1
|
Huang H, Wang N, Lin JT, Qiu YK, Wu WF, Liu Q, Chen C, Wang HB, Liu YP, Dong W, Wan J, Zheng H, Zhou CH, Wu YQ. Repeated Ketamine Anesthesia during the Neonatal Period Impairs Hippocampal Neurogenesis and Long-Term Neurocognitive Function by Inhibiting Mfn2-Mediated Mitochondrial Fusion in Neural Stem Cells. Mol Neurobiol 2024; 61:5459-5480. [PMID: 38200350 DOI: 10.1007/s12035-024-03921-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
The mechanism of ketamine-induced neurotoxicity development remains elusive. Mitochondrial fusion/fission dynamics play a critical role in regulating neurogenesis. Therefore, this study was aimed to evaluate whether mitochondrial dynamics were involved in ketamine-induced impairment of neurogenesis in neonatal rats and long-term synaptic plasticity dysfunction. In the in vivo study, postnatal day 7 (PND-7) rats received intraperitoneal (i.p.) injection of 40 mg/kg ketamine for four consecutive times at 1 h intervals. The present findings revealed that ketamine induced mitochondrial fusion dysfunction in hippocampal neural stem cells (NSCs) by downregulating Mitofusin 2 (Mfn2) expression. In the in vitro study, ketamine treatment at 100 μM for 6 h significantly decreased the Mfn2 expression, and increased ROS generation, decreased mitochondrial membrane potential and ATP levels in cultured hippocampal NSCs. For the interventional study, lentivirus (LV) overexpressing Mfn2 (LV-Mfn2) or control LV vehicle was microinjected into the hippocampal dentate gyrus (DG) 4 days before ketamine administration. Targeted Mfn2 overexpression in the DG region could restore mitochondrial fusion in NSCs and reverse the inhibitory effect of ketamine on NSC proliferation and its faciliatory effect on neuronal differentiation. In addition, synaptic plasticity was evaluated by transmission electron microscopy, Golgi-Cox staining and long-term potentiation (LTP) recordings at 24 h after the end of the behavioral test. Preconditioning with LV-Mfn2 improved long-term cognitive dysfunction after repeated neonatal ketamine exposure by reversing the inhibitory effect of ketamine on synaptic plasticity in the hippocampal DG. The present findings demonstrated that Mfn2-mediated mitochondrial fusion dysfunction plays a critical role in the impairment of long-term neurocognitive function and synaptic plasticity caused by repeated neonatal ketamine exposure by interfering with hippocampal neurogenesis. Thus, Mfn2 might be a novel therapeutic target for the prevention of the developmental neurotoxicity of ketamine.
Collapse
Affiliation(s)
- He Huang
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
- Department of Anesthesiology and Perioperative Medicine, The First Affliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ning Wang
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Jia-Tao Lin
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yong-Kang Qiu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Wei-Feng Wu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Qiang Liu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Chen Chen
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Hai-Bi Wang
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yan-Ping Liu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Wei Dong
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Jie Wan
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Cheng-Hua Zhou
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| | - Yu-Qing Wu
- Jiangsu Province Key Laboratory of Anesthesiology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
2
|
Mansk LMZ, Jaimes LF, Dias TL, Pereira GS. Social recognition memory differences between mouse strains: On the effects of social isolation, adult neurogenesis, and environmental enrichment. Brain Res 2023; 1819:148535. [PMID: 37595660 DOI: 10.1016/j.brainres.2023.148535] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 08/20/2023]
Abstract
Remembering conspecifics is paramount for the establishment and maintenance of groups. Here we asked whether the variability in social behavior caused by different breeding strategies affects social recognition memory (SRM). We tested the hypothesis that the inbred Swiss and the outbred C57BL/6 mice behave differently on SRM. Social memory in C57BL/6 mice endured at least 14 days, while in Swiss mice lasted 24 h but not ten days. We showed previously that an enriched environment enhanced the persistence of SRM in Swiss mice. Here we reproduced this result and added that it also increases the survival of adult-born neurons in the hippocampus. Next, we tested whether prolonged SRM observed in C57BL/6 mice could be changed by diminishing the trial duration or using an interference stimulus after learning. Neither short acquisition time nor interference during consolidation affected it. However, social isolation impaired SRM in C57BL/6 mice, similar to what was previously observed in Swiss mice. Our results demonstrate that SRM expression can vary according to the mouse strain, which shows the importance of considering this variable when choosing the most suitable model to answer specific questions about this memory system. We also demonstrate the suitability of both C57BL/6 and Swiss strains for exploring the impact of environmental conditions and adult neurogenesis on social memory.
Collapse
Affiliation(s)
- Lara M Z Mansk
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Laura F Jaimes
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thomaz L Dias
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil; Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Grace S Pereira
- Núcleo de Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
3
|
Vyleta NP, Snyder JS. Enhanced excitability but mature action potential waveforms at mossy fiber terminals of young, adult-born hippocampal neurons in mice. Commun Biol 2023; 6:290. [PMID: 36934174 PMCID: PMC10024705 DOI: 10.1038/s42003-023-04678-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/07/2023] [Indexed: 03/20/2023] Open
Abstract
Adult-born granule neurons pass through immature critical periods where they display enhanced somatic excitability and afferent plasticity, which is believed to endow them with unique roles in hippocampal learning and memory. Using patch clamp recordings in mouse hippocampal slices, here we show that young neuron hyper-excitability is also observed at presynaptic mossy fiber terminals onto CA3 pyramidal neurons. However, action potential waveforms mature faster in the bouton than in the soma, suggesting rapid efferent functionality during immature stages.
Collapse
Affiliation(s)
- Nicholas P Vyleta
- Department of Psychology, Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Jason S Snyder
- Department of Psychology, Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
4
|
Tripathi S, Verma A, Jha SK. Training on an Appetitive Trace-Conditioning Task Increases Adult Hippocampal Neurogenesis and the Expression of Arc, Erk and CREB Proteins in the Dorsal Hippocampus. Front Cell Neurosci 2020; 14:89. [PMID: 32362814 PMCID: PMC7181388 DOI: 10.3389/fncel.2020.00089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
Adult hippocampal neurogenesis (AHN) plays an essential role in hippocampal-dependent memory consolidation. Increased neurogenesis enhances learning, whereas its ablation causes memory impairment. In contrast, few reports suggest that neurogenesis reduces after learning. Although the interest in exploring the role of adult neurogenesis in learning has been growing, the evidence is still limited. The role of the trace- and delay-appetitive-conditioning on AHN and its underlying mechanism are not known. The consolidation of trace-conditioned memory requires the hippocampus, but delay-conditioning does not. Moreover, the dorsal hippocampus (DH) and ventral hippocampus (VH) may have a differential role in these two conditioning paradigms. Here, we have investigated the changes in: (A) hippocampal cell proliferation and their progression towards neuronal lineage; and (B) expression of Arc, Erk1, Erk2, and CREB proteins in the DH and VH after trace- and delay-conditioning in the rat. The number of newly generated cells significantly increased in the trace-conditioned but did not change in the delay-conditioned animals compared to the control group. Similarly, the expression of Arc protein significantly increased in the DH but not in the VH after trace-conditioning. Nonetheless, it remains unaltered in the delay-conditioned group. The expression of pErk1, pErk2, and pCREB also increased in the DH after trace-conditioning. Whereas, the expression of only pErk1 pErk2 and pCREB proteins increased in the VH after delay-conditioning. Our results suggest that appetitive trace-conditioning enhances AHN. The increased DH neuronal activation and pErk1, pErk2, and pCREB in the DH may be playing an essential role in learning-induced cell-proliferation after appetitive trace-conditioning.
Collapse
Affiliation(s)
- Shweta Tripathi
- School of Life Science, Jawaharlal Nehru University, New Delhi, India
| | - Anita Verma
- School of Life Science, Jawaharlal Nehru University, New Delhi, India
| | - Sushil K Jha
- School of Life Science, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
5
|
Christian KM, Ming GL, Song H. Adult neurogenesis and the dentate gyrus: Predicting function from form. Behav Brain Res 2019; 379:112346. [PMID: 31722241 DOI: 10.1016/j.bbr.2019.112346] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 11/05/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022]
Abstract
Hypotheses about the functional properties of the dentate gyrus and adult dentate neurogenesis have been shaped by early observations of the anatomy of this region, mostly in rodents. This has led to the development of a few core propositions that have guided research over the past several years, including the predicted role of this region in pattern separation and the local transformation of inputs from the entorhinal cortex. We now have the opportunity to review these predictions and update these anatomical observations based on recently developed techniques that reveal the complex structure, connectivity, and dynamic properties of distinct cell populations in the dentate gyrus at a higher resolution. Cumulative evidence suggests that the dentate gyrus and adult-born granule cells play a role in some forms of behavioral discriminations, but there are still many unanswered questions about how the dentate gyrus processes information to support the disambiguation of stimuli.
