1
|
Atkinson D, Chamova T, Candayan A, Kastreva K, Asenov O, Litvinenko I, Estrada-Cuzcano A, De Vriendt E, Kukushev G, Tournev I, Jordanova A. Identification and Characterization of Novel Founder Mutations in NDRG1: Refining the Genetic Landscape of Charcot-Marie-Tooth Disease Type 4D in Bulgaria. Int J Mol Sci 2024; 25:9047. [PMID: 39201732 PMCID: PMC11354586 DOI: 10.3390/ijms25169047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Charcot-Marie-Tooth neuropathy type 4D (CMT4D) is a rare genetic disorder of the peripheral nervous system caused by biallelic mutations in the N-Myc Downstream Regulated 1 gene (NDRG1). Patients present with an early onset demyelinating peripheral neuropathy causing severe distal muscle weakness and sensory loss, leading to loss of ambulation and progressive sensorineural hearing loss. The disorder was initially described in the Roma community due to a common founder mutation, and only a handful of disease-causing variants have been described in this gene so far. Here, we present genetic and clinical findings from a large Bulgarian cohort of demyelinating CMT patients harboring recurrent and novel variants in the NDRG1 gene. Notably, two splice-site variants are exclusive to Bulgarian Muslims and reside in ancestral haplotypes, suggesting a founder effect. Functional characterization of these novel variants implicates a loss-of-function mechanism due to shorter gene products. Our findings contribute to a deeper understanding of the genetic and clinical heterogeneity of CMT4D and highlight novel founder mutations in the ethnic minority of Bulgarian Muslims.
Collapse
Affiliation(s)
- Derek Atkinson
- Molecular Neurogenomics Group, VIB Center for Molecular Neurology, VIB, 2610 Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Teodora Chamova
- Department of Neurology, Medical University-Sofia, 1431 Sofia, Bulgaria
| | - Ayse Candayan
- Molecular Neurogenomics Group, VIB Center for Molecular Neurology, VIB, 2610 Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Kristina Kastreva
- Department of Neurology, Medical University-Sofia, 1431 Sofia, Bulgaria
| | - Ognian Asenov
- Department of Neurology, Medical University-Sofia, 1431 Sofia, Bulgaria
| | - Ivan Litvinenko
- Department of Pediatrics, Medical University-Sofia, 1431 Sofia, Bulgaria
| | - Alejandro Estrada-Cuzcano
- Molecular Neurogenomics Group, VIB Center for Molecular Neurology, VIB, 2610 Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Els De Vriendt
- Molecular Neurogenomics Group, VIB Center for Molecular Neurology, VIB, 2610 Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| | - Georgi Kukushev
- Department of Otorhinolaryngology, Military Medical Academy-Sofia, 1606 Sofia, Bulgaria
| | - Ivailo Tournev
- Department of Neurology, Medical University-Sofia, 1431 Sofia, Bulgaria
- Department of Cognitive Science and Psychology, New Bulgarian University, 1618 Sofia, Bulgaria
| | - Albena Jordanova
- Molecular Neurogenomics Group, VIB Center for Molecular Neurology, VIB, 2610 Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
- Department of Medical Chemistry and Biochemistry, Medical University-Sofia, 1431 Sofia, Bulgaria
| |
Collapse
|
2
|
A splice altering variant in NDRG1 gene causes Charcot-Marie-Tooth disease, type 4D. Neurol Sci 2022; 43:4463-4472. [PMID: 35149926 DOI: 10.1007/s10072-022-05893-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/09/2022] [Indexed: 12/30/2022]
Abstract
Charcot-Marie-Tooth disease, type 4D (CMT4D) is a progressive, autosomal recessive form of CMT, characterized by distal muscle weakness and atrophy, foot deformities, severe motor sensory neuropathy, and sensorineural hearing impairment. Mutations in NDRG1 gene cause neuropathy in humans, dogs, and rodents. Here, we describe clinical and genetic features of a 17-year-old male with wasting of hand muscle and foot and severe motor neuropathy. Whole exome sequencing was carried out on the patient and his unaffected parents. We identified a novel deletion of nine nucleotides (c.537 + 2_537 + 10del) on the splice donor site of intron 8 in NDRG1 gene. The Sanger sequencing confirmed the segregation of this mutation in autosomal recessive inheritance. Furthermore, transcript analysis confirmed a splice defect and reveals using of an alternate cryptic splice donor site on the downstream intronic region. It resulted in an insertion of 42 nucleotides to exon 8 of NDRG1. Translation of the resulting transcript sequence revealed an insertion of 14 amino acids in-frame to the existing NDRG1 protein. This insertion is predicted to disrupt an alpha helix which is involved in protein-protein interactions in homologous proteins. Our study expands the clinical and genetic spectrum of CMT4D. The splice defect we found in this patient reveals a novel splice isoform of NDRG1 as the potential cause for the neuropathy observed in this patient.
Collapse
|
3
|
Aberrant Neuregulin 1/ErbB Signaling in Charcot-Marie-Tooth Type 4D Disease. Mol Cell Biol 2022; 42:e0055921. [PMID: 35708320 DOI: 10.1128/mcb.00559-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Charcot-Marie-Tooth type 4D (CMT4D) is an autosomal recessive demyelinating form of CMT characterized by progressive motor and sensory neuropathy. N-myc downstream regulated gene 1 (NDRG1) is the causative gene for CMT4D. Although more CMT4D cases have been reported, the comprehensive molecular mechanism underlying CMT4D remains elusive. Here, we generated a novel knockout mouse model in which the fourth and fifth exons of the Ndrg1 gene were removed. Ndrg1-deficient mice develop early progressive demyelinating neuropathy and limb muscle weakness. The expression pattern of myelination-related transcriptional factors, including SOX10, OCT6, and EGR2, was abnormal in Ndrg1-deficient mice. We further investigated the activation of the ErbB2/3 receptor tyrosine kinases in Ndrg1-deficient sciatic nerves, as these proteins play essential roles in Schwann cell myelination. In the absence of NDRG1, although the total ErbB2/3 receptors expressed by Schwann cells were significantly increased, levels of the phosphorylated forms of ErbB2/3 and their downstream signaling cascades were decreased. This change was not associated with the level of the neuregulin 1 ligand, which was increased in Ndrg1-deficient mice. In addition, the integrin β4 receptor, which interacts with ErbB2/3 and positively regulates neuregulin 1/ErbB signaling, was significantly reduced in the Ndrg1-deficient nerve. In conclusion, our data suggest that the demyelinating phenotype of CMT4D disease is at least in part a consequence of molecular defects in neuregulin 1/ErbB signaling.
Collapse
|
4
|
Marechal D, Dansu DK, Castro K, Patzig J, Magri L, Inbar B, Gacias M, Moyon S, Casaccia P. N-myc downstream regulated family member 1 (NDRG1) is enriched in myelinating oligodendrocytes and impacts myelin degradation in response to demyelination. Glia 2022; 70:321-336. [PMID: 34687571 PMCID: PMC8753715 DOI: 10.1002/glia.24108] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 02/03/2023]
Abstract
The N-myc downstream regulated gene family member 1 (NDRG1) is a gene whose mutation results in peripheral neuropathy with central manifestations. While most of previous studies characterized NDRG1 role in Schwann cells, the detection of central nervous system symptoms and the identification of NDRG1 as a gene silenced in the white matter of multiple sclerosis brains raise the question regarding its role in oligodendrocytes. Here, we show that NDRG1 is enriched in oligodendrocytes and myelin preparations, and we characterize its expression using a novel reporter mouse (TgNdrg1-EGFP). We report NDRG1 expression during developmental myelination and during remyelination after cuprizone-induced demyelination of the adult corpus callosum. The transcriptome of Ndrg1-EGFP+ cells further supports the identification of late myelinating oligodendrocytes, characterized by expression of genes regulating lipid metabolism and bioenergetics. We also generate a lineage specific conditional knockout (Olig1cre/+ ;Ndrg1fl/fl ) line to study its function. Null mice develop normally, and despite similar numbers of progenitor cells as wild type, they have fewer mature oligodendrocytes and lower levels of myelin proteins than controls, thereby suggesting NDRG1 as important for the maintenance of late myelinating oligodendrocytes. In addition, when control and Ndrg1 null mice are subject to cuprizone-induced demyelination, we observe a higher degree of demyelination in the mutants. Together these data identify NDRG1 as an important molecule for adult myelinating oligodendrocytes, whose decreased levels in the normal appearing white matter of human MS brains may result in greater susceptibility of myelin to damage.
