1
|
Doss MK, DeMarco A, Dunsmoor JE, Cisler JM, Fonzo GA, Nemeroff CB. How Psychedelics Modulate Multiple Memory Mechanisms in Posttraumatic Stress Disorder. Drugs 2024:10.1007/s40265-024-02106-4. [PMID: 39455547 DOI: 10.1007/s40265-024-02106-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2024] [Indexed: 10/28/2024]
Abstract
Posttraumatic stress disorder (PTSD) is a psychiatric disorder with defining abnormalities in memory, and psychedelics may be promising candidates for the treatment of PTSD given their effects on multiple memory systems. Most PTSD and psychedelic research has investigated memory with fear conditioning and extinction. While fruitful, conditioning and extinction provide a limited model of the complexity of PTSD and phenomenology of psychedelics, thereby limiting the refinement of therapies. In this review, we discuss abnormalities in fear conditioning and extinction in PTSD and review 25 studies testing psychedelics on these forms of memory. Perhaps the most reliable effect is that the acute effects of psychedelics can enhance extinction learning, which is impaired in PTSD. However, the post-acute effects may also enhance extinction learning, and the acute effects can also enhance fear conditioning. We then discuss abnormalities in episodic and semantic memory in PTSD and review current knowledge on how psychedelics impact these memory systems. Although PTSD and psychedelics acutely impair the formation of hippocampal-dependent episodic memories, psychedelics may acutely enhance cortical-dependent learning of semantic memories that could facilitate the integration of trauma memories and disrupt maladaptive beliefs. More research is needed on the acute effects of psychedelics on episodic memory consolidation, retrieval, and reconsolidation and post-acute effects of psychedelics on all phases of episodic memory. We conclude by discussing how targeting multiple memory mechanisms could improve upon the current psychedelic therapy paradigm for PTSD, thereby necessitating a greater emphasis on assessing diverse measures of memory in translational PTSD and psychedelic research.
Collapse
Affiliation(s)
- Manoj K Doss
- Department of Psychiatry and Behavioral Sciences, Center for Psychedelic Research and Therapy, The University of Texas at Austin Dell Medical School, 1601 Trinity Street, Bldg. B, Stop Z0600, Austin, TX, 78712, USA.
| | - AnnaMarie DeMarco
- Department of Psychiatry and Behavioral Sciences, Center for Psychedelic Research and Therapy, The University of Texas at Austin Dell Medical School, 1601 Trinity Street, Bldg. B, Stop Z0600, Austin, TX, 78712, USA
| | - Joseph E Dunsmoor
- Department of Psychiatry and Behavioral Sciences, Center for Psychedelic Research and Therapy, The University of Texas at Austin Dell Medical School, 1601 Trinity Street, Bldg. B, Stop Z0600, Austin, TX, 78712, USA
- Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Josh M Cisler
- Department of Psychiatry and Behavioral Sciences, Center for Psychedelic Research and Therapy, The University of Texas at Austin Dell Medical School, 1601 Trinity Street, Bldg. B, Stop Z0600, Austin, TX, 78712, USA
| | - Gregory A Fonzo
- Department of Psychiatry and Behavioral Sciences, Center for Psychedelic Research and Therapy, The University of Texas at Austin Dell Medical School, 1601 Trinity Street, Bldg. B, Stop Z0600, Austin, TX, 78712, USA
| | - Charles B Nemeroff
- Department of Psychiatry and Behavioral Sciences, Center for Psychedelic Research and Therapy, The University of Texas at Austin Dell Medical School, 1601 Trinity Street, Bldg. B, Stop Z0600, Austin, TX, 78712, USA
| |
Collapse
|
2
|
McManus E, Haroon H, Duncan NW, Elliott R, Muhlert N. Hippocampal and limbic microstructure changes associated with stress across the lifespan: a UK biobank study. Sci Rep 2024; 14:21735. [PMID: 39289386 PMCID: PMC11408494 DOI: 10.1038/s41598-024-71965-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/02/2024] [Indexed: 09/19/2024] Open
Abstract
Experiencing highly stressful events can have detrimental and lasting effects on brain morphology. The current study explores the effects of stress during childhood and adulthood on grey matter macro- and microstructure using a sub-sample of 720 participants from the UK Biobank with very high or very low childhood and adulthood stress scores. We used T1-weighted and diffusion MRI data to assess grey matter macro- and microstructure within bilateral hippocampus, amygdala and thalamus. Findings showed that childhood stress is associated with changes in microstructural measures bilaterally within the hippocampus and amygdala. No effects of adulthood stress on brain microstructure were found. No interaction effects between sex and stress (either childhood or adulthood) were observed for any brain imaging measure. Analysis of sub-segments of the hippocampus showed that childhood stress predominantly impacted the bilateral heads of the hippocampus. Overall, these findings suggest that highly stressful experiences during childhood, but not adulthood, have lasting impact on brain microstructure. The effects of these experiences in childhood appear to persist regardless of experiences of high or low stress in adulthood.
Collapse
Affiliation(s)
- Elizabeth McManus
- School of Health Sciences, The University of Manchester, H.18 Coupland 1 Building, Oxford Rd, Manchester, M13 9PL, UK.
| | - Hamied Haroon
- School of Health Sciences, The University of Manchester, H.18 Coupland 1 Building, Oxford Rd, Manchester, M13 9PL, UK
| | - Niall W Duncan
- Graduate Institute of Mind, Brain and Consciousness, Taipei Medical University, Taipei, Taiwan
- Brain and Consciousness Research Centre, TMU Shuang Ho Hospital, New Taipei City, Taiwan
| | - Rebecca Elliott
- School of Health Sciences, The University of Manchester, H.18 Coupland 1 Building, Oxford Rd, Manchester, M13 9PL, UK
| | - Nils Muhlert
- School of Health Sciences, The University of Manchester, H.18 Coupland 1 Building, Oxford Rd, Manchester, M13 9PL, UK
| |
Collapse
|
3
|
Hanáková K, Lindberg LG, Carlsson J. Sex differences in trauma exposure and PTSD symptomatology among refugees, internally displaced people, and asylum seekers: A systematic literature review. Psychiatry Res 2024; 339:116014. [PMID: 38906050 DOI: 10.1016/j.psychres.2024.116014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/12/2023] [Accepted: 06/03/2024] [Indexed: 06/23/2024]
Abstract
This systematic review aimed to explore sex differences in exposure to traumatic events and posttraumatic stress disorder (PTSD) symptomatology among refugees, internally displaced persons (IDPs), and asylum seekers. A comprehensive search was conducted across three databases (PubMed, PsychInfo, and Embase), which yielded 2,255 studies. A total of 15 studies were included for trauma exposure assessment, and 8 studies for PTSD symptomatology assessment. The review revealed significant sex differences in trauma exposure, with women experiencing higher rates of sexual violence, while men faced greater risks of imprisonment and torture. In terms of PTSD symptomatology, our findings showed that women tend to exhibit greater symptoms of arousal and specific symptoms of avoidance such as loss of interest and avoidance of activities reminding of trauma, while men were more likely to experience estrangement and detachment. Findings regarding symptoms of reexperiencing were not entirely consistent. This review emphasizes the importance of considering sex-specific symptoms in trauma assessment among displaced populations and advocates for further research into targeted interventions, especially regarding sexual violence.
Collapse
Affiliation(s)
- Klára Hanáková
- Mental Health Center, Ballerup, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark.
| | - Laura Glahder Lindberg
- Mental Health Center, Ballerup, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark
| | - Jessica Carlsson
- Mental Health Center, Ballerup, Copenhagen University Hospital - Mental Health Services CPH, Copenhagen, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Shalev A, Cho D, Marmar CR. Neurobiology and Treatment of Posttraumatic Stress Disorder. Am J Psychiatry 2024; 181:705-719. [PMID: 39086292 DOI: 10.1176/appi.ajp.20240536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The recent worldwide surge of warfare and hostilities exposes increasingly large numbers of individuals to traumatic events, placing them at risk of developing posttraumatic stress disorder (PTSD) and challenging both clinicians and service delivery systems. This overview summarizes and updates the core knowledge of the genetic, molecular, and neural circuit features of the neurobiology of PTSD and advances in evidence-based psychotherapy, pharmacotherapy, neuromodulation, and digital treatments. While the complexity of the neurobiology and the biological and clinical heterogeneity of PTSD have challenged clinicians and researchers, there is an emerging consensus concerning the underlying mechanisms and approaches to diagnosis, treatment, and prevention of PTSD. This update addresses PTSD diagnosis, prevalence, course, risk factors, neurobiological mechanisms, current standard of care, and innovations in next-generation treatment and prevention strategies. It provides a comprehensive summary and concludes with areas of research for integrating advances in the neurobiology of the disorder with novel treatment and prevention targets.
Collapse
Affiliation(s)
- Arieh Shalev
- Department of Psychiatry, NYU Grossman School of Medicine, New York
| | - Dayeon Cho
- Department of Psychiatry, NYU Grossman School of Medicine, New York
| | - Charles R Marmar
- Department of Psychiatry, NYU Grossman School of Medicine, New York
| |
Collapse
|
5
|
Leighton T, VanHorne E, Parsons D. Oxygen Straight to the Brain: An Overview of Hyperbaric Oxygen Therapy for a Variety of Brain Morbidities. Curr Sports Med Rep 2024; 23:130-136. [PMID: 38578490 DOI: 10.1249/jsr.0000000000001158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
ABSTRACT Hyperbaric oxygen therapy as a treatment for conditions like traumatic brain injury, posttraumatic stress disorder, and migraines would seem intuitive, given its effect on condition-related ischemia and inflammation. However, hyperbaric therapeutic impacts for these in acute and chronic, or prolonged symptoms are elusive. This narrative review of hyperbaric's utility provided in sections per disease renders first a review of conventional pathological mechanisms and then articulates hyperbaric treatment targets versus their respective impacts. Multiple challenges exist using hyperbaric oxygen therapy for each morbidity, even in tertiary and adjunctive treatments. An almost universal shortfall across studies includes a lack of consistent, appropriate patient selection criteria intersected with delivery timing of therapy to symptomatic target, necessary to provide a higher fidelity in treatment metrics. Further research into these respective conditions is needed along with a revisitation of hyperbaric oxygen therapy's application to their conventional pathological mechanisms, lending new perspective to their employment and efficacy.
Collapse
Affiliation(s)
- Terrance Leighton
- Basic Underwater Demolition/SEAL Training Command, Naval Special Warfare Center, San Diego, CA
| | - Edgar VanHorne
- Naval Hospital Camp Pendleton Sports Medicine Fellowship, Camp Pendleton North, CA
| | - Dale Parsons
- United States Marine Corps School of Infantry West, Camp Pendleton North, CA
| |
Collapse
|
6
|
Levy-Gigi E, Sudai E, Bar M. Context as a barrier: Impaired contextual processing increases the tendency to develop PTSD symptoms across repeated exposure to trauma. J Anxiety Disord 2023; 100:102765. [PMID: 37738686 DOI: 10.1016/j.janxdis.2023.102765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/13/2023] [Accepted: 09/03/2023] [Indexed: 09/24/2023]
Abstract
Growing evidence links repeated traumatic exposure with impaired ability to process contextual information. Specifically, like individuals with PTSD, non-PTSD trauma-exposed individuals fail to react according to contextual demands. In the present study, we explored the process that underlies this impairment. First, we tested the ability of first responders to benefit from contextual primes to improve recognition. Second, we assessed its moderating role in the relationship between traumatic exposure and PTSD symptoms. Fifty-three active-duty firefighters and 33 unexposed civilians matched for age, gender, and years of education participated in the study. All participants completed the contextual priming paradigm, the CAPS-5 clinical interview, and the WAIS-IV vocabulary subtest and were assessed for depression and general traumatic exposure. Repeated traumatic exposure was assessed objectively using the fire-and-rescue-service tracking system. As predicted, we found that trauma-exposed individuals failed to use primes to facilitate rapid and accurate recognition of contextually related objects. Not only did contextual information not improve performance, but it achieved the opposite effect, manifested as negative priming. Hence, context appeared to be an obstacle for trauma-exposed individuals and delayed rapid and accurate recognition. Moreover, impaired ability to process contextual information predicted the tendency to develop PTSD symptoms across repeated exposure to trauma.
Collapse
Affiliation(s)
- Einat Levy-Gigi
- Faculty of Education, Bar, Ilan University Ramt-Gan, Israel; The Leslie and Susan Gonda Brain Science Center, Bar-Ilan University, Ramat-Gan, Israel.
| | - Einav Sudai
- The Leslie and Susan Gonda Brain Science Center, Bar-Ilan University, Ramat-Gan, Israel
| | - Moshe Bar
- The Leslie and Susan Gonda Brain Science Center, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
7
|
Sundar U, Mukhopadhyay A, Raghavan S, Debata I, Menon RN, Kesavadas C, Shah N, Adsul BB, Joshi AR, Tejas J. Evaluation of 'Normal' Cognitive Functions and Correlation With MRI Volumetry: Towards a Definition of Vascular Cognitive Impairment. Cureus 2023; 15:e49461. [PMID: 38152804 PMCID: PMC10751464 DOI: 10.7759/cureus.49461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2023] [Indexed: 12/29/2023] Open
Abstract
Introduction It is important to establish criteria to define vascular cognitive impairment (VCI) in India as VCI is an image-based diagnosis and magnetic resonance imaging (MRI) changes resulting from age with prevalent vascular risk factors may confound MRI interpretation. The objective of this study was to establish normative community data for MRI volumetry including white matter hyperintensity volume (WMHV), correlated with age-stratified cognitive scores and vascular risk factors (VRFs), in adults aged 40 years and above. Methods We screened 2651 individuals without known neurological morbidity, living in Mumbai and nearby rural areas, using validated Marathi translations of Kolkata Cognitive Battery (KCB) and geriatric depression score (GDS). We stratified 1961 persons with GDS ≤9 by age and cognitive score, and randomly selected 10% from each subgroup for MRI brain volumetry. Crude volumes were standardized to reflect percentage of intracranial volume. Results MRI volumetry studies were done in 199 individuals (F/M = 90/109; 73 with body mass index (BMI) ≥25; 44 hypertensives; 29 diabetics; mean cognitive score 76.3). Both grey and white matter volumes decreased with increasing age. WMHV increased with age and hypertension. Grey matter volume (GMV) decreased with increasing WMHV. Positive predictors of cognition included standardized hippocampal volume (HCV), urban living, education, and BMI, while WMHV and age were negative predictors. Urban dwellers had higher cognitive scores than rural, and, paradoxically, smaller HCV. Conclusion In this study of MRI volumetry correlated with age, cognitive scores and VRFs, increasing age and WMHV predicted lower cognitive scores, whereas urban living and hippocampal volume predicted higher scores. Age and WMHV also correlated with decreasing GMV. Further study is warranted into sociodemographic and biological factors that mutually influence cognition and brain volumes, including nutritional and endocrine factors, especially at lower cognitive score bands. In this study, at the lower KCB score bins, the lack of laboratory data pertaining to nutritional and endocrine deficiencies is a drawback that reflects the logistical limitations of screening large populations at the community level. Our volumetric data which is age and cognition stratified, and takes into account the vascular risk factors associated, nevertheless constitutes important baseline data for the Indian population. Our findings could possibly contribute to the formulation of baseline criteria for defining VCI in India and could help in early diagnosis and control of cognitive decline and its key risk factors.
