1
|
Zhukovskaya A, Zimmerman CA, Willmore L, Pan-Vazquez A, Janarthanan SR, Lynch LA, Falkner AL, Witten IB. Heightened lateral habenula activity during stress produces brainwide and behavioral substrates of susceptibility. Neuron 2024:S0896-6273(24)00657-3. [PMID: 39393349 DOI: 10.1016/j.neuron.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 07/04/2024] [Accepted: 09/08/2024] [Indexed: 10/13/2024]
Abstract
Some individuals are susceptible to chronic stress, and others are more resilient. While many brain regions implicated in learning are dysregulated after stress, little is known about whether and how neural teaching signals during stress differ between susceptible and resilient individuals. Here, we seek to determine if activity in the lateral habenula (LHb), which encodes a negative teaching signal, differs between susceptible and resilient mice during stress to produce different outcomes. After (but not before) chronic social defeat stress, the LHb is active when susceptible mice are in proximity of the aggressor strain. During stress, activity is higher in susceptible mice during aggressor interactions, and activation biases mice toward susceptibility. This manipulation generates a persistent and widespread increase in the balance of subcortical vs. cortical activity in susceptible mice. Taken together, our results indicate that heightened activity in the LHb during stress produces lasting brainwide and behavioral substrates of susceptibility.
Collapse
Affiliation(s)
- Anna Zhukovskaya
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | - Lindsay Willmore
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | | | | | - Laura A Lynch
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Annegret L Falkner
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA
| | - Ilana B Witten
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ, USA; Howard Hughes Medical Institute, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
2
|
Zhukovskaya A, Christopher Z, Willmore L, Pan Vazquez A, Janarthanan S, Falkner A, Witten I. Heightened lateral habenula activity during stress produces brainwide and behavioral substrates of susceptibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.06.565681. [PMID: 39005438 PMCID: PMC11244933 DOI: 10.1101/2023.11.06.565681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Some individuals are susceptible to the experience of chronic stress and others are more resilient. While many brain regions implicated in learning are dysregulated after stress, little is known about whether and how neural teaching signals during stress differ between susceptible and resilient individuals. Here, we seek to determine if activity in the lateral habenula (LHb), which encodes a negative teaching signal, differs between susceptible and resilient mice during stress to produce different outcomes. After, but not before, chronic social defeat stress (CSDS), the LHb is active when susceptible mice are in the proximity of the aggressor strain. During stress itself, LHb activity is higher in susceptible mice during aggressor proximity, and activation of the LHb during stress biases mice towards susceptibility. This manipulation generates a persistent and widespread increase in the balance of subcortical versus cortical activity in susceptible mice. Taken together, our results indicate that heightened activity in the LHb during stress produces lasting brainwide and behavioral substrates of susceptibility.
Collapse
|
3
|
Liu Q, Cheng L, Li F, Zhu H, Lu X, Huang C, Yuan X. NSC689857, an inhibitor of Skp2, produces antidepressant-like effects in mice. Behav Pharmacol 2024; 35:227-238. [PMID: 38651981 DOI: 10.1097/fbp.0000000000000773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
We have previously reported that two inhibitors of an E3 ligase S-phase kinase-associated protein 2 (Skp2), SMIP004 and C1, have an antidepressant-like effect in non-stressed and chronically stressed mice. This prompted us to ask whether other Skp2 inhibitors could also have an antidepressant effect. Here, we used NSC689857, another Skp2 inhibitor, to investigate this hypothesis. The results showed that administration of NSC689857 (5 mg/kg) produced an antidepressant-like effect in a time-dependent manner in non-stressed male mice, which started 8 days after drug administration. Dose-dependent analysis showed that administration of 5 and 10 mg/kg, but not 1 mg/kg, of NSC689857 produced antidepressant-like effects in both non-stressed male and female mice. Administration of NSC689857 (5 mg/kg) also induced antidepressant-like effects in non-stressed male mice when administered three times within 24 h (24, 5, and 1 h before testing) but not when administered acutely (1 h before testing). In addition, NSC689857 and fluoxetine coadministration produced additive antidepressant-like effects in non-stressed male mice. These effects of NSC689857 were not associated with the changes in locomotor activity. Administration of NSC689857 (5 mg/kg) also attenuated depression-like behaviors in male mice induced by chronic social defeat stress, suggesting therapeutic potential of NSC689857 in depression. Overall, these results suggest that NSC689857 is capable of exerting antidepressant-like effects in both non-stressed and chronically stressed mice.