Collapse
Affiliation(s)
- Damien Marechal
- Neuroscience Initiative, Advanced Science Research Center, CUNY, 85 St Nicholas Terrace, New York, NY 10031, USA
| | - David K. Dansu
- Neuroscience Initiative, Advanced Science Research Center, CUNY, 85 St Nicholas Terrace, New York, NY 10031, USA,Graduate Program in Biochemistry, The Graduate Center of The City University of New York, New York, NY 10016, USA
| | - Kamilah Castro
- Neuroscience Initiative, Advanced Science Research Center, CUNY, 85 St Nicholas Terrace, New York, NY 10031, USA,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Julia Patzig
- Neuroscience Initiative, Advanced Science Research Center, CUNY, 85 St Nicholas Terrace, New York, NY 10031, USA
| | - Laura Magri
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Benjamin Inbar
- Neuroscience Initiative, Advanced Science Research Center, CUNY, 85 St Nicholas Terrace, New York, NY 10031, USA
| | - Mar Gacias
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sarah Moyon
- Neuroscience Initiative, Advanced Science Research Center, CUNY, 85 St Nicholas Terrace, New York, NY 10031, USA
| | - Patrizia Casaccia
- Neuroscience Initiative, Advanced Science Research Center, CUNY, 85 St Nicholas Terrace, New York, NY 10031, USA,Graduate Program in Biochemistry, The Graduate Center of The City University of New York, New York, NY 10016, USA,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA,Graduate Program in Biology, The Graduate Center of The City University of New York, New York, NY 10016, USA,Corresponding author:
| |
Collapse
|
5
|
Ochsner SA, McKenna NJ. No Dataset Left Behind: Mechanistic Insights into Thyroid Receptor Signaling Through Transcriptomic Consensome Meta-Analysis. Thyroid 2020; 30:621-639. [PMID: 31910096 PMCID: PMC7187985 DOI: 10.1089/thy.2019.0307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Background: Discovery-scale omics datasets relevant to thyroid receptors (TRs) and their physiological and synthetic bioactive small-molecule ligands allow for genome-wide interrogation of TR-regulated genes. These datasets have considerable collective value as a reference resource to allow researchers to routinely generate hypotheses addressing the mechanisms underlying the cell biology and physiology of TR signaling in normal and disease states. Methods: Here, we searched the Gene Expression Omnibus database to identify a population of publicly archived transcriptomic datasets involving genetic or pharmacological manipulation of either TR isoform in a mouse tissue or cell line. After initial quality control, samples were organized into contrasts (experiments), and transcript differential expression values and associated measures of significance were generated and committed to a consensome (for consensus omics) meta-analysis pipeline. To gain insight into tissue-selective functions of TRs, we generated liver- and central nervous system (CNS)-specific consensomes and identified evidence for genes that were selectively responsive to TR signaling in each organ. Results: The TR transcriptomic consensome ranks genes based on the frequency of their significant differential expression over the entire group of experiments. The TR consensome assigns elevated rankings both to known TR-regulated genes and to genes previously uncharacterized as TR-regulated, which shed mechanistic light on known cellular and physiological roles of TR signaling in different organs. We identify evidence for unreported genomic targets of TR signaling for which it exhibits strikingly distinct regulatory preferences in the liver and CNS. Moreover, the intersection of the TR consensome with consensomes for other cellular receptors sheds light on transcripts potentially mediating crosstalk between TRs and these other signaling paradigms. Conclusions: The mouse TR datasets and consensomes are freely available in the Signaling Pathways Project website for hypothesis generation, data validation, and modeling of novel mechanisms of TR regulation of gene expression. Our results demonstrate the insights into the mechanistic basis of thyroid hormone action that can arise from an ongoing commitment on the part of the research community to the deposition of discovery-scale datasets.
Collapse
Affiliation(s)
- Scott A. Ochsner
- The Signaling Pathways Project, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Neil J. McKenna
- The Signaling Pathways Project, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
- Address correspondence to: Neil J. McKenna, PhD, The Signaling Pathways Project, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
6
|
Li Z, Lin J, Sibley AB, Truong T, Chua KC, Jiang Y, McCarthy J, Kroetz DL, Allen A, Owzar K. Efficient estimation of grouped survival models. BMC Bioinformatics 2019; 20:269. [PMID: 31138120 PMCID: PMC6540566 DOI: 10.1186/s12859-019-2899-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/13/2019] [Indexed: 11/22/2022] Open
Abstract
Background Time- and dose-to-event phenotypes used in basic science and translational studies are commonly measured imprecisely or incompletely due to limitations of the experimental design or data collection schema. For example, drug-induced toxicities are not reported by the actual time or dose triggering the event, but rather are inferred from the cycle or dose to which the event is attributed. This exemplifies a prevalent type of imprecise measurement called grouped failure time, where times or doses are restricted to discrete increments. Failure to appropriately account for the grouped nature of the data, when present, may lead to biased analyses. Results We present groupedSurv, an R package which implements a statistically rigorous and computationally efficient approach for conducting genome-wide analyses based on grouped failure time phenotypes. Our approach accommodates adjustments for baseline covariates, and analysis at the variant or gene level. We illustrate the statistical properties of the approach and computational performance of the package by simulation. We present the results of a reanalysis of a published genome-wide study to identify common germline variants associated with the risk of taxane-induced peripheral neuropathy in breast cancer patients. Conclusions groupedSurv enables fast and rigorous genome-wide analysis on the basis of grouped failure time phenotypes at the variant, gene or pathway level. The package is freely available under a public license through the Comprehensive R Archive Network. Electronic supplementary material The online version of this article (10.1186/s12859-019-2899-x) contains supplementary material, which is available to authorized users.
Collapse
|
7
|
Bogenpohl JW, Smith ML, Farris SP, Dumur CI, Lopez MF, Becker HC, Grant KA, Miles MF. Cross-Species Co-analysis of Prefrontal Cortex Chronic Ethanol Transcriptome Responses in Mice and Monkeys. Front Mol Neurosci 2019; 12:197. [PMID: 31456662 PMCID: PMC6701453 DOI: 10.3389/fnmol.2019.00197] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022] Open
Abstract
Despite recent extensive genomic and genetic studies on behavioral responses to ethanol, relatively few new therapeutic targets for the treatment of alcohol use disorder have been validated. Here, we describe a cross-species genomic approach focused on identifying gene networks associated with chronic ethanol consumption. To identify brain mechanisms underlying a chronic ethanol consumption phenotype highly relevant to human alcohol use disorder, and to elucidate potential future therapeutic targets, we conducted a genomic study in a non-human primate model of chronic open-access ethanol consumption. Microarray analysis of RNA expression in anterior cingulate and subgenual cortices from rhesus macaques was performed across multiple cohorts of animals. Gene networks correlating with ethanol consumption or showing enrichment for ethanol-regulated genes were identified, as were major ethanol-related hub genes within these networks. A subsequent consensus module analysis was used to co-analyze monkey data with expression data from a chronic intermittent ethanol vapor-exposure and consumption model in C57BL/6J mice. Ethanol-related gene networks conserved between primates and rodents were enriched for genes involved in discrete biological functions, including; myelination, synaptic transmission, chromatin modification, Golgi apparatus function, translation, cellular respiration, and RNA processing. The myelin-related network, in particular, showed strong correlations with ethanol consumption behavior and displayed marked network reorganization between control and ethanol-drinking animals. Further bioinformatics analysis revealed that these networks also showed highly significant overlap with other ethanol-regulated gene sets. Altogether, these studies provide robust primate and rodent cross-species validation of gene networks associated with chronic ethanol consumption. Our results also suggest potential novel focal points for future therapeutic interventions in alcohol use disorder.
Collapse
Affiliation(s)
- James W Bogenpohl
- Department of Molecular Biology and Chemistry, Christopher Newport University, Newport News, VA, United States
| | - Maren L Smith
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States
| | - Sean P Farris
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, United States
| | - Catherine I Dumur
- Aurora Diagnostics-Sonic Healthcare, Bernhardt Laboratories, Jacksonville, FL, United States
| | - Marcelo F Lopez
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Howard C Becker
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, United States
| | - Kathleen A Grant
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR, United States.,Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, United States
| | - Michael F Miles
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, United States.,Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States.,Department of Neurology, Virginia Commonwealth University, Richmond, VA, United States.,VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
8
|
Nam SH, Choi BO. Clinical and genetic aspects of Charcot-Marie-Tooth disease subtypes. PRECISION AND FUTURE MEDICINE 2019. [DOI: 10.23838/pfm.2018.00163] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
9
|
A novel homozygous NDRG1 mutation in a Chinese patient with Charcot-Marie-Tooth disease 4D. J Clin Neurosci 2018; 53:231-234. [DOI: 10.1016/j.jocn.2018.04.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/09/2018] [Indexed: 11/23/2022]
|
10
|
Li LX, Liu GL, Liu ZJ, Lu C, Wu ZY. Identification and functional characterization of two missense mutations in NDRG1 associated with Charcot-Marie-Tooth disease type 4D. Hum Mutat 2017; 38:1569-1578. [PMID: 28776325 DOI: 10.1002/humu.23309] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 06/27/2017] [Accepted: 07/30/2017] [Indexed: 11/10/2022]
Abstract
Charcot-Marie-Tooth disease type 4D (CMT4D) is an autosomal-recessive demyelinating form of CMT characterized by a severe distal motor and sensory neuropathy. NDRG1 is the causative gene for CMT4D. To date, only four mutations in NDRG1 -c.442C>T (p.Arg148*), c.739delC (p.His247Thrfs*74), c.538-1G>A, and duplication of exons 6-8-have been described in CMT4D patients. Here, using targeted next-generation sequencing examination, we identified for the first time two homozygous missense variants in NDRG1, c.437T>C (p.Leu146Pro) and c.701G>A (p.Arg234Gln), in two Chinese CMT families with consanguineous histories. Further functional studies were performed to characterize the biological effects of these variants. Cell culture transfection studies showed that mutant NDRG1 carrying p.Leu146Pro, p.Arg148*, or p.Arg234Gln variant degraded faster than wild-type NDRG1, resulting in lower protein levels. Live cell confocal microscopy and coimmunoprecipitation analysis indicated that these variants did not disrupt the interaction between NDRG1 and Rab4a protein. However, NDRG1-knockdown cells expressing mutant NDRG1 displayed enlarged Rab4a-positive compartments. Moreover, mutant NDRG1 could not enhance the uptake of DiI-LDL or increase the fraction of low-density lipoprotein receptor on the cell surface. Taken together, our study described two missense mutations in NDRG1 and emphasized the important role of NDRG1 in intracellular protein trafficking.
