1
|
Samuels TN, Wu F, Mahmood M, Abuzaid WA, Sun N, Moresco A, Siu VM, O'Donoghue P, Heinemann IU. Transfer RNA and small molecule therapeutics for aminoacyl-tRNA synthetase diseases. FEBS J 2024. [PMID: 39702998 DOI: 10.1111/febs.17361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/08/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Aminoacyl-tRNA synthetases catalyze the ligation of a specific amino acid to its cognate tRNA. The resulting aminoacyl-tRNAs are indispensable intermediates in protein biosynthesis, facilitating the precise decoding of the genetic code. Pathogenic alleles in the aminoacyl-tRNA synthetases can lead to several dominant and recessive disorders. To date, disease-specific treatments for these conditions are largely unavailable. We review pathogenic human synthetase alleles, the molecular and cellular mechanisms of tRNA synthetase diseases, and emerging approaches to allele-specific treatments, including small molecules and nucleic acid-based therapeutics. Current treatment approaches to rescue defective or dysfunctional tRNA synthetase mutants include supplementation with cognate amino acids and delivery of cognate tRNAs to alleviate bottlenecks in translation. Complementary approaches use inhibitors to target the integrated stress response, which can be dysregulated in tRNA synthetase diseases.
Collapse
Affiliation(s)
- Tristan N Samuels
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Fanqi Wu
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Maria Mahmood
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Wajd A Abuzaid
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Nancy Sun
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
| | - Angelica Moresco
- Department of Paediatrics, Schulich School of Medicine and Dentistry, Western University, London, Canada
- Children's Health Research Institute, London, Canada
| | - Victoria M Siu
- Department of Paediatrics, Schulich School of Medicine and Dentistry, Western University, London, Canada
- Children's Health Research Institute, London, Canada
| | - Patrick O'Donoghue
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
- Department of Chemistry, Western University, London, Canada
| | - Ilka U Heinemann
- Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, Canada
- Children's Health Research Institute, London, Canada
| |
Collapse
|
2
|
Wang XY, Zhang RZ, Wang YK, Pan S, Yun SM, Li JJ, Xu YJ. An updated overview of the search for biomarkers of osteoporosis based on human proteomics. J Orthop Translat 2024; 49:37-48. [PMID: 39430131 PMCID: PMC11488448 DOI: 10.1016/j.jot.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 10/22/2024] Open
Abstract
Osteoporosis is a chronic metabolic disease that increases bone fragility and, leads to severe osteoporotic fractures. In recent years, the use of high-throughput omics to explore physiological and pathological biomarkers related to bone metabolism has gained popularity. In this review, we first briefly review the technical approaches of proteomics. Additionally, we summarize the relevant literature in the last decade to provide a comprehensive overview of advances in human proteomics related to osteoporosis. We describe the specific roles of various proteins related to human bone metabolism, highlighting their potential as biomarkers for risk assessment, early diagnosis and disease course monitoring in osteoporosis. Finally, we outline the main challenges currently faced by human proteomics in the field of osteoporosis and offer suggestions to address these challenges, to inspire the search for novel osteoporosis biomarkers and a foundation for their clinical translation. In conclusion, proteomics is a powerful tool for discovering osteoporosis-related biomarkers, which can not only provide risk assessment, early diagnosis and disease course monitoring, but also reveal the underlying mechanisms of disease and provide key information for personalized treatment. The translational potential of this article This review provides an insightful summary of recent human-based studies on osteoporosis-associated proteomics, which can aid the search for novel osteoporosis biomarkers based on human proteomics and the clinical translation of research results.
Collapse
Affiliation(s)
- Xiong-Yi Wang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Rui-Zhi Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi-Ke Wang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Sheng Pan
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Si-Min Yun
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jun-Jie Li
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - You-Jia Xu
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
3
|
Zhang J, Meng X, Qin Q, Liang Y, Yang G, Li S, Li X, Zhou JC, Sun L. Evaluation of the Role of Tanshinone I in an In Vitro System of Charcot-Marie-Tooth Disease Type 2N. Int J Mol Sci 2024; 25:11184. [PMID: 39456965 PMCID: PMC11509018 DOI: 10.3390/ijms252011184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Charcot-Marie-Tooth disease type 2N (CMT2N) is an inherited nerve disorder caused by mutations in the alanyl-tRNA synthetase (AlaRS) gene, resulting in muscle weakness and sensory issues. Currently, there is no cure for CMT2N. Here, we found that all five AlaRS mutations in the aminoacylation domain can interact with neuropilin-1 (Nrp1), which is consistent with our previous findings. Interestingly, three of these mutations did not affect alanine activation activity. We then performed a high-throughput screen of 2000 small molecules targeting the prevalent R329H mutant. Using thermal stability assays (TSA), biolayer interferometry (BLI), ATP consumption, and proteolysis assays, we identified Tanshinone I as a compound that binds to and modifies the conformation of the R329H mutant and other CMT-related AlaRS mutants interacting with Nrp1. Molecular docking and dynamic simulation studies further clarified Tanshinone I's binding mode, indicating its potential against various AlaRS mutants. Furthermore, co-immunoprecipitation (Co-IP) and pull-down assays showed that Tanshinone I significantly reduces the binding of AlaRS mutants to Nrp1. Collectively, these findings suggest that Tanshinone I, by altering the conformation of mutant proteins, disrupts the pathological interaction between AlaRS CMT mutants and Nrp1, potentially restoring normal Nrp1 function. This makes Tanshinone I a promising therapeutic candidate for CMT2N.
Collapse
Affiliation(s)
- Jingjing Zhang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (J.Z.); (X.M.); (Q.Q.); (Y.L.); (G.Y.); (S.L.); (X.L.)
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen 518107, China
| | - Xinru Meng
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (J.Z.); (X.M.); (Q.Q.); (Y.L.); (G.Y.); (S.L.); (X.L.)
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen 518107, China
| | - Qianni Qin
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (J.Z.); (X.M.); (Q.Q.); (Y.L.); (G.Y.); (S.L.); (X.L.)
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen 518107, China
| | - Yali Liang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (J.Z.); (X.M.); (Q.Q.); (Y.L.); (G.Y.); (S.L.); (X.L.)
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen 518107, China
| | - Guangpu Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (J.Z.); (X.M.); (Q.Q.); (Y.L.); (G.Y.); (S.L.); (X.L.)
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen 518107, China
| | - Shen Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (J.Z.); (X.M.); (Q.Q.); (Y.L.); (G.Y.); (S.L.); (X.L.)
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen 518107, China
| | - Xiaorong Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (J.Z.); (X.M.); (Q.Q.); (Y.L.); (G.Y.); (S.L.); (X.L.)
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen 518107, China
| | - Ji-Chang Zhou
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (J.Z.); (X.M.); (Q.Q.); (Y.L.); (G.Y.); (S.L.); (X.L.)
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen 518107, China
| | - Litao Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; (J.Z.); (X.M.); (Q.Q.); (Y.L.); (G.Y.); (S.L.); (X.L.)
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen 518107, China
| |
Collapse
|
4
|
Kuo ME, Parish M, Jonatzke KE, Antonellis A. Comprehensive assessment of recessive, pathogenic AARS1 alleles in a humanized yeast model reveals loss-of-function and dominant-negative effects. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599900. [PMID: 38979321 PMCID: PMC11230197 DOI: 10.1101/2024.06.20.599900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Alanyl-tRNA synthetase 1 (AARS1) encodes the enzyme that ligates tRNA molecules to alanine in the cytoplasm, which is required for protein translation. Variants in AARS1 have been implicated in early-onset, multi-system recessive phenotypes and in later-onset dominant peripheral neuropathy; to date, no single variant has been associated with both dominant and recessive diseases raising questions about shared mechanisms between the two inheritance patterns. AARS1 variants associated with recessive disease are predicted to result in null or hypomorphic alleles and this has been demonstrated, in part, via yeast complementation assays. However, pathogenic alleles have not been assessed in a side-by-side manner to carefully scrutinize the strengths and limitations of this model system. To address this, we employed a humanized yeast model to evaluate the functional consequences of all AARS1 missense variants reported in recessive disease. The majority of variants showed variable loss-of-function effects, ranging from no growth to significantly reduced growth. These data deem yeast a reliable model to test the functional consequences of human AARS1 variants; however, our data indicate that this model is prone to false-negative results and is not informative for genotype-phenotype studies. We next tested missense variants associated with no growth for dominant-negative effects. Interestingly, K81T AARS1, a variant implicated in recessive disease, demonstrated loss-of-function and dominant-negative effects, indicating that certain AARS1 variants may be capable of causing both dominant and recessive disease phenotypes.
Collapse
Affiliation(s)
- Molly E. Kuo
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, Michigan, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Maclaine Parish
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Kira E. Jonatzke
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Anthony Antonellis
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, USA
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Zong Z, Xie F, Wang S, Wu X, Zhang Z, Yang B, Zhou F. Alanyl-tRNA synthetase, AARS1, is a lactate sensor and lactyltransferase that lactylates p53 and contributes to tumorigenesis. Cell 2024; 187:2375-2392.e33. [PMID: 38653238 DOI: 10.1016/j.cell.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 01/01/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
Lysine lactylation is a post-translational modification that links cellular metabolism to protein function. Here, we find that AARS1 functions as a lactate sensor that mediates global lysine lacylation in tumor cells. AARS1 binds to lactate and catalyzes the formation of lactate-AMP, followed by transfer of lactate to the lysince acceptor residue. Proteomics studies reveal a large number of AARS1 targets, including p53 where lysine 120 and lysine 139 in the DNA binding domain are lactylated. Generation and utilization of p53 variants carrying constitutively lactylated lysine residues revealed that AARS1 lactylation of p53 hinders its liquid-liquid phase separation, DNA binding, and transcriptional activation. AARS1 expression and p53 lacylation correlate with poor prognosis among cancer patients carrying wild type p53. β-alanine disrupts lactate binding to AARS1, reduces p53 lacylation, and mitigates tumorigenesis in animal models. We propose that AARS1 contributes to tumorigenesis by coupling tumor cell metabolism to proteome alteration.
Collapse
Affiliation(s)
- Zhi Zong
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Feng Xie
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China; MOE Key Laboratory of Geriatric Disease and Immunology, Soochow University, Suzhou, Jiangsu, China; Jiangsu key laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Shuai Wang
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China; MOE Key Laboratory of Geriatric Disease and Immunology, Soochow University, Suzhou, Jiangsu, China; Jiangsu key laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China
| | - Xiaojin Wu
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Zhenyu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Bing Yang
- Department of Pharmaceutical Chemistry and the Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Fangfang Zhou
- The First Affiliated Hospital, the Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China; MOE Key Laboratory of Geriatric Disease and Immunology, Soochow University, Suzhou, Jiangsu, China; Jiangsu key laboratory of Infection and Immunity, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
6
|
Romero VI, Sáenz S, Arias-Almeida B, DiCapua D, Hosomichi K. AARS and CACNA1A mutations: diagnostic insights into a case report of uncommon epileptic encephalopathy phenotypes in two siblings. Front Neurol 2024; 15:1376643. [PMID: 38689878 PMCID: PMC11059961 DOI: 10.3389/fneur.2024.1376643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
Epilepsy, characterized by recurrent seizures, impacts 70-80% of patients, leading to cognitive deficits. The intricate relationship between seizure control and cognitive impairment remains complex. Epileptic encephalopathy (EE), an intensified form often rooted in genetic factors, is detectable through next-generation sequencing, aiding in precise diagnoses, family counseling, and potential treatment strategies. We present a case involving two sisters with refractory generalized seizures evolving into dysarthria, dysphagia, ataxia, and cognitive decline. Despite normal physical exams, abnormal electroencephalogram results consistent with epilepsy were noted. Whole Exome Sequencing identified heterozygous variants in the alanyl-tRNA synthetase (AARS) and Calcium Voltage-Gated Channel Subunit Alpha 1 (CACNA1A) genes. The AARS variant (c.C2083T, p.R695*) was maternal, while the CACNA1A variant (c.G7400C, p.R2467P) was paternal. Patients A and B exhibited a unique blend of neurological and psychiatric conditions, distinct from common disorders that begin adolescence, like Juvenile Myoclonic Epilepsy. Whole Exome Sequencing uncovered an AARS gene and CACNA1A gene, linked to various autosomal dominant phenotypes. Presence in both parents, coupled with familial reports of migraines and seizures, provides insight into accelerated symptom progression. This study underscores the importance of genetic testing in decoding complex phenotypes and emphasizes the value of documenting family history for anticipating related symptoms and future health risks.
Collapse
Affiliation(s)
- Vanessa I. Romero
- School of Medicine, Universidad San Francisco de Quito, Quito, Ecuador
| | - Samantha Sáenz
- School of Medicine, Universidad San Francisco de Quito, Quito, Ecuador
| | | | - Daniela DiCapua
- School of Medicine, Universidad San Francisco de Quito, Quito, Ecuador
- Neurology Service, Hospital de Especialidades Eugenio Espejo, Quito, Ecuador
| | - Kazuyoshi Hosomichi
- Laboratory of Computational Genomics, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| |
Collapse
|
7
|
Morant L, Petrovic-Erfurth ML, Jordanova A. An Adapted GeneSwitch Toolkit for Comparable Cellular and Animal Models: A Proof of Concept in Modeling Charcot-Marie-Tooth Neuropathy. Int J Mol Sci 2023; 24:16138. [PMID: 38003325 PMCID: PMC10670994 DOI: 10.3390/ijms242216138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Investigating the impact of disease-causing mutations, their affected pathways, and/or potential therapeutic strategies using disease modeling often requires the generation of different in vivo and in cellulo models. To date, several approaches have been established to induce transgene expression in a controlled manner in different model systems. Several rounds of subcloning are, however, required, depending on the model organism used, thus bringing labor-intensive experiments into the technical approach and analysis comparison. The GeneSwitch™ technology is an adapted version of the classical UAS-GAL4 inducible system, allowing the spatial and temporal modulation of transgene expression. It consists of three components: a plasmid encoding for the chimeric regulatory pSwitch protein, Mifepristone as an inducer, and an inducible plasmid. While the pSwitch-containing first plasmid can be used both in vivo and in cellulo, the inducible second plasmid can only be used in cellulo. This requires a specific subcloning strategy of the inducible plasmid tailored to the model organism used. To avoid this step and unify gene expression in the transgenic models generated, we replaced the backbone vector with standard pUAS-attB plasmid for both plasmids containing either the chimeric GeneSwitch™ cDNA sequence or the transgene cDNA sequence. We optimized this adapted system to regulate transgene expression in several mammalian cell lines. Moreover, we took advantage of this new system to generate unified cellular and fruit fly models for YARS1-induced Charco-Marie-Tooth neuropathy (CMT). These new models displayed the expected CMT-like phenotypes. In the N2a neuroblastoma cells expressing YARS1 transgenes, we observed the typical "teardrop" distribution of the synthetase that was perturbed when expressing the YARS1CMT mutation. In flies, the ubiquitous expression of YARS1CMT induced dose-dependent developmental lethality and pan-neuronal expression caused locomotor deficit, while expression of the wild-type allele was harmless. Our proof-of-concept disease modeling studies support the efficacy of the adapted transgenesis system as a powerful tool allowing the design of studies with optimal data comparability.
