1
|
Valizadeh P, Cattarinussi G, Sambataro F, Brambilla P, Delvecchio G. Neuroimaging alterations associated with medication use in early-onset bipolar disorder: An updated review. J Affect Disord 2023; 339:984-997. [PMID: 37481130 DOI: 10.1016/j.jad.2023.07.098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND Pediatric bipolar disorder (PBD) is a severe disorder characterized by mood fluctuations starting at a young age. Several neuroimaging studies revealed a specific biological signature of PBD involving alterations in the amygdala and prefrontal regions. Considering the growing concerns regarding the effects of PBD treatments on developing brains, this review aims to provide an overview of the studies investigating the effect of mood stabilizers, antipsychotics, and anticonvulsants on neuroimaging findings in PBD. METHODS We searched PubMed, Scopus, and Web of Science to identify all structural magnetic resonance imaging (sMRI), functional magnetic resonance imaging (fMRI), and diffusion tensor imaging (DTI) studies exploring the effects of medications on neuroimaging findings in PBD. A total of 18 studies met our inclusion criteria (fMRI n = 11, sMRI n = 6, DTI n = 1). RESULTS Although the findings varied highly across the studies, some investigations consistently indicated that medications primarily affect the prefrontal cortex and the amygdala. Moreover, despite some exceptions, the reported medication effects predominantly lean towards structural and functional normalization. LIMITATIONS The reviewed studies differ in methods, medications, and fMRI paradigms. Furthermore, most studies used observational approaches with small sample sizes, minimizing the statistical power. CONCLUSIONS Evidence suggests the potential of antipsychotics and mood stabilizers to modulate the neuroimaging findings in PBD patients, mostly normalizing brain structure and function in key mood-regulating regions.
Collapse
Affiliation(s)
- Parya Valizadeh
- School of Medicine, Tehran University of Medical Science, Tehran, Iran; Neuroscience Research Group (NRG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Giulia Cattarinussi
- Department of Neuroscience (DNS), Padua Neuroscience Center, University of Padova, Padua, Italy; Padua Neuroscience Center, University of Padova, Padua, Italy
| | - Fabio Sambataro
- Department of Neuroscience (DNS), Padua Neuroscience Center, University of Padova, Padua, Italy; Padua Neuroscience Center, University of Padova, Padua, Italy
| | - Paolo Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy; Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Giuseppe Delvecchio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
2
|
Singh Y, Chowdhury A, Dasgupta R, Majumder SK. The effects of lithium on human red blood cells studied using optical spectroscopy and laser trap. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2023; 52:91-100. [PMID: 36929427 DOI: 10.1007/s00249-023-01643-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023]
Abstract
Lithium has been the treatment of choice for patients with bipolar disorder. However, lithium overdose happens more frequently since it has a very narrow therapeutic range in blood, necessitating investigation of its adverse effects on blood cells. The possible changes that lithium exposure may have on functional and morphological characteristics of human red blood cells (RBCs) have been studied ex vivo using single-cell Raman spectroscopy, optical trapping, and membrane fluorescent probe. The Raman spectroscopy was performed with excitation at 532 nm light, which also results in simultaneous photoreduction of intracellular hemoglobin (Hb). The level of photoreduction of lithium-exposed RBCs was observed to decline with lithium concentration, indicating irreversible oxygenation of intracellular Hb from lithium exposure. The lithium exposure may also have an effect on RBC membrane, which was investigated via optical stretching in a laser trap and the results suggest lower membrane fluidity for the lithium-exposed RBCs. The membrane fluidity of RBCs was further studied using the Prodan generalized polarization method and the results verify the reduction of membrane fluidity upon lithium exposure.
Collapse
Affiliation(s)
- Yashveer Singh
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
| | - Aniket Chowdhury
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
- Laser Biomedical Applications Division, Raja Ramanna Centre of Advanced Technology, Indore, 452013, India
| | - Raktim Dasgupta
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India.
- Laser Biomedical Applications Division, Raja Ramanna Centre of Advanced Technology, Indore, 452013, India.
| | - Shovan Kumar Majumder
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, 400094, India
- Laser Biomedical Applications Division, Raja Ramanna Centre of Advanced Technology, Indore, 452013, India
| |
Collapse
|
3
|
Chabert J, Allauze E, Pereira B, Chassain C, De Chazeron I, Rotgé JY, Fossati P, Llorca PM, Samalin L. Glutamatergic and N-Acetylaspartate Metabolites in Bipolar Disorder: A Systematic Review and Meta-Analysis of Proton Magnetic Resonance Spectroscopy Studies. Int J Mol Sci 2022; 23:ijms23168974. [PMID: 36012234 PMCID: PMC9409038 DOI: 10.3390/ijms23168974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/26/2022] Open
Abstract
The exact neurobiological mechanisms of bipolar disorder (BD) remain unknown. However, some neurometabolites could be implicated, including Glutamate (Glu), Glutamine (Gln), Glx, and N-acetylaspartate (NAA). Proton Magnetic Resonance Spectroscopy (1H-MRS) allows one to quantify these metabolites in the human brain. Thus, we conducted a systematic review and meta-analysis of the literature to compare their levels between BD patients and healthy controls (HC). The main inclusion criteria for inclusion were 1H-MRS studies comparing levels of Glu, Gln, Glx, and NAA in the prefrontal cortex (PFC), anterior cingulate cortex (ACC), and hippocampi between patients with BD in clinical remission or a major depressive episode and HC. Thirty-three studies were included. NAA levels were significantly lower in the left white matter PFC (wmPFC) of depressive and remitted BD patients compared to controls and were also significantly higher in the left dorsolateral PFC (dlPFC) of depressive BD patients compared to HC. Gln levels were significantly higher in the ACC of remitted BD patients compared to in HC. The decreased levels of NAA of BD patients may be related to the alterations in neuroplasticity and synaptic plasticity found in BD patients and may explain the deep white matter hyperintensities frequently observed via magnetic resonance imagery.
Collapse
Affiliation(s)
- Jonathan Chabert
- Service de Psychiatrie Adulte, CHU Clermont-Ferrand, CNRS, Institut Pascal, Université Clermont Auvergne, 58 Rue Montalembert, 63003 Clermont-Ferrand, France
- Correspondence: (J.C.); (L.S.); Tel.: +33-4-73-752-124 (J.C. & L.S.)
| | - Etienne Allauze
- Service de Psychiatrie Adulte, CHU Clermont-Ferrand, CNRS, Institut Pascal, Université Clermont Auvergne, 58 Rue Montalembert, 63003 Clermont-Ferrand, France
| | - Bruno Pereira
- Biostatistics Unit (DRCI), CHU Clermont-Ferrand, Université Clermont Auvergne, 7 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Carine Chassain
- Imaging Department, CHU Clermont-Ferrand, CNRS, Institut Pascal, Université Clermont Auvergne, Clermont Auvergne INP, 58 Rue Montalembert, 63003 Clermont-Ferrand, France
| | - Ingrid De Chazeron
- Service de Psychiatrie Adulte, CHU Clermont-Ferrand, CNRS, Institut Pascal, Université Clermont Auvergne, 58 Rue Montalembert, 63003 Clermont-Ferrand, France
| | - Jean-Yves Rotgé
- Service de Psychiatrie Adulte, Pitié-Salpêtrière Hospital, CNRS UMR 7593, 47-83 Bd de l’Hôpital, 75651 Paris, France
| | - Philippe Fossati
- Service de Psychiatrie Adulte, Pitié-Salpêtrière Hospital, CNRS UMR 7593, 47-83 Bd de l’Hôpital, 75651 Paris, France
| | - Pierre-Michel Llorca
- Service de Psychiatrie Adulte, CHU Clermont-Ferrand, CNRS, Institut Pascal, Université Clermont Auvergne, 58 Rue Montalembert, 63003 Clermont-Ferrand, France
| | - Ludovic Samalin
- Service de Psychiatrie Adulte, CHU Clermont-Ferrand, CNRS, Institut Pascal, Université Clermont Auvergne, 58 Rue Montalembert, 63003 Clermont-Ferrand, France
- Correspondence: (J.C.); (L.S.); Tel.: +33-4-73-752-124 (J.C. & L.S.)
