1
|
Legebeke J, Wheway G, Baker L, Wai HA, Walker WT, Thomas NS, Coles J, Jackson CL, Holloway JW, Lucas JS, Baralle D. Uplift of genetic diagnosis of rare respiratory disease using airway epithelium transcriptome analysis. Hum Mol Genet 2025; 34:148-160. [PMID: 39536325 PMCID: PMC11780860 DOI: 10.1093/hmg/ddae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/01/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024] Open
Abstract
Rare genetic respiratory disease has an incidence rate of more than 1:2500 live births in Northern Europe and carries significant disease burden. Early diagnosis improves outcomes, but many individuals remain without a confident genetic diagnosis. Improved and expanded molecular testing methods are required to improve genetic diagnosis rates and thereby improve clinical outcomes. Using primary ciliary dyskinesia (PCD) as an exemplar rare genetic respiratory disease, we developed a standardized method to identify pathogenic variants using whole transcriptome RNA-sequencing (RNA-seq) of nasal epithelial cells cultured at air-liquid interface (ALI). The method was optimized using cells from healthy volunteers, and people with rhino-pulmonary disease but no diagnostic indication of PCD. We validated the method using nasal epithelial cells from PCD patients with known genetic cause. We then assessed the ability of RNA-seq to identify pathogenic variants and the disease mechanism in PCD likely patients but in whom DNA genetic testing was inconclusive. The majority of 49 targeted PCD genes were optimally identified in RNA-seq data from nasal epithelial cells grown for 21 days at ALI culture. Four PCD-likely patients without a previous genetic diagnosis received a confirmed genetic diagnosis from the findings of the RNA-seq data. We demonstrate the clinical potential of RNA-seq of nasal epithelial cells to identify variants in individuals with genetically unsolved PCD. This uplifted genetic diagnosis should improve genetic counselling, enables family cascade screening, opens the door to potential personalised treatment and care approaches. This methodology could be implemented in other rare lung diseases such as cystic fibrosis.
Collapse
Affiliation(s)
- Jelmer Legebeke
- School of Human Development and Health, Institute for Developmental Sciences Building, Tremona Road, Southampton, Hampshire SO16 6YD, United Kingdom
- NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Tremona Road, Southampton, Hampshire SO16 6YD, United Kingdom
| | - Gabrielle Wheway
- School of Human Development and Health, Institute for Developmental Sciences Building, Tremona Road, Southampton, Hampshire SO16 6YD, United Kingdom
- NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Tremona Road, Southampton, Hampshire SO16 6YD, United Kingdom
| | - Lee Baker
- School of Human Development and Health, Institute for Developmental Sciences Building, Tremona Road, Southampton, Hampshire SO16 6YD, United Kingdom
- NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Tremona Road, Southampton, Hampshire SO16 6YD, United Kingdom
- School of Clinical and Experimental Sciences, Southampton General Hospital, Tremona Road, Southampton, Hampshire SO16 6YD, United Kingdom
| | - Htoo A Wai
- School of Human Development and Health, Institute for Developmental Sciences Building, Tremona Road, Southampton, Hampshire SO16 6YD, United Kingdom
| | - Woolf T Walker
- NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Tremona Road, Southampton, Hampshire SO16 6YD, United Kingdom
- School of Clinical and Experimental Sciences, Southampton General Hospital, Tremona Road, Southampton, Hampshire SO16 6YD, United Kingdom
- PCD Diagnostic Centre, Southampton General Hospital, Tremona Road, Southampton, Hampshire SO16 6YD, United Kingdom
| | - N Simon Thomas
- School of Human Development and Health, Institute for Developmental Sciences Building, Tremona Road, Southampton, Hampshire SO16 6YD, United Kingdom
- Wessex Genomics Laboratory Service, Salisbury District Hospital, Odstock Road, Salisbury, Wiltshire SP2 8BJ, United Kingdom
| | - Janice Coles
- NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Tremona Road, Southampton, Hampshire SO16 6YD, United Kingdom
- School of Clinical and Experimental Sciences, Southampton General Hospital, Tremona Road, Southampton, Hampshire SO16 6YD, United Kingdom
- PCD Diagnostic Centre, Southampton General Hospital, Tremona Road, Southampton, Hampshire SO16 6YD, United Kingdom
| | - Claire L Jackson
- NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Tremona Road, Southampton, Hampshire SO16 6YD, United Kingdom
- School of Clinical and Experimental Sciences, Southampton General Hospital, Tremona Road, Southampton, Hampshire SO16 6YD, United Kingdom
- PCD Diagnostic Centre, Southampton General Hospital, Tremona Road, Southampton, Hampshire SO16 6YD, United Kingdom
| | - John W Holloway
- School of Human Development and Health, Institute for Developmental Sciences Building, Tremona Road, Southampton, Hampshire SO16 6YD, United Kingdom
- NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Tremona Road, Southampton, Hampshire SO16 6YD, United Kingdom
| | - Jane S Lucas
- NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Tremona Road, Southampton, Hampshire SO16 6YD, United Kingdom
- School of Clinical and Experimental Sciences, Southampton General Hospital, Tremona Road, Southampton, Hampshire SO16 6YD, United Kingdom
- PCD Diagnostic Centre, Southampton General Hospital, Tremona Road, Southampton, Hampshire SO16 6YD, United Kingdom
| | - Diana Baralle
- School of Human Development and Health, Institute for Developmental Sciences Building, Tremona Road, Southampton, Hampshire SO16 6YD, United Kingdom
- NIHR Southampton Biomedical Research Centre, Southampton Centre for Biomedical Research, Tremona Road, Southampton, Hampshire SO16 6YD, United Kingdom
| |
Collapse
|
2
|
Fleming A, Galey M, Briggs L, Edwards M, Hogg C, John S, Wilkinson S, Quinn E, Rai R, Burgoyne T, Rogers A, Patel MP, Griffin P, Muller S, Carr SB, Loebinger MR, Lucas JS, Shah A, Jose R, Mitchison HM, Shoemark A, Miller DE, Morris-Rosendahl DJ. Combined approaches, including long-read sequencing, address the diagnostic challenge of HYDIN in primary ciliary dyskinesia. Eur J Hum Genet 2024; 32:1074-1085. [PMID: 38605126 PMCID: PMC11369241 DOI: 10.1038/s41431-024-01599-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Primary ciliary dyskinesia (PCD), a disorder of the motile cilia, is now recognised as an underdiagnosed cause of bronchiectasis. Accurate PCD diagnosis comprises clinical assessment, analysis of cilia and the identification of biallelic variants in one of 50 known PCD-related genes, including HYDIN. HYDIN-related PCD is underdiagnosed due to the presence of a pseudogene, HYDIN2, with 98% sequence homology to HYDIN. This presents a significant challenge for Short-Read Next Generation Sequencing (SR-NGS) and analysis, and many diagnostic PCD gene panels do not include HYDIN. We have used a combined approach of SR-NGS with bioinformatic masking of HYDIN2, and state-of-the-art long-read Nanopore sequencing (LR_NGS), together with analysis of respiratory cilia including transmission electron microscopy and immunofluorescence to address the underdiagnosis of HYDIN as a cause of PCD. Bioinformatic masking of HYDIN2 after SR-NGS facilitated the detection of biallelic HYDIN variants in 15 of 437 families, but compromised the detection of copy number variants. Supplementing testing with LR-NGS detected HYDIN deletions in 2 families, where SR-NGS had detected a single heterozygous HYDIN variant. LR-NGS was also able to confirm true homozygosity in 2 families when parental testing was not possible. Utilising a combined genomic diagnostic approach, biallelic HYDIN variants were detected in 17 families from 242 genetically confirmed PCD cases, comprising 7% of our PCD cohort. This represents the largest reported HYDIN cohort to date and highlights previous underdiagnosis of HYDIN-associated PCD. Moreover this provides further evidence for the utility of LR-NGS in diagnostic testing, particularly for regions of high genomic complexity.
Collapse
Affiliation(s)
- Andrew Fleming
- Clinical Genetics and Genomics Laboratory, Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, SW3 6NP, UK
| | - Miranda Galey
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington and Seattle Children's Hospital, Seattle, WA, 98105, USA
| | - Lizi Briggs
- Clinical Genetics and Genomics Laboratory, Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, SW3 6NP, UK
| | - Matthew Edwards
- Clinical Genetics and Genomics Laboratory, Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, SW3 6NP, UK
| | - Claire Hogg
- Primary Ciliary Dyskinesia Centre, Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London, SW3 6NP, UK
- National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Shibu John
- Clinical Genetics and Genomics Laboratory, Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, SW3 6NP, UK
| | - Sam Wilkinson
- Clinical Genetics and Genomics Laboratory, Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, SW3 6NP, UK
| | - Ellie Quinn
- Clinical Genetics and Genomics Laboratory, Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, SW3 6NP, UK
| | - Ranjit Rai
- Primary Ciliary Dyskinesia Centre, Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London, SW3 6NP, UK
| | - Tom Burgoyne
- Primary Ciliary Dyskinesia Centre, Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London, SW3 6NP, UK
- Genetics and Genomic Medicine Department, University College London, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
| | - Andy Rogers
- Primary Ciliary Dyskinesia Centre, Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London, SW3 6NP, UK
| | - Mitali P Patel
- Genetics and Genomic Medicine Department, University College London, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
- MRC Prion Unit at UCL, Institute of Prion Diseases, UCL, London, W1W 7FF, UK
| | - Paul Griffin
- Primary Ciliary Dyskinesia Centre, Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London, SW3 6NP, UK
| | - Steven Muller
- Clinical Genetics and Genomics Laboratory, Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, SW3 6NP, UK
| | - Siobhan B Carr
- Primary Ciliary Dyskinesia Centre, Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London, SW3 6NP, UK
- National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Michael R Loebinger
- Primary Ciliary Dyskinesia Centre, Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London, SW3 6NP, UK
- National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK
| | - Jane S Lucas
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
- Clinical and Experimental Sciences Academic Unit, University of Southampton Faculty of Medicine, Southampton, SO16 6YD, UK
| | - Anand Shah
- Primary Ciliary Dyskinesia Centre, Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London, SW3 6NP, UK
- MRC Centre of Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, W2 1PG, UK
| | - Ricardo Jose
- Primary Ciliary Dyskinesia Centre, Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London, SW3 6NP, UK
| | - Hannah M Mitchison
- Genetics and Genomic Medicine Department, University College London, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK
- MRC Prion Unit at UCL, Institute of Prion Diseases, UCL, London, W1W 7FF, UK
| | - Amelia Shoemark
- Primary Ciliary Dyskinesia Centre, Royal Brompton and Harefield Clinical Group, Guy's and St. Thomas' NHS Foundation Trust, London, SW3 6NP, UK
- Respiratory Research Group, Molecular and Cellular Medicine, University of Dundee, Dundee, DD1 9SY, UK
| | - Danny E Miller
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington and Seattle Children's Hospital, Seattle, WA, 98105, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Deborah J Morris-Rosendahl
- Clinical Genetics and Genomics Laboratory, Royal Brompton and Harefield Hospitals, Guy's and St. Thomas' NHS Foundation Trust, London, SW3 6NP, UK.
- National Heart and Lung Institute, Imperial College London, London, SW3 6LY, UK.
| |
Collapse
|
3
|
Pir MS, Begar E, Yenisert F, Demirci HC, Korkmaz ME, Karaman A, Tsiropoulou S, Firat-Karalar EN, Blacque OE, Oner SS, Doluca O, Cevik S, Kaplan OI. CilioGenics: an integrated method and database for predicting novel ciliary genes. Nucleic Acids Res 2024; 52:8127-8145. [PMID: 38989623 DOI: 10.1093/nar/gkae554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/21/2024] [Accepted: 07/09/2024] [Indexed: 07/12/2024] Open
Abstract
Uncovering the full list of human ciliary genes holds enormous promise for the diagnosis of cilia-related human diseases, collectively known as ciliopathies. Currently, genetic diagnoses of many ciliopathies remain incomplete (1-3). While various independent approaches theoretically have the potential to reveal the entire list of ciliary genes, approximately 30% of the genes on the ciliary gene list still stand as ciliary candidates (4,5). These methods, however, have mainly relied on a single strategy to uncover ciliary candidate genes, making the categorization challenging due to variations in quality and distinct capabilities demonstrated by different methodologies. Here, we develop a method called CilioGenics that combines several methodologies (single-cell RNA sequencing, protein-protein interactions (PPIs), comparative genomics, transcription factor (TF) network analysis, and text mining) to predict the ciliary capacity of each human gene. Our combined approach provides a CilioGenics score for every human gene that represents the probability that it will become a ciliary gene. Compared to methods that rely on a single method, CilioGenics performs better in its capacity to predict ciliary genes. Our top 500 gene list includes 258 new ciliary candidates, with 31 validated experimentally by us and others. Users may explore the whole list of human genes and CilioGenics scores on the CilioGenics database (https://ciliogenics.com/).