Collapse
Affiliation(s)
- Laura Morant
- Center for Molecular Neurology, VIB, University of Antwerp, 2610 Antwerpen, Belgium; (L.M.); (M.-L.P.-E.)
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerpen, Belgium
| | - Maria-Luise Petrovic-Erfurth
- Center for Molecular Neurology, VIB, University of Antwerp, 2610 Antwerpen, Belgium; (L.M.); (M.-L.P.-E.)
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerpen, Belgium
| | - Albena Jordanova
- Center for Molecular Neurology, VIB, University of Antwerp, 2610 Antwerpen, Belgium; (L.M.); (M.-L.P.-E.)
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerpen, Belgium
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Faculty of Medicine, Medical University-Sofia, 1431 Sofia, Bulgaria
| |
Collapse
|
8
|
Gupta S, Jani J, Vijayasurya, Mochi J, Tabasum S, Sabarwal A, Pappachan A. Aminoacyl-tRNA synthetase - a molecular multitasker. FASEB J 2023; 37:e23219. [PMID: 37776328 DOI: 10.1096/fj.202202024rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/31/2023] [Accepted: 09/12/2023] [Indexed: 10/02/2023]
Abstract
Aminoacyl-tRNA synthetases (AaRSs) are valuable "housekeeping" enzymes that ensure the accurate transmission of genetic information in living cells, where they aminoacylated tRNA molecules with their cognate amino acid and provide substrates for protein biosynthesis. In addition to their translational or canonical function, they contribute to nontranslational/moonlighting functions, which are mediated by the presence of other domains on the proteins. This was supported by several reports which claim that AaRS has a significant role in gene transcription, apoptosis, translation, and RNA splicing regulation. Noncanonical/ nontranslational functions of AaRSs also include their roles in regulating angiogenesis, inflammation, cancer, and other major physio-pathological processes. Multiple AaRSs are also associated with a broad range of physiological and pathological processes; a few even serve as cytokines. Therefore, the multifunctional nature of AaRSs suggests their potential as viable therapeutic targets as well. Here, our discussion will encompass a range of noncanonical functions attributed to Aminoacyl-tRNA Synthetases (AaRSs), highlighting their links with a diverse array of human diseases.
Collapse
Affiliation(s)
- Swadha Gupta
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Jaykumar Jani
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Vijayasurya
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Jigneshkumar Mochi
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| | - Saba Tabasum
- Dana Farber Cancer Institute, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Akash Sabarwal
- Harvard Medical School, Boston, Massachusetts, USA
- Boston Children's Hospital, Boston, Massachusetts, USA
| | - Anju Pappachan
- School of Life Sciences, Central University of Gujarat, Gandhinagar, India
| |
Collapse
|
9
|
Nagappa M, Sharma S, Govindaraj P, Chickabasaviah YT, Siram R, Shroti A, Seshagiri DV, Debnath M, Sinha S, Bindu PS, Taly AB. Characterisation of Patients with SH3TC2 Associated Neuropathy in an Indian Cohort. Neurol India 2023; 71:940-945. [PMID: 37929431 DOI: 10.4103/0028-3886.388101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Background SH3TC2 variations lead to demyelinating recessive Charcot-Marie-Tooth (CMT) disease, which is commonly associated with early-onset scoliosis and cranial neuropathy. Data from Indian ethnicity is limited. Objective We aim to report the characteristics of patients with SH3TC2-associated neuropathy from an Indian cohort. Patients and Methods Data of five unrelated subjects with SH3TC2 variations were analyzed. Results Clinical features included female predominance (n = 4), early-onset neuropathy (n = 2), pes cavus and hammer toes (n = 4), kyphoscoliosis (n = 1), impaired vision and hearing (n = 1), facial muscle weakness (n = 1), impaired kinaesthetic sense (n = 3), tremor (n = 2), and ataxia (n = 1). Four patients had the "CMT" phenotype, while one patient had Roussy-Levy syndrome. All had demyelinating electrophysiology with conduction velocities being "very slow" in one, "slow" in one, "mildly slow" in two, and "intermediate" in one patient. Brain stem auditory evoked potentials were universally abnormal though only one patient had symptomatic deafness. Seven variants were identified in SH3TC2 [homozygous = 3 (c.1412del, c.69del, c.3152G>A), heterozygous = 4 (c.1105C>T, c.3511C>T, c.2028G>C, c.254A>T)]. Except for c.3511C>T variant, the rest were novel. Three patients had additional variations in genes having pathobiological relevance in other CMTs or amyotrophic lateral sclerosis. Conclusion We provide data on a cohort of patients of Indian origin with SH3TC2 variations and highlight differences from other cohorts. Though the majority were not symptomatic for hearing impairment, evoked potentials disclosed abnormalities in all. Further studies are required to establish the functional consequences of novel variants and their interacting molecular partners identified in the present study to strengthen their association with the phenotype.
Collapse
Affiliation(s)
- Madhu Nagappa
- Department of Neurology; Department of Neuromuscular Laboratory, Neurobiology Research Centre (NBRC), National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Shivani Sharma
- Department of Neurology; Department of Neuropathology; Department of Neuromuscular Laboratory, Neurobiology Research Centre (NBRC), National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | | | - Yasha T Chickabasaviah
- Department of Neuropathology; Department of Neuromuscular Laboratory, Neurobiology Research Centre (NBRC), National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Ramesh Siram
- Department of Neurology, Neurobiology Research Centre (NBRC), National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Akhilesh Shroti
- Department of Neurology, Neurobiology Research Centre (NBRC), National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Doniparthi V Seshagiri
- Department of Neurology, Neurobiology Research Centre (NBRC), National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Monojit Debnath
- Department of Human Genetics, Neurobiology Research Centre (NBRC), National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Sanjib Sinha
- Department of Neurology, Neurobiology Research Centre (NBRC), National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Parayil S Bindu
- Department of Neurology; Department of Neuromuscular Laboratory, Neurobiology Research Centre (NBRC), National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| | - Arun B Taly
- Department of Neurology; Department of Neuromuscular Laboratory, Neurobiology Research Centre (NBRC), National Institute of Mental Health and Neurosciences (NIMHANS), Bengaluru, Karnataka, India
| |
Collapse
|
10
|
Meyer-Schuman R, Marte S, Smith TJ, Feely SME, Kennerson M, Nicholson G, Shy ME, Koutmou KS, Antonellis A. A humanized yeast model reveals dominant-negative properties of neuropathy-associated alanyl-tRNA synthetase mutations. Hum Mol Genet 2023; 32:2177-2191. [PMID: 37010095 PMCID: PMC10281750 DOI: 10.1093/hmg/ddad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/04/2023] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) are essential enzymes that ligate tRNA molecules to cognate amino acids. Heterozygosity for missense variants or small in-frame deletions in six ARS genes causes dominant axonal peripheral neuropathy. These pathogenic variants reduce enzyme activity without significantly decreasing protein levels and reside in genes encoding homo-dimeric enzymes. These observations raise the possibility that neuropathy-associated ARS variants exert a dominant-negative effect, reducing overall ARS activity below a threshold required for peripheral nerve function. To test such variants for dominant-negative properties, we developed a humanized yeast assay to co-express pathogenic human alanyl-tRNA synthetase (AARS1) mutations with wild-type human AARS1. We show that multiple loss-of-function AARS1 mutations impair yeast growth through an interaction with wild-type AARS1, but that reducing this interaction rescues yeast growth. This suggests that neuropathy-associated AARS1 variants exert a dominant-negative effect, which supports a common, loss-of-function mechanism for ARS-mediated dominant peripheral neuropathy.
Collapse
Affiliation(s)
- Rebecca Meyer-Schuman
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Sheila Marte
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Tyler J Smith
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shawna M E Feely
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Marina Kennerson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW 2139, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW 2050, Australia
- Molecular Medicine Laboratory, Concord General Repatriation Hospital, Sydney, NSW 2139, Australia
| | - Garth Nicholson
- Northcott Neuroscience Laboratory, ANZAC Research Institute, Sydney, NSW 2139, Australia
- Sydney Medical School, University of Sydney, Sydney, NSW 2050, Australia
- Molecular Medicine Laboratory, Concord General Repatriation Hospital, Sydney, NSW 2139, Australia
| | - Mike E Shy
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Kristin S Koutmou
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anthony Antonellis
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
11
|
Kalotay E, Klugmann M, Housley GD, Fröhlich D. Dominant aminoacyl-tRNA synthetase disorders: lessons learned from in vivo disease models. Front Neurosci 2023; 17:1182845. [PMID: 37274211 PMCID: PMC10234151 DOI: 10.3389/fnins.2023.1182845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/05/2023] [Indexed: 06/06/2023] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) play an essential role in protein synthesis, being responsible for ligating tRNA molecules to their corresponding amino acids in a reaction known as 'tRNA aminoacylation'. Separate ARSs carry out the aminoacylation reaction in the cytosol and in mitochondria, and mutations in almost all ARS genes cause pathophysiology most evident in the nervous system. Dominant mutations in multiple cytosolic ARSs have been linked to forms of peripheral neuropathy including Charcot-Marie-Tooth disease, distal hereditary motor neuropathy, and spinal muscular atrophy. This review provides an overview of approaches that have been employed to model each of these diseases in vivo, followed by a discussion of the existing animal models of dominant ARS disorders and key mechanistic insights that they have provided. In summary, ARS disease models have demonstrated that loss of canonical ARS function alone cannot fully account for the observed disease phenotypes, and that pathogenic ARS variants cause developmental defects within the peripheral nervous system, despite a typically later onset of disease in humans. In addition, aberrant interactions between mutant ARSs and other proteins have been shown to contribute to the disease phenotypes. These findings provide a strong foundation for future research into this group of diseases, providing methodological guidance for studies on ARS disorders that currently lack in vivo models, as well as identifying candidate therapeutic targets.
Collapse
Affiliation(s)
- Elizabeth Kalotay
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Matthias Klugmann
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
- Research Beyond Borders, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Gary D. Housley
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Dominik Fröhlich
- Translational Neuroscience Facility and Department of Physiology, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
12
|
Wu J, Liu T, Zhang B, Liu C, Luan X, Cao L. An AARS1 variant identified to cause adult-onset leukoencephalopathy with neuroaxonal spheroids and pigmented glia. Transl Neurodegener 2023; 12:19. [PMID: 37106376 PMCID: PMC10142409 DOI: 10.1186/s40035-023-00353-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/28/2023] [Indexed: 04/29/2023] Open
Affiliation(s)
- Jingying Wu
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Taotao Liu
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Department of Neurology, The First Hospital Affiliated to Anhui University of Science & Technology, Huainan, 235099, China
| | - Benyan Zhang
- Department of Pathology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chang Liu
- Department of Ophthalmology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xinghua Luan
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Li Cao
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
13
|
Forrest ME, Meyer AP, Laureano Figueroa SM, Antonellis A. A missense, loss-of-function YARS1 variant in a patient with proximal-predominant motor neuropathy. Cold Spring Harb Mol Case Stud 2022; 8:a006246. [PMID: 36307205 PMCID: PMC9808560 DOI: 10.1101/mcs.a006246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/24/2022] [Indexed: 01/31/2023] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) are essential enzymes with a critical role in protein synthesis: charging tRNA molecules with cognate amino acids. Heterozygosity for variants in five genes (AARS1, GARS1, HARS1, WARS1, and YARS1) encoding cytoplasmic, dimeric ARSs have been associated with autosomal dominant neurological phenotypes, including axonal Charcot-Marie-Tooth disease (CMT). Missense variants in the catalytic domain of YARS1 were previously linked to dominant intermediate CMT type C (DI-CMTC). Here, we report a patient with a missense variant of unknown significance predicted to modify residue 308 in the anticodon binding domain of YARS1 (p.Asp308Tyr). Interestingly, p.Asp308Tyr is associated with proximal-predominant motor neuropathy, which has not been reported in patients with pathogenic YARS1 variants. We demonstrate that this allele causes a loss-of-function effect in yeast complementation assays when modeled in YARS1 and the yeast ortholog TYS1; structural modeling of this variant further supports a loss-of-function effect. Taken together, this study raises the possibility that certain YARS1 variants cause proximal-prominent motor neuropathy and indicates that patients with this phenotype should be screened for genetic lesions in YARS1.
Collapse
Affiliation(s)
- Megan E Forrest
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Alayne P Meyer
- Division of Genetic and Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, Ohio 43210, USA
| | | | - Anthony Antonellis
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
- Department of Neurology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
14
|
Setlere S, Jurcenko M, Gailite L, Rots D, Kenina V. Alanyl-tRNA Synthetase 1 Gene Variants in Hereditary Neuropathy. Neurol Genet 2022; 8:e200019. [PMID: 36092982 PMCID: PMC9450682 DOI: 10.1212/nxg.0000000000200019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/01/2022] [Indexed: 11/15/2022]
Abstract
Background and ObjectivesOur objective was to report 2 novel variants and to reclassify previously reported alanyl-tRNA synthetase 1 (AARS1) variants associated with hereditary neuropathy and to summarize the clinical features of a previously published cohort of patients.MethodsWe performed detailed neurologic and electrophysiologic assessments and segregation analysis of 2 unrelated families with Charcot-Marie-Tooth (CMT) disease with novel variants in the AARS1 gene. Via literature search, we found studies that included neuropathy cases with AARS1 variants; we then reviewed and reclassified these variants.ResultsWe identified 2 CMT families harboring previously unreported likely pathogenic AARS1 variants: c.1823C>A p.(Thr608Lys) and c.1815C>G p.(His605Gln). In addition, we reinterpreted a total of 35 different AARS1 variants reported in cases with neuropathy from the literature: 9 variants fulfilled the current criteria for being (likely) pathogenic. We compiled and summarized standardized clinical and genotypic information for 90 affected individuals from 32 families with (likely) pathogenic AARS1 variants. Most experienced motor weakness and sensory loss in the lower limbs.DiscussionIn total, 11 AARS1 variants can currently be classified as pathogenic or likely pathogenic and are associated with sensorimotor axonal or intermediate, slowly progressive polyneuropathy with common asymmetry and variable age of symptom onset with no apparent involvement of other organ systems.
