaling has emerged as an important regulatory pathway in the liver, playing key roles in zonation and mediating contextual hepatobiliary repair after injuries. In this review, we will address the major advances in understanding the role of Wnt signaling in hepatic zonation, regeneration, and cholestasis-induced injury. We will also touch on some important unanswered questions and discuss the relevance of modulating the pathway to provide therapies for complex liver pathologies that remain a continued unmet clinical need.
Collapse
Affiliation(s)
- Kari Nejak-Bowen
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, PA USA
| | - Satdarshan P. Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, PA USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| |
Collapse
|
28
|
Singh-Varma A, Shah AM, Liu S, Zamora R, Monga SP, Vodovotz Y. Defining spatiotemporal gene modules in liver regeneration using Analytical Dynamic Visual Spatial Omics Representation (ADViSOR). Hepatol Commun 2023; 7:e0289. [PMID: 37889540 PMCID: PMC10615476 DOI: 10.1097/hc9.0000000000000289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/23/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND The liver is the only organ with the ability to regenerate following surgical or toxicant insults, and partial hepatectomy serves as an experimental model of liver regeneration (LR). Dynamic changes in gene expression occur from the periportal to pericentral regions of the liver following partial hepatectomy; thus, spatial transcriptomics, combined with a novel computational pipeline (ADViSOR [Analytic Dynamic Visual Spatial Omics Representation]), was employed to gain insights into the spatiotemporal molecular underpinnings of LR. METHODS ADViSOR, comprising Time-Interval Principal Component Analysis and sliding dynamic hypergraphs, was applied to spatial transcriptomics data on 100 genes assayed serially through LR, including key components of the Wnt/β-catenin pathway at critical timepoints after partial hepatectomy. RESULTS This computational pipeline identified key functional modules demonstrating cell signaling and cell-cell interactions, inferring shared regulatory mechanisms. Specifically, ADViSOR analysis suggested that macrophage-mediated inflammation is a critical component of early LR and confirmed prior studies showing that Ccnd1, a hepatocyte proliferative gene, is regulated by the Wnt/β-catenin pathway. These findings were subsequently validated through protein localization, which provided further confirmation and novel insights into the spatiotemporal changes in the Wnt/β-catenin pathway during LR. CONCLUSIONS Thus, ADViSOR may yield novel insights in other complex, spatiotemporal contexts.
Collapse
Affiliation(s)
- Anya Singh-Varma
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ashti M Shah
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Silvia Liu
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ruben Zamora
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Satdarshan P Monga
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yoram Vodovotz
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Center for Inflammation and Regeneration Modeling, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
29
|
Gabdulkhakova A, Krutsenko Y, Zhu J, Liu S, Poddar M, Singh S, Ma X, Nejak-Bowen K, Monga SP, Molina LM. Loss of TAZ after YAP deletion severely impairs foregut development and worsens cholestatic hepatocellular injury. Hepatol Commun 2023; 7:e0220. [PMID: 37556373 PMCID: PMC10412434 DOI: 10.1097/hc9.0000000000000220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/10/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND We previously showed that loss of yes-associated protein 1 (YAP) in early liver development (YAPKO) leads to an Alagille syndrome-like phenotype, with failure of intrahepatic bile duct development, severe cholestasis, and chronic hepatocyte adaptations to reduce liver injury. TAZ, a paralog of YAP, was significantly upregulated in YAPKO hepatocytes and interacted with TEA domain family member (TEAD) transcription factors, suggesting possible compensatory activity. METHODS We deleted both Yap1 and Wwtr1 (which encodes TAZ) during early liver development using the Foxa3 promoter to drive Cre expression, similar to YAPKO mice, resulting in YAP/TAZ double knockout (DKO) and YAPKO with TAZ heterozygosity (YAPKO TAZHET). We evaluated these mice using immunohistochemistry, serum biochemistry, bile acid profiling, and RNA sequencing. RESULTS DKO mice were embryonic lethal, but their livers were similar to YAPKO, suggesting an extrahepatic cause of death. Male YAPKO TAZHET mice were also embryonic lethal, with insufficient samples to determine the cause. However, YAPKO TAZHET females survived and were phenotypically similar to YAPKO mice, with increased bile acid hydrophilicity and similar global gene expression adaptations but worsened the hepatocellular injury. TAZ heterozygosity in YAPKO impacted the expression of canonical YAP targets Ctgf and Cyr61, and we found changes in pathways regulating cell division and inflammatory signaling correlating with an increase in hepatocyte cell death, cell cycling, and macrophage recruitment. CONCLUSIONS YAP loss (with or without TAZ loss) aborts biliary development. YAP and TAZ play a codependent critical role in foregut endoderm development outside the liver, but they are not essential for hepatocyte development. TAZ heterozygosity in YAPKO livers increased cell cycling and inflammatory signaling in the setting of chronic injury, highlighting genes that are especially sensitive to TAZ regulation.
