1
|
Liao Z, Gonzalez KC, Li DM, Yang CM, Holder D, McClain NE, Zhang G, Evans SW, Chavarha M, Simko J, Makinson CD, Lin MZ, Losonczy A, Negrean A. Functional architecture of intracellular oscillations in hippocampal dendrites. Nat Commun 2024; 15:6295. [PMID: 39060234 PMCID: PMC11282248 DOI: 10.1038/s41467-024-50546-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Fast electrical signaling in dendrites is central to neural computations that support adaptive behaviors. Conventional techniques lack temporal and spatial resolution and the ability to track underlying membrane potential dynamics present across the complex three-dimensional dendritic arbor in vivo. Here, we perform fast two-photon imaging of dendritic and somatic membrane potential dynamics in single pyramidal cells in the CA1 region of the mouse hippocampus during awake behavior. We study the dynamics of subthreshold membrane potential and suprathreshold dendritic events throughout the dendritic arbor in vivo by combining voltage imaging with simultaneous local field potential recording, post hoc morphological reconstruction, and a spatial navigation task. We systematically quantify the modulation of local event rates by locomotion in distinct dendritic regions, report an advancing gradient of dendritic theta phase along the basal-tuft axis, and describe a predominant hyperpolarization of the dendritic arbor during sharp-wave ripples. Finally, we find that spatial tuning of dendritic representations dynamically reorganizes following place field formation. Our data reveal how the organization of electrical signaling in dendrites maps onto the anatomy of the dendritic tree across behavior, oscillatory network, and functional cell states.
Collapse
Affiliation(s)
- Zhenrui Liao
- Department of Neuroscience, Columbia University, New York, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA
| | - Kevin C Gonzalez
- Department of Neuroscience, Columbia University, New York, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA
| | - Deborah M Li
- Department of Neuroscience, Columbia University, New York, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA
| | - Catalina M Yang
- Department of Neuroscience, Columbia University, New York, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA
| | - Donald Holder
- Department of Neuroscience, Columbia University, New York, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA
| | - Natalie E McClain
- Department of Neuroscience, Columbia University, New York, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA
| | - Guofeng Zhang
- Department of Neurobiology, Stanford University, Stanford, USA
| | - Stephen W Evans
- Department of Neurobiology, Stanford University, Stanford, USA
- The Boulder Creek Research Institute, Los Altos, USA
| | - Mariya Chavarha
- Department of Bioengineering, Stanford University, Stanford, USA
| | - Jane Simko
- Department of Neuroscience, Columbia University, New York, USA
- Department of Neurology, Columbia University, New York, USA
| | - Christopher D Makinson
- Department of Neuroscience, Columbia University, New York, USA
- Department of Neurology, Columbia University, New York, USA
| | - Michael Z Lin
- Department of Neurobiology, Stanford University, Stanford, USA
- Department of Bioengineering, Stanford University, Stanford, USA
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA.
- Kavli Institute for Brain Science, Columbia University, New York, USA.
| | - Adrian Negrean
- Department of Neuroscience, Columbia University, New York, USA.
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, USA.
- Allen Institute for Neural Dynamics, Seattle, USA.
| |
Collapse
|
2
|
Liao Z, Gonzalez KC, Li DM, Yang CM, Holder D, McClain NE, Zhang G, Evans SW, Chavarha M, Yi J, Makinson CD, Lin MZ, Losonczy A, Negrean A. Functional architecture of intracellular oscillations in hippocampal dendrites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.12.579750. [PMID: 38405778 PMCID: PMC10888786 DOI: 10.1101/2024.02.12.579750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Fast electrical signaling in dendrites is central to neural computations that support adaptive behaviors. Conventional techniques lack temporal and spatial resolution and the ability to track underlying membrane potential dynamics present across the complex three-dimensional dendritic arbor in vivo. Here, we perform fast two-photon imaging of dendritic and somatic membrane potential dynamics in single pyramidal cells in the CA1 region of the mouse hippocampus during awake behavior. We study the dynamics of subthreshold membrane potential and suprathreshold dendritic events throughout the dendritic arbor in vivo by combining voltage imaging with simultaneous local field potential recording, post hoc morphological reconstruction, and a spatial navigation task. We systematically quantify the modulation of local event rates by locomotion in distinct dendritic regions and report an advancing gradient of dendritic theta phase along the basal-tuft axis, then describe a predominant hyperpolarization of the dendritic arbor during sharp-wave ripples. Finally, we find spatial tuning of dendritic representations dynamically reorganizes following place field formation. Our data reveal how the organization of electrical signaling in dendrites maps onto the anatomy of the dendritic tree across behavior, oscillatory network, and functional cell states.
Collapse
Affiliation(s)
- Zhenrui Liao
- Department of Neuroscience, Columbia University, New York, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| | - Kevin C. Gonzalez
- Department of Neuroscience, Columbia University, New York, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| | - Deborah M. Li
- Department of Neuroscience, Columbia University, New York, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| | - Catalina M. Yang
- Department of Neuroscience, Columbia University, New York, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| | - Donald Holder
- Department of Neuroscience, Columbia University, New York, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| | - Natalie E. McClain
- Department of Neuroscience, Columbia University, New York, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| | - Guofeng Zhang
- Department of Neurobiology, Stanford University, Stanford, United States
| | - Stephen W. Evans
- Department of Neurobiology, Stanford University, Stanford, United States
| | - Mariya Chavarha
- Department of Bioengineering, Stanford University, Stanford, United States
| | - Jane Yi
- Department of Neuroscience, Columbia University, New York, United States
- Department of Neurology, Columbia University, New York, United States
| | - Christopher D. Makinson
- Department of Neuroscience, Columbia University, New York, United States
- Department of Neurology, Columbia University, New York, United States
| | - Michael Z. Lin
- Department of Neurobiology, Stanford University, Stanford, United States
- Department of Bioengineering, Stanford University, Stanford, United States
| | - Attila Losonczy
- Department of Neuroscience, Columbia University, New York, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
- Kavli Institute for Brain Science, Columbia University, New York, United States
| | - Adrian Negrean
- Department of Neuroscience, Columbia University, New York, United States
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, United States
| |
Collapse
|
3
|
Kazmierska-Grebowska P, Jankowski MM, MacIver MB. Missing Puzzle Pieces in Dementia Research: HCN Channels and Theta Oscillations. Aging Dis 2024; 15:22-42. [PMID: 37450922 PMCID: PMC10796085 DOI: 10.14336/ad.2023.0607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/07/2023] [Indexed: 07/18/2023] Open
Abstract
Increasing evidence indicates a role of hyperpolarization activated cation (HCN) channels in controlling the resting membrane potential, pacemaker activity, memory formation, sleep, and arousal. Their disfunction may be associated with the development of epilepsy and age-related memory decline. Neuronal hyperexcitability involved in epileptogenesis and EEG desynchronization occur in the course of dementia in human Alzheimer's Disease (AD) and animal models, nevertheless the underlying ionic and cellular mechanisms of these effects are not well understood. Some suggest that theta rhythms involved in memory formation could be used as a marker of memory disturbances in the course of neurogenerative diseases, including AD. This review focusses on the interplay between hyperpolarization HCN channels, theta oscillations, memory formation and their role(s) in dementias, including AD. While individually, each of these factors have been linked to each other with strong supportive evidence, we hope here to expand this linkage to a more inclusive picture. Thus, HCN channels could provide a molecular target for developing new therapeutic agents for preventing and/or treating dementia.
Collapse
Affiliation(s)
| | - Maciej M. Jankowski
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel.
- BioTechMed Center, Multimedia Systems Department, Faculty of Electronics, Telecommunications, and Informatics, Gdansk University of Technology, Gdansk, Poland.Telecommunications and Informatics, Gdansk University of Technology, Gdansk, Poland.
| | - M. Bruce MacIver
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of of Medicine, Stanford University, CA, USA.
| |
Collapse
|
4
|
Zutshi I, Buzsáki G. Hippocampal sharp-wave ripples and their spike assembly content are regulated by the medial entorhinal cortex. Curr Biol 2023; 33:3648-3659.e4. [PMID: 37572665 PMCID: PMC10530523 DOI: 10.1016/j.cub.2023.07.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 08/14/2023]
Abstract
Hippocampal sharp-wave ripples (SPW-Rs) are critical for memory consolidation and retrieval. The neuronal content of spiking during SPW-Rs is believed to be under the influence of neocortical inputs via the entorhinal cortex (EC). Optogenetic silencing of the medial EC (mEC) reduced the incidence of SPW-Rs with minor impacts on their magnitude or duration, similar to local CA1 silencing. The effect of mEC silencing on CA1 firing and field potentials was comparable to the effect of transient cortex-wide DOWN states of non-REM (NREM) sleep, implying that decreased SPW-R incidence in both cases is due to tonic disfacilitation of hippocampal circuits. The neuronal composition of CA1 pyramidal neurons during SPW-Rs was altered by mEC silencing but was restored immediately after silencing. We suggest that the mEC provides both tonic and transient influences on hippocampal network states by timing the occurrence of SPW-Rs and altering their neuronal content.
Collapse
Affiliation(s)
- Ipshita Zutshi
- New York University Neuroscience Institute, New York, NY, USA
| | - György Buzsáki
- New York University Neuroscience Institute, New York, NY, USA; Center for Neural Science, New York University, New York, NY 10016, USA.
| |
Collapse
|
5
|
Noguchi A, Matsumoto N, Ikegaya Y. Postnatal Maturation of Membrane Potential Dynamics during in Vivo Hippocampal Ripples. J Neurosci 2023; 43:6126-6140. [PMID: 37400254 PMCID: PMC10476637 DOI: 10.1523/jneurosci.0125-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/05/2023] Open
Abstract
Sharp-wave ripples (SWRs) are transient high-frequency oscillations of local field potentials (LFPs) in the hippocampus and play a critical role in memory consolidation. During SWRs, CA1 pyramidal cells exhibit rapid spike sequences that often replay the sequential activity that occurred during behavior. This temporally organized firing activity gradually emerges during 2 weeks after the eye opening; however, it remains unclear how the organized spikes during SWRs mature at the intracellular membrane potential (Vm) level. Here, we recorded Vm of CA1 pyramidal cells simultaneously with hippocampal LFPs from anesthetized immature mice of either sex after the developmental emergence of SWRs. On postnatal days 16 and 17, Vm dynamics around SWRs were premature, characterized by prolonged depolarizations without either pre- or post-SWR hyperpolarizations. The biphasic hyperpolarizations, features typical of adult SWR-relevant Vm, formed by approximately postnatal day 30. This Vm maturation was associated with an increase in SWR-associated inhibitory inputs to pyramidal cells. Thus, the development of SWR-relevant inhibition restricts the temporal windows for spikes of pyramidal cells and allows CA1 pyramidal cells to organize their spike sequences during SWRs.SIGNIFICANCE STATEMENT Sharp-wave ripples (SWRs) are prominent hippocampal oscillations and play a critical role in memory consolidation. During SWRs, hippocampal neurons synchronously emit spikes with organized temporal patterns. This temporal structure of spikes during SWRs develops during the third and fourth postnatal weeks, but the underlying mechanisms are not well understood. Here, we recorded in vivo membrane potentials from hippocampal neurons in premature mice and suggest that the maturation of SWR-associated inhibition enables hippocampal neurons to produce precisely controlled spike times during SWRs.