Collapse
Affiliation(s)
- Kimberly M Christian
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, 19104, USA; Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Guo-Li Ming
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, 19104, USA; Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Developmental and Cell Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Epigenetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hongjun Song
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, 19104, USA; Mahoney Institute for Neurosciences, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Developmental and Cell Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Epigenetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
6
|
Ciric T, Cahill SP, Snyder JS. Dentate gyrus neurons that are born at the peak of development, but not before or after, die in adulthood. Brain Behav 2019; 9:e01435. [PMID: 31576673 PMCID: PMC6790299 DOI: 10.1002/brb3.1435] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 09/14/2019] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION In the dentate gyrus of the rodent hippocampus, neurogenesis begins prenatally and continues to the end of life. Adult-born neurons often die in the first few weeks after mitosis, but those that survive to 1 month persist indefinitely. In contrast, neurons born at the peak of development are initially stable but can die later in adulthood. Physiological and pathological changes in the hippocampus may therefore result from both the addition of new neurons and the loss of older neurons. The extent of neuronal loss remains unclear since no studies have examined whether neurons born at other stages of development also undergo delayed cell death. METHODS We used BrdU to label dentate granule cells that were born in male rats on embryonic day 19 (E19; before the developmental peak), postnatal day 6 (P6; peak), and P21 (after the peak). We quantified BrdU+ neurons in separate groups of rats at 2 and 6 months post-BrdU injection to estimate cell death in young adulthood. RESULTS Consistent with previous work, there was a 15% loss of P6-born neurons between 2 and 6 months of age. In contrast, E19- or P21-born neurons were stable throughout young adulthood. DISCUSSION Delayed death of P6-born neurons suggests these cells may play a unique role in hippocampal plasticity adulthood, for example, by contributing to the turnover of hippocampal memory. Their loss may also play a role in disorders that are characterized by hippocampal atrophy.
Collapse
Affiliation(s)
- Tina Ciric
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Shaina P Cahill
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Jason S Snyder
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Augusto-Oliveira M, Arrifano GPF, Malva JO, Crespo-Lopez ME. Adult Hippocampal Neurogenesis in Different Taxonomic Groups: Possible Functional Similarities and Striking Controversies. Cells 2019; 8:cells8020125. [PMID: 30764477 PMCID: PMC6406791 DOI: 10.3390/cells8020125] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 12/13/2022] Open
Abstract
Adult neurogenesis occurs in many species, from fish to mammals, with an apparent reduction in the number of both neurogenic zones and new neurons inserted into established circuits with increasing brain complexity. Although the absolute number of new neurons is high in some species, the ratio of these cells to those already existing in the circuit is low. Continuous replacement/addition plays a role in spatial navigation (migration) and other cognitive processes in birds and rodents, but none of the literature relates adult neurogenesis to spatial navigation and memory in primates and humans. Some models developed by computational neuroscience attribute a high weight to hippocampal adult neurogenesis in learning and memory processes, with greater relevance to pattern separation. In contrast to theories involving neurogenesis in cognitive processes, absence/rarity of neurogenesis in the hippocampus of primates and adult humans was recently suggested and is under intense debate. Although the learning process is supported by plasticity, the retention of memories requires a certain degree of consolidated circuitry structures, otherwise the consolidation process would be hampered. Here, we compare and discuss hippocampal adult neurogenesis in different species and the inherent paradoxical aspects.
Collapse
Affiliation(s)
- Marcus Augusto-Oliveira
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil.
- Laboratory of Research on Neurodegeneration and Infection, University Hospital João de Barros Barreto, Federal University of Pará, Belém 66073-005, Brazil.
- Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK.
| | - Gabriela P F Arrifano
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil.
- Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK.
| | - João O Malva
- Coimbra Institute for Clinical and Biomedical Research (iCBR), and Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal.
| | - Maria Elena Crespo-Lopez
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil.
| |
Collapse
|
8
|
DeCostanzo AJ, Fung CCA, Fukai T. Hippocampal Neurogenesis Reduces the Dimensionality of Sparsely Coded Representations to Enhance Memory Encoding. Front Comput Neurosci 2019; 12:99. [PMID: 30666194 PMCID: PMC6330828 DOI: 10.3389/fncom.2018.00099] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 11/29/2018] [Indexed: 12/12/2022] Open
Abstract
Adult neurogenesis in the hippocampal dentate gyrus (DG) of mammals is known to contribute to memory encoding in many tasks. The DG also exhibits exceptionally sparse activity compared to other systems, however, whether sparseness and neurogenesis interact during memory encoding remains elusive. We implement a novel learning rule consistent with experimental findings of competition among adult-born neurons in a supervised multilayer feedforward network trained to discriminate between contexts. From this rule, the DG population partitions into neuronal ensembles each of which is biased to represent one of the contexts. This corresponds to a low dimensional representation of the contexts, whereby the fastest dimensionality reduction is achieved in sparse models. We then modify the rule, showing that equivalent representations and performance are achieved when neurons compete for synaptic stability rather than neuronal survival. Our results suggest that competition for stability in sparse models is well-suited to developing ensembles of what may be called memory engram cells.
Collapse
Affiliation(s)
- Anthony J DeCostanzo
- Laboratory for Neural Coding and Brain Computing, RIKEN Center for Brain Science, Saitama, Japan.,Ascent Robotics Inc., Tokyo, Japan
| | - Chi Chung Alan Fung
- Laboratory for Neural Coding and Brain Computing, RIKEN Center for Brain Science, Saitama, Japan
| | - Tomoki Fukai
- Laboratory for Neural Coding and Brain Computing, RIKEN Center for Brain Science, Saitama, Japan
| |
Collapse
|
9
|
Bernhardt N, Lieser MK, Hlusicka EB, Habelt B, Wieske F, Edemann-Callesen H, Garthe A, Winter C. Learning deficits in rats overexpressing the dopamine transporter. Sci Rep 2018; 8:14173. [PMID: 30242292 PMCID: PMC6154965 DOI: 10.1038/s41598-018-32608-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/03/2018] [Indexed: 12/30/2022] Open
Abstract
With its capacity to modulate motor control and motivational as well as cognitive functions dopamine is implicated in numerous neuropsychiatric diseases. The present study investigated whether an imbalance in dopamine homeostasis as evident in the dopamine overexpressing rat model (DAT-tg), results in learning and memory deficits associated with changes in adult hippocampal neurogenesis. Adult DAT-tg and control rats were subjected to the Morris water maze, the radial arm maze and a discrimination reversal paradigm and newly generated neurons in hippocampal circuitry were investigated post mortem. DAT-tg rats were found to exhibit a striking inability to acquire information and deploy spatial search strategies. At the same time, reduced integration of adult-born neurons in hippocampal circuitry was observed, which together with changes in striatal dopamine signalling might explain behavioural deficits.
Collapse
Affiliation(s)
- Nadine Bernhardt
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Maike Kristin Lieser
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Elizabeth-Barroeta Hlusicka
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Bettina Habelt
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Franziska Wieske
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Henriette Edemann-Callesen
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Berlin, Germany.,International Graduate Program Medical Neurosciences, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Alexander Garthe
- German Center for Neurodegenerative Diseases (DZNE) Dresden, Dresden, Germany
| | - Christine Winter
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany. .,Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
10
|
Cahill SP, Cole JD, Yu RQ, Clemans-Gibbon J, Snyder JS. Differential Effects of Extended Exercise and Memantine Treatment on Adult Neurogenesis in Male and Female Rats. Neuroscience 2018; 390:241-255. [PMID: 30176321 DOI: 10.1016/j.neuroscience.2018.08.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/13/2018] [Accepted: 08/26/2018] [Indexed: 11/19/2022]
Abstract
Adult neurogenesis has potential to ameliorate a number of disorders that negatively impact the hippocampus, including age-related cognitive decline, depression, and schizophrenia. A number of treatments enhance adult neurogenesis including exercise, NMDA receptor antagonism, antidepressant drugs and environmental enrichment. Despite the chronic nature of many disorders, most animal studies have only examined the efficacy of neurogenic treatments over short timescales (≤1 month). Also, studies of neurogenesis typically include only 1 sex, even though many disorders differentially impact males and females. We tested whether two known neurogenic treatments, running and the NMDA receptor antagonist, memantine, could cause sustained increases in neurogenesis in male and female rats. We found that continuous access to a running wheel (cRUN) initially increased neurogenesis, but effects were minimal after 1 month and completely absent after 5 months. Similarly, a single injection of memantine (sMEM) transiently increased neurogenesis before returning to baseline at 1 month. To determine whether neurogenesis could be increased over a 2-month timeframe, we next subjected rats to interval running (iRUN), multiple memantine injections (mMEM), or alternating blocks of iRUN and mMEM. Two months of iRUN increased DCX+ cells in females and iRUN followed by mMEM increased DCX+ cells in males, indicating that neurogenesis was increased in the later stages of the treatments. However, thymidine analogs revealed that neurogenesis was minimally increased during the initial stages of the treatments. These findings highlight temporal limitations and sex differences in the efficacy of neurogenic manipulations, which may be relevant for designing plasticity-promoting treatments.
Collapse
Affiliation(s)
- Shaina P Cahill
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - John Darby Cole
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Ru Qi Yu
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Jack Clemans-Gibbon
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Jason S Snyder
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
11
|
A behavioral task with more opportunities for memory acquisition promotes the survival of new neurons in the adult dentate gyrus. Sci Rep 2018; 8:7369. [PMID: 29743494 PMCID: PMC5943398 DOI: 10.1038/s41598-018-25331-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 03/29/2018] [Indexed: 12/14/2022] Open
Abstract
It has been suggested that the dentate gyrus, particularly its new neurons generated via adult neurogenesis, is involved in memory acquisition and recall. Here, we trained rats in two types of Morris water maze tasks that are differentially associated with these two memory processes, and examined whether new neurons are differently affected by the two tasks performed during the second week of neuronal birth. Our results indicate that the task involving more opportunities to acquire new information better supports the survival of new neurons. Further, we assessed whether the two tasks differentially induce the expression of an immediate early gene, Zif268, which is known to be induced by neuronal activation. While the two tasks differentially induce Zif268 expression in the dentate gyrus, the proportions of new neurons activated were similar between the two tasks. Thus, we conclude that while the two tasks differentially activate the dentate gyrus, the task involving more opportunities for memory acquisition during the second week of the birth of new neurons better promotes the survival of the new neurons.