Collapse
Affiliation(s)
- Adelya Gabdulkhakova
- Precision Digital Health, Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Germany
| | - Yekaterina Krutsenko
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Junjie Zhu
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Silvia Liu
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Minakshi Poddar
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sucha Singh
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Xiaochao Ma
- Department of Pharmaceutical Sciences, Center for Pharmacogenetics, University of Pittsburgh School of Pharmacy, Pittsburgh, Pennsylvania, USA
| | - Kari Nejak-Bowen
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Satdarshan P.S. Monga
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
- Department of Medicine, Division of Gastroenterology, Hepatology, and Nutrition, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Laura M. Molina
- Department of Pathology, Division of Experimental Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
30
|
Wen Y. The Role of Immune Cells in Liver Regeneration. LIVERS 2023; 3:383-396. [DOI: 10.3390/livers3030029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2025] Open
Abstract
The liver is the only organ that can regenerate and regain its original tissue-to-body weight ratio within a short period of time after tissue loss. Insufficient liver regeneration in patients after partial hepatectomy or liver transplantation with partial liver grafts often leads to post-hepatectomy liver failure or small-for-size syndrome, respectively. Enhancing liver regeneration after liver injury might improve outcomes and increase patient survival. Liver regeneration comprises hepatocyte proliferation, and hepatic progenitor cell expansion and differentiation into hepatocytes. The immune system is intensively involved in liver regeneration. The current review provides a comprehensive overview of the diverse roles played by immune cells in liver regeneration. Macrophages, neutrophils, eosinophils, basophils, mast cells, platelets, dendritic cells, type 1 innate lymphoid cells, B cells, and T cells are implicated in promoting liver regeneration, while natural killer cells and overactivated natural killer T cells are supposed to inhibit hepatocyte proliferation. We also highlight the predominant underlying mechanisms mediated by immune cells, which may contribute to the development of novel strategies for promoting liver regeneration in patients with liver diseases.
Collapse
Affiliation(s)
- Yankai Wen
- Department of Anesthesiology, Critical Care and Pain Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
31
|
Ayers M, Kosar K, Xue Y, Goel C, Carson M, Lee E, Liu S, Brooks E, Cornuet P, Oertel M, Bhushan B, Nejak-Bowen K. Inhibiting Wnt Signaling Reduces Cholestatic Injury by Disrupting the Inflammatory Axis. Cell Mol Gastroenterol Hepatol 2023; 16:895-921. [PMID: 37579970 PMCID: PMC10616556 DOI: 10.1016/j.jcmgh.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/16/2023]
Abstract
BACKGROUND & AIMS β-Catenin, the effector molecule of the Wnt signaling pathway, has been shown to play a crucial role in bile acid homeostasis through direct inhibition of farnesoid X receptor (FXR), which has pleiotropic effects on bile acid homeostasis. We hypothesize that simultaneous suppression of β-catenin signaling and activation of FXR in a mouse model of cholestasis will reduce injury and biliary fibrosis through inhibition of bile acid synthesis. METHODS To induce cholestasis, we performed bile duct ligation (BDL) on wild-type male mice. Eight hours after surgery, mice received FXR agonists obeticholic acid, tropifexor, or GW-4064 or Wnt inhibitor Wnt-C59. Severity of cholestatic liver disease and expression of target genes were evaluated after either 5 days or 12 days of treatment. RESULTS We found that although the FXR agonists worsened BDL-induced injury and necrosis after 5 days, Wnt-C59 did not. After 12 days of BDL, Wnt-C59 treatment, but not GW-4064 treatment, reduced both the number of infarcts and the number of inflammatory cells in liver. RNA sequencing analysis of whole livers revealed a notable suppression of nuclear factor kappa B signaling when Wnt signaling is inhibited. We then analyzed transcriptomic data to identify a cholangiocyte-specific signature in our model and demonstrated that Wnt-C59-treated livers were enriched for genes expressed in quiescent cholangiocytes, whereas genes expressed in activated cholangiocytes were enriched in BDL alone. A similar decrease in biliary injury and inflammation occurred in Mdr2 KO mice treated with Wnt-C59. CONCLUSIONS Inhibiting Wnt signaling suppresses cholangiocyte activation and disrupts the nuclear factor kappa B-dependent inflammatory axis, reducing cholestatic-induced injury.
Collapse
Affiliation(s)
- Mary Ayers
- Department of Pediatric Gastroenterology, Hepatology, and Nutrition, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Karis Kosar
- Department of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yuhua Xue
- Department of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Chhavi Goel
- Department of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Matthew Carson
- Department of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Elizabeth Lee
- Department of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Silvia Liu
- Department of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eva Brooks
- Duquesne University, Pittsburgh, Pennsylvania
| | - Pamela Cornuet
- Department of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Michael Oertel
- Department of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Bharat Bhushan
- Department of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kari Nejak-Bowen
- Department of Experimental Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
32
|
Chen F, Schönberger K, Tchorz JS. Distinct hepatocyte identities in liver homeostasis and regeneration. JHEP Rep 2023; 5:100779. [PMID: 37456678 PMCID: PMC10339260 DOI: 10.1016/j.jhepr.2023.100779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 03/27/2023] [Accepted: 04/07/2023] [Indexed: 07/18/2023] Open
Abstract
The process of metabolic liver zonation is spontaneously established by assigning distributed tasks to hepatocytes along the porto-central blood flow. Hepatocytes fulfil critical metabolic functions, while also maintaining hepatocyte mass by replication when needed. Recent technological advances have enabled us to fine-tune our understanding of hepatocyte identity during homeostasis and regeneration. Subsets of hepatocytes have been identified to be more regenerative and some have even been proposed to function like stem cells, challenging the long-standing view that all hepatocytes are similarly capable of regeneration. The latest data show that hepatocyte renewal during homeostasis and regeneration after liver injury is not limited to rare hepatocytes; however, hepatocytes are not exactly the same. Herein, we review the known differences that give individual hepatocytes distinct identities, recent findings demonstrating how these distinct identities correspond to differences in hepatocyte regenerative capacity, and how the plasticity of hepatocyte identity allows for division of labour among hepatocytes. We further discuss how these distinct hepatocyte identities may play a role during liver disease.