Collapse
Affiliation(s)
- Qingqing Liu
- Department of Pharmacy, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong
| | - Li Cheng
- Department of Pharmacy, Changzhou Geriatric Hospital Affiliated to Soochow University, Changzhou No. 7 People's Hospital, Changzhou
| | - Fu Li
- Department of Pharmacy, Changzhou Geriatric Hospital Affiliated to Soochow University, Changzhou No. 7 People's Hospital, Changzhou
| | - Haojie Zhu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu
| | - Xu Lu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu
| | - Chao Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu
| | - Xiaomei Yuan
- Department of Cardiology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Vesicular Zinc Modulates Cell Proliferation and Survival in the Developing Hippocampus. Cells 2023; 12:cells12060880. [PMID: 36980221 PMCID: PMC10047515 DOI: 10.3390/cells12060880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
In the brain, vesicular zinc, which refers to a subset of zinc that is sequestered into synaptic vesicles by zinc transporter 3 (ZnT3), has extensive effects on neuronal signalling and modulation. Vesicular zinc-focused research has mainly been directed to its role in the hippocampus, particularly in adult neurogenesis. However, whether vesicular zinc is involved in modulating neurogenesis during the early postnatal period has been less studied. As a first step to understanding this, we used ZnT3 knockout (KO) mice, which lack ZnT3 and, thus, vesicular zinc, to evaluate cell proliferation at three different age points spanning postnatal development (P6, P14, and P28). The survival and the neuronal phenotype of these cells was also assessed in adulthood. We found that male ZnT3 KO mice exhibited lower rates of cell proliferation at P14, but a greater number of these cells survived to adulthood. Additionally, significantly more cells labelled on P6 survived to adulthood in male and female ZnT3 KO mice. We also found sex-dependent differences, whereby male mice showed higher levels of cell proliferation at P28, as well as higher levels of cell survival for P14-labelled cells, compared to female mice. However, female mice showed greater percentages of neuronal differentiation for P14-labelled cells. Finally, we found significant effects of age of BrdU injections on cell proliferation, survival, and neuronal differentiation. Collectively, our results suggest that the loss of vesicular zinc affects normal proliferation and survival of cells born at different age points during postnatal development and highlight prominent sex- and age-dependent differences. Our findings provide the foundation for future studies to further probe the role of vesicular zinc in the modulation of developmental neurogenesis.
Collapse
|
5
|
Normalization of HPA Axis, Cholinergic Neurotransmission, and Inhibiting Brain Oxidative and Inflammatory Dynamics Are Associated with The Adaptogenic-like Effect of Rutin Against Psychosocial Defeat Stress. J Mol Neurosci 2023; 73:60-75. [PMID: 36580190 DOI: 10.1007/s12031-022-02084-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/15/2022] [Indexed: 12/30/2022]
Abstract
Social defeat stress (SDS) due to changes in biochemical functions has been implicated in the pathogenesis of affective and cognitive disorders. Employing pharmacological approach with adaptogens in the management and treatment of psychosocial stress is increasingly receiving scientific attention. In this study, we investigated the neuroprotective effect of rutin, a bioflavonoid with neuroprotective and anti-inflammatory functions on neurobehavioral and neuro-biochemical changes in mice exposed to SDS. Groups of mice named the intruder mice received normal saline (10 mL/kg), rutin (5, 10, and 20 mg/kg, i.p.), and ginseng (50 mg/kg, i.p.) daily for 14 days, and then followed by 10 min daily SDS (physical/psychological) exposures to aggressor mice from days 7-14. Investigations consisting of neurobehavioral (locomotion, memory, anxiety, and depression) phenotypes, neuro-biochemical (oxidative, nitrergic, cholinergic, and pro-inflammatory cytokines) levels in discrete brain regions, and hypothalamic-pituitary-adrenal (HPA) axis consisting adrenal weight, corticosterone, and glucose concentrations were assessed. Rutin restored the neurobehavioral deficits and reduced the activity of acetylcholinesterase in the brains. Adrenal hypertrophy, increased serum glucose and corticosterone levels were significantly attenuated by rutin. SDS-induced release of tumor necrosis factor-alpha and interleukin-6 in the striatum, prefrontal cortex, and hippocampus were also suppressed by rutin in a brain-region-dependent manner. Moreover, SDS-induced oxidative stress characterized by low antioxidants (glutathione, superoxide-dismutase, catalase) and lipid peroxidation and nitrergic stress were reversed by rutin in discrete brain regions. Collectively, our data suggest that rutin possesses an adoptogenic potential in mice exposed to SDS via normalization of HPA, oxidative/nitrergic, and neuroinflammatory inhibitions. Thus, may be adopted in the management of neuropsychiatric syndrome due to psychosocial stress.