Collapse
Affiliation(s)
- Mustafa S Pir
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkiye
| | - Efe Begar
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkiye
| | - Ferhan Yenisert
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkiye
| | - Hasan C Demirci
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkiye
| | - Mustafa E Korkmaz
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkiye
| | - Asli Karaman
- Istanbul Medeniyet University, Science and Advanced Technologies Research Center (BILTAM), 34700 Istanbul, Turkiye
| | - Sofia Tsiropoulou
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Elif Nur Firat-Karalar
- Department of Molecular Biology and Genetics, Koc University, Istanbul 34450, Turkiye
- School of Medicine, Koç University, Istanbul 34450, Turkiye
| | - Oliver E Blacque
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sukru S Oner
- Istanbul Medeniyet University, Science and Advanced Technologies Research Center (BILTAM), 34700 Istanbul, Turkiye
- Goztepe Prof. Dr. Suleyman Yalcin City Hospital, Istanbul, Turkiye
| | - Osman Doluca
- Izmir University of Economics, Faculty of Engineering, Department of Biomedical Engineering, Izmir, Turkiye
| | - Sebiha Cevik
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkiye
| | - Oktay I Kaplan
- Rare Disease Laboratory, School of Life and Natural Sciences, Abdullah Gul University, Kayseri, Turkiye
| |
Collapse
|
4
|
Oh J, Lee JS, Park MS, Kang YA, Cho HJ, Kim SY, Jung J, Yoon SO, Kim KW. Diagnosis of Primary Ciliary Dyskinesia via Whole Exome Sequencing and Histologic Findings. Yonsei Med J 2024; 65:48-54. [PMID: 38154480 PMCID: PMC10774650 DOI: 10.3349/ymj.2023.0238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/07/2023] [Accepted: 10/10/2023] [Indexed: 12/30/2023] Open
Abstract
PURPOSE To assess the diagnostic potential of whole-exome sequencing (WES) and elucidate the clinical and genetic characteristics of primary ciliary dyskinesia (PCD) in the Korean population. MATERIALS AND METHODS Forty-seven patients clinically suspected of having PCD were enrolled at a tertiary medical center. WES was performed in all patients, and seven patients received biopsy of cilia and transmission electron microscopy (TEM). RESULTS Overall, PCD was diagnosed in 10 (21.3%) patients: eight by WES (8/47, 17%), four by TEM. Among patients diagnosed as PCD based on TEM results, two patients showed consistent results with WES and TEM of PCD (2/4, 50%). In addition, five patients, who were not included in the final PCD diagnosis group, had variants of unknown significance in PCD-related genes (5/47, 10.6%). The most frequent pathogenic (P)/likely pathogenic (LP) variants were detected in DNAH11 (n=4, 21.1%), DRC1 (n=4, 21.1%), and DNAH5 (n=4, 21.1%). Among the detected 17 P/LP variants in PCD-related genes in this study, 8 (47.1%) were identified as novel variants. Regarding the genotype-phenotype correlation in this study, the authors experienced severe PCD cases caused by the LP/P variants in MCIDAS, DRC1, and CCDC39. CONCLUSION Through this study, we were able to confirm the value of WES as one of the diagnostic tools for PCD, which increases with TEM, rather than single gene tests. These results will prove useful to hospitals with limited access to PCD diagnostic testing but with relatively efficient in-house or outsourced access to genetic testing at a pre-symptomatic or early disease stage.
Collapse
Affiliation(s)
- Jiyoung Oh
- Division of Clinical Genetics, Department of Pediatrics, Yonsei University College of Medicine, Severance Children's Hospital, Seoul, Korea
| | - Jin-Sung Lee
- Center for Precision Medicine, Incheon Sejong Hospital, Seoul, Korea
| | - Moo Suk Park
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Young Ae Kang
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hyung-Ju Cho
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| | - Song Yee Kim
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Jinsei Jung
- Department of Otorhinolaryngology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, Korea
| | - Sun Och Yoon
- Department of Pathology, Yonsei University College of Medicine, Severance Hospital, Seoul, Korea
| | - Kyung Won Kim
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
5
|
Dong L, Zhang L, Li X, Mei S, Shen Y, Fu L, Zhao S, Tang X, Tang Y. Clinical and genetic analysis of two patients with primary ciliary dyskinesia caused by a novel variant of DNAAF2. BMC Pediatr 2023; 23:616. [PMID: 38053031 PMCID: PMC10696777 DOI: 10.1186/s12887-023-04185-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/08/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND The study describes the clinical manifestations and variant screening of two Chinese siblings with primary ciliary dyskinesia (PCD). They carry the same DNAAF2 genotype, which is an extremely rare PCD genotype in the Chinese population. In addition, the study illustrated an overview of published variants on DNAAF2 to date. METHODS A two-child family was recruited for the study. Clinical manifestations, laboratory tests, bronchoscopic and otoscopic images, and radiographic data were collected. Whole blood was collected from siblings and their parents for whole-exome sequencing (WES) and Sanger sequencing to screen variants. RESULTS The two siblings exhibited typical clinical manifestations of PCD. Two compound heterozygous variants in DNAAF2 were detected in both by WES. Nonsense variant c.156 C>A and frameshift variant c.177_178insA, which was a novel variant. CONCLUSION The study identified a novel variant of DNAAF2 in Chinese children with a typical phenotype of PCD, which may enrich our knowledge of the clinical, diagnostic and genetic information of DNAAF2-induced PCD in children.
Collapse
Affiliation(s)
- Lili Dong
- Department of Respiratory Medicine, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Lei Zhang
- Department of Respiratory Medicine, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Xiao Li
- Department of Respiratory Medicine, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Shiyue Mei
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Yuelin Shen
- Department of Respiratory Medicine, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China
- Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Libing Fu
- Department of Pathology, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Shunying Zhao
- Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China
| | - Xiaolei Tang
- Department of Respiratory Medicine, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China.
- Department of Respiratory Medicine, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, China.
| | - Yu Tang
- Department of Respiratory Medicine, Children's Hospital Affiliated to Zhengzhou University, Henan Children's Hospital, Zhengzhou Children's Hospital, Zhengzhou, China.
| |
Collapse
|
6
|
Staar BO, Hegermann J, Auber B, Ewen R, von Hardenberg S, Olmer R, Pink I, Rademacher J, Wetzke M, Ringshausen FC. Ciliary Ultrastructure Assessed by Transmission Electron Microscopy in Adults with Bronchiectasis and Suspected Primary Ciliary Dyskinesia but Inconclusive Genotype. Cells 2023; 12:2651. [PMID: 37998386 PMCID: PMC10670349 DOI: 10.3390/cells12222651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
Whole-exome sequencing has expedited the diagnostic work-up of primary ciliary dyskinesia (PCD), when used in addition to clinical phenotype and nasal nitric oxide. However, it reveals variants of uncertain significance (VUS) in established PCD genes or (likely) pathogenic variants in genes of uncertain significance in approximately 30% of tested individuals. We aimed to assess genotype-phenotype correlations in adults with bronchiectasis, clinical suspicion of PCD, and inconclusive whole-exome sequencing results using transmission electron microscopy (TEM) and ciliary image averaging by the PCD Detect software. We recruited 16 patients with VUS in CCDC39, CCDC40, CCDC103, DNAH5, DNAH5/CCDC40, DNAH8/HYDIN, DNAH11, and DNAI1 as well as variants in the PCD candidate genes DNAH1, DNAH7, NEK10, and NME5. We found normal ciliary ultrastructure in eight patients with VUS in CCDC39, DNAH1, DNAH7, DNAH8/HYDIN, DNAH11, and DNAI1. In six patients with VUS in CCDC40, CCDC103, DNAH5, and DNAI1, we identified a corresponding ultrastructural hallmark defect. In one patient with homozygous variant in NME5, we detected a central complex defect supporting clinical relevance. Using TEM as a targeted approach, we established important genotype-phenotype correlations and definite PCD in a considerable proportion of patients. Overall, the PCD Detect software proved feasible in support of TEM.
Collapse
Affiliation(s)
- Ben O. Staar
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School (MHH), 30625 Hannover, Germany; (B.O.S.); (R.E.); (I.P.); (J.R.)
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (J.H.); (R.O.); (M.W.)
- European Reference Network for Rare and Complex Lung Diseases (ERN-LUNG), 60596 Frankfurt am Main, Germany
| | - Jan Hegermann
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (J.H.); (R.O.); (M.W.)
- Research Core Unit Electron Microscopy, Institute of Functional and Applied Anatomy, Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Bernd Auber
- Department of Human Genetics, Hannover Medical School (MHH), 30625 Hannover, Germany; (B.A.); (S.v.H.)
| | - Raphael Ewen
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School (MHH), 30625 Hannover, Germany; (B.O.S.); (R.E.); (I.P.); (J.R.)
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (J.H.); (R.O.); (M.W.)
- European Reference Network for Rare and Complex Lung Diseases (ERN-LUNG), 60596 Frankfurt am Main, Germany
| | - Sandra von Hardenberg
- Department of Human Genetics, Hannover Medical School (MHH), 30625 Hannover, Germany; (B.A.); (S.v.H.)
| | - Ruth Olmer
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (J.H.); (R.O.); (M.W.)
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery (HTTG), Hannover Medical School (MHH), 30625 Hannover, Germany
- REBIRTH—Research Center for Translational and Regenerative Medicine, Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Isabell Pink
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School (MHH), 30625 Hannover, Germany; (B.O.S.); (R.E.); (I.P.); (J.R.)
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (J.H.); (R.O.); (M.W.)
- European Reference Network for Rare and Complex Lung Diseases (ERN-LUNG), 60596 Frankfurt am Main, Germany
| | - Jessica Rademacher
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School (MHH), 30625 Hannover, Germany; (B.O.S.); (R.E.); (I.P.); (J.R.)
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (J.H.); (R.O.); (M.W.)
- European Reference Network for Rare and Complex Lung Diseases (ERN-LUNG), 60596 Frankfurt am Main, Germany
| | - Martin Wetzke
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (J.H.); (R.O.); (M.W.)
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Felix C. Ringshausen
- Department of Respiratory Medicine and Infectious Diseases, Hannover Medical School (MHH), 30625 Hannover, Germany; (B.O.S.); (R.E.); (I.P.); (J.R.)
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), 30625 Hannover, Germany; (J.H.); (R.O.); (M.W.)
- European Reference Network for Rare and Complex Lung Diseases (ERN-LUNG), 60596 Frankfurt am Main, Germany
| |
Collapse
|
7
|
Zhang T, Cui S, Xiong X, Liu Y, Cao Q, Xia XG, Zhou H. PIH1D3-knockout rats exhibit full ciliopathy features and dysfunctional pre-assembly and loading of dynein arms in motile cilia. Front Cell Dev Biol 2023; 11:1282787. [PMID: 37900281 PMCID: PMC10601634 DOI: 10.3389/fcell.2023.1282787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023] Open
Abstract
Background: Recessive mutation of the X-linked gene, PIH1 domain-containing protein 3 (PIH1D3), causes familial ciliopathy. PIH1D3 deficiency is associated with the defects of dynein arms in cilia, but how PIH1D3 specifically affects the structure and function of dynein arms is not understood yet. To gain insights into the underlying mechanisms of the disease, it is crucial to create a reliable animal model. In humans, rats, and mice, one copy of the PIH1D3 gene is located on the X chromosome. Interestingly, mice have an additional, intronless copy of the Pih1d3 gene on chromosome 1. To develop an accurate disease model, it is best to manipulate the X-linked PIH1D3 gene, which contains essential regulatory sequences within the introns for precise gene expression. This study aimed to develop a tailored rat model for PIH1D3-associated ciliopathy with the ultimate goal of uncovering the intricate molecular mechanisms responsible for ciliary defects in the disease. Methods: Novel Pih1d3-knockout (KO) rats were created by using TALEN-mediated non-homologous DNA recombination within fertilized rat eggs and, subsequently, underwent a comprehensive characterization through a battery of behavioral and pathological assays. A series of biochemical and histological analyses were conducted to elucidate the identity of protein partners that interact with PIH1D3, thus shedding light on the intricate molecular mechanisms involved in this context. Results: PIH1D3-KO rats reproduced the cardinal features of ciliopathy including situs inversus, defects in spermatocyte survival and mucociliary clearance, and perinatal hydrocephalus. We revealed the novel function of PIH1D3 in cerebrospinal fluid circulation and elucidated the mechanism by which PIH1D3 deficiency caused communicating hydrocephalus. PIH1D3 interacted with the proteins required for the pre-assembly and uploading of outer (ODA) and inner dynein arms (IDA), regulating the integrity of dynein arm structure and function in cilia. Conclusion: PIH1D3-KO rats faithfully reproduced the cardinal features of ciliopathy associated with PIH1D3 deficiency. PIH1D3 interacted with the proteins responsible for the pre-assembly and uploading of dynein arms in cilia, and its deficiency led to dysfunctional cilia and, thus, to ciliopathy by affecting the pre-assembly and uploading of dynein arms. The resultant rat model is a valuable tool for the mechanistic study of PIH1D3-caused diseases.