| |
Collapse
|
4
|
Pacholko AG, Bekar LK. Lithium orotate: A superior option for lithium therapy? Brain Behav 2021; 11:e2262. [PMID: 34196467 PMCID: PMC8413749 DOI: 10.1002/brb3.2262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/08/2021] [Indexed: 01/23/2023] Open
Abstract
Bipolar disorder (BD) poses a significant public health concern, with roughly one-quarter of sufferers attempting suicide. BD is characterized by manic and depressive mood cycles, the recurrence of which can be effectively curtailed through lithium therapy. Unfortunately, the most frequently employed lithium salt, lithium carbonate (Li2 CO3 ), is associated with a host of adverse health outcomes following chronic use: these unwanted effects range from relatively minor inconveniences (e.g., polydipsia and polyuria) to potentially major complications (e.g., hypothyroidism and/or renal impairment). As these undesirable effects can limit patient compliance, an alternative lithium compound with a lesser toxicity profile would dramatically improve treatment efficacy and outcomes. Lithium orotate (LiC5 H3 N2 O4 ; henceforth referred to as LiOr), a compound largely abandoned since the late 1970s, may represent such an alternative. LiOr is proposed to cross the blood-brain barrier and enter cells more readily than Li2 CO3 , which will theoretically allow for reduced dosage requirements and ameliorated toxicity concerns. This review addresses the controversial history of LiOr, complete with discussions of experimental and clinical efficacy, putative mechanisms of action, adverse effects, and its potential future in therapy.
Collapse
Affiliation(s)
- Anthony G Pacholko
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Lane K Bekar
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
5
|
Case KC, Salsaa M, Yu W, Greenberg ML. Regulation of Inositol Biosynthesis: Balancing Health and Pathophysiology. Handb Exp Pharmacol 2020; 259:221-260. [PMID: 30591968 DOI: 10.1007/164_2018_181] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Inositol is the precursor for all inositol compounds and is essential for viability of eukaryotic cells. Numerous cellular processes and signaling functions are dependent on inositol compounds, and perturbation of their synthesis leads to a wide range of human diseases. Although considerable research has been directed at understanding the function of inositol compounds, especially phosphoinositides and inositol phosphates, a focus on regulatory and homeostatic mechanisms controlling inositol biosynthesis has been largely neglected. Consequently, little is known about how synthesis of inositol is regulated in human cells. Identifying physiological regulators of inositol synthesis and elucidating the molecular mechanisms that regulate inositol synthesis will contribute fundamental insight into cellular processes that are mediated by inositol compounds and will provide a foundation to understand numerous disease processes that result from perturbation of inositol homeostasis. In addition, elucidating the mechanisms of action of inositol-depleting drugs may suggest new strategies for the design of second-generation pharmaceuticals to treat psychiatric disorders and other illnesses.
Collapse
Affiliation(s)
- Kendall C Case
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Michael Salsaa
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Wenxi Yu
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Miriam L Greenberg
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
6
|
Vawter MP, Hamzeh AR, Muradyan E, Civelli O, Abbott GW, Alachkar A. Association of Myoinositol Transporters with Schizophrenia and Bipolar Disorder: Evidence from Human and Animal Studies. MOLECULAR NEUROPSYCHIATRY 2019; 5:200-211. [PMID: 31768373 PMCID: PMC6873027 DOI: 10.1159/000501125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022]
Abstract
Evidence from animal and human studies has linked myo-inositol (MI) with the pathophysiology and/or treatment of psychiatric disorders such as schizophrenia and bipolar disorder. However, there is still controversy surrounding the definitive role of MI in these disorders. Given that brain MI is differentially regulated by three transporters - SMIT1, SMIT2 and/or HMIT (encoded by the genes: SLC5A3, SLC5A11, and SLC2A13, respectively) - we used available datasets to describe the distribution in mouse and human brain of the different MI transporters and to examine changes in mRNA expression of these transporters in patients with schizophrenia and bipolar disorder. We found a differential distribution of the mRNA of each of the three MI transporters in both human and mouse brain regions. Interestingly, while individual neurons express SMIT1 and HMIT, non-neuronal cells express SMIT2, thus partially accounting for different uptake levels of MI and concordance to downstream second messenger signaling pathways. We also found that the expression of MI transporters is significantly changed in schizophrenia and bipolar disorder in a diagnostic-, brain region- and subtype-specific manner. We then examined the effects of germline deletion in mice of Slc5a3 on behavioral phenotypes related to schizophrenia and bipolar disorder. This gene deletion produces behavioral deficits that mirror some specific symptoms of schizophrenia and bipolar disorder. Finally, chronic administration of MI was able to reverse particular, but not all, behavioral deficits in Slc5a3 knockout mice; MI itself induced some behavioral deficits. Our data support a strong correlation between the expression of MI transporters and schizophrenia and bipolar disorder, and suggest that brain region-specific aberration of one or more of these transporters determines the partial behavioral phenotypes and/or symptomatic pattern of these disorders.
Collapse
Affiliation(s)
- Marquis P. Vawter
- Department of Psychiatry and Human Behavior, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Abdul Rezzak Hamzeh
- John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Edgar Muradyan
- Department of Pharmacology, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Olivier Civelli
- Department of Pharmacology, School of Medicine, University of California, Irvine, Irvine, California, USA
- Department of Pharmaceutical Sciences, School of Medicine, University of California, Irvine, Irvine, California, USA
- Department of Developmental and Cell Biology, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Geoffrey W. Abbott
- Bioelectricity Laboratory, Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, California, USA
| | - Amal Alachkar
- Department of Pharmacology, School of Medicine, University of California, Irvine, Irvine, California, USA
- Department of Pharmaceutical Sciences, School of Medicine, University of California, Irvine, Irvine, California, USA
| |
Collapse
|
7
|
Soeiro-de-Souza MG, Otaduy MCG, Machado-Vieira R, Moreno RA, Nery FG, Leite C, Lafer B. Lithium-associated anterior cingulate neurometabolic profile in euthymic Bipolar I disorder: A 1H-MRS study. J Affect Disord 2018; 241:192-199. [PMID: 30130684 DOI: 10.1016/j.jad.2018.08.039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/07/2018] [Accepted: 08/09/2018] [Indexed: 01/28/2023]
Abstract
OBJECTIVE In the treatment of Bipolar disorder (BD), achieving euthymia is highly complex and usually requires a combination of mood stabilizers. The mechanism of action in stabilizing mood has not been fully elucidated, but alterations in N-Acetylaspartate (NAA), Myo-Inositol (mI) and Choline (Cho) have been implicated. Proton magnetic resonance spectroscopy (1H-MRS) is the gold standard technique for measuring brain NAA, Cho and mI in vivo. The objective of this study was to investigate the association of lithium use in BD type I and brain levels of NAA, mI and Cho in the (anterior cingulate cortex) ACC. METHODS 129 BD type I subjects and 79 healthy controls (HC) were submitted to a 3-Tesla brain magnetic resonance imaging scan (1H-MRS) using a PRESS ACC single voxel (8cm3) sequence. RESULTS BD patients exhibited higher NAA and Cho levels compared to HC. Lithium prescription was associated with lower mI (combination + monotherapy) and higher NAA levels (monotherapy). CONCLUSION The results observed add to the knowledge about the mechanisms of action of mood stabilizers on brain metabolites during euthymia. Additionally, the observed decrease in mI levels associated with lithium monotherapy is an in vivo finding that supports the inositol-depletion hypothesis of lithium pharmacodynamics.