Collapse
Affiliation(s)
- Asako Noguchi
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, 113-0033, Japan
| | - Nobuyoshi Matsumoto
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, 113-0033, Japan
- Institute for AI and Beyond, University of Tokyo, Tokyo, 113-0033, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, 113-0033, Japan
- Institute for AI and Beyond, University of Tokyo, Tokyo, 113-0033, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka, 565-0871, Japan
| |
Collapse
|
6
|
Milstein AD, Tran S, Ng G, Soltesz I. Offline memory replay in recurrent neuronal networks emerges from constraints on online dynamics. J Physiol 2023; 601:3241-3264. [PMID: 35907087 PMCID: PMC9885000 DOI: 10.1113/jp283216] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/22/2022] [Indexed: 02/01/2023] Open
Abstract
During spatial exploration, neural circuits in the hippocampus store memories of sequences of sensory events encountered in the environment. When sensory information is absent during 'offline' resting periods, brief neuronal population bursts can 'replay' sequences of activity that resemble bouts of sensory experience. These sequences can occur in either forward or reverse order, and can even include spatial trajectories that have not been experienced, but are consistent with the topology of the environment. The neural circuit mechanisms underlying this variable and flexible sequence generation are unknown. Here we demonstrate in a recurrent spiking network model of hippocampal area CA3 that experimental constraints on network dynamics such as population sparsity, stimulus selectivity, rhythmicity and spike rate adaptation, as well as associative synaptic connectivity, enable additional emergent properties, including variable offline memory replay. In an online stimulus-driven state, we observed the emergence of neuronal sequences that swept from representations of past to future stimuli on the timescale of the theta rhythm. In an offline state driven only by noise, the network generated both forward and reverse neuronal sequences, and recapitulated the experimental observation that offline memory replay events tend to include salient locations like the site of a reward. These results demonstrate that biological constraints on the dynamics of recurrent neural circuits are sufficient to enable memories of sensory events stored in the strengths of synaptic connections to be flexibly read out during rest and sleep, which is thought to be important for memory consolidation and planning of future behaviour. KEY POINTS: A recurrent spiking network model of hippocampal area CA3 was optimized to recapitulate experimentally observed network dynamics during simulated spatial exploration. During simulated offline rest, the network exhibited the emergent property of generating flexible forward, reverse and mixed direction memory replay events. Network perturbations and analysis of model diversity and degeneracy identified associative synaptic connectivity and key features of network dynamics as important for offline sequence generation. Network simulations demonstrate that population over-representation of salient positions like the site of reward results in biased memory replay.
Collapse
Affiliation(s)
- Aaron D. Milstein
- Department of Neurosurgery, Stanford University School of Medicine, Stanford CA
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School and Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ
| | - Sarah Tran
- Department of Neurosurgery, Stanford University School of Medicine, Stanford CA
| | - Grace Ng
- Department of Neurosurgery, Stanford University School of Medicine, Stanford CA
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University School of Medicine, Stanford CA
| |
Collapse
|
7
|
Kowalczyk T, Staszelis A, Bocian R, Siwiec M, Sowa JE, Tokarski K, Kaźmierska-Grębowska P, Caban B. Posterior hypothalamic theta rhythm: Electrophysiological basis and involvement of glutamatergic receptors. Hippocampus 2023; 33:844-861. [PMID: 36688619 DOI: 10.1002/hipo.23500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/20/2022] [Accepted: 12/29/2022] [Indexed: 01/24/2023]
Abstract
The posterior hypothalamic area (PHa), including the supramammillary nucleus (SuM) and posterior hypothalamic nuclei, forms a crucial part of the ascending brainstem hippocampal synchronizing pathway, that is involved in the frequency programming and modulation of rhythmic theta activity generated in limbic structures. Recent investigations show that in addition to being a modulator of limbic theta activity, the PHa is capable of producing well-synchronized local theta field potentials by itself. The purpose of this study was to examine the ability of the PHa to generate theta field potentials and accompanying cell discharges in response to glutamatergic stimulation under both in vitro and in vivo conditions. The second objective was to examine the electrophysiological properties of neurons located in the SuM and posterior hypothalamic nuclei. Extracellular in vivo and in vitro as well as intracellular in vitro experiments revealed that glutamatergic stimulation of PHa with kainic acid induces well-synchronized local theta field oscillations in both the supramammillary and posterior hypothalamic nuclei. Furthermore, the glutamatergic PHa theta rhythm recorded extracellularly was accompanied by the activity of specific subtypes of theta-related neurons. We identify, for the first time, a subpopulation of supramammillary and posterior hypothalamic neurons that express clear subthreshold membrane potential oscillations in the theta frequency range.
Collapse
Affiliation(s)
- Tomasz Kowalczyk
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Agata Staszelis
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Renata Bocian
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Marcin Siwiec
- Department of Physiology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Joanna E Sowa
- Department of Physiology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Krzysztof Tokarski
- Department of Physiology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | | | - Bartosz Caban
- Department of Neurobiology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
8
|
Noguchi A, Yamashiro K, Matsumoto N, Ikegaya Y. Theta oscillations represent collective dynamics of multineuronal membrane potentials of murine hippocampal pyramidal cells. Commun Biol 2023; 6:398. [PMID: 37045975 PMCID: PMC10097823 DOI: 10.1038/s42003-023-04719-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Theta (θ) oscillations are one of the characteristic local field potentials (LFPs) in the hippocampus that emerge during spatial navigation, exploratory sniffing, and rapid eye movement sleep. LFPs are thought to summarize multineuronal events, including synaptic currents and action potentials. However, no in vivo study to date has directly interrelated θ oscillations with the membrane potentials (Vm) of multiple neurons, and it remains unclear whether LFPs can be predicted from multineuronal Vms. Here, we simultaneously patch-clamp up to three CA1 pyramidal neurons in awake or anesthetized mice and find that the temporal evolution of the power and frequency of θ oscillations in Vms (θVms) are weakly but significantly correlate with LFP θ oscillations (θLFP) such that a deep neural network could predict the θLFP waveforms based on the θVm traces of three neurons. Therefore, individual neurons are loosely interdependent to ensure freedom of activity, but they partially share information to collectively produce θLFP.
Collapse
Affiliation(s)
- Asako Noguchi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - Kotaro Yamashiro
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Nobuyoshi Matsumoto
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yuji Ikegaya
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
- Institute for AI and Beyond, The University of Tokyo, Tokyo, 113-0033, Japan
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita City, Osaka, 565-0871, Japan
| |
Collapse
|
9
|
Ábrahám H, Kojima H, Götzer K, Molnár A, Tornóczky T, Seress L. Development of parvalbumin-immunoreactive neurons in the postnatal human hippocampal formation. Front Neuroanat 2023; 17:1058370. [PMID: 36816519 PMCID: PMC9932602 DOI: 10.3389/fnana.2023.1058370] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/04/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction: Parvalbumin (PV) is a calcium-binding protein present in fast-spiking GABAergic neurons, such as basket and axo-axonic cells. Previous studies in non-human primates reported prenatal expression of PV in the temporal archicortex including entorhinal cortex and hippocampal formation. In contrast, PV-immunoreactivity was observed only postnatally in the human entorhinal cortex. Regarding PV expression in the human hippocampal formation, no information is available. Methods: In this study, the neurochemical maturation of PV-immunoreactive interneurons was studied in the postnatal developing human hippocampal formation. Results: Before birth, no PV-immunoreactive neurons could be detected in the human hippocampus. At birth, only a few PV-immunoreactive neurons were visible in Ammon's horn. The first PV-immunoreactive cells in the hilus of the dentate gyrus appeared at the age of 1 month. Even at the age of 5 months, only a few PV-immunopositive cells were present in the dentate hilus. The number of cells and their dendritic and axonal arborization in Ammon's horn and in the dentate gyrus gradually increased with age. Even at the age of 2 years, dendritic tree and axons of PV-immunoreactive neurons were less complex than can be seen in 8 and 11 years old children. Discussion: Our results showed that long-lasting maturation of PV-immunoreactive interneurons follows the developmental sequence of the subfields of the human hippocampal formation and provides further morphological evidence for the long-lasting functional maturation of the human cortex.
Collapse
Affiliation(s)
- Hajnalka Ábrahám
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School, Pécs, Hungary,Center for Neuroscience, University of Pécs, Pécs, Hungary,Institute for the Psychology of Special Needs, Bárczi Gusztáv Faculty of Special Needs Education, Eötvös Loránd University, Budapest, Hungary,*Correspondence: Hajnalka Ábrahám
| | - Hisae Kojima
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School, Pécs, Hungary
| | - Katalin Götzer
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School, Pécs, Hungary
| | - Abigél Molnár
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School, Pécs, Hungary
| | - Tamás Tornóczky
- Department of Pathology, University of Pécs Medical School, Pécs, Hungary
| | - László Seress
- Department of Medical Biology and Central Electron Microscopic Laboratory, University of Pécs Medical School, Pécs, Hungary,Center for Neuroscience, University of Pécs, Pécs, Hungary
| |
Collapse
|
10
|
Valero M, Navas-Olive A, de la Prida LM, Buzsáki G. Inhibitory conductance controls place field dynamics in the hippocampus. Cell Rep 2022; 40:111232. [PMID: 36001959 PMCID: PMC9595125 DOI: 10.1016/j.celrep.2022.111232] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/30/2022] [Accepted: 07/27/2022] [Indexed: 11/19/2022] Open
Abstract
Hippocampal place cells receive a disparate collection of excitatory and inhibitory currents that endow them with spatially selective discharges and rhythmic activity. Using a combination of in vivo intracellular and extracellular recordings with opto/chemogenetic manipulations and computational modeling, we investigate the influence of inhibitory and excitatory inputs on CA1 pyramidal cell responses. At the cell bodies, inhibition leads and is stronger than excitation across the entire theta cycle. Pyramidal neurons fire on the ascending phase of theta when released from inhibition. Computational models equipped with the observed conductances reproduce these dynamics. In these models, place field properties are favored when the increased excitation is coupled with a reduction of inhibition within the field. As predicted by our simulations, firing rate within place fields and phase locking to theta are impaired by DREADDs activation of interneurons. Our results indicate that decreased inhibitory conductance is critical for place field expression. Valero et al. examine the influence of inhibition on place fields. They show that hippocampal neurons are dominated by inhibitory conductances during theta oscillations. A transient increase of excitation and drop of inhibition mediates place field emergence in simulations. Consistently, chemogenetic activation of interneurons deteriorates place cell properties in vivo.