Collapse
Affiliation(s)
- Uma Sundar
- Department of Medicine, Lokmanya Tilak Municipal Medical College and General Hospital, Mumbai, IND
| | - Amita Mukhopadhyay
- Department of Hospital and Health Management, Institute of Health Management Research Bangalore, Bengaluru, IND
| | - Sheelakumari Raghavan
- Department of Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, IND
| | - Ipsita Debata
- Department of Community and Family Medicine, Kalinga Institute of Medical Sciences, Bhubaneswar, IND
| | - Ramshekhar N Menon
- Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, IND
| | - Chandrasekharan Kesavadas
- Department of Radiology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, IND
| | - Nilesh Shah
- Department of Psychiatry, Lokmanya Tilak Municipal Medical College and General Hospital, Mumbai, IND
| | - Balkrishna B Adsul
- Department of Community Medicine, Hinduhrudaysamrat Balasaheb Thackarey Medical College and Dr RN Cooper Municipal General Hospital, Mumbai, IND
| | - Anagha R Joshi
- Department of Radiology, Lokmanya Tilak Municipal Medical College and General Hospital, Mumbai, IND
| | - Janardhan Tejas
- Department of Forensic Medicine and Toxicology, Karpaga Vinayaga Institute of Medical Sciences and Research Center, Chengalpattu, IND
| |
Collapse
|
8
|
Alves de Araujo Junior D, Sair HI, Peters ME, Carvalho AF, Yedavalli V, Solnes LB, Luna LP. The association between post-traumatic stress disorder (PTSD) and cognitive impairment: A systematic review of neuroimaging findings. J Psychiatr Res 2023; 164:259-269. [PMID: 37390621 DOI: 10.1016/j.jpsychires.2023.06.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/08/2023] [Accepted: 06/15/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND Accumulating evidence suggests that post-traumatic stress disorder (PTSD) may increase the risk of various types of dementia. Despite the large number of studies linking these critical conditions, the underlying mechanisms remain unclear. The past decade has witnessed an exponential increase in interest on brain imaging research to assess the neuroanatomical underpinnings of PTSD. This systematic review provides a critical assessment of available evidence of neuroimaging correlates linking PTSD to a higher risk of dementia. METHODS The EMBASE, PubMed/MEDLINE, and SCOPUS electronic databases were systematically searched from 1980 to May 22, 2021 for original references on neuroimaging correlates of PTSD and risk of dementia. Literature search, screening of references, methodological quality appraisal of included articles as well as data extractions were independently conducted by at least two investigators. Eligibility criteria included: 1) a clear PTSD definition; 2) a subset of included participants must have developed dementia or cognitive impairment at any time point after the diagnosis of PTSD through any diagnostic criteria; and 3) brain imaging protocols [structural, molecular or functional], including whole-brain morphologic and functional MRI, and PET imaging studies linking PTSD to a higher risk of cognitive impairment/dementia. RESULTS Overall, seven articles met eligibility criteria, comprising findings from 366 participants with PTSD. Spatially convergent structural abnormalities in individuals with PTSD and co-occurring cognitive dysfunction involved primarily the bilateral frontal (e.g., prefrontal, orbitofrontal, cingulate cortices), temporal (particularly in those with damage to the hippocampi), and parietal (e.g., superior and precuneus) regions. LIMITATIONS A meta-analysis could not be performed due to heterogeneity and paucity of measurable data in the eligible studies. CONCLUSIONS Our systematic review provides putative neuroimaging correlates associated with PTSD and co-occurring dementia/cognitive impairment particularly involving the hippocampi. Further research examining neuroimaging features linking PTSD to dementia are clearly an unmet need of the field. Future imaging studies should provide a better control for relevant confounders, such as the selection of more homogeneous samples (e.g., age, race, education), a proper control for co-occurring disorders (e.g., co-occurring major depressive and anxiety disorders) as well as the putative effects of psychotropic medication use. Furthermore, prospective studies examining imaging biomarkers associated with a higher rate of conversion from PTSD to dementia could aid in the stratification of people with PTSD at higher risk for developing dementia for whom putative preventative interventions could be especially beneficial.
Collapse
Affiliation(s)
| | - Haris I Sair
- Johns Hopkins University School of Medicine, Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD, USA
| | - Matthew E Peters
- Johns Hopkins University School of Medicine, Department of Psychiatry and Behavioral Sciences, Baltimore, MD, USA
| | - André F Carvalho
- IMPACT (Innovation in Mental and Physical Health and Clinical Treatment) Strategic Research Centre, School of Medicine, Barwon Health, Deakin University, Geelong, VIC, Australia
| | - Vivek Yedavalli
- Johns Hopkins University School of Medicine, Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD, USA
| | - Lilja B Solnes
- Johns Hopkins University School of Medicine, Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD, USA
| | - Licia P Luna
- Johns Hopkins University School of Medicine, Russell H. Morgan Department of Radiology and Radiological Science, Baltimore, MD, USA.
| |
Collapse
|
9
|
Xiang G, Liu X, Wang J, Lu S, Yu M, Zhang Y, Sun B, Huang B, Lu XY, Li X, Zhang D. Peroxisome proliferator-activated receptor-α activation facilitates contextual fear extinction and modulates intrinsic excitability of dentate gyrus neurons. Transl Psychiatry 2023; 13:206. [PMID: 37322045 DOI: 10.1038/s41398-023-02496-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 05/06/2023] [Accepted: 05/30/2023] [Indexed: 06/17/2023] Open
Abstract
The dentate gyrus (DG) of the hippocampus encodes contextual information associated with fear, and cell activity in the DG is required for acquisition and extinction of contextual fear. However, the underlying molecular mechanisms are not fully understood. Here we show that mice deficient for peroxisome proliferator-activated receptor-α (PPARα) exhibited a slower rate of contextual fear extinction. Furthermore, selective deletion of PPARα in the DG attenuated, while activation of PPARα in the DG by local infusion of aspirin facilitated extinction of contextual fear. The intrinsic excitability of DG granule neurons was reduced by PPARα deficiency but increased by activation of PPARα with aspirin. Using RNA-Seq transcriptome we found that the transcription level of neuropeptide S receptor 1 (Npsr1) was tightly correlated with PPARα activation. Our results provide evidence that PPARα plays an important role in regulating DG neuronal excitability and contextual fear extinction.
Collapse
Affiliation(s)
- Guo Xiang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250012, China
| | - Xia Liu
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
| | - Jiangong Wang
- Institute of Metabolic and Neuropsychiatric Disorders, Binzhou Medical University Hospital, Binzhou, 256600, China
| | - Shunshun Lu
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
| | - Meng Yu
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
| | - Yuhan Zhang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250012, China
| | - Bin Sun
- National Glycoengineering Research Center, Shandong University, Jinan, 250012, China
| | - Bin Huang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250012, China
| | - Xin-Yun Lu
- Department of Neuroscience & Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, USA
| | - Xingang Li
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250012, China
| | - Di Zhang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250012, China.
| |
Collapse
|
10
|
Cobb AR, Rubin M, Stote DL, Baldwin BC, Lee HJ, Hariri AR, Telch MJ. Hippocampal volume and volume asymmetry prospectively predict PTSD symptom emergence among Iraq-deployed soldiers. Psychol Med 2023; 53:1906-1913. [PMID: 34802472 PMCID: PMC10106285 DOI: 10.1017/s0033291721003548] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/04/2021] [Accepted: 08/10/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Evidence suggests a link between smaller hippocampal volume (HV) and post-traumatic stress disorder (PTSD). However, there has been little prospective research testing this question directly and it remains unclear whether smaller HV confers risk or is a consequence of traumatization and PTSD. METHODS U.S. soldiers (N = 107) completed a battery of clinical assessments, including structural magnetic resonance imaging pre-deployment. Once deployed they completed monthly assessments of traumatic-stressors and symptoms. We hypothesized that smaller HV would potentiate the effects of traumatic stressors on PTSD symptoms in theater. Analyses evaluated whether total HV, lateral (right v. left) HV, or HV asymmetry (right - left) moderated the effects of stressor-exposure during deployment on PTSD symptoms. RESULTS Findings revealed no interaction between total HV and average monthly traumatic-stressors on PTSD symptoms b = -0.028, p = 0.681 [95% confidence interval (CI) -0.167 to 0.100]. However, in the context of greater exposure to average monthly traumatic stressors, greater right HV was associated with fewer PTSD symptoms b = -0.467, p = 0.023 (95% CI -0.786 to -0.013), whereas greater left HV was unexpectedly associated with greater PTSD symptoms b = 0.435, p = 0.024 (95% CI 0.028-0.715). CONCLUSIONS Our findings highlight the importance of considering the complex role of HV, in particular HV asymmetry, in predicting the emergence of PTSD symptoms in response to war-zone trauma.
Collapse
Affiliation(s)
- Adam R. Cobb
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
- PTSD Clinical Team, Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Mikael Rubin
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Deborah L. Stote
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Brian C. Baldwin
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Han-Joo Lee
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Ahmad R. Hariri
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Michael J. Telch
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
11
|
Garcia IJP, Kinoshita PF, Valadares JMDM, de Carvalho LED, Cortes VF, Barbosa LA, Scavone C, Santos HDL. Effect of Ouabain on Glutamate Transport in the Hippocampus of Rats with LPS-Induced Neuroinflammation. Biomedicines 2023; 11:biomedicines11030920. [PMID: 36979899 PMCID: PMC10045517 DOI: 10.3390/biomedicines11030920] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/19/2023] Open
Abstract
A lipopolysaccharide (LPS)-induced neuroinflammation rat model was used to study the effects of ouabain (OUA) at low concentrations, which can interact with the Na,K-ATPase, causing the modulation of intracellular signalling pathways in the Central Nervous System. Our study aimed to analyse the effects of OUA on glutamate transport in the hippocampus of rats with LPS-induced neuroinflammation. Adult male Wistar rats were divided into four groups: OUA (1.8 µg/kg), saline (CTR), LPS (200 µg/kg), and OUA + LPS (OUA 20 min before LPS). The animals were sacrificed after 2 h, and the hippocampus was collected for analysis. After treatment, we determined the activities of Na,K-ATPase and glutamine synthetase (GS). In addition, expression of the α1, α2, and α3 isoforms of Na,K-ATPase and the glutamate transporters, EAAT1 and EAAT2, were also analysed. Treatment with OUA caused a specific increase in the α2 isoform expression (~20%), whereas LPS decreased its expression (~22%), and treatment with OUA before LPS prevented the effects of LPS. Moreover, LPS caused a decrease of approximately 50% in GS activity compared with that in the CTR group; however, OUA pre-treatment attenuated this effect of LPS. Notably, it was found that treatment with OUA caused an increase in the expression of EAAT1 (~30%) and EAAT2 (~25%), whereas LPS caused a decrease in the expression of EAAT1 (~23%) and EAAT2 (~25%) compared with that in the CTR group. When treated with OUA, the effects of LPS were abrogated. In conclusion, the OUA pre-treatment abolished the effect caused by LPS, suggesting that this finding may be related to the restoration of the interaction between FXYD2 and the studied membrane proteins.
Collapse
Affiliation(s)
- Israel José Pereira Garcia
- Cellular Biochemistry Laboratory, Federal University of São João del-Rei, Campus Cento-Oeste, Divinópolis 35501-296, Brazil
- Membrane and ATPase Biochemistry Laboratory, Federal University of São João del-Rei, Campus Cento-Oeste, Divinópolis 35501-296, Brazil
| | - Paula Fernanda Kinoshita
- Molecular Neuropharmacology Laboratory, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil
| | - Jéssica Martins de Moura Valadares
- Cellular Biochemistry Laboratory, Federal University of São João del-Rei, Campus Cento-Oeste, Divinópolis 35501-296, Brazil
- Membrane and ATPase Biochemistry Laboratory, Federal University of São João del-Rei, Campus Cento-Oeste, Divinópolis 35501-296, Brazil
| | - Luciana Estefani Drumond de Carvalho
- Cellular Biochemistry Laboratory, Federal University of São João del-Rei, Campus Cento-Oeste, Divinópolis 35501-296, Brazil
- Membrane and ATPase Biochemistry Laboratory, Federal University of São João del-Rei, Campus Cento-Oeste, Divinópolis 35501-296, Brazil
| | - Vanessa Faria Cortes
- Cellular Biochemistry Laboratory, Federal University of São João del-Rei, Campus Cento-Oeste, Divinópolis 35501-296, Brazil
- Membrane and ATPase Biochemistry Laboratory, Federal University of São João del-Rei, Campus Cento-Oeste, Divinópolis 35501-296, Brazil
| | - Leandro Augusto Barbosa
- Cellular Biochemistry Laboratory, Federal University of São João del-Rei, Campus Cento-Oeste, Divinópolis 35501-296, Brazil
- Membrane and ATPase Biochemistry Laboratory, Federal University of São João del-Rei, Campus Cento-Oeste, Divinópolis 35501-296, Brazil
| | - Cristoforo Scavone
- Molecular Neuropharmacology Laboratory, Department of Pharmacology, Institute of Biomedical Science, University of São Paulo, São Paulo 05508-000, Brazil
- Correspondence: (C.S.); (H.d.L.S.)
| | - Hérica de Lima Santos
- Cellular Biochemistry Laboratory, Federal University of São João del-Rei, Campus Cento-Oeste, Divinópolis 35501-296, Brazil
- Membrane and ATPase Biochemistry Laboratory, Federal University of São João del-Rei, Campus Cento-Oeste, Divinópolis 35501-296, Brazil
- Correspondence: (C.S.); (H.d.L.S.)
| |
Collapse
|
12
|
Larosa A, Wong TP. The hippocampus in stress susceptibility and resilience: Reviewing molecular and functional markers. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110601. [PMID: 35842073 DOI: 10.1016/j.pnpbp.2022.110601] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/22/2022] [Accepted: 07/10/2022] [Indexed: 10/17/2022]
Abstract
Understanding the individual variability that comes with the likelihood of developing stress-related psychopathologies is of paramount importance when addressing mechanisms of their neurobiology. This article focuses on the hippocampus as a region that is highly influenced by chronic stress exposure and that has strong ties to the development of related disorders, such as depression and post-traumatic stress disorder. We first outline three commonly used animal models that have been used to separate animals into susceptible and resilient cohorts. Next, we review molecular and functional hippocampal markers of susceptibility and resilience. We propose that the hippocampus plays a crucial role in the differences in the processing and storage of stress-related information in animals with different stress susceptibilities. These hippocampal markers not only help us attain a more comprehensive understanding of the various facets of stress-related pathophysiology, but also could be targeted for the development of new treatments.