Collapse
Affiliation(s)
- Feng Chen
- Novartis Institutes for BioMedical Research, Cambridge, MA, United States
| | | | - Jan S. Tchorz
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| |
Collapse
|
33
|
Hu S, Cao C, Poddar M, Delgado E, Singh S, Singh-Varma A, Stolz DB, Bell A, Monga SP. Hepatocyte β-catenin loss is compensated by Insulin-mTORC1 activation to promote liver regeneration. Hepatology 2023; 77:1593-1611. [PMID: 35862186 PMCID: PMC9859954 DOI: 10.1002/hep.32680] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/13/2022] [Accepted: 07/16/2022] [Indexed: 01/25/2023]
Abstract
BACKGROUND AND AIMS Liver regeneration (LR) following partial hepatectomy (PH) occurs via activation of various signaling pathways. Disruption of a single pathway can be compensated by activation of another pathway to continue LR. The Wnt-β-catenin pathway is activated early during LR and conditional hepatocyte loss of β-catenin delays LR. Here, we study mechanism of LR in the absence of hepatocyte-β-catenin. APPROACH AND RESULTS Eight-week-old hepatocyte-specific Ctnnb1 knockout mice (β-catenin ΔHC ) were subjected to PH. These animals exhibited decreased hepatocyte proliferation at 40-120 h and decreased cumulative 14-day BrdU labeling of <40%, but all mice survived, suggesting compensation. Insulin-mediated mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) activation was uniquely identified in the β-catenin ΔHC mice at 72-96 h after PH. Deletion of hepatocyte regulatory-associated protein of mTOR (Raptor), a critical mTORC1 partner, in the β-catenin ΔHC mice led to progressive hepatic injury and mortality by 30 dys. PH on early stage nonmorbid Raptor ΔHC -β-catenin ΔHC mice led to lethality by 12 h. Raptor ΔHC mice showed progressive hepatic injury and spontaneous LR with β-catenin activation but died by 40 days. PH on early stage nonmorbid Raptor ΔHC mice was lethal by 48 h. Temporal inhibition of insulin receptor and mTORC1 in β-catenin ΔHC or controls after PH was achieved by administration of linsitinib at 48 h or rapamycin at 60 h post-PH and completely prevented LR leading to lethality by 12-14 days. CONCLUSIONS Insulin-mTORC1 activation compensates for β-catenin loss to enable LR after PH. mTORC1 signaling in hepatocytes itself is critical to both homeostasis and LR and is only partially compensated by β-catenin activation. Dual inhibition of β-catenin and mTOR may have notable untoward hepatotoxic side effects.
Collapse
Affiliation(s)
- Shikai Hu
- School of Medicine, Tsinghua University, Beijing, China
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Catherine Cao
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Minakshi Poddar
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Evan Delgado
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Sucha Singh
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Anya Singh-Varma
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Donna Beer Stolz
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA USA
| | - Aaron Bell
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Satdarshan P. Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| |
Collapse
|
34
|
Gayden J, Hu S, Joseph PN, Delgado E, Liu S, Bell A, Puig S, Monga SP, Freyberg Z. A Spatial Atlas of Wnt Receptors in Adult Mouse Liver. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:558-566. [PMID: 36773785 PMCID: PMC10155265 DOI: 10.1016/j.ajpath.2023.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/13/2023] [Accepted: 01/30/2023] [Indexed: 02/12/2023]
Abstract
Hepatic zonation is critical for most metabolic functions in liver. Wnt signaling plays an important role in establishing and maintaining liver zonation. Yet, the anatomic expression of Wnt signaling components, especially all 10 Frizzled (Fzd) receptors, has not been characterized in adult liver. To address this, the spatial expression of Fzd receptors was quantitatively mapped in adult mouse liver via multiplex fluorescent in situ hybridization. Although all 10 Fzd receptors were expressed within a metabolic unit, Fzd receptors 1, 4, and 6 were the highest expressed. Although most Wnt signaling occurs in zone 3, expression of most Fzd receptors was not zonated. In contrast, Fzd receptor 6 was preferentially expressed in zone 1. Wnt2 and Wnt9b expression was highly zonated and primarily found in zone 3. Therefore, the current results suggest that zonated Wnt/β-catenin signaling at baseline occurs primarily due to Wnt2 and Wnt9b rather than zonation of Fzd mRNA expression. Finally, the study showed that Fzd receptors and Wnts are not uniformly expressed by all hepatic cell types. Instead, there is broad distribution among both hepatocytes and nonparenchymal cells, including endothelial cells. Overall, this establishment of a definitive mRNA expression atlas, especially of Fzd receptors, opens the door to future functional characterization in healthy and diseased liver states.
Collapse
Affiliation(s)
- Jenesis Gayden
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shikai Hu
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Paul N Joseph
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Evan Delgado
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Silvia Liu
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Aaron Bell
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Stephanie Puig
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts
| | - Satdarshan P Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania; Division of Gastroenterology, Hepatology, and Nutrition, University of Pittsburgh, Pittsburgh, Pennsylvania.