Collapse
Affiliation(s)
- Tingting Zhang
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, United States
- The Center for Translational Sciences, Port St Lucie, FL, United States
| | - Shiquan Cui
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, United States
- The Center for Translational Sciences, Port St Lucie, FL, United States
| | - Xinrui Xiong
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, United States
- The Center for Translational Sciences, Port St Lucie, FL, United States
| | - Ying Liu
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, United States
- The Center for Translational Sciences, Port St Lucie, FL, United States
| | - Qilin Cao
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, United States
- The Center for Translational Sciences, Port St Lucie, FL, United States
| | - Xu-Gang Xia
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, United States
- The Center for Translational Sciences, Port St Lucie, FL, United States
| | - Hongxia Zhou
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, United States
- The Center for Translational Sciences, Port St Lucie, FL, United States
| |
Collapse
|
8
|
Wang R, Yang D, Tu C, Lei C, Ding S, Guo T, Wang L, Liu Y, Lu C, Yang B, Ouyang S, Gong K, Tan Z, Deng Y, Tan Y, Qing J, Luo H. Dynein axonemal heavy chain 10 deficiency causes primary ciliary dyskinesia in humans and mice. Front Med 2023; 17:957-971. [PMID: 37314648 DOI: 10.1007/s11684-023-0988-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/31/2023] [Indexed: 06/15/2023]
Abstract
Primary ciliary dyskinesia (PCD) is a congenital, motile ciliopathy with pleiotropic symptoms. Although nearly 50 causative genes have been identified, they only account for approximately 70% of definitive PCD cases. Dynein axonemal heavy chain 10 (DNAH10) encodes a subunit of the inner arm dynein heavy chain in motile cilia and sperm flagella. Based on the common axoneme structure of motile cilia and sperm flagella, DNAH10 variants are likely to cause PCD. Using exome sequencing, we identified a novel DNAH10 homozygous variant (c.589C > T, p.R197W) in a patient with PCD from a consanguineous family. The patient manifested sinusitis, bronchiectasis, situs inversus, and asthenoteratozoospermia. Immunostaining analysis showed the absence of DNAH10 and DNALI1 in the respiratory cilia, and transmission electron microscopy revealed strikingly disordered axoneme 9+2 architecture and inner dynein arm defects in the respiratory cilia and sperm flagella. Subsequently, animal models of Dnah10-knockin mice harboring missense variants and Dnah10-knockout mice recapitulated the phenotypes of PCD, including chronic respiratory infection, male infertility, and hydrocephalus. To the best of our knowledge, this study is the first to report DNAH10 deficiency related to PCD in human and mouse models, which suggests that DNAH10 recessive mutation is causative of PCD.
Collapse
Affiliation(s)
- Rongchun Wang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, 410011, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, 410011, China
| | - Danhui Yang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, 410011, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, 410011, China
| | - Chaofeng Tu
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410078, China
| | - Cheng Lei
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, 410011, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, 410011, China
| | - Shuizi Ding
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, 410011, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, 410011, China
| | - Ting Guo
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, 410011, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, 410011, China
| | - Lin Wang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, 410011, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, 410011, China
| | - Ying Liu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, 410011, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, 410011, China
| | - Chenyang Lu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, 410011, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, 410011, China
| | - Binyi Yang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
- Research Unit of Respiratory Disease, Central South University, Changsha, 410011, China
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, 410011, China
| | - Shi Ouyang
- Zebrafish Genetics Laboratory, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Ke Gong
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Central South University, Changsha, 410011, China
| | - Zhiping Tan
- Clinical Center for Gene Diagnosis and Therapy, Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Yun Deng
- Zebrafish Genetics Laboratory, College of Life Sciences, Hunan Normal University, Changsha, 410081, China
| | - Yueqiu Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha, 410078, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, 410078, China
| | - Jie Qing
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
- Research Unit of Respiratory Disease, Central South University, Changsha, 410011, China.
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, 410011, China.
| | - Hong Luo
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, 410011, China.
- Research Unit of Respiratory Disease, Central South University, Changsha, 410011, China.
- Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, 410011, China.
| |
Collapse
|
9
|
Horani A, Gupta DK, Xu J, Xu H, del Carmen Puga-Molina L, Santi CM, Ramagiri S, Brennan SK, Pan J, Koenitzer JR, Huang T, Hyland RM, Gunsten SP, Tzeng SC, Strahle JM, Mill P, Mahjoub MR, Dutcher SK, Brody SL. The effect of Dnaaf5 gene dosage on primary ciliary dyskinesia phenotypes. JCI Insight 2023; 8:e168836. [PMID: 37104040 PMCID: PMC10393236 DOI: 10.1172/jci.insight.168836] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/20/2023] [Indexed: 04/28/2023] Open
Abstract
DNAAF5 is a dynein motor assembly factor associated with the autosomal heterogenic recessive condition of motile cilia, primary ciliary dyskinesia (PCD). The effects of allele heterozygosity on motile cilia function are unknown. We used CRISPR-Cas9 genome editing in mice to recreate a human missense variant identified in patients with mild PCD and a second, frameshift-null deletion in Dnaaf5. Litters with Dnaaf5 heteroallelic variants showed distinct missense and null gene dosage effects. Homozygosity for the null Dnaaf5 alleles was embryonic lethal. Compound heterozygous animals with the missense and null alleles showed severe disease manifesting as hydrocephalus and early lethality. However, animals homozygous for the missense mutation had improved survival, with partially preserved cilia function and motor assembly observed by ultrastructure analysis. Notably, the same variant alleles exhibited divergent cilia function across different multiciliated tissues. Proteomic analysis of isolated airway cilia from mutant mice revealed reduction in some axonemal regulatory and structural proteins not previously reported in DNAAF5 variants. Transcriptional analysis of mouse and human mutant cells showed increased expression of genes coding for axonemal proteins. These findings suggest allele-specific and tissue-specific molecular requirements for cilia motor assembly that may affect disease phenotypes and clinical trajectory in motile ciliopathies.
Collapse
Affiliation(s)
- Amjad Horani
- Department of Pediatrics
- Department of Cell Biology and Physiology
| | | | | | | | | | | | - Sruthi Ramagiri
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | | | | | | | | | | | - Jennifer M. Strahle
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Pleasantine Mill
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh, United Kingdom
| | - Moe R. Mahjoub
- Department of Cell Biology and Physiology
- Department of Medicine
| | - Susan K. Dutcher
- Department of Cell Biology and Physiology
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
10
|
Prevalence and founder effect of DRC1 exon 1-4 deletion in Korean patients with primary ciliary dyskinesia. J Hum Genet 2023; 68:369-374. [PMID: 36747106 DOI: 10.1038/s10038-023-01122-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/05/2023] [Accepted: 01/08/2023] [Indexed: 02/08/2023]
Abstract
Primary ciliary dyskinesia (PCD) is a genetically heterogeneous disorder affecting ciliary structure and function. PCD exhibiting dynein regulatory complex subunit 1 (DRC1) exon 1-4 deletion has been reported in several Japanese PCD patients; however, no large scale studies have been performed. Here, we aimed to determine the prevalence and founder effect of this variant in the Korean population. Using an in-house copy number variation tool, we screened for DRC1 exon 1-4 deletion in 20 patients with PCD and exome data of 1435 patients in the Seoul National University Hospital repository. In cases of suspected DRC1 deletion, confirmatory gap-PCR was performed. In a PCD cohort, three of 20 (15%) patients were positive for DRC1 exon 1-4 deletion (NM_145038.5(DRC1): c.1-3952_540 + 1331del27748-bp) while pathogenic variants were found in CCDC39 (N = 1), DNAAF6 (N = 1), DNAH9 (N = 1). In the 1,435-sample exome data, seven patients (0.49%) were confirmed to have DRC1 exon 1-4 deletion. A chimeric sequence including the junction was searched from the 1000 Genomes Project data repository. One Japanese patient (0.96%) was found to have the same DRC1 exon 1-4 deletion, which was absent in other populations. This study demonstrated that the DRC1 exon 1-4 deletion is a founder mutation based on haplotype analysis. In summary, the prevalence of PCD based on DRC1 exon 1-4 deletion is particularly high in Korean and Japanese populations, which is attributed to the founder effect. Genetic testing for DRC1 exon 1-4 deletion should be considered as an initial screening tool for Korean and Japanese patients with PCD.
Collapse
|
11
|
Horani A, Gupta DK, Xu J, Xu H, Del Carmen Puga-Molina L, Santi CM, Ramagiri S, Brennen SK, Pan J, Huang T, Hyland RM, Gunsten SP, Tzeng SC, Strahle JM, Mill P, Mahjoub MR, Dutcher SK, Brody SL. The effect of Dnaaf5 gene dosage on primary ciliary dyskinesia phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.13.523966. [PMID: 36712068 PMCID: PMC9882222 DOI: 10.1101/2023.01.13.523966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
DNAAF5 is a dynein motor assembly factor associated with the autosomal heterogenic recessive condition of motile cilia, primary ciliary dyskinesia (PCD). The effects of allele heterozygosity on motile cilia function are unknown. We used CRISPR-Cas9 genome editing in mice to recreate a human missense variant identified in patients with mild PCD and a second, frameshift null deletion in Dnaaf5 . Litters with Dnaaf5 heteroallelic variants showed distinct missense and null gene dosage effects. Homozygosity for the null Dnaaf5 alleles was embryonic lethal. Compound heterozygous animals with the missense and null alleles showed severe disease manifesting as hydrocephalus and early lethality. However, animals homozygous for the missense mutation had improved survival, with partial preserved cilia function and motor assembly observed by ultrastructure analysis. Notably, the same variant alleles exhibited divergent cilia function across different multiciliated tissues. Proteomic analysis of isolated airway cilia from mutant mice revealed reduction in some axonemal regulatory and structural proteins not previously reported in DNAAF5 variants. While transcriptional analysis of mouse and human mutant cells showed increased expression of genes coding for axonemal proteins. Together, these findings suggest allele-specific and tissue-specific molecular requirements for cilia motor assembly that may affect disease phenotypes and clinical trajectory in motile ciliopathies. Brief Summary A mouse model of human DNAAF5 primary ciliary dyskinesia variants reveals gene dosage effects of mutant alleles and tissue-specific molecular requirements for cilia motor assembly.
Collapse
|
12
|
Xu K, Diaz AA, Duan F, Lee M, Xiao X, Liu H, Liu G, Cho MH, Gower AC, Alekseyev YO, Spira A, Aberle DR, Washko GR, Billatos E, Lenburg ME. Bronchial gene expression alterations associated with radiological bronchiectasis. Eur Respir J 2023; 61:2200120. [PMID: 36229050 PMCID: PMC9881226 DOI: 10.1183/13993003.00120-2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 08/15/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Discovering airway gene expression alterations associated with radiological bronchiectasis may improve the understanding of the pathobiology of early-stage bronchiectasis. METHODS Presence of radiological bronchiectasis in 173 individuals without a clinical diagnosis of bronchiectasis was evaluated. Bronchial brushings from these individuals were transcriptomically profiled and analysed. Single-cell deconvolution was performed to estimate changes in cellular landscape that may be associated with early disease progression. RESULTS 20 participants have widespread radiological bronchiectasis (three or more lobes). Transcriptomic analysis reflects biological processes associated with bronchiectasis including decreased expression of genes involved in cell adhesion and increased expression of genes involved in inflammatory pathways (655 genes, false discovery rate <0.1, log2 fold-change >0.25). Deconvolution analysis suggests that radiological bronchiectasis is associated with an increased proportion of ciliated and deuterosomal cells, and a decreased proportion of basal cells. Gene expression patterns separated participants into three clusters: normal, intermediate and bronchiectatic. The bronchiectatic cluster was enriched by participants with more lobes of radiological bronchiectasis (p<0.0001), more symptoms (p=0.002), higher SERPINA1 mutation rates (p=0.03) and higher computed tomography derived bronchiectasis scores (p<0.0001). CONCLUSIONS Genes involved in cell adhesion, Wnt signalling, ciliogenesis and interferon-γ pathways had altered expression in the bronchus of participants with widespread radiological bronchiectasis, possibly associated with decreased basal and increased ciliated cells. This gene expression pattern is not only highly enriched among individuals with radiological bronchiectasis, but also associated with airway-related symptoms in those without discernible radiological bronchiectasis, suggesting that it reflects a bronchiectasis-associated, but non-bronchiectasis-specific lung pathophysiological process.