Collapse
Affiliation(s)
- Amanda Larosa
- Neuroscience Division, Douglas Research Centre, Montreal, QC, Canada; Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Tak Pan Wong
- Neuroscience Division, Douglas Research Centre, Montreal, QC, Canada; Dept. of Psychiatry, McGill University, Montreal, QC, Canada.
| |
Collapse
|
13
|
Israel B, Wiprovnick AE, Belcher AM, Kleinman MB, Ramprashad A, Spaderna M, Weintraub E. Practical Considerations for Treating Comorbid Posttraumatic Stress Disorder in the Addictions Clinic: Approaches to Clinical Care, Leadership, and Alleviating Shame. Psychiatr Clin North Am 2022; 45:375-414. [PMID: 36055729 DOI: 10.1016/j.psc.2022.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
A practical, common-sense framework for recognizing and addressing comorbid posttraumatic stress disorder (PTSD) in the substance use disorder (SUD) clinic is outlined. The article focuses on strategies that can help establish trauma-informed care or augment an existing approach. Interventions are organized around the task of ameliorating shame (or shame sensitivity), which represents a transdiagnostic mediator of psychopathology and, potentially, capacity for change. Countershaming strategies can guide a trauma-responsive leadership approach. Considering the striking rate of underdiagnosis of PTSD among patients with SUD, implementing routine systematic PTSD screening likely represents the single most consequential trauma-informed intervention that SUD clinics can adopt.
Collapse
Affiliation(s)
- Benjamin Israel
- Division of Consultation-Liaison Psychiatry, Department of Psychiatry, University of Maryland School of Medicine, 4801 Yellowwood Ave, Ste 2E1, Baltimore, MD 21209, USA.
| | - Alicia E Wiprovnick
- Division of Addiction Research and Treatment, Department of Psychiatry, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA
| | - Annabelle M Belcher
- Division of Addiction Research and Treatment, Department of Psychiatry, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA
| | - Mary B Kleinman
- Department of Psychology, University of Maryland at College Park, Biology/Psychology Building, 4094 Campus Drive, College Park, MD 20742, USA
| | - Avinash Ramprashad
- Division of Addiction Research and Treatment, Department of Psychiatry, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA
| | - Max Spaderna
- Division of Addiction Research and Treatment, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA
| | - Eric Weintraub
- Division of Addiction Research and Treatment, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD 21201, USA
| |
Collapse
|
14
|
Correa R, Rodriguez N, Bortolaso M. What is the nature of the alteration of temporality in Trauma-Related Altered States of Consciousness? A neuro-phenomenological analysis✰,✰✰,★,★★. EUROPEAN JOURNAL OF TRAUMA & DISSOCIATION 2022. [DOI: 10.1016/j.ejtd.2021.100227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Chen HJ, Qi R, Ke J, Qiu J, Xu Q, Zhong Y, Lu GM, Chen F. Evaluation of gray matter reduction in patients with typhoon-related posttraumatic stress disorder using causal network analysis of structural MRI. Psychol Med 2022; 52:1481-1490. [PMID: 32938511 DOI: 10.1017/s0033291720003281] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The structural changes recent-onset posttraumatic stress disorder (PTSD) subjects were rarely investigated. This study was to compare temporal and causal relationships of structural changes in recent-onset PTSD with trauma-exposed control (TEC) subjects and non-TEC subjects. METHODS T1-weighted magnetic resonance images of 27 PTSD, 33 TEC and 30 age- and sex-matched healthy control (HC) subjects were studied. The causal network of structural covariance was used to evaluate the causal relationships of structural changes in PTSD patients. RESULTS Volumes of bilateral hippocampal and left lingual gyrus were significantly smaller in PTSD patients and TEC subjects than HC subjects. As symptom scores increase, reduction in gray matter volume began in the hippocampus and progressed to the frontal lobe, then to the temporal and occipital cortices (p < 0.05, false discovery rate corrected). The hippocampus might be the primary hub of the directional network and demonstrated positive causal effects on the frontal, temporal and occipital regions (p < 0.05, false discovery rate corrected). The frontal regions, which were identified to be transitional points, projected causal effects to the occipital lobe and temporal regions and received causal effects from the hippocampus (p < 0.05, false discovery rate corrected). CONCLUSIONS The results offer evidence of localized abnormalities in the bilateral hippocampus and remote abnormalities in multiple temporal and frontal regions in typhoon-exposed PTSD patients.
Collapse
Affiliation(s)
- Hui Juan Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), NO. 19, XIUHUA ST, XIUYING DIC, Haikou, 570311, Hainan, P.R. China
| | - Rongfeng Qi
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Jun Ke
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, China
| | - Jie Qiu
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), NO. 19, XIUHUA ST, XIUYING DIC, Haikou, 570311, Hainan, P.R. China
| | - Qiang Xu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Yuan Zhong
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Guang Ming Lu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, China
| | - Feng Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), NO. 19, XIUHUA ST, XIUYING DIC, Haikou, 570311, Hainan, P.R. China
| |
Collapse
|
16
|
McManus E, Haroon H, Duncan NW, Elliott R, Muhlert N. The effects of stress across the lifespan on the brain, cognition and mental health: A UK biobank study. Neurobiol Stress 2022; 18:100447. [PMID: 35685679 PMCID: PMC9170771 DOI: 10.1016/j.ynstr.2022.100447] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/22/2022] [Accepted: 04/08/2022] [Indexed: 12/05/2022] Open
Abstract
Repeated overstimulation of the stress response system, caused by exposure to prolonged highly stressful experiences, is thought to affect brain structure, cognitive ability, and mental health. We tested the effects of highly stressful experiences during childhood and adulthood using data from the UK Biobank, a large-scale national health and biomedical study with over 500,000 participants. To do this, we defined four groups with high or low levels of childhood and/or adulthood stress. We then used T1-and diffusion-weighted MRI data to assess the macrostructure of grey matter and microstructure of white matter within limbic brain regions, commonly associated with the stress response. We also compared executive function and working memory between these groups. Our findings suggest that in females, higher levels of Childhood stress were associated with reduced connectivity within the posterior thalamic radiation and cingulum of the hippocampus. In males however, higher levels of Adulthood stress is associated with similar changes in brain microstructure in the posterior thalamic radiation and cingulum of the hippocampus. High stress in Childhood and Adulthood was associated with decreases in executive function and working memory in both males and females. Stress across the lifespan was also positively associated with the number of diagnosed mental health problems, with a stronger effect in females than in males. Finally, our findings also suggest that cognitive and mental health outcomes due to stress may be mediated by the sex specific stress related changes in brain microstructure. Together our findings demonstrate clear links between stress at distinct phases of the lifespan, changes in measures of brain microstructure, impairments in cognitive abilities and negative mental health outcomes.
Collapse
Affiliation(s)
- Elizabeth McManus
- The University of Manchester, Division of Neuroscience & Experimental Psychology, UK
| | - Hamied Haroon
- The University of Manchester, Division of Neuroscience & Experimental Psychology, UK
| | - Niall W. Duncan
- Taipei Medical University, Graduate Institute of Mind Brain and Consciousness, Taiwan
| | - Rebecca Elliott
- The University of Manchester, Division of Neuroscience & Experimental Psychology, UK
| | - Nils Muhlert
- The University of Manchester, Division of Neuroscience & Experimental Psychology, UK
| |
Collapse
|
17
|
Hyperbaric oxygen therapy improves symptoms, brain's microstructure and functionality in veterans with treatment resistant post-traumatic stress disorder: A prospective, randomized, controlled trial. PLoS One 2022; 17:e0264161. [PMID: 35192645 PMCID: PMC8863239 DOI: 10.1371/journal.pone.0264161] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/29/2022] [Indexed: 11/21/2022] Open
Abstract
Introduction Post-traumatic stress disorder (PTSD) is characterized by changes in both brain activity and microstructural integrity. Cumulative evidence demonstrates that hyperbaric oxygen therapy (HBOT) induces neuroplasticity and case-series studies indicate its potentially positive effects on PTSD. The aim of the study was to evaluate HBOT’s effect in veterans with treatment resistant PTSD. Methods Veterans with treatment resistant PTSD were 1:1 randomized to HBOT or control groups. All other brain pathologies served as exclusion criteria. Outcome measures included clinician-administered PTSD scale-V (CAPS-V) questionnaires, brief symptom inventory (BSI), BECK depression inventory (BDI), brain microstructural integrity evaluated by MRI diffuse tensor imaging sequence (DTI), and brain function was evaluated by an n-back task using functional MRI (fMRI). The treatment group underwent sixty daily hyperbaric sessions. No interventions were performed in the control group. Results Thirty-five veterans were randomized to HBOT (N = 18) or control (n = 17) and 29 completed the protocol. Following HBOT, there was a significant improvement in CAPS-V scores and no change in the control (F = 30.57, P<0.0001, Net effect size = 1.64). Significant improvements were also demonstrated in BSI and BDI scores (F = 5.72, P = 0.024 Net effect size = 0.89, and F = 7.65, P = 0.01, Net effect size = 1.03). Improved brain activity was seen in fMRI in the left dorsolateral prefrontal, middle temporal gyri, both thalami, left hippocampus and left insula. The DTI showed significant increases in fractional anisotropy in the fronto-limbic white-matter, genu of the corpus callosum and fornix. Conclusions HBOT improved symptoms, brain microstructure and functionality in veterans with treatment resistant PTSD.
Collapse
|
18
|
Pant U, Frishkopf M, Park T, Norris CM, Papathanassoglou E. A Neurobiological Framework for the Therapeutic Potential of Music and Sound Interventions for Post-Traumatic Stress Symptoms in Critical Illness Survivors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19053113. [PMID: 35270804 PMCID: PMC8910287 DOI: 10.3390/ijerph19053113] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/25/2022] [Accepted: 03/03/2022] [Indexed: 11/16/2022]
Abstract
Overview: Post traumatic stress disorder (PTSD) has emerged as a severely debilitating psychiatric disorder associated with critical illness. Little progress has been made in the treatment of post-intensive care unit (ICU) PTSD. Aim: To synthesize neurobiological evidence on the pathophysiology of PTSD and the brain areas involved, and to highlight the potential of music to treat post-ICU PTSD. Methods: Critical narrative review to elucidate an evidence-based neurobiological framework to inform the study of music interventions for PTSD post-ICU. Literature searches were performed in PubMed and CINAHL. The Scale for the Assessment of Narrative Review Articles (SANRA) guided reporting. Results: A dysfunctional HPA axis feedback loop, an increased amygdalic response, hippocampal atrophy, and a hypoactive prefrontal cortex contribute to PTSD symptoms. Playing or listening to music can stimulate neurogenesis and neuroplasticity, enhance brain recovery, and normalize stress response. Additionally, evidence supports effectiveness of music to improve coping and emotional regulation, decrease dissociation symptoms, reduce depression and anxiety levels, and overall reduce severity of PTSD symptoms. Conclusions: Despite the lack of music interventions for ICU survivors, music has the potential to help people suffering from PTSD by decreasing amygdala activity, improving hippocampal and prefrontal brain function, and balancing the HPA-axis.
Collapse
Affiliation(s)
- Usha Pant
- Faculty of Nursing, Edmonton Clinic Health Academy (ECHA), University of Alberta, 11405-87th Ave, Edmonton, AB T6G 1C9, Canada; (U.P.); (T.P.); (C.M.N.)
| | - Michael Frishkopf
- Department of Music, Faculty of Arts, University of Alberta, 3-98 Fine Arts Building, Edmonton, AB T6G 2C9, Canada;
- Faculty of Medicine and Dentistry, University of Alberta, Walter C. MacKenzie Health Sciences Centre, Edmonton, AB T6G 2R7, Canada
- Canadian Centre for Ethnomusicology (CCE), University of Alberta, 11204-89 Ave NW, Edmonton, AB T6G 2J4, Canada
| | - Tanya Park
- Faculty of Nursing, Edmonton Clinic Health Academy (ECHA), University of Alberta, 11405-87th Ave, Edmonton, AB T6G 1C9, Canada; (U.P.); (T.P.); (C.M.N.)
| | - Colleen M. Norris
- Faculty of Nursing, Edmonton Clinic Health Academy (ECHA), University of Alberta, 11405-87th Ave, Edmonton, AB T6G 1C9, Canada; (U.P.); (T.P.); (C.M.N.)
- Faculty of Medicine and Dentistry, University of Alberta, Walter C. MacKenzie Health Sciences Centre, Edmonton, AB T6G 2R7, Canada
- School of Public Health, University of Alberta, ECHA 4-081, 11405-87 Ave NW, Edmonton, AB T6G 1C9, Canada
- Cardiovascular Health and Stroke Strategic Clinical Network, Alberta Health Services Corporate Office Seventh Street Plaza 14th Floor, North Tower 10030-107 Street NW, Edmonton, AB T5J 3E4, Canada
| | - Elizabeth Papathanassoglou
- Faculty of Nursing, Edmonton Clinic Health Academy (ECHA), University of Alberta, 11405-87th Ave, Edmonton, AB T6G 1C9, Canada; (U.P.); (T.P.); (C.M.N.)