Collapse
Affiliation(s)
- Li-Xi Li
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and the Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Gong-Lu Liu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and the Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi-Jun Liu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and the Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cong Lu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and the Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi-Ying Wu
- Department of Neurology and Research Center of Neurology in Second Affiliated Hospital, and the Collaborative Innovation Center for Brain Science, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
11
|
Piscosquito G, Magri S, Saveri P, Milani M, Ciano C, Farina L, Taroni F, Pareyson D. A novelNDRG1mutation in a non-Romani patient with CMT4D/HMSN-Lom. J Peripher Nerv Syst 2017; 22:47-50. [DOI: 10.1111/jns.12201] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/08/2016] [Accepted: 12/11/2016] [Indexed: 11/30/2022]
Affiliation(s)
- Giuseppe Piscosquito
- Unit of Rare Neurological Diseases of Adulthood, Department of Clinical Neurosciences; IRCCS Foundation, “C. Besta” Neurological Institute; Milan Italy
| | - Stefania Magri
- Unit of Genetics of Neurodegenerative and Metabolic Disease, Department of Diagnostics and Applied Technology; IRCCS Foundation, “C. Besta” Neurological Institute; Milan Italy
| | - Paola Saveri
- Unit of Rare Neurological Diseases of Adulthood, Department of Clinical Neurosciences; IRCCS Foundation, “C. Besta” Neurological Institute; Milan Italy
| | - Micaela Milani
- Unit of Genetics of Neurodegenerative and Metabolic Disease, Department of Diagnostics and Applied Technology; IRCCS Foundation, “C. Besta” Neurological Institute; Milan Italy
| | - Claudia Ciano
- Neurophysiopathology and Epilepsy Centre, Department of Diagnostics and Applied Technology; IRCCS Foundation, “C. Besta” Neurological Institute; Milan Italy
| | - Laura Farina
- Unit of Neuroradiology, Department of Diagnostics and Applied Technology; IRCCS Foundation, “C. Besta” Neurological Institute; Milan Italy
| | - Franco Taroni
- Unit of Genetics of Neurodegenerative and Metabolic Disease, Department of Diagnostics and Applied Technology; IRCCS Foundation, “C. Besta” Neurological Institute; Milan Italy
| | - Davide Pareyson
- Unit of Rare Neurological Diseases of Adulthood, Department of Clinical Neurosciences; IRCCS Foundation, “C. Besta” Neurological Institute; Milan Italy
| |
Collapse
|
12
|
HMSN Lom in 12 Czech patients, with one unusual case due to uniparental isodisomy of chromosome 8. J Hum Genet 2016; 62:431-435. [PMID: 28003645 DOI: 10.1038/jhg.2016.148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 10/21/2016] [Accepted: 11/01/2016] [Indexed: 11/08/2022]
Abstract
Hereditary motor and sensory neuropathy-type Lom (HMSNL), also known as CMT4D, a demyelinating neuropathy with late-onset deafness is an autosomal recessive disorder threatening Roma population worldwide. The clinical phenotype was reported in several case reports before the gene discovery. HMSNL is caused by a homozygous founder mutation p.Arg148* in the N-Myc downstream-regulated gene 1. Here, we report findings from the Czech Republic, where HMSNL was found in 12 Czech patients from eight families. In these 12 patients, 11 of the causes were due to p.Arg148* mutation inherited from both parents by the autosomal recessive mechanism. But in one case, the recessive mutation was inherited only from one parent (father) and unmasked owing to an uniparental isodisomy of the entire chromosome eight. The inherited peripheral neuropathy owing to an isodisomy of the whole chromosome pointed to an interesting, less frequent possibility of recessive disease and complications with genetic counseling.
Collapse
|
13
|
Sundar R, Jeyasekharan AD, Pang B, Soong RCT, Kumarakulasinghe NB, Ow SGW, Ho J, Lim JSJ, Tan DSP, Wilder-Smith EPV, Bandla A, Tan SSH, Asuncion BR, Fazreen Z, Hoppe MM, Putti TC, Poh LM, Goh BC, Lee SC. Low Levels of NDRG1 in Nerve Tissue Are Predictive of Severe Paclitaxel-Induced Neuropathy. PLoS One 2016; 11:e0164319. [PMID: 27716814 PMCID: PMC5055363 DOI: 10.1371/journal.pone.0164319] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 09/22/2016] [Indexed: 11/23/2022] Open
Abstract
Introduction Sensory peripheral neuropathy caused by paclitaxel is a common and dose limiting toxicity, for which there are currently no validated predictive biomarkers. We investigated the relationship between the Charcot-Marie-Tooth protein NDRG1 and paclitaxel-induced neuropathy. Methods/Materials Archived mammary tissue specimen blocks of breast cancer patients who received weekly paclitaxel in a single centre were retrieved and NDRG1 immunohistochemistry was performed on normal nerve tissue found within the sample. The mean nerve NDRG1 score was defined by an algorithm based on intensity of staining and percentage of stained nerve bundles. NDRG1 scores were correlated with paclitaxel induced neuropathy Results 111 patients were studied. 17 of 111 (15%) developed severe paclitaxel-induced neuropathy. The mean nerve NDRG1 expression score was 5.4 in patients with severe neuropathy versus 7.7 in those without severe neuropathy (p = 0.0019). A Receiver operating characteristic (ROC) curve analysis of the mean nerve NDRG1 score revealed an area under the curve of 0.74 (p = 0.0013) for the identification of severe neuropathy, with a score of 7 being most discriminative. 13/54 (24%) subjects with an NDRG1 score < = 7 developed severe neuropathy, compared to only 4/57 (7%) in those with a score >7 (p = 0.017). Conclusion Low NDRG1 expression in nerve tissue present within samples of surgical resection may identify subjects at risk for severe paclitaxel-induced neuropathy. Since nerve biopsies are not routinely feasible for patients undergoing chemotherapy for early breast cancer, this promising biomarker strategy is compatible with current clinical workflow.
Collapse
Affiliation(s)
- Raghav Sundar
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
| | - Anand D. Jeyasekharan
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Brendan Pang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pathology, National University Health System, Singapore, Singapore
| | - Richie Chuan Teck Soong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- Department of Pathology, National University Health System, Singapore, Singapore
| | - Nesaretnam Barr Kumarakulasinghe
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
| | - Samuel Guan Wei Ow
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
| | - Jingshan Ho
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
| | - Joline Si Jing Lim
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
| | - David Shao Peng Tan
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
| | - Einar P. V. Wilder-Smith
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore, Singapore
- Department of Medicine, National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Aishwarya Bandla
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Stacey Sze Hui Tan
- Singapore Institute for Neurotechnology (SINAPSE), National University of Singapore, Singapore, Singapore
| | | | - Zul Fazreen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Michal Marek Hoppe
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | | | - Lay Mui Poh
- Department of Pharmacy, National University Cancer Institute Singapore, National University Health System, Singapore, Singapore
| | - Boon Cher Goh
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Soo-Chin Lee
- Department of Haematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|
14
|
Sapio MR, Goswami SC, Gross JR, Mannes AJ, Iadarola MJ. Transcriptomic analyses of genes and tissues in inherited sensory neuropathies. Exp Neurol 2016; 283:375-395. [PMID: 27343803 DOI: 10.1016/j.expneurol.2016.06.023] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/07/2016] [Accepted: 06/20/2016] [Indexed: 12/18/2022]
Abstract
Inherited sensory neuropathies are caused by mutations in genes affecting either primary afferent neurons, or the Schwann cells that myelinate them. Using RNA-Seq, we analyzed the transcriptome of human and rat DRG and peripheral nerve, which contain sensory neurons and Schwann cells, respectively. We subdivide inherited sensory neuropathies based on expression of the mutated gene in these tissues, as well as in mouse TRPV1 lineage DRG nociceptive neurons, and across 32 human tissues from the Human Protein Atlas. We propose that this comprehensive approach to neuropathy gene expression leads to better understanding of the involved cell types in patients with these disorders. We also characterize the genetic "fingerprint" of both tissues, and present the highly tissue-specific genes in DRG and sciatic nerve that may aid in the development of gene panels to improve diagnostics for genetic neuropathies, and may represent specific drug targets for diseases of these tissues.