Collapse
Affiliation(s)
- Manuel Valero
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016, USA
| | - Andrea Navas-Olive
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avenue Doctor Arce 37, Madrid 28002, Spain
| | - Liset M de la Prida
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avenue Doctor Arce 37, Madrid 28002, Spain.
| | - György Buzsáki
- Neuroscience Institute, Langone Medical Center, New York University, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10003, USA; Department of Neurology, Langone Medical Center, New York, NY 10016, USA.
| |
Collapse
|
11
|
The role of inhibitory circuits in hippocampal memory processing. Nat Rev Neurosci 2022; 23:476-492. [DOI: 10.1038/s41583-022-00599-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2022] [Indexed: 11/08/2022]
|
12
|
Petersen PC, Vöröslakos M, Buzsáki G. Brain temperature affects quantitative features of hippocampal sharp wave ripples. J Neurophysiol 2022; 127:1417-1425. [PMID: 35389772 PMCID: PMC9109799 DOI: 10.1152/jn.00047.2022] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/23/2022] [Accepted: 04/04/2022] [Indexed: 11/22/2022] Open
Abstract
Biochemical mechanisms are temperature dependent. Brain temperature shows wide variations across brain states, and such changes may explain quantitative changes in network oscillations. Here, we report on the relationship between various hippocampal sharp wave ripple features to brain temperature. Ripple frequency, occurrence rate, and duration correlated with temperature dynamics. By focal manipulation of the brain temperature in the hippocampal CA1 region, we show that ripple frequency can be increased and decreased by local heating and cooling, respectively. Changes of other parameters, such as the rate of sharp wave-ripple complex (SPW-R) and ripple duration were not consistently affected. Our findings suggest that brain temperature in the CA1 region plays a leading role in affecting ripple frequency, whereas other parameters of SPW-Rs may be determined by mechanisms upstream from the CA1 region. These findings illustrate that physiological variations of brain temperature exert important effects on hippocampal circuit operations.NEW & NOTEWORTHY During physiological conditions, brain temperature fluctuates approximately 3°C between sleep and active waking. Here, we show that features of hippocampal ripples, including the rate of occurrence, peak frequency, and duration are correlated with brain temperature variations. Focal bidirectional manipulation of temperature in the hippocampal CA1 region in awake rodents show that ripple frequency can be altered in the direction expected from the correlational observations, implying that temperature plays a significant role.
Collapse
Affiliation(s)
- Peter C Petersen
- Neuroscience Institute, School of Medicine, New York University, New York City, New York
| | - Mihály Vöröslakos
- Neuroscience Institute, School of Medicine, New York University, New York City, New York
| | - György Buzsáki
- Neuroscience Institute, School of Medicine, New York University, New York City, New York
- Department of Neurology, School of Medicine, New York University, New York City, New York
| |
Collapse
|
13
|
Mysin I, Shubina L. From mechanisms to functions: The role of theta and gamma coherence in the intrahippocampal circuits. Hippocampus 2022; 32:342-358. [PMID: 35192228 DOI: 10.1002/hipo.23410] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 02/09/2022] [Accepted: 02/12/2022] [Indexed: 11/08/2022]
Abstract
Brain rhythms are essential for information processing in neuronal networks. Oscillations recorded in different brain regions can be synchronized and have a constant phase difference, that is, they can be coherent. Coherence between local field potential (LFP) signals from different brain regions may be correlated with the performance of cognitive tasks, indicating that these regions of the brain are jointly involved in the information processing. Why does coherence occur and how is it related to the information transfer between different regions of the hippocampal formation? In this article, we discuss possible mechanisms of theta and gamma coherence and its role in the hippocampus-dependent attention and memory processes, since theta and gamma rhythms are most pronounced in these processes. We review in vivo studies of interactions between different regions of the hippocampal formation in theta and gamma frequency bands. The key propositions of the review are as follows: (1) coherence emerges from synchronous postsynaptic currents in principal neurons as a result of synchronization of neuronal spike activity; (2) the synchronization of neuronal spike patterns in two regions of the hippocampal formation can be realized through induction or resonance; (3) coherence at a specific time point reflects the transfer of information between the regions of the hippocampal formation; (4) the physiological roles of theta and gamma coherence are different due to their different functions and mechanisms of generation. All hippocampal neurons are involved in theta activity, and theta coherence arranges the firing order of principal neurons throughout the hippocampal formation. In contrast, gamma coherence reflects the coupling of active neuronal ensembles. Overall, the coherence of LFPs between different areas of the brain is an important physiological process based on the synchronized neuronal firing, and it is essential for cooperative information processing.
Collapse
Affiliation(s)
- Ivan Mysin
- Laboratory of Systemic Organization of Neurons, Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| | - Liubov Shubina
- Laboratory of Systemic Organization of Neurons, Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Pushchino, Moscow Region, Russian Federation
| |
Collapse
|
14
|
Karalis N, Sirota A. Breathing coordinates cortico-hippocampal dynamics in mice during offline states. Nat Commun 2022; 13:467. [PMID: 35075139 PMCID: PMC8786964 DOI: 10.1038/s41467-022-28090-5] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 12/13/2021] [Indexed: 12/18/2022] Open
Abstract
Network dynamics have been proposed as a mechanistic substrate for the information transfer across cortical and hippocampal circuits. However, little is known about the mechanisms that synchronize and coordinate these processes across widespread brain regions during offline states. Here we address the hypothesis that breathing acts as an oscillatory pacemaker, persistently coupling distributed brain circuit dynamics. Using large-scale recordings from a number of cortical and subcortical brain regions in behaving mice, we uncover the presence of an intracerebral respiratory corollary discharge, that modulates neural activity across these circuits. During offline states, the respiratory modulation underlies the coupling of hippocampal sharp-wave ripples and cortical DOWN/UP state transitions, which mediates systems memory consolidation. These results highlight breathing, a perennial brain rhythm, as an oscillatory scaffold for the functional coordination of the limbic circuit that supports the segregation and integration of information flow across neuronal networks during offline states.
Collapse
Affiliation(s)
- Nikolaos Karalis
- Faculty of Medicine, Ludwig-Maximilian University, Munich, 82152, Martinsried, Germany.
- Friedrich Miescher Institute for Biomedical Research, 4058, Basel, Switzerland.
| | - Anton Sirota
- Faculty of Medicine, Ludwig-Maximilian University, Munich, 82152, Martinsried, Germany.
| |
Collapse
|
15
|
Aykan S, Puglia MH, Kalaycıoğlu C, Pelphrey KA, Tuncalı T, Nalçacı E. Right Anterior Theta Hypersynchrony as a Quantitative Measure Associated with Autistic Traits and K-Cl Cotransporter KCC2 Polymorphism. J Autism Dev Disord 2022; 52:61-72. [PMID: 33635423 DOI: 10.1007/s10803-021-04924-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Abstract
Our aim was to use theta coherence as a quantitative trait to investigate the relation of the polymorphisms in NKCC1 (rs3087889) and KCC2 (rs9074) channel protein genes to autistic traits (AQ) in neurotypicals. Coherence values for candidate connection regions were calculated from eyes-closed resting EEGs in two independent groups. Hypersynchrony within the right anterior region was related to AQ in both groups (p < 0.05), and variability in this hypersynchrony was related to the rs9074 polymorphism in the total group (p < 0.05). In conclusion, theta hypersynchrony within the right anterior region during eyes-closed rest can be considered a quantitative measure for autistic traits. Replicating our findings in two independent populations with different backgrounds strengthens the validity of the current study.
Collapse
Affiliation(s)
- Simge Aykan
- Department of Physiology, Ankara University School of Medicine, Ankara, Turkey.
| | - Meghan H Puglia
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
- Department of Psychology, University of Virginia, Charlottesville, VA, USA
| | - Canan Kalaycıoğlu
- Department of Physiology, Ankara University School of Medicine, Ankara, Turkey
| | - Kevin A Pelphrey
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
| | - Timur Tuncalı
- Department of Medical Genetics, Ankara University School of Medicine, Ankara, Turkey
| | - Erhan Nalçacı
- Department of Physiology, Ankara University School of Medicine, Ankara, Turkey
| |
Collapse
|
16
|
Lamotrigine Attenuates Neuronal Excitability, Depresses GABA Synaptic Inhibition, and Modulates Theta Rhythms in Rat Hippocampus. Int J Mol Sci 2021; 22:ijms222413604. [PMID: 34948401 PMCID: PMC8705017 DOI: 10.3390/ijms222413604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/29/2021] [Accepted: 12/05/2021] [Indexed: 12/03/2022] Open
Abstract
Theta oscillations generated in hippocampal (HPC) and cortical neuronal networks are involved in various aspects of brain function, including sensorimotor integration, movement planning, memory formation and attention. Disruptions of theta rhythms are present in individuals with brain disorders, including epilepsy and Alzheimer’s disease. Theta rhythm generation involves a specific interplay between cellular (ion channel) and network (synaptic) mechanisms. HCN channels are theta modulators, and several medications are known to enhance their activity. We investigated how different doses of lamotrigine (LTG), an HCN channel modulator, and antiepileptic and neuroprotective agent, would affect HPC theta rhythms in acute HPC slices (in vitro) and anaesthetized rats (in vivo). Whole-cell patch clamp recordings revealed that LTG decreased GABAA-fast transmission in CA3 cells, in vitro. In addition, LTG directly depressed CA3 and CA1 pyramidal neuron excitability. These effects were partially blocked by ZD 7288, a selective HCN blocker, and are consistent with decreased excitability associated with antiepileptic actions. Lamotrigine depressed HPC theta oscillations in vitro, also consistent with its neuronal depressant effects. In contrast, it exerted an opposite, enhancing effect, on theta recorded in vivo. The contradictory in vivo and in vitro results indicate that LTG increases ascending theta activating medial septum/entorhinal synaptic inputs that over-power the depressant effects seen in HPC neurons. These results provide new insights into LTG actions and indicate an opportunity to develop more precise therapeutics for the treatment of dementias, memory disorders and epilepsy.
Collapse
|
17
|
A Model of the CA1 Field Rhythms. eNeuro 2021; 8:ENEURO.0192-21.2021. [PMID: 34670820 PMCID: PMC8577063 DOI: 10.1523/eneuro.0192-21.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/23/2021] [Accepted: 09/19/2021] [Indexed: 12/03/2022] Open
Abstract
We propose a model of the main rhythms in the hippocampal CA1 field: theta rhythm; slow, middle, and fast gamma rhythms; and ripple oscillations. We have based this on data obtained from animals behaving freely. We have considered the modes of neuronal discharges and the occurrence of local field potential oscillations in the theta and non-theta states at different inputs from the CA3 field, the medial entorhinal cortex, and the medial septum. In our work, we tried to reproduce the main experimental phenomena about rhythms in the CA1 field: the coupling of neurons to the phase of rhythms, cross-rhythm phase–phase coupling, and phase–amplitude coupling. Using computational experiments, we have proved the hypothesis that the descending phase of the theta rhythm in the CA1 field is formed by the input from the CA3 field via the Shaffer collaterals, and the ascending phase of the theta rhythm is formed by the IPSPs from CCK basket cells. The slow gamma rhythm is coupled to the descending phase of the theta rhythm, since it also depends on the arrival of the signal via the Shaffer collaterals. The middle gamma rhythm is formed by the EPSPs of the principal neurons of the third layer of the entorhinal cortex, corresponds to experimental data. We were able to unite in a single mathematical model several theoretical ideas about the mechanisms of rhythmic processes in the CA1 field of the hippocampus.