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
35
|
Parab S, Setten E, Astanina E, Bussolino F, Doronzo G. The tissue-specific transcriptional landscape underlines the involvement of endothelial cells in health and disease. Pharmacol Ther 2023; 246:108418. [PMID: 37088448 DOI: 10.1016/j.pharmthera.2023.108418] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/23/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023]
Abstract
Endothelial cells (ECs) that line vascular and lymphatic vessels are being increasingly recognized as important to organ function in health and disease. ECs participate not only in the trafficking of gases, metabolites, and cells between the bloodstream and tissues but also in the angiocrine-based induction of heterogeneous parenchymal cells, which are unique to their specific tissue functions. The molecular mechanisms regulating EC heterogeneity between and within different tissues are modeled during embryogenesis and become fully established in adults. Any changes in adult tissue homeostasis induced by aging, stress conditions, and various noxae may reshape EC heterogeneity and induce specific transcriptional features that condition a functional phenotype. Heterogeneity is sustained via specific genetic programs organized through the combinatory effects of a discrete number of transcription factors (TFs) that, at the single tissue-level, constitute dynamic networks that are post-transcriptionally and epigenetically regulated. This review is focused on outlining the TF-based networks involved in EC specialization and physiological and pathological stressors thought to modify their architecture.
Collapse
Affiliation(s)
- Sushant Parab
- Department of Oncology, University of Torino, IT, Italy; Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Torino, IT, Italy
| | - Elisa Setten
- Department of Oncology, University of Torino, IT, Italy; Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Torino, IT, Italy
| | - Elena Astanina
- Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Torino, IT, Italy
| | - Federico Bussolino
- Department of Oncology, University of Torino, IT, Italy; Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Torino, IT, Italy.
| | - Gabriella Doronzo
- Department of Oncology, University of Torino, IT, Italy; Candiolo Cancer Institute-IRCCS-FPO, Candiolo, Torino, IT, Italy
| |
Collapse
|
36
|
Ito Y, Hosono K, Amano H. Responses of hepatic sinusoidal cells to liver ischemia–reperfusion injury. Front Cell Dev Biol 2023; 11:1171317. [PMID: 37082623 PMCID: PMC10112669 DOI: 10.3389/fcell.2023.1171317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/27/2023] [Indexed: 04/07/2023] Open
Abstract
The liver displays a remarkable regenerative capacity in response to acute liver injury. In addition to the proliferation of hepatocytes during liver regeneration, non-parenchymal cells, including liver macrophages, liver sinusoidal endothelial cells (LSECs), and hepatic stellate cells (HSCs) play critical roles in liver repair and regeneration. Liver ischemia–reperfusion injury (IRI) is a major cause of increased liver damage during liver resection, transplantation, and trauma. Impaired liver repair increases postoperative morbidity and mortality of patients who underwent liver surgery. Successful liver repair and regeneration after liver IRI requires coordinated interplay and synergic actions between hepatic resident cells and recruited cell components. However, the underlying mechanisms of liver repair after liver IRI are not well understood. Recent technological advances have revealed the heterogeneity of each liver cell component in the steady state and diseased livers. In this review, we describe the progress in the biology of liver non-parenchymal cells obtained from novel technological advances. We address the functional role of each cell component in response to liver IRI and the interactions between diverse immune repertoires and non-hematopoietic cell populations during the course of liver repair after liver IRI. We also discuss how these findings can help in the design of novel therapeutic approaches. Growing insights into the cellular interactions during liver IRI would enhance the pathology of liver IRI understanding comprehensively and further develop the strategies for improvement of liver repair.
Collapse
|
37
|
Cunningham RP, Kang SWS, Porat-Shliom N. Location matters: cellular heterogeneity in the hepatic lobule and hepatocellular carcinoma. Am J Physiol Gastrointest Liver Physiol 2023; 324:G245-G249. [PMID: 36749570 PMCID: PMC10010932 DOI: 10.1152/ajpgi.00278.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Tumor heterogeneity is a hallmark of cancer but a challenging problem to dissect mechanistically. Less recognized is that cells within normal tissues are also remarkably diverse. Hepatocytes are a great example because their spatial positioning and the local microenvironment govern their genetic heterogeneity. Recent studies show that primary liver tumors display heterogeneity similar to that observed in the normal tissue providing clues to the cellular precursor of the tumor and how variations in the lobule microenvironment support tumor formation and aggressiveness. Identifying the principles that control cellular diversity in a healthy liver may highlight potential mechanisms driving hepatic tumor heterogeneity.
Collapse
Affiliation(s)
- Rory P Cunningham
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Sun Woo Sophie Kang
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Natalie Porat-Shliom
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
38
|
Abstract
Intercellular communication by Wnt proteins governs many essential processes during development, tissue homeostasis and disease in all metazoans. Many context-dependent effects are initiated in the Wnt-producing cells and depend on the export of lipidated Wnt proteins. Although much focus has been on understanding intracellular Wnt signal transduction, the cellular machinery responsible for Wnt secretion became better understood only recently. After lipid modification by the acyl-transferase Porcupine, Wnt proteins bind their dedicated cargo protein Evi/Wntless for transport and secretion. Evi/Wntless and Porcupine are conserved transmembrane proteins, and their 3D structures were recently determined. In this Review, we summarise studies and structural data highlighting how Wnts are transported from the ER to the plasma membrane, and the role of SNX3-retromer during the recycling of its cargo receptor Evi/Wntless. We also describe the regulation of Wnt export through a post-translational mechanism and review the importance of Wnt secretion for organ development and cancer, and as a future biomarker.