Collapse
Affiliation(s)
- Matthew R Sapio
- Department of Perioperative Medicine, Clinical Center, NIH, Bethesda, MD, USA
| | - Samridhi C Goswami
- Department of Perioperative Medicine, Clinical Center, NIH, Bethesda, MD, USA
| | - Jacklyn R Gross
- Department of Perioperative Medicine, Clinical Center, NIH, Bethesda, MD, USA
| | - Andrew J Mannes
- Department of Perioperative Medicine, Clinical Center, NIH, Bethesda, MD, USA
| | - Michael J Iadarola
- Department of Perioperative Medicine, Clinical Center, NIH, Bethesda, MD, USA.
| |
Collapse
|
15
|
Charcot-Marie-Tooth disease variants-classification, clinical, and genetic features and rational diagnostic evaluation. J Clin Neuromuscul Dis 2014; 15:117-28. [PMID: 24534835 DOI: 10.1097/cnd.0000000000000020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inherited neuropathies are among the most prevalent inherited neurologic disorders, and with current advances in molecular biology and genetic testing, the clinical spectrum of phenotype/genotype has been expanding enormously. Genetic testing is nowadays commercially available to several subtypes although many remain because of unknown genetic defect. A stepwise rational approach, which is shown in , facilitates reaching a specific diagnosis and reduces the cost.
Collapse
|
16
|
Analysis of dynein intermediate chains, light intermediate chains and light chains in a cohort of hereditary peripheral neuropathies. Neurogenetics 2014; 15:229-35. [PMID: 25028179 DOI: 10.1007/s10048-014-0414-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/02/2014] [Indexed: 12/23/2022]
Abstract
The cytoplasmic dynein heavy chain (DYNC1H1) gene has been increasingly associated with neurodegenerative disorders including axonal Charcot-Marie-Tooth disease (CMT2), intellectual disability and malformations of cortical development. In addition, evidence from mouse models (Loa, catabolite repressor-activator (Cra) and Sprawling (Swl)) has shown that mutations in Dync1h1 cause a range of neurodegenerative phenotypes with motor and sensory neuron involvement. In this current study, we examined the possible contribution of other cytoplasmic dynein subunits that bind to DYNC1H1 as a cause of inherited peripheral neuropathy. We focused on screening the cytoplasmic dynein intermediate, light intermediate and light chain genes in a cohort of families with inherited peripheral neuropathies. Nine genes were screened and ten variants were detected, but none was identified as pathogenic, indicating that cytoplasmic dynein intermediate, light intermediate and light chains are not a cause of neuropathy in our cohort.
Collapse
|
17
|
Fang BA, Kovačević Ž, Park KC, Kalinowski DS, Jansson PJ, Lane DJR, Sahni S, Richardson DR. Molecular functions of the iron-regulated metastasis suppressor, NDRG1, and its potential as a molecular target for cancer therapy. Biochim Biophys Acta Rev Cancer 2013; 1845:1-19. [PMID: 24269900 DOI: 10.1016/j.bbcan.2013.11.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/11/2013] [Accepted: 11/13/2013] [Indexed: 12/11/2022]
Abstract
N-myc down-regulated gene 1 (NDRG1) is a known metastasis suppressor in multiple cancers, being also involved in embryogenesis and development, cell growth and differentiation, lipid biosynthesis and myelination, stress responses and immunity. In addition to its primary role as a metastasis suppressor, NDRG1 can also influence other stages of carcinogenesis, namely angiogenesis and primary tumour growth. NDRG1 is regulated by multiple effectors in normal and neoplastic cells, including N-myc, histone acetylation, hypoxia, cellular iron levels and intracellular calcium. Further, studies have found that NDRG1 is up-regulated in neoplastic cells after treatment with novel iron chelators, which are a promising therapy for effective cancer management. Although the pathways by which NDRG1 exerts its functions in cancers have been documented, the relationship between the molecular structure of this protein and its functions remains unclear. In fact, recent studies suggest that, in certain cancers, NDRG1 is post-translationally modified, possibly by the activity of endogenous trypsins, leading to a subsequent alteration in its metastasis suppressor activity. This review describes the role of this important metastasis suppressor and discusses interesting unresolved issues regarding this protein.
Collapse
Affiliation(s)
- Bernard A Fang
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, NSW 2006, Australia
| | - Žaklina Kovačević
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, NSW 2006, Australia
| | - Kyung Chan Park
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, NSW 2006, Australia
| | - Danuta S Kalinowski
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, NSW 2006, Australia
| | - Patric J Jansson
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, NSW 2006, Australia
| | - Darius J R Lane
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, NSW 2006, Australia
| | - Sumit Sahni
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, NSW 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
18
|
Shi XH, Larkin JC, Chen B, Sadovsky Y. The expression and localization of N-myc downstream-regulated gene 1 in human trophoblasts. PLoS One 2013; 8:e75473. [PMID: 24066183 PMCID: PMC3774633 DOI: 10.1371/journal.pone.0075473] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 08/15/2013] [Indexed: 12/11/2022] Open
Abstract
The protein N-Myc downstream-regulated gene 1 (NDRG1) is implicated in the regulation of cell proliferation, differentiation, and cellular stress response. NDRG1 is expressed in primary human trophoblasts, where it promotes cell viability and resistance to hypoxic injury. The mechanism of action of NDRG1 remains unknown. To gain further insight into the intracellular action of NDRG1, we analyzed the expression pattern and cellular localization of endogenous NDRG1 and transfected Myc-tagged NDRG1 in human trophoblasts exposed to diverse injuries. In standard conditions, NDRG1 was diffusely expressed in the cytoplasm at a low level. Hypoxia or the hypoxia mimetic cobalt chloride, but not serum deprivation, ultraviolet (UV) light, or ionizing radiation, induced the expression of NDRG1 in human trophoblasts and the redistribution of NDRG1 into the nucleus and cytoplasmic membranes associated with the endoplasmic reticulum (ER) and microtubules. Mutation of the phosphopantetheine attachment site (PPAS) within NDRG1 abrogated this pattern of redistribution. Our results shed new light on the impact of cell injury on NDRG1 expression patterns, and suggest that the PPAS domain plays a key role in NDRG1’s subcellular distribution.
Collapse
Affiliation(s)
- Xiao-Hua Shi
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jacob C. Larkin
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Baosheng Chen
- Department of Obstetrics and Gynecology, Washington University, St. Louis, Missouri, United States of America
| | - Yoel Sadovsky
- Magee-Womens Research Institute, Department of Obstetrics, Gynecology and Reproductive Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
19
|
Gabrikova D, Mistrik M, Bernasovska J, Bozikova A, Behulova R, Tothova I, Macekova S. Founder mutations in NDRG1 and HK1 genes are common causes of inherited neuropathies among Roma/Gypsies in Slovakia. J Appl Genet 2013; 54:455-60. [PMID: 23996628 DOI: 10.1007/s13353-013-0168-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/13/2013] [Accepted: 08/20/2013] [Indexed: 11/29/2022]
Abstract
Autosomal recessive forms of Charcot-Marie-Tooth disease (CMT) account for less than 10 % of all CMT cases, but are more frequent in the populations with a high rate of consanguinity. Roma (Gypsies) are a transnational minority with an estimated population of 10 to 14 million, in which a high degree of consanguineous marriages is a generally known fact. Similar to the other genetically isolated founder populations, the Roma harbour a number of unique or rare autosomal recessive disorders, caused by "private" founder mutations. There are three subtypes of autosomal recessive CMT with mutations private to the Roma population: CMT4C, CMT4D and CMT4G. We report on the molecular examination of four families of Roma origin in Slovakia with early-onset demyelinating neuropathy and autosomal recessive inheritance. We detected mutation p.R148X (g.631C>T) in the NDRG1 (NM_006096.3) gene in two families and mutation g.9712G>C in the HK1 (NM_033498) gene in the other two families. These mutations cause CMT4D and CMT4G, respectively. The success of molecular genetic analysis in all families confirms that autosomal recessive forms of CMT caused by mutations on the NDRG1 and HK1 genes are common causes of inherited neuropathies among Slovak Roma. Providing genetic analysis of these genes for patients with Roma origin as a common part of diagnostic procedure would contribute to a better rate of diagnosed cases of demyelinating neuropathy in Slovakia and in other countries with a Roma minority.