Collapse
|
18
|
The Role of the Posterior Hypothalamus in the Modulation and Production of Rhythmic Theta Oscillations. Neuroscience 2021; 470:100-115. [PMID: 34271089 DOI: 10.1016/j.neuroscience.2021.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/18/2021] [Accepted: 07/05/2021] [Indexed: 11/24/2022]
Abstract
Theta rhythm recorded as an extracellular synchronous field potential is generated in a number of brain sites including the hippocampus. The physiological occurrence of hippocampal theta rhythm is associated with the activation of a number of structures forming the ascending brainstem-hippocampal synchronizing pathway. Experimental evidence indicates that the supramammillary nucleus and posterior hypothalamic nuclei, considered as the posterior hypothalamic area, comprise a critical node of this ascending pathway. The posterior hypothalamic area plays an important role in movement control, place-learning, memory processing, emotion and arousal. In the light of multiplicity of functions of the posterior hypothalamic area and the influence of theta field oscillations on a number of neural processes, it is the authors' intent to summarize the data concerning the involvement of the supramammillary nucleus and posterior hypothalamic nuclei in the modulation of limbic theta rhythmicity as well as the ability of these brain structures to independently generate theta rhythmicity.
Collapse
|
19
|
A neuromimetic realization of hippocampal CA1 for theta wave generation. Neural Netw 2021; 142:548-563. [PMID: 34340189 DOI: 10.1016/j.neunet.2021.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/29/2021] [Accepted: 07/02/2021] [Indexed: 11/20/2022]
Abstract
Recent advances in neural engineering allowed the development of neuroprostheses which facilitate functionality in people with neurological problems. In this research, a real-time neuromorphic system is proposed to artificially reproduce the theta wave and firing patterns of different neuronal populations in the CA1, a sub-region of the hippocampus. The hippocampal theta oscillations (4-12 Hz) are an important electrophysiological rhythm that contributes in various cognitive functions, including navigation, memory, and novelty detection. The proposed CA1 neuromimetic circuit includes 100 linearized Pinsky-Rinzel neurons and 668 excitatory and inhibitory synapses on a field programmable gate array (FPGA). The implemented spiking neural network of the CA1 includes the main neuronal populations for the theta rhythm generation: excitatory pyramidal cells, PV+ basket cells, and Oriens Lacunosum-Moleculare (OLM) cells which are inhibitory interneurons. Moreover, the main inputs to the CA1 region from the entorhinal cortex via the perforant pathway, the CA3 via Schaffer collaterals, and the medial septum via fimbria-fornix are also implemented on the FPGA using a bursting leaky-integrate and fire (LIF) neuron model. The results of hardware realization show that the proposed CA1 neuromimetic circuit successfully reconstructs the theta oscillations and functionally illustrates the phase relations between firing responses of the different neuronal populations. It is also evaluated the impact of medial septum elimination on the firing patterns of the CA1 neuronal population and the theta wave's characteristics. This neuromorphic system can be considered as a potential platform that opens opportunities for neuroprosthetic applications in future works.
Collapse
|
20
|
Sanchez-Aguilera A, Wheeler DW, Jurado-Parras T, Valero M, Nokia MS, Cid E, Fernandez-Lamo I, Sutton N, García-Rincón D, de la Prida LM, Ascoli GA. An update to Hippocampome.org by integrating single-cell phenotypes with circuit function in vivo. PLoS Biol 2021; 19:e3001213. [PMID: 33956790 PMCID: PMC8130934 DOI: 10.1371/journal.pbio.3001213] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 05/18/2021] [Accepted: 03/30/2021] [Indexed: 02/03/2023] Open
Abstract
Understanding brain operation demands linking basic behavioral traits to cell-type specific dynamics of different brain-wide subcircuits. This requires a system to classify the basic operational modes of neurons and circuits. Single-cell phenotyping of firing behavior during ongoing oscillations in vivo has provided a large body of evidence on entorhinal-hippocampal function, but data are dispersed and diverse. Here, we mined literature to search for information regarding the phase-timing dynamics of over 100 hippocampal/entorhinal neuron types defined in Hippocampome.org. We identified missing and unresolved pieces of knowledge (e.g., the preferred theta phase for a specific neuron type) and complemented the dataset with our own new data. By confronting the effect of brain state and recording methods, we highlight the equivalences and differences across conditions and offer a number of novel observations. We show how a heuristic approach based on oscillatory features of morphologically identified neurons can aid in classifying extracellular recordings of single cells and discuss future opportunities and challenges towards integrating single-cell phenotypes with circuit function.
Collapse
Affiliation(s)
| | - Diek W. Wheeler
- Bioengineering Department, Volgenau School of Engineering, George Mason University, Virginia, United States of America
| | | | - Manuel Valero
- Instituto Cajal CSIC, Madrid, Spain
- NYU Neuroscience Institute, New York, United States of America
| | - Miriam S. Nokia
- Instituto Cajal CSIC, Madrid, Spain
- Department of Psychology, University of Jyvaskyla, Jyvaskyla, Finland
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki, Finland
| | | | | | - Nate Sutton
- Bioengineering Department, Volgenau School of Engineering, George Mason University, Virginia, United States of America
| | | | | | - Giorgio A. Ascoli
- Bioengineering Department, Volgenau School of Engineering, George Mason University, Virginia, United States of America
- * E-mail: (LMP); (GAA)
| |
Collapse
|
21
|
Theta Oscillations Coincide with Sustained Hyperpolarization in CA3 Pyramidal Cells, Underlying Decreased Firing. Cell Rep 2021; 32:107868. [PMID: 32640233 DOI: 10.1016/j.celrep.2020.107868] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/22/2020] [Accepted: 06/16/2020] [Indexed: 11/20/2022] Open
Abstract
Brain states modulate the membrane potential dynamics of neurons, influencing the functional repertoire of the network. Pyramidal cells (PCs) in the hippocampal CA3 are necessary for rapid memory encoding, which preferentially occurs during exploratory behavior in the high-arousal theta state. However, the relationship between the membrane potential dynamics of CA3 PCs and theta has not been explored. Here we characterize the changes in the membrane potential of PCs in relation to theta using electrophysiological recordings in awake mice. During theta, most PCs behave in a stereotypical manner, consistently hyperpolarizing time-locked to the duration of theta. Additionally, PCs display lower membrane potential variance and a reduced firing rate. In contrast, during large irregular activity, PCs show heterogeneous changes in membrane potential. This suggests coordinated hyperpolarization of PCs during theta, possibly caused by increased inhibition. This could lead to a higher signal-to-noise ratio in the small population of PCs active during theta, as observed in ensemble recordings.
Collapse
|
22
|
Comprehensive Estimates of Potential Synaptic Connections in Local Circuits of the Rodent Hippocampal Formation by Axonal-Dendritic Overlap. J Neurosci 2020; 41:1665-1683. [PMID: 33361464 DOI: 10.1523/jneurosci.1193-20.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/19/2020] [Accepted: 12/13/2020] [Indexed: 12/12/2022] Open
Abstract
A quantitative description of the hippocampal formation synaptic architecture is essential for understanding the neural mechanisms of episodic memory. Yet the existing knowledge of connectivity statistics between different neuron types in the rodent hippocampus only captures a mere 5% of this circuitry. We present a systematic pipeline to produce first-approximation estimates for most of the missing information. Leveraging the www.Hippocampome.org knowledge base, we derive local connection parameters between distinct pairs of morphologically identified neuron types based on their axonal-dendritic overlap within every layer and subregion of the hippocampal formation. Specifically, we adapt modern image analysis technology to determine the parcel-specific neurite lengths of every neuron type from representative morphologic reconstructions obtained from either sex. We then compute the average number of synapses per neuron pair using relevant anatomic volumes from the mouse brain atlas and ultrastructurally established interaction distances. Hence, we estimate connection probabilities and number of contacts for >1900 neuron type pairs, increasing the available quantitative assessments more than 11-fold. Connectivity statistics thus remain unknown for only a minority of potential synapses in the hippocampal formation, including those involving long-range (23%) or perisomatic (6%) connections and neuron types without morphologic tracings (7%). The described approach also yields approximate measurements of synaptic distances from the soma along the dendritic and axonal paths, which may affect signal attenuation and delay. Overall, this dataset fills a substantial gap in quantitatively describing hippocampal circuits and provides useful model specifications for biologically realistic neural network simulations, until further direct experimental data become available.SIGNIFICANCE STATEMENT The hippocampal formation is a crucial functional substrate for episodic memory and spatial representation. Characterizing the complex neuron type circuit of this brain region is thus important to understand the cellular mechanisms of learning and navigation. Here we present the first numerical estimates of connection probabilities, numbers of contacts per connected pair, and synaptic distances from the soma along the axonal and dendritic paths, for more than 1900 distinct neuron type pairs throughout the dentate gyrus, CA3, CA2, CA1, subiculum, and entorhinal cortex. This comprehensive dataset, publicly released online at www.Hippocampome.org, constitutes an unprecedented quantification of the majority of the local synaptic circuit for a prominent mammalian neural system and provides an essential foundation for data-driven, anatomically realistic neural network models.
Collapse
|
23
|
Zhang Y, Zhang X. Portrait of visual cortical circuits for generating neural oscillation dynamics. Cogn Neurodyn 2020; 15:3-16. [PMID: 34109010 DOI: 10.1007/s11571-020-09623-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 07/17/2020] [Accepted: 07/24/2020] [Indexed: 11/30/2022] Open
Abstract
The mouse primary visual cortex (V1) has emerged as a classical system to study neural circuit mechanisms underlying visual function and plasticity. A variety of efferent-afferent neuronal connections exists within the V1 and between the V1 and higher visual cortical areas or thalamic nuclei, indicating that the V1 system is more than a mere receiver in information processing. Sensory representations in the V1 are dynamically correlated with neural activity oscillations that are distributed across different cortical layers in an input-dependent manner. Circuits consisting of excitatory pyramidal cells (PCs) and inhibitory interneurons (INs) are the basis for generating neural oscillations. In general, INs are clustered with their adjacent PCs to form specific microcircuits that gate or filter the neural information. The interaction between these two cell populations has to be coordinated within a local circuit in order to preserve neural coding schemes and maintain excitation-inhibition (E-I) balance. Phasic alternations of the E-I balance can dynamically regulate temporal rhythms of neural oscillation. Accumulating experimental evidence suggests that the two major sub-types of INs, parvalbumin-expressing (PV+) cells and somatostatin-expressing (SOM+) INs, are active in controlling slow and fast oscillations, respectively, in the mouse V1. The review summarizes recent experimental findings on elucidating cellular or circuitry mechanisms for the generation of neural oscillations with distinct rhythms in either developing or matured mouse V1, mainly focusing on visual relaying circuits and distinct local inhibitory circuits.