Collapse
Affiliation(s)
- Marcio Gerhardt Soeiro-de-Souza
- Mood Disorders Unit (GRUDA), Department and Institute of Psychiatry, University of Sao Paulo, Brazil; Genetics and Pharmacogenetics Unit (PROGENE), Department and Institute of Psychiatry, University of Sao Paulo, Brazil.
| | - Maria Concepcion Garcia Otaduy
- Laboratory of Magnetic Resonance LIM44, Department and Institute of Radiology, University of São Paulo (InRad-FMUSP), Brazil
| | | | - Ricardo Alberto Moreno
- Mood Disorders Unit (GRUDA), Department and Institute of Psychiatry, University of Sao Paulo, Brazil
| | - Fabiano G Nery
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, USA
| | - Claudia Leite
- Laboratory of Magnetic Resonance LIM44, Department and Institute of Radiology, University of São Paulo (InRad-FMUSP), Brazil
| | - Beny Lafer
- Bipolar Disorders Program (PROMAN), Department and Institute of Psychiatry, University of São Paulo, Brazil
| |
Collapse
|
8
|
Szulc A, Wiedlocha M, Waszkiewicz N, Galińska-Skok B, Marcinowicz P, Gierus J, Mosiolek A. Proton magnetic resonance spectroscopy changes after lithium treatment. Systematic review. Psychiatry Res Neuroimaging 2018; 273:1-8. [PMID: 29414126 DOI: 10.1016/j.pscychresns.2018.01.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 12/10/2017] [Accepted: 01/12/2018] [Indexed: 01/03/2023]
Abstract
1H MRS is widely used in the research of mental disorders. It enables evaluation of concentration or ratios of several metabolites, which play important roles in brain metabolism: N-acetylaspartate (NAA), choline containing compounds, myo-inositol and glutamate, glutamine and GABA (together as Glx complex or separately). Specifically in bipolar disorder brain metabolite abnormalities include mostly NAA reduces and Glx increases in different brain regions. Bipolar disorder is associated with impairment in neurotrophic and cellular plasticity, resilience pathways and in neuroprotective processes. Lithium, which is commonly used in BD treatment, modulates neurotransmitter release, reduces oxidative stress and apoptosis, induces angiogenesis, neurogenesis and neurotrophic response. Thus brain metabolite abnormalities may elucidate the mechanisms of this processes. In the present article we systematically reviewed 26 studies - the majority of them investigated bipolar disorder ( 7 follow-up and all 11 cross-sectional studies). Moreover we dispute whether the influence of lithium on brain metabolites in bipolar disorder could explain the background of its potential neuroprotective action. The results of our literature review do not equivocally confirm Lithium's influence the metabolite changes in the brain. The majority of the follow-up studies do not support the initially assumed influence of Lithium on the increase of NAA level in various brain structures. The results of studies are inconclusive with regard to levels of Glx or Glu and Lithium intake, rather point a lack of relationship. The above results were reviewed according to the most recent theories in the field accounting for the impact of lithium (1)HMRS measures.
Collapse
Affiliation(s)
- Agata Szulc
- Department of Psychiatry, Medical University of Warsaw, Pruszkow, Poland
| | | | | | - Beata Galińska-Skok
- Department of Psychiatry, Medical University of Białystok, Choroszcz, Poland
| | - Piotr Marcinowicz
- Department of Psychiatry, Medical University of Warsaw, Pruszkow, Poland
| | - Jacek Gierus
- Department of Psychiatry, Medical University of Warsaw, Pruszkow, Poland
| | - Anna Mosiolek
- Department of Psychiatry, Medical University of Warsaw, Pruszkow, Poland; Department of Psychiatry, Medical University of Białystok, Choroszcz, Poland
| |
Collapse
|
9
|
Sade Y, Toker L, Kara NZ, Einat H, Rapoport S, Moechars D, Berry GT, Bersudsky Y, Agam G. IP3 accumulation and/or inositol depletion: two downstream lithium's effects that may mediate its behavioral and cellular changes. Transl Psychiatry 2016; 6:e968. [PMID: 27922641 PMCID: PMC5315558 DOI: 10.1038/tp.2016.217] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 08/17/2016] [Accepted: 09/12/2016] [Indexed: 12/12/2022] Open
Abstract
Lithium is the prototype mood stabilizer but its mechanism is still unresolved. Two hypotheses dominate-the consequences of lithium's inhibition of inositol monophosphatase at therapeutically relevant concentrations (the 'inositol depletion' hypothesis), and of glycogen-synthase kinase-3. To further elaborate the inositol depletion hypothesis that did not decisively determine whether inositol depletion per se, or phosphoinositols accumulation induces the beneficial effects, we utilized knockout mice of either of two inositol metabolism-related genes-IMPA1 or SMIT1, both mimic several lithium's behavioral and biochemical effects. We assessed in vivo, under non-agonist-stimulated conditions, 3H-inositol incorporation into brain phosphoinositols and phosphoinositides in wild-type, lithium-treated, IMPA1 and SMIT1 knockout mice. Lithium treatment increased frontal cortex and hippocampal phosphoinositols labeling by several fold, but decreased phosphoinositides labeling in the frontal cortex of the wild-type mice of the IMPA1 colony strain by ~50%. Inositol metabolites were differently affected by IMPA1 and SMIT1 knockout. Inositoltrisphosphate administered intracerebroventricularly affected bipolar-related behaviors and autophagy markers in a lithium-like manner. Namely, IP3 but not IP1 reduced the immobility time of wild-type mice in the forced swim test model of antidepressant action by 30%, an effect that was reversed by an antagonist of all three IP3 receptors; amphetamine-induced hyperlocomotion of wild-type mice (distance traveled) was 35% reduced by IP3 administration; IP3 administration increased hippocampal messenger RNA levels of Beclin-1 (required for autophagy execution) and hippocampal and frontal cortex protein levels ratio of Beclin-1/p62 by about threefold (p62 is degraded by autophagy). To conclude, lithium affects the phosphatidylinositol signaling system in two ways: depleting inositol, consequently decreasing phosphoinositides; elevating inositol monophosphate levels followed by phosphoinositols accumulation. Each or both may mediate lithium-induced behavior.