Collapse
Affiliation(s)
- Dana Gabrikova
- Department of Biology, Faculty of Humanities and Natural Sciences, University of Presov, Ul. 17. Novembra 1, 08116, Presov, Slovakia,
| | | | | | | | | | | | | |
Collapse
|
20
|
Chandler D, Lopaticki S, Huang D, Hunter M, Angelicheva D, Kilpatrick T, King RH, Kalaydjieva L, Morahan G. The stretcher spontaneous neurodegenerative mutation models Charcot-Marie-Tooth disease type 4D. F1000Res 2013; 2:46. [PMID: 24715951 PMCID: PMC3976107 DOI: 10.12688/f1000research.2-46.v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/10/2013] [Indexed: 11/20/2022] Open
Abstract
Mice affected by a spontaneous mutation which arose within our colony exhibited a neuromuscular phenotype involving tremor and characteristic stretching of the rear limbs. The mutant, named
stretcher, was used to breed a backcross cohort for genetic mapping studies. The gene responsible for the mutant phenotype was mapped to a small region on mouse chromosome 15, with a LOD score above 20. Candidate genes within the region included the
Ndrg1 gene. Examination of this gene in the mutant mouse strain revealed that exons 10 to 14 had been deleted. Mutations in the human orthologue are known to result in Charcot-Marie-Tooth disease type 4D (CMT4D) a severe early-onset disorder involving Schwann cell dysfunction and extensive demyelination. The
stretcher mutant mouse is more severely affected than mice in which the
Ndrg1 gene had been knocked out by homologous recombination. Our results demonstrate that the
Ndrg1str mutation provides a new model for CMT4D, and demonstrate that exons 10 to 14 of
Ndrg1 encode amino acids crucial to the appropriate function of Ndrg1 in the central nervous system.
Collapse
Affiliation(s)
- David Chandler
- Western Australian Institute for Medical Research and Centre for Diabetes Research, University of Western Australia, Perth, 6000, Australia ; Australian Genome Research Facility, Perth, 6000, Australia
| | - Sash Lopaticki
- The Walter and Eliza Hall Institute of Medical Research, Victoria, 3065, Australia
| | - Dexing Huang
- St Vincent's Institute of Medical Research, Victoria, 3010, Australia
| | - Michael Hunter
- Western Australian Institute for Medical Research and Centre for Diabetes Research, University of Western Australia, Perth, 6000, Australia ; Centre for Medical Research, University of Western Australia, Perth, 6000, Australia
| | - Dora Angelicheva
- Western Australian Institute for Medical Research and Centre for Diabetes Research, University of Western Australia, Perth, 6000, Australia ; Centre for Medical Research, University of Western Australia, Perth, 6000, Australia
| | | | - Rosalind Hm King
- Department of Clinical Neurosciences, Institute of Neurology University College London, London, NW3 2PF, UK
| | - Luba Kalaydjieva
- Western Australian Institute for Medical Research and Centre for Diabetes Research, University of Western Australia, Perth, 6000, Australia ; Centre for Medical Research, University of Western Australia, Perth, 6000, Australia
| | - Grant Morahan
- Western Australian Institute for Medical Research and Centre for Diabetes Research, University of Western Australia, Perth, 6000, Australia ; Centre for Medical Research, University of Western Australia, Perth, 6000, Australia ; The Walter and Eliza Hall Institute of Medical Research, Victoria, 3065, Australia
| |
Collapse
|
21
|
Sevilla T, Martínez-Rubio D, Márquez C, Paradas C, Colomer J, Jaijo T, Millán JM, Palau F, Espinós C. Genetics of the Charcot-Marie-Tooth disease in the Spanish Gypsy population: the hereditary motor and sensory neuropathy-Russe in depth. Clin Genet 2012; 83:565-70. [PMID: 22978647 DOI: 10.1111/cge.12015] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Revised: 09/10/2012] [Accepted: 09/10/2012] [Indexed: 12/24/2022]
Abstract
Four private mutations responsible for three forms demyelinating of Charcot-Marie-Tooth (CMT) or hereditary motor and sensory neuropathy (HMSN) have been associated with the Gypsy population: the NDRG1 p.R148X in CMT type 4D (CMT4D/HMSN-Lom); p.C737_P738delinsX and p.R1109X mutations in the SH3TC2 gene (CMT4C); and a G>C change in a novel alternative untranslated exon in the HK1 gene causative of CMT4G (CMT4G/HMSN-Russe). Here we address the findings of a genetic study of 29 Gypsy Spanish families with autosomal recessive demyelinating CMT. The most frequent form is CMT4C (57.14%), followed by HMSN-Russe (25%) and HMSN-Lom (17.86%). The relevant frequency of HMSN-Russe has allowed us to investigate in depth the genetics and the associated clinical symptoms of this CMT form. HMSN-Russe probands share the same haplotype confirming that the HK1 g.9712G>C is a founder mutation, which arrived in Spain around the end of the 18th century. The clinical picture of HMSN-Russe is a progressive CMT disorder leading to severe weakness of the lower limbs and prominent distal sensory loss. Motor nerve conduction velocity was in the demyelinating or intermediate range.
Collapse
Affiliation(s)
- T Sevilla
- Department of Neurology, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Sigismund S, Confalonieri S, Ciliberto A, Polo S, Scita G, Di Fiore PP. Endocytosis and signaling: cell logistics shape the eukaryotic cell plan. Physiol Rev 2012; 92:273-366. [PMID: 22298658 DOI: 10.1152/physrev.00005.2011] [Citation(s) in RCA: 234] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Our understanding of endocytosis has evolved remarkably in little more than a decade. This is the result not only of advances in our knowledge of its molecular and biological workings, but also of a true paradigm shift in our understanding of what really constitutes endocytosis and of its role in homeostasis. Although endocytosis was initially discovered and studied as a relatively simple process to transport molecules across the plasma membrane, it was subsequently found to be inextricably linked with almost all aspects of cellular signaling. This led to the notion that endocytosis is actually the master organizer of cellular signaling, providing the cell with understandable messages that have been resolved in space and time. In essence, endocytosis provides the communications and supply routes (the logistics) of the cell. Although this may seem revolutionary, it is still likely to be only a small part of the entire story. A wealth of new evidence is uncovering the surprisingly pervasive nature of endocytosis in essentially all aspects of cellular regulation. In addition, many newly discovered functions of endocytic proteins are not immediately interpretable within the classical view of endocytosis. A possible framework, to rationalize all this new knowledge, requires us to "upgrade" our vision of endocytosis. By combining the analysis of biochemical, biological, and evolutionary evidence, we propose herein that endocytosis constitutes one of the major enabling conditions that in the history of life permitted the development of a higher level of organization, leading to the actuation of the eukaryotic cell plan.
Collapse
Affiliation(s)
- Sara Sigismund
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | | | | | | | | | | |
Collapse
|
23
|
Bucci C, Bakke O, Progida C. Charcot-Marie-Tooth disease and intracellular traffic. Prog Neurobiol 2012; 99:191-225. [PMID: 22465036 PMCID: PMC3514635 DOI: 10.1016/j.pneurobio.2012.03.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 12/23/2011] [Accepted: 03/13/2012] [Indexed: 12/23/2022]
Abstract
Mutations of genes whose primary function is the regulation of membrane traffic are increasingly being identified as the underlying causes of various important human disorders. Intriguingly, mutations in ubiquitously expressed membrane traffic genes often lead to cell type- or organ-specific disorders. This is particularly true for neuronal diseases, identifying the nervous system as the most sensitive tissue to alterations of membrane traffic. Charcot-Marie-Tooth (CMT) disease is one of the most common inherited peripheral neuropathies. It is also known as hereditary motor and sensory neuropathy (HMSN), which comprises a group of disorders specifically affecting peripheral nerves. This peripheral neuropathy, highly heterogeneous both clinically and genetically, is characterized by a slowly progressive degeneration of the muscle of the foot, lower leg, hand and forearm, accompanied by sensory loss in the toes, fingers and limbs. More than 30 genes have been identified as targets of mutations that cause CMT neuropathy. A number of these genes encode proteins directly or indirectly involved in the regulation of intracellular traffic. Indeed, the list of genes linked to CMT disease includes genes important for vesicle formation, phosphoinositide metabolism, lysosomal degradation, mitochondrial fission and fusion, and also genes encoding endosomal and cytoskeletal proteins. This review focuses on the link between intracellular transport and CMT disease, highlighting the molecular mechanisms that underlie the different forms of this peripheral neuropathy and discussing the pathophysiological impact of membrane transport genetic defects as well as possible future ways to counteract these defects.