Collapse
|
12
|
Training memory without aversion: Appetitive hole-board spatial learning increases adult hippocampal neurogenesis. Neurobiol Learn Mem 2018; 151:35-42. [DOI: 10.1016/j.nlm.2018.03.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 03/10/2018] [Accepted: 03/30/2018] [Indexed: 11/19/2022]
|
13
|
Cheon S. Hippocampus-dependent Task Improves the Cognitive Function after Ovariectomy in Rats. Osong Public Health Res Perspect 2017; 8:227-234. [PMID: 28781946 PMCID: PMC5525566 DOI: 10.24171/j.phrp.2017.8.3.10] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/02/2017] [Accepted: 06/04/2017] [Indexed: 11/11/2022] Open
Abstract
Objectives Estrogen is an important hormone for cell growth, development, and differentiation by transcriptional regulation and modulation of intracellular signaling via second messengers. The reduction in the estrogen level after ovariectomy may lead to cognitive impairments associated with morphological changes in areas of the brain mediate memory. The aim of the present study was to find out the effect of tasks on the cognitive function after ovariectomy in rats. Methods The animals used in the experiment were 50 Sprague-Dawley female rats. This study applied a hippocampus-independent task (wheel running) and a hippocampus-dependent task (Morris water maze) after ovariectomy in rats and measured the cognitive performance (object-recognition and object-location test) and growth-associated protein 43 (GAP-43) and neurotrophin 3 (NT-3) expression in the hippocampus, which is an important center for memory and learning. Results There were meaningful differences between the hippocampus-independent and hippocampus-dependent task groups for the object-location test and GAP-43 and NT-3 expression in the hippocampus, but not the object-recognition test. However, the hippocampus-independent task group showed a significant improvement in the object-recognition test, compared to the control group. Conclusion These results suggest that hippocampus-dependent task training after ovariectomy enhances the hippocampus-related memory and cognitive function that are associated with morphological and functional changes in the cells of the hippocampus.
Collapse
Affiliation(s)
- Songhee Cheon
- Department of Physical Therapy, College of Health Science, Youngsan University, Yangsan, Korea
| |
Collapse
|
14
|
Cahill SP, Yu RQ, Green D, Todorova EV, Snyder JS. Early survival and delayed death of developmentally-born dentate gyrus neurons. Hippocampus 2017; 27:1155-1167. [PMID: 28686814 DOI: 10.1002/hipo.22760] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 06/23/2017] [Accepted: 06/27/2017] [Indexed: 01/20/2023]
Abstract
The storage and persistence of memories depends on plasticity in the hippocampus. Adult neurogenesis produces new neurons that mature through critical periods for plasticity and cellular survival, which determine their contributions to learning and memory. However, most granule neurons are generated prior to adulthood; the maturational timecourse of these neurons is poorly understood compared to adult-born neurons but is essential to identify how the dentate gyrus (DG), as a whole, contributes to behavior. To characterize neurons born in the early postnatal period, we labeled DG neurons born on postnatal day 6 (P6) with BrdU and quantified maturation and survival across early (1 hr to 8 weeks old) and late (2-6 months old) cell ages. We find that the dynamics of developmentally-born neuron survival is essentially the opposite of neurons born in adulthood: P6-born neurons did not go through a period of cell death during their immature stages (from 1 to 8 weeks). In contrast, 17% of P6-born neurons died after reaching maturity, between 2 and 6 months of age. Delayed death was evident from the loss of BrdU+ cells as well as pyknotic BrdU+ caspase3+ neurons within the superficial granule cell layer. Patterns of DCX, NeuN, and activity-dependent Fos expression indicate that developmentally-born neurons mature over several weeks and a sharp peak in zif268 expression at 2 weeks suggests that developmentally-born neurons mature faster than adult-born neurons (which peak at 3 weeks). Collectively, our findings are relevant for understanding how developmentally-born DG neurons contribute to memory and disorders throughout the lifespan. High levels of early survival and zif268 expression may promote learning, while also rendering neurons sensitive to insults at defined stages. Late neuronal death in young adulthood may result in the loss of hundreds of thousands of DG neurons, which could impact memory persistence and contribute to hippocampal/DG atrophy in disorders such as depression.
Collapse
Affiliation(s)
- Shaina P Cahill
- Department of Psychology & Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ru Qi Yu
- Department of Psychology & Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dylan Green
- Department of Psychology & Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Evgenia V Todorova
- Department of Psychology & Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jason S Snyder
- Department of Psychology & Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
15
|
Lieberwirth C, Pan Y, Liu Y, Zhang Z, Wang Z. Hippocampal adult neurogenesis: Its regulation and potential role in spatial learning and memory. Brain Res 2016; 1644:127-40. [PMID: 27174001 PMCID: PMC5064285 DOI: 10.1016/j.brainres.2016.05.015] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 05/05/2016] [Accepted: 05/08/2016] [Indexed: 12/24/2022]
Abstract
Adult neurogenesis, defined here as progenitor cell division generating functionally integrated neurons in the adult brain, occurs within the hippocampus of numerous mammalian species including humans. The present review details various endogenous (e.g., neurotransmitters) and environmental (e.g., physical exercise) factors that have been shown to influence hippocampal adult neurogenesis. In addition, the potential involvement of adult-generated neurons in naturally-occurring spatial learning behavior is discussed by summarizing the literature focusing on traditional animal models (e.g., rats and mice), non-traditional animal models (e.g., tree shrews), as well as natural populations (e.g., chickadees and Siberian chipmunk).
Collapse
Affiliation(s)
| | - Yongliang Pan
- Program in Molecular and Translational Medicine, School of Medicine, Huzhou University, Huzhou 313000, PR China; State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Chaoyang District, Beijing 100101, PR China.
| | - Yan Liu
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306-1270, USA
| | - Zhibin Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents in Agriculture, Institute of Zoology, Chinese Academy of Sciences, Datun Road, Chaoyang District, Beijing 100101, PR China
| | - Zuoxin Wang
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306-1270, USA
| |
Collapse
|
16
|
Gros A, Veyrac A, Laroche S. [Brain and memory: new neurons to remember]. Biol Aujourdhui 2016; 209:229-248. [PMID: 26820830 DOI: 10.1051/jbio/2015028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Indexed: 06/05/2023]
Abstract
A defining characteristic of the brain is its remarkable capacity to undergo activity-dependent functional and structural remodelling via mechanisms of plasticity that form the basis of our capacity to encode and retain memories. The prevailing model of how our brain stores new information about relationships between events or new abstract constructs suggests it resides in activity-driven modifications of synaptic strength and remodelling of neural networks brought about by cellular and molecular changes within the neurons activated during learning. To date, the idea that a form of activity-dependent synaptic plasticity known as long-term potentiation, or LTP, and the associated synaptic growth play a central role in the laying down of memories has received considerable support. Beyond this mechanism of plasticity at the synapse, adult neurogenesis, i.e. the birth and growth of new neurons, is another form of neural plasticity that occurs continuously in defined brain regions such as the dentate gyrus of the hippocampus. Here, based on work in the hippocampus, we review the processes and mechanisms of the generation and selection of new neurons in the adult brain and the accumulating evidence that supports the idea that this form of neural plasticity is essential to store and lead to retrievable hippocampal-dependent memories.