- Neurosciences Rehabilitation & Vision Strategic Clinical Network, Alberta Health Services Corporate Office Seventh Street Plaza 14th Floor, North Tower 10030-107 Street NW, Edmonton, AB T5J 3E4, Canada
- Correspondence:
| |
Collapse
|
19
|
Qiu B, Zhong Z, Righter S, Xu Y, Wang J, Deng R, Wang C, Williams KE, Ma YY, Tsechpenakis G, Liang T, Yong W. FKBP51 modulates hippocampal size and function in post-translational regulation of Parkin. Cell Mol Life Sci 2022; 79:175. [PMID: 35244772 PMCID: PMC11072506 DOI: 10.1007/s00018-022-04167-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 11/29/2022]
Abstract
FK506-binding protein 51 (encoded by Fkpb51, also known as Fkbp5) has been associated with stress-related mental illness. To investigate its function, we studied the morphological consequences of Fkbp51 deletion. Artificial Intelligence-assisted morphological analysis revealed that male Fkbp51 knock-out (KO) mice possess more elongated dentate gyrus (DG) but shorter hippocampal height in coronal sections when compared to WT. Primary cultured Fkbp51 KO hippocampal neurons were shown to exhibit larger dendritic outgrowth than wild-type (WT) controls and pharmacological manipulation experiments suggest that this may occur through the regulation of microtubule-associated protein. Both in vitro primary culture and in vivo labeling support a role for FKBP51 in the regulation of microtubule-associated protein expression. Furthermore, Fkbp51 KO hippocampi exhibited decreases in βIII-tubulin, MAP2, and Tau protein levels, but a greater than 2.5-fold increase in Parkin protein. Overexpression and knock-down FKBP51 demonstrated that FKBP51 negatively regulates Parkin in a dose-dependent and ubiquitin-mediated manner. These results indicate a potential novel post-translational regulatory mechanism of Parkin by FKBP51 and the significance of their interaction on disease onset. KO has more flattened hippocampus using AI-assisted measurement Both pyramidal cell layer (PCL) of CA and granular cell layer (GCL) of DG distinguishable as two layers: deep cell layer and superficial layer. Distinct MAP2 expression between deep and superficial layer between KO and WT, Higher Parkin expression in KO brain Mechanism of FKBP51 inhibition resulting in Parkin, MAP2, Tau, and Tubulin expression differences between KO and WT mice, and resulting neurite outgrowth differences.
Collapse
Affiliation(s)
- Bin Qiu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Zhaohui Zhong
- Department of General Surgery, Peking University People's Hospital, Beijing, 100032, China
| | - Shawn Righter
- Department of Computer and Information Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Yuxue Xu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jun Wang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ran Deng
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chao Wang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Kent E Williams
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yao-Ying Ma
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Gavriil Tsechpenakis
- Department of Computer and Information Science, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202, USA
| | - Tiebing Liang
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| | - Weidong Yong
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
20
|
Bustamante D, Amstadter AB, Pritikin JN, Brick TR, Neale MC. Associations Between Traumatic Stress, Brain Volumes and Post-traumatic Stress Disorder Symptoms in Children: Data from the ABCD Study. Behav Genet 2022; 52:75-91. [PMID: 34860306 PMCID: PMC8860798 DOI: 10.1007/s10519-021-10092-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 11/07/2021] [Indexed: 11/26/2022]
Abstract
Reduced volumes in brain regions of interest (ROIs), primarily from adult samples, are associated with posttraumatic stress disorder (PTSD). We extended this work to children using data from the Adolescent Brain Cognitive Development (ABCD) Study® (N = 11,848; Mage = 9.92). Structural equation modeling and an elastic-net (EN) machine-learning approach were used to identify potential effects of traumatic events (TEs) on PTSD symptoms (PTSDsx) directly, and indirectly via the volumes 300 subcortical and cortical ROIs. We then estimated the genetic and environmental variation in the phenotypes. TEs were directly associated with PTSDsx (r = 0.92) in children, but their indirect effects (r < 0.0004)-via the volumes of EN-identified subcortical and cortical ROIs-were negligible at this age. Additive genetic factors explained a modest proportion of the variance in TEs (23.4%) and PTSDsx (21.3%), and accounted for most of the variance of EN-identified volumes of four of the five subcortical (52.4-61.8%) three of the nine cortical ROIs (46.4-53.3%) and cerebral white matter in the left hemisphere (57.4%). Environmental factors explained most of the variance in TEs (C = 61.6%, E = 15.1%), PTSDsx (residual-C = 18.4%, residual-E = 21.8%), right lateral ventricle (C = 15.2%, E = 43.1%) and six of the nine EN-identified cortical ROIs (C = 4.0-13.6%, E = 56.7-74.8%). There is negligible evidence that the volumes of brain ROIs are associated with the indirect effects of TEs on PTSDsx at this age. Overall, environmental factors accounted for more of the variation in TEs and PTSDsx. Whereas additive genetic factors accounted for most of the variability in the volumes of a minority of cortical and in most of subcortical ROIs.
Collapse
Affiliation(s)
- Daniel Bustamante
- Virginia Institute for Psychiatric and Behavioral Genetics, 800 E Leigh Street, Biotech One, Box 980126, Richmond, VA, 23298, USA.
- Integrative Life Sciences Doctoral Program, Virginia Commonwealth University, Richmond, VA, USA.
| | - Ananda B Amstadter
- Virginia Institute for Psychiatric and Behavioral Genetics, 800 E Leigh Street, Biotech One, Box 980126, Richmond, VA, 23298, USA
- Department of Psychiatry, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Joshua N Pritikin
- Virginia Institute for Psychiatric and Behavioral Genetics, 800 E Leigh Street, Biotech One, Box 980126, Richmond, VA, 23298, USA
- Department of Psychiatry, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Timothy R Brick
- Department of Human Development and Family Studies, and Institute for Computational and Data Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Michael C Neale
- Virginia Institute for Psychiatric and Behavioral Genetics, 800 E Leigh Street, Biotech One, Box 980126, Richmond, VA, 23298, USA
- Department of Psychiatry, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
21
|
Abstract
Posttraumatic stress disorder (PTSD) is a debilitating disorder that can develop after experiencing a traumatic event and is, in part, characterized by memory disturbances. Given its important role in learning and memory, the hippocampus has been studied extensively in PTSD using volumetric neuroimaging techniques. However, the results of these studies are mixed. The variability in findings across studies could arise from differences in samples with regard to trauma type, but this connection has not yet been formally assessed. To assess this question, we conducted (1) mixed-effects meta-analyses to replicate previous meta-analytic findings of significant differences in hippocampal volumes in PTSD groups versus two different types of control groups (trauma-exposed and -unexposed groups), and (2) mixed-effects subgroup and meta-regression analyses to determine whether trauma type moderated these hippocampal volume differences. Overall, the PTSD groups showed significantly smaller right hippocampal volumes than both control groups and significantly smaller left hippocampal volumes than trauma-unexposed control groups. Subgroup and meta-regression analyses revealed that trauma type did not moderate the effect seen between PTSD and trauma-exposed non-PTSD groups but did moderate the effect between the PTSD and trauma-unexposed control groups: studies that contained participants with PTSD related to combat trauma exhibited significantly smaller effect sizes for right hippocampal volumes compared to the interpersonal violence and "other" trauma-type groups with PTSD. These findings suggest that trauma type may moderate hippocampal volume in trauma-exposed individuals but not in those with PTSD.
Collapse
|
22
|
Diversity of daily activities is associated with greater hippocampal volume. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:75-87. [PMID: 34599488 PMCID: PMC8792192 DOI: 10.3758/s13415-021-00942-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/05/2021] [Indexed: 02/03/2023]
Abstract
Greater engagement in a range of daily activities is associated with better cognitive functioning (Lee et al., Lee et al., 2020). The hippocampus, a subcortical brain structure implicated in learning, memory, spatial navigation and other aspects of cognitive functioning, may be structurally sensitive to exposure to and engagement with novel experiences and environments. The present study tested whether greater activity diversity, defined as the range of common daily activities engaged in and the proportion of time spent in each, is associated with larger hippocampal volume. Greater diversity of activities, as measured using daily diaries across an 8-day period, was related to greater hippocampal volume averaged across the left and right hemispheres, even when adjusting for estimated intracranial volume, total activity time, sociodemographic factors, and self-reported physical health. These findings are broadly consistent with nonhuman animal studies, demonstrating a link between enriched environments and structural changes to the hippocampus. Future longitudinal and experimental work can elucidate causal and directional relationships between diversity of daily activities and hippocampal volume.
Collapse
|
23
|
Maternal stress prior to conception impairs memory and decreases right dorsal hippocampal volume and basilar spine density in the prefrontal cortex of adult male offspring. Behav Brain Res 2022; 416:113543. [PMID: 34425182 DOI: 10.1016/j.bbr.2021.113543] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 08/06/2021] [Accepted: 08/19/2021] [Indexed: 12/22/2022]
Abstract
Chronic parental stress impacts offspring functioning throughout life. Chronic variable stress prior to conception impairs offspring development in terms of behavior, neuroanatomy, and neurobiology. Previously, our lab demonstrated that even a consistent stressor experienced by the sire or the dam shapes offspring development beginning in early life. Here, we show how consistent maternal stress prior to conception influences the brain and behavior of offspring in adolescence and adulthood. Female Long-Evans rats were exposed to elevated platform stress twice daily for 27 consecutive days immediately prior to mating with non-stressed males. Male and female offspring were assessed in the open field and elevated plus maze in adolescence, and open field, elevated plus maze, Whishaw tray reaching, and Morris water task in adulthood. Offspring were then euthanized, and their brains were stained with Golgi-Cox solution and then examined for dendritic spine density and hippocampal volume. Major findings include deficits in spatial memory, decreased medial prefrontal cortex spine density, and reduced right dorsal hippocampal volume in male offspring only. This work illustrates that the effects of consistent maternal stress prior to conception are lifelong and highly sexually dimorphic.
Collapse
|
24
|
Zilcha‐Mano S, Zhu X, Lazarov A, Suarez‐Jimenez B, Helpman L, Kim Y, Maitlin C, Neria Y, Rutherford BR. Structural brain features signaling trauma, PTSD, or resilience? A systematic exploration. Depress Anxiety 2022; 39:695-705. [PMID: 35708133 PMCID: PMC9588504 DOI: 10.1002/da.23275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/15/2022] [Accepted: 05/30/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Studies have searched for neurobiological markers of trauma exposure, posttraumatic stress disorder (PTSD) diagnosis, and resilience to trauma to identify therapeutic targets for PTSD. Despite some promising results, findings are inconsistent. AIMS The present study adopted a data-driven approach to systematically explore whether structural brain markers of trauma, PTSD, or resilience emerge when all are explored. MATERIALS & METHODS Differences between clusters in the proportion of PTSD, healthy controls (HC), and trauma-exposed healthy controls (TEHC) served to indicate the presence of PTSD, trauma, and resilience markers, respectively. A total of 129 individuals, including 46 with PTSD, 49 TEHCs, and 34 HCs not exposed to trauma were scanned. Volumes, cortical thickness, and surface areas of interest were obtained from T1 structural MRI and used to identify data-driven clusters. RESULTS Two clusters were identified, differing in the proportion of TEHCs but not of PTSDs or HCs. The cluster with the higher proportion of TEHCs, referred to as the resilience cluster, was characterized by higher volume in brain regions implicated in trauma exposure, especially the thalamus and rostral middle frontal gyrus. Cross-validation established the robustness and consistency of the identified clusters. DISCUSSION & CONCLUSION Findings support the existence of structural brain markers of resilience.
Collapse
Affiliation(s)
| | - Xi Zhu
- Department of PsychiatryColumbia UniversityNew YorkNew YorkUSA,New York State Psychiatric Institute, Columbia University Medical CenterNew YorkNew YorkUSA
| | - Amit Lazarov
- School of Psychological SciencesTel‐Aviv UniversityTel‐AvivIsrael,Department of PsychiatryColumbia University Medical CenterNew YorkNew YorkUSA
| | - Benjamin Suarez‐Jimenez
- New York State Psychiatric Institute, Columbia University Medical CenterNew YorkNew YorkUSA,Department of NeuroscienceUniversity of RochesterRochesterNew YorkUSA
| | - Liat Helpman
- Department of Counseling and Human DevelopmentUniversity of HaifaMount CarmelHaifaIsrael,Tel Aviv Sourasky Medical CenterTel AvivIsrael
| | - Yoojean Kim
- Department of PsychiatryColumbia UniversityNew YorkNew YorkUSA,New York State Psychiatric Institute, Columbia University Medical CenterNew YorkNew YorkUSA
| | - Carly Maitlin
- Department of PsychiatryColumbia UniversityNew YorkNew YorkUSA,New York State Psychiatric Institute, Columbia University Medical CenterNew YorkNew YorkUSA
| | - Yuval Neria
- Department of PsychiatryColumbia UniversityNew YorkNew YorkUSA,New York State Psychiatric Institute, Columbia University Medical CenterNew YorkNew YorkUSA
| | - Bret R. Rutherford
- Columbia University College of Physicians and Surgeons, New York State Psychiatric InstituteNew York CityNew YorkUSA
| |
Collapse
|
25
|
Mundorf A, Peterburs J, Ocklenburg S. Asymmetry in the Central Nervous System: A Clinical Neuroscience Perspective. Front Syst Neurosci 2021; 15:733898. [PMID: 34970125 PMCID: PMC8712556 DOI: 10.3389/fnsys.2021.733898] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/25/2021] [Indexed: 01/20/2023] Open
Abstract
Recent large-scale neuroimaging studies suggest that most parts of the human brain show structural differences between the left and the right hemisphere. Such structural hemispheric asymmetries have been reported for both cortical and subcortical structures. Interestingly, many neurodevelopmental and psychiatric disorders have been associated with altered functional hemispheric asymmetries. However, findings concerning the relation between structural hemispheric asymmetries and disorders have largely been inconsistent, both within specific disorders as well as between disorders. In the present review, we compare structural asymmetries from a clinical neuroscience perspective across different disorders. We focus especially on recent large-scale neuroimaging studies, to concentrate on replicable effects. With the notable exception of major depressive disorder, all reviewed disorders were associated with distinct patterns of alterations in structural hemispheric asymmetries. While autism spectrum disorder was associated with altered structural hemispheric asymmetries in a broader range of brain areas, most other disorders were linked to more specific alterations in brain areas related to cognitive functions that have been associated with the symptomology of these disorders. The implications of these findings are highlighted in the context of transdiagnostic approaches to psychopathology.