Collapse
|
15
|
Parodi L, Barbier M, Jacoupy M, Pujol C, Lejeune FX, Lallemant-Dudek P, Esteves T, Pennings M, Kamsteeg EJ, Guillaud-Bataille M, Banneau G, Coarelli G, Oumoussa BM, Fraidakis MJ, Stevanin G, Depienne C, van de Warrenburg B, Brice A, Durr A. The mitochondrial seryl-tRNA synthetase SARS2 modifies onset in spastic paraplegia type 4. Genet Med 2022; 24:2308-2317. [PMID: 36056923 DOI: 10.1016/j.gim.2022.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Hereditary spastic paraplegia type 4 is extremely variable in age at onset; the same variant can cause onset at birth or in the eighth decade. We recently discovered that missense variants in SPAST, which influences microtubule dynamics, are associated with earlier onset and more severe disease than truncating variants, but even within the early and late-onset groups there remained significant differences in onset. Given the rarity of the condition, we adapted an extreme phenotype approach to identify genetic modifiers of onset. METHODS We performed a genome-wide association study on 134 patients bearing truncating pathogenic variants in SPAST, divided into early- and late-onset groups (aged ≤15 and ≥45 years, respectively). A replication cohort of 419 included patients carrying either truncating or missense variants. Finally, age at onset was analyzed in the merged cohort (N = 553). RESULTS We found 1 signal associated with earlier age at onset (rs10775533, P = 8.73E-6) in 2 independent cohorts and in the merged cohort (N = 553, Mantel-Cox test, P < .0001). Western blotting in lymphocytes of 20 patients showed that this locus tends to upregulate SARS2 expression in earlier-onset patients. CONCLUSION SARS2 overexpression lowers the age of onset in hereditary spastic paraplegia type 4. Lowering SARS2 or improving mitochondrial function could thus present viable approaches to therapy.
Collapse
Affiliation(s)
- Livia Parodi
- Paris Brain Institute (Institut du Cerveau, ICM), INSERM, CNRS, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Paris, France
| | - Mathieu Barbier
- Paris Brain Institute (Institut du Cerveau, ICM), INSERM, CNRS, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Paris, France
| | - Maxime Jacoupy
- Paris Brain Institute (Institut du Cerveau, ICM), INSERM, CNRS, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Paris, France
| | - Claire Pujol
- Paris Brain Institute (Institut du Cerveau, ICM), INSERM, CNRS, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Paris, France; Pasteur Institute, Centre National de la Recherche Scientifique UMR 3691, Paris, France
| | - François-Xavier Lejeune
- Paris Brain Institute (Institut du Cerveau, ICM), INSERM, CNRS, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Paris, France
| | - Pauline Lallemant-Dudek
- Paris Brain Institute (Institut du Cerveau, ICM), INSERM, CNRS, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Paris, France
| | - Typhaine Esteves
- Paris Brain Institute (Institut du Cerveau, ICM), INSERM, CNRS, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Paris, France; Université de Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux, France
| | - Maartje Pennings
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Erik-Jan Kamsteeg
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | - Guillaume Banneau
- Département de Génétique, AP-HP, GH Pitié-Salpêtrière, Sorbonne Université, Paris, France
| | - Giulia Coarelli
- Paris Brain Institute (Institut du Cerveau, ICM), INSERM, CNRS, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Paris, France
| | - Badreddine Mohand Oumoussa
- Sorbonne Université, Inserm, UMS Production et Analyse des données en Sciences de la vie et en Santé, PASS, Plateforme Post-génomique de la Pitié-Salpêtrière, P3S, Paris, France
| | - Matthew J Fraidakis
- Rare Neurological Diseases Unit, Department of Neurology, Attikon University Hospital, Medical School of the University of Athens, Athens, Greece
| | - Giovanni Stevanin
- Paris Brain Institute (Institut du Cerveau, ICM), INSERM, CNRS, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Paris, France; Université de Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux, France
| | - Christel Depienne
- Paris Brain Institute (Institut du Cerveau, ICM), INSERM, CNRS, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Paris, France; Institut für Humangenetik, Universitätsklinikum Essen, Essen, Germany
| | - Bart van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Alexis Brice
- Paris Brain Institute (Institut du Cerveau, ICM), INSERM, CNRS, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Paris, France
| | - Alexandra Durr
- Paris Brain Institute (Institut du Cerveau, ICM), INSERM, CNRS, Assistance Publique-Hôpitaux de Paris (AP-HP), Sorbonne Université, Paris, France.
| |
Collapse
|
16
|
Jin B, Xie L, Zhan D, Zhou L, Feng Z, He J, Qin J, Zhao C, Luo L, Li L. Nrf2 dictates the neuronal survival and differentiation of embryonic zebrafish harboring compromised alanyl-tRNA synthetase. Development 2022; 149:276217. [DOI: 10.1242/dev.200342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 07/28/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
tRNA synthetase deficiency leads to unfolded protein responses in neuronal disorders; however, its function in embryonic neurogenesis remains unclear. This study identified an aars1cq71/cq71 mutant zebrafish allele that showed increased neuronal apoptosis and compromised neurogenesis. aars1 transcripts were highly expressed in primary neural progenitor cells, and their aberration resulted in protein overloading and activated Perk. nfe2l2b, a paralog of mammalian Nfe2l2, which encodes Nrf2, is a pivotal executor of Perk signaling that regulates neuronal phenotypes in aars1cq71/cq71 mutants. Interference of nfe2l2b in nfe2l2bΔ1/Δ1 mutants did not affect global larval development. However, aars1cq71/cq71;nfe2l2bΔ1/Δ1 mutant embryos exhibited increased neuronal cell survival and neurogenesis compared with their aars1cq71/cq71 siblings. nfe2l2b was harnessed by Perk at two levels. Its transcript was regulated by Chop, an implementer of Perk. It was also phosphorylated by Perk. Both pathways synergistically assured the nuclear functions of nfe2l2b to control cell survival by targeting p53. Our study extends the understanding of tRNA synthetase in neurogenesis and implies that Nrf2 is a cue to mitigate neurodegenerative pathogenesis.
Collapse
Affiliation(s)
- Binbin Jin
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University 1 , Chongqing 400715 , China
| | - Liqin Xie
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University 1 , Chongqing 400715 , China
| | - Dan Zhan
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University 1 , Chongqing 400715 , China
| | - Luping Zhou
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University 1 , Chongqing 400715 , China
| | - Zhi Feng
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University 1 , Chongqing 400715 , China
| | - Jiangyong He
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University 1 , Chongqing 400715 , China
| | - Jie Qin
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University 1 , Chongqing 400715 , China
| | - Congjian Zhao
- Chongqing Engineering Research Center of Medical Electronics and Information Technology, School of Biomedical Engineering and informatics, Chongqing University of Posts and Telecommunications 2 , Chongqing 40065 , China
| | - Lingfei Luo
- Institute of Developmental Biology and Regenerative Medicine, Key Laboratory of Freshwater Fish Reproduction and Development, Ministry of Education, Southwest University 1 , Chongqing 400715 , China
| | - Li Li
- Research Center of Stem Cells and Ageing, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences 3 , Chongqing 400714 , China
| |
Collapse
|
17
|
Høyer H, Busk ØL, Esbensen QY, Røsby O, Hilmarsen HT, Russell MB, Nyman TA, Braathen GJ, Nilsen HL. Clinical characteristics and proteome modifications in two Charcot-Marie-Tooth families with the AARS1 Arg326Trp mutation. BMC Neurol 2022; 22:299. [PMID: 35971119 PMCID: PMC9377087 DOI: 10.1186/s12883-022-02828-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aminoacyl tRNA-synthetases are ubiquitously-expressed enzymes that attach amino acids to their cognate tRNA molecules. Mutations in several genes encoding aminoacyl tRNA-synthetases, have been associated with peripheral neuropathy, i.e. AARS1, GARS1, HARS1, YARS1 and WARS1. The pathogenic mechanism underlying AARS1-related neuropathy is not known. METHODS From 2012 onward, all probands presenting at Telemark Hospital (Skien, Norway) with peripheral neuropathy were screened for variants in AARS1 using an "in-house" next-generation sequencing panel. DNA from patient's family members was examined by Sanger sequencing. Blood from affected family members and healthy controls were used for quantification of AARS1 mRNA and alanine. Proteomic analyses were conducted in peripheral blood mononuclear cells (PBMC) from four affected family members and five healthy controls. RESULTS Seventeen individuals in two Norwegian families affected by Charcot-Marie-Tooth disease (CMT) were characterized in this study. The heterozygous NM_001605.2:c.976C > T p.(Arg326Trp) AARS1 mutation was identified in ten affected family members. All living carriers had a mild to severe length-dependent sensorimotor neuropathy. Three deceased obligate carriers aged 74-98 were reported to be unaffected, but were not examined in the clinic. Proteomic studies in PBMC from four affected individuals suggest an effect on the immune system mediated by components of a systemic response to chronic injury and inflammation. Furthermore, altered expression of proteins linked to mitochondrial function/dysfunction was observed. Proteomic data are available via ProteomeXchange using identifier PXD023842. CONCLUSION This study describes clinical and neurophysiological features linked to the p.(Arg326Trp) variant of AARS1 in CMT-affected members of two Norwegian families. Proteomic analyses based on of PBMC from four CMT-affected individuals suggest that involvement of inflammation and mitochondrial dysfunction might contribute to AARS1 variant-associated peripheral neuropathy.
Collapse
Affiliation(s)
- Helle Høyer
- Department of Medical Genetics, Telemark Hospital, PB 2900 Kjørbekk, 3710, Skien, Norway.
| | - Øyvind L Busk
- Department of Medical Genetics, Telemark Hospital, PB 2900 Kjørbekk, 3710, Skien, Norway
| | - Q Ying Esbensen
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| | - Oddveig Røsby
- Department of Medical Genetics, Telemark Hospital, PB 2900 Kjørbekk, 3710, Skien, Norway.,Department of Medical Genetics, Oslo University Hospital, 0424, Oslo, Norway
| | - Hilde T Hilmarsen
- Department of Medical Genetics, Telemark Hospital, PB 2900 Kjørbekk, 3710, Skien, Norway
| | - Michael B Russell
- Head and Neck Research Group, Division for Research and Innovation, Akershus University Hospital, 1478, Lørenskog, Norway.,Institute of Clinical Medicine, Campus Akershus University Hospital, University of Oslo, 1474, Norbyhagen, Norway
| | - Tuula A Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo and Rikshospitalet, 0372, Oslo, Norway
| | - Geir J Braathen
- Department of Medical Genetics, Telemark Hospital, PB 2900 Kjørbekk, 3710, Skien, Norway
| | - Hilde L Nilsen
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478, Lørenskog, Norway
| |
Collapse
|
18
|
Galindo-Feria AS, Notarnicola A, Lundberg IE, Horuluoglu B. Aminoacyl-tRNA Synthetases: On Anti-Synthetase Syndrome and Beyond. Front Immunol 2022; 13:866087. [PMID: 35634293 PMCID: PMC9136399 DOI: 10.3389/fimmu.2022.866087] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/28/2022] [Indexed: 12/20/2022] Open
Abstract
Anti-synthetase syndrome (ASSD) is an autoimmune disease characterized by the presence of autoantibodies targeting one of several aminoacyl t-RNA synthetases (aaRSs) along with clinical features including interstitial lung disease, myositis, Raynaud’s phenomenon, arthritis, mechanic’s hands, and fever. The family of aaRSs consists of highly conserved cytoplasmic and mitochondrial enzymes, one for each amino acid, which are essential for the RNA translation machinery and protein synthesis. Along with their main functions, aaRSs are involved in the development of immune responses, regulation of transcription, and gene-specific silencing of translation. During the last decade, these proteins have been associated with cancer, neurological disorders, infectious responses, and autoimmune diseases including ASSD. To date, several aaRSs have been described to be possible autoantigens in different diseases. The most commonly described are histidyl (HisRS), threonyl (ThrRS), alanyl (AlaRS), glycyl (GlyRS), isoleucyl (IleRS), asparaginyl (AsnRS), phenylalanyl (PheRS), tyrosyl (TyrRS), lysyl (LysRS), glutaminyl (GlnRS), tryptophanyl (TrpRS), and seryl (SerRS) tRNA synthetases. Autoantibodies against the first eight autoantigens listed above have been associated with ASSD while the rest have been associated with other diseases. This review will address what is known about the function of the aaRSs with a focus on their autoantigenic properties. We will also describe the anti-aaRSs autoantibodies and their association to specific clinical manifestations, and discuss their potential contribution to the pathogenesis of ASSD.