Collapse
Affiliation(s)
- Ke Xu
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- K. Xu and A.A. Diaz contributed equally to this work
| | - Alejandro A Diaz
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- K. Xu and A.A. Diaz contributed equally to this work
| | - Fenghai Duan
- Department of Biostatistics and Center for Statistical Sciences, Brown University School of Public Health, Providence, RI, USA
| | - Minyi Lee
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Xiaohui Xiao
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Hanqiao Liu
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Gang Liu
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Michael H Cho
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Adam C Gower
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Yuriy O Alekseyev
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Avrum Spira
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Denise R Aberle
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - George R Washko
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Ehab Billatos
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- E. Billatos and M.E. Lenburg contributed equally to this article as lead authors and supervised the work
| | - Marc E Lenburg
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- E. Billatos and M.E. Lenburg contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
13
|
Shoemark A, Griffin H, Wheway G, Hogg C, Lucas JS, Camps C, Taylor J, Carroll M, Loebinger MR, Chalmers JD, Morris-Rosendahl D, Mitchison HM, De Soyza A, Brown D, Ambrose JC, Arumugam P, Bevers R, Bleda M, Boardman-Pretty F, Boustred CR, Brittain H, Caulfield MJ, Chan GC, Fowler T, Giess A, Hamblin A, Henderson S, Hubbard TJP, Jackson R, Jones LJ, Kasperaviciute D, Kayikci M, Kousathanas A, Lahnstein L, Leigh SEA, Leong IUS, Lopez FJ, Maleady-Crowe F, McEntagart M, Minneci F, Moutsianas L, Mueller M, Murugaesu N, Need AC, O'Donovan P, Odhams CA, Patch C, Perez-Gil D, Pereira MB, Pullinger J, Rahim T, Rendon A, Rogers T, Savage K, Sawant K, Scott RH, Siddiq A, Sieghart A, Smith SC, Sosinsky A, Stuckey A, Tanguy M, Taylor Tavares AL, Thomas ERA, Thompson SR, Tucci A, Welland MJ, Williams E, Witkowska K, Wood SM. Genome sequencing reveals underdiagnosis of primary ciliary dyskinesia in bronchiectasis. Eur Respir J 2022; 60:13993003.00176-2022. [PMID: 35728977 DOI: 10.1183/13993003.00176-2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/12/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Bronchiectasis can result from infectious, genetic, immunological and allergic causes. 60-80% of cases are idiopathic, but a well-recognised genetic cause is the motile ciliopathy, primary ciliary dyskinesia (PCD). Diagnosis of PCD has management implications including addressing comorbidities, implementing genetic and fertility counselling and future access to PCD-specific treatments. Diagnostic testing can be complex; however, PCD genetic testing is moving rapidly from research into clinical diagnostics and would confirm the cause of bronchiectasis. METHODS This observational study used genetic data from severe bronchiectasis patients recruited to the UK 100,000 Genomes Project and patients referred for gene panel testing within a tertiary respiratory hospital. Patients referred for genetic testing due to clinical suspicion of PCD were excluded from both analyses. Data were accessed from the British Thoracic Society audit, to investigate whether motile ciliopathies are underdiagnosed in people with bronchiectasis in the UK. RESULTS Pathogenic or likely pathogenic variants were identified in motile ciliopathy genes in 17 (12%) out of 142 individuals by whole-genome sequencing. Similarly, in a single centre with access to pathological diagnostic facilities, 5-10% of patients received a PCD diagnosis by gene panel, often linked to normal/inconclusive nasal nitric oxide and cilia functional test results. In 4898 audited patients with bronchiectasis, <2% were tested for PCD and <1% received genetic testing. CONCLUSIONS PCD is underdiagnosed as a cause of bronchiectasis. Increased uptake of genetic testing may help to identify bronchiectasis due to motile ciliopathies and ensure appropriate management.
Collapse
Affiliation(s)
- Amelia Shoemark
- Respiratory Research Group, Molecular and Cellular Medicine, University of Dundee, Dundee, UK
- Royal Brompton Hospital and NHLI, Imperial College London, London, UK
- Newcastle University and NIHR Biomedical Research Centre for Ageing, Freeman Hospital, Newcastle upon Tyne, UK
| | - Helen Griffin
- Primary Immunodeficiency Group, Newcastle University Translational and Clinical Research Institute, Newcastle upon Tyne, UK
- Newcastle University and NIHR Biomedical Research Centre for Ageing, Freeman Hospital, Newcastle upon Tyne, UK
| | - Gabrielle Wheway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Claire Hogg
- Royal Brompton Hospital and NHLI, Imperial College London, London, UK
| | - Jane S Lucas
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
- Clinical and Experimental Sciences Academic Unit, University of Southampton Faculty of Medicine, Southampton, UK
| | | | - Carme Camps
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Clinical Informatics Research Office, John Radcliffe Hospital, Oxford, UK
| | - Jenny Taylor
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Clinical Informatics Research Office, John Radcliffe Hospital, Oxford, UK
| | - Mary Carroll
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | | | - James D Chalmers
- Respiratory Research Group, Molecular and Cellular Medicine, University of Dundee, Dundee, UK
| | - Deborah Morris-Rosendahl
- Clinical Genetics and Genomics, Royal Brompton Hospital, Guy's and St Thomas' NHS Foundation Trust and NHLI, Imperial College London, London, UK
| | - Hannah M Mitchison
- Genetics and Genomic Medicine Department, University College London, UCL Great Ormond Street Institute of Child Health, London, UK
- These authors contributed equally to this manuscript
| | - Anthony De Soyza
- Newcastle University and NIHR Biomedical Research Centre for Ageing, Freeman Hospital, Newcastle upon Tyne, UK
- These authors contributed equally to this manuscript
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Antony D, Gulec Yilmaz E, Gezdirici A, Slagter L, Bakey Z, Bornaun H, Tanidir IC, Van Dinh T, Brunner HG, Walentek P, Arnold SJ, Backofen R, Schmidts M. Spectrum of Genetic Variants in a Cohort of 37 Laterality Defect Cases. Front Genet 2022; 13:861236. [PMID: 35547246 PMCID: PMC9083912 DOI: 10.3389/fgene.2022.861236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/03/2022] [Indexed: 11/13/2022] Open
Abstract
Laterality defects are defined by the perturbed left–right arrangement of organs in the body, occurring in a syndromal or isolated fashion. In humans, primary ciliary dyskinesia (PCD) is a frequent underlying condition of defective left–right patterning, where ciliary motility defects also result in reduced airway clearance, frequent respiratory infections, and infertility. Non-motile cilia dysfunction and dysfunction of non-ciliary genes can also result in disturbances of the left–right body axis. Despite long-lasting genetic research, identification of gene mutations responsible for left–right patterning has remained surprisingly low. Here, we used whole-exome sequencing with Copy Number Variation (CNV) analysis to delineate the underlying molecular cause in 35 mainly consanguineous families with laterality defects. We identified causative gene variants in 14 families with a majority of mutations detected in genes previously associated with PCD, including two small homozygous CNVs. None of the patients were previously clinically diagnosed with PCD, underlining the importance of genetic diagnostics for PCD diagnosis and adequate clinical management. Identified variants in non-PCD-associated genes included variants in PKD1L1 and PIFO, suggesting that dysfunction of these genes results in laterality defects in humans. Furthermore, we detected candidate variants in GJA1 and ACVR2B possibly associated with situs inversus. The low mutation detection rate of this study, in line with other previously published studies, points toward the possibility of non-coding genetic variants, putative genetic mosaicism, epigenetic, or environmental effects promoting laterality defects.
Collapse
Affiliation(s)
- Dinu Antony
- Genome Research Division, Human Genetics Department, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Elif Gulec Yilmaz
- Department of Medical Genetics, University of Health Sciences, Istanbul Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | - Alper Gezdirici
- Department of Medical Genetics, University of Health Sciences, Istanbul Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | - Lennart Slagter
- Genome Research Division, Human Genetics Department, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| | - Zeineb Bakey
- Genome Research Division, Human Genetics Department, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Helen Bornaun
- Department of Pediatric Cardiology, University of Health Sciences, Istanbul Kanuni Sultan Suleyman Training and Research Hospital, Istanbul, Turkey
| | | | - Tran Van Dinh
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
| | - Han G. Brunner
- Genome Research Division, Human Genetics Department, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
- Maastricht University Medical Center and GROW School of Oncology and Development, Maastricht University, Maastricht, Netherlands
| | - Peter Walentek
- Renal Division, Department of Medicine, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- CIBSS- Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Sebastian J. Arnold
- CIBSS- Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Institute of Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Freiburg, Germany
- CIBSS- Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Miriam Schmidts
- Genome Research Division, Human Genetics Department, Radboud University Medical Center and Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
- Center for Pediatrics and Adolescent Medicine, University Hospital Freiburg, Faculty of Medicine, Freiburg, Germany
- CIBSS- Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- *Correspondence: Miriam Schmidts,
| |
Collapse
|
15
|
Nielsen KG, Holgersen MG, Crowley S, Marthin JK. Chronic airway disease in primary ciliary dyskinesia—spiced with geno–phenotype associations. AMERICAN JOURNAL OF MEDICAL GENETICS PART C: SEMINARS IN MEDICAL GENETICS 2022; 190:20-35. [PMID: 35352480 PMCID: PMC9314966 DOI: 10.1002/ajmg.c.31967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 12/01/2022]
Abstract
Primary ciliary dyskinesia (PCD) can be defined as a multiorgan ciliopathy with a dominant element of chronic airway disease affecting the nose, sinuses, middle ear, and in particular, the lower airways. Although most patients with PCD are diagnosed during preschool years, it is obvious that the chronic lung disease starts its course already from birth. The many faces of the clinical picture change, as does lung function, structural lung damage, the burden of infection, and of treatment throughout life. A markedly severe neutrophil inflammation in the respiratory tract seems pervasive and is only to a minimal extent ameliorated by a treatment strategy, which is predominantly aimed at bacterial infections. An ever‐increasing understanding of the different aspects, their interrelationships, and possible different age courses conditioned by the underlying genotype is the focus of much attention. The future is likely to offer personalized medicine in the form of mRNA therapy, but to that end, it is of utmost importance that all patients with PCD be carefully characterized and given a genetic diagnosis. In this narrative review, we have concentrated on lower airways and summarized the current understanding of the chronic airway disease in this motile ciliopathy. In addition, we highlight the challenges, gaps, and opportunities in PCD lung disease research.