Collapse
Affiliation(s)
- Annakarina Mundorf
- Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Jutta Peterburs
- Institute for Systems Medicine and Department of Human Medicine, MSH Medical School Hamburg, Hamburg, Germany
| | - Sebastian Ocklenburg
- Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
- Department of Psychology, MSH Medical School Hamburg, Hamburg, Germany
| |
Collapse
|
26
|
Milbocker KA, Campbell TS, Collins N, Kim S, Smith IF, Roth TL, Klintsova AY. Glia-Driven Brain Circuit Refinement Is Altered by Early-Life Adversity: Behavioral Outcomes. Front Behav Neurosci 2021; 15:786234. [PMID: 34924972 PMCID: PMC8678604 DOI: 10.3389/fnbeh.2021.786234] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/12/2021] [Indexed: 12/12/2022] Open
Abstract
Early-life adversity (ELA), often clinically referred to as "adverse childhood experiences (ACE)," is the exposure to stress-inducing events in childhood that can result in poor health outcomes. ELA negatively affects neurodevelopment in children and adolescents resulting in several behavioral deficits and increasing the risk of developing a myriad of neuropsychiatric disorders later in life. The neurobiological mechanisms by which ELA alters neurodevelopment in childhood have been the focus of numerous reviews. However, a comprehensive review of the mechanisms affecting adolescent neurodevelopment (i.e., synaptic pruning and myelination) is lacking. Synaptic pruning and myelination are glia-driven processes that are imperative for brain circuit refinement during the transition from adolescence to adulthood. Failure to optimize brain circuitry between key brain structures involved in learning and memory, such as the hippocampus and prefrontal cortex, leads to the emergence of maladaptive behaviors including increased anxiety or reduced executive function. As such, we review preclinical and clinical literature to explore the immediate and lasting effects of ELA on brain circuit development and refinement. Finally, we describe a number of therapeutic interventions best-suited to support adolescent neurodevelopment in children with a history of ELA.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anna Y. Klintsova
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
27
|
Zhang T. A Modeling and Machine Learning Pipeline to Rationally Design Treatments to Restore Neuroendocrine Disorders in Heterogeneous Individuals. Front Genet 2021; 12:656508. [PMID: 34567056 PMCID: PMC8458900 DOI: 10.3389/fgene.2021.656508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022] Open
Abstract
Heterogeneity among individual patients presents a fundamental challenge to effective treatment, since a treatment protocol working for a portion of the population often fails in others. We hypothesize that a computational pipeline integrating mathematical modeling and machine learning could be used to address this fundamental challenge and facilitate the optimization of individualized treatment protocols. We tested our hypothesis with the neuroendocrine systems controlled by the hypothalamic–pituitary–adrenal (HPA) axis. With a synergistic combination of mathematical modeling and machine learning (ML), this integrated computational pipeline could indeed efficiently reveal optimal treatment targets that significantly contribute to the effective treatment of heterogeneous individuals. What is more, the integrated pipeline also suggested quantitative information on how these key targets should be perturbed. Based on such ML revealed hints, mathematical modeling could be used to rationally design novel protocols and test their performances. We believe that this integrated computational pipeline, properly applied in combination with other computational, experimental and clinical research tools, can be used to design novel and improved treatment against a broad range of complex diseases.
Collapse
Affiliation(s)
- Tongli Zhang
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
28
|
Smith BM, Thomasson M, Yang YC, Sibert C, Stocco A. When Fear Shrinks the Brain: A Computational Model of the Effects of Posttraumatic Stress on Hippocampal Volume. Top Cogn Sci 2021; 13:499-514. [PMID: 34174028 DOI: 10.1111/tops.12537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 11/28/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric disorder often characterized by the unwanted re-experiencing of a traumatic event through nightmares, flashbacks, and/or intrusive memories. This paper presents a neurocomputational model using the ACT-R cognitive architecture that simulates intrusive memory retrieval following a potentially traumatic event (PTE) and predicts hippocampal volume changes observed in PTSD. Memory intrusions were captured in the ACT-R rational analysis framework by weighting the posterior probability of re-encoding traumatic events into memory with an emotional intensity term I to capture the degree to which an event was perceived as dangerous or traumatic. It is hypothesized that (1) increasing the intensity I of a PTE will increase the odds of memory intrusions, and (2) increased frequency of intrusions will result in a concurrent decrease in hippocampal size. A series of simulations were run and it was found that I had a significant effect on the probability of experiencing traumatic memory intrusions following a PTE. The model also found that I was a significant predictor of hippocampal volume reduction, where the mean and range of simulated volume loss match results of existing meta-analyses. The authors believe that this is the first model to both describe traumatic memory retrieval and provide a mechanistic account of changes in hippocampal volume, capturing one plausible link between PTSD and hippocampal volume.
Collapse
Affiliation(s)
- Briana M Smith
- Department of Bioengineering, University of Washington.,Department of Psychology, University of Washington
| | | | | | | | | |
Collapse
|
29
|
Gisabella B, Babu J, Valeri J, Rexrode L, Pantazopoulos H. Sleep and Memory Consolidation Dysfunction in Psychiatric Disorders: Evidence for the Involvement of Extracellular Matrix Molecules. Front Neurosci 2021; 15:646678. [PMID: 34054408 PMCID: PMC8160443 DOI: 10.3389/fnins.2021.646678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 04/22/2021] [Indexed: 12/13/2022] Open
Abstract
Sleep disturbances and memory dysfunction are key characteristics across psychiatric disorders. Recent advances have revealed insight into the role of sleep in memory consolidation, pointing to key overlap between memory consolidation processes and structural and molecular abnormalities in psychiatric disorders. Ongoing research regarding the molecular mechanisms involved in memory consolidation has the potential to identify therapeutic targets for memory dysfunction in psychiatric disorders and aging. Recent evidence from our group and others points to extracellular matrix molecules, including chondroitin sulfate proteoglycans and their endogenous proteases, as molecules that may underlie synaptic dysfunction in psychiatric disorders and memory consolidation during sleep. These molecules may provide a therapeutic targets for decreasing strength of reward memories in addiction and traumatic memories in PTSD, as well as restoring deficits in memory consolidation in schizophrenia and aging. We review the evidence for sleep and memory consolidation dysfunction in psychiatric disorders and aging in the context of current evidence pointing to the involvement of extracellular matrix molecules in these processes.
Collapse
Affiliation(s)
| | | | | | | | - Harry Pantazopoulos
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
30
|
Iizuka N, Masaoka Y, Kubota S, Sugiyama H, Yoshida M, Yoshikawa A, Koiwa N, Honma M, Watanabe K, Kamijo S, Kamimura S, Ida M, Ono K, Izumizaki M. Entorhinal cortex and parahippocampus volume reductions impact olfactory decline in aged subjects. Brain Behav 2021; 11:e02115. [PMID: 33769719 PMCID: PMC8119819 DOI: 10.1002/brb3.2115] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/10/2021] [Accepted: 03/03/2021] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Pathological abnormalities first appear in the medial temporal regions including entorhinal cortex and parahippocampus in patients with Alzheimer's disease. Previous studies showed that olfactory decline in elderly subjects was associated with volume reductions in the left hippocampus and left parahippocampus without cognitive impairment. The aim of this study is to investigate the link between olfaction and volume reductions in the medial temporal regions including the parahippocampus, entorhinal cortex, and hippocampal subfields. METHOD 27 elderly subjects and 27 young controls were measured olfaction acuity, cognitive function, and structural magnetic resonance imaging. Image processing and gray matter volumetric segmentation were performed with FreeSurfer. Volume data were analyzed with SPSS Statistics software. RESULTS Interesting results of this study were that volume reduction in the entorhinal cortex was not directly linked with declining olfactory ability. Volume reduction in the left entorhinal cortex was correlated with volume reduction in the left parahippocampus and dentate gyrus. However, left parahippocampus volume reduction had the greatest impact on olfactory decline, and the entorhinal cortex and dentate gyrus might additionally contribute to olfactory decline. CONCLUSION Our results indicate that olfactory decline may be directly reflected in the medial temporal regions as reduced parahippocampus volumes, rather than as morphological changes in the entorhinal cortex and hippocampus. The parahippocampus may play an important role in the association between memory retrieval and olfactory identification.
Collapse
Affiliation(s)
- Natsuko Iizuka
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan.,Deparment of Neurology, Showa University School of Medicine, Tokyo, Japan
| | - Yuri Masaoka
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| | - Satomi Kubota
- Deparment of Neurology, Showa University School of Medicine, Tokyo, Japan
| | | | - Masaki Yoshida
- Department of Ophthalmology, Jikei Medical University, Tokyo, Japan
| | - Akira Yoshikawa
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| | - Nobuyoshi Koiwa
- Department of Health and Science, University of Human Arts and Sciences, Saitamaken, Japan
| | - Motoyasu Honma
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| | - Keiko Watanabe
- Deparment of Neurology, Showa University School of Medicine, Tokyo, Japan
| | - Shotaro Kamijo
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| | - Sawa Kamimura
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| | - Masahiro Ida
- National Hospital Organization Mito Medical Center, Ibaragiken, Japan
| | - Kenjiro Ono
- Deparment of Neurology, Showa University School of Medicine, Tokyo, Japan
| | - Masahiko Izumizaki
- Department of Physiology, Showa University School of Medicine, Tokyo, Japan
| |
Collapse
|
31
|
Bremner JD, Hoffman M, Afzal N, Cheema FA, Novik O, Ashraf A, Brummer M, Nazeer A, Goldberg J, Vaccarino V. The environment contributes more than genetics to smaller hippocampal volume in Posttraumatic Stress Disorder (PTSD). J Psychiatr Res 2021; 137:579-588. [PMID: 33168198 PMCID: PMC8345282 DOI: 10.1016/j.jpsychires.2020.10.042] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Studies using structural magnetic resonance imaging (MRI) volumetrics showed smaller hippocampal volume in patients with post-traumatic stress disorder (PTSD). These studies were cross-sectional and did not address whether smaller volume is secondary to stress-induced damage, or whether pre-existing factors account for the findings. The purpose of this study was to use a co-twin case control design to assess the relative contribution of genetic and environmental factors to hippocampal volume in PTSD. METHODS Monozygotic (N = 13 pairs) and dizygotic (N = 21 pairs) twins with a history of Vietnam Era military service, where one brother went to Vietnam and developed PTSD, while his brother did not go to Vietnam or develop PTSD, underwent MR imaging of the brain. Structural MRI scans were used to manually outline the left and right hippocampus on multiple coronal slices, add the areas and adjust for slice thickness to determine hippocampal volume. RESULTS Twins with Vietnam combat-related PTSD had a mean 11% smaller right hippocampal volume in comparison to their twin brothers without combat exposure or PTSD (p < .05). There was no significant interaction by zygosity, suggesting that this was not a predisposing risk factor or genetic effect. CONCLUSIONS These findings are consistent with smaller hippocampal volume in PTSD, and suggest that the effects are primarily due to environmental effects such as the stress of combat.
Collapse
Affiliation(s)
- J. Douglas Bremner
- Departments of Psychiatry and Behavioral Sciences, USA, Radiology, and Medicine (Cardiology), USA, Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA, Corresponding author. Dept of Psychiatry & Behavioral Sciences, Emory University School of Medicine, 12 Executive Park Dr NE, USA. (J.D. Bremner)
| | | | - Nadeem Afzal
- Departments of Psychiatry and Behavioral Sciences, USA
| | - Faiz A. Cheema
- Departments of Psychiatry and Behavioral Sciences, USA, The Vietnam Era Twin Registry, Seattle Veterans Administration Epidemiology Research, USA
| | - Olga Novik
- Departments of Psychiatry and Behavioral Sciences, USA, The Vietnam Era Twin Registry, Seattle Veterans Administration Epidemiology Research, USA
| | - Ali Ashraf
- Departments of Psychiatry and Behavioral Sciences, USA
| | | | - Ahsan Nazeer
- Departments of Psychiatry and Behavioral Sciences, USA
| | - Jack Goldberg
- Information Center and Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Viola Vaccarino
- Emory University School of Medicine, Atlanta GA; Atlanta VAMC, Decatur, GA, USA, The Vietnam Era Twin Registry, Seattle Veterans Administration Epidemiology Research, USA
| |
Collapse
|
32
|
Piedfort-Marin O, Rignol G, Tarquinio C. Le trouble dissociatif de l’identité : les mythes à l’épreuve des recherches scientifiques. ANNALES MEDICO-PSYCHOLOGIQUES 2021. [DOI: 10.1016/j.amp.2021.02.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
33
|
Ver Hoef L, Deshpande H, Cure J, Selladurai G, Beattie J, Kennedy RE, Knowlton RC, Szaflarski JP. Clear and Consistent Imaging of Hippocampal Internal Architecture With High Resolution Multiple Image Co-registration and Averaging (HR-MICRA). Front Neurosci 2021; 15:546312. [PMID: 33642971 PMCID: PMC7905096 DOI: 10.3389/fnins.2021.546312] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 01/20/2021] [Indexed: 11/14/2022] Open
Abstract
Magnetic resonance imaging of hippocampal internal architecture (HIA) at 3T is challenging. HIA is defined by layers of gray and white matter that are less than 1 mm thick in the coronal plane. To visualize HIA, conventional MRI approaches have relied on sequences with high in-plane resolution (≤0.5 mm) but comparatively thick slices (2–5 mm). However, thicker slices are prone to volume averaging effects that result in loss of HIA clarity and blurring of the borders of the hippocampal subfields in up to 61% of slices as has been reported. In this work we describe an approach to hippocampal imaging that provides consistently high HIA clarity using a commonly available sequence and post-processing techniques that is flexible and may be applicable to any MRI platform. We refer to this approach as High Resolution Multiple Image Co-registration and Averaging (HR-MICRA). This approach uses a variable flip angle turbo spin echo sequence to repeatedly acquire a whole brain T2w image volume with high resolution in three dimensions in a relatively short amount of time, and then co-register the volumes to correct for movement and average the repeated scans to improve SNR. We compared the averages of 4, 9, and 16 individual scans in 20 healthy controls using a published HIA clarity rating scale. In the body of the hippocampus, the proportion of slices with good or excellent HIA clarity was 90%, 83%, and 67% for the 16x, 9x, and 4x HR-MICRA images, respectively. Using the 4x HR-MICRA images as a baseline, the 9x HR-MICRA images were 2.6 times and 16x HR-MICRA images were 3.2 times more likely to have high HIA ratings (p < 0.001) across all hippocampal segments (head, body, and tail). The thin slices of the HR-MICRA images allow reformatting in any plane with clear visualization of hippocampal dentation in the sagittal plane. Clear and consistent visualization of HIA will allow application of this technique to future hippocampal structure research, as well as more precise manual or automated segmentation.