Collapse
Affiliation(s)
- Angeles S. Galindo-Feria
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Antonella Notarnicola
- Center for Molecular Medicine, Karolinska Institutet, and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Ingrid E. Lundberg
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, and Karolinska University Hospital Solna, Stockholm, Sweden
| | - Begum Horuluoglu
- Division of Rheumatology, Department of Medicine, Solna, Karolinska Institutet, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, and Karolinska University Hospital Solna, Stockholm, Sweden
- *Correspondence: Begum Horuluoglu,
| |
Collapse
|
19
|
Nam DE, Park JH, Park CE, Jung NY, Nam SH, Kwon HM, Kim HS, Kim SB, Son WS, Choi BO, Chung KW. Variants of aminoacyl-tRNA synthetase genes in Charcot-Marie-Tooth disease: A Korean cohort study. J Peripher Nerv Syst 2021; 27:38-49. [PMID: 34813128 DOI: 10.1111/jns.12476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/18/2021] [Accepted: 11/18/2021] [Indexed: 01/01/2023]
Abstract
Charcot-Marie-Tooth disease (CMT) and related diseases are a genetically and clinically heterogeneous group of peripheral neuropathies. Particularly, mutations in several aminoacyl-tRNA synthetase (ARS) genes have been reported to cause axonal CMT (CMT2) or distal hereditary motor neuropathy (dHMN). However, the common pathogenesis among CMT subtypes by different ARS gene defects is not well understood. This study was performed to investigate ARS gene mutations in a CMT cohort of 710 Korean families. Whole-exome sequencing was applied to 710 CMT patients who were negative for PMP22 duplication. We identified 12 disease-causing variants (from 13 families) in GARS1, AARS1, HARS1, WARS1, and YARS1 genes. Seven variants were determined to be novel. The frequency of overall ARS gene mutations was 1.22% among all independent patients diagnosed with CMT and 1.83% in patients negative for PMP22 duplication. WARS1 mutations have been reported to cause dHMN; however, in our patients with WARS1 variants, CMT was associated with sensory involvement. We analyzed genotype-phenotype correlations and expanded the phenotypic spectrum of patients with CMT possessing ARS gene variants. We also characterized clinical phenotypes according to ARS genes. This study will be useful for performing exact molecular and clinical diagnoses and providing reference data for other population studies.
Collapse
Affiliation(s)
- Da Eun Nam
- Department of Biological Sciences, Kongju National University, Gongju, South Korea
| | - Jin Hee Park
- Department of Biological Sciences, Kongju National University, Gongju, South Korea
| | - Cho Eun Park
- Department of Biological Sciences, Kongju National University, Gongju, South Korea
| | - Na Young Jung
- Department of Biological Sciences, Kongju National University, Gongju, South Korea
| | - Soo Hyun Nam
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - Hye Mi Kwon
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hyun Su Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Sang Beom Kim
- Department of Neurology, Kyung Hee University Gangdong Hospital, Kyung Hee University College of Medicine, Seoul, South Korea
| | - Won Seok Son
- Department of Biological Sciences, Kongju National University, Gongju, South Korea
| | - Byung-Ok Choi
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea.,Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.,Stem Cell & Regenerative Medicine Institute, Samsung Medical Center, Seoul, South Korea
| | - Ki Wha Chung
- Department of Biological Sciences, Kongju National University, Gongju, South Korea
| |
Collapse
|
20
|
Lin SJ, Vona B, Barbalho PG, Kaiyrzhanov R, Maroofian R, Petree C, Severino M, Stanley V, Varshney P, Bahena P, Alzahrani F, Alhashem A, Pagnamenta AT, Aubertin G, Estrada-Veras JI, Hernández HAD, Mazaheri N, Oza A, Thies J, Renaud DL, Dugad S, McEvoy J, Sultan T, Pais LS, Tabarki B, Villalobos-Ramirez D, Rad A, Galehdari H, Ashrafzadeh F, Sahebzamani A, Saeidi K, Torti E, Elloumi HZ, Mora S, Palculict TB, Yang H, Wren JD, Ben Fowler, Joshi M, Behra M, Burgess SM, Nath SK, Hanna MG, Kenna M, Merritt JL, Houlden H, Karimiani EG, Zaki MS, Haaf T, Alkuraya FS, Gleeson JG, Varshney GK. Biallelic variants in KARS1 are associated with neurodevelopmental disorders and hearing loss recapitulated by the knockout zebrafish. Genet Med 2021; 23:1933-1943. [PMID: 34172899 PMCID: PMC8956360 DOI: 10.1038/s41436-021-01239-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 12/04/2022] Open
Abstract
PURPOSE Pathogenic variants in Lysyl-tRNA synthetase 1 (KARS1) have increasingly been recognized as a cause of early-onset complex neurological phenotypes. To advance the timely diagnosis of KARS1-related disorders, we sought to delineate its phenotype and generate a disease model to understand its function in vivo. METHODS Through international collaboration, we identified 22 affected individuals from 16 unrelated families harboring biallelic likely pathogenic or pathogenic in KARS1 variants. Sequencing approaches ranged from disease-specific panels to genome sequencing. We generated loss-of-function alleles in zebrafish. RESULTS We identify ten new and four known biallelic missense variants in KARS1 presenting with a moderate-to-severe developmental delay, progressive neurological and neurosensory abnormalities, and variable white matter involvement. We describe novel KARS1-associated signs such as autism, hyperactive behavior, pontine hypoplasia, and cerebellar atrophy with prevalent vermian involvement. Loss of kars1 leads to upregulation of p53, tissue-specific apoptosis, and downregulation of neurodevelopmental related genes, recapitulating key tissue-specific disease phenotypes of patients. Inhibition of p53 rescued several defects of kars1-/- knockouts. CONCLUSION Our work delineates the clinical spectrum associated with KARS1 defects and provides a novel animal model for KARS1-related human diseases revealing p53 signaling components as potential therapeutic targets.
Collapse
Affiliation(s)
- Sheng-Jia Lin
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Barbara Vona
- Department of Otolaryngology-Head & Neck Surgery, Tübingen Hearing Research Centre, Eberhard Karls University of Tübingen, Tübingen, Germany.,Institute of Human Genetics, Julius Maximilians University Würzburg, Würzburg, Germany
| | - Patricia G Barbalho
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Rauan Kaiyrzhanov
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Reza Maroofian
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Cassidy Petree
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | | | - Valentina Stanley
- Department of Neurosciences, Rady Children's Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Pratishtha Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Paulina Bahena
- Institute of Human Genetics, Julius Maximilians University Würzburg, Würzburg, Germany
| | - Fatema Alzahrani
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Amal Alhashem
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Alistair T Pagnamenta
- NIHR Biomedical Research Centre, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Gudrun Aubertin
- Division of Medical Genetics, Department of Pathology and Lab Medicine, Island Health, Victoria General Hospital, Victoria, BC, Canada
| | - Juvianee I Estrada-Veras
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.,Pediatric Subspecialty Genetics Walter Reed National Military Medical Center, Bethesda, MD, USA.,Murtha Cancer Center / Research Program, Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Héctor Adrián Díaz Hernández
- Department of Gastrointestinal Endoscopy, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Mexico City, Mexico
| | - Neda Mazaheri
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran.,Narges Medical Genetics and Prenatal Diagnostics Laboratory, East Mihan Ave., Kianpars, Iran
| | - Andrea Oza
- Otolaryngology and Communication Enhancement, Boston Children's Hospital, and Dept. of Otolaryngology, Harvard medical School, Boston, USA
| | - Jenny Thies
- Department of Biochemical Genetics, Seattle Children's Hospital, Seattle, WA, USA
| | - Deborah L Renaud
- Departments of Neurology and Pediatrics, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Sanmati Dugad
- Bioinformatics Centre, S. P. Pune University, Pune, India
| | - Jennifer McEvoy
- Department of Neurosciences, Rady Children's Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Tipu Sultan
- Department of Pediatric Neurology, Children's Hospital and Institute of Child Health, Lahore, Pakistan
| | - Lynn S Pais
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, USA
| | - Brahim Tabarki
- Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | | | - Aboulfazl Rad
- Department of Otolaryngology-Head & Neck Surgery, Tübingen Hearing Research Centre, Eberhard Karls University of Tübingen, Tübingen, Germany
| | | | - Hamid Galehdari
- Department of Gastrointestinal Endoscopy, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Mexico City, Mexico
| | - Farah Ashrafzadeh
- Department of Pediatric Diseases, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Afsaneh Sahebzamani
- Pediatric and Genetic Counselling Center, Kerman Welfare Organization, Kerman, Iran
| | - Kolsoum Saeidi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Erin Torti
- GeneDx, 207 Perry Parkway Gaithersburg, Gaithersburg, MD, USA
| | - Houda Z Elloumi
- GeneDx, 207 Perry Parkway Gaithersburg, Gaithersburg, MD, USA
| | - Sara Mora
- GeneDx, 207 Perry Parkway Gaithersburg, Gaithersburg, MD, USA
| | | | - Hui Yang
- GeneDx, 207 Perry Parkway Gaithersburg, Gaithersburg, MD, USA
| | - Jonathan D Wren
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Ben Fowler
- Imaging core facility, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Manali Joshi
- Bioinformatics Centre, S. P. Pune University, Pune, India
| | - Martine Behra
- Department of Neurobiology, University of Puerto Rico, San Juan, PR, USA
| | - Shawn M Burgess
- Translational & Functional Genomics Branch, National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Swapan K Nath
- Arthritis & Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Michael G Hanna
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Margaret Kenna
- Otolaryngology and Communication Enhancement, Boston Children's Hospital, and Dept. of Otolaryngology, Harvard medical School, Boston, USA
| | - J Lawrence Merritt
- Department of Pediatrics, Biochemical Genetics, University of Washington, Seattle, WA, USA
| | - Henry Houlden
- Department of Neuromuscular Disorders, Queen Square Institute of Neurology, University College London, London, UK
| | - Ehsan Ghayoor Karimiani
- Molecular and Clinical Sciences Institute, St. George's, University of London, Cranmer Terrace London, London, UK.,Innovative Medical Research Center, Mashhad Branch, Islamic Azdad University, Mashhad, Iran
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Centre, Cairo, Egypt
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University Würzburg, Würzburg, Germany
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Joseph G Gleeson
- Department of Neurosciences, Rady Children's Institute for Genomic Medicine, University of California San Diego, La Jolla, CA, USA
| | - Gaurav K Varshney
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
| |
Collapse
|
21
|
McCray BA, Scherer SS. Axonal Charcot-Marie-Tooth Disease: from Common Pathogenic Mechanisms to Emerging Treatment Opportunities. Neurotherapeutics 2021; 18:2269-2285. [PMID: 34606075 PMCID: PMC8804038 DOI: 10.1007/s13311-021-01099-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2021] [Indexed: 01/12/2023] Open
Abstract
Inherited peripheral neuropathies are a genetically and phenotypically diverse group of disorders that lead to degeneration of peripheral neurons with resulting sensory and motor dysfunction. Genetic neuropathies that primarily cause axonal degeneration, as opposed to demyelination, are most often classified as Charcot-Marie-Tooth disease type 2 (CMT2) and are the focus of this review. Gene identification efforts over the past three decades have dramatically expanded the genetic landscape of CMT and revealed several common pathological mechanisms among various forms of the disease. In some cases, identification of the precise genetic defect and/or the downstream pathological consequences of disease mutations have yielded promising therapeutic opportunities. In this review, we discuss evidence for pathogenic overlap among multiple forms of inherited neuropathy, highlighting genetic defects in axonal transport, mitochondrial dynamics, organelle-organelle contacts, and local axonal protein translation as recurrent pathological processes in inherited axonal neuropathies. We also discuss how these insights have informed emerging treatment strategies, including specific approaches for single forms of neuropathy, as well as more general approaches that have the potential to treat multiple types of neuropathy. Such therapeutic opportunities, made possible by improved understanding of molecular and cellular pathogenesis and advances in gene therapy technologies, herald a new and exciting phase in inherited peripheral neuropathy.
Collapse
Affiliation(s)
- Brett A. McCray
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Steven S. Scherer
- Department of Neurology, The University of Pennsylvania, Philadelphia, PA 19104 USA
| |
Collapse
|
22
|
Okamoto N, Miya F, Tsunoda T, Kanemura Y, Saitoh S, Kato M, Yanagi K, Kaname T, Kosaki K. Four pedigrees with aminoacyl-tRNA synthetase abnormalities. Neurol Sci 2021; 43:2765-2774. [PMID: 34585293 DOI: 10.1007/s10072-021-05626-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 09/23/2021] [Indexed: 01/16/2023]
Abstract
Aminoacyl tRNA synthetases (ARSs) are highly conserved enzymes that link amino acids to their cognate tRNAs. Thirty-seven ARSs are known and their deficiencies cause various genetic disorders. Variants in some ARSs are associated with the autosomal dominant inherited form of axonal neuropathy, including Charcot-Marie-Tooth (CMT) disease. Variants of genes encoding ARSs often cause disorders in an autosomal recessive fashion. The clinical features of cytosolic ARS deficiencies are more variable, including systemic features. Deficiencies of ARSs localized in the mitochondria are often associated with neurological disorders including Leigh and early-onset epileptic syndromes. Whole exome sequencing (WES) is an efficient way to identify the genes causing various symptoms in patients. We identified 4 pedigrees with novel compound heterozygous variants in ARS genes (WARS1, MARS1, AARS2, and PARS2) by WES. Some unique manifestations were noted. The number of patients with ARSs has been increasing since the application of WES. Our findings broaden the known genetic and clinical spectrum associated with ARS variants.
Collapse
Affiliation(s)
- Nobuhiko Okamoto
- Department of Medical Genetics, Osaka Women's and Children's Hospital, Izumi, Osaka, Japan.
| | - Fuyuki Miya
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Medical Science Mathematics, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tatsuhiko Tsunoda
- Department of Medical Science Mathematics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.,Laboratory for Medical Science Mathematics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Medical Science Mathematics, Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Yonehiro Kanemura
- Department of Neurosurgery, National Hospital Organization Osaka National Hospital, Osaka, Japan.,Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Shinji Saitoh
- Department of Pediatrics and Neonatology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo, Japan
| | - Kumiko Yanagi
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Tadashi Kaname
- Department of Genome Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
23
|
Morant L, Erfurth ML, Jordanova A. Drosophila Models for Charcot-Marie-Tooth Neuropathy Related to Aminoacyl-tRNA Synthetases. Genes (Basel) 2021; 12:1519. [PMID: 34680913 PMCID: PMC8536177 DOI: 10.3390/genes12101519] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 11/29/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRS) represent the largest cluster of proteins implicated in Charcot-Marie-Tooth neuropathy (CMT), the most common neuromuscular disorder. Dominant mutations in six aaRS cause different axonal CMT subtypes with common clinical characteristics, including progressive distal muscle weakness and wasting, impaired sensory modalities, gait problems and skeletal deformities. These clinical manifestations are caused by "dying back" axonal degeneration of the longest peripheral sensory and motor neurons. Surprisingly, loss of aminoacylation activity is not a prerequisite for CMT to occur, suggesting a gain-of-function disease mechanism. Here, we present the Drosophila melanogaster disease models that have been developed to understand the molecular pathway(s) underlying GARS1- and YARS1-associated CMT etiology. Expression of dominant CMT mutations in these aaRSs induced comparable neurodegenerative phenotypes, both in larvae and adult animals. Interestingly, recent data suggests that shared molecular pathways, such as dysregulation of global protein synthesis, might play a role in disease pathology. In addition, it has been demonstrated that the important function of nuclear YARS1 in transcriptional regulation and the binding properties of mutant GARS1 are also conserved and can be studied in D. melanogaster in the context of CMT. Taken together, the fly has emerged as a faithful companion model for cellular and molecular studies of aaRS-CMT that also enables in vivo investigation of candidate CMT drugs.