Collapse
Affiliation(s)
- Y Sade
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Psychiatry Research Unit, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Mental Health Center, Beer-Sheva, Israel
| | - L Toker
- Department of Psychiatry and Centre for High-Throughput Biology, University of British Columbia Vancouver, BC, Canada
| | - N Z Kara
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Psychiatry Research Unit, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel,School of Behavioral Sciences, Tel Aviv-Yaffo Academic College, Tel Aviv, Israel
| | - H Einat
- School of Behavioral Sciences, Tel Aviv-Yaffo Academic College, Tel Aviv, Israel
| | - S Rapoport
- Brain Physiology and Metabolism Section, Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - D Moechars
- Johnson & Johnson Pharmaceutical Research and Development, Beerse, Belgium
| | - G T Berry
- Metabolism Program Division of Genetics, Children's Hospital Boston, Harvard Medical School, Boston, MA, USA
| | - Y Bersudsky
- Psychiatry Research Unit, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Mental Health Center, Beer-Sheva, Israel
| | - G Agam
- Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Psychiatry Research Unit, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel,Mental Health Center, Beer-Sheva, Israel,Professor, , Department of Clinical Biochemistry and Pharmacology, Ben-Gurion University of the Negev or Psychiatry Research Unit, Ben-Gurion University of the Negev or Faculty of Health Sciences, Ben-Gurion University of the Negev or Mental Health Center, Beer-Sheva 84170, Israel. E-mail:
| |
Collapse
|
10
|
Xu J, Dydak U, Harezlak J, Nixon J, Dzemidzic M, Gunn AD, Karne HS, Anand A. Neurochemical abnormalities in unmedicated bipolar depression and mania: a 2D 1H MRS investigation. Psychiatry Res 2013; 213:235-41. [PMID: 23810639 PMCID: PMC3729606 DOI: 10.1016/j.pscychresns.2013.02.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 01/13/2013] [Accepted: 02/22/2013] [Indexed: 12/28/2022]
Abstract
The neurobiology and neurochemistry of bipolar disorder and its different phases are poorly understood. This study investigated metabolite abnormalities in both unmedicated bipolar depression as well as mania using 2D 1H magnetic resonance spectroscopy imaging (MRSI). MRSI data were obtained from 24 unmedicated bipolar disorder (BP) subjects (12 (hypo)manic (BPM)) and 12 depressed (BPD), and 20 closely matched healthy controls. 2D 1H MRSI data were collected from a 15-mm axial slice placed along the anterior commissure-posterior commissure (AC-PC) line to measure brain metabolites bilaterally in the thalamus and also the anterior and posterior cingulate cortex (ACC and PCC). Brain Lac/Cr levels were significantly increased in the BP group as a whole compared to healthy controls. Glutamate abnormalities varied across bipolar state as well as brain region: significantly increased Glx/Cr values were found in the left thalamus in BPD, but BPM had decreased Glu/Cr and Glx/Cr levels in the PCC when compared to healthy controls and decreased Glu/Cr levels even when compared to the BPD subjects group. The findings of the study point to state-related abnormalities of oxidative and glutamate metabolism in bipolar disorder.
Collapse
Affiliation(s)
- Jun Xu
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine
- School of Health Sciences, Purdue University
| | - Ulrike Dydak
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine
- School of Health Sciences, Purdue University
| | | | | | - Mario Dzemidzic
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine
- Department of Neurology, Indiana University School of Medicine
| | - Abigail D. Gunn
- Department of Psychiatry, Indiana University School of Medicine
| | - Harish S Karne
- Department of Psychiatry, Indiana University School of Medicine
| | - Amit Anand
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine
- Department of Psychiatry, Indiana University School of Medicine
| |
Collapse
|
11
|
Chen CT, Domenichiello AF, Trépanier MO, Liu Z, Masoodi M, Bazinet RP. The low levels of eicosapentaenoic acid in rat brain phospholipids are maintained via multiple redundant mechanisms. J Lipid Res 2013; 54:2410-22. [PMID: 23836105 PMCID: PMC3735939 DOI: 10.1194/jlr.m038505] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/26/2013] [Indexed: 12/19/2022] Open
Abstract
Brain eicosapentaenoic acid (EPA) levels are 250- to 300-fold lower than docosahexaenoic acid (DHA), at least partly, because EPA is rapidly β-oxidized and lost from brain phospholipids. Therefore, we examined if β-oxidation was necessary for maintaining low EPA levels by inhibiting β-oxidation with methyl palmoxirate (MEP). Furthermore, because other metabolic differences between DHA and EPA may also contribute to their vastly different levels, this study aimed to quantify the incorporation and turnover of DHA and EPA into brain phospholipids. Fifteen-week-old rats were subjected to vehicle or MEP prior to a 5 min intravenous infusion of (14)C-palmitate, (14)C-DHA, or (14)C-EPA. MEP reduced the radioactivity of brain aqueous fractions for (14)C-palmitate-, (14)C-EPA-, and (14)C-DHA-infused rats by 74, 54, and 23%, respectively; while it increased the net rate of incorporation of plasma unesterified palmitate into choline glycerophospholipids and phosphatidylinositol and EPA into ethanolamine glycerophospholipids and phosphatidylserine. MEP also increased the synthesis of n-3 docosapentaenoic acid (n-3 DPA) from EPA. Moreover, the recycling of EPA into brain phospholipids was 154-fold lower than DHA. Therefore, the low levels of EPA in the brain are maintained by multiple redundant pathways including β-oxidation, decreased incorporation from plasma unesterified FA pool, elongation/desaturation to n-3 DPA, and lower recycling within brain phospholipids.
Collapse
Affiliation(s)
- Chuck T. Chen
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2; and
| | - Anthony F. Domenichiello
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2; and
| | - Marc-Olivier Trépanier
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2; and
| | - Zhen Liu
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2; and
| | - Mojgan Masoodi
- Nestlé Institute of Health Sciences SA, Campus EPFL, Quartier de l'innovation, bâtiment G, 1015 Lausanne, Switzerland
| | - Richard P. Bazinet
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, Toronto, ON, Canada M5S 3E2; and
| |
Collapse
|
12
|
Neurometabolites in schizophrenia and bipolar disorder - a systematic review and meta-analysis. Psychiatry Res 2012; 203:111-25. [PMID: 22981426 PMCID: PMC3466386 DOI: 10.1016/j.pscychresns.2012.02.003] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/02/2012] [Accepted: 02/08/2012] [Indexed: 01/10/2023]
Abstract
This meta-analysis evaluates alterations of neurometabolites in schizophrenia and bipolar disorder. PubMed was searched to find controlled studies evaluating N-acetylaspartate (NAA), Choline (Cho) and Creatine (Cr) assessed with ((1))H-MRS (proton magnetic resonance spectroscopy) in patients with schizophrenia and bipolar disorder up to September 2010. Random effects meta-analyses were conducted to estimate pooled standardized mean differences. The statistic was used to quantify inconsistencies. Subgroup analyses were conducted to explore potential explanations for inconsistencies. The systematic review included 146 studies with 5643 participants. NAA levels were affected in schizophrenia and bipolar disorder. Decreased levels in the basal ganglia and frontal lobe were the most consistent findings in schizophrenia; decreased levels in the basal ganglia were the most consistent findings in bipolar disorder. Cho and Cr levels were not altered in either disorder. Findings for Cr were most consistent in the thalamus, frontal lobe and dorsolateral prefrontal cortex in schizophrenia and the basal ganglia and frontal lobe in bipolar disorder. Findings for Cho were most consistent in the thalamus, frontal lobe and anterior cingulate cortex in schizophrenia and basal ganglia in bipolar disorder. Large, carefully designed studies are needed to better estimate the extent of alterations in neurometabolites.