Collapse
Affiliation(s)
- Yuan Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| | - Xiaohui Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875 China
| |
Collapse
|
24
|
Kayarian FB, Jannati A, Rotenberg A, Santarnecchi E. Targeting Gamma-Related Pathophysiology in Autism Spectrum Disorder Using Transcranial Electrical Stimulation: Opportunities and Challenges. Autism Res 2020; 13:1051-1071. [PMID: 32468731 PMCID: PMC7387209 DOI: 10.1002/aur.2312] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/15/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022]
Abstract
A range of scalp electroencephalogram (EEG) abnormalities correlates with the core symptoms of autism spectrum disorder (ASD). Among these are alterations of brain oscillations in the gamma-frequency EEG band in adults and children with ASD, whose origin has been linked to dysfunctions of inhibitory interneuron signaling. While therapeutic interventions aimed to modulate gamma oscillations are being tested for neuropsychiatric disorders such as schizophrenia, Alzheimer's disease, and frontotemporal dementia, the prospects for therapeutic gamma modulation in ASD have not been extensively studied. Accordingly, we discuss gamma-related alterations in the setting of ASD pathophysiology, as well as potential interventions that can enhance gamma oscillations in patients with ASD. Ultimately, we argue that transcranial electrical stimulation modalities capable of entraining gamma oscillations, and thereby potentially modulating inhibitory interneuron circuitry, are promising methods to study and mitigate gamma alterations in ASD. Autism Res 2020, 13: 1051-1071. © 2020 International Society for Autism Research, Wiley Periodicals, Inc. LAY SUMMARY: Brain functions are mediated by various oscillatory waves of neuronal activity, ranging in amplitude and frequency. In certain neuropsychiatric disorders, such as schizophrenia and Alzheimer's disease, reduced high-frequency oscillations in the "gamma" band have been observed, and therapeutic interventions to enhance such activity are being explored. Here, we review and comment on evidence of reduced gamma activity in ASD, arguing that modalities used in other disorders may benefit individuals with ASD as well.
Collapse
Affiliation(s)
- Fae B. Kayarian
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Ali Jannati
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexander Rotenberg
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Emiliano Santarnecchi
- Berenson-Allen Center for Noninvasive Brain Stimulation and Division of Cognitive Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
25
|
Dentate gyrus circuits for encoding, retrieval and discrimination of episodic memories. Nat Rev Neurosci 2020; 21:153-168. [PMID: 32042144 DOI: 10.1038/s41583-019-0260-z] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2019] [Indexed: 12/19/2022]
Abstract
The dentate gyrus (DG) has a key role in hippocampal memory formation. Intriguingly, DG lesions impair many, but not all, hippocampus-dependent mnemonic functions, indicating that the rest of the hippocampus (CA1-CA3) can operate autonomously under certain conditions. An extensive body of theoretical work has proposed how the architectural elements and various cell types of the DG may underlie its function in cognition. Recent studies recorded and manipulated the activity of different neuron types in the DG during memory tasks and have provided exciting new insights into the mechanisms of DG computational processes, particularly for the encoding, retrieval and discrimination of similar memories. Here, we review these DG-dependent mnemonic functions in light of the new findings and explore mechanistic links between the cellular and network properties of, and the computations performed by, the DG.
Collapse
|
26
|
Swaminathan A, Wichert I, Schmitz D, Maier N. Involvement of Mossy Cells in Sharp Wave-Ripple Activity In Vitro. Cell Rep 2019; 23:2541-2549. [PMID: 29847786 DOI: 10.1016/j.celrep.2018.04.095] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/31/2018] [Accepted: 04/23/2018] [Indexed: 12/31/2022] Open
Abstract
The role of mossy cells (MCs) of the hippocampal dentate area has long remained mysterious. Recent research has begun to unveil their significance in spatial computation of the hippocampus. Here, we used an in vitro model of sharp wave-ripple complexes (SWRs), which contribute to hippocampal memory formation, to investigate MC involvement in this fundamental population activity. We find that a significant fraction of MCs (∼47%) is recruited into the active neuronal network during SWRs in the CA3 area. Moreover, MCs receive pronounced, ripple-coherent, excitatory and inhibitory synaptic input. Finally, we find evidence for SWR-related synaptic activity in granule cells that is mediated by MCs. Given the widespread connectivity of MCs within and between hippocampi, our data suggest a role for MCs as a hub functionally coupling the CA3 and the DG during ripple-associated computations.
Collapse
Affiliation(s)
- Aarti Swaminathan
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany; Cluster of Excellence NeuroCure, 10117 Berlin, Germany
| | - Ines Wichert
- Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany
| | - Dietmar Schmitz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany; Bernstein Center for Computational Neuroscience Berlin, 10115 Berlin, Germany; Berlin Institute of Health, 10178 Berlin, Germany; Cluster of Excellence NeuroCure, 10117 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany; Einstein Center for Neurosciences Berlin, 10117 Berlin, Germany
| | - Nikolaus Maier
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany.
| |
Collapse
|
27
|
Rathour RK, Narayanan R. Degeneracy in hippocampal physiology and plasticity. Hippocampus 2019; 29:980-1022. [PMID: 31301166 PMCID: PMC6771840 DOI: 10.1002/hipo.23139] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 05/27/2019] [Accepted: 06/25/2019] [Indexed: 12/17/2022]
Abstract
Degeneracy, defined as the ability of structurally disparate elements to perform analogous function, has largely been assessed from the perspective of maintaining robustness of physiology or plasticity. How does the framework of degeneracy assimilate into an encoding system where the ability to change is an essential ingredient for storing new incoming information? Could degeneracy maintain the balance between the apparently contradictory goals of the need to change for encoding and the need to resist change towards maintaining homeostasis? In this review, we explore these fundamental questions with the mammalian hippocampus as an example encoding system. We systematically catalog lines of evidence, spanning multiple scales of analysis that point to the expression of degeneracy in hippocampal physiology and plasticity. We assess the potential of degeneracy as a framework to achieve the conjoint goals of encoding and homeostasis without cross-interferences. We postulate that biological complexity, involving interactions among the numerous parameters spanning different scales of analysis, could establish disparate routes towards accomplishing these conjoint goals. These disparate routes then provide several degrees of freedom to the encoding-homeostasis system in accomplishing its tasks in an input- and state-dependent manner. Finally, the expression of degeneracy spanning multiple scales offers an ideal reconciliation to several outstanding controversies, through the recognition that the seemingly contradictory disparate observations are merely alternate routes that the system might recruit towards accomplishment of its goals.
Collapse
Affiliation(s)
- Rahul K. Rathour
- Cellular Neurophysiology LaboratoryMolecular Biophysics Unit, Indian Institute of ScienceBangaloreIndia
| | - Rishikesh Narayanan
- Cellular Neurophysiology LaboratoryMolecular Biophysics Unit, Indian Institute of ScienceBangaloreIndia
| |
Collapse
|
28
|
Altered Dynamics of Canonical Feedback Inhibition Predicts Increased Burst Transmission in Chronic Epilepsy. J Neurosci 2019; 39:8998-9012. [PMID: 31519822 DOI: 10.1523/jneurosci.2594-18.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 08/28/2019] [Accepted: 09/04/2019] [Indexed: 11/21/2022] Open
Abstract
Inhibitory interneurons, organized into canonical feedforward and feedback motifs, play a key role in controlling normal and pathological neuronal activity. We demonstrate prominent quantitative changes in the dynamics of feedback inhibition in a rat model of chronic epilepsy (male Wistar rats). Systematic interneuron recordings revealed a large decrease in intrinsic excitability of basket cells and oriens-lacunosum moleculare interneurons in epileptic animals. Additionally, the temporal dynamics of interneuron recruitment by recurrent feedback excitation were strongly altered, resulting in a profound loss of initial feedback inhibition during synchronous CA1 pyramidal activity. Biophysically constrained models of the complete feedback circuit motifs of normal and epileptic animals revealed that, as a consequence of altered feedback inhibition, burst activity arising in CA3 is more strongly converted to a CA1 output. This suggests that altered dynamics of feedback inhibition promote the transmission of epileptiform bursts to hippocampal projection areas.SIGNIFICANCE STATEMENT We quantitatively characterized changes of the CA1 feedback inhibitory circuit in a model of chronic temporal lobe epilepsy. This study shows, for the first time, that dynamic recruitment of inhibition in feedback circuits is altered and establishes the cellular mechanisms for this change. Computational modeling revealed that the observed changes are likely to systematically alter CA1 input-output properties leading to (1) increased seizure propagation through CA1 and (2) altered computation of synchronous CA3 input.
Collapse
|
29
|
Five Decades of Hippocampal Place Cells and EEG Rhythms in Behaving Rats. J Neurosci 2019; 40:54-60. [PMID: 31451578 DOI: 10.1523/jneurosci.0741-19.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 12/16/2022] Open
Abstract
Over the last 50 years, much has been learned about the physiology and functions of the hippocampus from studies in freely behaving rats. Two relatively early works in the field provided major insights that remain relevant today. Here, I revisit these studies and discuss how our understanding of the hippocampus has evolved over the last several decades.
Collapse
|
30
|
Mysin IE, Kitchigina VF, Kazanovich YB. Phase relations of theta oscillations in a computer model of the hippocampal CA1 field: Key role of Schaffer collaterals. Neural Netw 2019; 116:119-138. [DOI: 10.1016/j.neunet.2019.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/29/2019] [Accepted: 04/02/2019] [Indexed: 02/04/2023]
|
31
|
GABAergic mediation of hippocampal theta rhythm induced by stimulation of the vagal nerve. Brain Res Bull 2019; 147:110-123. [DOI: 10.1016/j.brainresbull.2019.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 02/18/2019] [Indexed: 12/22/2022]
|
32
|
Ewell LA, Fischer KB, Leibold C, Leutgeb S, Leutgeb JK. The impact of pathological high-frequency oscillations on hippocampal network activity in rats with chronic epilepsy. eLife 2019; 8:42148. [PMID: 30794155 PMCID: PMC6386518 DOI: 10.7554/elife.42148] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/09/2019] [Indexed: 11/29/2022] Open
Abstract
In epilepsy, brain networks generate pathological high-frequency oscillations (pHFOs) during interictal periods. To understand how pHFOs differ from normal oscillations in overlapping frequency bands and potentially perturb hippocampal processing, we performed high-density single unit and local field potential recordings from hippocampi of behaving rats with and without chronic epilepsy. In epileptic animals, we observed two types of co-occurring fast oscillations, which by comparison to control animals we could classify as ‘ripple-like’ or ‘pHFO’. We compared their spectral characteristics, brain state dependence, and cellular participants. Strikingly, pHFO occurred irrespective of brain state, were associated with interictal spikes, engaged distinct subnetworks of principal neurons compared to ripple-like events, increased the sparsity of network activity, and initiated both general and immediate disruptions in spatial information coding. Taken together, our findings suggest that events that result in pHFOs have an immediate impact on memory processes, corroborating the need for proper classification of pHFOs to facilitate therapeutic interventions that selectively target pathological activity.