Collapse
Affiliation(s)
- Lucie Wolf
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics and Heidelberg University, BioQuant and Department of Cell and Molecular Biology, 69120 Heidelberg, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division of Signalling and Functional Genomics and Heidelberg University, BioQuant and Department of Cell and Molecular Biology, 69120 Heidelberg, Germany
| |
Collapse
|
39
|
Surgical Models of Liver Regeneration in Pigs: A Practical Review of the Literature for Researchers. Cells 2023; 12:cells12040603. [PMID: 36831271 PMCID: PMC9954688 DOI: 10.3390/cells12040603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
The remarkable capacity of regeneration of the liver is well known, although the involved mechanisms are far from being understood. Furthermore, limits concerning the residual functional mass of the liver remain critical in both fields of hepatic resection and transplantation. The aim of the present study was to review the surgical experiments regarding liver regeneration in pigs to promote experimental methodological standardization. The Pubmed, Medline, Scopus, and Cochrane Library databases were searched. Studies evaluating liver regeneration through surgical experiments performed on pigs were included. A total of 139 titles were screened, and 41 articles were included in the study, with 689 pigs in total. A total of 29 studies (71% of all) had a survival design, with an average study duration of 13 days. Overall, 36 studies (88%) considered partial hepatectomy, of which four were an associating liver partition and portal vein ligation for staged hepatectomy (ALPPS). Remnant liver volume ranged from 10% to 60%. Only 2 studies considered a hepatotoxic pre-treatment, while 25 studies evaluated additional liver procedures, such as stem cell application, ischemia/reperfusion injury, portal vein modulation, liver scaffold application, bio-artificial, and pharmacological liver treatment. Only nine authors analysed how cytokines and growth factors changed in response to liver resection. The most used imaging system to evaluate liver volume was CT-scan volumetry, even if performed only by nine authors. The pig represents one of the best animal models for the study of liver regeneration. However, it remains a mostly unexplored field due to the lack of experiments reproducing the chronic pathological aspects of the liver and the heterogeneity of existing studies.
Collapse
|
40
|
Wu X, Fan X, Miyata T, Kim A, Cajigas-Du Ross CK, Ray S, Huang E, Taiwo M, Arya R, Wu J, Nagy LE. Recent Advances in Understanding of Pathogenesis of Alcohol-Associated Liver Disease. ANNUAL REVIEW OF PATHOLOGY 2023; 18:411-438. [PMID: 36270295 PMCID: PMC10060166 DOI: 10.1146/annurev-pathmechdis-031521-030435] [Citation(s) in RCA: 99] [Impact Index Per Article: 49.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alcohol-associated liver disease (ALD) is one of the major diseases arising from chronic alcohol consumption and is one of the most common causes of liver-related morbidity and mortality. ALD includes asymptomatic liver steatosis, fibrosis, cirrhosis, and alcohol-associated hepatitis and its complications. The progression of ALD involves complex cell-cell and organ-organ interactions. We focus on the impact of alcohol on dysregulation of homeostatic mechanisms and regulation of injury and repair in the liver. In particular, we discuss recent advances in understanding the disruption of balance between programmed cell death and prosurvival pathways, such as autophagy and membrane trafficking, in the pathogenesis of ALD. We also summarize current understanding of innate immune responses, liver sinusoidal endothelial cell dysfunction and hepatic stellate cell activation, and gut-liver and adipose-liver cross talk in response to ethanol. In addition,we describe the current potential therapeutic targets and clinical trials aimed at alleviating hepatocyte injury, reducing inflammatory responses, and targeting gut microbiota, for the treatment of ALD.
Collapse
Affiliation(s)
- Xiaoqin Wu
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Xiude Fan
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Tatsunori Miyata
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Adam Kim
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Christina K Cajigas-Du Ross
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Semanti Ray
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Emily Huang
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Moyinoluwa Taiwo
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Rakesh Arya
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
| | - Jianguo Wu
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Laura E Nagy
- Northern Ohio Alcohol Center, Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA;
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, Ohio, USA
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
41
|
Martini T, Naef F, Tchorz JS. Spatiotemporal Metabolic Liver Zonation and Consequences on Pathophysiology. ANNUAL REVIEW OF PATHOLOGY 2023; 18:439-466. [PMID: 36693201 DOI: 10.1146/annurev-pathmechdis-031521-024831] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hepatocytes are the main workers in the hepatic factory, managing metabolism of nutrients and xenobiotics, production and recycling of proteins, and glucose and lipid homeostasis. Division of labor between hepatocytes is critical to coordinate complex complementary or opposing multistep processes, similar to distributed tasks at an assembly line. This so-called metabolic zonation has both spatial and temporal components. Spatial distribution of metabolic function in hepatocytes of different lobular zones is necessary to perform complex sequential multistep metabolic processes and to assign metabolic tasks to the right environment. Moreover, temporal control of metabolic processes is critical to align required metabolic processes to the feeding and fasting cycles. Disruption of this complex spatiotemporal hepatic organization impairs key metabolic processes with both local and systemic consequences. Many metabolic diseases, such as nonalcoholic steatohepatitis and diabetes, are associated with impaired metabolic liver zonation. Recent technological advances shed new light on the spatiotemporal gene expression networks controlling liver function and how their deregulation may be involved in a large variety of diseases. We summarize the current knowledge about spatiotemporal metabolic liver zonation and consequences on liver pathobiology.
Collapse
Affiliation(s)
- Tomaz Martini
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland;
| | - Felix Naef
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland;
| | - Jan S Tchorz
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland;
| |
Collapse
|
42
|
Abstract
Wnts are secreted proteins that control stem cell maintenance, cell fate decisions, and growth during development and adult homeostasis. Wnts carry a post-translational modification not seen in any other secreted protein: during biosynthesis, they are appended with a palmitoleoyl moiety that is required for signaling but also impairs solubility and hence diffusion in the extracellular space. In some contexts, Wnts act only in a juxtacrine manner but there are also instances of long range action. Several proteins and processes ensure that active Wnts reach the appropriate target cells. Some, like Porcupine, Wntless, and Notum are dedicated to Wnt function; we describe their activities in molecular detail. We also outline how the cell infrastructure (secretory, endocytic, and retromer pathways) contribute to the progression of Wnts from production to delivery. We then address how Wnts spread in the extracellular space and form a signaling gradient despite carrying a hydrophobic moiety. We highlight particularly the role of lipid-binding Wnt interactors and heparan sulfate proteoglycans. Finally, we briefly discuss how evolution might have led to the emergence of this unusual signaling pathway.