Collapse
Affiliation(s)
- Lawrence Ver Hoef
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, United States.,Department of Biomedical Engineering, The University of Alabama at Birmingham, Birmingham, AL, United States.,Neurology Service, Birmingham VA Medical Center, Birmingham, AL, United States
| | - Hrishikesh Deshpande
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Joel Cure
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Goutham Selladurai
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Julia Beattie
- Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Richard E Kennedy
- Division of Gerontology, Geriatrics, and Palliative Care, Department of Medicine, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Robert C Knowlton
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Jerzy P Szaflarski
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
34
|
Lanka P, Rangaprakash D, Dretsch MN, Katz JS, Denney TS, Deshpande G. Supervised machine learning for diagnostic classification from large-scale neuroimaging datasets. Brain Imaging Behav 2020; 14:2378-2416. [PMID: 31691160 PMCID: PMC7198352 DOI: 10.1007/s11682-019-00191-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There are growing concerns about the generalizability of machine learning classifiers in neuroimaging. In order to evaluate this aspect across relatively large heterogeneous populations, we investigated four disorders: Autism spectrum disorder (N = 988), Attention deficit hyperactivity disorder (N = 930), Post-traumatic stress disorder (N = 87) and Alzheimer's disease (N = 132). We applied 18 different machine learning classifiers (based on diverse principles) wherein the training/validation and the hold-out test data belonged to samples with the same diagnosis but differing in either the age range or the acquisition site. Our results indicate that overfitting can be a huge problem in heterogeneous datasets, especially with fewer samples, leading to inflated measures of accuracy that fail to generalize well to the general clinical population. Further, different classifiers tended to perform well on different datasets. In order to address this, we propose a consensus-classifier by combining the predictive power of all 18 classifiers. The consensus-classifier was less sensitive to unmatched training/validation and holdout test data. Finally, we combined feature importance scores obtained from all classifiers to infer the discriminative ability of connectivity features. The functional connectivity patterns thus identified were robust to the classification algorithm used, age and acquisition site differences, and had diagnostic predictive ability in addition to univariate statistically significant group differences between the groups. A MATLAB toolbox called Machine Learning in NeuroImaging (MALINI), which implements all the 18 different classifiers along with the consensus classifier is available from Lanka et al. (2019) The toolbox can also be found at the following URL: https://github.com/pradlanka/malini .
Collapse
Affiliation(s)
- Pradyumna Lanka
- AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, 560 Devall Dr., Suite 266D, Auburn, AL, 36849, USA
- Department of Psychological Sciences, University of California Merced, Merced, CA, USA
| | - D Rangaprakash
- AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, 560 Devall Dr., Suite 266D, Auburn, AL, 36849, USA
- Departments of Radiology and Biomedical Engineering, Northwestern University, Chicago, IL, USA
| | - Michael N Dretsch
- U.S. Army Aeromedical Research Laboratory, Fort Rucker, AL, USA
- US Army Medical Research Directorate-West, Walter Reed Army Institute for Research, Joint Base Lewis-McCord, WA, USA
- Department of Psychology, Auburn University, Auburn, AL, USA
| | - Jeffrey S Katz
- AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, 560 Devall Dr., Suite 266D, Auburn, AL, 36849, USA
- Department of Psychology, Auburn University, Auburn, AL, USA
- Alabama Advanced Imaging Consortium, Birmingham, AL, USA
- Center for Neuroscience, Auburn University, Auburn, AL, USA
| | - Thomas S Denney
- AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, 560 Devall Dr., Suite 266D, Auburn, AL, 36849, USA
- Department of Psychology, Auburn University, Auburn, AL, USA
- Alabama Advanced Imaging Consortium, Birmingham, AL, USA
- Center for Neuroscience, Auburn University, Auburn, AL, USA
| | - Gopikrishna Deshpande
- AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, 560 Devall Dr., Suite 266D, Auburn, AL, 36849, USA.
- Department of Psychology, Auburn University, Auburn, AL, USA.
- Alabama Advanced Imaging Consortium, Birmingham, AL, USA.
- Center for Neuroscience, Auburn University, Auburn, AL, USA.
- Center for Health Ecology and Equity Research, Auburn University, Auburn, AL, USA.
- Department of Psychiatry, National Institute of Mental and Neurosciences, Bangalore, India.
| |
Collapse
|
35
|
Zhang J, Wong SM, Richardson JD, Jetly R, Dunkley BT. Predicting PTSD severity using longitudinal magnetoencephalography with a multi-step learning framework. J Neural Eng 2020; 17. [PMID: 33166947 DOI: 10.1088/1741-2552/abc8d6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 11/09/2020] [Indexed: 12/29/2022]
Abstract
Objective The present study explores the effectiveness of incorporating temporal information in predicting Post-Traumatic Stress Disorder (PTSD) severity using magnetoencephalography (MEG) imaging data. The main objective was to assess the relationship between longitudinal MEG functional connectome data, measured across a variety of neural oscillatory frequencies and collected at two-timepoints (Phase I & II), against PTSD severity captured at the later time point. Approach We used an in-house developed informatics solution, featuring a two-step process featuring pre-learn feature selection (CV-SVR-rRF-FS, cross-validation with support vector regression and recursive random forest feature selection) and deep learning (long-short term memory recurrent neural network, LSTM-RNN) techniques. Main results The pre-learn step selected a small number of functional connections (or edges) from Phase I MEG data associated with Phase II PTSD severity, indexed using the PTSD CheckList (PCL) score. This strategy identified the functional edges affected by traumatic exposure and indexed disease severity, either permanently or evolving dynamically over time, for optimal predictive performance. Using the selected functional edges, LSTM modelling was used to incorporate the Phase II MEG data into longitudinal regression models. Single timepoint (Phase I and Phase II MEG data) SVR models were generated for comparison. Assessed with holdout test data, alpha and high gamma bands showed enhanced predictive performance with the longitudinal models comparing to the Phase I single timepoint models. The best predictive performance was observed for lower frequency ranges compared to the higher frequencies (low gamma), for both model types. Significance This study identified the neural oscillatory signatures that benefited from additional temporal information when estimating the outcome of PTSD severity using MEG functional connectome data. Crucially, this approach can similarly be applied to any other mental health challenge, using this effective informatics foundation for longitudinal tracking of pathological brain states and predicting outcome with a MEG-based neurophysiology imaging system.
Collapse
Affiliation(s)
- Jing Zhang
- Hospital for Sick Children, Toronto, Ontario, M5G 1X8, CANADA
| | - Simeon M Wong
- Hospital for Sick Children, Toronto, Ontario, CANADA
| | | | - Rakesh Jetly
- Canadian Forces Health Services HQ, Ottawa, Ontario, CANADA
| | - Benjamin T Dunkley
- Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, CANADA
| |
Collapse
|
36
|
Winters JJ, Hardy LW, Sullivan JM, Powell NA, Qutaish M, Nair S, Heimann J, Ghayoor A, Polyak I, Chaby L, Rodriguez E, Chaar D, Oscherwitz J, Liberzon I. Functional deficit in hippocampal activity during fear extinction recall in the single prolonged-stress model of PTSD in male rats. Behav Brain Res 2020; 396:112902. [PMID: 32926906 DOI: 10.1016/j.bbr.2020.112902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 08/24/2020] [Accepted: 09/04/2020] [Indexed: 12/24/2022]
Abstract
To interrogate whether altered function of the hippocampal-mPFC circuit underlies the deficit in fear extinction recall in rats subjected to single-prolonged stress (SPS), changes in brain region-specific metabolic rate were measured in male rats (control and SPS treated). Brain region metabolic rates were quantified using uptake of 14C-2-deoxyglucose (14C-2DG) during fear memory formation, fear memory extinction and extinction recall. Control and SPS rats had similar regional brain activities at baseline. During extinction recall, 14C-2DG uptake decreased in hippocampal regions in control rats, but not in SPS rats. SPS rats also exhibited a significant deficiency in fear extinction recall, replicating a previously reported finding. Reduced hippocampal activity during fear extinction recall in control animals may reflect reduction in fear overgeneralization, thereby enabling discrimination between distinct contexts. In contrast, persistent levels of hippocampal activity in SPS-exposed male animals during fear extinction recall may reflect the dysfunctional persistence of fear overgeneralization. Future studies in females can test gender-specificity of these effects, with appropriate attention to luteal dependent effects on extinction of fear learning. Detailed knowledge of regional brain activities underlying stress-induced deficits in extinction recall may help identify therapeutic targets in PTSD.
Collapse
Affiliation(s)
| | - Larry W Hardy
- Sunovion Pharmaceuticals Inc., Marlborough, MA, United States
| | | | - Noel A Powell
- Sunovion Pharmaceuticals Inc., Marlborough, MA, United States
| | | | | | | | | | | | - Lauren Chaby
- University of Michigan, Ann Arbor, MI, United States
| | | | - Dima Chaar
- University of Michigan, Ann Arbor, MI, United States
| | | | | |
Collapse
|
37
|
Yuen K, Rashidi-Ranjbar N, Verhoeff NPLG, Kumar S, Gallagher D, Flint AJ, Herrmann N, Pollock BG, Mulsant BH, Rajji TK, Voineskos AN, Fischer CE, Mah L. Association between Sleep Disturbances and Medial Temporal Lobe Volume in Older Adults with Mild Cognitive Impairment Free of Lifetime History of Depression. J Alzheimers Dis 2020; 69:413-421. [PMID: 31104028 DOI: 10.3233/jad-190160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Previous studies examining the link between neuropsychiatric symptoms (NPS) and biomarkers of Alzheimer's disease (AD) may be confounded by remitted or past history of psychiatric illness, which in itself is associated with AD biomarkers such as reduced medial temporal lobe (MTL) volume. OBJECTIVE We examined associations between mood and anxiety-related NPS and MTL in older adults with mild cognitive impairment (MCI) free of lifetime history of depression. We hypothesized an inverse relationship between NPS severity and MTL. METHODS Forty-two MCI participants without current or past history of depression or other major psychiatric illness were assessed using the Neuropsychiatric Inventory-Questionnaire (NPI-Q). Correlation and regression analyses were performed between selected NPI-Q items and regional MTL volumes from structural magnetic resonance imaging. RESULTS Sleep disturbances were inversely associated with several regional volumes within the MTL. Sleep disturbances remained significantly correlated with left hippocampal and amygdala volume following correction for multiple comparisons. In contrast, depression and anxiety were not correlated with MTL. CONCLUSIONS The relationship between reduced MTL and sleep, but not with depressed or anxious states, in MCI free of lifetime history of depression, suggests a potential mechanism for sleep as a risk factor for AD. The current findings highlight the importance of accounting for remitted psychiatric conditions in studies of the link between NPS and AD biomarkers and support the need for further research on sleep as clinical biomarker of AD and target for AD prevention.
Collapse
Affiliation(s)
- Kimberley Yuen
- Rotman Research Institute, Baycrest Health Sciences, North York, Ontario, Canada
| | - Neda Rashidi-Ranjbar
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Nicolaas Paul L G Verhoeff
- Baycrest Health Sciences Department of Psychiatry, North York, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Sanjeev Kumar
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Damien Gallagher
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Sunnybrook Health Sciences, Toronto, Ontario, Canada
| | - Alastair J Flint
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,University Health Network, Toronto, Ontario, Canada
| | - Nathan Herrmann
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Sunnybrook Health Sciences, Toronto, Ontario, Canada
| | - Bruce G Pollock
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Benoit H Mulsant
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Tarek K Rajji
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Aristotle N Voineskos
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Corinne E Fischer
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.,Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Linda Mah
- Rotman Research Institute, Baycrest Health Sciences, North York, Ontario, Canada.,Baycrest Health Sciences Department of Psychiatry, North York, Ontario, Canada.,Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
38
|
Multi-domain potential biomarkers for post-traumatic stress disorder (PTSD) severity in recent trauma survivors. Transl Psychiatry 2020; 10:208. [PMID: 32594097 PMCID: PMC7320966 DOI: 10.1038/s41398-020-00898-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 12/02/2022] Open
Abstract
Contemporary symptom-based diagnosis of post-traumatic stress disorder (PTSD) largely overlooks related neurobehavioral mechanisms and relies entirely on subjective interpersonal reporting. Previous studies associating biomarkers with PTSD have mostly used symptom-based diagnosis as the main outcome measure, disregarding the wide variability and richness of PTSD phenotypical features. Here, we aimed to computationally derive potential biomarkers that could efficiently differentiate PTSD subtypes among recent trauma survivors. A three-staged semi-unsupervised method ("3C") was used to firstly categorize individuals by current PTSD symptom severity, then derive clusters based on clinical features related to PTSD (e.g. anxiety and depression), and finally to classify participants' cluster membership using objective multi-domain features. A total of 256 features were extracted from psychometrics, cognitive functioning, and both structural and functional MRI data, obtained from 101 adult civilians (age = 34.80 ± 11.95; 51 females) evaluated within 1 month of trauma exposure. The features that best differentiated cluster membership were assessed by importance analysis, classification tree, and ANOVA. Results revealed that entorhinal and rostral anterior cingulate cortices volumes (structural MRI domain), in-task amygdala's functional connectivity with the insula and thalamus (functional MRI domain), executive function and cognitive flexibility (cognitive testing domain) best differentiated between two clusters associated with PTSD severity. Cross-validation established the results' robustness and consistency within this sample. The neural and cognitive potential biomarkers revealed by the 3C analytics offer objective classifiers of post-traumatic morbidity shortly following trauma. They also map onto previously documented neurobehavioral mechanisms associated with PTSD and demonstrate the usefulness of standardized and objective measurements as differentiating clinical sub-classes shortly after trauma.