Collapse
|
13
|
Pavuluri MN, Passarotti AM, Fitzgerald JM, Wegbreit E, Sweeney JA. Risperidone and divalproex differentially engage the fronto-striato-temporal circuitry in pediatric mania: a pharmacological functional magnetic resonance imaging study. J Am Acad Child Adolesc Psychiatry 2012; 51:157-170.e5. [PMID: 22265362 PMCID: PMC3357915 DOI: 10.1016/j.jaac.2011.10.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 10/11/2011] [Accepted: 10/28/2011] [Indexed: 12/20/2022]
Abstract
OBJECTIVE The current study examined the impact of risperidone and divalproex on affective and working memory circuitry in patients with pediatric bipolar disorder (PBD). METHOD This was a six-week, double-blind, randomized trial of risperidone plus placebo versus divalproex plus placebo for patients with mania (n = 21; 13.6 ± 2.5 years of age). Functional magnetic resonance imaging (fMRI) outcomes were measured using a block design, affective, N-back task with angry, happy, and neutral face stimuli at baseline and at 6-week follow-up. Matched healthy controls (HC; n = 15, 14.5 ± 2.8 years) were also scanned twice. RESULTS In post hoc analyses on the significant interaction in a 3×2×2 analysis of variance (ANOVA) that included patient groups and HC, the risperidone group showed greater activation after treatment in response to the angry face condition in the left subgenual anterior cingulate cortex (ACC) and striatum relative to the divalproex group. The divalproex group showed greater activation relative to the risperidone group in the left inferior frontal gyrus and right middle temporal gyrus. Over the treatment course, the risperidone group showed greater change in activation in the left ventral striatum than the divalproex group, and the divalproex group showed greater activation change in left inferior frontal gyrus and right middle temporal gyrus than the risperidone group. Furthermore, each patient group showed increased activation relative to HC in fronto-striato-temporal regions over time. The happy face condition was potentially less emotionally challenging in this study and did not elicit notable findings. CONCLUSIONS When patients performed a working memory task under emotional duress inherent in the paradigm, divalproex enhanced activation in a fronto-temporal circuit whereas risperidone increased activation in the dopamine (D₂) receptor-rich ventral striatum. Clinical trial registration information-Risperidone and Divalproex Sodium With MRI Assessment in Pediatric Bipolar; http://www.clinicaltrials.gov; NCT00176202.
Collapse
Affiliation(s)
- Mani N Pavuluri
- Pediatric Brain Research and Intervention Center, Institute for Juvenile Research, Colbeth Clinic, University of Illinois at Chicago, IL 60608, USA.
| | | | | | | | | |
Collapse
|
14
|
Iovieno N, Dalton ED, Fava M, Mischoulon D. Second-tier natural antidepressants: review and critique. J Affect Disord 2011; 130:343-57. [PMID: 20579741 DOI: 10.1016/j.jad.2010.06.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 04/29/2010] [Accepted: 06/03/2010] [Indexed: 12/16/2022]
Abstract
The use of Complementary and Alternative Medicine (CAM) for physical and mental problems has increased significantly in the US over the past two decades, and depression is one of the leading indications for the use of CAM. This article reviews some of the lesser-known natural products with potential psychiatric applications that are starting to emerge with some scientific and clinical evidence and may constitute a next wave of natural antidepressants: Rhodiola rosea, chromium, 5-Hydroxytryptophan (5-HTP) and inositol. Background information, efficacy data, proposed mechanisms of action, recommended doses, side effects, and precautions are reviewed. We found some encouraging data for the use of these natural products in specific populations of depressed patients. R. rosea is an adaptogen plant that can be especially helpful in treating asthenic or lethargic depression, and may be combined with conventional antidepressants to alleviate some of their common side effects. Chromium has a beneficial effect on eating-related atypical symptoms of depression, and may be a valuable agent in treating atypical depression and seasonal affective disorder. Inositol may be useful in the treatment of bipolar depression when combined with mood stabilizers. Evidence for the clinical efficacy of 5-HTP is also promising but still preliminary. Although more well-designed and larger controlled studies are needed before any substantive conclusions can be drawn, the available evidence is compelling and these natural products deserve further investigation as a possibly significant addition to the antidepressant armamentarium.
Collapse
Affiliation(s)
- Nadia Iovieno
- Depression Clinical and Research Program at Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | |
Collapse
|
15
|
Singh MK, Spielman D, Libby A, Adams E, Acquaye T, Howe M, Kelley R, Reiss A, Chang KD. Neurochemical deficits in the cerebellar vermis in child offspring of parents with bipolar disorder. Bipolar Disord 2011; 13:189-97. [PMID: 21443573 PMCID: PMC3066452 DOI: 10.1111/j.1399-5618.2011.00902.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVES We aimed to compare concentrations of N-acetyl aspartate, myo-inositol, and other neurometabolites in the cerebellar vermis of offspring at risk for bipolar disorder (BD) and healthy controls to examine whether changes in these neuronal metabolite concentrations occur in at-risk offspring prior to the onset of mania. METHODS A total of 22 children and adolescents aged 9-17 years with a familial risk for bipolar I or II disorder [at-risk offspring with non-bipolar I disorder mood symptoms (AR)], and 25 healthy controls (HC) were examined using proton magnetic resonance spectroscopy at 3T to study metabolite concentrations in an 8-cc voxel in the cerebellar vermis. RESULTS Decreased myo-inositol and choline concentrations in the vermis were seen in the AR group compared to HC (p<0.01). CONCLUSIONS Decreased cellular metabolism and interference with second messenger pathways may be present in the cerebellar vermis in youth at risk for BD as evident by decreased myo-inositol and choline concentrations in this region. These results may be limited by a cross-sectional design, co-occurring diagnoses, and medication exposure. Longitudinal studies are necessary to determine whether early neurochemical changes can predict the development of mania. Improved methods for identifying children with certain neurochemical vulnerabilities may inform preventive and early intervention strategies prior to the onset of mania.
Collapse
Affiliation(s)
- Manpreet K Singh
- Pediatric Bipolar Disorders Research Program, Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Road, Stanford, CA 94305, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Chen CT, Liu Z, Bazinet RP. Rapid de-esterification and loss of eicosapentaenoic acid from rat brain phospholipids: an intracerebroventricular study. J Neurochem 2010; 116:363-73. [DOI: 10.1111/j.1471-4159.2010.07116.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
17
|
Silverstone PH, McGrath BM. Lithium and valproate and their possible effects on themyo-inositol second messenger system in healthy volunteers and bipolar patients. Int Rev Psychiatry 2010; 21:414-23. [PMID: 20374155 DOI: 10.1080/09540260902962214] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Over 25 years ago it was suggested that the mechanism by which lithium was clinically effective may be due to a stabilizing effect on the phosphoinositol second messenger system (PI-cycle), which has multiple effects within cells. It was proposed that lithium, which is an inhibitor of one of the key enzymes in the PI-cycle, acted to lower myo-inositol concentrations; termed the 'inositol-depletion hypothesis'. Initial animal evidence supported this hypothesis, and also suggested that it was possible that sodium valproate could affect the PI-cycle. Since the first magnetic resonance studies in this area in the early 1990s many studies have examined various aspects of this hypothesis in both healthy volunteers and patients utilizing magnetic resonance spectroscopy (MRS). The present review considers research in this area and concludes that, despite initial promise, current evidence suggests that it is unlikely that either lithium or valproate produce clinically relevant changes in myo-inositol concentrations or the PI-cycle. These findings do not suggest that lithium-induced changes in the PI-cycle are the primary mechanism by which lithium or valproate exert their beneficial clinical effects in bipolar disorder. Nonetheless, given the current technical and clinical limitations of the literature to date, this conclusion cannot be considered completely definitive.