Collapse
|
43
|
Pibiri M, Simbula G. Role of the Hippo pathway in liver regeneration and repair: recent advances. Inflamm Regen 2022; 42:59. [PMID: 36471376 PMCID: PMC9720992 DOI: 10.1186/s41232-022-00235-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022] Open
Abstract
Although the signaling pathways involved in normal liver regeneration have been well characterized, less has been done for livers affected by chronic tissue damage. These "abnormal livers" have an impaired regenerative response that leads to liver repair and fibrosis. The tumor suppressor Hippo pathway plays a key role in liver regeneration and repair. On this basis, this review discusses recent studies focusing on the involvement of the Hippo signaling pathway during "normal healthy liver regeneration" (i.e., in a normal liver after 2/3 partial hepatectomy) and "abnormal liver regeneration" (i.e., in a liver damaged by chronic disease). This could be an important question to address with respect to new therapies aimed at improving impaired liver regenerative responses. The studies reported here have shown that activation of the Hippo coactivators YAP/TAZ during normal liver regeneration promotes the formation of a new bile duct network through direct BEC proliferation or/and hepatocyte dedifferentiation to HPCs which can trans-differentiate to BECs. Moreover, YAP/TAZ signaling interaction with other signaling pathways mediates the recruitment and activation of Kupffer cells, which release mitogenic cytokines for parenchymal and/or non-parenchymal cells and engage in phagocytosis of cellular debris. In addition, YAP-mediated activation of stellate cells (HSCs) promotes liver regeneration through the synthesis of extracellular matrix. However, in chronically diseased livers, where the predetermined threshold for proper liver regeneration is exceeded, YAP/TAZ activation results in a reparative process characterized by liver fibrosis. In this condition, YAP/TAZ activation in parenchymal and non-parenchymal cells results in (i) differentiation of quiescent HSCs into myofibroblastic HSCs; (ii) recruitment of macrophages releasing inflammatory cytokines; (iii) polarization of macrophages toward the M2 phenotype. Since accumulation of damaged hepatocytes in chronic liver injury represent a significant risk factor for the development of hepatocarcinoma, this review also discussed the involvement of the Hippo pathway in the clearance of damaged cells.
Collapse
Affiliation(s)
- Monica Pibiri
- grid.7763.50000 0004 1755 3242Department of Biomedical Sciences, Oncology and Molecular Pathology Unit, University of Cagliari, Cittadella Universitaria di Monserrato, S.P. Monserrato-Sestu km 0.700, Blocco A. 09042 Monserrato, Cagliari, Italy
| | - Gabriella Simbula
- grid.7763.50000 0004 1755 3242Department of Biomedical Sciences, Oncology and Molecular Pathology Unit, University of Cagliari, Cittadella Universitaria di Monserrato, S.P. Monserrato-Sestu km 0.700, Blocco A. 09042 Monserrato, Cagliari, Italy
| |
Collapse
|
44
|
Hu S, Liu S, Bian Y, Poddar M, Singh S, Cao C, McGaughey J, Bell A, Blazer LL, Adams JJ, Sidhu SS, Angers S, Monga SP. Single-cell spatial transcriptomics reveals a dynamic control of metabolic zonation and liver regeneration by endothelial cell Wnt2 and Wnt9b. Cell Rep Med 2022; 3:100754. [PMID: 36220068 PMCID: PMC9588996 DOI: 10.1016/j.xcrm.2022.100754] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/04/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022]
Abstract
The conclusive identity of Wnts regulating liver zonation (LZ) and regeneration (LR) remains unclear despite an undisputed role of β-catenin. Using single-cell analysis, we identified a conserved Wnt2 and Wnt9b expression in endothelial cells (ECs) in zone 3. EC-elimination of Wnt2 and Wnt9b led to both loss of β-catenin targets in zone 3, and re-appearance of zone 1 genes in zone 3, unraveling dynamicity in the LZ process. Impaired LR observed in the knockouts phenocopied models of defective hepatic Wnt signaling. Administration of a tetravalent antibody to activate Wnt signaling rescued LZ and LR in the knockouts and induced zone 3 gene expression and LR in controls. Administration of the agonist also promoted LR in acetaminophen overdose acute liver failure (ALF) fulfilling an unmet clinical need. Overall, we report an unequivocal role of EC-Wnt2 and Wnt9b in LZ and LR and show the role of Wnt activators as regenerative therapy for ALF.