Collapse
Affiliation(s)
- Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Monteroni, 73100 Lecce, Italy.
| | | | | |
Collapse
|
24
|
Espinós C, Calpena E, Martínez-Rubio D, Lupo V. Autosomal Recessive Charcot-Marie-Tooth Neuropathy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 724:61-75. [DOI: 10.1007/978-1-4614-0653-2_5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
25
|
King RHM, Chandler D, Lopaticki S, Huang D, Blake J, Muddle JR, Kilpatrick T, Nourallah M, Miyata T, Okuda T, Carter KW, Hunter M, Angelicheva D, Morahan G, Kalaydjieva L. Ndrg1 in development and maintenance of the myelin sheath. Neurobiol Dis 2011; 42:368-80. [PMID: 21303696 DOI: 10.1016/j.nbd.2011.01.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 01/13/2011] [Accepted: 01/28/2011] [Indexed: 02/04/2023] Open
Abstract
CMT4D disease is a severe autosomal recessive demyelinating neuropathy with extensive axonal loss leading to early disability, caused by mutations in the N-myc downstream regulated gene 1 (NDRG1). NDRG1 is expressed at particularly high levels in the Schwann cell (SC), but its physiological function(s) are unknown. To help with their understanding, we characterise the phenotype of a new mouse model, stretcher (str), with total Ndrg1 deficiency, in comparison with the hypomorphic Ndrg1 knock-out (KO) mouse. While both models display normal initial myelination and a transition to overt pathology between weeks 3 and 5, the markedly more severe str phenotype suggests that even low Ndrg1 expression results in significant phenotype rescue. Neither model replicates fully the features of CMT4D: although axon damage is present, regenerative capacity is unimpaired and the mice do not display the early severe axonal loss typical of the human disease. The widespread large fibre demyelination coincides precisely with the period of rapid growth of the animals and the dramatic (160-500-fold) increase in myelin volume and length in large fibres. This is followed by stabilisation after week 10, while small fibres remain unaffected. Gene expression profiling of str peripheral nerve reveals non-specific secondary changes at weeks 5 and 10 and preliminary data point to normal proteasomal function. Our findings do not support the proposed roles of NDRG1 in growth arrest, terminal differentiation, gene expression regulation and proteasomal degradation. Impaired SC trafficking failing to meet the considerable demands of nerve growth, emerges as the likely pathogenetic mechanism in NDRG1 deficiency.
Collapse
Affiliation(s)
- Rosalind H M King
- Department of Clinical Neurosciences, Institute of Neurology, UCL, London NW3 2PF, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Ambrosini G, Seelman SL, Schwartz GK. Differentiation-related gene-1 decreases Bim stability by proteasome-mediated degradation. Cancer Res 2009; 69:6115-21. [PMID: 19622774 DOI: 10.1158/0008-5472.can-08-3024] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Drg1 was identified as a differentiation-related, putative metastatic suppressor gene in human colon and prostate cancer. Its expression is associated with resistance to irinotecan (CPT-11) therapy in preclinical colorectal cancer models both in vitro and in vivo. However, the functional significance of Drg1 in these processes is unknown. We have shown for the first time that Drg1 directly binds to the BH3-only proapoptotic protein Bim. Depletion of Drg1 by small interfering RNA induced up-regulation of Bim and its accumulation in the mitochondria, which correlated with loss of mitochondrial membrane potential and induction of apoptosis in cells exposed to SN-38. Further analyses revealed that Drg1 promotes degradation of Bim through the Cullin2/ElonginB-CIS ubiquitin-protein ligase complex. Conversely, in the absence of Drg1, Bim was stabilized and bound more abundantly to Hsp70. These results show that Drg1 renders cancer cells more resistant to chemotherapy through enhanced proteasome-mediated Bim degradation.
Collapse
Affiliation(s)
- Grazia Ambrosini
- Department of Medicine, Laboratory of New Drug Development, Memorial Sloan-Kettering Cancer Center, New York, New York 10021, USA
| | | | | |
Collapse
|
27
|
Yao L, Zhang J, Liu X. NDRG2: a Myc-repressed gene involved in cancer and cell stress. Acta Biochim Biophys Sin (Shanghai) 2008; 40:625-35. [PMID: 18604454 DOI: 10.1111/j.1745-7270.2008.00434.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
As a master switch for cell proliferation and differentiation, Myc exerts its biological functions mainly through transcriptional regulation of its target genes, which are involved in cells?interaction and communication with their external environment. The N-myc downstream-regulated gene (NDRG) family is composed of NDRG1, NDRG2, NDRG3 and NDRG4, which are important in cell proliferation and differentiation. This review summarizes the recent studies on the structure, tissue distribution and functions of NDRG2 that try to show its significance in studying cancer and its therapeutic potential.
Collapse
Affiliation(s)
- Libo Yao
- The Institute of Molecular Biology, State Key Laboratory of Cancer Biology, Fourth Military Medical University, Xi'an 710032, China.
| | | | | |
Collapse
|
28
|
Taketomi Y, Sunaga K, Tanaka S, Nakamura M, Arata S, Okuda T, Moon TC, Chang HW, Sugimoto Y, Kokame K, Miyata T, Murakami M, Kudo I. Impaired Mast Cell Maturation and Degranulation and Attenuated Allergic Responses inNdrg1-Deficient Mice. THE JOURNAL OF IMMUNOLOGY 2007; 178:7042-53. [PMID: 17513753 DOI: 10.4049/jimmunol.178.11.7042] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have previously reported that N-myc downstream regulated gene-1 (NDRG1) is an early inducible protein during the maturation of mouse bone marrow-derived mast cells (BMMCs) toward a connective tissue mast cell-like phenotype. To clarify the function of NDRG1 in mast cells and allergic responses, we herein analyzed mast cell-associated phenotypes of mice lacking the Ndrg1 gene. Allergic responses including IgE-mediated passive systemic and cutaneous anaphylactic reactions were markedly attenuated in Ndrg1-deficient mice as compared with those in wild-type mice. In Ndrg1-deficient mice, dermal and peritoneal mast cells were decreased in number and morphologically abnormal with impaired degranulating ability. Ex vivo, Ndrg1-deficient BMMCs cocultured with Swiss 3T3 fibroblasts in the presence of stem cell factor, a condition that facilitates the maturation of BMMCs toward a CTMC-like phenotype, displayed less exocytosis than replicate wild-type cells after the cross-linking of FcepsilonRI or stimulation with compound 48/80, even though the exocytotic response of IL-3-maintained, immature BMMCs from both genotypes was comparable. Unlike degranulation, the production of leukotriene and cytokines by cocultured BMMCs was unaffected by NDRG1 deficiency. Taken together, the altered phenotypes of Ndrg1-deficient mast cells both in vivo and ex vivo suggest that NDRG1 has roles in the terminal maturation and effector function (degranulation) of mast cells.
Collapse
Affiliation(s)
- Yoshitaka Taketomi
- Center for Biotechnology, Department of Health Chemistry, School of Pharmaceutical Sciences, University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Niemann A, Berger P, Suter U. Pathomechanisms of mutant proteins in Charcot-Marie-Tooth disease. Neuromolecular Med 2007. [PMID: 16775378 DOI: 10.1385/nmm:] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We review the putative functions and malfunctions of proteins encoded by genes mutated in Charcot-Marie-Tooth disease (CMT; inherited motor and sensory neuropathies) in normal and affected peripheral nerves. Some proteins implicated in demyelinating CMT, peripheral myelin protein 22, protein zero (P0), and connexin32 (Cx32/GJB1) are crucial components of myelin. Periaxin is involved in connecting myelin to the surrounding basal lamina. Early growth response 2 (EGR2) and Sox10 are transcriptional regulators of myelin genes. Mutations in the small integral membrane protein of lysosome/late endosome, the myotubularin-related protein 2 (MTMR2), and MTMR13/set-binding factor 2 are involved in vesicle and membrane transport and the regulation of protein degradation. Pathomechanisms related to alterations of these processes are a widespread phenomenon in demyelinating neuropathies because mutations of myelin components may also affect protein biosynthesis, transport, and/or degradation. Related disease mechanisms are also involved in axonal neuropathies although there is considerably more functional heterogeneity. Some mutations, most notably in P0, GJB1, ganglioside-induced differentiation-associated protein 1 (GDAP1), neurofilament light chain (NF-L), and dynamin 2 (DNM2), can result in demyelinating or axonal neuropathies introducing additional complexity in the pathogenesis. Often, this relates to the intimate connection between Schwann cells and neurons/axons leading to axonal damage even if the mutation-caused defect is Schwann-cell-autonomous. This mechanism is likely for P0 and Cx32 mutations and provides the basis for the unifying hypothesis that also demyelinating neuropathies develop into functional axonopathies. In GDAP1 and DNM2 mutants, both Schwann cells and axons/neurons might be directly affected. NF-L mutants have a primary neuronal defect but also cause demyelination. The major challenge ahead lies in determining the individual contributions by neurons and Schwann cells to the pathology over time and to delineate the detailed molecular functions of the proteins associated with CMT in health and disease.
Collapse
Affiliation(s)
- Axel Niemann
- Institute of Cell Biology, Department of Biology, Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | |
Collapse
|
30
|
Abstract
Neuropathy is one of the most common referrals to neurologic clinics. Patients often undergo extensive testing for acquired etiologies; inherited causes are common. Increasingly, genetic causes are becoming known and commercial testing available. The rate of recent discovery has been rapid and relates to the extent of single gene disorders of nerve, the ease of peripheral nervous system functional examination, and readily accessible pathologic tissue. Foremost in the rate of recent discoveries is the work and tools of the human genome project. the rapidity of the ongoing discovery requires clinicians to be familiar with molecular biologic discoveries and consider wisely which testing should be performed.