Collapse
Affiliation(s)
- Alexandra Gros
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris Sud, Université Paris-Saclay, 91405 Orsay, France
| | - Alexandra Veyrac
- Centre de Recherche en Neurosciences de Lyon, UMR 5292 CNRS, INSERM U1028, Université Lyon 1, 69366 Lyon, France
| | - Serge Laroche
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris Sud, Université Paris-Saclay, 91405 Orsay, France
| |
Collapse
|
17
|
Motta-Teixeira LC, Takada SH, Machado-Nils AV, Nogueira MI, Xavier GF. Spatial learning and neurogenesis: Effects of cessation of wheel running and survival of novel neurons by engagement in cognitive tasks. Hippocampus 2016; 26:794-803. [PMID: 26669934 DOI: 10.1002/hipo.22560] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2015] [Indexed: 01/01/2023]
Abstract
Physical exercise stimulates cell proliferation in the adult dentate gyrus and facilitates acquisition and/or retention of hippocampal-dependent tasks. It is established that regular physical exercise improves cognitive performance. However, it is unclear for how long these benefits last after its interruption. Independent groups of rats received both free access to either unlocked (EXE Treatment) or locked (No-EXE Treatment) running wheels for 7 days, and daily injections of bromodeoxyuridine (BrdU) in the last 3 days. After a time delay period of either 1, 3, or 6 weeks without training, the animals were tested in the Morris water maze (MWM) either in a working memory task dependent on hippocampal function (MWM-HD) or in a visible platform searching task, independent on hippocampal function (MWM-NH). Data confirmed that exposure of rats to 7 days of spontaneous wheel running increases cell proliferation and neurogenesis. In contrast, neurogenesis was not accompanied by significant improvements of performance in the working memory version of the MWM. Longer time delays between the end of exercise and the beginning of cognitive training in the MWM resulted in lower cell survival; that is, the number of novel surviving mature neurons was decreased when this delay was 6 weeks as compared with when it was 1 week. In addition, data showed that while exposure to the MWM-HD working memory task substantially increased survival of novel neurons, exposure to the MWM-NH task did not, thus indicating that survival of novel dentate gyrus neurons depends on the engagement of this brain region in performance of cognitive tasks. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lívia Clemente Motta-Teixeira
- Department of Physiology, Institute of Biosciences, University of São Paulo, Rua Do Matão, Travessa 14, N. 101, São Paulo, 05508-090, SP, Brazil
| | - Silvia Honda Takada
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Professor Lineu Prestes, 2415, São Paulo, 05508-000, SP, Brazil
| | - Aline Vilar Machado-Nils
- Department of Physiology, Institute of Biosciences, University of São Paulo, Rua Do Matão, Travessa 14, N. 101, São Paulo, 05508-090, SP, Brazil
| | - Maria Inês Nogueira
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Av. Professor Lineu Prestes, 2415, São Paulo, 05508-000, SP, Brazil
| | - Gilberto Fernando Xavier
- Department of Physiology, Institute of Biosciences, University of São Paulo, Rua Do Matão, Travessa 14, N. 101, São Paulo, 05508-090, SP, Brazil
| |
Collapse
|
18
|
Spritzer MD, Curtis MG, DeLoach JP, Maher J, Shulman LM. Sexual interactions with unfamiliar females reduce hippocampal neurogenesis among adult male rats. Neuroscience 2016; 318:143-56. [PMID: 26794592 DOI: 10.1016/j.neuroscience.2016.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 01/05/2016] [Accepted: 01/06/2016] [Indexed: 01/01/2023]
Abstract
Recent experiments have shown that sexual interactions prior to cell proliferation cause an increase in neurogenesis in adult male rats. Because adult neurogenesis is critical for some forms of memory, we hypothesized that sexually induced changes in neurogenesis may be involved in mate recognition. Sexually naive adult male rats were either exposed repeatedly to the same sexual partner (familiar group) or to a series of novel sexual partners (unfamiliar group), while control males never engaged in sexual interactions. Ovariectomized female rats were induced into estrus every four days. Males were given two injections of 5-bromo-2'-deoxyuridine (BrdU) (200mg/kg) to label proliferating cells, and the first sexual interactions occurred three days later. Males in the familiar and unfamiliar groups engaged in four, 30-min sexual interactions at four-day intervals, and brain tissue was collected the day after the last sexual interaction. Immunohistochemistry followed by microscopy was used to quantify BrdU-labeled cells. Sexual interactions with unfamiliar females caused a significant reduction in neurogenesis in the dentate gyrus compared to males that interacted with familiar females and compared to the control group. The familiar group showed no difference in neurogenesis compared to the control group. Males in the familiar group engaged in significantly more sexual behavior (ejaculations and intromissions) than did males in the unfamiliar group, suggesting that level of sexual activity may influence neurogenesis levels. In a second experiment, we tested whether this effect was unique to sexual interactions by replicating the entire procedure using anestrus females. We found that interactions with unfamiliar anestrus females reduced neurogenesis relative to the other groups, but this effect was not statistically significant. In combination, these results indicate that interactions with unfamiliar females reduce adult neurogenesis and the effect is stronger for sexual interactions than for social interactions.
Collapse
Affiliation(s)
- M D Spritzer
- Department of Biology, Middlebury College, McCardell Bicentennial Hall, Middlebury, VT 05753, USA; Program in Neuroscience, Middlebury College, McCardell Bicentennial Hall, Middlebury, VT 05753, USA.
| | - M G Curtis
- Program in Neuroscience, Middlebury College, McCardell Bicentennial Hall, Middlebury, VT 05753, USA.
| | - J P DeLoach
- Department of Biology, Middlebury College, McCardell Bicentennial Hall, Middlebury, VT 05753, USA.
| | - J Maher
- Program in Neuroscience, Middlebury College, McCardell Bicentennial Hall, Middlebury, VT 05753, USA.
| | - L M Shulman
- Program in Neuroscience, Middlebury College, McCardell Bicentennial Hall, Middlebury, VT 05753, USA.
| |
Collapse
|
19
|
Aging affects new cell production in the adult hippocampus: A quantitative anatomic review. J Chem Neuroanat 2015; 76:64-72. [PMID: 26686289 DOI: 10.1016/j.jchemneu.2015.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 08/08/2015] [Accepted: 10/19/2015] [Indexed: 02/08/2023]
Abstract
In the last century, cognitive impairment in elderly people was considered as the consequence of neuronal death. However, later analyses indicated that age-related reduction in neuron number was limited to specific regions of the central nervous system, and was irrelevant to brain dysfunction in both humans and non-human animals. Recent studies have indicated that progressive diminution of neural plasticity across an individual's life span may underlie age-related brain dysfunction. To date, various factors have been shown to contribute to neural plasticity. In particular, substantial data supports the importance of production of new cells in the adult brain: the rate of hippocampal neurogenesis wanes radically during aging; similarly, white matter homeostasis via oligodendrogenesis is also affected by aging. This review briefly summarizes quantitative studies on adult hippocampal neurogenesis and oligodendrogenesis. Although the hippocampus is traditionally recognized as the memory center of the brain, it has started to emerge as an integrator of cognition and emotion. One of the current research highlights is that diverse functions of the hippocampus are topographically embedded along its longitudinal and transverse axes. Here we discuss alterations in adult neurogenesis and oligodendrogenesis during aging from a topographic view point. The quantitative anatomic approach to age-related alterations in production of new cells in the hippocampus may give a novel insight into how brain functions suffer from aging.
Collapse
|
20
|
Schaefers AT. Environmental enrichment and working memory tasks decrease hippocampal cell proliferation after wheel running – A role for the prefrontal cortex in hippocampal plasticity? Brain Res 2015. [DOI: 10.1016/j.brainres.2015.07.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Hojo Y, Munetomo A, Mukai H, Ikeda M, Sato R, Hatanaka Y, Murakami G, Komatsuzaki Y, Kimoto T, Kawato S. Estradiol rapidly modulates spinogenesis in hippocampal dentate gyrus: Involvement of kinase networks. Horm Behav 2015; 74:149-56. [PMID: 26122288 DOI: 10.1016/j.yhbeh.2015.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 06/04/2015] [Accepted: 06/05/2015] [Indexed: 01/15/2023]
Abstract
This article is part of a Special Issue "Estradiol and cognition". Estradiol (E2) is locally synthesized within the hippocampus and the gonads. Rapid modulation of hippocampal synaptic plasticity by E2 is essential for synaptic regulation. The molecular mechanisms of modulation through the synaptic estrogen receptor (ER) and its downstream signaling, however, are largely unknown in the dentate gyrus (DG). We investigated the E2-induced modulation of dendritic spines in male adult rat hippocampal slices by imaging Lucifer Yellow-injected DG granule cells. Treatments with 1 nM E2 increased the density of spines by approximately 1.4-fold within 2h. Spine head diameter analysis showed that the density of middle-head spines (0.4-0.5 μm) was significantly increased. The E2-induced spine density increase was suppressed by blocking Erk MAPK, PKA, PKC and LIMK. These suppressive effects by kinase inhibitors are not non-specific ones because the GSK-3β antagonist did not inhibit E2-induced spine increase. The ER antagonist ICI 182,780 also blocked the E2-induced spine increase. Taken together, these results suggest that E2 rapidly increases the density of spines through kinase networks that are driven by synaptic ER.
Collapse
Affiliation(s)
- Yasushi Hojo
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan; Bioinformatics Project of Japan Science and Technology Agency, University of Tokyo, Japan
| | - Arisa Munetomo
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
| | - Hideo Mukai
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan; Bioinformatics Project of Japan Science and Technology Agency, University of Tokyo, Japan
| | - Muneki Ikeda
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
| | - Rei Sato
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
| | - Yusuke Hatanaka
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
| | - Gen Murakami
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan; Bioinformatics Project of Japan Science and Technology Agency, University of Tokyo, Japan
| | - Yoshimasa Komatsuzaki
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
| | - Tetsuya Kimoto
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan
| | - Suguru Kawato
- Department of Biophysics and Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan; Bioinformatics Project of Japan Science and Technology Agency, University of Tokyo, Japan; Department of Urology, Juntendo University, Graduate School of Medicine, Tokyo 113-8431, Japan.
| |
Collapse
|
22
|
Sha S, Xu J, Lu ZH, Hong J, Qu WJ, Zhou JW, Chen L. Lack of JWA Enhances Neurogenesis and Long-Term Potentiation in Hippocampal Dentate Gyrus Leading to Spatial Cognitive Potentiation. Mol Neurobiol 2014; 53:355-368. [PMID: 25432888 DOI: 10.1007/s12035-014-9010-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 11/14/2014] [Indexed: 01/28/2023]
Abstract
JWA (Arl6ip5), a homologous gene of glutamate-transporter-associated protein 3-18 (GTRAP3-18) and addicsin, is highly expressed in hippocampus. We generated systemic and neuronal JWA knockout (JWA-KO and JWA-nKO) mice to investigate the influence of JWA deficiency on spatial cognitive performance, process of neurogenesis, and induction of long-term potentiation (LTP) in hippocampal dentate gyrus (DG). In comparison with wild-type (WT) mice and JWA (loxP/loxP) (control of JWA-nKO) mice, 8-week-old JWA-KO mice and JWA-nKO mice showed spatial cognitive potentiation as assessed by Morris water maze test. In hippocampal DG of JWA-nKO mice, either survival and migration or neurite growth of newborn neurons were significantly enhanced without the changes in proliferation and differentiation of stem cells. In addition, the increase of LTP amplitude and the decline of LTP threshold were observed in DG, but not in CA1 region, of JWA-nKO mice compared to control mice. The levels of hippocampal FAK, Akt, and mTOR phosphorylation in JWA-nKO mice were higher than those in control mice. The PI3K or FAK inhibitor could abolish the enhanced neurogenesis and LTP induction in JWA-nKO mice, which was accompanied by disappearance of the spatial cognitive potentiation. The treatment of JWA-nKO mice with 3'-azido-3'-deoxythymidine (AZT), a telomerase inhibitor, suppressed not only the enhanced neurogenesis but also the enhanced LTP induction in DG, but it did not affect the LTP induction in CA1 region. The results suggest that the JWA deficiency through cascading FAK-PI3K-Akt-mTOR pathway increases the newborn neurons and enhances the LTP induction in hippocampal DG, which leads to the spatial cognitive potentiation.