Collapse
Affiliation(s)
- Shikai Hu
- School of Medicine, Tsinghua University, Beijing, China; Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Silvia Liu
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yu Bian
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Minakshi Poddar
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sucha Singh
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Catherine Cao
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jackson McGaughey
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Aaron Bell
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Levi L Blazer
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | - Jarret J Adams
- Donnelly Centre, University of Toronto, Toronto, ON, Canada
| | | | - Stephane Angers
- Donnelly Centre, University of Toronto, Toronto, ON, Canada; Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Satdarshan P Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
45
|
Fragoulis A, Schenkel J, Schröder N, Brandt EF, Weiand M, Neu T, Ramadori P, Caspers T, Kant S, Pufe T, Mohs A, Trautwein C, Longerich T, Streetz KL, Wruck CJ. Nrf2 induces malignant transformation of hepatic progenitor cells by inducing β-catenin expression. Redox Biol 2022; 57:102453. [PMID: 36209041 PMCID: PMC9618468 DOI: 10.1016/j.redox.2022.102453] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 07/22/2022] [Accepted: 08/19/2022] [Indexed: 11/28/2022] Open
Abstract
The Nrf2 signaling pathway prevents cancer initiation, but genetic mutations that activate this pathway are found in various types of cancer. The molecular mechanisms underlying this Janus-headed character are still not understood. Here, we show that sustained Nrf2 activation induces proliferation and dedifferentiation of a Wnt-responsive perivenular hepatic progenitor cell population, transforming them into metastatic cancer cells. The neoplastic lesions display many histological features known from human hepatoblastoma. We describe an Nrf2-induced upregulation of β-catenin expression and its activation as the underlying mechanism for the observed malignant transformation. Thus, we have identified the Nrf2–β-catenin axis promoting proliferation of hepatic stem cells and triggering tumorigenesis. These findings support the concept that different functional levels of Nrf2 control both the protection against various toxins as well as liver regeneration by activating hepatic stem cells. Activation of the hepatic stem cell compartment confers the observation that unbridled Nrf2 activation may trigger tumorigenesis.
Collapse
Affiliation(s)
| | - Julia Schenkel
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Germany
| | - Nicole Schröder
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Germany
| | | | - Mathias Weiand
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Germany
| | - Tabita Neu
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Germany
| | - Pierluigi Ramadori
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Tim Caspers
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Germany
| | - Sebastian Kant
- Institute of Molecular and Cellular Anatomy, Uniklinik RWTH Aachen, Germany
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Germany
| | - Antje Mohs
- Department of Medicine III, Uniklinik RWTH Aachen, Germany
| | | | | | | | | |
Collapse
|
46
|
Annunziato S, Sun T, Tchorz JS. The RSPO-LGR4/5-ZNRF3/RNF43 module in liver homeostasis, regeneration, and disease. Hepatology 2022; 76:888-899. [PMID: 35006616 DOI: 10.1002/hep.32328] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 12/02/2021] [Accepted: 01/06/2022] [Indexed: 01/05/2023]
Abstract
WNT/β-catenin signaling plays pivotal roles during liver development, homeostasis, and regeneration. Likewise, its deregulation disturbs metabolic liver zonation and is responsible for the development of a large number of hepatic tumors. Liver fibrosis, which has become a major health burden for society and a hallmark of NASH, can also be promoted by WNT/β-catenin signaling. Upstream regulatory mechanisms controlling hepatic WNT/β-catenin activity may constitute targets for the development of novel therapies addressing these life-threatening conditions. The R-spondin (RSPO)-leucine-rich repeat-containing G protein-coupled receptor (LGR) 4/5-zinc and ring finger (ZNRF) 3/ring finger 43 (RNF43) module is fine-tuning WNT/β-catenin signaling in several tissues and is essential for hepatic WNT/β-catenin activity. In this review article, we recapitulate the role of the RSPO-LGR4/5-ZNRF3/RNF43 module during liver development, homeostasis, metabolic zonation, regeneration, and disease. We further discuss the controversy around LGR5 as a liver stem cell marker.
Collapse
Affiliation(s)
- Stefano Annunziato
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Tianliang Sun
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | - Jan S Tchorz
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| |
Collapse
|
47
|
Acevedo‐Acevedo S, Stefkovich ML, Kang SWS, Cunningham RP, Cultraro CM, Porat‐Shliom N. LKB1 acts as a critical brake for the glucagon-mediated fasting response. Hepatol Commun 2022; 6:1949-1961. [PMID: 35357082 PMCID: PMC9315124 DOI: 10.1002/hep4.1942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/23/2022] [Accepted: 03/06/2022] [Indexed: 11/08/2022] Open
Abstract
As important as the fasting response is for survival, an inability to shut it down once nutrients become available can lead to exacerbated disease and severe wasting. The liver is central to transitions between feeding and fasting states, with glucagon being a key initiator of the hepatic fasting response. However, the precise mechanisms controlling fasting are not well defined. One potential mediator of these transitions is liver kinase B1 (LKB1), given its role in nutrient sensing. Here, we show LKB1 knockout mice have a severe wasting and prolonged fasting phenotype despite increased food intake. By applying RNA sequencing and intravital microscopy, we show that loss of LKB1 leads to a dramatic reprogramming of the hepatic lobule through robust up-regulation of periportal genes and functions. This is likely mediated through the opposing effect that LKB1 has on glucagon pathways and gene expression. Conclusion: Our findings show that LKB1 acts as a brake to the glucagon-mediated fasting response, resulting in "periportalization" of the hepatic lobule and whole-body metabolic inefficiency. These findings reveal a mechanism by which hepatic metabolic compartmentalization is regulated by nutrient-sensing.