Collapse
Affiliation(s)
- Laura Morant
- Molecular Neurogenomics Group, VIB-UAntwerp Center for Molecular Neurology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerpen, Belgium; (L.M.); (M.-L.E.)
| | - Maria-Luise Erfurth
- Molecular Neurogenomics Group, VIB-UAntwerp Center for Molecular Neurology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerpen, Belgium; (L.M.); (M.-L.E.)
| | - Albena Jordanova
- Molecular Neurogenomics Group, VIB-UAntwerp Center for Molecular Neurology, Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Antwerpen, Belgium; (L.M.); (M.-L.E.)
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Faculty of Medicine, Medical University-Sofia, 1431 Sofia, Bulgaria
| |
Collapse
|
24
|
Zuko A, Mallik M, Thompson R, Spaulding EL, Wienand AR, Been M, Tadenev ALD, van Bakel N, Sijlmans C, Santos LA, Bussmann J, Catinozzi M, Das S, Kulshrestha D, Burgess RW, Ignatova Z, Storkebaum E. tRNA overexpression rescues peripheral neuropathy caused by mutations in tRNA synthetase. Science 2021; 373:1161-1166. [PMID: 34516840 DOI: 10.1126/science.abb3356] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Amila Zuko
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Moushami Mallik
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands.,Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Robin Thompson
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Emily L Spaulding
- The Jackson Laboratory, Bar Harbor, ME, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| | - Anne R Wienand
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Marije Been
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | | | - Nick van Bakel
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Céline Sijlmans
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands
| | - Leonardo A Santos
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Julia Bussmann
- Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Marica Catinozzi
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands.,Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Sarada Das
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Divita Kulshrestha
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands.,Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Robert W Burgess
- The Jackson Laboratory, Bar Harbor, ME, USA.,Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME, USA
| | - Zoya Ignatova
- Biochemistry and Molecular Biology, Department of Chemistry, University of Hamburg, Hamburg, Germany
| | - Erik Storkebaum
- Department of Molecular Neurobiology, Donders Institute for Brain, Cognition and Behaviour and Faculty of Science, Radboud University, Nijmegen, Netherlands.,Molecular Neurogenetics Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| |
Collapse
|
25
|
Vinogradova ES, Nikonov OS, Nikonova EY. Associations between Neurological Diseases and Mutations in the Human Glycyl-tRNA Synthetase. BIOCHEMISTRY (MOSCOW) 2021; 86:S12-S23. [PMID: 33827397 PMCID: PMC7905983 DOI: 10.1134/s0006297921140029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Aminoacyl-RNA synthetases (aaRSs) are among the key enzymes of protein biosynthesis. They are responsible for conducting the first step in the protein biosynthesis, namely attaching amino acids to the corresponding tRNA molecules both in cytoplasm and mitochondria. More and more research demonstrates that mutations in the genes encoding aaRSs lead to the development of various neurodegenerative diseases, such as incurable Charcot–Marie–Tooth disease (CMT) and distal spinal muscular atrophy. Some mutations result in the loss of tRNA aminoacylation activity, while other mutants retain their classical enzyme activity. In the latter case, disease manifestations are associated with additional neuron-specific functions of aaRSs. At present, seven aaRSs (GlyRS, TyrRS, AlaRS, HisRS, TrpRS, MetRS, and LysRS) are known to be involved in the CMT etiology with glycyl-tRNA synthetase (GlyRS) being the most studied of them.
Collapse
Affiliation(s)
| | - Oleg S Nikonov
- Institute of Protein Research, Pushchino, Moscow Region, 142290, Russia
| | | |
Collapse
|
26
|
Cai J, Kropf E, Hou YM, Iacovitti L. A stress-free strategy to correct point mutations in patient iPS cells. Stem Cell Res 2021; 53:102332. [PMID: 33857832 PMCID: PMC8283763 DOI: 10.1016/j.scr.2021.102332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/23/2021] [Accepted: 04/01/2021] [Indexed: 11/06/2022] Open
Abstract
When studying patient specific induced pluripotent stem cells (iPS cells) as a disease model, the ideal control is an isogenic line that has corrected the point mutation, instead of iPS cells from siblings or other healthy subjects. However, repairing a point mutation in iPS cells even with the newly developed CRISPR-Cas9 technique remains difficult and time-consuming. Here we report a strategy that makes the Cas9 "knock-in" methodology both hassle-free and error-free. Instead of selecting a Cas9 recognition site close to the point mutation, we chose a site located in the nearest intron. We constructed a donor template with the fragment containing the corrected point mutation as one of the homologous recombination arms flanking a PGK-PuroR cassette. After selection with puromycin, positive clones were identified and further transfected with a CRE vector to remove the PGK-PuroR cassette. Using this methodology, we successfully repaired the point mutation G2019S of the LRRK2 gene in a Parkinson Disease (PD) patient iPS line and the point mutation R329H of the AARS1 gene in a Charcot-Marie-Tooth disease (CMT) patient iPS line. These isogenic iPS lines are ideal as a control in future studies.
Collapse
Affiliation(s)
- Jingli Cai
- Department of Neuroscience Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, JHN Suite 461, Philadelphia, PA 19107, USA
| | - Elizabeth Kropf
- Department of Neuroscience Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, JHN Suite 461, Philadelphia, PA 19107, USA
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Medical College, Thomas Jefferson University, 233 South 10th Street, BLSB Suite 220, Philadelphia, PA 19107, USA
| | - Lorraine Iacovitti
- Department of Neuroscience Vickie & Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College, Thomas Jefferson University, 900 Walnut Street, JHN Suite 461, Philadelphia, PA 19107, USA.
| |
Collapse
|
27
|
Structural analyses of a human lysyl-tRNA synthetase mutant associated with autosomal recessive nonsyndromic hearing impairment. Biochem Biophys Res Commun 2021; 554:83-88. [PMID: 33784510 DOI: 10.1016/j.bbrc.2021.03.093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 11/22/2022]
Abstract
Aminoacyl-tRNA synthetases (AARSs) catalyze the ligation of amino acids to their cognate tRNAs and therefore play an essential role in protein biosynthesis in all living cells. The KARS gene in human encodes both cytosolic and mitochondrial lysyl-tRNA synthetase (LysRS). A recent study identified a missense mutation in KARS gene (c.517T > C) that caused autosomal recessive nonsyndromic hearing loss. This mutation led to a tyrosine to histidine (YH) substitution in both cytosolic and mitochondrial LysRS proteins, and decreased their aminoacylation activity to different levels. Here, we report the crystal structure of LysRS YH mutant at a resolution of 2.5 Å. We found that the mutation did not interfere with the active center, nor did it cause any significant conformational changes in the protein. The loops involved in tetramer interface and tRNA anticodon binding site showed relatively bigger variations between the mutant and wild type proteins. Considering the differences between the cytosolic and mitochondrial tRNAlyss, we suggest that the mutation triggered subtle changes in the tRNA anticodon binding region, and the interferences were further amplified by the different D and T loops in mitochondrial tRNAlys, and led to a complete loss of the aminoacylation of mitochondrial tRNAlys.
Collapse
|
28
|
Abstract
Charcot-Marie-Tooth disease (CMT) is a devastating motor and sensory neuropathy with an estimated 100,000 afflicted individuals in the US. Unexpectedly, aminoacyl-tRNA synthetases are the largest disease-associated protein family. A natural explanation is that the disease is associated with weak translation or mistranslation (caused by editing defects). However, our results with six different disease-causing mutants in AlaRS ruled out defects in aminoacylation or editing as causal factors. Instead, specific mutant proteins gained a neuropilin 1 (Nrp1)-AlaRS interaction. Previously a gain of Nrp1 interaction with a different disease-causing tRNA synthetase was mechanistically linked to the pathology of CMT. Thus, our results raise the possibility that pathological engagement of Nrp1 is common to at least a subset of tRNA synthetase-associated cases of CMT. Through dominant mutations, aminoacyl-tRNA synthetases constitute the largest protein family linked to Charcot-Marie-Tooth disease (CMT). An example is CMT subtype 2N (CMT2N), caused by individual mutations spread out in AlaRS, including three in the aminoacylation domain, thereby suggesting a role for a tRNA-charging defect. However, here we found that two are aminoacylation defective but that the most widely distributed R329H is normal as a purified protein in vitro and in unfractionated patient cell samples. Remarkably, in contrast to wild-type (WT) AlaRS, all three mutant proteins gained the ability to interact with neuropilin 1 (Nrp1), the receptor previously linked to CMT pathogenesis in GlyRS. The aberrant AlaRS-Nrp1 interaction is further confirmed in patient samples carrying the R329H mutation. However, CMT2N mutations outside the aminoacylation domain do not induce the Nrp1 interaction. Detailed biochemical and biophysical investigations, including X-ray crystallography, small-angle X-ray scattering, hydrogen-deuterium exchange (HDX), switchSENSE hydrodynamic diameter determinations, and protease digestions reveal a mutation-induced structural loosening of the aminoacylation domain that correlates with the Nrp1 interaction. The b1b2 domains of Nrp1 are responsible for the interaction with R329H AlaRS. The results suggest Nrp1 is more broadly associated with CMT-associated members of the tRNA synthetase family. Moreover, we revealed a distinct structural loosening effect induced by a mutation in the editing domain and a lack of conformational impact with C-Ala domain mutations, indicating mutations in the same protein may cause neuropathy through different mechanisms. Our results show that, as with other CMT-associated tRNA synthetases, aminoacylation per se is not relevant to the pathology.
Collapse
|
29
|
Beijer D, Baets J. The expanding genetic landscape of hereditary motor neuropathies. Brain 2021; 143:3540-3563. [PMID: 33210134 DOI: 10.1093/brain/awaa311] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/15/2020] [Accepted: 07/27/2020] [Indexed: 12/12/2022] Open
Abstract
Hereditary motor neuropathies are clinically and genetically diverse disorders characterized by length-dependent axonal degeneration of lower motor neurons. Although currently as many as 26 causal genes are known, there is considerable missing heritability compared to other inherited neuropathies such as Charcot-Marie-Tooth disease. Intriguingly, this genetic landscape spans a discrete number of key biological processes within the peripheral nerve. Also, in terms of underlying pathophysiology, hereditary motor neuropathies show striking overlap with several other neuromuscular and neurological disorders. In this review, we provide a current overview of the genetic spectrum of hereditary motor neuropathies highlighting recent reports of novel genes and mutations or recent discoveries in the underlying disease mechanisms. In addition, we link hereditary motor neuropathies with various related disorders by addressing the main affected pathways of disease divided into five major processes: axonal transport, tRNA aminoacylation, RNA metabolism and DNA integrity, ion channels and transporters and endoplasmic reticulum.
Collapse
Affiliation(s)
- Danique Beijer
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Belgium
| | - Jonathan Baets
- Translational Neurosciences, Faculty of Medicine and Health Sciences, University of Antwerp, Belgium.,Laboratory of Neuromuscular Pathology, Institute Born-Bunge, University of Antwerp, Belgium.,Neuromuscular Reference Centre, Department of Neurology, Antwerp University Hospital, Belgium
| |
Collapse
|
30
|
Schiavon CR, Shadel GS, Manor U. Impaired Mitochondrial Mobility in Charcot-Marie-Tooth Disease. Front Cell Dev Biol 2021; 9:624823. [PMID: 33598463 PMCID: PMC7882694 DOI: 10.3389/fcell.2021.624823] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/05/2021] [Indexed: 12/13/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is a progressive, peripheral neuropathy and the most commonly inherited neurological disorder. Clinical manifestations of CMT mutations are typically limited to peripheral neurons, the longest cells in the body. Currently, mutations in at least 80 different genes are associated with CMT and new mutations are regularly being discovered. A large portion of the proteins mutated in axonal CMT have documented roles in mitochondrial mobility, suggesting that organelle trafficking defects may be a common underlying disease mechanism. This review will focus on the potential role of altered mitochondrial mobility in the pathogenesis of axonal CMT, highlighting the conceptional challenges and potential experimental and therapeutic opportunities presented by this "impaired mobility" model of the disease.
Collapse
Affiliation(s)
- Cara R. Schiavon
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, United States
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Gerald S. Shadel
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA, United States
| | - Uri Manor
- Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, CA, United States
| |
Collapse
|
31
|
Mullen P, Abbott JA, Wellman T, Aktar M, Fjeld C, Demeler B, Ebert AM, Francklyn CS. Neuropathy-associated histidyl-tRNA synthetase variants attenuate protein synthesis in vitro and disrupt axon outgrowth in developing zebrafish. FEBS J 2021; 288:142-159. [PMID: 32543048 PMCID: PMC7736457 DOI: 10.1111/febs.15449] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/11/2020] [Accepted: 06/09/2020] [Indexed: 12/13/2022]
Abstract
Charcot-Marie-Tooth disease (CMT) encompasses a set of genetically and clinically heterogeneous neuropathies characterized by length-dependent dysfunction of the peripheral nervous system. Mutations in over 80 diverse genes are associated with CMT, and aminoacyl-tRNA synthetases (ARS) constitute a large gene family implicated in the disease. Despite considerable efforts to elucidate the mechanistic link between ARS mutations and the CMT phenotype, the molecular basis of the pathology is unknown. In this work, we investigated the impact of three CMT-associated substitutions (V155G, Y330C, and R137Q) in the cytoplasmic histidyl-tRNA synthetase (HARS1) on neurite outgrowth and peripheral nervous system development. The model systems for this work included a nerve growth factor-stimulated neurite outgrowth model in rat pheochromocytoma cells (PC12), and a zebrafish line with GFP/red fluorescent protein reporters of sensory and motor neuron development. The expression of CMT-HARS1 mutations led to attenuation of protein synthesis and increased phosphorylation of eIF2α in PC12 cells and was accompanied by impaired neurite and axon outgrowth in both models. Notably, these effects were phenocopied by histidinol, a HARS1 inhibitor, and cycloheximide, a protein synthesis inhibitor. The mutant proteins also formed heterodimers with wild-type HARS1, raising the possibility that CMT-HARS1 mutations cause disease through a dominant-negative mechanism. Overall, these findings support the hypothesis that CMT-HARS1 alleles exert their toxic effect in a neuronal context, and lead to dysregulated protein synthesis. These studies demonstrate the value of zebrafish as a model for studying mutant alleles associated with CMT, and for characterizing the processes that lead to peripheral nervous system dysfunction.