Collapse
Affiliation(s)
- Laura A Ewell
- Neurobiology Section and Center for Neural Circuits and Behavior, Division of Biological Sciences, University of California, San Diego, La Jolla, United States.,Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical Center, Bonn, Germany
| | - Kyle B Fischer
- Neurobiology Section and Center for Neural Circuits and Behavior, Division of Biological Sciences, University of California, San Diego, La Jolla, United States.,Neuroscience Graduate Program, University of California, San Diego, La Jolla, United States
| | - Christian Leibold
- Department Biologie II, Ludwig-Maximilians-Universität München, Martinsried, Germany.,Berstein Center for Computational Neuroscience Munich, Martinried, Germany
| | - Stefan Leutgeb
- Neurobiology Section and Center for Neural Circuits and Behavior, Division of Biological Sciences, University of California, San Diego, La Jolla, United States.,Kavli Institute for Brain and Mind, University of California, San Diego, La Jolla, United States
| | - Jill K Leutgeb
- Neurobiology Section and Center for Neural Circuits and Behavior, Division of Biological Sciences, University of California, San Diego, La Jolla, United States
| |
Collapse
|
33
|
Sheremet A, Kennedy JP, Qin Y, Zhou Y, Lovett SD, Burke SN, Maurer AP. Theta-gamma cascades and running speed. J Neurophysiol 2019; 121:444-458. [PMID: 30517044 PMCID: PMC6397401 DOI: 10.1152/jn.00636.2018] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 11/22/2022] Open
Abstract
Oscillations in the hippocampal local field potential at theta and gamma frequencies are prominent during awake behavior and have demonstrated several behavioral correlates. Both oscillations have been observed to increase in amplitude and frequency as a function of running speed. Previous investigations, however, have examined the relationship between speed and each of these oscillation bands separately. Based on energy cascade models where "…perturbations of slow frequencies cause a cascade of energy dissipation at all frequency scales" (Buzsaki G. Rhythms of the Brain, 2006), we hypothesized that cross-frequency interactions between theta and gamma should increase as a function of speed. We examined these relationships across multiple layers of the CA1 subregion, which correspond to synaptic zones receiving different afferents. Across layers, we found a reliable correlation between the power of theta and the power of gamma, indicative of an amplitude-amplitude relationship. Moreover, there was an increase in the coherence between the power of gamma and the phase of theta, demonstrating increased phase-amplitude coupling with speed. Finally, at higher velocities, phase entrainment between theta and gamma increases. These results have important implications and provide new insights regarding how theta and gamma are integrated for neuronal circuit dynamics, with coupling strength determined by the excitatory drive within the hippocampus. Specifically, rather than arguing that different frequencies can be attributed to different psychological processes, we contend that cognitive processes occur across multiple frequency bands simultaneously with organization occurring as a function of the amount of energy iteratively propagated through the brain. NEW & NOTEWORTHY Often, the theta and gamma oscillations in the hippocampus have been believed to be a consequence of two marginally overlapping phenomena. This perspective, however, runs counter to an alternative hypothesis in which a slow-frequency, high-amplitude oscillation provides energy that cascades into higher frequency, lower amplitude oscillations. We found that as running speed increases, all measures of cross-frequency theta-gamma coupling intensify, providing evidence in favor of the energy cascade hypothesis.
Collapse
Affiliation(s)
- A Sheremet
- McKnight Brain Institute, Department of Neuroscience, University of Florida , Gainesville, Florida
- Engineering School of Sustainable Infrastructure and Environment, University of Florida , Gainesville, Florida
| | - J P Kennedy
- McKnight Brain Institute, Department of Neuroscience, University of Florida , Gainesville, Florida
| | - Y Qin
- Engineering School of Sustainable Infrastructure and Environment, University of Florida , Gainesville, Florida
| | - Y Zhou
- Engineering School of Sustainable Infrastructure and Environment, University of Florida , Gainesville, Florida
| | - S D Lovett
- McKnight Brain Institute, Department of Neuroscience, University of Florida , Gainesville, Florida
| | - S N Burke
- McKnight Brain Institute, Department of Neuroscience, University of Florida , Gainesville, Florida
- Institute of Aging, University of Florida , Gainesville, Florida
| | - A P Maurer
- McKnight Brain Institute, Department of Neuroscience, University of Florida , Gainesville, Florida
- Engineering School of Sustainable Infrastructure and Environment, University of Florida , Gainesville, Florida
- Department of Biomedical Engineering, University of Florida , Gainesville, Florida
| |
Collapse
|
34
|
Long-Term Potentiation and Excitability in the Hippocampus Are Modulated Differently by θ Rhythm. eNeuro 2018; 5:eN-CFN-0236-18. [PMID: 30627662 PMCID: PMC6325566 DOI: 10.1523/eneuro.0236-18.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 11/02/2018] [Accepted: 11/05/2018] [Indexed: 01/27/2023] Open
Abstract
Oscillations in the brain facilitate neural processing and cognitive functions. This study investigated the dependence of long-term potentiation (LTP), a neural correlate of memory, on the phase of the hippocampal θ rhythm, a prominent brain oscillation. Multichannel field potentials and current source-sinks were analyzed in hippocampal CA1 of adult male rats under urethane anesthesia. A single burst (five pulses at 200 Hz) stimulation of stratum oriens (OR) induced LTP of the basal dendritic excitatory sink (ES), which was maximal when the burst was delivered at ∼340° and ∼160° of the distal dendritic θ rhythm. Apical dendritic sink evoked by stratum radiatum (RAD) stimulation also showed biphasic maxima at ∼30° and ∼210° of the distal dendritic θ rhythm, about 50° phase delay to basal dendritic LTP. By contrast, maximal population spike (PS) excitability, following single-pulse excitation of the basal or mid-apical dendrites, occurred at a θ phase of ∼140°, and maximal basal dendritic ES occurred at ∼20°; γ (30–57 Hz) activity recorded in CA1 RAD had maximal power at ∼300° of the distal dendritic θ rhythm, different from the phases of maximal LTP. LTP induced during the rising θ phase was NMDA receptor sensitive. It is suggested that the θ phase modulation of CA1 PS excitability is mainly provided by θ-rhythmic proximal inhibition, while dendritic LTP is also modulated by dendritic inhibition and excitation, specific to basal and apical dendrites. In summary, basal and apical dendritic synaptic plasticity and spike excitability are facilitated at different θ phases in a compartmental fashion.
Collapse
|
35
|
Gu Z, Alexander GM, Dudek SM, Yakel JL. Hippocampus and Entorhinal Cortex Recruit Cholinergic and NMDA Receptors Separately to Generate Hippocampal Theta Oscillations. Cell Rep 2018; 21:3585-3595. [PMID: 29262336 DOI: 10.1016/j.celrep.2017.11.080] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/10/2017] [Accepted: 11/21/2017] [Indexed: 11/25/2022] Open
Abstract
Although much progress has been made in understanding type II theta rhythm generation under urethane anesthesia, less is known about the mechanisms underlying type I theta generation during active exploration. To better understand the contributions of cholinergic and NMDA receptor activation to type I theta generation, we recorded hippocampal theta oscillations from freely moving mice with local infusion of cholinergic or NMDA receptor antagonists to either the hippocampus or the entorhinal cortex (EC). We found that cholinergic receptors in the hippocampus, but not the EC, and NMDA receptors in the EC, but not the hippocampus, are critical for open-field theta generation and Y-maze performance. We further found that muscarinic M1 receptors located on pyramidal neurons, but not interneurons, are critical for cholinergic modulation of hippocampal synapses, theta generation, and Y-maze performance. These results suggest that hippocampus and EC neurons recruit cholinergic-dependent and NMDA-receptor-dependent mechanisms, respectively, to generate theta oscillations to support behavioral performance.
Collapse
Affiliation(s)
- Zhenglin Gu
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, US Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Georgia M Alexander
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, US Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Serena M Dudek
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, US Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | - Jerrel L Yakel
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, US Department of Health and Human Services, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
36
|
Pesaran B, Vinck M, Einevoll GT, Sirota A, Fries P, Siegel M, Truccolo W, Schroeder CE, Srinivasan R. Investigating large-scale brain dynamics using field potential recordings: analysis and interpretation. Nat Neurosci 2018; 21:903-919. [PMID: 29942039 DOI: 10.1038/s41593-018-0171-8] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 05/01/2018] [Indexed: 11/09/2022]
Abstract
New technologies to record electrical activity from the brain on a massive scale offer tremendous opportunities for discovery. Electrical measurements of large-scale brain dynamics, termed field potentials, are especially important to understanding and treating the human brain. Here, our goal is to provide best practices on how field potential recordings (electroencephalograms, magnetoencephalograms, electrocorticograms and local field potentials) can be analyzed to identify large-scale brain dynamics, and to highlight critical issues and limitations of interpretation in current work. We focus our discussion of analyses around the broad themes of activation, correlation, communication and coding. We provide recommendations for interpreting the data using forward and inverse models. The forward model describes how field potentials are generated by the activity of populations of neurons. The inverse model describes how to infer the activity of populations of neurons from field potential recordings. A recurring theme is the challenge of understanding how field potentials reflect neuronal population activity given the complexity of the underlying brain systems.
Collapse
Affiliation(s)
- Bijan Pesaran
- Center for Neural Science, New York University, New York, NY, USA. .,NYU Neuroscience Institute, New York University Langone Health, New York, NY, USA.
| | - Martin Vinck
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany
| | - Gaute T Einevoll
- Faculty of Science and Technology, Norwegian University of Life Sciences, Ås, Norway.,Department of Physics, University of Oslo, Oslo, Norway
| | - Anton Sirota
- Bernstein Center for Computational Neuroscience Munich, Munich Cluster of Systems Neurology (SyNergy), Faculty of Medicine, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Pascal Fries
- Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Frankfurt, Germany.,Donders Institute for Brain, Cognition, and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Markus Siegel
- Centre for Integrative Neuroscience & MEG Center, University of Tübingen, Tübingen, Germany
| | - Wilson Truccolo
- Department of Neuroscience and Institute for Brain Science, Brown University, Providence, RI, USA.,Center for Neurorestoration and Neurotechnology, U.S. Department of Veterans Affairs, Providence, RI, USA
| | - Charles E Schroeder
- Translational Neuroscience Division, Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY, USA.,Department of Neurosurgery, Columbia College of Physicians and Surgeons, New York, NY, USA
| | - Ramesh Srinivasan
- Department of Cognitive Sciences, Department of Biomedical Engineering, University of California, Irvine, CA, USA
| |
Collapse
|
37
|
Viney TJ, Salib M, Joshi A, Unal G, Berry N, Somogyi P. Shared rhythmic subcortical GABAergic input to the entorhinal cortex and presubiculum. eLife 2018; 7:e34395. [PMID: 29620525 PMCID: PMC5908441 DOI: 10.7554/elife.34395] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/04/2018] [Indexed: 01/06/2023] Open
Abstract
Rhythmic theta frequency (~5-12 Hz) oscillations coordinate neuronal synchrony and higher frequency oscillations across the cortex. Spatial navigation and context-dependent episodic memories are represented in several interconnected regions including the hippocampal and entorhinal cortices, but the cellular mechanisms for their dynamic coupling remain to be defined. Using monosynaptically-restricted retrograde viral tracing in mice, we identified a subcortical GABAergic input from the medial septum that terminated in the entorhinal cortex, with collaterals innervating the dorsal presubiculum. Extracellularly recording and labeling GABAergic entorhinal-projecting neurons in awake behaving mice show that these subcortical neurons, named orchid cells, fire in long rhythmic bursts during immobility and locomotion. Orchid cells discharge near the peak of hippocampal and entorhinal theta oscillations, couple to entorhinal gamma oscillations, and target subpopulations of extra-hippocampal GABAergic interneurons. Thus, orchid cells are a specialized source of rhythmic subcortical GABAergic modulation of 'upstream' and 'downstream' cortico-cortical circuits involved in mnemonic functions.