Collapse
Affiliation(s)
- Kim G Nielsen
- Department of Paediatrics and Adolescent Medicine Danish PCD & chILD Centre, CF Centre Copenhagen, Paediatric Pulmonary Service, ERN Accredited Copenhagen Denmark
- Department of Clinical Medicine University of Copenhagen Copenhagen Denmark
| | - Mathias G Holgersen
- Department of Paediatrics and Adolescent Medicine Danish PCD & chILD Centre, CF Centre Copenhagen, Paediatric Pulmonary Service, ERN Accredited Copenhagen Denmark
| | - Suzanne Crowley
- Paediatric Department of Allergy and Lung Diseases Oslo University Hospital, Rikshospitalet Oslo Norway
| | - June K Marthin
- Department of Paediatrics and Adolescent Medicine Danish PCD & chILD Centre, CF Centre Copenhagen, Paediatric Pulmonary Service, ERN Accredited Copenhagen Denmark
| |
Collapse
|
16
|
DRC1 deficiency caused primary ciliary dyskinesia and MMAF in a Chinese patient. J Hum Genet 2021; 67:197-201. [PMID: 34815526 DOI: 10.1038/s10038-021-00985-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Primary ciliary dyskinesia (PCD) is a heterogeneous disease characterized by the failure of mucociliary clearance. Dynein regulatory complex subunit 1 (DRC1) variants can cause PCD by disrupting the nexin link connecting the outer doublets. In this study, we aimed to investigate the clinical and functional impacts of DRC1 variants on respiratory cilia and sperm. METHODS We identified and validated the DRC1 variant by using whole-exome and Sanger sequencing. High-speed video microscopy analysis (HSVA) was used to measure the nasal ciliary beating frequency and pattern in a patient and a healthy control. Hematoxylin-eosin (HE) staining and transmission electron microscopy (TEM) were applied to analyze the morphological and ultrastructural sperm defects resulting from the DRC1 variant. RESULTS NM_145038.5:c.1296 G>A, p.(Trp432*), a novel homozygous DRC1 nonsense variant, was identified in a patient from a consanguineous Chinese family. The patient exhibited bronchiectasis, chronic sinusitis, situs solitus, and male infertility. The markedly reduced nasal nitric oxide production rate (3.0 nL/min) was consistent with PCD diagnosis. HSVA showed reduced bending capacity and higher beating frequency of nasal cilia in the patient compared with those in healthy control. The diagnosis of multiple morphological abnormalities of the sperm flagella (MMAF) was confirmed through sperm HE staining and TEM analysis. Following the intracytoplasmic sperm injection treatment, the patient fathered a healthy daughter. CONCLUSION This report is the first to describe a novel DRC1 variant in a patient with PCD and MMAF, and in vitro fertilization was effective for treating infertility in this male patient. Our findings expand the genetic spectrum of PCD and MMAF, and provide a detailed clinical summary and functional analysis of patients with DRC1 variants.
Collapse
|
17
|
Lu C, Yang D, Lei C, Wang R, Guo T, Luo H. Identification of Two Novel DNAAF2 Variants in Two Consanguineous Families with Primary Ciliary Dyskinesia. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2021; 14:1415-1423. [PMID: 34785929 PMCID: PMC8591118 DOI: 10.2147/pgpm.s338981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/26/2021] [Indexed: 01/16/2023]
Abstract
Background Dynein axonemal assembly factor 2 (DNAAF2) is involved in the early preassembly of dynein in the cytoplasm, which is essential for motile cilia function. Primary ciliary dyskinesia (PCD) associated with DNAAF2 variants has rarely been reported in females with infertility. Moreover, there is no report linking DNAAF2 to scoliosis in human. Materials and Methods We recruited patients from two consanguineous families with a clinical diagnosis of PCD and collected their clinical history, laboratory tests, and radiographic data. Sequencing and bioinformatics analysis were then performed. Immunofluorescence and high-speed microscope analysis were used to support the pathogenicity of the variant. Results Proband 1, a 26-year-old female from family I, exhibited scoliosis, bronchiectasis, sinusitis, situs inversus, and infertility. We found a novel homozygous missense variant in DNAAF2, c.491T>C, p.(Leu164Pro) in this patient. Subsequent immunofluorescence indicated the absence of outer dynein arm and inner dynein arm of cilia, and high-speed microscopy analysis showed that the most of the cilia are static, which support the pathogenicity of this variant. Proband 2, a 53-year-old female, presented with bronchiectasis, sinusitis, and infertility. In this patient, a new homozygous frameshift variant DNAAF2, c.822del, p.(Ala275Profs*10) was identified. The disease-causing variants mentioned above are not included in the current authorized genetic databases. Conclusion Our findings expand the spectrum of DNAAF2 variants and link DNAAF2 to female infertility and likely scoliosis in patients with PCD.
Collapse
Affiliation(s)
- Chenyang Lu
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Research Unit of Respiratory Disease, Central South University, Changsha, People's Republic of China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, People's Republic of China
| | - Danhui Yang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Research Unit of Respiratory Disease, Central South University, Changsha, People's Republic of China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, People's Republic of China
| | - Cheng Lei
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Research Unit of Respiratory Disease, Central South University, Changsha, People's Republic of China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, People's Republic of China
| | - Rongchun Wang
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Research Unit of Respiratory Disease, Central South University, Changsha, People's Republic of China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, People's Republic of China
| | - Ting Guo
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Research Unit of Respiratory Disease, Central South University, Changsha, People's Republic of China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, People's Republic of China
| | - Hong Luo
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, People's Republic of China.,Research Unit of Respiratory Disease, Central South University, Changsha, People's Republic of China.,Hunan Diagnosis and Treatment Center of Respiratory Disease, Changsha, People's Republic of China
| |
Collapse
|
18
|
Paff T, Omran H, Nielsen KG, Haarman EG. Current and Future Treatments in Primary Ciliary Dyskinesia. Int J Mol Sci 2021; 22:9834. [PMID: 34575997 PMCID: PMC8470068 DOI: 10.3390/ijms22189834] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/31/2021] [Accepted: 09/02/2021] [Indexed: 01/05/2023] Open
Abstract
Primary ciliary dyskinesia (PCD) is a rare genetic ciliopathy in which mucociliary clearance is disturbed by the abnormal motion of cilia or there is a severe reduction in the generation of multiple motile cilia. Lung damage ensues due to recurrent airway infections, sometimes even resulting in respiratory failure. So far, no causative treatment is available and treatment efforts are primarily aimed at improving mucociliary clearance and early treatment of bacterial airway infections. Treatment guidelines are largely based on cystic fibrosis (CF) guidelines, as few studies have been performed on PCD. In this review, we give a detailed overview of the clinical studies performed investigating PCD to date, including three trials and several case reports. In addition, we explore precision medicine approaches in PCD, including gene therapy, mRNA transcript and read-through therapy.
Collapse
Affiliation(s)
- Tamara Paff
- Department of Paediatric Pulmonology, Emma Children’s Hospital, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands;
| | - Heymut Omran
- Department of General Pediatrics, University Childrens’s Hospital Muenster, 48149 Muenster, Germany;
| | - Kim G. Nielsen
- Danish PCD Centre, Danish Paediatric Pulmonary Service, Department of Paediatrics and Adolescent Medicine, Righospitalet, Copenhagen University Hospital, DK-2100 Copenhagen, Denmark;
- Department of Clinical Medicine, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Eric G. Haarman
- Department of Paediatric Pulmonology, Emma Children’s Hospital, Amsterdam UMC, 1105 AZ Amsterdam, The Netherlands;
| |
Collapse
|
19
|
Zhao X, Bian C, Liu K, Xu W, Liu Y, Tian X, Bai J, Xu KF, Zhang X. Clinical characteristics and genetic spectrum of 26 individuals of Chinese origin with primary ciliary dyskinesia. Orphanet J Rare Dis 2021; 16:293. [PMID: 34210339 PMCID: PMC8252271 DOI: 10.1186/s13023-021-01840-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 04/23/2021] [Indexed: 11/10/2022] Open
Abstract
Background Primary ciliary dyskinesia (PCD) is a rare, highly heterogeneous genetic disorder involving the impairment of motile cilia. With no single gold standard for PCD diagnosis and complicated multiorgan dysfunction, the diagnosis of PCD can be difficult in clinical settings. Some methods for diagnosis, such as nasal nitric oxide measurement and digital high-speed video microscopy with ciliary beat pattern analysis, can be expensive or unavailable. To confirm PCD diagnosis, we used a strategy combining assessment of typical symptoms with whole-exome sequencing (WES) and/or low-pass whole-genome sequencing (WGS) as an unbiased detection tool to identify known pathogenic mutations, novel variations, and copy number variations. Results A total of 26 individuals of Chinese origin with a confirmed PCD diagnosis aged 13 to 61 years (median age, 24.5 years) were included. Biallelic pathogenic mutations were identified in 19 of the 26 patients, including 8 recorded HGMD mutations and 24 novel mutations. The detection rate reached 73.1%. DNAH5 was the most frequently mutated gene, and c.8383C > T was the most common mutated variant, but it is relatively rare in PCD patients from other ethnic groups. Conclusion This study demonstrates the practical clinical utility of combining WES and low-pass WGS as a no-bias detecting tool in adult patients with PCD, showing a clinical characteristics and genetic spectrum of Chinese PCD patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13023-021-01840-2.
Collapse
Affiliation(s)
- Xinyue Zhao
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Chun Bian
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Keqiang Liu
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Wenshuai Xu
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yaping Liu
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| | - Xinlun Tian
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Jing Bai
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Kai-Feng Xu
- Department of Pulmonary and Critical Care Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xue Zhang
- McKusick-Zhang Center for Genetic Medicine, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| |
Collapse
|
20
|
Yiallouros PK, Kouis P, Kyriacou K, Evriviadou A, Anagnostopoulou P, Matthaiou A, Tsiolakis I, Pirpa P, Michailidou K, Potamiti L, Loizidou MA, Hadjisavvas A. Implementation of multigene panel NGS diagnosis in the national primary ciliary dyskinesia cohort of Cyprus: An island with a high disease prevalence. Hum Mutat 2021; 42:e62-e77. [PMID: 33715250 DOI: 10.1002/humu.24196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 02/24/2021] [Accepted: 03/06/2021] [Indexed: 12/16/2022]
Abstract
We aimed to determine a genetic diagnosis in the national primary ciliary dyskinesia (PCD) cohort of Cyprus, an island with a high disease prevalence. We used targeted next-generation sequencing (NGS) of 39 PCD genes in 48 patients of Greek-Cypriot and other ancestries. We achieved a molecular diagnosis in 74% of the unrelated families tested. We identified 24 different mutations in 11 genes, 12 of which are novel. Homozygosity was more common in Greek-Cypriot than non-Greek-Cypriot patients (88% vs. 46.2%, p = .016). Four mutations (DNAH11:c.5095-2A>G, CFAP300:c.95_103delGCCGGCTCC, TTC25:c.716G>A, RSPH9:c.670+2T>C) were found in 74% of the diagnosed Greek-Cypriot families. Patients with RSPH9 mutations demonstrated higher nasal nitric oxide (57 vs. 15 nl/min, p <.001), higher forced expiratory volume in 1 s (-0.89 vs. -2.37, p = .018) and forced vital capacity (-1.00 vs. -2.16, p = .029) z scores than the rest of the cohort. Targeted multigene-panel NGS is an efficient tool for early diagnosis of PCD, providing insight into genetic disease epidemiology and improved patient stratification.
Collapse
Affiliation(s)
- Panayiotis K Yiallouros
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia, Cyprus.,Pediatric Pulmonology Unit, Hospital "Archbishop Makarios III", Nicosia, Cyprus
| | - Panayiotis Kouis
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Kyriacos Kyriacou
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Aigli Evriviadou
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Pinelopi Anagnostopoulou
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia, Cyprus.,Pediatric Pulmonology Unit, Hospital "Archbishop Makarios III", Nicosia, Cyprus
| | - Andreas Matthaiou
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Ioannis Tsiolakis
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, Nicosia, Cyprus
| | - Panayiota Pirpa
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Kyriaki Michailidou
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Louiza Potamiti
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Maria A Loizidou
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Andreas Hadjisavvas
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus.,Cyprus School of Molecular Medicine, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| |
Collapse
|
21
|
Backman K, Mears WE, Waheeb A, Beaulieu Bergeron M, McClintock J, de Nanassy J, Reisman J, Osmond M, Hartley T, Mears AJ, Kernohan KD. A splice site and copy number variant responsible for TTC25-related primary ciliary dyskinesia. Eur J Med Genet 2021; 64:104193. [PMID: 33746037 DOI: 10.1016/j.ejmg.2021.104193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 02/08/2021] [Accepted: 03/14/2021] [Indexed: 11/26/2022]
Abstract
Primary ciliary dyskinesia (PCD) is a genetically heterogeneous disorder of motile cilia. With few exceptions, PCD is an autosomal recessive condition, and there are over 40 genes associated with the condition. We present a case of a newborn female with clinical features of PCD, specifically the Kartagener syndrome phenotype, due to variants in TTC25. This gene has been previously associated with PCD in three families. Two multi-gene panels performed as a neonate and at two years of age were uninformative. Exome sequencing was performed by the Care4Rare Canada Consortium on a research basis, and an apparent homozygous intronic variant (TTC25:c.1145+1G > A) was identified that was predicted to abolish the canonical splice donor activity of exon 8. The child's mother was a heterozygous carrier of the variant. The paternal sample did not show the splice variant, and homozygosity was observed across the paternal locus. Microarray analysis showed a 50 kb heterozygous deletion spanning the genes TTC25 and CNP. This is the first example of a pathogenic gross deletion in trans with a splice variant, resulting in TTC25-related PCD.