Collapse
Affiliation(s)
- Sha Sha
- Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China
- Department of Physiology, Nanjing Medical University, Hanzhong Road 140, Nanjing, Jiangsu, 210029, China
| | - Jin Xu
- Department of Molecular Cell Biology and Toxicology, School of Public Health, Nanjing Medical University, Hanzhong Road 140, Nanjing, Jiangsu, 210029, China
| | - Zi-Hong Lu
- Department of Physiology, Nanjing Medical University, Hanzhong Road 140, Nanjing, Jiangsu, 210029, China
| | - Juan Hong
- Department of Physiology, Nanjing Medical University, Hanzhong Road 140, Nanjing, Jiangsu, 210029, China
| | - Wei-Jun Qu
- Department of Physiology, Nanjing Medical University, Hanzhong Road 140, Nanjing, Jiangsu, 210029, China
| | - Jian-Wei Zhou
- Department of Molecular Cell Biology and Toxicology, School of Public Health, Nanjing Medical University, Hanzhong Road 140, Nanjing, Jiangsu, 210029, China.
| | - Ling Chen
- Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, 210029, China.
- Department of Physiology, Nanjing Medical University, Hanzhong Road 140, Nanjing, Jiangsu, 210029, China.
| |
Collapse
|
23
|
Epp JR, Chow C, Galea LAM. Hippocampus-dependent learning influences hippocampal neurogenesis. Front Neurosci 2013; 7:57. [PMID: 23596385 PMCID: PMC3627134 DOI: 10.3389/fnins.2013.00057] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 03/28/2013] [Indexed: 12/26/2022] Open
Abstract
The structure of the mammalian hippocampus continues to be modified throughout life by continuous addition of neurons in the dentate gyrus. Although the existence of adult neurogenesis is now widely accepted the function that adult generated granule cells play is a topic of intense debate. Many studies have argued that adult generated neurons, due to unique physiological characteristics, play a unique role in hippocampus-dependent learning and memory. However, it is not currently clear whether this is the case or what specific capability adult generated neurons may confer that developmentally generated neurons do not. These questions have been addressed in numerous ways, from examining the effects of increasing or decreasing neurogenesis to computational modeling. One particular area of research has examined the effects of hippocampus dependent learning on proliferation, survival, integration and activation of immature neurons in response to memory retrieval. Within this subfield there remains a range of data showing that hippocampus dependent learning may increase, decrease or alternatively may not alter these components of neurogenesis in the hippocampus. Determining how and when hippocampus-dependent learning alters adult neurogenesis will help to further clarify the role of adult generated neurons. There are many variables (such as age of immature neurons, species, strain, sex, stress, task difficulty, and type of learning) as well as numerous methodological differences (such as marker type, quantification techniques, apparatus size etc.) that could all be crucial for a clear understanding of the interaction between learning and neurogenesis. Here, we review these findings and discuss the different conditions under which hippocampus-dependent learning impacts adult neurogenesis in the dentate gyrus.
Collapse
Affiliation(s)
- Jonathan R. Epp
- *Correspondence: Jonathan R. Epp, Neurosciences and Mental Health, Hospital for Sick Children, 555 University Ave., Toronto, ON M5G 1X8, Canada. e-mail: ;
| | | | - Liisa A. M. Galea
- Department of Psychology, Program in Neuroscience, Brain Research Centre, University of British ColumbiaVancouver, BC, Canada
| |
Collapse
|
24
|
Masiulis I, Yun S, Eisch AJ. The interesting interplay between interneurons and adult hippocampal neurogenesis. Mol Neurobiol 2011; 44:287-302. [PMID: 21956642 DOI: 10.1007/s12035-011-8207-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Accepted: 09/07/2011] [Indexed: 10/17/2022]
Abstract
Adult neurogenesis is a unique form of plasticity found in the hippocampus, a brain region key to learning and memory formation. While many external stimuli are known to modulate the generation of new neurons in the hippocampus, little is known about the local circuitry mechanisms that regulate the process of adult neurogenesis. The neurogenic niche in the hippocampus is highly complex and consists of a heterogeneous population of cells including interneurons. Because interneurons are already highly integrated into the hippocampal circuitry, they are in a prime position to influence the proliferation, survival, and maturation of adult-generated cells in the dentate gyrus. Here, we review the current state of our understanding on the interplay between interneurons and adult hippocampal neurogenesis. We focus on activity- and signaling-dependent mechanisms, as well as research on human diseases that could provide better insight into how interneurons in general might add to our comprehension of the regulation and function of adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Irene Masiulis
- UT Southwestern Medical Center, Dallas, TX 75390-9070, USA.
| | | | | |
Collapse
|
25
|
Aasebø IEJ, Blankvoort S, Tashiro A. Critical maturational period of new neurons in adult dentate gyrus for their involvement in memory formation. Eur J Neurosci 2011; 33:1094-100. [PMID: 21395853 DOI: 10.1111/j.1460-9568.2011.07608.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Adult dentate gyrus produces new neurons continuously throughout life. Multiple lines of evidence have pointed to the possibility that young neurons during a certain maturational stage mediate an important role in memory processing. In this review, we highlight the existing evidence of a 'critical period' for new neurons in their involvement in memory formation, describe the unique properties of young neurons as potential mechanisms underlying the critical period, and discuss the implications of the critical period for the function of adult neurogenesis.
Collapse
Affiliation(s)
- Ida E J Aasebø
- Kavli Institute for Systems Neuroscience and Centre for the Biology of Memory, Faculty of Medicine, Norwegian University of Science and Technology and St. Olavs Hospital, 7030 Trondheim, Norway
| | | | | |
Collapse
|
26
|
Shors TJ, Anderson ML, Curlik DM, Nokia MS. Use it or lose it: how neurogenesis keeps the brain fit for learning. Behav Brain Res 2011; 227:450-8. [PMID: 21536076 DOI: 10.1016/j.bbr.2011.04.023] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Revised: 03/21/2011] [Accepted: 04/15/2011] [Indexed: 02/01/2023]
Abstract
The presence of new neurons in the adult hippocampus indicates that this structure incorporates new neurons into its circuitry and uses them for some function related to learning and/or related thought processes. Their generation depends on a variety of factors ranging from age to aerobic exercise to sexual behavior to alcohol consumption. However, most of the cells will die unless the animal engages in some kind of effortful learning experience when the cells are about one week of age. If learning does occur, the new cells become incorporated into brain circuits used for learning. In turn, some processes of learning and mental activity appear to depend on their presence. In this review, we discuss the now rather extensive literature showing that new neurons are kept alive by effortful learning, a process that involves concentration in the present moment of experience over some extended period of time. As these thought processes occur, endogenous patterns of rhythmic electrophysiological activity engage the new cells with cell networks that already exist in the hippocampus and at efferent locations. Concurrent and synchronous activity provides a mechanism whereby the new neurons become integrated with the other neurons. This integration allows the present experience to become integrated with memories from the recent past in order to learn and predict when events will occur in the near future. In this way, neurogenesis and learning interact to maintain a fit brain.
Collapse
Affiliation(s)
- T J Shors
- Department of Psychology, Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ 08854, USA.
| | | | | | | |
Collapse
|
27
|
Abstract
It has been well established that adult neurogenesis occurs throughout life in the subventricular (SVZ) and subgranular (SGZ) zones. However, the exact role of this type of brain plasticity is not yet clear. Many studies have shown that neurogenesis is involved in learning and memory. This has led to a hypothesis which suggests that impairment in memory during aging and neurodegenerative diseases such as Alzheimer's disease (AD) may involve abnormal neurogenesis. Indeed, during aging, there is an age-related decline in adult neurogenesis. This decline is mostly related to decreased proliferation, associated to decreased stimulation to proliferate in an aging brain. In AD, there is also evidence for decreased neurogenesis, that accompanies the neuronal loss characteristic of the disease. Interestingly in AD, there is increased proliferation, that may be caused by increasing amounts of soluble amyloid ß42-protein (Aβ₄₂). However, most of these new neurons die, and fibrillar Aβ₄₂ seems to be involved in generating an inappropriate environment for these neurons to mature. These findings open prospects for new strategies that can increase neurogenesis in normal or pathological processes in the aging brain, and by that decrease memory deficits.