Collapse
Affiliation(s)
- Christopher J Klein
- Department of Neurology, Division of Peripheral Nerve Diseases, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
31
|
Ouvrier R, Geevasingha N, Ryan MM. Autosomal-recessive and X-linked forms of hereditary motor and sensory neuropathy in childhood. Muscle Nerve 2007; 36:131-43. [PMID: 17410579 DOI: 10.1002/mus.20776] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The hereditary motor and sensory neuropathies (HMSNs, Charcot-Marie-Tooth neuropathies) are the most common degenerative disorders of the peripheral nervous system. In recent years a dramatic expansion has occurred in our understanding of the molecular basis and cell biology of the recessively inherited demyelinating and axonal neuropathies, with delineation of a number of new neuropathies. Mutations in some genes cause a wide variety of clinical, neurophysiologic, and pathologic phenotypes, rendering diagnosis difficult. The X-linked forms of HMSN represent at least 10%-15% of all HMSNs and have an expanded disease spectrum including demyelinating, intermediate, and axonal neuropathies, transient central nervous system (CNS) dysfunction, mental retardation, and hearing loss. This review presents an overview of the recessive and X-linked forms of HMSN observed in childhood, with particular reference to disease phenotype and neurophysiologic and pathologic abnormalities suggestive of specific diagnoses. These findings can be used by the clinician to formulate a differential diagnosis and guide targeted genetic testing.
Collapse
Affiliation(s)
- Robert Ouvrier
- TY Nelson Department of Neurology and Neurosurgery, Children's Hospital at Westmead, Locked Bag 4001, Westmead, NSW 2145, Australia.
| | | | | |
Collapse
|
32
|
Guergueltcheva V, Tournev I, Bojinova V, Hantke J, Litvinenko I, Ishpekova B, Shmarov A, Petrova J, Jordanova A, Kalaydjieva L. Early clinical and electrophysiologic features of the two most common autosomal recessive forms of Charcot-Marie-Tooth disease in the Roma (Gypsies). J Child Neurol 2006; 21:20-5. [PMID: 16551448 DOI: 10.1177/08830738060210010401] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Our recent studies of the genetic epidemiology of neuromuscular disorders in Gypsies in Bulgaria have revealed that two private disorders, hereditary motor and sensory neuropathy type Lom and hereditary motor and sensory neuropathy type Russe, account for most cases of Charcot-Marie-Tooth disease in this population. In this study, we examined the clinical and electrophysiologic manifestations of the two disorders in childhood, aiming to identify the distinctive features that allow early differential diagnosis. The study included 13 patients, aged between 2 and 15 years. The childhood clinical manifestations of both neuropathies were similar, although they tended to be more severe in hereditary motor and sensory neuropathy type Lom. The nerve conduction velocities in hereditary motor and sensory neuropathy type Lom were lower than in hereditary motor and sensory neuropathy type Russe. Brainstem auditory evoked potentials were abnormal in hereditary motor and sensory neuropathy type Lom, even at an early age, and normal in hereditary motor and sensory neuropathy type Russe. Although electrophysiologic data provide a more reliable differentiation than clinical data, the definitive diagnosis should rely on genetic testing. (J Child Neurol 2006;21:20-25).
Collapse
|
33
|
Berger P, Niemann A, Suter U. Schwann cells and the pathogenesis of inherited motor and sensory neuropathies (Charcot-Marie-Tooth disease). Glia 2006; 54:243-57. [PMID: 16856148 DOI: 10.1002/glia.20386] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Over the last 15 years, a number of mutations in a variety of genes have been identified that lead to inherited motor and sensory neuropathies (HMSN), also called Charcot-Marie-Tooth disease (CMT). In this review we will focus on the molecular and cellular mechanisms that cause the Schwann cell pathologies observed in dysmyelinating and demyelinating forms of CMT. In most instances, the underlying gene defects alter primarily myelinating Schwann cells followed by secondary axonal degeneration. The first set of proteins affected by disease-causing mutations includes the myelin components PMP22, P0/MPZ, Cx32/GJB1, and periaxin. A second group contains the regulators of myelin gene transcription EGR2/Krox20 and SOX10. A third group is composed of intracellular Schwann cells proteins that are likely to be involved in the synthesis, transport and degradation of myelin components. These include the myotubularin-related lipid phosphatase MTMR2 and its regulatory binding partner MTMR13/SBF2, SIMPLE, and potentially also dynamin 2. Mutations affecting the mitochondrial fission factor GDAP1 may indicate an important contribution of mitochondria in myelination or myelin maintenance, whereas the functions of other identified genes, including NDRG1, KIAA1985, and the tyrosyl-tRNA synthase YARS, are not yet clear. Mutations in GDAP1, YARS, and the pleckstrin homology domain of dynamin 2 lead to an intermediate form of CMT that is characterized by moderately reduced nerve conduction velocity consistent with minor myelin deficits. Whether these phenotypes originate in Schwann cells or in neurons, or whether both cell types are directly affected, remains a challenging question. However, based on the advances in systematic gene identification in CMT and the analyses of the function and dysfunction of the affected proteins, crucially interconnected pathways in Schwann cells in health and disease have started to emerge. These networks include the control of myelin formation and stability, membrane trafficking, intracellular protein sorting and quality control, and may extend to mitochondrial dynamics and basic protein biosynthesis.
Collapse
Affiliation(s)
- Philipp Berger
- Institute of Cell Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | | | | |
Collapse
|
34
|
Niemann A, Berger P, Suter U. Pathomechanisms of mutant proteins in Charcot-Marie-Tooth disease. Neuromolecular Med 2006; 8:217-42. [PMID: 16775378 DOI: 10.1385/nmm:8:1-2:217] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 11/10/2005] [Accepted: 11/18/2005] [Indexed: 12/22/2022]
Abstract
We review the putative functions and malfunctions of proteins encoded by genes mutated in Charcot-Marie-Tooth disease (CMT; inherited motor and sensory neuropathies) in normal and affected peripheral nerves. Some proteins implicated in demyelinating CMT, peripheral myelin protein 22, protein zero (P0), and connexin32 (Cx32/GJB1) are crucial components of myelin. Periaxin is involved in connecting myelin to the surrounding basal lamina. Early growth response 2 (EGR2) and Sox10 are transcriptional regulators of myelin genes. Mutations in the small integral membrane protein of lysosome/late endosome, the myotubularin-related protein 2 (MTMR2), and MTMR13/set-binding factor 2 are involved in vesicle and membrane transport and the regulation of protein degradation. Pathomechanisms related to alterations of these processes are a widespread phenomenon in demyelinating neuropathies because mutations of myelin components may also affect protein biosynthesis, transport, and/or degradation. Related disease mechanisms are also involved in axonal neuropathies although there is considerably more functional heterogeneity. Some mutations, most notably in P0, GJB1, ganglioside-induced differentiation-associated protein 1 (GDAP1), neurofilament light chain (NF-L), and dynamin 2 (DNM2), can result in demyelinating or axonal neuropathies introducing additional complexity in the pathogenesis. Often, this relates to the intimate connection between Schwann cells and neurons/axons leading to axonal damage even if the mutation-caused defect is Schwann-cell-autonomous. This mechanism is likely for P0 and Cx32 mutations and provides the basis for the unifying hypothesis that also demyelinating neuropathies develop into functional axonopathies. In GDAP1 and DNM2 mutants, both Schwann cells and axons/neurons might be directly affected. NF-L mutants have a primary neuronal defect but also cause demyelination. The major challenge ahead lies in determining the individual contributions by neurons and Schwann cells to the pathology over time and to delineate the detailed molecular functions of the proteins associated with CMT in health and disease.
Collapse
Affiliation(s)
- Axel Niemann
- Institute of Cell Biology, Department of Biology, Swiss Federal Institute of Technology, ETH-Hönggerberg, CH-8093 Zürich, Switzerland
| | | | | |
Collapse
|
35
|
Szabo A, Züchner S, Siska E, Mechler F, Molnar MJ. Marked phenotypic variation in a family with a new myelin protein zero mutation. Neuromuscul Disord 2005; 15:760-3. [PMID: 16198109 DOI: 10.1016/j.nmd.2005.07.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 07/05/2005] [Accepted: 07/19/2005] [Indexed: 10/25/2022]
Abstract
Myelin protein zero (MPZ) is a member of the immunoglobulin gene superfamily, which has a role in myelin compaction. MPZ gene mutations cause mostly demyelinating neuropathies of the Charcot-Marie-Tooth 1B type (CMT1B), but axonal CMT have been described as well. There is a broad spectrum of phenotypic manifestation of neuropathies caused by MPZ mutations. Some mutations of MPZ cause severe early-onset neuropathies such as Dejerine-Sottas disease, while others cause the classical CMT phenotype with normal early milestones but development of disability during the first two decades of life. We describe a family in which five members of three consecutive generations had a heterozygous mutation in nucleotide position 143 with a T-C transition in exon 2 of the MPZ gene. The resulting substitution of Leu48 with proline has not been previously described. The age of onset of symptoms varied from 8 months to 41 years. The marked variation of the age of disease onset and clinical phenotype in this one family, related to the same MPZ mutation, suggests that in addition to the type and intragenic location of the mutation, other putative modifying gene(s) are regulating MPZ gene expression, mRNA stability and posttranslational protein modification and may have an important effect on the ultimate clinical phenotype.