Collapse
|
39
|
Gosnell SN, Oh H, Schmidt J, Oldham J, Fowler JC, Patriquin M, Ress D, Salas R. Right temporal pole volume reduction in PTSD. Prog Neuropsychopharmacol Biol Psychiatry 2020; 100:109890. [PMID: 32084508 DOI: 10.1016/j.pnpbp.2020.109890] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 01/24/2020] [Accepted: 02/16/2020] [Indexed: 12/12/2022]
Abstract
Previous magnetic resonance imaging studies of post-traumatic stress disorder (PTSD) have reported cortical volume alterations in the parahippocampal, anterior cingulate cortex, and temporal pole. It is unclear, however, if these cortical regions are specifically associated with PTSD or associated with common comorbidities. Here, we present the result of cortical volume differences between PTSD and healthy and psychiatric controls. In this study, healthy controls (n = 67) were matched for demographic characteristics (age, sex, race) and psychiatric controls (n = 67) were matched for demographic characteristics plus all other psychiatric diagnoses (past and current) to a group of PTSD patients (N = 67). We assessed group differences of 34 bilateral cortical structure volumes using statistically defined brain regions-of-interest from FreeSurfer between PTSD patients and healthy controls. We found 10 regions to be significantly different between PTSD and healthy controls and analyzed the group differences between PTSD and psychiatric controls within these regions. The right temporal pole volume in PTSD was found to be significantly smaller than both healthy and psychiatry controls. Our finding suggests only right temporal pole volume reduction is specifically associated with PTSD, and also highlights the need for using appropriate controls in psychiatry research.
Collapse
Affiliation(s)
- Savannah N Gosnell
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA; Michael E DeBakey VA Medical Center, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Hyuntaek Oh
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA; The Menninger Clinic, Houston, TX, USA
| | - Jake Schmidt
- EOG Resources INC - Data Science, Houston, TX, USA
| | - John Oldham
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA; The Menninger Clinic, Houston, TX, USA
| | - J Christopher Fowler
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Michelle Patriquin
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA; The Menninger Clinic, Houston, TX, USA
| | - David Ress
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Ramiro Salas
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA; Michael E DeBakey VA Medical Center, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; The Menninger Clinic, Houston, TX, USA.
| |
Collapse
|
40
|
Bertolini F, Robertson L, Ostuzzi G, Meader N, Bisson JI, Churchill R, Barbui C. Early pharmacological interventions for acute traumatic stress symptoms: a network meta-analysis. Hippokratia 2020. [DOI: 10.1002/14651858.cd013613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Federico Bertolini
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry; University of Verona; Verona Italy
| | - Lindsay Robertson
- Cochrane Common Mental Disorders; University of York; York UK
- Centre for Reviews and Dissemination; University of York; York UK
| | - Giovanni Ostuzzi
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry; University of Verona; Verona Italy
| | - Nicholas Meader
- Cochrane Common Mental Disorders; University of York; York UK
- Centre for Reviews and Dissemination; University of York; York UK
| | - Jonathan I Bisson
- Division of Psychological Medicine and Clinical Neurosciences; Cardiff University School of Medicine; Cardiff UK
| | - Rachel Churchill
- Cochrane Common Mental Disorders; University of York; York UK
- Centre for Reviews and Dissemination; University of York; York UK
| | - Corrado Barbui
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Psychiatry; University of Verona; Verona Italy
| |
Collapse
|
41
|
Harnett NG, Goodman AM, Knight DC. PTSD-related neuroimaging abnormalities in brain function, structure, and biochemistry. Exp Neurol 2020; 330:113331. [PMID: 32343956 DOI: 10.1016/j.expneurol.2020.113331] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 04/06/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022]
Abstract
Although approximately 90% of the U.S. population will experience a traumatic event within their lifetime, only a fraction of those traumatized individuals will develop posttraumatic stress disorder (PTSD). In fact, approximately 7 out of 100 people in the U.S. will be afflicted by this debilitating condition, which suggests there is substantial inter-individual variability in susceptibility to PTSD. This uncertainty regarding who is susceptible to PTSD necessitates a thorough understanding of the neurobiological processes that underlie PTSD development in order to build effective predictive models for the disorder. In turn, these predictive models may lead to the development of improved diagnostic markers, early intervention techniques, and targeted treatment approaches for PTSD. Prior research has characterized a fear learning and memory network, centered on the prefrontal cortex, hippocampus, and amygdala, that plays a key role in the pathology of PTSD. Importantly, changes in the function, structure, and biochemistry of this network appear to underlie the cognitive-affective dysfunction observed in PTSD. The current review discusses prior research that has demonstrated alterations in brain function, structure, and biochemistry associated with PTSD. Further, the potential for future research to address current gaps in our understanding of the neural processes that underlie the development of PTSD is discussed. Specifically, this review emphasizes the need for multimodal neuroimaging research and investigations into the acute effects of posttraumatic stress. The present review provides a framework to move the field towards a comprehensive neurobiological model of PTSD.
Collapse
Affiliation(s)
- Nathaniel G Harnett
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Adam M Goodman
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David C Knight
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
42
|
Seligowski AV, Harnett NG, Merker JB, Ressler KJ. Nervous and Endocrine System Dysfunction in Posttraumatic Stress Disorder: An Overview and Consideration of Sex as a Biological Variable. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:381-391. [PMID: 32033924 PMCID: PMC7150641 DOI: 10.1016/j.bpsc.2019.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 12/06/2019] [Indexed: 12/12/2022]
Abstract
Decades of research into the biological mechanisms of posttraumatic stress disorder (PTSD) suggests that chronic activation of the stress response leads to long-lasting changes in the structure and function of the nervous and endocrine systems. While the prevalence of PTSD is twice as high in females as males, little is known about how sex differences in neuroendocrine systems may contribute to PTSD. In response to the paucity of research on sex-related mechanisms, the National Institutes of Health created a policy that asks researchers to consider sex as a biological variable. This review provides an overview of the current understanding of nervous and endocrine dysfunction in PTSD (e.g., neural circuitry, autonomic arousal, hormonal response), highlighting areas where the influence of sex has been characterized and where further research is needed. We also provide recommendations for using the sex-as-a-biological-variable policy to address specific gaps in PTSD neuroscience research.
Collapse
Affiliation(s)
- Antonia V Seligowski
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts.
| | - Nathaniel G Harnett
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts
| | - Julia B Merker
- Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts
| | - Kerry J Ressler
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts
| |
Collapse
|
43
|
Chen CA, Wang W, Pedersen SE, Raman A, Seymour ML, Ruiz FR, Xia A, van der Heijden ME, Wang L, Yin J, Lopez J, Rech ME, Lewis RA, Wu SM, Liu Z, Pereira FA, Pautler RG, Zoghbi HY, Schaaf CP. Nr2f1 heterozygous knockout mice recapitulate neurological phenotypes of Bosch-Boonstra-Schaaf optic atrophy syndrome and show impaired hippocampal synaptic plasticity. Hum Mol Genet 2020; 29:705-715. [PMID: 31600777 PMCID: PMC7104670 DOI: 10.1093/hmg/ddz233] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 01/08/2023] Open
Abstract
Bosch-Boonstra-Schaaf optic atrophy syndrome (BBSOAS) has been identified as an autosomal-dominant disorder characterized by a complex neurological phenotype, with high prevalence of intellectual disability and optic nerve atrophy/hypoplasia. The syndrome is caused by loss-of-function mutations in NR2F1, which encodes a highly conserved nuclear receptor that serves as a transcriptional regulator. Previous investigations to understand the protein's role in neurodevelopment have mostly used mouse models with constitutive and tissue-specific homozygous knockout of Nr2f1. In order to represent the human disease more accurately, which is caused by heterozygous NR2F1 mutations, we investigated a heterozygous knockout mouse model and found that this model recapitulates some of the neurological phenotypes of BBSOAS, including altered learning/memory, hearing defects, neonatal hypotonia and decreased hippocampal volume. The mice showed altered fear memory, and further electrophysiological investigation in hippocampal slices revealed significantly reduced long-term potentiation and long-term depression. These results suggest that a deficit or alteration in hippocampal synaptic plasticity may contribute to the intellectual disability frequently seen in BBSOAS. RNA-sequencing (RNA-Seq) analysis revealed significant differential gene expression in the adult Nr2f1+/- hippocampus, including the up-regulation of multiple matrix metalloproteases, which are known to be critical for the development and the plasticity of the nervous system. Taken together, our studies highlight the important role of Nr2f1 in neurodevelopment. The discovery of impaired hippocampal synaptic plasticity in the heterozygous mouse model sheds light on the pathophysiology of altered memory and cognitive function in BBSOAS.
Collapse
Affiliation(s)
- Chun-An Chen
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Wei Wang
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Steen E Pedersen
- Department of Molecular Physiology and Biophysics-Cardiovascular Sciences Track, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
- Department of Physiology and Biochemistry, Ross University School of Medicine, Portsmouth, Commonwealth of Dominica
| | - Ayush Raman
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Graduate Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
| | - Michelle L Seymour
- Huffington Center on Aging and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Fernanda R Ruiz
- Huffington Center on Aging and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Anping Xia
- Huffington Center on Aging and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Meike E van der Heijden
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Li Wang
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Jiani Yin
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Joanna Lopez
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Megan E Rech
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Richard A Lewis
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, USA
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Samuel M Wu
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Ophthalmology, Baylor College of Medicine, Houston, TX, USA
| | - Zhandong Liu
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Fred A Pereira
- Huffington Center on Aging and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Robia G Pautler
- Department of Molecular Physiology and Biophysics-Cardiovascular Sciences Track, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Huda Y Zoghbi
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA
- Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA
| | - Christian P Schaaf
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
44
|
Ben-Zion Z, Artzi M, Niry D, Keynan NJ, Zeevi Y, Admon R, Sharon H, Halpern P, Liberzon I, Shalev AY, Hendler T. Neuroanatomical Risk Factors for Posttraumatic Stress Disorder in Recent Trauma Survivors. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 5:311-319. [PMID: 31973980 PMCID: PMC7064406 DOI: 10.1016/j.bpsc.2019.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/08/2019] [Accepted: 11/11/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Low hippocampal volume could serve as an early risk factor for posttraumatic stress disorder (PTSD) in interaction with other brain anomalies of developmental origin. One such anomaly may well be the presence of a large cavum septum pellucidum (CSP), which has been loosely associated with PTSD. We performed a longitudinal prospective study of recent trauma survivors. We hypothesized that at 1 month after trauma exposure the relation between hippocampal volume and PTSD symptom severity will be moderated by CSP volume, and that this early interaction will account for persistent PTSD symptoms at subsequent time points. METHODS One hundred seventy-one adults (87 women, average age 34.22 years [range, 18-65 years of age]) who were admitted to a general hospital's emergency department after a traumatic event underwent clinical assessment and structural magnetic resonance imaging within 1 month after trauma. Follow-up clinical evaluations were conducted at 6 (n = 97) and 14 (n = 78) months after trauma. Hippocampal and CSP volumes were measured automatically by FreeSurfer software and verified manually by a neuroradiologist (D.N.). RESULTS At 1 month after trauma, CSP volume significantly moderated the relation between hippocampal volume and PTSD severity (p = .026), and this interaction further predicted symptom severity at 14 months posttrauma (p = .018). Specifically, individuals with a smaller hippocampus and larger CSP at 1 month posttrauma showed more severe symptoms at 1 and 14 months after trauma exposure. CONCLUSIONS Our study provides evidence for an early neuroanatomical risk factors for PTSD, which could also predict the progression of the disorder in the year after trauma exposure. Such a simple-to-acquire neuroanatomical signature for PTSD could guide early management as well as long-term monitoring.
Collapse
Affiliation(s)
- Ziv Ben-Zion
- Sagol Brain Institute Tel Aviv, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Moran Artzi
- Sagol Brain Institute Tel Aviv, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dana Niry
- Department of Radiology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nimrod Jackob Keynan
- Sagol Brain Institute Tel Aviv, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yoav Zeevi
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Department of Statistics and Operations Research, Tel Aviv University, Tel Aviv, Israel
| | - Roee Admon
- Department of Psychology, University of Haifa, Haifa, Israel
| | - Haggai Sharon
- Sagol Brain Institute Tel Aviv, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Institute of Pain Medicine, Department of Anesthesiology and Critical Care Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; Pain Management and Neuromodulation Centre, Guy's and St Thomas' National Health Service Foundation Trust, London, United Kingdom
| | - Pinchas Halpern
- Department of Emergency Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Israel Liberzon
- Department of Psychiatry, Texas A&M Health Science Center, Bryan, Texas
| | - Arieh Y Shalev
- Department of Psychiatry, New York University Langone Medical Center, New York, New York
| | - Talma Hendler
- Sagol Brain Institute Tel Aviv, Wohl Institute for Advanced Imaging, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; School of Psychological Sciences, Faculty of Social Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
45
|
Kirlic N, Cohen ZP, Singh MK. Is There an Ace Up Our Sleeve? A Review of Interventions and Strategies for Addressing Behavioral and Neurobiological Effects of Adverse Childhood Experiences in Youth. ADVERSITY AND RESILIENCE SCIENCE 2020; 1:5-28. [PMID: 34278327 PMCID: PMC8281391 DOI: 10.1007/s42844-020-00001-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Exposure to early life adversity (ELA) is a major public health crisis posing as a significant risk of immediate and sustained mental and physical health consequences. While a remarkable body of knowledge has been amassed showing psychological, cognitive, social, developmental, and neurobiological consequences of ELA exposure, little has been done to improve the long-term mental and physical health outcomes for youth exposed to ELA. Furthermore, neurobiological processes underlying poor outcomes in this population have been largely left out of prevention and intervention target efforts. In this review, we first describe ELA-related alterations across psychological and neurobiological systems in children and adolescents. Next, we describe existing evidence-based interventions targeting ELA-related outcomes. We then turn to experimental studies examining individual differences in mechanistic functioning consequent to ELA exposure, and strategies that target these mechanisms and modulate disrupted functioning. Finally, we highlight areas of future research that may be promising in engaging behavioral and neurobiological targets through novel preventive interventions or augmentation of existing interventions, thereby reducing negative mental and physical health outcomes later in life.
Collapse
Affiliation(s)
- Namik Kirlic
- Laureate Institute for Brain Research, 6655 South Yale Ave., Tulsa, OK 74136, USA
| | - Zsofia P. Cohen
- Laureate Institute for Brain Research, 6655 South Yale Ave., Tulsa, OK 74136, USA
| | - Manpreet K. Singh
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| |
Collapse
|
46
|
Bremner JD, Wittbrodt MT, Shah AJ, Pearce BD, Gurel NZ, Inan OT, Raggi P, Lewis TT, Quyyumi AA, Vaccarino V. Confederates in the Attic: Posttraumatic Stress Disorder, Cardiovascular Disease, and the Return of Soldier's Heart. J Nerv Ment Dis 2020; 208:171-180. [PMID: 32091470 PMCID: PMC8214871 DOI: 10.1097/nmd.0000000000001100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Da Costa originally described Soldier's Heart in the 19th Century as a syndrome that occurred on the battlefield in soldiers of the American Civil War. Soldier's Heart involved symptoms similar to modern day posttraumatic stress disorder (PTSD) as well as exaggerated cardiovascular reactivity felt to be related to an abnormality of the heart. Interventions were appropriately focused on the cardiovascular system. With the advent of modern psychoanalysis, psychiatric symptoms became divorced from the body and were relegated to the unconscious. Later, the physiology of PTSD and other psychiatric disorders was conceived as solely residing in the brain. More recently, advances in psychosomatic medicine led to the recognition of mind-body relationships and the involvement of multiple physiological systems in the etiology of disorders, including stress, depression PTSD, and cardiovascular disease, has moved to the fore, and has renewed interest in the validity of the original model of the Soldier's Heart syndrome.