Collapse
|
28
|
Epp JR, Haack AK, Galea LAM. Activation and survival of immature neurons in the dentate gyrus with spatial memory is dependent on time of exposure to spatial learning and age of cells at examination. Neurobiol Learn Mem 2011; 95:316-25. [PMID: 21216298 DOI: 10.1016/j.nlm.2011.01.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Revised: 12/02/2010] [Accepted: 01/03/2011] [Indexed: 11/27/2022]
Abstract
Neurogenesis continues to occur throughout life in the dentate gyrus of the hippocampus and may be related to hippocampus-dependent learning. We have recently reported that there is an enhancement of neurogenesis in the hippocampus only when BrdU is administered 6 days prior to starting spatial training but not when training started either 1 day or 11 days following BrdU administration. In that study, all rats were perfused on day 16 after BrdU injection in order to compare cells of the same age (i.e. 16 day old cells) and thus the survival time after learning was different between groups. This study was designed to address whether the amount of time that passed following training could also contribute to the effects of spatial learning on hippocampal neurogenesis and whether there was differential new neuron activation in response to spatial learning that depended on the age of new cells at the time of spatial learning. Here we tested whether a survival period of 5 days following spatial learning at either 1-5, 6-10 or 11-15 days following BrdU administration would alter cell survival and/or activation of new neurons. Our results indicate that 5 days after training in the Morris water task cell survival is unaltered by training on days 1-5, increased by training at days 6-10 and decreased when training occurs on days 11-15. Furthermore spatial learners trained on days 6-10 or 11-15 show greater activation of new neurons compared to cue-trained rats during a probe trial 5 days after training. In addition, rats trained on the spatial task on days 11-15 had a greater number of activated new neurons compared to rats trained on the spatial task on days 6-10. These results suggest there is a gradual removal of older BrdU-labeled new neurons following spatial learning perhaps due to a competitive interaction with a population of younger BrdU-labeled new neurons.
Collapse
Affiliation(s)
- Jonathan R Epp
- Department of Psychology, Graduate Program in Neuroscience, Brain Research Centre, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
29
|
Castilla-Ortega E, Pedraza C, Estivill-Torrús G, Santín LJ. When is adult hippocampal neurogenesis necessary for learning? Evidence from animal research. Rev Neurosci 2011; 22:267-83. [DOI: 10.1515/rns.2011.027] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
30
|
Epp J, Scott N, Galea L. Strain differences in neurogenesis and activation of new neurons in the dentate gyrus in response to spatial learning. Neuroscience 2011; 172:342-54. [DOI: 10.1016/j.neuroscience.2010.10.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Revised: 10/09/2010] [Accepted: 10/11/2010] [Indexed: 10/18/2022]
|
31
|
Ambrogini P, Cuppini R, Lattanzi D, Ciuffoli S, Frontini A, Fanelli M. Synaptogenesis in adult-generated hippocampal granule cells is affected by behavioral experiences. Hippocampus 2010; 20:799-810. [PMID: 19623538 DOI: 10.1002/hipo.20679] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Adult-generated hippocampal immature neurons play a functional role after integration in functional circuits. Previously, we found that hippocampus-dependent learning in Morris water maze affects survival of immature neurons, even before they are synaptically contacted. Beside learning, this task heavily engages animals in physical activity in form of swimming; physical activity enhances hippocampal neurogenesis. In this article, the effects of training in Morris water maze apparatus on the synapse formation onto new neurons in hippocampus dentate gyrus and on neuronal maturation were investigated in adult rats. Newborn cells were identified using retroviral GFP-expressing virus infusion. In the first week after virus infusion, rats were trained in Morris water maze apparatus in three different conditions (spatial learning, cue test, and swimming). Properties of immature neurons and their synaptic response to perforant pathway stimulation were electrophysiologically investigated early during neuronal maturation. In controls, newborn cells showing GABAergic and glutamatergic responses were found for the first time at 8 and 10 days after mitosis, respectively; no cell with glutamatergic response only was found. Twelve days after virus infusion almost all GFP-positive cells showed both synaptic responses. The main result we found was the anticipated appearance of GABAergic synapses at 6 days in learner, cued and swimmer rats, supported also by immunohistochemical result. Swimmer rats showed the highest percentage of GFP-positive neurons with glutamatergic response at 10 and 12 days postmitosis. Moreover, primary dendrites were more numerous at 7 days in learner, cued and swimmer rats and swimmer rats showed the greatest dendritic tree complexity at 10 days. Finally, voltage-dependent Ca(2+) current was found in a larger number of newborn neurons at 7 days postinfusion in learner, cued and swimmer rats. In conclusion, experiences involving physical activity contextualized in an exploring behavior affect synaptogenesis in adult-generated cells and their early stages of maturation.
Collapse
Affiliation(s)
- Patrizia Ambrogini
- Dipartimento di Scienze dell'Uomo, dell'Ambiente e della Natura (DiSUAN), Sezione di Fisiologia, University of Urbino Carlo Bo, Urbino, Italy
| | | | | | | | | | | |
Collapse
|
32
|
Epp JR, Haack AK, Galea LAM. Task difficulty in the Morris water task influences the survival of new neurons in the dentate gyrus. Hippocampus 2010; 20:866-76. [PMID: 19693780 DOI: 10.1002/hipo.20692] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Adult neurogenesis continues throughout life in the mammalian hippocampus. The precise function of the adult generated neurons remains uncertain although there is growing evidence that they are involved in hippocampus-dependent learning and memory. Training rats on a hidden platform version of the Morris water task has been shown to increase or decrease the survival of newly produced cells in the dentate gyrus (DG) compared to training on a visible platform version. Here we investigated whether the difficulty of the task is related to the degree or direction of the change in neurogenesis. We trained rats on either a visible platform version of the Morris water task or one of three different hidden platform paradigms: four training trials per session version, two training trials per session, and reduced-cue (a version in which the majority of the distal cues were removed from the room). BrdU was administered 6 days prior to training and rats were perfused 24 h after the last training session. As expected, training on the four trial hidden platform version increased cell survival compared to training on the visible platform version. However, training on the more difficult reduced-cue hidden platform version resulted in a decrease in cell survival. Rats that received fewer trials per session did not differ in terms of cell survival in comparison to rats trained on the visible platform version. These findings demonstrate that altering the difficulty of the spatial task has an impact on the corresponding change in cell survival. The lack of obvious distal cues likely changed the strategy used by the rats to determine the location of the platform and resulted in a decrease, instead of an increase in cell survival in the hippocampus. In conclusion, different types of hippocampus-dependent learning can differentially impact cell survival.
Collapse
Affiliation(s)
- Jonathan R Epp
- Department of Psychology, Graduate Program in Neuroscience, Brain Research Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | |
Collapse
|
33
|
Abstract
The hippocampus is a region of the mammalian brain that shows an impressive capacity for structural reorganization. Preexisting neural circuits undergo modifications in dendritic complexity and synapse number, and entirely novel neural connections are formed through the process of neurogenesis. These types of structural change were once thought to be restricted to development. However, it is now generally accepted that the hippocampus remains structurally plastic throughout life. This article reviews structural plasticity in the hippocampus over the lifespan, including how it is investigated experimentally. The modulation of structural plasticity by various experiential factors as well as the possible role it may have in hippocampal functions such as learning and memory, anxiety, and stress regulation are also considered. Although significant progress has been made in many of these areas, we highlight some of the outstanding issues that remain.
Collapse
Affiliation(s)
- Benedetta Leuner
- Department of Psychology, Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
34
|
Popov VI, Kraev IV, Banks D, Davies HA, Morenkov ED, Stewart MG, Fesenko EE. Three-dimensional ultrastructural and immunohistochemical study of immature neurons in the subgranular zone of the rat dentate gyrus. Biophysics (Nagoya-shi) 2009. [DOI: 10.1134/s0006350909040174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
35
|
The partial 5-HT1A receptor agonist buspirone enhances neurogenesis in the opossum (Monodelphis domestica). Eur Neuropsychopharmacol 2009; 19:431-9. [PMID: 19249192 DOI: 10.1016/j.euroneuro.2009.01.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 12/03/2008] [Accepted: 01/21/2009] [Indexed: 12/11/2022]
Abstract
We demonstrate for the first time that neurogenesis in the adult Monodelphis opossum has a typical mammalian pattern and occurs only in the dentate gyrus (DG) and subventricular zone (SVZ) of the lateral ventricles. In these two brain regions neurogenesis is present throughout the lifespan, although its rate is reduced by half in the old age. Treatment with buspirone, a partial 5-HT1A receptor agonist which is used in human clinic as an anxiolytic agent, boosts proliferation in the SVZ and DG in both adult and aged opossums. The neuronal phenotype dominates among newly generated cells in both non-treated and buspirone-treated opossums. We suggest that if functional importance of adult neurogenesis is in improving olfactory discrimination and generation of hippocampus-dependent memory, both spatial and emotional, then administration of drugs increasing the rate of neurogenesis via activation of 5-HT1A receptors may be a valuable aid in combating problems of the advanced age.
Collapse
|
36
|
Snyder JS, Radik R, Wojtowicz JM, Cameron HA. Anatomical gradients of adult neurogenesis and activity: young neurons in the ventral dentate gyrus are activated by water maze training. Hippocampus 2009; 19:360-70. [PMID: 19004012 DOI: 10.1002/hipo.20525] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Hippocampal function varies in a subregion-specific fashion: spatial processing is thought to rely on the dorsal hippocampus, whereas anxiety-related behavior relies more on the ventral hippocampus. During development, neurogenesis in the dentate gyrus (DG) proceeds along ventral to dorsal as well as suprapyramidal to infrapyramidal gradients, but it is unclear whether regional differences in neurogenesis are maintained in adulthood. Moreover, it is unknown whether young neurons in the adult exhibit subregion-specific patterns of activation. We therefore examined the magnitude of neurogenesis and the activation of young and mature granule cells in DG subregions in adult rats that learned a spatial water maze task, swam with no platform, or were left untouched. We found that both adult neurogenesis and granule cell activation, as defined by c-fos expression in the granule cell population as a whole, were higher in the dorsal than the ventral DG. In contrast, c-fos expression in adult-born granule cells, identified by PSA-NCAM or location in the subgranular zone, occurred at a higher rate in the opposite subregion, the ventral DG. Interestingly, c-fos expression in the entire granule cell population was equivalent in water maze-trained rats and swim control rats, but was increased in the young granule cells only in the learning condition. These results provide new evidence that hippocampally-relevant experience activates young and mature neurons in different DG subregions and with different experiential specificity, and suggest that adult-born neurons may play a specific role in anxiety-related behavior or other nonspatial aspects of hippocampal function.