Collapse
|
6
|
García-Gómez L, Castillo-Fernández I, Perez-Villalba A. In the pursuit of new social neurons. Neurogenesis and social behavior in mice: A systematic review. Front Cell Dev Biol 2022; 10:1011657. [PMID: 36407114 PMCID: PMC9672322 DOI: 10.3389/fcell.2022.1011657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Social behaviors have become more relevant to our understanding of the human nervous system because relationships with our peers may require and modulate adult neurogenesis. Here, we review the pieces of evidence we have to date for the divergence of social behaviors in mice by modulation of adult neurogenesis or if social behaviors and the social environment can drive a change in neurogenic processes. Social recognition and memory are deeply affected by antimitotic drugs and irradiation, while NSC transgenic mice may run with lower levels of social discrimination. Interestingly, social living conditions can create a big impact on neurogenesis. Social isolation and social defeat reduce the number of new neurons, while social dominance and enrichment of the social environment increase their number. These new “social neurons” trigger functional modifications with amazing transgenerational effects. All of these suggest that we are facing two bidirectional intertwined variables, and the great challenge now is to understand the cellular and genetic mechanisms that allow this relationship to be used therapeutically.
Collapse
|
7
|
Ugwu PI, Ben-Azu B, Ugwu SU, Uruaka CI, Nworgu CC, Okorie PO, Okafor KO, Anachuna KK, Elendu MU, Ugwu AO, Anyaehie UB, Nwankwo AA, Osim EE. Putative mechanisms involved in the psychopathologies of mice passively coping with psychosocial defeat stress by quercetin. Brain Res Bull 2022; 183:127-141. [DOI: 10.1016/j.brainresbull.2022.03.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/15/2022] [Accepted: 03/07/2022] [Indexed: 12/14/2022]
|
8
|
ZnT1 is a neuronal Zn 2+/Ca 2+ exchanger. Cell Calcium 2021; 101:102505. [PMID: 34871934 DOI: 10.1016/j.ceca.2021.102505] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 10/31/2021] [Accepted: 11/22/2021] [Indexed: 01/22/2023]
Abstract
Zinc transporter 1 (ZnT1; SLC30A1) is present in the neuronal plasma membrane, critically modulating NMDA receptor function and Zn2+ neurotoxicity. The mechanism mediating Zn2+ transport by ZnT1, however, has remained elusive. Here, we investigated ZnT1-dependent Zn2+ transport by measuring intracellular changes of this ion using the fluorescent indicator FluoZin-3. In primary mouse cortical neurons, which express ZnT1, transient addition of extracellular Zn2+ triggered a rise in cytosolic Zn2+, followed by its removal. Knockdown of ZnT1 by adeno associated viral (AAV)-short hairpin RNA (shZnT1) markedly increased rates of Zn2+ rise, and decreased rates of its removal, suggesting that ZnT1 is a primary route for Zn2+ efflux in neurons. Although Zn2+ transport by other members of the SLC30A family is dependent on pH gradients across cellular membranes, altered H+ gradients were not coupled to ZnT1-dependent transport. Removal of cytoplasmic Zn2+, against a large inward gradient during the initial loading phase, suggests that Zn2+ efflux requires a large driving force. We therefore asked if Ca2+ gradients across the membrane can facilitate Zn2+ efflux. Elimination of extracellular Ca2+ abolished Zn2+ efflux, while increased extracellular Ca2+ levels enhanced Zn2+ efflux. Intracellular Ca2+ rises, measured in GCaMP6 expressing neurons, closely paralleled cytoplasmic Zn2+ removal. Taken together, these results strongly suggest that ZnT1 functions as a Zn2+/Ca2+ exchanger, thereby regulating the transport of two ions of fundamental importance in neuronal signaling.