Collapse
Affiliation(s)
- Patrick Mullen
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - Jamie A Abbott
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - Theresa Wellman
- Department of Pharmacology, University of Vermont, Burlington, VT, USA
| | - Mahafuza Aktar
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - Christian Fjeld
- Department of Biochemistry, University of Vermont, Burlington, VT, USA
| | - Borries Demeler
- Department of Chemistry & Biochemistry, University of Lethbridge, Canada
| | - Alicia M Ebert
- Department of Biology, University of Vermont, Burlington, VT, USA
| | | |
Collapse
|
32
|
Zhang H, Zhou ZW, Sun L. Aminoacyl-tRNA synthetases in Charcot-Marie-Tooth disease: A gain or a loss? J Neurochem 2020; 157:351-369. [PMID: 33236345 PMCID: PMC8247414 DOI: 10.1111/jnc.15249] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 01/05/2023]
Abstract
Charcot‐Marie‐Tooth disease (CMT) is one of the most common inherited neurodegenerative disorders with an increasing number of CMT‐associated variants identified as causative factors, however, there has been no effective therapy for CMT to date. Aminoacyl‐tRNA synthetases (aaRS) are essential enzymes in translation by charging amino acids onto their cognate tRNAs during protein synthesis. Dominant monoallelic variants of aaRSs have been largely implicated in CMT. Some aaRSs variants affect enzymatic activity, demonstrating a loss‐of‐function property. In contrast, loss of aminoacylation activity is neither necessary nor sufficient for some aaRSs variants to cause CMT. Instead, accumulating evidence from CMT patient samples, animal genetic studies or protein conformational analysis has pinpointed toxic gain‐of‐function of aaRSs variants in CMT, suggesting complicated mechanisms underlying the pathogenesis of CMT. In this review, we summarize the latest advances in studies on CMT‐linked aaRSs, with a particular focus on their functions. The current challenges, future direction and the promising candidates for potential treatment of CMT are also discussed. ![]()
Collapse
Affiliation(s)
- Han Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Zhong-Wei Zhou
- School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Litao Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
33
|
Abstract
Among the 20 cytoplasmic aminoacyl-tRNA synthetases (aaRSs), alanyl-tRNA synthetase (AlaRS) has unique features. AlaRS is the only aaRS that exclusively recognizes a single G3:U70 wobble base pair in the acceptor stem of tRNA, which serves as the identity element for both the synthetic and the proofreading activities of the synthetase. The recognition is relaxed during evolution and eukaryotic AlaRS can mis-aminoacylate noncognate tRNAs with a G4:U69 base pair seemingly as a deliberate gain of function for unknown reasons. Unlike other class II aaRSs, dimerization of AlaRS is not necessarily required for aminoacylation possibly due to functional compensations from the C-terminal domain (C-Ala). In contrast to other 19 cytoplasmic aaRSs that append additional domains or motifs to acquire new functions during evolution, the functional expansion of AlaRS is likely achieved through transformations of the existing C-Ala. Given both essential canonical and diverse non-canonical roles of AlaRS, dysfunction of AlaRS leads to neurodegenerative disorders in human and various pathological phenotypes in mouse models. In this review, the uniqueness of AlaRS in both physiological and pathological events is systematically discussed, with a particular focus on its novel functions gained in evolution.
Collapse
Affiliation(s)
- Han Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, Yunnan, China
| | - Xiang-Lei Yang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Litao Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong, China
| |
Collapse
|
34
|
Miressi F, Magdelaine C, Cintas P, Bourthoumieux S, Nizou A, Derouault P, Favreau F, Sturtz F, Faye PA, Lia AS. One Multilocus Genomic Variation Is Responsible for a Severe Charcot-Marie-Tooth Axonal Form. Brain Sci 2020; 10:brainsci10120986. [PMID: 33333791 PMCID: PMC7765239 DOI: 10.3390/brainsci10120986] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/06/2020] [Accepted: 12/09/2020] [Indexed: 12/17/2022] Open
Abstract
Charcot-Marie-Tooth (CMT) disease is a heterogeneous group of inherited disorders affecting the peripheral nervous system, with a prevalence of 1/2500. So far, mutations in more than 80 genes have been identified causing either demyelinating forms (CMT1) or axonal forms (CMT2). Consequentially, the genotype-phenotype correlation is not always easy to assess. Diagnosis could require multiple analysis before the correct causative mutation is detected. Moreover, it seems that approximately 5% of overall diagnoses for genetic diseases involves multiple genomic loci, although they are often underestimated or underreported. In particular, the combination of multiple variants is rarely described in CMT pathology and often neglected during the diagnostic process. Here, we present the complex genetic analysis of a family including two CMT cases with various severities. Interestingly, next generation sequencing (NGS) associated with Cov'Cop analysis, allowing structural variants (SV) detection, highlighted variations in MORC2 (microrchidia family CW-type zinc-finger 2) and AARS1 (alanyl-tRNA-synthetase) genes for one patient and an additional mutation in MFN2 (Mitofusin 2) in the more affected patient.
Collapse
Affiliation(s)
- Federica Miressi
- Maintenance Myélinique et Neuropathies Périphériques, Université de Limoges, EA 6309, F-87000 Limoges, France; (C.M.); (S.B.); (A.N.); (F.F.); (F.S.); (P.-A.F.); (A.-S.L.)
- Correspondence:
| | - Corinne Magdelaine
- Maintenance Myélinique et Neuropathies Périphériques, Université de Limoges, EA 6309, F-87000 Limoges, France; (C.M.); (S.B.); (A.N.); (F.F.); (F.S.); (P.-A.F.); (A.-S.L.)
- Service de Biochimie et Génétique Moléculaire, Centre Hospitalier Universitaire à Limoges, F-87000 Limoges, France
| | - Pascal Cintas
- Service de Neurologie, Centre Hospitalier Universitaire à Toulouse, F-31000 Toulouse, France;
| | - Sylvie Bourthoumieux
- Maintenance Myélinique et Neuropathies Périphériques, Université de Limoges, EA 6309, F-87000 Limoges, France; (C.M.); (S.B.); (A.N.); (F.F.); (F.S.); (P.-A.F.); (A.-S.L.)
- Service de Cytogénétique, Centre Hospitalier Universitaire à Limoges, F-87000 Limoges, France
| | - Angélique Nizou
- Maintenance Myélinique et Neuropathies Périphériques, Université de Limoges, EA 6309, F-87000 Limoges, France; (C.M.); (S.B.); (A.N.); (F.F.); (F.S.); (P.-A.F.); (A.-S.L.)
| | - Paco Derouault
- Service de Bioinformatique, Centre Hospitalier Universitaire à Limoges, F-87000 Limoges, France;
| | - Frédéric Favreau
- Maintenance Myélinique et Neuropathies Périphériques, Université de Limoges, EA 6309, F-87000 Limoges, France; (C.M.); (S.B.); (A.N.); (F.F.); (F.S.); (P.-A.F.); (A.-S.L.)
- Service de Biochimie et Génétique Moléculaire, Centre Hospitalier Universitaire à Limoges, F-87000 Limoges, France
| | - Franck Sturtz
- Maintenance Myélinique et Neuropathies Périphériques, Université de Limoges, EA 6309, F-87000 Limoges, France; (C.M.); (S.B.); (A.N.); (F.F.); (F.S.); (P.-A.F.); (A.-S.L.)
- Service de Biochimie et Génétique Moléculaire, Centre Hospitalier Universitaire à Limoges, F-87000 Limoges, France
| | - Pierre-Antoine Faye
- Maintenance Myélinique et Neuropathies Périphériques, Université de Limoges, EA 6309, F-87000 Limoges, France; (C.M.); (S.B.); (A.N.); (F.F.); (F.S.); (P.-A.F.); (A.-S.L.)
- Service de Biochimie et Génétique Moléculaire, Centre Hospitalier Universitaire à Limoges, F-87000 Limoges, France
| | - Anne-Sophie Lia
- Maintenance Myélinique et Neuropathies Périphériques, Université de Limoges, EA 6309, F-87000 Limoges, France; (C.M.); (S.B.); (A.N.); (F.F.); (F.S.); (P.-A.F.); (A.-S.L.)
- Service de Biochimie et Génétique Moléculaire, Centre Hospitalier Universitaire à Limoges, F-87000 Limoges, France
- Service de Bioinformatique, Centre Hospitalier Universitaire à Limoges, F-87000 Limoges, France;
| |
Collapse
|
35
|
Kuo ME, Antonellis A, Shakkottai VG. Alanyl-tRNA Synthetase 2 (AARS2)-Related Ataxia Without Leukoencephalopathy. THE CEREBELLUM 2020; 19:154-160. [PMID: 31705293 DOI: 10.1007/s12311-019-01080-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Mutations in the mitochondrial alanyl-tRNA synthetase gene, AARS2, have been reported to cause leukoencephalopathy associated with early ovarian failure, a clinical presentation described as "ovarioleukodystrophy." We present a sibling pair: one with cerebellar ataxia and one with vision loss and cognitive impairment in addition to ataxia. Neither shows evidence of leukoencephalopathy on MRI imaging. Exome sequencing revealed that both siblings are compound heterozygous for AARS2 variants (p.Phe131del and p.Ile328Met). Yeast complementation assays indicate that p.Phe131del AARS2 dramatically impairs gene function and that p.Ile328Met AARS2 is a hypomorphic allele. This work expands the phenotypic spectrum of AARS2-associated disease to include ataxia without leukoencephalopathy.
Collapse
Affiliation(s)
- Molly E Kuo
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA.,Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
| | - Anthony Antonellis
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA. .,Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA. .,Department of Neurology, University of Michigan, Ann Arbor, MI, USA. .,Medical Science II, 3710A, 1241 E. Catherine St. SPC 5618, Ann Arbor, MI, 48109, USA.
| | - Vikram G Shakkottai
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA. .,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA. .,BSRB, 4009, 109 Zina Pitcher Place, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
36
|
Chen M, Li Y, Lv H, Yin P, Zhang L, Tang P. Quantitative proteomics and reverse engineer analysis identified plasma exosome derived protein markers related to osteoporosis. J Proteomics 2020; 228:103940. [PMID: 32805449 DOI: 10.1016/j.jprot.2020.103940] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/01/2020] [Accepted: 08/10/2020] [Indexed: 12/24/2022]
Abstract
Alongside an aging population, osteoporosis has become increasingly common, representing a major public health problem. Human blood provides the predominant matrix for pathological targets underlining disease mechanisms. In the present study, the protein profiles of blood plasma exosomes from patients with osteoporosis, osteopenia, and those with normal bone mass were compared. The aim of the study was to search for potential novel diagnostic/therapeutic targets for further investigation in osteoporosis. A total of 60 participants were included from the PLAGH Hip Fracture Database. Quantitative proteomics was carried out to profile the plasma exosome derived proteins from patients diagnosed with osteoporosis, osteopenia, and normal bone mass, respectively. A Parallel reaction monitoring (PRM) analysis was further carried out to validate the identified proteins. Bio-informatics analyses including GO annotation and reverse engineering of gene regulatory networks analysis were applied in annotating the biological relevance of the identified proteins. Forty-five differentially expressed proteins were identified in the discovery dataset and four of them, PSMB9, AARS, PCBP2, and VSIR were further verified in a validation set. Based on the results, an exosomal-proteins index was constructed to classify individuals with osteoporosis from those without, an AUC of 0.805 (95% CI 0.620-0.926, p < 0.001) was achieved in classification performance assessment. Additionally, a reverse engineer of the regulatory network analysis identified and predicted the proteins which may interact with the four target proteins identified, providing references for further investigations into the pathological mechanisms of osteoporosis.
Collapse
Affiliation(s)
- Ming Chen
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Yi Li
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Houchen Lv
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China
| | - Pengbin Yin
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China.
| | - Licheng Zhang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China.
| | - Peifu Tang
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing 100853, China.
| |
Collapse
|
37
|
Alanyl-tRNA synthetase 1 (AARS1) gene mutation in a family with intermediate Charcot-Marie-Tooth neuropathy. Genes Genomics 2020; 42:663-672. [PMID: 32314272 DOI: 10.1007/s13258-020-00933-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 03/31/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Alanyl-tRNA synthetase 1 (AARS1) gene encodes a ubiquitously expressed class II enzyme that catalyzes the attachment of alanine to the cognate tRNA. AARS1 mutations are frequently responsible for autosomal dominant Charcot-Marie-Tooth disease type 2N (CMT2N). OBJECTIVE To identify pathogenic mutation in the Korean patients with CMT and distal hereditary motor neuronopathy (dHMN). METHODS We screened AARS1 mutations in 373 unrelated CMT families including 318 axonal CMT, 36 dHMN, and 19 intermediate CMT (Int-CMT) who were negative for 17p12 (PMP22) duplication or deletion using whole exome sequencing and targeted sequencing of CMT-related genes. RESULTS This study identified an early onset Int-CMT family harboring an AARS1 p.Arg329His mutation which was previously reported as pathogenic in French and Australian families. The mutation was located in the highly conserved tRNA binding domain and several in silico analyses suggested pathogenic prediction of the mutations. The patients harboring p.Arg329His showed clinically similar phenotypes of the early onset and electrophysiological intermediate type as those in Australian patients with same mutation. We also found a novel c.2564A>G (p.Gln855Arg) in a CMT2 patient, but its' pathogenic role was uncertain (variant of uncertain significance). CONCLUSION This study suggests that the frequency of the AARS1 mutations appears to be quite low in Korean CMT. This is the first report of the AARS1 mutation in Korean CMT patients and will be helpful for the exact molecular diagnosis and treatment of Int-CMT patients.