Collapse
Affiliation(s)
- Jason S Snyder
- National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
37
|
Ide Y, Fujiyama F, Okamoto-Furuta K, Tamamaki N, Kaneko T, Hisatsune T. Rapid integration of young newborn dentate gyrus granule cells in the adult hippocampal circuitry. Eur J Neurosci 2009; 28:2381-92. [PMID: 19087169 DOI: 10.1111/j.1460-9568.2008.06548.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Newborn dentate gyrus granule cells (DGCs) are integrated into the hippocampal circuitry and contribute to the cognitive functions of learning and memory. The dendritic maturation of newborn DGCs in adult mice occurs by the first 3-4 weeks, but DGCs seem to receive a variety of neural inputs at both their dendrites and soma even shortly after their birth. However, few studies on the axonal maturation of newborn DGCs have focused on synaptic structure. Here, we investigated the potentiality of output and input in newborn DGCs, especially in the early period after terminal mitosis. We labeled nestin-positive progenitor cells by injecting GFP Cre-reporter adenovirus into Nestin-Cre mice, enabling us to trace the development of progenitor cells by their GFP expression. In addition to GABAergic input from interneurons, we observed that the young DGCs received axosomatic input from the medial septum as early as postinfection day 7 (PID 7). To evaluate the axonal maturation of the newborn DGCs compared with mature DCGs, we performed confocal and electron microscopic analyses. We observed that newborn DGCs projected their mossy fibers to the CA3 region, forming small terminals on hilar or CA3 interneurons and large boutons on CA3 pyramidal cells. These terminals expressed vesicular glutamate transporter 1, indicating they were glutamatergic terminals. Intriguingly, the terminals at PID 7 had already formed asymmetric synapses, similar to those of mature DGCs. Together, our findings suggest that newborn DGCs may form excitatory synapses on both interneurons and CA3 pyramidal cells within 7 days of their terminal mitosis.
Collapse
Affiliation(s)
- Yoko Ide
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, University of Tokyo, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
38
|
Spritzer MD, Weinberg A, Viau V, Galea LAM. Prior sexual experience increases hippocampal cell proliferation and decreases risk assessment behavior in response to acute predator odor stress in the male rat. Behav Brain Res 2009; 200:106-12. [PMID: 19166878 DOI: 10.1016/j.bbr.2009.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 12/27/2008] [Accepted: 01/03/2009] [Indexed: 02/05/2023]
Abstract
Acute exposure to the predator odor trimethylthiazoline (TMT) induces defensive behavior in the male rat, and this response is associated with a decrease in cell proliferation within the dentate gyrus of the hippocampus. Sexual experience appears to be protective, as it exerts anxiolytic-like effects and sustains gonadal function in the face of stress. To examine the influence of sexual experience on subsequent stress-induced defensive behavior and cell proliferation in the hippocampus we exposed adult male rats to TMT odor with or without prior exposure to sexually receptive female rats. A subset of rats was injected with the DNA-synthesis marker bromodeoxyuridine (BrdU; 200 mg/kg) during TMT exposure and perfused 24 h later to provide an index of cell proliferation within the dentate gyrus. In response to TMT, sexual experience reduced the duration of stretched attend postures, but had no significant effect on defensive burying. Furthermore, TMT induced a significant increase in cell proliferation in the dentate gyrus, but only in males with sexual experience. The results demonstrate an influence of socio-sexual experience on the magnitude of the behavioral and neural responses to predator odor stress.
Collapse
Affiliation(s)
- Mark D Spritzer
- Department of Psychology, The University of British Columbia, 2136 West Mall, Vancouver, BC V6T1Z4, Canada
| | | | | | | |
Collapse
|
39
|
Abstract
New interneurons are continually added to the olfactory bulb (OB), the first central relay for processing olfactory information, throughout life. It remains unknown how these adult-generated interneurons integrate into preexisting networks or die. We used immunohistochemical approaches to quantify adult neurogenesis in mice subjected to olfactory training. We identified a critical period in the life of an adult-generated OB interneuron, during which learning triggers distinct consequences. Using a discrimination learning task performed at various times after the birth of new interneurons, we found that olfactory training could increase, decrease, or have no effect on the number of surviving newly generated neurons. Cell survival and elimination depend on both the age of the cell and its location within the granule cell layer. This study provides new insight into the contribution of the newly generated interneurons to OB function. It demonstrates that neuronal elimination is an active process, rather than a simple consequence of nonuse.
Collapse
|
40
|
Gelperin A. Neural Computations with Mammalian Infochemicals. J Chem Ecol 2008; 34:928-42. [DOI: 10.1007/s10886-008-9483-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 12/28/2007] [Accepted: 04/23/2008] [Indexed: 12/22/2022]
|
41
|
Treves A, Tashiro A, Witter MP, Moser EI. What is the mammalian dentate gyrus good for? Neuroscience 2008; 154:1155-72. [PMID: 18554812 DOI: 10.1016/j.neuroscience.2008.04.073] [Citation(s) in RCA: 197] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 04/12/2008] [Accepted: 04/28/2008] [Indexed: 01/01/2023]
Abstract
In the mammalian hippocampus, the dentate gyrus (DG) is characterized by sparse and powerful unidirectional projections to CA3 pyramidal cells, the so-called mossy fibers (MF). The MF form a distinct type of synapses, rich in zinc, that appear to duplicate, in terms of the information they convey, what CA3 cells already receive from entorhinal cortex layer II cells, which project both to the DG and to CA3. Computational models have hypothesized that the function of the MF is to enforce a new, well-separated pattern of activity onto CA3 cells, to represent a new memory, prevailing over the interference produced by the traces of older memories already stored on CA3 recurrent collateral connections. Although behavioral observations support the notion that the MF are crucial for decorrelating new memory representations from previous ones, a number of findings require that this view be reassessed and articulated more precisely in the spatial and temporal domains. First, neurophysiological recordings indicate that the very sparse dentate activity is concentrated on cells that display multiple but disorderly place fields, unlike both the single fields typical of CA3 and the multiple regular grid-aligned fields of medial entorhinal cortex. Second, neurogenesis is found to occur in the adult DG, leading to new cells that are functionally added to the existing circuitry, and may account for much of its ongoing activity. Third, a comparative analysis suggests that only mammals have evolved a DG, despite some of its features being present also in reptiles, whereas the avian hippocampus seems to have taken a different evolutionary path. Thus, we need to understand both how the mammalian dentate operates, in space and time, and whether evolution, in other vertebrate lineages, has offered alternative solutions to the same computational problems.
Collapse
Affiliation(s)
- A Treves
- Kavli Institute for Systems Neuroscience and Centre for the Biology of Memory, Norwegian University for Science and Technology, Trondheim, Norway.
| | | | | | | |
Collapse
|
42
|
New interneurons in the adult neocortex: small, sparse, but significant? Biol Psychiatry 2008; 63:650-5. [PMID: 18067877 PMCID: PMC2423203 DOI: 10.1016/j.biopsych.2007.09.023] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 09/03/2007] [Accepted: 09/18/2007] [Indexed: 11/23/2022]
Abstract
During the last decade, the intense study of adult hippocampal neurogenesis has led to several new lines of inquiry in the field of psychiatry. Although it is generally believed that adult mammalian neurogenesis is restricted to the hippocampus and olfactory bulb, a growing number of studies have described new neurons in the adult neocortex in both rodents and nonhuman primates. Interestingly, all of the new neurons observed in these studies have features of interneurons rather than pyramidal cells, the largest neuronal population of the neocortex. In this review, we discuss features of these interneurons that may explain why cortical neurogenesis has been so difficult to detect. In addition, these features suggest ways that production of even a small numbers of new neurons in the adult cortex could make a significant impact on neocortical function.
Collapse
|
43
|
Thompson A, Boekhoorn K, Van Dam AM, Lucassen PJ. Changes in adult neurogenesis in neurodegenerative diseases: cause or consequence? GENES BRAIN AND BEHAVIOR 2008; 7 Suppl 1:28-42. [PMID: 18184368 DOI: 10.1111/j.1601-183x.2007.00379.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This review addresses the role of adult hippocampal neurogenesis and stem cells in some of the most common neurodegenerative disorders and their related animal models. We discuss recent literature in relation to Alzheimer's disease and dementia, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, alcoholism, ischemia, epilepsy and major depression.
Collapse
Affiliation(s)
- A Thompson
- Centre for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
44
|
Bruel-Jungerman E, Davis S, Laroche S. Brain plasticity mechanisms and memory: a party of four. Neuroscientist 2007; 13:492-505. [PMID: 17901258 DOI: 10.1177/1073858407302725] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A defining characteristic of the brain is its remarkable capacity to undergo activity-dependent functional and morphological remodeling via mechanisms of plasticity that form the basis of our capacity to encode and retain memories. Today, it is generally accepted that the neurobiological substrate of memories resides in activity-driven modifications of synaptic strength and structural remodeling of neural networks activated during learning. Since the discovery of long-term potentiation, the role of synaptic strengthening in learning and memory has been the subject of considerable investigation, and numerous studies have provided new insights into how this form of plasticity can subserve memory function. At the same time, other studies have explored the contribution of synaptic elimination or weakening; synaptogenesis, the growth of new synaptic connections and synapse remodeling; and more recently, neurogenesis, the birth and growth of new neurons in the adult brain. In this review, based on work in the hippocampus, the authors briefly outline recent advances in their understanding of the mechanisms and functional role of these four types of brain plasticity in the context of learning and memory. While they have long been considered as alternative mechanisms of plasticity underlying the storage of long-term memories, recent evidence suggests that they are functionally linked, suggesting the mechanisms underlying plasticity in the brain required for the formation and retention of memories are multifaceted.