Collapse
Affiliation(s)
- K Backman
- Department of Pediatrics, University of Saskatchewan, Saskatoon, SK, Canada
| | - W E Mears
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - A Waheeb
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - M Beaulieu Bergeron
- Department of Genetics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada; Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON, Canada
| | - J McClintock
- Department of Pathology and Laboratory Medicine, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - J de Nanassy
- Department of Pathology and Laboratory Medicine, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - J Reisman
- Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - M Osmond
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - T Hartley
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| | - A J Mears
- Newborn Screening Ontario, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - K D Kernohan
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada; Newborn Screening Ontario, Children's Hospital of Eastern Ontario, Ottawa, ON, Canada
| | -
- Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
22
|
Cho EH, Ki CS, Yun SA, Kim SY, Jhun BW, Koh WJ, Huh HJ, Lee NY. Genetic Analysis of Korean Adult Patients with Nontuberculous Mycobacteria Suspected of Primary Ciliary Dyskinesia Using Whole Exome Sequencing. Yonsei Med J 2021; 62:224-230. [PMID: 33635012 PMCID: PMC7934102 DOI: 10.3349/ymj.2021.62.3.224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 12/28/2020] [Accepted: 01/05/2021] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Nontuberculous mycobacteria (NTM) is ubiquitous in the environment, but NTM lung disease (NTM-LD) is uncommon. Since exposure to NTM is inevitable, patients who develop NTM-LD are likely to have specific susceptibility factors, such as primary ciliary dyskinesia (PCD). PCD is a genetically heterogeneous disorder of motile cilia and is characterized by chronic respiratory tract infection, organ laterality defect, and infertility. In this study, we performed whole exome sequencing (WES) and investigated the genetic characteristics of adult NTM patients with suspected PCD. MATERIALS AND METHODS WES was performed in 13 NTM-LD patients who were suspected of having PCD by clinical symptoms and/or ultrastructural ciliary defect observed by transmission electron microscopy. A total of 45 PCD-causing genes, 23 PCD-candidate genes, and 990 ciliome genes were analyzed. RESULTS Four patients were found to have biallelic loss-of-function (LoF) variants in the following PCD-causing genes: CCDC114, DNAH5, HYDIN, and NME5. In four other patients, only one LoF variant was identified, while the remaining five patients did not have any LoF variants. CONCLUSION At least 30.8% of NTM-LD patients who were suspected of having PCD had biallelic LoF variants, and an additional 30.8% of patients had one LoF variant. Therefore, PCD should be considered in patients with NTM-LD with symptoms or signs suspicious of PCD.
Collapse
Affiliation(s)
- Eun Hye Cho
- Department of Laboratory Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | | | - Sun Ae Yun
- Center for Clinical Medicine, Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, Korea
| | - Su Young Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Byung Woo Jhun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Won Jung Koh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee Jae Huh
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Nam Yong Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| |
Collapse
|
23
|
Legendre M, Zaragosi LE, Mitchison HM. Motile cilia and airway disease. Semin Cell Dev Biol 2020; 110:19-33. [PMID: 33279404 DOI: 10.1016/j.semcdb.2020.11.007] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/10/2020] [Accepted: 11/14/2020] [Indexed: 01/10/2023]
Abstract
A finely regulated system of airway epithelial development governs the differentiation of motile ciliated cells of the human respiratory tract, conferring the body's mucociliary clearance defence system. Human cilia dysfunction can arise through genetic mutations and this is a cause of debilitating disease morbidities that confer a greatly reduced quality of life. The inherited human motile ciliopathy disorder, primary ciliary dyskinesia (PCD), can arise from mutations in genes affecting various aspects of motile cilia structure and function through deficient production, transport and assembly of cilia motility components or through defective multiciliogenesis. Our understanding about the development of the respiratory epithelium, motile cilia biology and the implications for human pathology has expanded greatly over the past 20 years since isolation of the first PCD gene, rising to now nearly 50 genes. Systems level insights about cilia motility in health and disease have been made possible through intensive molecular and omics (genomics, transcriptomics, proteomics) research, applied in ciliate organisms and in animal and human disease modelling. Here, we review ciliated airway development and the genetic stratification that underlies PCD, for which the underlying genotype can increasingly be connected to biological mechanism and disease prognostics. Progress in this field can facilitate clinical translation of research advances, with potential for great medical impact, e.g. through improvements in ciliopathy disease diagnosis, management, family counselling and by enhancing the potential for future genetically tailored approaches to disease therapeutics.
Collapse
Affiliation(s)
- Marie Legendre
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Childhood Genetic Disorders, Département de Génétique Médicale, Hôpital Armand-Trousseau, Assistance Publique-Hôpitaux de Paris, Paris 75012, France
| | | | - Hannah M Mitchison
- Genetics and Genomic Medicine, University College London, UCL Great Ormond Street Institute of Child Health, London WC1N 1EH, UK; NIHR Biomedical Research Centre at Great Ormond Street Hospital, London, UK.
| |
Collapse
|
24
|
Bi-allelic variant c.8638_8658dup in HYDIN causes bronchiectasis in two siblings. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
25
|
Shamseldin HE, Al Mogarri I, Alqwaiee MM, Alharbi AS, Baqais K, AlSaadi M, AlAnzi T, Alhashem A, Saghier A, Ameen W, Ibrahim N, Yang J, Abdulwahab F, Hashem M, Chivukula RR, Alkuraya FS. An exome-first approach to aid in the diagnosis of primary ciliary dyskinesia. Hum Genet 2020; 139:1273-1283. [PMID: 32367404 DOI: 10.1007/s00439-020-02170-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/25/2020] [Indexed: 01/31/2023]
Abstract
Unlike disorders of primary cilium, primary ciliary dyskinesia (PCD) has a much narrower clinical spectrum consistent with the limited tissue distribution of motile cilia. Nonetheless, PCD diagnosis can be challenging due to the overlapping features with other disorders and the requirement for sophisticated tests that are only available in specialized centers. We performed exome sequencing on all patients with a clinical suspicion of PCD but for whom no nasal nitric oxide test or ciliary functional assessment could be ordered. Among 81 patients (56 families), in whom PCD was suspected, 68% had pathogenic or likely pathogenic variants in established PCD-related genes that fully explain the phenotype (20 variants in 11 genes). The major clinical presentations were sinopulmonary infections (SPI) (n = 58), neonatal respiratory distress (NRD) (n = 2), laterality defect (LD) (n = 6), and combined LD/SPI (n = 15). Biallelic likely deleterious variants were also encountered in AKNA and GOLGA3, which we propose as novel candidates in a lung phenotype that overlaps clinically with PCD. We also encountered a PCD phenocopy caused by a pathogenic variant in ITCH, and a pathogenic variant in CEP164 causing Bardet-Biedl syndrome and PCD presentation as a very rare example of the dual presentation of these two disorders of the primary and motile cilia. Exome sequencing is a powerful tool that can help "democratize" the diagnosis of PCD, which is currently limited to highly specialized centers.
Collapse
Affiliation(s)
- Hanan E Shamseldin
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ibrahim Al Mogarri
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mansour M Alqwaiee
- Deparment of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Adel S Alharbi
- Deparment of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Khaled Baqais
- Deparment of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Muslim AlSaadi
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Talal AlAnzi
- Deparment of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Amal Alhashem
- Deparment of Pediatrics, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Afaf Saghier
- Department of Pediatrics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Waleed Ameen
- Department of Pediatrics, King Saud Medical City, Riyadh, Saudi Arabia
| | - Niema Ibrahim
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Jason Yang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Firdous Abdulwahab
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Mais Hashem
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Raghu R Chivukula
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| |
Collapse
|
26
|
Sun M, Zhang Y, JiyunYang, Wang Y, Tan H, Wang H, Lei T, Li X, Zhang X, Xiong W, Dou K, Ma Y. Novel compound heterozygous DNAAF2 mutations cause primary ciliary dyskinesia in a Han Chinese family. J Assist Reprod Genet 2020; 37:2159-2170. [PMID: 32638265 PMCID: PMC7492306 DOI: 10.1007/s10815-020-01859-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 06/10/2020] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Primary ciliary dyskinesia (PCD), which commonly causes male infertility, is an inherited autosomal recessive disorder. This study aimed to investigate the clinical manifestations and screen mutations associated with the dynein axonemal assembly factor 2 (DNAAF2) gene in a Han Chinese family with PCD. METHODS A three-generation family with PCD was recruited in this study. Eight family members underwent comprehensive medical examinations. Genomic DNA was extracted from the participants' peripheral blood, and targeted next-generation sequencing technology was used to perform the mutation screening. The DNAAF2 expression was analyzed by immunostaining and Western blot. RESULTS The proband exhibited the typical clinical features of PCD. Spermatozoa from the proband showed complete immotility but relatively high viability. Two novel compound heterozygous mutations in the DNAAF2 gene, c.C156A [p.Y52X] and c.C26A [p.S9X], were identified. Both nonsense mutations were detected in the proband, whereas the other unaffected family members carried either none or only one of the two mutations. The two nonsense heterozygous mutations were not detected in the 600 ethnically matched normal controls or in the Genome Aggregation Database. The defect of the DNAAF2 and the outer dynein arms and inner dynein arms were notably observed in the spermatozoa from the proband by immunostaining. CONCLUSION This study identified two novel compound heterozygous mutations of DNAAF2 leading to male infertility as a result of PCD in a Han Chinese family. The findings may enhance the understanding of the pathogenesis of PCD and improve reproductive genetic counseling in China.
Collapse
Affiliation(s)
- Minghan Sun
- Department of Medical Genetics and Division of Human Morbid Genomics, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China
- Central of Reproductive Medicine, Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, 32 Road West 2, the First Ring, Chengdu, 640072, Sichuan, China
| | - Yi Zhang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - JiyunYang
- The Key Laboratory for Human Disease Gene Study of Sichuan Province, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yi Wang
- Central of Reproductive Medicine, Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, 32 Road West 2, the First Ring, Chengdu, 640072, Sichuan, China
| | - Hao Tan
- Department of Medical Genetics and Division of Human Morbid Genomics, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China
| | - Hailian Wang
- Central of Reproductive Medicine, Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, 32 Road West 2, the First Ring, Chengdu, 640072, Sichuan, China
| | - Tiantian Lei
- Central of Reproductive Medicine, Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, 32 Road West 2, the First Ring, Chengdu, 640072, Sichuan, China
| | - Xiaojie Li
- Central of Reproductive Medicine, Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, 32 Road West 2, the First Ring, Chengdu, 640072, Sichuan, China
| | - Xiaojian Zhang
- Central of Reproductive Medicine, Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, 32 Road West 2, the First Ring, Chengdu, 640072, Sichuan, China
| | - Wen Xiong
- Central of Reproductive Medicine, Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, 32 Road West 2, the First Ring, Chengdu, 640072, Sichuan, China
| | - Ke Dou
- Central of Reproductive Medicine, Department of Obstetrics and Gynecology, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, 32 Road West 2, the First Ring, Chengdu, 640072, Sichuan, China.
| | - Yongxin Ma
- Department of Medical Genetics and Division of Human Morbid Genomics, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
27
|
Vece TJ, Wambach JA, Hagood JS. Childhood rare lung disease in the 21st century: "-omics" technology advances accelerating discovery. Pediatr Pulmonol 2020; 55:1828-1837. [PMID: 32533908 PMCID: PMC8711209 DOI: 10.1002/ppul.24809] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/28/2020] [Indexed: 01/14/2023]
Abstract
Childhood rare lung diseases comprise a large number of heterogeneous respiratory disorders that are individually rare but are collectively associated with substantial morbidity, mortality, and healthcare resource utilization. Although the genetic mechanisms for several of these disorders have been elucidated, the pathogenesis mechanisms for others remain poorly understood and treatment options remain limited. Childhood rare lung diseases are enriched for genetic etiologies; identification of the disease mechanisms underlying these rare disorders can inform the biology of normal human lung development and has implications for the treatment of more common respiratory diseases in children and adults. Advances in "-omics" technology, such as genomic sequencing, clinical phenotyping, biomarker discovery, genome editing, in vitro and model organism disease modeling, single-cell analyses, cellular imaging, and high-throughput drug screening have enabled significant progress for diagnosis and treatment of rare childhood lung diseases. The most striking example of this progress has been realized for patients with cystic fibrosis for whom effective, personalized therapies based on CFTR genotype are now available. In this chapter, we focus on recent technology advances in childhood rare lung diseases, acknowledge persistent challenges, and identify promising new technologies that will impact not only biological discovery, but also improve diagnosis, therapies, and survival for children with these rare disorders.