Collapse
Affiliation(s)
- A Szabo
- Department of Neurology, University Medical School of Debrecen, Debrecen, Hungary
| | | | | | | | | |
Collapse
|
36
|
Hunter M, Angelicheva D, Tournev I, Ingley E, Chan DC, Watts GF, Kremensky I, Kalaydjieva L. NDRG1 interacts with APO A-I and A-II and is a functional candidate for the HDL-C QTL on 8q24. Biochem Biophys Res Commun 2005; 332:982-92. [PMID: 15922294 DOI: 10.1016/j.bbrc.2005.05.050] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Accepted: 05/07/2005] [Indexed: 02/08/2023]
Abstract
Hereditary Motor and Sensory Neuropathy Lom (HMSNL) is a severe autosomal recessive peripheral neuropathy, the most common form of demyelinating Charcot-Marie-Tooth (CMT) disease in the Roma (Gypsy) population. The mutated gene, N-myc downstream-regulated gene 1 (NDRG1), is widely expressed and has been implicated in a range of processes and pathways. To gain an insight into NDRG1 function we performed yeast two-hybrid screening and identified interacting proteins whose known functions suggest involvement in cellular trafficking. Further analyses, focusing on apolipoproteins A-I and A-II, confirmed their interaction with NDRG1 in mammalian cells and suggest a defect in Schwann cell lipid trafficking as a major pathogenetic mechanism in HMSNL. At the same time, the chromosomal location of NDRG1 coincides with a reported HDL-C QTL in humans and in mice. A putative role of NDRG1 in the general mechanisms of HDL-mediated cholesterol transport was supported by biochemical studies of blood lipids, which revealed an association between the Gypsy founder mutation, R148X, and decreased HDL-C levels.
Collapse
Affiliation(s)
- Michael Hunter
- Laboratory for Molecular Genetics, Western Australian Institute for Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands 6009, Australia
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Greenberg SA, Walsh RJ. Molecular diagnosis of inheritable neuromuscular disorders. Part II: Application of genetic testing in neuromuscular disease. Muscle Nerve 2005; 31:431-51. [PMID: 15704143 DOI: 10.1002/mus.20279] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Molecular genetic advances have led to refinements in the classification of inherited neuromuscular disease, and to methods of molecular testing useful for diagnosis and management of selected patients. Testing should be performed as targeted studies, sometimes sequentially, but not as wasteful panels of multiple genetic tests performed simultaneously. Accurate diagnosis through molecular testing is available for the vast majority of patients with inherited neuropathies, resulting from mutations in three genes (PMP22, MPZ, and GJB1); the most common types of muscular dystrophies (Duchenne and Becker, facioscapulohumeral, and myotonic dystrophies); the inherited motor neuron disorders (spinal muscular atrophy, Kennedy's disease, and SOD1 related amyotrophic lateral sclerosis); and many other neuromuscular disorders. The role of potential multiple genetic influences on the development of acquired neuromuscular diseases is an increasingly active area of research.
Collapse
Affiliation(s)
- Steven A Greenberg
- Department of Neurology, Division of Neuromuscular Disease, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts 02115, USA.
| | | |
Collapse
|
38
|
Kanzawa T, Zhang L, Xiao L, Germano IM, Kondo Y, Kondo S. Arsenic trioxide induces autophagic cell death in malignant glioma cells by upregulation of mitochondrial cell death protein BNIP3. Oncogene 2004; 24:980-91. [PMID: 15592527 DOI: 10.1038/sj.onc.1208095] [Citation(s) in RCA: 301] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Arsenic trioxide (As(2)O(3)) has shown considerable efficacy in treating hematological malignancies with induction of programmed cell death (PCD) type I, apoptosis. However, the mechanisms underlying the antitumor effect of As(2)O(3) on solid tumors are poorly defined. Previously, we reported that As(2)O(3) induced autophagic cell death (PCD type II) but not apoptosis in human malignant glioma cell lines. The purpose of this study was to elucidate the molecular pathway leading to autophagic cell death. In this study, we demonstrated that the cell death was accompanied by involvement of autophagy-specific marker, microtubule-associated protein light chain 3 (LC3), and damage of mitochondrial membrane integrity, but not by caspase activation. Analysis by cDNA microarray, RT-PCR, and Western blot showed that cell death members of Bcl-2 family, Bcl-2/adenovirus E1B 19-kDa-interacting protein 3 (BNIP3) and its homologue BNIP3-like (BNIP3L), were upregulated in As(2)O(3)-induced autophagic cell death. Exogenous expression of BNIP3, but not BNIP3L, induced autophagic cell death in malignant glioma cells without As(2)O(3) treatment. When upregulation of BNIP3 induced by As(2)O(3) was suppressed by a dominant-negative effect of the transmembrane-deleted BNIP3 (BNIP3 Delta TM), autophagic cell death was inhibited. In contrast, BNIP3 transfection augmented As(2)O(3)-induced autophagic cell death. These results suggest that BNIP3 plays a central role in As(2)O(3)-induced autophagic cell death in malignant glioma cells. This study adds a new concept to characterize the pathways by which As(2)O(3) acts to induce autophagic cell death in malignant glioma cells.
Collapse
Affiliation(s)
- Takao Kanzawa
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
39
|
Kalaydjieva L, Lochmüller H, Tournev I, Baas F, Beres J, Colomer J, Guergueltcheva V, Herrmann R, Karcagi V, King R, Miyata T, Müllner-Eidenböck A, Okuda T, Milic Rasic V, Santos M, Talim B, Vilchez J, Walter M, Urtizberea A, Merlini L. 125th ENMC International Workshop: Neuromuscular disorders in the Roma (Gypsy) population, 23-25 April 2004, Naarden, The Netherlands. Neuromuscul Disord 2004; 15:65-71. [PMID: 15639123 DOI: 10.1016/j.nmd.2004.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2004] [Indexed: 12/16/2022]
Affiliation(s)
- Luba Kalaydjieva
- Western Australian Institute for Medical Research and Centre for Medical Research, The University of Western Australia, Perth, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Královicová J, Houngninou-Molango S, Krämer A, Vorechovsky I. Branch site haplotypes that control alternative splicing. Hum Mol Genet 2004; 13:3189-202. [PMID: 15496424 DOI: 10.1093/hmg/ddh334] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We show that the allele-dependent expression of transcripts encoding soluble HLA-DQbeta chains is determined by branchpoint sequence (BPS) haplotypes in DQB1 intron 3. BPS RNAs associated with low inclusion of the transmembrane exon in mature transcripts showed impaired binding to splicing factor 1 (SF1), indicating that alternative splicing of DQB1 is controlled by differential BPS recognition early during spliceosome assembly. We also demonstrate that naturally occurring human BPS point mutations that alter splicing and lead to recognizable phenotypes cluster in BP and in position -2 relative to BP, implicating impaired SF1-BPS interactions in disease-associated BPS substitutions. Coding DNA variants produced smaller fluctuations of exon inclusion levels than random exonic substitutions, consistent with a selection against coding mutations that alter their own exonization. Finally, proximal splicing in this multi-allelic reporter system was promoted by at least seven SR proteins and repressed by hnRNPs F, H and I, supporting an extensive antagonism of factors balancing the splice site selection. These results provide the molecular basis for the haplotype-specific expression of soluble DQbeta, improve prediction of intronic point mutations and indicate how extraordinary, selection-driven DNA variability in HLA affects pre-mRNA splicing.
Collapse
Affiliation(s)
- Jana Královicová
- University of Southampton School of Medicine, Division of Human Genetics, Southampton SO16 6YD, UK
| | | | | | | |
Collapse
|
41
|
Stein S, Thomas EK, Herzog B, Westfall MD, Rocheleau JV, Jackson RS, Wang M, Liang P. NDRG1 is necessary for p53-dependent apoptosis. J Biol Chem 2004; 279:48930-40. [PMID: 15377670 DOI: 10.1074/jbc.m400386200] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although a number of target genes for the tumor suppressor p53 have been described, the mechanism of p53-dependent apoptosis is incompletely understood. Thus, it is essential to identify and characterize additional target genes that could mediate apoptosis. In the study reported here, we isolated a p53-regulated gene named NDRG1 (N-Myc down-regulated gene 1). Its expression is induced by DNA damage in a p53-dependent fashion. The promoter region of the NDRG1 gene contains a p53 binding site that confers p53-dependent transcriptional activation via a heterologous reporter. RNA interference and inducible gene expression approaches suggest that NDRG1 is necessary but not sufficient for p53-mediated caspase activation and apoptosis. This report further supports the notion that p53 controls a network of genes that are required for its apoptotic function.
Collapse
Affiliation(s)
- Susanne Stein
- Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA.
| | | | | | | | | | | | | | | |
Collapse
|