Collapse
Affiliation(s)
- Elodie Bruel-Jungerman
- Laboratoire de Neurobiologie de l'Apprentissage, de la Mémoire et de la Communication, CNRS, Univ Paris-Sud, Orsay, France
| | | | | |
Collapse
|
45
|
Epp JR, Spritzer MD, Galea LAM. Hippocampus-dependent learning promotes survival of new neurons in the dentate gyrus at a specific time during cell maturation. Neuroscience 2007; 149:273-85. [PMID: 17900815 DOI: 10.1016/j.neuroscience.2007.07.046] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 07/26/2007] [Accepted: 07/27/2007] [Indexed: 01/16/2023]
Abstract
Adult neurogenesis in the hippocampus continues throughout life and may play an important role in hippocampus-dependent learning and memory. Previous research has been equivocal, demonstrating that spatial learning may enhance, decrease or not significantly affect the survival of new neurons. A potential cause of these varying results may be differences in when bromodeoxyuridine (BrdU) was administered relative to spatial training. We examined whether the time elapsed between BrdU administration and spatial learning would alter the survival of the labeled cells. We injected rats with BrdU once on day 0 and then trained in the standard place version of the Morris water task on days 1-5, 6-10 or 11-15 after BrdU injection. We found an enhancement of neurogenesis in the hippocampus only when BrdU was administered 6 days prior to the beginning of spatial training. There was no significant change in hippocampal neurogenesis for groups that started training either 1 or 11 days following BrdU administration. This suggests that a critical period exists in the development of new neurons during which time their survival may be altered by activation of the hippocampus. Furthermore, when dividing rats into poor versus good learners based on overall performance using a median split, only poor place learners and not good place learners exhibit increased hippocampal neurogenesis compared with cue learning, collapsed across time of training. These findings provide further evidence of a link between learning and adult neurogenesis.
Collapse
Affiliation(s)
- J R Epp
- Department of Psychology, Graduate Program in Neuroscience, Brain Research Centre, University of British Columbia, 2136 West Mall, Vancouver, British Columbia, Canada, V6T 1Z4
| | | | | |
Collapse
|
46
|
Verret L, Jankowsky JL, Xu GM, Borchelt DR, Rampon C. Alzheimer's-type amyloidosis in transgenic mice impairs survival of newborn neurons derived from adult hippocampal neurogenesis. J Neurosci 2007; 27:6771-80. [PMID: 17581964 PMCID: PMC4439193 DOI: 10.1523/jneurosci.5564-06.2007] [Citation(s) in RCA: 177] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by severe neuronal loss in several brain regions important for learning and memory. Of the structures affected by AD, the hippocampus is unique in continuing to produce new neurons throughout life. Mounting evidence indicates that hippocampal neurogenesis contributes to the processing and storage of new information and that deficits in the production of new neurons may impair learning and memory. Here, we examine whether the overproduction of amyloid-beta (Abeta) peptide in a mouse model for AD might be detrimental to newborn neurons in the hippocampus. We used transgenic mice overexpressing familial AD variants of amyloid precursor protein (APP) and/or presenilin-1 to test how the level (moderate or high) and the aggregation state (soluble or deposited) of Abeta impacts the proliferation and survival of new hippocampal neurons. Although proliferation and short-term survival of neural progenitors in the hippocampus was unaffected by APP/Abeta overproduction, survival of newborn cells 4 weeks later was dramatically diminished in transgenic mice with Alzheimer's-type amyloid pathology. Phenotypic analysis of the surviving population revealed a specific reduction in newborn neurons. Our data indicate that overproduction of Abeta and the consequent appearance of amyloid plaques cause an overall reduction in the number of adult-generated hippocampal neurons. Diminished capacity for hippocampal neuron replacement may contribute to the cognitive decline observed in these mice.
Collapse
Affiliation(s)
- Laure Verret
- Centre National de la Recherche Scientifique, Centre de Recherches sur la Cognition Animale, Université Paul Sabatier, 31062 Toulouse, France
| | - Joanna L. Jankowsky
- Division of Biology, California Institute of Technology, Pasadena, California 91125, and
| | - Guilian M. Xu
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida 32610
| | - David R. Borchelt
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, Florida 32610
| | - Claire Rampon
- Centre National de la Recherche Scientifique, Centre de Recherches sur la Cognition Animale, Université Paul Sabatier, 31062 Toulouse, France
| |
Collapse
|
47
|
Drapeau E, Montaron MF, Aguerre S, Abrous DN. Learning-induced survival of new neurons depends on the cognitive status of aged rats. J Neurosci 2007; 27:6037-44. [PMID: 17537975 PMCID: PMC6672254 DOI: 10.1523/jneurosci.1031-07.2007] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2006] [Revised: 04/17/2007] [Accepted: 04/18/2007] [Indexed: 01/23/2023] Open
Abstract
Aging is accompanied by an alteration of spatial memory, which has been related to an alteration in hippocampal plasticity. Within the dentate gyrus, new neurons are generated throughout the entire life of an individual. This neurogenesis seems to play a role in hippocampal-mediated learning and learning-induced changes in neurogenesis have been proposed to be involved in memory. However, in aged rats, little is known on the influence of learning on the early development of the adult-born neurons and on the possible involvement of learning-induced changes in neurogenesis in age-related memory deficits. To address this issue, we took advantage of the existence of spontaneous individual differences for performances observed in aged subjects in the water maze. In this task, learning can be divided into two phases, an early phase during which performances quickly improve, and a late phase during which asymptotic levels of performances are reached. We show that the influence of spatial learning on the survival of the newly born cells depends on their birth date and the memory abilities of the aged rats. In aged rats with preserved spatial memory, learning increases the survival of cells generated before learning whereas it decreases survival of cells produced during the early phase of learning. These results highlight the importance of learning-induced changes in adult-born cell survival in memory. Furthermore, they provide new insights on the possible neural mechanisms of aging of cognitive functions and show that an alteration to the steps leading to neurogenesis may be involved in the determination of individual memory abilities.
Collapse
Affiliation(s)
- Elodie Drapeau
- Institut National de la Santé et de la Recherche Médicale U862, Bordeaux Neuroscience Research Center, University of Bordeaux 2, Bordeaux, France
| | - Marie-Françoise Montaron
- Institut National de la Santé et de la Recherche Médicale U862, Bordeaux Neuroscience Research Center, University of Bordeaux 2, Bordeaux, France
| | - Sylvie Aguerre
- Institut National de la Santé et de la Recherche Médicale U862, Bordeaux Neuroscience Research Center, University of Bordeaux 2, Bordeaux, France
| | - Djoher Nora Abrous
- Institut National de la Santé et de la Recherche Médicale U862, Bordeaux Neuroscience Research Center, University of Bordeaux 2, Bordeaux, France
| |
Collapse
|
48
|
|
49
|
Tashiro A, Makino H, Gage FH. Experience-specific functional modification of the dentate gyrus through adult neurogenesis: a critical period during an immature stage. J Neurosci 2007; 27:3252-9. [PMID: 17376985 PMCID: PMC6672473 DOI: 10.1523/jneurosci.4941-06.2007] [Citation(s) in RCA: 386] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neural circuits in the dentate gyrus are continuously modified by adult neurogenesis, whose level is affected by the animal's experience. However, it is not known whether this experience-dependent anatomical modification alters the functional properties of the dentate gyrus. Here, using the expression of immediate early gene products, c-fos and Zif268, as indicators of recently activated neurons, we show that previous exposure to an enriched environment increases the total number of new neurons and the number of new neurons responding to reexposure to the same environment. The increase in the density of activated new neurons occurred specifically in response to exposure to the same environment but not to a different experience. Furthermore, we found that these experience-specific modifications are affected exclusively by previous exposure around the second week after neuronal birth but not later than 3 weeks. Thus, the animal's experience within a critical period during an immature stage of new neurons determines the survival and population response of the new neurons and may affect later neural representation of the experience in the dentate gyrus. This experience-specific functional modification through adult neurogenesis could be a mechanism by which new neurons exert a long-term influence on the function of the dentate gyrus related to learning and memory.
Collapse
Affiliation(s)
- Ayumu Tashiro
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Hiroshi Makino
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037
| | - Fred H. Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, California 92037
| |
Collapse
|
50
|
Kitabatake Y, Sailor KA, Ming GL, Song H. Adult neurogenesis and hippocampal memory function: new cells, more plasticity, new memories? Neurosurg Clin N Am 2007; 18:105-13, x. [PMID: 17244558 PMCID: PMC5439504 DOI: 10.1016/j.nec.2006.10.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The discovery of active adult neurogenesis in mammals, a process of generating functional neurons from neural stem cells, suggests that the adult brain is more dynamic than once imagined. The coincidence of this phenomenon occurring in the hippocampus, a region critical to the learning process, begs the question of whether adult neurogenesis is involved in memory formation. Here, the authors review rapidly accumulating evidence showing a strong correlation between certain types of memory functions and adult neurogenesis in the hippocampus. Establishment of the potential link between memory formation and adult neurogenesis is instrumental, at a basic science level, to understand the function of neural networks and is essential, at a clinical level, to develop effective therapies for various cognitive dysfunctions.
Collapse
|