Collapse
Affiliation(s)
- Timothy J. Vece
- Division of Pediatric Pulmonology, Program for Rare and Interstitial Lung Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jennifer A. Wambach
- Division of Newborn Medicine, Edward Mallinckrodt Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - James S. Hagood
- Division of Pediatric Pulmonology, Program for Rare and Interstitial Lung Disease, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
28
|
Fassad MR, Patel MP, Shoemark A, Cullup T, Hayward J, Dixon M, Rogers AV, Ollosson S, Jackson C, Goggin P, Hirst RA, Rutman A, Thompson J, Jenkins L, Aurora P, Moya E, Chetcuti P, O'Callaghan C, Morris-Rosendahl DJ, Watson CM, Wilson R, Carr S, Walker W, Pitno A, Lopes S, Morsy H, Shoman W, Pereira L, Constant C, Loebinger MR, Chung EMK, Kenia P, Rumman N, Fasseeh N, Lucas JS, Hogg C, Mitchison HM. Clinical utility of NGS diagnosis and disease stratification in a multiethnic primary ciliary dyskinesia cohort. J Med Genet 2019; 57:322-330. [PMID: 31879361 DOI: 10.1136/jmedgenet-2019-106501] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/23/2019] [Accepted: 11/01/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND Primary ciliary dyskinesia (PCD), a genetically heterogeneous condition enriched in some consanguineous populations, results from recessive mutations affecting cilia biogenesis and motility. Currently, diagnosis requires multiple expert tests. METHODS The diagnostic utility of multigene panel next-generation sequencing (NGS) was evaluated in 161 unrelated families from multiple population ancestries. RESULTS Most (82%) families had affected individuals with biallelic or hemizygous (75%) or single (7%) pathogenic causal alleles in known PCD genes. Loss-of-function alleles dominate (73% frameshift, stop-gain, splice site), most (58%) being homozygous, even in non-consanguineous families. Although 57% (88) of the total 155 diagnostic disease variants were novel, recurrent mutations and mutated genes were detected. These differed markedly between white European (52% of families carry DNAH5 or DNAH11 mutations), Arab (42% of families carry CCDC39 or CCDC40 mutations) and South Asian (single LRRC6 or CCDC103 mutations carried in 36% of families) patients, revealing a striking genetic stratification according to population of origin in PCD. Genetics facilitated successful diagnosis of 81% of families with normal or inconclusive ultrastructure and 67% missing prior ultrastructure results. CONCLUSIONS This study shows the added value of high-throughput targeted NGS in expediting PCD diagnosis. Therefore, there is potential significant patient benefit in wider and/or earlier implementation of genetic screening.
Collapse
Affiliation(s)
- Mahmoud R Fassad
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, UK.,Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mitali P Patel
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Amelia Shoemark
- PCD Diagnostic Team and Department of Pediatric Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK.,Division of Molecular and Clinical Medicine, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Thomas Cullup
- NE Thames Regional Molecular Genetics Laboratory, Great Ormond Street Hospital For Children NHS Foundation Trust, London, UK
| | - Jane Hayward
- NE Thames Regional Molecular Genetics Laboratory, Great Ormond Street Hospital For Children NHS Foundation Trust, London, UK
| | - Mellisa Dixon
- PCD Diagnostic Team and Department of Pediatric Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Andrew V Rogers
- Host Defence Unit, Royal Brompton and Harefield NHS Trust, London, UK
| | - Sarah Ollosson
- PCD Diagnostic Team and Department of Pediatric Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Claire Jackson
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust and Clinical and Experimental Sciences Academic Unit, University of Southampton Faculty of Medicine, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Patricia Goggin
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust and Clinical and Experimental Sciences Academic Unit, University of Southampton Faculty of Medicine, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Robert A Hirst
- Centre for PCD Diagnosis and Research, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - Andrew Rutman
- Centre for PCD Diagnosis and Research, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | - James Thompson
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust and Clinical and Experimental Sciences Academic Unit, University of Southampton Faculty of Medicine, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Lucy Jenkins
- NE Thames Regional Molecular Genetics Laboratory, Great Ormond Street Hospital For Children NHS Foundation Trust, London, UK
| | - Paul Aurora
- Department of Paediatric Respiratory Medicine, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK.,Department of Respiratory, Critical Care and Anaesthesia Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Eduardo Moya
- Children's Services (Paediatrics), Bradford Royal Infirmary, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Philip Chetcuti
- Department of Respiratory Paediatrics, Leeds General Infirmary, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Chris O'Callaghan
- Centre for PCD Diagnosis and Research, Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK.,Department of Respiratory, Critical Care and Anaesthesia Unit, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Deborah J Morris-Rosendahl
- Clinical Genetics and Genomics Laboratory, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | | | - Robert Wilson
- Host Defence Unit, Royal Brompton and Harefield NHS Trust, London, UK
| | - Siobhan Carr
- PCD Diagnostic Team and Department of Pediatric Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Woolf Walker
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust and Clinical and Experimental Sciences Academic Unit, University of Southampton Faculty of Medicine, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Andreia Pitno
- PCD Diagnostic Team and Department of Pediatric Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK.,Laboratório de Histologia e Patologia Comparada, Instituto de Medicina Molecular, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Susana Lopes
- CEDOC, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Heba Morsy
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Walaa Shoman
- Department of Pediatrics, Faculty of Medicine, Alexandria University Children's Hospital, Alexandria, Egypt
| | - Luisa Pereira
- Paediatric Pulmonology Unit, Department of Pediatrics, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | - Carolina Constant
- Paediatric Pulmonology Unit, Department of Pediatrics, Hospital de Santa Maria, Centro Hospitalar Lisboa Norte, Centro Académico de Medicina de Lisboa, Lisbon, Portugal
| | | | - Eddie M K Chung
- Population, Policy and Practice, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Priti Kenia
- Department of Respiratory Paediatrics, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Nisreen Rumman
- Pediatrics Department, Makassed Hospital, East Jerusalem, Israel
| | - Nader Fasseeh
- Department of Pediatrics, Faculty of Medicine, Alexandria University Children's Hospital, Alexandria, Egypt
| | - Jane S Lucas
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust and Clinical and Experimental Sciences Academic Unit, University of Southampton Faculty of Medicine, Southampton, UK.,NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Claire Hogg
- PCD Diagnostic Team and Department of Pediatric Respiratory Medicine, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Hannah M Mitchison
- Genetics and Genomic Medicine, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| |
Collapse
|
29
|
Fassad MR, Shoman WI, Morsy H, Patel MP, Radwan N, Jenkins L, Cullup T, Fouda E, Mitchison HM, Fasseeh N. Clinical and genetic spectrum in 33 Egyptian families with suspected primary ciliary dyskinesia. Clin Genet 2019; 97:509-515. [PMID: 31650533 DOI: 10.1111/cge.13661] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/14/2019] [Accepted: 10/18/2019] [Indexed: 12/29/2022]
Abstract
Primary ciliary dyskinesia (PCD) is a rare genetic disorder of motile cilia dysfunction generally inherited as an autosomal recessive disease. Genetic testing is increasingly considered an early step in the PCD diagnostic workflow. We used targeted panel next-generation sequencing (NGS) for genetic screening of 33 Egyptian families with clinically highly suspected PCD. All variants prioritized were Sanger confirmed in the affected individuals and correctly segregated within the family. Targeted NGS yielded a high diagnostic output (70%) with biallelic mutations identified in known PCD genes. Mutations were identified in 13 genes overall, with CCDC40 and CCDC39 the most frequently mutated genes among Egyptian patients. Most identified mutations were predicted null effect variants (79%) and not reported before (85%). This study reveals that the genetic landscape of PCD among Egyptians is highly heterogeneous, indicating that a targeted NGS approach covering multiple genes will provide a superior diagnostic yield compared to Sanger sequencing for genetic diagnosis. The high diagnostic output achieved here highlights the potential of placing genetic testing early within the diagnostic workflow for PCD, in particular in developing countries where other diagnostic tests can be less available.
Collapse
Affiliation(s)
- Mahmoud R Fassad
- Genetics and Genomic Medicine Department, University College London, UCL Great Ormond Street Institute of Child Health, London, UK.,Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Walaa I Shoman
- Department of Pediatrics, Faculty of Medicine, Alexandria University Children's Hospital, Egypt
| | - Heba Morsy
- Department of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mitali P Patel
- Genetics and Genomic Medicine Department, University College London, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Nesrine Radwan
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Lucy Jenkins
- Regional Molecular Genetics Laboratory, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Thomas Cullup
- Regional Molecular Genetics Laboratory, Great Ormond Street Hospital for Children NHS Foundation Trust, London, UK
| | - Eman Fouda
- Department of Pediatrics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hannah M Mitchison
- Genetics and Genomic Medicine Department, University College London, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Nader Fasseeh
- Department of Pediatrics, Faculty of Medicine, Alexandria University Children's Hospital, Egypt
| |
Collapse
|
30
|
Wheway G, Lord J, Baralle D. Splicing in the pathogenesis, diagnosis and treatment of ciliopathies. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:194433. [PMID: 31698098 DOI: 10.1016/j.bbagrm.2019.194433] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/12/2019] [Accepted: 09/17/2019] [Indexed: 12/12/2022]
Abstract
Primary cilia are essential signalling organelles found on the apical surface of epithelial cells, where they coordinate chemosensation, mechanosensation and light sensation. Motile cilia play a central role in establishing fluid flow in the respiratory tract, reproductive tract, brain ventricles and ear. Genetic defects affecting the structure or function of cilia can lead to a broad range of developmental and degenerative diseases known as ciliopathies. Splicing contributes to the pathogenesis, diagnosis and treatment of ciliopathies. Tissue-specific alternative splicing contributes to the tissue-specific manifestation of ciliopathy phenotypes, for example the retinal-specific effects of some genetic defects, due to specific transcript expression in the highly specialised ciliated cells of the retina, the photoreceptor cells. Ciliopathies can arise both as a result of genetic variants in spliceosomal proteins, or as a result of variants affecting splicing of specific cilia genes. Here we discuss the opportunities and challenges in diagnosing ciliopathies using RNA sequence analysis and the potential for treating ciliopathies in a relatively mutation-neutral way by targeting splicing. This article is part of a Special Issue entitled: RNA structure and splicing regulation edited by Francisco Baralle, Ravindra Singh and Stefan Stamm.
Collapse
Affiliation(s)
- Gabrielle Wheway
- Faculty of Medicine, University of Southampton, Human Development and Health, United Kingdom of Great Britain and Northern Ireland; University Hospital Southampton NHS Foundation Trust, United Kingdom of Great Britain and Northern Ireland
| | - Jenny Lord
- Faculty of Medicine, University of Southampton, Human Development and Health, United Kingdom of Great Britain and Northern Ireland; University Hospital Southampton NHS Foundation Trust, United Kingdom of Great Britain and Northern Ireland
| | - Diana Baralle
- Faculty of Medicine, University of Southampton, Human Development and Health, United Kingdom of Great Britain and Northern Ireland; University Hospital Southampton NHS Foundation Trust, United Kingdom of Great Britain and Northern Ireland.
| |
Collapse
|
31
|
Mani R, Belkacem S, Soua Z, Chantot S, Montantin G, Tissier S, Copin B, Bouguila J, Rive Le Gouard N, Boughamoura L, Ben Ameur S, Hachicha M, Boussoffara R, Boussetta K, Hammouda S, Bedoui A, Besbes H, Meddeb S, Chraeit K, Khlifa M, Escudier E, Amselem S, Mabrouk I, Legendre M. Primary ciliary dyskinesia gene contribution in Tunisia: Identification of a major Mediterranean allele. Hum Mutat 2019; 41:115-121. [PMID: 31469207 DOI: 10.1002/humu.23905] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/14/2019] [Accepted: 08/27/2019] [Indexed: 12/21/2022]
Abstract
Primary ciliary dyskinesia (PCD) is a genetically heterogeneous disease of motile cilia. Even though PCD is widely studied, North-African patients have been rarely explored. In this study, we aim at confirming the clinical diagnosis and explore the genetic spectrum of PCD in a cohort of Tunisian patients. Forty clinically diagnosed patients with PCD belonging to 34 families were recruited from Tunisian pediatric departments. In each proband, targeted capture PCD panel sequencing of the 40 PCD genes was performed. PCD panel sequencing identified bi-allelic mutations in 82% of the families in eight PCD genes. Remarkably, 23.5% of patients carried the same c.2190del CCDC39 mutation. Single nucleotide polymorphism profiling in six unrelated patients carrying this mutation has revealed a founder effect in North-African patients. This mutation is estimated to date back at least 1,400-1,750 years ago. The identification of this major allele allowed us to suggest a cost-effective genetic diagnostic strategy in North-African patients with PCD.