Collapse
|
9
|
Hale LH, Tickerhoof MC, Smith AS. Chronic intranasal oxytocin reverses stress-induced social avoidance in female prairie voles. Neuropharmacology 2021; 198:108770. [PMID: 34461067 DOI: 10.1016/j.neuropharm.2021.108770] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/14/2022]
Abstract
Social anxiety disorder (SAD) is a prevalent mental illness in both men and women, but current treatment approaches with selective serotonin reuptake inhibitors (SSRI) have limited success. The neuropeptide oxytocin (OXT) has become a therapeutic target due to its prosocial and anxiolytic effects. Nevertheless, no research has focused on the impact of chronic OXT treatment in animal models of SAD. Social defeat stress is an animal model of social conflict that reliably induces a social avoidance phenotype, reflecting symptoms observed in individuals suffering from SAD. Here, we used the socially monogamous prairie vole, which exhibits aggressive behavior in both sexes, to examine the effects of OXT and SSRI treatment following social defeat stress in males and females. Defeated voles became avoidant in unfamiliar social situations as early as one day after defeat experience, and this phenotype persisted for at least eight weeks. OXT receptor (OXTR) binding in mesocorticolimbic and paralimbic regions was reduced in defeated females during the eight-week recovery period. In males, serotonin 1A receptor binding was decreased in the basolateral amygdala and dorsal raphe nucleus starting at one week and four weeks post-defeat, respectively. Chronic intranasal treatment with OXT had a negative effect on sociability and mesolimbic OXTR binding in non-defeated females. However, chronic intranasal OXT promoted social engagement and increased mesolimbic OXTR binding in defeated females but not males. SSRI treatment led to only modest effects. This study identifies a sex-specific and stress-dependent function of intranasal OXT on mesolimbic OXTR and social behaviors.
Collapse
Affiliation(s)
- Luanne H Hale
- Department of Pharmacology and Toxicology, Pharmacy School, University of Kansas, Lawrence, KS, USA
| | - Maria C Tickerhoof
- Department of Pharmacology and Toxicology, Pharmacy School, University of Kansas, Lawrence, KS, USA
| | - Adam S Smith
- Department of Pharmacology and Toxicology, Pharmacy School, University of Kansas, Lawrence, KS, USA.
| |
Collapse
|
10
|
Guo S, Wang R, Hu J, Sun L, Zhao X, Zhao Y, Han D, Hu S. Photobiomodulation Promotes Hippocampal CA1 NSC Differentiation Toward Neurons and Facilitates Cognitive Function Recovery Involving NLRP3 Inflammasome Mitigation Following Global Cerebral Ischemia. Front Cell Neurosci 2021; 15:731855. [PMID: 34489645 PMCID: PMC8417562 DOI: 10.3389/fncel.2021.731855] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
Our recent study revealed that photobiomodulation (PBM) inhibits delayed neuronal death by preserving mitochondrial dynamics and function following global cerebral ischemia (GCI). In the current study, we clarified whether PBM exerts effective roles in endogenous neurogenesis and long-lasting neurological recovery after GCI. Adult male rats were treated with 808 nm PBM at 20 mW/cm2 irradiance for 2 min on cerebral cortex surface (irradiance ∼7.0 mW/cm2, fluence ∼0.8 J/cm2 on the hippocampus) beginning 3 days after GCI for five consecutive days. Cognitive function was evaluated using the Morris water maze. Neural stem cell (NSC) proliferation, immature neurons, and mature neurons were examined using bromodeoxyuridine (BrdU)-, doublecortin (DCX)-, and NeuN-staining, respectively. Protein expression, such as NLRP3, cleaved IL1β, GFAP, and Iba1 was detected using immunofluorescence staining, and ultrastructure of astrocyte and microglia was observed by transmission electron microscopy. The results revealed that PBM exerted a markedly neuroprotective role and improved spatial learning and memory ability at 58 days of ischemia/reperfusion (I/R) but not at 7 days of reperfusion. Mechanistic studies revealed that PBM suppressed reactive astrocytes and maintained astrocyte regeneration at 7 days of reperfusion, as well as elevated neurogenesis at 58 days of reperfusion, as evidenced by a significant decrease in the fluorescence intensity of GFAP (astrocyte marker) but unchanged the number of BrdU-GFAP colabeled cells at the early timepoint, and a robust elevation in the number of DCX-NeuN colabeled cells at the later timepoint in the PBM-treated group compared to the GCI group. Notably, PBM treatment protected the ultrastructure of astrocyte and microglia cells at 58 days but not 7 days of reperfusion in the hippocampal CA1 region. Furthermore, PBM treatment significantly attenuated the GCI-induced immunofluorescence intensity of NLRP3 (an inflammasome component), cleaved IL1β (reflecting inflammasome activation) and Iba1, as well as the colocalization of NLRP3/GFAP or cleaved IL-1β/GFAP, especially in animals subjected to I/R at 58 days. Taken together, PBM treatment performed postischemia exerted a long-lasting protective effect on astrocytes and promoted endogenous neurogenesis in the hippocampal CA1 region, which might contribute to neurological recovery after GCI.