Collapse
Affiliation(s)
- Peter H Silverstone
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada T6G 2B7.
| | | |
Collapse
|
18
|
Nery FG, Stanley JA, Chen HH, Hatch JP, Nicoletti MA, Monkul ES, Matsuo K, Caetano SC, Peluso MA, Najt P, Soares JC. Normal metabolite levels in the left dorsolateral prefrontal cortex of unmedicated major depressive disorder patients: a single voxel (1)H spectroscopy study. Psychiatry Res 2009; 174:177-83. [PMID: 19910168 DOI: 10.1016/j.pscychresns.2009.05.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 05/06/2009] [Accepted: 05/15/2009] [Indexed: 02/02/2023]
Abstract
Few proton magnetic resonance spectroscopy ((1)H spectroscopy) studies have investigated the dorsolateral prefrontal cortex (DLPFC), a key region in the pathophysiology of major depressive disorder (MDD). We used (1)H spectroscopy to verify whether MDD patients differ from healthy controls (HC) in metabolite levels in this brain area. Thirty-seven unmedicated DSM-IV MDD patients were compared with 40 HC. Subjects underwent a short echo-time (1)H spectroscopy examination at 1.5 T, with an 8-cm(3) single voxel placed in the left DLPFC. Reliable absolute metabolite levels of N-acetyl aspartate (NAA), phosphocreatine plus creatine (PCr+Cr), choline-containing compounds (GPC+PC), myo-inositol, glutamate plus glutamine (Glu+Gln), and glutamate were obtained using the unsuppressed water signal as an internal reference. Metabolite levels in the left DLPFC did not statistically differ between MDD patients and HC. We found an interaction between gender and diagnosis on PCr+Cr levels. Male MDD patients presented lower levels of PCr+Cr than male HC, and female MDD patients presented higher levels of PCr+Cr than female HC. Moreover, length of illness was inversely correlated with NAA levels. These findings suggest that there is not an effect of diagnosis on the left DLPFC neurochemistry. Possible effects of gender on PCr+Cr levels of MDD patients need to be further investigated.
Collapse
Affiliation(s)
- Fabiano G Nery
- Department of Psychiatry, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
OBJECTIVE Despite effective pharmacological treatments for bipolar disorder, we still lack a comprehensive pathophysiological model of the illness. Recent neurobiological research has implicated a number of key brain regions and neuronal components in the behavioural and cognitive manifestations of bipolar disorder. Dopamine has previously been investigated in some depth in bipolar disorder, but of late has not been a primary focus of attention. This article examines the role of dopamine in bipolar disorder, incorporating recent advances into established models where possible. METHODS A critical evaluation of the literature was undertaken, including a review of behavioural, neurochemical, receptor, and imaging studies, as well as genetic studies focusing on dopamine receptors and related metabolic pathways. In addition, pharmacologic manipulation of the central dopaminergic pathways and comparisons with other disease states such as schizophrenia were considered, principally as a means of exploring the hypothesised models. RESULTS Multiple lines of evidence, including data from pharmacological interventions and structural and functional magnetic resonance imaging studies, suggest that the dopaminergic system may play a central role in bipolar disorder. CONCLUSION Future research into the pathophysiological mechanisms of bipolar disorder and the development of new treatments for bipolar disorder should focus on the dopaminergic system.
Collapse
Affiliation(s)
- David A Cousins
- Newcastle Magnetic Resonance Centre, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK.
| | | | | |
Collapse
|
20
|
Investigation of the H+–myo-inositol transporter (HMIT) as a neuronal regulator of phosphoinositide signalling. Biochem Soc Trans 2009; 37:1139-43. [DOI: 10.1042/bst0371139] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Phosphoinositide signalling regulates a series of important neuronal processes that are thought to be altered in mood disorders. Furthermore, mood-stabilizing drugs inhibit key enzymes that regulate phosphoinositide production and alter neuronal growth cone morphology in an inositol-reversible manner. Inositol is taken up by neurons from the extracellular fluid, presumably via membrane transporters; it can also be synthesized by the enzyme MIP-synthase (myo-inositol-1-phosphate synthase) and, in addition, it is generated by inositol phospholipid hydrolysis. The neuronal-specific HMIT (H+–myo-inositol transporter) represents a potential regulator of inositol signalling in neurons that warrants further investigation.
Collapse
|
21
|
Shimshoni JA, Dalton EC, Watson P, Boris Y, Bialer M, Harwood AJ. Evaluation of the effects of propylisopropylacetic acid (PIA) on neuronal growth cone morphology. Neuropharmacology 2009; 56:831-7. [PMID: 19705552 PMCID: PMC3098385 DOI: 10.1016/j.neuropharm.2009.01.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Propylisopropylacetic acid (PIA) is a constitutional isomer of valproic acid (VPA). It has previously been found to be a weak antiepileptic, but in common with mood stabilizers, causes inositol depletion and growth cone spreading, suggesting the basis of a new series of mood stabilizers. To assess this possibility, we have compared the effects of racemic (R,S)-PIA and its individual enantiomers to those of the mood stabilizers lithium (Li+), VPA and carbamazepine (CBZ). Unlike Li+ and VPA, but in common with CBZ and (R,S)-PIA, neither (R)-PIA nor (S)-PIA enantiomer induces T-cell factor (TCF)-mediated gene expression. However, as seen for other mood stabilizers, both enantiomers are potent inducers of growth cone spreading. To investigate the mechanism for these effects, we examined changes in the actin cytoskeleton following drug treatment with Li+, VPA, CBZ, (R,S)-PIA or its individual enantiomers. All exhibit a redistribution of F-actin to the growth cone periphery, a feature of spread growth cones. (R,S)-PIA has the strongest effect as it also elevates F-actin polymerization at the cell periphery. This change in the actin cytoskeleton is associated with a substantial increase in F-actin-rich protrusions on the surface of the growth cone and in its close vicinity. These results demonstrate an effect of (R,S)-PIA on the neuronal actin cytoskeleton shared in common with other mood stabilizers, and suggest a potential to induce structural changes within the CNS.
Collapse
Affiliation(s)
- Jakob A Shimshoni
- Department of Pharmaceutics, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
22
|
Silverstone PH, Asghar SJ, O'Donnell T, Ulrich M, Hanstock CC. Lithium and valproate protect against dextro-amphetamine induced brain choline concentration changes in bipolar disorder patients. World J Biol Psychiatry 2009; 5:38-44. [PMID: 15048634 DOI: 10.1080/15622970410029906] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Lithium may affect brain choline concentrations, and this effect has been proposed to potentially explain its clinical efficacy. Since dextro-amphetamine is a useful human model of mania, we were interested in determining firstly whether dextro-amphetamine would alter brain choline concentrations, and secondly to determine if lithium would protect against any such changes in bipolar patients. In addition, we wanted to determine if valproate would also have any effects upon choline levels. METHODS Healthy controls (n=18) were compared with euthymic Bipolar Disorder patients (Type I and Type II) who were taking lithium (n=14) or valproate (n=11). We utilized (1)H-magnetic resonance spectroscopy ((1)H-MRS) in a 3.0T scanner to examine brain choline/phosphocholine+creatine (Cho/Cr) ratios. Changes in this ratio were measured to determine any changes in choline concentrations in the temporal lobe. RESULTS The results showed that administration of dextro-amphetamine decreased the Cho/Cr ratios. In contrast, in both the lithium-treated and valproate-treated patients this decrease was not seen; this attenuation in the change in Cho/Cr ratio changes was statistically significant. It should be noted that Cho/Cr ratios were significantly higher at baseline in the controls compared to both groups of patients, which may have influenced the results. CONCLUSIONS These findings are the first to examine the effects of dextro-amphetamine on brain choline concentrations. They show that while in controls dextro-amphetamine decreases choline concentrations, lithium and valproate both appear to protect against this effect in bipolar patients. However, as brain ratios were measured rather than the absolute concentration of choline, and these ratios were lowered in patients at baseline, these results must be regarded as preliminary and require replication in future studies.