Collapse
Affiliation(s)
- Rahma Mani
- INSERM UMR_S933, Sorbonne Université, U.F. de Génétique moléculaire (AP-HP), Hôpital Armand-Trousseau, Paris, France.,Faculté de Médecine de Sousse, Unité de recherche "Biologie moléculaire des leucémies et lymphomes", UR14ES19, Université de Sousse, Sousse, Tunisia
| | - Sabrina Belkacem
- INSERM UMR_S933, Sorbonne Université, U.F. de Génétique moléculaire (AP-HP), Hôpital Armand-Trousseau, Paris, France
| | - Zohra Soua
- Faculté de Médecine de Sousse, Unité de recherche "Biologie moléculaire des leucémies et lymphomes", UR14ES19, Université de Sousse, Sousse, Tunisia
| | - Sandra Chantot
- U.F. de Génétique Chromosomique (AP-HP), Hôpital Armand-Trousseau, Paris, France
| | - Guy Montantin
- INSERM UMR_S933, Sorbonne Université, U.F. de Génétique moléculaire (AP-HP), Hôpital Armand-Trousseau, Paris, France
| | - Sylvie Tissier
- INSERM UMR_S933, Sorbonne Université, U.F. de Génétique moléculaire (AP-HP), Hôpital Armand-Trousseau, Paris, France
| | - Bruno Copin
- INSERM UMR_S933, Sorbonne Université, U.F. de Génétique moléculaire (AP-HP), Hôpital Armand-Trousseau, Paris, France
| | | | - Nicolas Rive Le Gouard
- INSERM UMR_S933, Sorbonne Université, U.F. de Génétique moléculaire (AP-HP), Hôpital Armand-Trousseau, Paris, France
| | | | | | | | | | - Khadija Boussetta
- Département de Pédiatrie B, Hôpital d'enfant Béchir Hamza, Tunis, Tunisia
| | - Samia Hammouda
- Département de Pédiatrie B, Hôpital d'enfant Béchir Hamza, Tunis, Tunisia
| | - Abir Bedoui
- Service de Pédiatrie, CHU Farhat Hached, Sousse, Tunisia
| | - Habib Besbes
- Service de Pédiatrie, CHU Fattouma Bourguiba, Monastir, Tunisia
| | - Seif Meddeb
- Département de Pédiatrie B, Hôpital d'enfant Béchir Hamza, Tunis, Tunisia
| | - Karima Chraeit
- Service de Pédiatrie, CHU Mohamed Tlatli, Nabeul, Tunisia
| | - Monia Khlifa
- Service de Pédiatrie, Hôpital Régional M'Saken, Sousse, Tunisia
| | - Estelle Escudier
- INSERM UMR_S933, Sorbonne Université, U.F. de Génétique moléculaire (AP-HP), Hôpital Armand-Trousseau, Paris, France
| | - Serge Amselem
- INSERM UMR_S933, Sorbonne Université, U.F. de Génétique moléculaire (AP-HP), Hôpital Armand-Trousseau, Paris, France
| | - Imed Mabrouk
- Faculté de Médecine de Sousse, Unité de recherche "Biologie moléculaire des leucémies et lymphomes", UR14ES19, Université de Sousse, Sousse, Tunisia
| | - Marie Legendre
- INSERM UMR_S933, Sorbonne Université, U.F. de Génétique moléculaire (AP-HP), Hôpital Armand-Trousseau, Paris, France
| |
Collapse
|
32
|
Shoemark A, Dell S, Shapiro A, Lucas JS. ERS and ATS diagnostic guidelines for primary ciliary dyskinesia: similarities and differences in approach to diagnosis. Eur Respir J 2019; 54:54/3/1901066. [DOI: 10.1183/13993003.01066-2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/04/2019] [Indexed: 01/04/2023]
|
33
|
Yue Y, Huang Q, Zhu P, Zhao P, Tan X, Liu S, Li S, Han X, Cheng L, Li B, Fu Y. Identification of Pathogenic Mutations and Investigation of the NOTCH Pathway Activation in Kartagener Syndrome. Front Genet 2019; 10:749. [PMID: 31507630 PMCID: PMC6713718 DOI: 10.3389/fgene.2019.00749] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/17/2019] [Indexed: 11/13/2022] Open
Abstract
Primary ciliary dyskinesia (PCD), a rare genetic disorder, is mostly caused by defects in more than 40 known cilia structure-related genes. However, in approximately 20-35% of patients, it is caused by unknown genetic factors, and the inherited pathogenic factors are difficult to confirm. Kartagener syndrome (KTS) is a subtype of PCD associated with situs inversus, presenting more complex genetic heterogeneity. The aim of this study was to identify pathogenic mutations of candidate genes in Chinese patients with KTS and investigate the activation of the heterotaxy-related NOTCH pathway. Whole-exome sequencing was conducted in five patients with KTS. Pathogenic variants were identified using bioinformatics analysis. Candidate variants were validated by Sanger sequencing. The expression of the NOTCH pathway target genes was detected in patients with KTS. We identified 10 KTS-associated variants in six causative genes, namely, CCDC40, DNAH1, DNAH5, DNAH11, DNAI1, and LRRC6. Only one homozygote mutation was identified in LRRC6 (c.64dupT). Compound heterozygous mutations were found in DNAH1 and DNAH5. Six novel mutations were identified in four genes. Further analyses showed that the NOTCH pathway might be activated in patients with KTS. Overall, our study showed that compound heterozygous mutations widely exist in Chinese KTS patients. Our results demonstrated that the activation of the NOTCH pathway might play a role in the situs inversus pathogenicity of KTS. These findings highlight that Kartagener syndrome might be a complex genetic heterogeneous disorder mediated by heterozygous mutations in multiple PCD- or cilia-related genes.
Collapse
Affiliation(s)
- Yongjian Yue
- Key Laboratory of Shenzhen Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Disease, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Qijun Huang
- Key Laboratory of Shenzhen Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Disease, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Peng Zhu
- Central Lab of Shenzhen Pingshan People's Hospital, Shenzhen, China
| | - Pan Zhao
- Clinical Medical Research Center, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Xinjuan Tan
- Key Laboratory of Shenzhen Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Disease, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Shengguo Liu
- Key Laboratory of Shenzhen Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Disease, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Shulin Li
- Key Laboratory of Shenzhen Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Disease, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Xuemei Han
- Key Laboratory of Shenzhen Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Disease, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Linling Cheng
- State Key Laboratory of Respiration Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bo Li
- Department of Pediatric, First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Yingyun Fu
- Key Laboratory of Shenzhen Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Shenzhen Institute of Respiratory Disease, The First Affiliated Hospital of Southern University of Science and Technology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| |
Collapse
|
34
|
Benjamin AT, Ganesh R, Gaspar BL, Lucas J, Jackson C, Legendre M, Mani R, Escudier E. A Novel Homozygous Nonsense HYDIN Gene Mutation p.(Arg951*) in Primary Ciliary Dyskinesia. Indian J Pediatr 2019; 86:664-665. [PMID: 31089940 DOI: 10.1007/s12098-019-02970-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 04/22/2019] [Indexed: 11/24/2022]
Affiliation(s)
- Antony Terance Benjamin
- Department of Molecular Pathology, Primary Ciliary Dyskinesia Unit, G Kuppusamy Naidu Memorial Hospital, Coimbatore, 641037, India
| | - Ram Ganesh
- Department of Molecular Pathology, Primary Ciliary Dyskinesia Unit, G Kuppusamy Naidu Memorial Hospital, Coimbatore, 641037, India
| | - Balan Louis Gaspar
- Department of Molecular Pathology, Primary Ciliary Dyskinesia Unit, G Kuppusamy Naidu Memorial Hospital, Coimbatore, 641037, India.
| | - Jane Lucas
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Claire Jackson
- Primary Ciliary Dyskinesia Centre, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Marie Legendre
- U.F. de Génétique moléculaire, Hôpital Armand Trousseau, Paris, France
| | - Rahma Mani
- U.F. de Génétique moléculaire, Hôpital Armand Trousseau, Paris, France
| | - Estelle Escudier
- U.F. de Génétique moléculaire, Hôpital Armand Trousseau, Paris, France
| |
Collapse
|
35
|
Wheway G, Mitchison HM. Opportunities and Challenges for Molecular Understanding of Ciliopathies-The 100,000 Genomes Project. Front Genet 2019; 10:127. [PMID: 30915099 PMCID: PMC6421331 DOI: 10.3389/fgene.2019.00127] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/05/2019] [Indexed: 01/11/2023] Open
Abstract
Cilia are highly specialized cellular organelles that serve multiple functions in human development and health. Their central importance in the body is demonstrated by the occurrence of a diverse range of developmental disorders that arise from defects of cilia structure and function, caused by a range of different inherited mutations found in more than 150 different genes. Genetic analysis has rapidly advanced our understanding of the cell biological basis of ciliopathies over the past two decades, with more recent technological advances in genomics rapidly accelerating this progress. The 100,000 Genomes Project was launched in 2012 in the UK to improve diagnosis and future care for individuals affected by rare diseases like ciliopathies, through whole genome sequencing (WGS). In this review we discuss the potential promise and medical impact of WGS for ciliopathies and report on current progress of the 100,000 Genomes Project, reviewing the medical, technical and ethical challenges and opportunities that new, large scale initiatives such as this can offer.
Collapse
Affiliation(s)
- Gabrielle Wheway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Hannah M. Mitchison
- Genetics and Genomic Medicine, University College London, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
36
|
Loges NT, Antony D, Maver A, Deardorff MA, Güleç EY, Gezdirici A, Nöthe-Menchen T, Höben IM, Jelten L, Frank D, Werner C, Tebbe J, Wu K, Goldmuntz E, Čuturilo G, Krock B, Ritter A, Hjeij R, Bakey Z, Pennekamp P, Dworniczak B, Brunner H, Peterlin B, Tanidir C, Olbrich H, Omran H, Schmidts M. Recessive DNAH9 Loss-of-Function Mutations Cause Laterality Defects and Subtle Respiratory Ciliary-Beating Defects. Am J Hum Genet 2018; 103:995-1008. [PMID: 30471718 PMCID: PMC6288205 DOI: 10.1016/j.ajhg.2018.10.020] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/23/2018] [Indexed: 11/29/2022] Open
Abstract
Dysfunction of motile monocilia, altering the leftward flow at the embryonic node essential for determination of left-right body asymmetry, is a major cause of laterality defects. Laterality defects are also often associated with reduced mucociliary clearance caused by defective multiple motile cilia of the airway and are responsible for destructive airway disease. Outer dynein arms (ODAs) are essential for ciliary beat generation, and human respiratory cilia contain different ODA heavy chains (HCs): the panaxonemally distributed γ-HC DNAH5, proximally located β-HC DNAH11 (defining ODA type 1), and the distally localized β-HC DNAH9 (defining ODA type 2). Here we report loss-of-function mutations in DNAH9 in five independent families causing situs abnormalities associated with subtle respiratory ciliary dysfunction. Consistent with the observed subtle respiratory phenotype, high-speed video microscopy demonstrates distally impaired ciliary bending in DNAH9 mutant respiratory cilia. DNAH9-deficient cilia also lack other ODA components such as DNAH5, DNAI1, and DNAI2 from the distal axonemal compartment, demonstrating an essential role of DNAH9 for distal axonemal assembly of ODAs type 2. Yeast two-hybrid and co-immunoprecipitation analyses indicate interaction of DNAH9 with the ODA components DNAH5 and DNAI2 as well as the ODA-docking complex component CCDC114. We further show that during ciliogenesis of respiratory cilia, first proximally located DNAH11 and then distally located DNAH9 is assembled in the axoneme. We propose that the β-HC paralogs DNAH9 and DNAH11 achieved specific functional roles for the distinct axonemal compartments during evolution with human DNAH9 function matching that of ancient β-HCs such as that of the unicellular Chlamydomonas reinhardtii.
Collapse
|