Collapse
Affiliation(s)
- Sihan Guo
- School of Life Sciences, Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China
| | - Ruimin Wang
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Jiewei Hu
- Neurobiology Institute, School of Public Health, North China University of Science and Technology, Tangshan, China
| | - Liping Sun
- School of Life Sciences, Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China
| | - Xinru Zhao
- School of Life Sciences, Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China
| | - Yufeng Zhao
- School of Life Sciences, Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China
| | - Dong Han
- School of Life Sciences, Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China
| | - Shuqun Hu
- School of Life Sciences, Jiangsu Provincial Institute of Health Emergency, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
11
|
Identification of the antidepressive properties of C1, a specific inhibitor of Skp2, in mice. Behav Pharmacol 2021; 32:62-72. [PMID: 33416256 DOI: 10.1097/fbp.0000000000000604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We have reported that SMIP004, an inhibitor of S-phase kinase-associated protein 2 (Skp2), displays antidepressant-like activities in stress-naïve and chronically stressed mice. Here, we investigated the antidepressant-like effect of C1, another inhibitor of Skp2, in mouse models following acute or chronic drug administration at different doses and treatment times by using the tail suspension test (TST), forced swimming test (FST), and social interaction test (SIT). The time- and dose-dependent results showed that the antidepressant-like effect of C1 occurred 8 days after the drug treatment, and C1 produced antidepressant-like activities at the dose of 5 and 10 but not 1 mg/kg in male or female mice. C1 administration (5 mg/kg) also induced antidepressant-like effects in stress-naïve mice in a three-times administration mode within 24 h (24, 5, and 1 h before the test) but not in an acute administration mode (1 h before the test). The C1 and fluoxetine co-administration produced additive effect on depression-like behaviors in stress-naïve mice. The antidepressant-like effect of C1 was not associated with the change in locomotor activity, as no increased locomotor activity was observed in different treatment modes. Furthermore, the long-term C1 treatment (5 mg/kg) was found to ameliorate the depression-like behaviors in chronic social defeat stress-exposed mice, suggesting that C1 can produce antidepressant-like actions in stress conditions. Since C1 is a specific inhibitor of Skp2, our results demonstrate that inhibition of Skp2 might be a potential strategy for the treatment of depression, and Skp2 may be potential target for the development of novel antidepressants.
Collapse
|
12
|
Zinc in the Brain: Friend or Foe? Int J Mol Sci 2020; 21:ijms21238941. [PMID: 33255662 PMCID: PMC7728061 DOI: 10.3390/ijms21238941] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Zinc is a trace metal ion in the central nervous system that plays important biological roles, such as in catalysis, structure, and regulation. It contributes to antioxidant function and the proper functioning of the immune system. In view of these characteristics of zinc, it plays an important role in neurophysiology, which leads to cell growth and cell proliferation. However, after brain disease, excessively released and accumulated zinc ions cause neurotoxic damage to postsynaptic neurons. On the other hand, zinc deficiency induces degeneration and cognitive decline disorders, such as increased neuronal death and decreased learning and memory. Given the importance of balance in this context, zinc is a biological component that plays an important physiological role in the central nervous system, but a pathophysiological role in major neurological disorders. In this review, we focus on the multiple roles of zinc in the brain.