Collapse
Affiliation(s)
- Tim James Viney
- Department of PharmacologyUniversity of OxfordOxfordUnited Kingdom
| | - Minas Salib
- Department of PharmacologyUniversity of OxfordOxfordUnited Kingdom
| | - Abhilasha Joshi
- Department of PharmacologyUniversity of OxfordOxfordUnited Kingdom
| | - Gunes Unal
- Department of PharmacologyUniversity of OxfordOxfordUnited Kingdom
| | - Naomi Berry
- Department of PharmacologyUniversity of OxfordOxfordUnited Kingdom
| | - Peter Somogyi
- Department of PharmacologyUniversity of OxfordOxfordUnited Kingdom
| |
Collapse
|
38
|
Britten RA, Jewell JS, Duncan VD, Hadley MM, Macadat E, Musto AE, Tessa CL. Impaired Attentional Set-Shifting Performance after Exposure to 5 cGy of 600 MeV/n28Si Particles. Radiat Res 2018; 189:273-282. [DOI: 10.1667/rr14627.1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Richard A. Britten
- Department of a Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, Virginia 23507
- Leroy T Canoles Jr. Cancer Center, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Jessica S. Jewell
- Department of a Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Vania D. Duncan
- Department of a Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Melissa M. Hadley
- Department of a Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Evangeline Macadat
- Department of a Radiation Oncology, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Alberto E. Musto
- Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, Virginia 23507
| | - Chiara La Tessa
- NSRL Brookhaven National Laboratories, Upton, New York 11973
- University of Trento, Povo Trento 38122, Italy
| |
Collapse
|
39
|
Butler JL, Hay YA, Paulsen O. Comparison of three gamma oscillations in the mouse entorhinal-hippocampal system. Eur J Neurosci 2018; 48:2795-2806. [PMID: 29356162 PMCID: PMC6221063 DOI: 10.1111/ejn.13831] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/29/2017] [Accepted: 01/08/2018] [Indexed: 02/01/2023]
Abstract
The entorhinal-hippocampal system is an important circuit in the brain, essential for certain cognitive tasks such as memory and navigation. Different gamma oscillations occur in this circuit, with the medial entorhinal cortex (mEC), CA3 and CA1 all generating gamma oscillations with different properties. These three gamma oscillations converge within CA1, where much work has gone into trying to isolate them from each other. Here, we compared the gamma generators in the mEC, CA3 and CA1 using optogenetically induced theta-gamma oscillations. Expressing channelrhodopsin-2 in principal neurons in each of the three regions allowed for the induction of gamma oscillations via sinusoidal blue light stimulation at theta frequency. Recording the oscillations in CA1 in vivo, we found that CA3 stimulation induced slower gamma oscillations than CA1 stimulation, matching in vivo reports of spontaneous CA3 and CA1 gamma oscillations. In brain slices ex vivo, optogenetic stimulation of CA3 induced slower gamma oscillations than stimulation of either mEC or CA1, whose gamma oscillations were of similar frequency. All three gamma oscillations had a current sink-source pair between the perisomatic and dendritic layers of the same region. Taking advantage of this model to analyse gamma frequency mechanisms in slice, we showed using pharmacology that all three gamma oscillations were dependent on the same types of synaptic receptor, being abolished by blockade of either type A γ-aminobutyric acid receptors or α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/kainate receptors, and insensitive to blockade of N-methyl-d-aspartate receptors. These results indicate that a fast excitatory-inhibitory feedback loop underlies the generation of gamma oscillations in all three regions.
Collapse
Affiliation(s)
- James L Butler
- Physiological Laboratory, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Y Audrey Hay
- Physiological Laboratory, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Ole Paulsen
- Physiological Laboratory, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| |
Collapse
|
40
|
Linking neuronal structure to function in rodent hippocampus: a methodological prospective. Cell Tissue Res 2017; 373:605-618. [PMID: 29181629 DOI: 10.1007/s00441-017-2732-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/27/2017] [Indexed: 10/18/2022]
Abstract
Since the discovery of place cells, hippocampus-dependent spatial navigation has proven to be an ideal model system for resolving the relationship between neural coding and behavior. Electrical recordings from the hippocampal formation in freely moving animals have revealed a rich repertoire of spatial firing patterns and have enormously advanced our understanding of the neural principles of spatial representation. However, limited progress has been achieved in resolving the underlying cellular mechanisms. This is partially attributable to the inability of standard recording techniques to link neuronal structure to function directly. In this review, we summarize recent efforts aimed at filling this gap. We also highlight the development of methodologies that allow functional measurements from identified neuronal elements in behaving rodents. Recent progress in the dentate gyrus serves as a showcase to reveal the potential of such methodologies and the necessity of resolving structure-function relationships in order to access the cellular mechanisms of hippocampal circuit computations.
Collapse
|
41
|
McKiernan EC, Marrone DF. CA1 pyramidal cells have diverse biophysical properties, affected by development, experience, and aging. PeerJ 2017; 5:e3836. [PMID: 28948109 PMCID: PMC5609525 DOI: 10.7717/peerj.3836] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/31/2017] [Indexed: 12/04/2022] Open
Abstract
Neuron types (e.g., pyramidal cells) within one area of the brain are often considered homogeneous, despite variability in their biophysical properties. Here we review literature demonstrating variability in the electrical activity of CA1 hippocampal pyramidal cells (PCs), including responses to somatic current injection, synaptic stimulation, and spontaneous network-related activity. In addition, we describe how responses of CA1 PCs vary with development, experience, and aging, and some of the underlying ionic currents responsible. Finally, we suggest directions that may be the most impactful in expanding this knowledge, including the use of text and data mining to systematically study cellular heterogeneity in more depth; dynamical systems theory to understand and potentially classify neuron firing patterns; and mathematical modeling to study the interaction between cellular properties and network output. Our goals are to provide a synthesis of the literature for experimentalists studying CA1 PCs, to give theorists an idea of the rich diversity of behaviors models may need to reproduce to accurately represent these cells, and to provide suggestions for future research.
Collapse
Affiliation(s)
- Erin C McKiernan
- Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Diano F Marrone
- Department of Psychology, Wilfrid Laurier University, Waterloo, Ontario, Canada.,McKnight Brain Institute, University of Arizona, Tucson, AZ, United States of America
| |
Collapse
|
42
|
Excitatory Inputs Determine Phase-Locking Strength and Spike-Timing of CA1 Stratum Oriens/Alveus Parvalbumin and Somatostatin Interneurons during Intrinsically Generated Hippocampal Theta Rhythm. J Neurosci 2017; 36:6605-22. [PMID: 27335395 DOI: 10.1523/jneurosci.3951-13.2016] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 04/14/2016] [Indexed: 01/20/2023] Open
Abstract
UNLABELLED Theta oscillations are essential for learning and memory, and their generation requires GABAergic interneurons. To better understand how theta is generated, we explored how parvalbumin (PV) and somatostatin (SOM) interneurons in CA1 stratum oriens/alveus fire during hippocampal theta and investigated synaptic mechanisms underlying their behavior. Combining the use of transgenic mice to visually identify PV and SOM interneurons and the intact hippocampal preparation that can generate theta oscillations in vitro without cholinergic agonists, we performed simultaneous field and whole-cell recordings. We found that PV interneurons uniformly fire strongly phase-locked to theta, whereas SOM neurons are more heterogeneous with only a proportion of cells displaying tight phase-locking. Differences in phase-locking strength could be explained by disparity in excitatory inputs received; PV neurons received significantly larger EPSCs compared with SOM neurons, and the degree of phase-locking in SOM neurons was significantly correlated with the size of EPSCs. In contrast, IPSC amplitude did not differ between cell types. We determined that the local CA1 rhythm plays a more dominant role in driving CA1 interneuron firing than afferent inputs from the CA3. Last, we show that PV and strongly phase-locked SOM neurons fire near the peak of CA1 theta, under the tight control of excitatory inputs that arise at a specific phase of each theta cycle. These results reveal a fundamental mechanism of neuronal phase-locking and highlight an important role of excitation from the local network in governing firing behavior during rhythmic network states. SIGNIFICANCE STATEMENT Rhythmic activity in the theta range (3-12 Hz) is important for proper functioning of the hippocampus, a brain area essential for learning and memory. To understand how theta rhythm is generated, we investigated how two types of inhibitory neurons, those that express parvalbumin and somatostatin, fire action potentials during theta in an in vitro preparation of the mouse hippocampus. We found that the amount of excitatory input they receive from the local network determines how closely their spikes follow the network theta rhythm. Our findings reveal an important role of local excitatory input in driving inhibitory neuron firing during rhythmic states and may have implications for diseases, such as epilepsy and Alzheimer's disease, which affect the hippocampus and related areas.
Collapse
|
43
|
Sivaramakrishnan S, Lynch WP. Rebound from Inhibition: Self-Correction against Neurodegeneration? JOURNAL OF CLINICAL & CELLULAR IMMUNOLOGY 2017; 8:492. [PMID: 28775912 PMCID: PMC5538264 DOI: 10.4172/2155-9899.1000492] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neural networks play a critical role in establishing constraints on excitability in the central nervous system. Several recent studies have suggested that network dysfunction in the brain and spinal cord are compromised following insult by a neurodegenerative trigger and might precede eventual neuronal loss and neurological impairment. Early intervention of network excitability and plasticity might therefore be critical in resetting hyperexcitability and preventing later neuronal damage. Here, the behavior of neurons that generate burst firing upon recovery from inhibitory input or intrinsic membrane hyperpolarization (rebound neurons) is examined in the context of neural networks that underlie rhythmic activity observed in areas of the brain and spinal cord that are vulnerable to neurodegeneration. In a non-inflammatory rodent model of spongiform neurodegenerative disease triggered by retrovirus infection of glia, rebound neurons are particularly vulnerable to neurodegeneration, likely due to an inherently low calcium buffering capacity. The dysfunction of rebound neurons translates into a dysfunction of rhythmic neural circuits, compromising normal neurological function and leading to eventual morbidity. Understanding how virus infection of glia can mediate dysfunction of rebound neurons, induce hyperexcitability and loss of rhythmic function, pathologic features observed in neurodegenerative disorders ranging from epilepsy to motor neuron disease, might therefore suggest a common pathway for early therapeutic intervention.