Collapse
Affiliation(s)
- Peter H Silverstone
- Department of Psychiatry, University of Alberta, 1E1.07 Mackenzie Center, 8440 - 112 Street, Edmonton AB, Canada.
| | | | | | | | | |
Collapse
|
23
|
Potter M, Moses A, Wozniak J. Alternative treatments in pediatric bipolar disorder. Child Adolesc Psychiatr Clin N Am 2009; 18:483-514, xi. [PMID: 19264275 DOI: 10.1016/j.chc.2008.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
There has been growing interest in the use of complementary and alternative treatments in pediatric bipolar disorder (BPD). There are limited data, however, regarding the safety and efficacy of these treatments. This article discusses select complementary and alternative treatments that have been considered for use in pediatric BPD and/or depression, including omega-3-fatty acids, inositol, St. John's wort, SAMe, melatonin, lecithin, and acupuncture. Background information, reference to available adult and pediatric data, proposed mechanisms of action, dosing, side effects, and precautions of these treatments are included. Across the board, more research is necessary and warranted regarding the long-term safety and efficacy of available complementary and alternative treatments for the management of pediatric BPD.
Collapse
Affiliation(s)
- Mona Potter
- Department of Child and Adolescent Psychiatry, Massachusetts General Hospital and McLean Hospital, Yawkey Center for Outpatient Care, 55 Fruit Street, Boston, MA 02114, USA
| | | | | |
Collapse
|
24
|
Dickstein DP, Towbin KE, Van Der Veen JW, Rich BA, Brotman MA, Knopf L, Onelio L, Pine DS, Leibenluft E. Randomized double-blind placebo-controlled trial of lithium in youths with severe mood dysregulation. J Child Adolesc Psychopharmacol 2009; 19:61-73. [PMID: 19232024 PMCID: PMC2692186 DOI: 10.1089/cap.2008.044] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE The diagnosis and treatment of youth with severe nonepisodic irritability and hyperarousal, a syndrome defined as severe mood dysregulation (SMD) by Leibenluft, has been the focus of increasing concern. We conducted the first randomized double-blind, placebo-controlled trial in SMD youth, choosing lithium on the basis of its potential in treating irritability and aggression and neuro-metabolic effects. METHODS SMD youths 7-17 years were tapered off their medications. Those who continued to meet SMD criteria after a 2-week, single-blind, placebo run-in were randomized to a 6-week double-blind trial of either lithium (n = 14) or placebo (n = 11). Clinical outcome measures were: (1) Clinical Global Impressions-Improvement (CGI-I) score less than 4 at trial's end and (2) the Positive and Negative Syndrome Scale (PANSS) factor 4 score. Magnetic resonance spectroscopy (MRS) outcome measures were myoinositol (mI), N-acetyl-aspartate (NAA), and combined glutamate/glutamine (GLX), all referenced to creatine (Cr). RESULTS In all, 45% (n = 20/45) of SMD youths were not randomized due to significant clinical improvement during the placebo run-in. Among randomized patients, there were no significant between-group differences in either clinical or MRS outcome measures. CONCLUSION Our study suggests that although lithium may not result in significant clinical or neurometabolic alterations in SMD youths, further SMD treatment trials are warranted given its prevalence.
Collapse
Affiliation(s)
- Daniel P. Dickstein
- Present address: E.P. Bradley Hospital, an affiliate of the Alpert Medical School of Brown University
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Chen CT, Liu Z, Ouellet M, Calon F, Bazinet RP. Rapid beta-oxidation of eicosapentaenoic acid in mouse brain: an in situ study. Prostaglandins Leukot Essent Fatty Acids 2009; 80:157-63. [PMID: 19237271 DOI: 10.1016/j.plefa.2009.01.005] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2008] [Revised: 12/05/2008] [Accepted: 01/08/2009] [Indexed: 01/06/2023]
Abstract
Analyses of brain phospholipid fatty acid profiles reveal a selective deficiency and enrichment in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), respectively. In order to account for this difference in brain fatty acid levels, we hypothesized that EPA is more rapidly beta-oxidized upon its entry into the brain. Wild-type C57BL/6 mice were perfused with either (14)C-EPA or (14)C-DHA via in situ cerebral perfusion for 40s, followed by a bicarbonate buffer to wash out the residual radiolabeled polyunsaturated fatty acid (PUFA) in the capillaries. (14)C-PUFA-perfused brains were extracted for chemical analyses of neutral lipid and phospholipid fatty acids. Based on the radioactivity in aqueous, total lipid, neutral lipid and phospholipid fractions, volume of distribution (V(D), microl/g) was calculated. The V(D) between (14)C-EPA- and (14)C-DHA-perfused samples was not statistically different for total lipid, neutral lipids or total phospholipids. However, the V(D) of (14)C-EPA in the aqueous fraction was 2.5 times higher than that of (14)C-DHA (p=0.025), suggesting a more extensive beta-oxidation than DHA. Furthermore, radiolabeled palmitoleic acid, a fatty acid that can be synthesized de novo, was detected in brain phospholipids from (14)C-EPA but not from (14)C-DHA-perfused mice suggesting that beta-oxidation products of EPA were recycled into endogenous fatty acid biosynthetic pathways. These findings suggest that low levels of EPA in brain phospholipids compared to DHA may be the result of its rapid beta-oxidation upon uptake by the brain.
Collapse
Affiliation(s)
- Chuck T Chen
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, FitzGerald Building, 150 College St., Room 306, Toronto, Ontario, Canada M5S 3E2.
| | | | | | | | | |
Collapse
|
26
|
Ethylbutyrate, a valproate-like compound, exhibits inositol-depleting effects — A potential mood-stabilizing drug. Life Sci 2009; 84:38-44. [DOI: 10.1016/j.lfs.2008.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2008] [Revised: 10/19/2008] [Accepted: 10/28/2008] [Indexed: 11/23/2022]
|
27
|
Proton magnetic resonance spectroscopy in youth with severe mood dysregulation. Psychiatry Res 2008; 163:30-9. [PMID: 18403184 DOI: 10.1016/j.pscychresns.2007.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2007] [Revised: 09/11/2007] [Accepted: 11/19/2007] [Indexed: 12/18/2022]
Abstract
Increasing numbers of youth are presenting for psychiatric evaluation with markedly irritable mood plus "hyperarousal" symptoms. Diagnostically homeless in current nosology, the syndrome (as well as its underlying neurobiology) is little understood. To address this problem, we conducted an exploratory proton magnetic resonance spectroscopy (MRS) study in a large sample of youth with chronic, functionally disabling irritability accompanied by hyperarousal, a clinical syndrome known as "severe mood dysregulation" (SMD), which may represent a broad phenotype of pediatric bipolar disorder. Medication-free SMD youth (N=36) and controls (N=48) underwent 1.5 Tesla MRS in four regions of interest. The following three neurometabolites, relative to creatine (Cr), were quantified with LCModel Software: (a) myo-inositol (mI), a marker of intra-cellular second messengers linked to the neurobiology of bipolar disorder; (b) glutamate/glutamine (GLX), a marker of the major excitatory neurotransmitter glutamate; and (c) N-acetyl aspartate (NAA), a marker of neuronal energetics. SMD subjects had significantly lower temporal mI/Cr versus controls. However, this difference did not survive correction for multiple comparisons. Given studies implicating mI in lithium's action in BD adults and youth, further work is necessary to determine potential therapeutic implications of our present finding and how SMD youth differ pathophysiologically from those with strictly defined BD.