Collapse
Affiliation(s)
- J. Douglas Bremner
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Emory University, Atlanta
- Department of Radiology, Emory University School of Medicine, Emory University, Atlanta
- Atlanta VA Medical Center, Decatur
| | - Matthew T. Wittbrodt
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Emory University, Atlanta
| | - Amit J. Shah
- Atlanta VA Medical Center, Decatur
- Department of Medicine (Cardiology), Emory University School of Medicine, Emory University
| | - Bradley D. Pearce
- Department of Epidemiology, Rollins School of Public Health, Emory University
| | - Nil Z. Gurel
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Omer T. Inan
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| | - Paolo Raggi
- Mazankowski Alberta Heart Institute and Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Tené T. Lewis
- Department of Epidemiology, Rollins School of Public Health, Emory University
| | - Arshed A. Quyyumi
- Department of Medicine (Cardiology), Emory University School of Medicine, Emory University
| | - Viola Vaccarino
- Department of Medicine (Cardiology), Emory University School of Medicine, Emory University
- Department of Epidemiology, Rollins School of Public Health, Emory University
| |
Collapse
|
47
|
Sydnor VJ, Bouix S, Pasternak O, Hartl E, Levin-Gleba L, Reid B, Tripodis Y, Guenette JP, Kaufmann D, Makris N, Fortier C, Salat DH, Rathi Y, Milberg WP, McGlinchey RE, Shenton ME, Koerte IK. Mild traumatic brain injury impacts associations between limbic system microstructure and post-traumatic stress disorder symptomatology. Neuroimage Clin 2020; 26:102190. [PMID: 32070813 PMCID: PMC7026283 DOI: 10.1016/j.nicl.2020.102190] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Post-traumatic stress disorder (PTSD) is a psychiatric disorder that afflicts many individuals, yet the neuropathological mechanisms that contribute to this disorder remain to be fully determined. Moreover, it is unclear how exposure to mild traumatic brain injury (mTBI), a condition that is often comorbid with PTSD, particularly among military personnel, affects the clinical and neurological presentation of PTSD. To address these issues, the present study explores relationships between PTSD symptom severity and the microstructure of limbic and paralimbic gray matter brain regions, as well as the impact of mTBI comorbidity on these relationships. METHODS Structural and diffusion MRI data were acquired from 102 male veterans who were diagnosed with current PTSD. Diffusion data were analyzed with free-water imaging to quantify average CSF-corrected fractional anisotropy (FA) and mean diffusivity (MD) in 18 limbic and paralimbic gray matter regions. Associations between PTSD symptom severity and regional average dMRI measures were examined with repeated measures linear mixed models. Associations were studied separately in veterans with PTSD only, and in veterans with PTSD and a history of military mTBI. RESULTS Analyses revealed that in the PTSD only cohort, more severe symptoms were associated with higher FA in the right amygdala-hippocampus complex, lower FA in the right cingulate cortex, and lower MD in the left medial orbitofrontal cortex. In the PTSD and mTBI cohort, more severe PTSD symptoms were associated with higher FA bilaterally in the amygdala-hippocampus complex, with higher FA bilaterally in the nucleus accumbens, with lower FA bilaterally in the cingulate cortex, and with higher MD in the right amygdala-hippocampus complex. CONCLUSIONS These findings suggest that the microstructure of limbic and paralimbic brain regions may influence PTSD symptomatology. Further, given the additional associations observed between microstructure and symptom severity in veterans with head trauma, we speculate that mTBI may exacerbate the impact of brain microstructure on PTSD symptoms, especially within regions of the brain known to be vulnerable to chronic stress. A heightened sensitivity to the microstructural environment of the brain could partially explain why individuals with PTSD and mTBI comorbidity experience more severe symptoms and poorer illness prognoses than those without a history of brain injury. The relevance of these microstructural findings to the conceptualization of PTSD as being a disorder of stress-induced neuronal connectivity loss is discussed.
Collapse
Affiliation(s)
- Valerie J Sydnor
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Sylvain Bouix
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Elisabeth Hartl
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Laura Levin-Gleba
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, United States
| | - Benjamin Reid
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Yorghos Tripodis
- Boston University School of Public Health, Boston University, Boston, MA, United States
| | - Jeffrey P Guenette
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - David Kaufmann
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Child and Adolescent Psychiatry, Psychosomatic, and Psychotherapy, Ludwig-Maximilian University, Munich, Germany
| | - Nikos Makris
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Center for Morphometric Analysis, Departments of Psychiatry and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Catherine Fortier
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| | - David H Salat
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, United States; Neuroimaging Research for Veterans (NeRVe) Center, VA Boston Healthcare System, Boston, MA, United States
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - William P Milberg
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States; Geriatric Research, Education and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, United States
| | - Regina E McGlinchey
- Translational Research Center for TBI and Stress Disorders (TRACTS), VA Boston Healthcare System, Boston, MA, United States; Department of Psychiatry, Harvard Medical School, Boston, MA, United States; Geriatric Research, Education and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, United States
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; VA Boston Healthcare System, Brockton Division, Brockton, MA, United States
| | - Inga K Koerte
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Child and Adolescent Psychiatry, Psychosomatic, and Psychotherapy, Ludwig-Maximilian University, Munich, Germany.
| |
Collapse
|
48
|
Nogovitsyn N, Muller M, Souza R, Hassel S, Arnott SR, Davis AD, Hall GB, Harris JK, Zamyadi M, Metzak PD, Ismail Z, Downar J, Parikh SV, Soares CN, Addington JM, Milev R, Harkness KL, Frey BN, Lam RW, Strother SC, Rotzinger S, Kennedy SH, MacQueen GM. Hippocampal tail volume as a predictive biomarker of antidepressant treatment outcomes in patients with major depressive disorder: a CAN-BIND report. Neuropsychopharmacology 2020; 45:283-291. [PMID: 31610545 PMCID: PMC6901577 DOI: 10.1038/s41386-019-0542-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 09/06/2019] [Accepted: 10/03/2019] [Indexed: 01/01/2023]
Abstract
Finding a clinically useful neuroimaging biomarker that can predict treatment response in patients with major depressive disorder (MDD) is challenging, in part because of poor reproducibility and generalizability of findings across studies. Previous work has suggested that posterior hippocampal volumes in depressed patients may be associated with antidepressant treatment outcomes. The primary purpose of this investigation was to examine further whether posterior hippocampal volumes predict remission following antidepressant treatment. Magnetic resonance imaging (MRI) scans from 196 patients with MDD and 110 healthy participants were obtained as part of the first study in the Canadian Biomarker Integration Network in Depression program (CAN-BIND 1) in which patients were treated for 16 weeks with open-label medication. Hippocampal volumes were measured using both a manual segmentation protocol and FreeSurfer 6.0. Baseline hippocampal tail (Ht) volumes were significantly smaller in patients with depression compared to healthy participants. Larger baseline Ht volumes were positively associated with remission status at weeks 8 and 16. Participants who achieved early sustained remission had significantly greater Ht volumes compared to those who did not achieve remission by week 16. Ht volume is a prognostic biomarker for antidepressant treatment outcomes in patients with MDD.
Collapse
Affiliation(s)
- Nikita Nogovitsyn
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada. .,Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB, Canada. .,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada.
| | - Meghan Muller
- 0000 0004 1936 7697grid.22072.35Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB Canada
| | - Roberto Souza
- 0000 0004 1936 7697grid.22072.35Department of Radiology and Clinical Neuroscience, Hotchkiss Brain Institute, University of Calgary, Calgary, AB Canada
| | - Stefanie Hassel
- 0000 0004 1936 7697grid.22072.35Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB Canada ,0000 0004 1936 7697grid.22072.35Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB Canada
| | - Stephen R. Arnott
- 0000 0001 2157 2938grid.17063.33Rotman Research Institute, Baycrest, Toronto, ON Canada
| | - Andrew D. Davis
- 0000 0004 1936 8227grid.25073.33Department of Psychology, Neuroscience & Behaviour, McMaster University, and St. Joseph’s Healthcare Hamilton, Hamilton, ON Canada
| | - Geoffrey B. Hall
- 0000 0004 1936 8227grid.25073.33Department of Psychology, Neuroscience & Behaviour, McMaster University, and St. Joseph’s Healthcare Hamilton, Hamilton, ON Canada
| | - Jacqueline K. Harris
- grid.17089.37Department of Computer Science, University of Alberta, Edmonton, AB Canada
| | - Mojdeh Zamyadi
- 0000 0001 2157 2938grid.17063.33Rotman Research Institute, Baycrest, Toronto, ON Canada
| | - Paul D. Metzak
- 0000 0004 1936 7697grid.22072.35Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB Canada ,0000 0004 1936 7697grid.22072.35Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB Canada
| | - Zahinoor Ismail
- 0000 0004 1936 7697grid.22072.35Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB Canada
| | - Jonathan Downar
- 0000 0001 2157 2938grid.17063.33Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON Canada ,0000 0004 0474 0428grid.231844.8Krembil Research Institute and Centre for Mental Health, University Health Network, Toronto, ON Canada ,0000 0001 2157 2938grid.17063.33Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON Canada ,0000 0001 2157 2938grid.17063.33Department of Psychiatry, Krembil Research Centre, University Health Network, University of Toronto, Toronto, ON Canada
| | - Sagar V. Parikh
- 0000000086837370grid.214458.eDepartment of Psychiatry, University of Michigan, Ann Arbor, MI USA
| | - Claudio N. Soares
- 0000 0004 1936 8331grid.410356.5Department of Psychiatry, Queen’s University and Providence Care Hospital, Kingston, ON Canada
| | - Jean M. Addington
- 0000 0004 1936 7697grid.22072.35Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB Canada ,0000 0004 1936 7697grid.22072.35Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, AB Canada
| | - Roumen Milev
- 0000 0004 1936 8331grid.410356.5Department of Psychiatry, Queen’s University and Providence Care Hospital, Kingston, ON Canada ,0000 0004 1936 8331grid.410356.5Department of Psychology, Queen’s University, Kingston, ON Canada
| | - Kate L. Harkness
- 0000 0004 1936 8331grid.410356.5Department of Psychology, Queen’s University, Kingston, ON Canada
| | - Benicio N. Frey
- 0000 0004 1936 8227grid.25073.33Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON Canada ,Mood Disorders Program and Women’s Health Concerns Clinic, St. Joseph’s Healthcare, Hamilton, ON Canada
| | - Raymond W. Lam
- 0000 0001 2288 9830grid.17091.3eDepartment of Psychiatry, University of British Columbia, Vancouver, BC Canada
| | - Stephen C. Strother
- 0000 0001 2157 2938grid.17063.33Rotman Research Institute, Baycrest and Department of Medical Biophysics, University of Toronto, Toronto, ON Canada
| | - Susan Rotzinger
- 0000 0001 2157 2938grid.17063.33Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON Canada ,0000 0001 2157 2938grid.17063.33Department of Psychiatry, Krembil Research Centre, University Health Network, University of Toronto, Toronto, ON Canada ,0000 0001 2157 2938grid.17063.33Department of Psychiatry, St. Michael’s Hospital, University of Toronto, Toronto, ON Canada
| | - Sidney H. Kennedy
- 0000 0001 2157 2938grid.17063.33Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON Canada ,0000 0001 2157 2938grid.17063.33Department of Psychiatry, Krembil Research Centre, University Health Network, University of Toronto, Toronto, ON Canada ,0000 0001 2157 2938grid.17063.33Department of Psychiatry, St. Michael’s Hospital, University of Toronto, Toronto, ON Canada ,grid.415502.7Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON Canada
| | - Glenda M. MacQueen
- 0000 0004 1936 7697grid.22072.35Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, AB Canada
| |
Collapse
|
49
|
Lecei A, van Winkel R. Hippocampal pattern separation of emotional information determining risk or resilience in individuals exposed to childhood trauma: Linking exposure to neurodevelopmental alterations and threat anticipation. Neurosci Biobehav Rev 2020; 108:160-170. [DOI: 10.1016/j.neubiorev.2019.11.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 11/15/2019] [Accepted: 11/15/2019] [Indexed: 12/29/2022]
|
50
|
The Interplay Between Post-traumatic Stress Disorder and Dementia: A Systematic Review. Am J Geriatr Psychiatry 2020; 28:48-60. [PMID: 31488352 DOI: 10.1016/j.jagp.2019.08.006] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/02/2019] [Accepted: 08/05/2019] [Indexed: 11/21/2022]
Abstract
BACKGROUND Post-traumatic stress disorder (PTSD) has been reported to increase the risk for dementia in veterans and civilians. Conversely, case reports have described the delayed onset of PTSD in individuals developing dementia, suggesting a complex relationship between these two conditions. OBJECTIVES To critically review studies investigating the association between PTSD and dementia and to assess the evidence for a bidirectional relationship between the two conditions. METHODS A systematic review of Web of Science Core databases was carried out from inception of databases up to November 2018 to identify observational studies pertaining to both PTSD and dementia. Populations enrolled, stressors and neuropathologies, and main outcomes of studies were extracted, in addition to age at trauma and at onset of PTSD and dementia. The different temporal relationships between trauma and onset of the conditions were characterized. RESULTS Twenty-five articles were included in the review; 14 articles assessed the association of PTSD with subsequent dementia and 11 articles reported the delayed onset of PTSD with the onset of dementia. Most reported traumas occurred in early-life (<40 years) and were related to war combat experiences. PTSD in mid-life (between 40 and 60 years of age) was associated with an increased risk of late-onset dementia. Numerous case series reported the delayed onset of PTSD in Alzheimer's disease and vascular dementia. CONCLUSION Current evidence suggests that PTSD and dementia have a bidirectional relationship: PTSD increases the risk for late-onset dementia and dementia increases the risk for delayed-onset PTSD in those who experienced a significant trauma earlier in life.
Collapse
|