Collapse
Affiliation(s)
- Shobhana Sivaramakrishnan
- Department of Otolaryngology, Sensory Neuroscience Research Center, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - William P. Lynch
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| |
Collapse
|
44
|
Carbachol-induced network oscillations in an in vitro limbic system brain slice. Neuroscience 2017; 348:153-164. [DOI: 10.1016/j.neuroscience.2017.02.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 02/09/2017] [Accepted: 02/13/2017] [Indexed: 01/25/2023]
|
45
|
Shubina L, Aliev R, Kitchigina V. Endocannabinoid-dependent protection against kainic acid-induced long-term alteration of brain oscillations in guinea pigs. Brain Res 2017; 1661:1-14. [DOI: 10.1016/j.brainres.2017.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 02/02/2017] [Accepted: 02/03/2017] [Indexed: 01/12/2023]
|
46
|
Bezaire MJ, Raikov I, Burk K, Vyas D, Soltesz I. Interneuronal mechanisms of hippocampal theta oscillations in a full-scale model of the rodent CA1 circuit. eLife 2016; 5:e18566. [PMID: 28009257 DOI: 10.7554/elife.18566.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 12/15/2016] [Indexed: 05/25/2023] Open
Abstract
The hippocampal theta rhythm plays important roles in information processing; however, the mechanisms of its generation are not well understood. We developed a data-driven, supercomputer-based, full-scale (1:1) model of the rodent CA1 area and studied its interneurons during theta oscillations. Theta rhythm with phase-locked gamma oscillations and phase-preferential discharges of distinct interneuronal types spontaneously emerged from the isolated CA1 circuit without rhythmic inputs. Perturbation experiments identified parvalbumin-expressing interneurons and neurogliaform cells, as well as interneuronal diversity itself, as important factors in theta generation. These simulations reveal new insights into the spatiotemporal organization of the CA1 circuit during theta oscillations.
Collapse
Affiliation(s)
- Marianne J Bezaire
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, United States
| | - Ivan Raikov
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, United States
- Department of Neurosurgery, Stanford University, Stanford, United States
| | - Kelly Burk
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, United States
| | - Dhrumil Vyas
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, United States
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, United States
| |
Collapse
|
47
|
Bezaire MJ, Raikov I, Burk K, Vyas D, Soltesz I. Interneuronal mechanisms of hippocampal theta oscillations in a full-scale model of the rodent CA1 circuit. eLife 2016; 5. [PMID: 28009257 PMCID: PMC5313080 DOI: 10.7554/elife.18566] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 12/15/2016] [Indexed: 12/16/2022] Open
Abstract
The hippocampal theta rhythm plays important roles in information processing; however, the mechanisms of its generation are not well understood. We developed a data-driven, supercomputer-based, full-scale (1:1) model of the rodent CA1 area and studied its interneurons during theta oscillations. Theta rhythm with phase-locked gamma oscillations and phase-preferential discharges of distinct interneuronal types spontaneously emerged from the isolated CA1 circuit without rhythmic inputs. Perturbation experiments identified parvalbumin-expressing interneurons and neurogliaform cells, as well as interneuronal diversity itself, as important factors in theta generation. These simulations reveal new insights into the spatiotemporal organization of the CA1 circuit during theta oscillations. DOI:http://dx.doi.org/10.7554/eLife.18566.001
Collapse
Affiliation(s)
- Marianne J Bezaire
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, United States
| | - Ivan Raikov
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, United States.,Department of Neurosurgery, Stanford University, Stanford, United States
| | - Kelly Burk
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, United States
| | - Dhrumil Vyas
- Department of Anatomy and Neurobiology, University of California, Irvine, Irvine, United States
| | - Ivan Soltesz
- Department of Neurosurgery, Stanford University, Stanford, United States
| |
Collapse
|
48
|
Blumberg BJ, Flynn SP, Barriere SJ, Mouchati PR, Scott RC, Holmes GL, Barry JM. Efficacy of nonselective optogenetic control of the medial septum over hippocampal oscillations: the influence of speed and implications for cognitive enhancement. Physiol Rep 2016; 4:e13048. [PMID: 27923975 PMCID: PMC5357822 DOI: 10.14814/phy2.13048] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 10/22/2016] [Accepted: 11/02/2016] [Indexed: 12/22/2022] Open
Abstract
Optogenetics holds great promise for both the dissection of neural circuits and the evaluation of theories centered on the temporal organizing properties of oscillations that underpin cognition. To date, no studies have examined the efficacy of optogenetic stimulation for altering hippocampal oscillations in freely moving wild-type rats, or how these alterations would affect performance on behavioral tasks. Here, we used an AAV virus to express ChR2 in the medial septum (MS) of wild-type rats, and optically stimulated septal neurons at 6 Hz and 30 Hz. We measured the corresponding effects of these stimulations on the oscillations of the MS and hippocampal subfields CA1 and CA3 in three different contexts: (1) With minimal movement while the rats sat in a confined chamber; (2) Explored a novel open field; and (3) Learned and performed a T-maze behavioral task. While control yellow light stimulation did not affect oscillations, 6-Hz blue light septal stimulations altered hippocampal theta oscillations in a manner that depended on the animal's mobility and speed. While the 30 Hz blue light septal stimulations only altered theta frequency in CA1 while the rat had limited mobility, it robustly increased the amplitude of hippocampal signals at 30 Hz in both regions in all three recording contexts. We found that animals were more likely to make a correct choice during Day 1 of T-maze training during both MS stimulation protocols than during control stimulation, and that improved performance was independent of theta frequency alterations.
Collapse
Affiliation(s)
- Benjamin J Blumberg
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont
| | - Sean P Flynn
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont
| | - Sylvain J Barriere
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont
| | - Philippe R Mouchati
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont
| | - Rod C Scott
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont
- Department of Neurology, Institute of Child Health, University College London, London, United Kingdom
| | - Gregory L Holmes
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont
| | - Jeremy M Barry
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, Vermont
| |
Collapse
|
49
|
Leaderbrand K, Chen HJ, Corcoran KA, Guedea AL, Jovasevic V, Wess J, Radulovic J. Muscarinic acetylcholine receptors act in synergy to facilitate learning and memory. ACTA ACUST UNITED AC 2016; 23:631-638. [PMID: 27918283 PMCID: PMC5066603 DOI: 10.1101/lm.043133.116] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/28/2016] [Indexed: 11/28/2022]
Abstract
Understanding how episodic memories are formed and retrieved is necessary if we are to treat disorders in which they malfunction. Muscarinic acetylcholine receptors (mAChR) in the hippocampus and cortex underlie memory formation, but there is conflicting evidence regarding their role in memory retrieval. Additionally, there is no consensus on which mAChR subtypes are critical for memory processing. Using pharmacological and genetic approaches, we found that (1) encoding and retrieval of contextual memory requires mAChR in the dorsal hippocampus (DH) and retrosplenial cortex (RSC), (2) memory formation requires hippocampal M3 and cooperative activity of RSC M1 and M3, and (3) memory retrieval is more impaired by inactivation of multiple M1–M4 mAChR in DH or RSC than inactivation of individual receptor subtypes. Contrary to the view that acetylcholine supports learning but is detrimental to memory retrieval, we found that coactivation of multiple mAChR is required for retrieval of both recently and remotely acquired context memories. Manipulations with higher receptor specificity were generally less potent than manipulations targeting multiple receptor subtypes, suggesting that mAChR act in synergy to regulate memory processes. These findings provide unique insight into the development of therapies for amnestic symptoms, suggesting that broadly acting, rather than receptor-specific, mAchR agonists and positive allosteric modulators may be the most effective therapeutic approach.
Collapse
Affiliation(s)
- Katherine Leaderbrand
- Department of Psychiatry and Behavioral Sciences, The Asher Center for the Study and Treatment of Depressive Disorders, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Helen J Chen
- Department of Psychiatry and Behavioral Sciences, The Asher Center for the Study and Treatment of Depressive Disorders, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Kevin A Corcoran
- Department of Psychiatry and Behavioral Sciences, The Asher Center for the Study and Treatment of Depressive Disorders, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Anita L Guedea
- Department of Psychiatry and Behavioral Sciences, The Asher Center for the Study and Treatment of Depressive Disorders, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Vladimir Jovasevic
- Department of Psychiatry and Behavioral Sciences, The Asher Center for the Study and Treatment of Depressive Disorders, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Jurgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, USA
| | - Jelena Radulovic
- Department of Psychiatry and Behavioral Sciences, The Asher Center for the Study and Treatment of Depressive Disorders, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
50
|
Talpalar TI, Talpalar AE. High Pressure and [Ca 2+ ] Produce an Inverse Modulation of Synaptic Input Strength and Network Excitability in the Rat Dentate Gyrus. Front Cell Neurosci 2016; 10:211. [PMID: 27729848 PMCID: PMC5038017 DOI: 10.3389/fncel.2016.00211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/23/2016] [Indexed: 11/13/2022] Open
Abstract
Hyperbaric environments induce the high pressure neurological syndrome (HPNS) characterized by hyperexcitability of the central nervous system (CNS) and memory impairment. Human divers and other animals experience the HPNS at pressures beyond 1.1 MPa. High pressure depresses synaptic transmission and alters its dynamics in various animal models. Medial perforant path (MPP) synapses connecting the medial entorhinal cortex with the hippocampal formation are suppressed by 50% at 10.1MPa. Reduction of synaptic inputs is paradoxically associated with enhanced ability of dentate gyrus (DG)’ granule cells (GCs) to generate spikes at high pressure. This mechanism allows MPP inputs to elicit standard GC outputs at 0.1–25 Hz frequencies under hyperbaric conditions. An increased postsynaptic gain of MPP inputs probably allows diving animals to perform in hyperbaric environments, but makes them vulnerable to high intensity/frequency stimuli producing hyperexcitability. Increasing extracellular Ca2+ ([Ca2+]o) partially reverted pressure-mediated depression of MPP inputs and increased MPP’s low-pass filter properties. We postulated that raising [Ca2+]o in addition to increase synaptic inputs may reduce network excitability in the DG potentially improving its function and reducing sensitivity to high intensity and pathologic stimuli. For this matter, we activated the MPP with single and 50 Hz frequency stimuli that simulated physiologic and deleterious conditions, while assessing the GC’s output under various conditions of pressure and [Ca2+]o. Our results reveal that the pressure and [Ca2+]o produce an inverse modulation on synaptic input strength and network excitability. These coincident phenomena suggest a potential general mechanism of networks that adjusts gain as an inverse function of synaptic inputs’ strength. Such mechanism may serve for adaptation to variable pressure and other physiological and pathological conditions and may explain the increased sensitivity to strong sensory stimulation suffered by human deep-divers and cetaceans under hyperbaric conditions.
Collapse
Affiliation(s)
- Thomas I Talpalar
- Department of Neurobiology, Care Science and Society, Karolinska Institutet Stockholm, Sweden
| | - Adolfo E Talpalar
- Department of Neuroscience, Karolinska InstitutetStockholm, Sweden; Department of Physiology, Faculty of Health Sciences, Ben-Gurion University of the NegevBeer-Sheva, Israel
| |
Collapse
|