Collapse
|
38
|
Gillespie MK, McMillan HJ, Kernohan KD, Pena IA, Meyer-Schuman R, Antonellis A, Boycott KM. A Novel Mutation in MARS in a Patient with Charcot-Marie-Tooth Disease, Axonal, Type 2U with Congenital Onset. J Neuromuscul Dis 2020; 6:333-339. [PMID: 31356216 PMCID: PMC6889022 DOI: 10.3233/jnd-190404] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Charcot-Marie-Tooth disease is a phenotypically and genetically heterogeneous group of disorders affecting both motor and sensory neurons. Exome sequencing has driven discovery of genes responsible for Charcot-Marie-Tooth disease with more than 70 genes now associated with this neuromuscular disease. The MARS gene was recently reported as the cause of Charcot-Marie-Tooth 2U, a slowly progressive axonal sensorimotor polyneuropathy with adult-onset reported in six patients. We report here a patient with a progressive, early childhood-onset, motor-predominant form of Charcot-Marie-Tooth disease. Exome sequencing identified a novel MARS variant (c.1189G>A; p.Ala397Thr) that was not present in her unaffected mother; her unaffected father was unavailable. Further studies using structural modeling and a yeast humanization assay support pathogenicity of the variant. Our study expands the phenotype of Charcot-Marie-Tooth 2U, while highlighting the utility of functional assays to evaluate variant pathogenicity.
Collapse
Affiliation(s)
- Meredith K Gillespie
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Hugh J McMillan
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada.,Division of Neurology, Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Kristin D Kernohan
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - Izabella A Pena
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | | | | | - Anthony Antonellis
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA.,Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kym M Boycott
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada.,Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| |
Collapse
|
39
|
Abstract
Aminoacyl-tRNA synthetases (ARSs) are essential enzymes for protein synthesis with evolutionarily conserved enzymatic mechanisms. Despite their similarity across organisms, scientists have been able to generate effective anti-infective agents based on the structural differences in the catalytic clefts of ARSs from pathogens and humans. However, recent genomic, proteomic and functionomic advances have unveiled unexpected disease-associated mutations and altered expression, secretion and interactions in human ARSs, revealing hidden biological functions beyond their catalytic roles in protein synthesis. These studies have also brought to light their potential as a rich and unexplored source for new therapeutic targets and agents through multiple avenues, including direct targeting of the catalytic sites, controlling disease-associated protein-protein interactions and developing novel biologics from the secreted ARS proteins or their parts. This Review addresses the emerging biology and therapeutic applications of human ARSs in diseases including autoimmune and rare diseases, and cancer.
Collapse
|
40
|
Martin PB, Hicks AN, Holbrook SE, Cox GA. Overlapping spectrums: The clinicogenetic commonalities between Charcot-Marie-Tooth and other neurodegenerative diseases. Brain Res 2020; 1727:146532. [PMID: 31678418 PMCID: PMC6939129 DOI: 10.1016/j.brainres.2019.146532] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022]
Abstract
Charcot-Marie-Tooth (CMT) disease is a progressive and heterogeneous inherited peripheral neuropathy. A myriad of genetic factors have been identified that contribute to the degeneration of motor and sensory axons in a length-dependent manner. Emerging biological themes underlying disease include defects in axonal trafficking, dysfunction in RNA metabolism and protein homeostasis, as well deficits in the cellular stress response. Moreover, genetic contributions to CMT can have overlap with other neuropathies, motor neuron diseases (MNDs) and neurodegenerative disorders. Recent progress in understanding the molecular biology of CMT and overlapping syndromes aids in the search for necessary therapeutic targets.
Collapse
Affiliation(s)
- Paige B Martin
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Amy N Hicks
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Sarah E Holbrook
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA
| | - Gregory A Cox
- The Jackson Laboratory, Bar Harbor, ME 04609, USA; Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, ME 04469, USA.
| |
Collapse
|
41
|
YARS as an oncogenic protein that promotes gastric cancer progression through activating PI3K-Akt signaling. J Cancer Res Clin Oncol 2020; 146:329-342. [PMID: 31912229 PMCID: PMC6985085 DOI: 10.1007/s00432-019-03115-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE Members of the aaRS (aminoacyl-tRNA synthetase) family are proteins controlling the aminoacylation process, in which YARS (tyrosyl-tRNA synthetase) catalyzes the binding of tyrosine to its cognate tRNA and plays an important role in basic biosynthesis. Several studies have demonstrated the association between YARS mutation and certain developmental abnormalities/diseases, yet YARS's linkage with cancer remains uncategorized. In this study, by combining in silico, in vitro, and in vivo studies, we explored the expressions and functions of YARS in gastric cancer (GC). METHODS We evaluated YARS's distribution in tumor and paired normal tissues/specimens of GC by referring to large cohort online datasets and patient-derived tissue specimens. YARS-related changes were assessed by phenotypical/molecular experiments and RNA-sequencing analysis in GC cell lines harboring YARS knockdown or overexpression. RESULTS Both the transcript and protein levels of YARS were evidently higher in gastric cancer tissues than in paired normal tissues. YARS knockdown induced repressed proliferation and invasiveness, as well as enhanced apoptosis in GC cell lines, while abnormally upregulating YARS expression promoted gastric cancer growth in vivo. We inferred based on RNA-sequencing that YARS modulates multiple cancerous signaling pathways and proved through cellular experiments that YARS promoted GC progression, as well as homologous recombination by activating PI3K-Akt signaling. CONCLUSIONS By revealing the existence of a YARS-PI3K-Akt signaling axis in gastric cancer, we discovered that tRNA synthetase YARS is a novel tumorigenic factor, characterized by its upregulation in tumor-derived specimens, as well as its functions in promoting gastric cancer progression.
Collapse
|
42
|
Kuo ME, Antonellis A. Ubiquitously Expressed Proteins and Restricted Phenotypes: Exploring Cell-Specific Sensitivities to Impaired tRNA Charging. Trends Genet 2019; 36:105-117. [PMID: 31839378 DOI: 10.1016/j.tig.2019.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/17/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022]
Abstract
Aminoacyl-tRNA synthetases (ARS) are ubiquitously expressed, essential enzymes that charge tRNA with cognate amino acids. Variants in genes encoding ARS enzymes lead to myriad human inherited diseases. First, missense alleles cause dominant peripheral neuropathy. Second, missense, nonsense, and frameshift alleles cause recessive multisystem disorders that differentially affect tissues depending on which ARS is mutated. A preponderance of evidence has shown that both phenotypic classes are associated with loss-of-function alleles, suggesting that tRNA charging plays a central role in disease pathogenesis. However, it is currently unclear how perturbation in the function of these ubiquitously expressed enzymes leads to tissue-specific or tissue-predominant phenotypes. Here, we review our current understanding of ARS-associated disease phenotypes and discuss potential explanations for the observed tissue specificity.
Collapse
Affiliation(s)
- Molly E Kuo
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA; Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
| | - Anthony Antonellis
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA; Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA; Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
43
|
Sundal C, Carmona S, Yhr M, Almström O, Ljungberg M, Hardy J, Hedberg-Oldfors C, Fred Å, Brás J, Oldfors A, Andersen O, Guerreiro R. An AARS variant as the likely cause of Swedish type hereditary diffuse leukoencephalopathy with spheroids. Acta Neuropathol Commun 2019; 7:188. [PMID: 31775912 PMCID: PMC6880494 DOI: 10.1186/s40478-019-0843-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022] Open
Abstract
Swedish type Hereditary Diffuse Leukoencephalopathy with Spheroids (HDLS-S) is a severe adult-onset leukoencephalopathy with the histopathological hallmark of neuraxonal degeneration with spheroids, described in a large family with a dominant inheritance pattern. The initial stage of the disease is dominated by frontal lobe symptoms that develop into a rapidly advancing encephalopathy with pyramidal, deep sensory, extrapyramidal and optic tract symptoms. Median survival is less than 10 years. Recently, pathogenic mutations in CSF1R were reported in a clinically and histologically similar leukoencephalopathy segregating in several families. Still, the cause of HDLS-S remained elusive since its initial description in 1984, with no CSF1R mutations identified in the family. Here we update the original findings associated with HDLS-S after a systematic and recent assessment of several family members. We also report the results from exome sequencing analyses indicating the p.Cys152Phe variant in the alanyl tRNA synthetase (AARS) gene as the probable cause of this disease. The variant affects an amino acid located in the aminoacylation domain of the protein and does not cause differences in splicing or expression in the brain. Brain pathology in one case after 10 years of disease duration showed the end stage of the disease to be characterized by widespread liquefaction of the white matter leaving only some macrophages and glial cells behind the centrifugally progressing front. These results point to AARS as a candidate gene for rapidly progressing adult-onset CSF1R-negative leukoencephalopathies.
Collapse
Affiliation(s)
- Christina Sundal
- Department of Clinical Neurology, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gröna Stråket 11, 3rd floor, Sahlgrenska University Hospital, 413 45, Göteborg, Sweden
| | - Susana Carmona
- Center for Neurodegenerative Science, Van Andel Institute, 333 Bostwick Ave. N.E, Grand Rapids, MI, 49503-2518, USA
| | - Maria Yhr
- Department of Laboratory Medicine, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Odd Almström
- Department of Clinical Neurology, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gröna Stråket 11, 3rd floor, Sahlgrenska University Hospital, 413 45, Göteborg, Sweden
| | - Maria Ljungberg
- Department of Radiation Physics, Institute of Clinical Sciences, the Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - John Hardy
- Department of Neurodegenerative Disease, Reta Lila Weston Laboratories, Queen Square Genomics, UCL Dementia Research Institute, London, UK
| | - Carola Hedberg-Oldfors
- Department of Laboratory Medicine, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Åsa Fred
- Department of Pathology, Hospital of Halland, Halmstad, Sweden
| | - José Brás
- Center for Neurodegenerative Science, Van Andel Institute, 333 Bostwick Ave. N.E, Grand Rapids, MI, 49503-2518, USA
- Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Anders Oldfors
- Department of Laboratory Medicine, Institute of Biomedicine, the Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Oluf Andersen
- Department of Clinical Neurology, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gröna Stråket 11, 3rd floor, Sahlgrenska University Hospital, 413 45, Göteborg, Sweden.
| | - Rita Guerreiro
- Center for Neurodegenerative Science, Van Andel Institute, 333 Bostwick Ave. N.E, Grand Rapids, MI, 49503-2518, USA.
- Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA.
| |
Collapse
|
44
|
Moss KR, Höke A. Targeting the programmed axon degeneration pathway as a potential therapeutic for Charcot-Marie-Tooth disease. Brain Res 2019; 1727:146539. [PMID: 31689415 DOI: 10.1016/j.brainres.2019.146539] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/24/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022]
Abstract
The programmed axon degeneration pathway has emerged as an important process contributing to the pathogenesis of several neurological diseases. The most crucial events in this pathway include activation of the central executioner SARM1 and NAD+ depletion, which leads to an energetic failure and ultimately axon destruction. Given the prevalence of this pathway, it is not surprising that inhibitory therapies are currently being developed in order to treat multiple neurological diseases with the same therapy. Charcot-Marie-Tooth disease (CMT) is a heterogeneous group of neurological diseases that may also benefit from this therapeutic approach. To evaluate the appropriateness of this strategy, the contribution of the programmed axon degeneration pathway to the pathogenesis of different CMT subtypes is being actively investigated. The subtypes CMT1A, CMT1B and CMT2D are the first to have been examined. Based on the results from these studies and advances in developing therapies to block the programmed axon degeneration pathway, promising therapeutics for CMT are now on the horizon.
Collapse
Affiliation(s)
- Kathryn R Moss
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Ahmet Höke
- Department of Neurology, Neuromuscular Division, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
45
|
He J, Guo L, Lin S, Chen W, Xu G, Cai B, Xu L, Hong J, Qiu L, Wang N, Chen W. ATP1A1mutations cause intermediate Charcot‐Marie‐Tooth disease. Hum Mutat 2019; 40:2334-2343. [DOI: 10.1002/humu.23886] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 06/18/2019] [Accepted: 07/30/2019] [Indexed: 12/26/2022]
Affiliation(s)
- Jin He
- Department of Neurology and Institute of Neurology, First Affiliated HospitalFujian Medical University Fuzhou China
- Fujian Key Laboratory of Molecular NeurologyFujian Medical University Fuzhou China
| | - Lingling Guo
- Department of Neurology and Institute of Neurology, First Affiliated HospitalFujian Medical University Fuzhou China
| | - Shan Lin
- Department of Neurology and Institute of Neurology, First Affiliated HospitalFujian Medical University Fuzhou China
| | - Wenfeng Chen
- Institute of Life SciencesFuzhou University Fuzhou China
| | - Guorong Xu
- Department of Neurology and Institute of Neurology, First Affiliated HospitalFujian Medical University Fuzhou China
| | - Bin Cai
- Department of Neurology and Institute of Neurology, First Affiliated HospitalFujian Medical University Fuzhou China
- Fujian Key Laboratory of Molecular NeurologyFujian Medical University Fuzhou China
| | - Liuqing Xu
- Department of Neurology and Institute of Neurology, First Affiliated HospitalFujian Medical University Fuzhou China
| | - Jingmei Hong
- Department of Neurology and Institute of Neurology, First Affiliated HospitalFujian Medical University Fuzhou China
| | - Liangliang Qiu
- Department of Neurology and Institute of Neurology, First Affiliated HospitalFujian Medical University Fuzhou China
| | - Ning Wang
- Department of Neurology and Institute of Neurology, First Affiliated HospitalFujian Medical University Fuzhou China
- Fujian Key Laboratory of Molecular NeurologyFujian Medical University Fuzhou China
| | - Wanjin Chen
- Department of Neurology and Institute of Neurology, First Affiliated HospitalFujian Medical University Fuzhou China
- Fujian Key Laboratory of Molecular NeurologyFujian Medical University Fuzhou China
| |
Collapse
|
46
|
Weterman MAJ, Kuo M, Kenter SB, Gordillo S, Karjosukarso DW, Takase R, Bronk M, Oprescu S, van Ruissen F, Witteveen RJW, Bienfait HME, Breuning M, Verhamme C, Hou YM, de Visser M, Antonellis A, Baas F. Hypermorphic and hypomorphic AARS alleles in patients with CMT2N expand clinical and molecular heterogeneities. Hum Mol Genet 2019; 27:4036-4050. [PMID: 30124830 DOI: 10.1093/hmg/ddy290] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 08/04/2018] [Indexed: 01/08/2023] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) are ubiquitously expressed enzymes implicated in several dominant and recessive disease phenotypes. The canonical function of ARSs is to couple an amino acid to a cognate transfer RNA (tRNA). We identified three novel disease-associated missense mutations in the alanyl-tRNA synthetase (AARS) gene in three families with dominant axonal Charcot-Marie-Tooth (CMT) disease. Two mutations (p.Arg326Trp and p.Glu337Lys) are located near a recurrent pathologic change in AARS, p.Arg329His. The third (p.Ser627Leu) is in the editing domain of the protein in which hitherto only mutations associated with recessive encephalopathies have been described. Yeast complementation assays demonstrated that two mutations (p.Ser627Leu and p.Arg326Trp) represent loss-of-function alleles, while the third (p.Glu337Lys) represents a hypermorphic allele. Further, aminoacylation assays confirmed that the third mutation (p.Glu337Lys) increases tRNA charging velocity. To test the effect of each mutation in the context of a vertebrate nervous system, we developed a zebrafish assay. Remarkably, all three mutations caused a pathological phenotype of neural abnormalities when expressed in zebrafish, while expression of the human wild-type messenger RNA (mRNA) did not. Our data indicate that not only functional null or hypomorphic alleles, but also hypermorphic AARS alleles can cause dominantly inherited axonal CMT disease.