Collapse
Affiliation(s)
- Suehelay Acevedo‐Acevedo
- Thoracic and GI Malignancies BranchCenter for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Megan L. Stefkovich
- Thoracic and GI Malignancies BranchCenter for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Sun Woo Sophie Kang
- Thoracic and GI Malignancies BranchCenter for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Rory P. Cunningham
- Thoracic and GI Malignancies BranchCenter for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Constance M. Cultraro
- Thoracic and GI Malignancies BranchCenter for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| | - Natalie Porat‐Shliom
- Thoracic and GI Malignancies BranchCenter for Cancer ResearchNational Cancer Institute, NIHBethesdaMarylandUSA
| |
Collapse
|
48
|
Qian Y, Shang Z, Gao Y, Wu H, Kong X. Liver Regeneration in Chronic Liver Injuries: Basic and Clinical Applications Focusing on Macrophages and Natural Killer Cells. Cell Mol Gastroenterol Hepatol 2022; 14:971-981. [PMID: 35738473 PMCID: PMC9489753 DOI: 10.1016/j.jcmgh.2022.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/28/2022] [Accepted: 07/27/2022] [Indexed: 01/31/2023]
Abstract
BACKGROUND & AIMS Liver regeneration is a necessary but complex process involving multiple cell types besides hepatocytes. Mechanisms underlying liver regeneration after partial hepatectomy and acute liver injury have been well-described. However, in patients with chronic and severe liver injury, the remnant liver cannot completely restore the liver mass and function, thereby involving liver progenitor-like cells (LPLCs) and various immune cells. RESULTS Macrophages are beneficial to LPLCs proliferation and the differentiation of LPLCs to hepatocytes. Also, cells expressing natural killer (NK) cell markers have been studied in promoting both liver injury and liver regeneration. NK cells can promote LPLC-induced liver regeneration, but the excessive activation of hepatic NK cells may lead to high serum levels of interferon-γ, thus inhibiting liver regeneration. CONCLUSIONS This review summarizes the recent research on 2 important innate immune cells, macrophages and NK cells, in LPLC-induced liver regeneration and the mechanisms of liver regeneration during chronic liver injury, as well as the latest macrophage- and NK cell-based therapies for chronic liver injury. These novel findings can further help identify new treatments for chronic liver injury, saving patients from the pain of liver transplantations.
Collapse
Affiliation(s)
- Yihan Qian
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhi Shang
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yueqiu Gao
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hailong Wu
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China.
| | - Xiaoni Kong
- Central Laboratory, Department of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
49
|
Ben-Moshe S, Veg T, Manco R, Dan S, Papinutti D, Lifshitz A, Kolodziejczyk AA, Bahar Halpern K, Elinav E, Itzkovitz S. The spatiotemporal program of zonal liver regeneration following acute injury. Cell Stem Cell 2022; 29:973-989.e10. [DOI: 10.1016/j.stem.2022.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/28/2022] [Accepted: 04/12/2022] [Indexed: 12/19/2022]
|
50
|
Bao Y, Phan M, Zhu J, Ma X, Manautou JE, Zhong XB. Alterations of Cytochrome P450-Mediated Drug Metabolism during Liver Repair and Regeneration after Acetaminophen-Induced Liver Injury in Mice. Drug Metab Dispos 2022; 50:694-703. [PMID: 34348940 PMCID: PMC9132219 DOI: 10.1124/dmd.121.000459] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/28/2021] [Indexed: 11/22/2022] Open
Abstract
Acetaminophen (APAP)-induced liver injury (AILI) is the leading cause of acute liver failure in the United States, but its impact on metabolism, therapeutic efficacy, and adverse drug reactions (ADRs) of co- and/or subsequent administered drugs are not fully investigated. The current work explored this field with a focus on the AILI-mediated alterations of cytochrome P450-mediated drug metabolism. Various levels of liver injury were induced in mice by treatment with APAP at 0, 200, 400, and 600 mg/kg. Severity of liver damage was determined at 24, 48, 72, and 96 hours by plasma levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), microRNA miR122, and tissue staining. The expression and activities of CYP3A11, 1A2, 2B10, 2C29, and 2E1 were measured. Sedation efficacy and ADRs of midazolam, a CYP3A substrate, were monitored after APAP treatment. ALT, AST, and miR122 increased at 24 hours after APAP treatment with all APAP doses, whereas only groups treated with 200 and 400 mg/kg recovered back to normal levels at 72 and 96 hours. The expression and activity of the cytochromes P450 significantly decreased at 24 hours with all APAP doses but only recovered back to normal at 72 and 96 hours with 200 and 400, but not 600, mg/kg of APAP. The alterations of cytochrome P450 activities resulted in altered sedation efficacy and ADRs of midazolam, which were corrected by dose justification of midazolam. Overall, this work illustrated a low cytochrome P450 expression window after AILI, which can decrease drug metabolism and negatively impact drug efficacy and ADRs. SIGNIFICANCE STATEMENT: The data generated in the mouse model demonstrated that expression and activities of cytochrome P450 enzymes and correlated drug efficacy and ADRs are altered during the time course of liver repair and regeneration after liver is injured by treatment with APAP. Dose justifications based on predicted changes of cytochrome P450 activities can achieve desired therapeutic efficacy and avoid ADRs. The generated data provide fundamental knowledge for translational research to drug treatment for patients during liver recovery and regeneration who have experienced AILI.
Collapse
Affiliation(s)
- Yifan Bao
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (Y.B., M.P., J.E.M., X.-b.Z.), and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.Z., X.M.)
| | - Mi Phan
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (Y.B., M.P., J.E.M., X.-b.Z.), and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.Z., X.M.)
| | - Junjie Zhu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (Y.B., M.P., J.E.M., X.-b.Z.), and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.Z., X.M.)
| | - Xiaochao Ma
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (Y.B., M.P., J.E.M., X.-b.Z.), and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.Z., X.M.)
| | - José E Manautou
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (Y.B., M.P., J.E.M., X.-b.Z.), and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.Z., X.M.)
| | - Xiao-Bo Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, Connecticut (Y.B., M.P., J.E.M., X.-b.Z.), and Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania (J.Z., X.M.)
| |
Collapse
|