Collapse
|
13
|
Jung SH, Meckes JK, Schipma MJ, Lim PH, Jenz ST, Przybyl K, Wert SL, Kim S, Luo W, Gacek SA, Jankord R, Hatcher-Solis C, Redei EE. Strain Differences in Responsiveness to Repeated Restraint Stress Affect Remote Contextual Fear Memory and Blood Transcriptomics. Neuroscience 2020; 444:76-91. [PMID: 32768618 DOI: 10.1016/j.neuroscience.2020.07.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/15/2020] [Accepted: 07/29/2020] [Indexed: 12/20/2022]
Abstract
The role of stress in altering fear memory is not well understood. Since individual variations in stress reactivity exist, and stress alters fear memory, exposing individuals with differing stress-reactivity to repeated stress would affect their fear memory to various degrees. We explored this question using the average stress-reactive Fisher 344 (F344) rat strain and the Wistar-Kyoto (WKY) strain with its heightened stress-reactivity. Male F344 and WKY rats were exposed to the contextual fear conditioning (CFC) paradigm and then chronic restraint stress (CRS) or no stress (NS) was administered for two weeks before a second CFC. Both recent and reinstated fear memory were greater in F344s than WKYs, regardless of the stress status. In contrast, remote memory was attenuated only in F344s after CRS. In determining whether this strain-specific response to CRS was mirrored by transcriptomic changes in the blood, RNA sequencing was carried out. Overlapping differentially expressed genes (DEGs) between NS and CRS in the blood of F344 and WKY suggest a convergence of stress-related molecular mechanisms, independent of stress-reactivity. In contrast, DEGs unique to the F344 and the WKY stress responses are divergent in their functionality and networks, beyond that of strain differences in their non-stressed state. These results suggest that in some individuals chronic or repeated stress, different from the original fear memory-provoking stress, can attenuate prior fear memory. Furthermore, the novel blood DEGs can report on the general state of stress of the individual, or can be associated with individual variation in stress-responsiveness.
Collapse
Affiliation(s)
- Seung H Jung
- Applied Neuroscience, 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH, USA
| | - Jeanie K Meckes
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Matthew J Schipma
- NUSeq Core, Center for Genetic Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Patrick H Lim
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sophia T Jenz
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Katherine Przybyl
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Stephanie L Wert
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sarah Kim
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Wendy Luo
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Stephanie A Gacek
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Ryan Jankord
- Applied Neuroscience, 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH, USA
| | - Candice Hatcher-Solis
- Applied Neuroscience, 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson Air Force Base, OH, USA
| | - Eva E Redei
- Department of Psychiatry and Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
14
|
Choi BY, Hong DK, Jeong JH, Lee BE, Koh JY, Suh SW. Zinc transporter 3 modulates cell proliferation and neuronal differentiation in the adult hippocampus. Stem Cells 2020; 38:994-1006. [PMID: 32346941 PMCID: PMC7496127 DOI: 10.1002/stem.3194] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 04/10/2020] [Indexed: 12/11/2022]
Abstract
The subgranular zone of the dentate gyrus is a subregion of the hippocampus that has two uniquely defining features; it is one of the most active sites of adult neurogenesis as well as the location where the highest concentrations of synaptic zinc are found, the mossy fiber terminals. Therefore, we sought to investigate the idea that vesicular zinc plays a role as a modulator of hippocampal adult neurogenesis. Here, we used ZnT3−/− mice, which are depleted of synaptic‐vesicle zinc, to test the effect of targeted deletion of this transporter on adult neurogenesis. We found that this manipulation reduced progenitor cell turnover as well as led to a marked defect in the maturation of newborn cells that survive in the DG toward a neuronal phenotype. We also investigated the effects of zinc (ZnCl2), n‐acetyl cysteine (NAC), and ZnCl2 plus 2NAC (ZN) supplement on adult hippocampal neurogenesis. Compared with ZnCl2 or NAC, administration of ZN resulted in an increase in proliferation of progenitor cells and neuroblast. ZN also rescued the ZnT3 loss‐associated reduction of neurogenesis via elevation of insulin‐like growth factor‐1 and ERK/CREB activation. Together, these findings reveal that ZnT3 plays a highly important role in maintaining adult hippocampal neurogenesis and supplementation by ZN has a beneficial effect on hippocampal neurogenesis, as well as providing a therapeutic target for enhanced neuroprotection and repair after injury as demonstrated by its ability to prevent aging‐dependent cognitive decline in ZnT3−/− mice. Therefore, the present study suggests that ZnT3 and vesicular zinc are essential for adult hippocampal neurogenesis.
Collapse
Affiliation(s)
- Bo Young Choi
- Department of Physiology, Hallym University College of Medicine, Chuncheon, South Korea
| | - Dae Ki Hong
- Department of Physiology, Hallym University College of Medicine, Chuncheon, South Korea
| | - Jeong Hyun Jeong
- Department of Physiology, Hallym University College of Medicine, Chuncheon, South Korea
| | - Bo Eun Lee
- Department of Physiology, Hallym University College of Medicine, Chuncheon, South Korea
| | - Jae-Young Koh
- Department of Neurology, University of Ulsan College of Medicine, Seoul, South Korea
| | - Sang Won Suh
- Department of Physiology, Hallym University College of Medicine, Chuncheon, South Korea
| |
Collapse
|