Collapse
Affiliation(s)
- Marian A J Weterman
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Molly Kuo
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA.,Medical Scientist Training Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Susan B Kenter
- Department of Clinical Genetics and Genome Analysis, Academic Medical Center, Amsterdam, Netherlands
| | - Sara Gordillo
- Department of Clinical Genetics and Genome Analysis, Academic Medical Center, Amsterdam, Netherlands
| | - Dyah W Karjosukarso
- Department of Clinical Genetics and Genome Analysis, Academic Medical Center, Amsterdam, Netherlands
| | - Ryuichi Takase
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, USA
| | - Marieke Bronk
- Department of Clinical Genetics and Genome Analysis, Academic Medical Center, Amsterdam, Netherlands
| | - Stephanie Oprescu
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Fred van Ruissen
- Department of Clinical Genetics and Genome Analysis, Academic Medical Center, Amsterdam, Netherlands
| | | | | | - Martijn Breuning
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Camiel Verhamme
- Department of Neurology, Academic Medical Center, Amsterdam, Netherlands
| | - Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, USA
| | - Marianne de Visser
- Department of Neurology, Academic Medical Center, Amsterdam, Netherlands
| | - Anthony Antonellis
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA.,Department of Neurology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Frank Baas
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
47
|
Hyeon DY, Kim JH, Ahn TJ, Cho Y, Hwang D, Kim S. Evolution of the multi-tRNA synthetase complex and its role in cancer. J Biol Chem 2019; 294:5340-5351. [PMID: 30782841 PMCID: PMC6462501 DOI: 10.1074/jbc.rev118.002958] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) are enzymes that ligate their cognate amino acids to tRNAs for protein synthesis. However, recent studies have shown that their functions are expanded beyond protein synthesis through the interactions with diverse cellular factors. In this review, we discuss how ARSs have evolved to expand and control their functions by forming protein assemblies. We particularly focus on a macromolecular ARS complex in eukaryotes, named multi-tRNA synthetase complex (MSC), which is proposed to provide a channel through which tRNAs reach bound ARSs to receive their cognate amino acid and transit further to the translation machinery. Approximately half of the ARSs assemble into the MSC through cis-acting noncatalytic domains attached to their catalytic domains and trans-acting factors. Evolution of the MSC included its functional expansion, during which the MSC interaction network was augmented by additional cellular pathways present in higher eukaryotes. We also discuss MSC components that could be functionally involved in the pathophysiology of tumorigenesis. For example, the activities of some trans-acting factors have tumor-suppressing effects or maintain DNA integrity and are functionally compromised in cancer. On the basis of Gene Ontology analyses, we propose that the regulatory activities of the MSC-associated ARSs mainly converge on five biological processes, including mammalian target of rapamycin (mTOR) and DNA repair pathways. Future studies are needed to investigate how the MSC-associated and free-ARSs interact with each other and other factors in the control of multiple cellular pathways, and how aberrant or disrupted interactions in the MSC can cause disease.
Collapse
Affiliation(s)
- Do Young Hyeon
- From the Center for Plant Aging Research, Institute for Basic Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873
| | - Jong Hyun Kim
- the Medicinal Bioconvergence Research Center and
- Department of Molecular Medicine and Biopharmaceutical Sciences, College of Pharmacy and Graduate School of Convergence Technologies, Seoul National University, Seoul 151-742
| | - Tae Jin Ahn
- the Handong Global University, Nehemiah 316, Handong-ro 558, Pohang, and
| | - Yeshin Cho
- the Handong Global University, Nehemiah 316, Handong-ro 558, Pohang, and
| | - Daehee Hwang
- From the Center for Plant Aging Research, Institute for Basic Science, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873,
- the Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 711-873, Republic of Korea
| | - Sunghoon Kim
- the Medicinal Bioconvergence Research Center and
- Department of Molecular Medicine and Biopharmaceutical Sciences, College of Pharmacy and Graduate School of Convergence Technologies, Seoul National University, Seoul 151-742
| |
Collapse
|
48
|
Friedman J, Smith DE, Issa MY, Stanley V, Wang R, Mendes MI, Wright MS, Wigby K, Hildreth A, Crawford JR, Koehler AE, Chowdhury S, Nahas S, Zhai L, Xu Z, Lo WS, James KN, Musaev D, Accogli A, Guerrero K, Tran LT, Omar TEI, Ben-Omran T, Dimmock D, Kingsmore SF, Salomons GS, Zaki MS, Bernard G, Gleeson JG. Biallelic mutations in valyl-tRNA synthetase gene VARS are associated with a progressive neurodevelopmental epileptic encephalopathy. Nat Commun 2019; 10:707. [PMID: 30755602 PMCID: PMC6372641 DOI: 10.1038/s41467-018-07067-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 10/03/2018] [Indexed: 12/27/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) function to transfer amino acids to cognate tRNA molecules, which are required for protein translation. To date, biallelic mutations in 31 ARS genes are known to cause recessive, early-onset severe multi-organ diseases. VARS encodes the only known valine cytoplasmic-localized aminoacyl-tRNA synthetase. Here, we report seven patients from five unrelated families with five different biallelic missense variants in VARS. Subjects present with a range of global developmental delay, epileptic encephalopathy and primary or progressive microcephaly. Longitudinal assessment demonstrates progressive cortical atrophy and white matter volume loss. Variants map to the VARS tRNA binding domain and adjacent to the anticodon domain, and disrupt highly conserved residues. Patient primary cells show intact VARS protein but reduced enzymatic activity, suggesting partial loss of function. The implication of VARS in pediatric neurodegeneration broadens the spectrum of human diseases due to mutations in tRNA synthetase genes.
Collapse
Affiliation(s)
- Jennifer Friedman
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
- Division of Child Neurology, Rady Children's Hospital, San Diego, CA, 92123, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, 92123, USA
| | - Desiree E Smith
- Department of Clinical Chemistry, Metabolic Unit, Amsterdam UMC (University Medical Centers), Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Gastroenterology & Metabolism Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands
| | - Mahmoud Y Issa
- Department of Clinical Genetics, National Research Centre, Cairo, 12311, Egypt
| | - Valentina Stanley
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Rengang Wang
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Marisa I Mendes
- Department of Clinical Chemistry, Metabolic Unit, Amsterdam UMC (University Medical Centers), Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Gastroenterology & Metabolism Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands
| | - Meredith S Wright
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, 92123, USA
| | - Kristen Wigby
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, 92123, USA
| | - Amber Hildreth
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, 92123, USA
| | - John R Crawford
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
- Division of Child Neurology, Rady Children's Hospital, San Diego, CA, 92123, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA
| | - Alanna E Koehler
- Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Shimul Chowdhury
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, 92123, USA
| | - Shareef Nahas
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, 92123, USA
| | - Liting Zhai
- IAS HKUST-Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zhiwen Xu
- IAS HKUST-Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Pangu Biopharma, Edinburgh Tower, The Landmark, 15 Queen's Road Central, Hong Kong, China
| | - Wing-Sze Lo
- IAS HKUST-Scripps R&D Laboratory, Institute for Advanced Study, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Pangu Biopharma, Edinburgh Tower, The Landmark, 15 Queen's Road Central, Hong Kong, China
| | - Kiely N James
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Damir Musaev
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Andrea Accogli
- Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, H3A 0G4, Canada
- IRCCS Istituto Giannina Gaslini, Genova, 16147, Italy
| | - Kether Guerrero
- Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, H3A 0G4, Canada
- Division of Medical Genetics, Montreal Children's Hospital, McGill University Health Center, Montreal, H4A 3J1, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, H4A 3J1, Canada
| | - Luan T Tran
- Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, H3A 0G4, Canada
- Division of Medical Genetics, Montreal Children's Hospital, McGill University Health Center, Montreal, H4A 3J1, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, H4A 3J1, Canada
| | - Tarek E I Omar
- Department of Pediatrics, Alexandria University, Alexandria, 21526, Egypt
| | - Tawfeg Ben-Omran
- Clinical and Metabolic Genetics, Department of Pediatrics, Hamad Medical Corporation, 3050, Doha, Qatar
| | - David Dimmock
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, 92123, USA
| | - Stephen F Kingsmore
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, 92123, USA
| | - Gajja S Salomons
- Department of Clinical Chemistry, Metabolic Unit, Amsterdam UMC (University Medical Centers), Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
- Gastroenterology & Metabolism Amsterdam Neuroscience, 1081 HV, Amsterdam, The Netherlands
| | - Maha S Zaki
- Department of Clinical Genetics, National Research Centre, Cairo, 12311, Egypt
| | - Geneviève Bernard
- Departments of Neurology and Neurosurgery, Pediatrics and Human Genetics, McGill University, Montreal, H3A 0G4, Canada
- Division of Medical Genetics, Montreal Children's Hospital, McGill University Health Center, Montreal, H4A 3J1, Canada
- Child Health and Human Development Program, Research Institute of the McGill University Health Center, Montreal, H4A 3J1, Canada
| | - Joseph G Gleeson
- Department of Neurosciences, University of California San Diego, La Jolla, CA, 92093, USA.
- Division of Child Neurology, Rady Children's Hospital, San Diego, CA, 92123, USA.
- Department of Pediatrics, University of California San Diego, La Jolla, CA, 92093, USA.
- Rady Children's Institute for Genomic Medicine, Rady Children's Hospital, San Diego, CA, 92123, USA.
- Department of Neurosciences, Howard Hughes Medical Institute, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
49
|
Dankwa L, Richardson J, Motley WW, Scavina M, Courel S, Bardakjian T, Züchner S, Scherer SS. A novel MFN2 mutation causes variable clinical severity in a multi-generational CMT2 family. Neuromuscul Disord 2019; 29:134-137. [PMID: 30642740 PMCID: PMC6415944 DOI: 10.1016/j.nmd.2018.12.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 01/24/2023]
Abstract
Dominant mutations in MFN2 cause a range of phenotypes, including severe, early-onset axonal neuropathy, "classical CMT2", and late-onset axonal neuropathy. We found a novel MFN2 mutation - c.283A>G (p.Arg95Gly) - that results in an axonal neuropathy with variable clinical severity in a multigenerational family. In affected family members, electromyography showed moderate to severe, chronic denervation in distal muscles. Such variable clinical severity highlights the need to do careful assessments of at risk individuals when assessing MFN2 variants.
Collapse
Affiliation(s)
- Lois Dankwa
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica Richardson
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - William W Motley
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Mena Scavina
- Department of Neurology, Nemours Alfred I. duPont Hospital for Children, Wilmington, DE 19803, USA
| | - Steve Courel
- Department of Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, FL 33136, USA
| | - Tanya Bardakjian
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Stephan Züchner
- Department of Human Genetics and Hussman Institute for Human Genomics, University of Miami, Miami, FL 33136, USA
| | - Steven S Scherer
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
50
|
Wei N, Zhang Q, Yang XL. Neurodegenerative Charcot-Marie-Tooth disease as a case study to decipher novel functions of aminoacyl-tRNA synthetases. J Biol Chem 2019; 294:5321-5339. [PMID: 30643024 DOI: 10.1074/jbc.rev118.002955] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aminoacyl-tRNA synthetases (aaRSs) are essential enzymes that catalyze the first reaction in protein biosynthesis, namely the charging of transfer RNAs (tRNAs) with their cognate amino acids. aaRSs have been increasingly implicated in dominantly and recessively inherited human diseases. The most common aaRS-associated monogenic disorder is the incurable neurodegenerative disease Charcot-Marie-Tooth neuropathy (CMT), caused by dominant mono-allelic mutations in aaRSs. With six currently known members (GlyRS, TyrRS, AlaRS, HisRS, TrpRS, and MetRS), aaRSs represent the largest protein family implicated in CMT etiology. After the initial discovery linking aaRSs to CMT, the field has progressed from understanding whether impaired tRNA charging is a critical component of this disease to elucidating the specific pathways affected by CMT-causing mutations in aaRSs. Although many aaRS CMT mutants result in loss of tRNA aminoacylation function, animal genetics studies demonstrated that dominant mutations in GlyRS cause CMT through toxic gain-of-function effects, which also may apply to other aaRS-linked CMT subtypes. The CMT-causing mechanism is likely to be multifactorial and involves multiple cellular compartments, including the nucleus and the extracellular space, where the normal WT enzymes also appear. Thus, the association of aaRSs with neuropathy is relevant to discoveries indicating that aaRSs also have nonenzymatic regulatory functions that coordinate protein synthesis with other biological processes. Through genetic, functional, and structural analyses, commonalities among different mutations and different aaRS-linked CMT subtypes have begun to emerge, providing insights into the nonenzymatic functions of aaRSs and the pathogenesis of aaRS-linked CMT to guide therapeutic development to treat this disease.
Collapse
Affiliation(s)
- Na Wei
- From the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - Qian Zhang
- From the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037
| | - Xiang-Lei Yang
- From the Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037
| |
Collapse
|