Collapse
|
28
|
Azab AN, Agam G, Kaplanski J, Delbar V, Greenberg ML. Inositol depletion: a good or bad outcome of valproate treatment? FUTURE NEUROLOGY 2008. [DOI: 10.2217/14796708.3.3.275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bipolar affective disorder is a severe and chronic disabling illness affecting 1.5% of the general population. Lithium, valproate and other mood stabilizers are used to treat bipolar disorder; however, these are ineffective for, and not tolerated by, a significant percentage of patients, underscoring the urgent need for better medications. Although not universally accepted, the inositol-depletion hypothesis is one of the main hypotheses suggested to explain the therapeutic mechanism of mood-stabilizing drugs. This paper reviews the relevance of the inositol-depletion hypothesis, paying special attention to the inhibition of inositol de novo synthesis by valproate. It also discusses inositol supplementation as a treatment strategy for multiple neurological disorders, including prophylactic use against valproate-induced neural tube defects.
Collapse
Affiliation(s)
- Abed N Azab
- Ben-Gurion University of the Negev, School for Community Health Professions, Faculty of Health Sciences, PO Box 653, Beer-Sheva 84105, Israel
| | - Galila Agam
- Ben-Gurion University of the Negev, Psychiatry Research Unit & Department of Clinical Biochemistry, Faculty of Health Sciences, PO Box 4600, Beer-Sheva 84170, Israel
| | - Jacob Kaplanski
- Ben-Gurion University of the Negev, Department of Clinical Pharmacology, Faculty of Health Sciences, PO Box 653, Beer-Sheva 84105, Israel
| | - Vered Delbar
- Ben-Gurion University of the Negev, School for Community Health Professions, Faculty of Health Sciences, PO Box 653, Beer-Sheva 84105, Israel
| | - Miriam L Greenberg
- Wayne State University, Department of Biological Sciences, Detroit, MI 48202, USA
| |
Collapse
|
29
|
McGrath BM, McKay R, Dave S, Seres P, Weljie AM, Slupsky CM, Hanstock CC, Greenshaw AJ, Silverstone PH. Acute dextro-amphetamine administration does not alter brain myo-inositol levels in humans and animals: MRS investigations at 3 and 18.8 T. Neurosci Res 2008; 61:351-9. [PMID: 18508145 DOI: 10.1016/j.neures.2008.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2007] [Revised: 04/05/2008] [Accepted: 04/09/2008] [Indexed: 11/24/2022]
Abstract
The pathophysiological underpinnings of bipolar disorder are not fully understood. However, they may be due in part to changes in the phosphatidylinositol second messenger system (PI-cycle) generally, or changes in myo-inositol concentrations more specifically. Dextro-amphetamine has been used as a model for mania in several human studies as it causes similar subjective and physiological symptoms. We wanted to determine if dextro-amphetamine altered myo-inositol concentrations in vivo as it would clearly define a mechanism linking putative changes in the PI-cycle to the subjective psychological changes seen with dextro-amphetamine administration. Fifteen healthy human volunteers received a baseline scan, followed by second scan 75 min after receiving a 25 mg oral dose of dextro-amphetamine. Stimulated echo proton magnetic resonance spectroscopy (MRS) scans were preformed at 3.0 Tesla (T) in the dorsal medial prefrontal cortex (DMPFC). Metabolite data were adjusted for tissue composition and analyzed using LCModel. Twelve adult male rats were treated acutely with a 5-mg/kg intraperitoneal dose of dextro-amphetamine. After 1 h rats were decapitated and the brains were rapidly removed and frozen until dissection. Rat brains were dissected into frontal, temporal, and occipital cortical areas, as well as hippocampus. Tissue was analyzed using a Varian 18.8 T spectrometer. Metabolites were identified and quantified using Chenomx Profiler software. The main finding in the present study was that myo-inositol concentrations in the DMPFC of human volunteers and in the four rat brain regions were not altered by acute dextro-amphetamine. While it remains possible that the PI-cycle may be involved in the pathophysiology of bipolar disorder, it is not likely that the subjective and physiological of dextro-amphetamine are mediated, directly or indirectly, via alternations in myo-inositol concentrations.
Collapse
Affiliation(s)
- Brent M McGrath
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada T6G 2B7.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Capizzano AA, Jorge RE, Acion LC, Robinson RG. In vivo proton magnetic resonance spectroscopy in patients with mood disorders: a technically oriented review. J Magn Reson Imaging 2008; 26:1378-89. [PMID: 17968885 DOI: 10.1002/jmri.21144] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Proton MR spectroscopy (1HMRS) has been extensively used among mood disorders patients. A review of the published literature in 1HMRS studies of mood disorders was carried out for the period 1991 to July 2006. Of 71 1HMRS studies, 77.5% were done at 1.5T and 66.2% used single voxel sequences (SVS), implying limitations of spectral resolution and anatomic coverage, respectively. In all, 47.9% of studies relied on creatine (Cr) as internal signal standard, although Cr changes were reported in major depression (MD). Most reported metabolic alterations related to mood state affected the left frontal lobe. Depressed adult and pediatric MD patients had reduced glutamate (Glu) in frontal lobe regions, which reversed with successful treatment. A consistent reduction of N-acetyl-aspartate (NAA) was reported in the hippocampal formation among bipolar disorder (BD) patients, along with an increment in frontal Glu. The differences in results of 1HMRS studies in mood disorders reflect heterogeneity of technical factors and subject selection. Future studies should benefit from higher spectral resolution and more extensive anatomic coverage as well as standardized data-processing protocols and subject selection criteria.
Collapse
Affiliation(s)
- Aristides A Capizzano
- Psychiatry Department, University of Iowa Hospitals and Clinics, Iowa City, Iowa 52242, USA.
| | | | | | | |
Collapse
|
31
|
McGrath BM, Greenshaw AJ, McKay R, Slupsky CM, Silverstone PH. Unlike lithium, anticonvulsants and antidepressants do not alter rat brain myo-inositol. Neuroreport 2007; 18:1595-8. [PMID: 17885608 DOI: 10.1097/wnr.0b013e3282f03f09] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Lithium is the first-line in bipolar disorder treatment. Lithium's clinical efficacy might be due to its inhibition of myo-inositol turnover in the phosphatidylinositol second messenger system. This study aimed to determine whether this action can extend to antidepressants and anticonvulsants also used to treat bipolar symptoms. Male rats were treated for 2 weeks with an intraperitoneal injection of phenelzine, fluoxetine, desipramine, carbamazepine, lamotrigine, sodium valproate or vehicle. Brains were dissected and myo-inositol concentrations were analyzed using high-field nuclear magnetic resonance spectroscopy at 18.8 T and quantified using Chenomx Profiler software. Brain regions assessed included the prefrontal, temporal and occipital cortical areas as well as the hippocampus. The main finding is that contrary to lithium, the anticonvulsants and antidepressants do not alter brain myo-inositol concentration. This suggests that these agents might work via a mechanism that is not centered on changes in myo-inositol concentration.
Collapse
Affiliation(s)
- Brent M McGrath
- Department of Psychiatry, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | | | |
Collapse
|
32
|
Malhi GS, Ivanovski B, Wen W, Lagopoulos J, Moss K, Sachdev P. Measuring mania metabolites: a longitudinal proton spectroscopy study of hypomania. Acta Psychiatr Scand 2007:57-66. [PMID: 17688464 DOI: 10.1111/j.1600-0447.2007.01060.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Using single-voxel proton spectroscopy we aimed to investigate changes in metabolite levels in key brain regions during hypomania and euthymia in patients with bipolar disorder (BD). METHOD Nine patients with a diagnosis of BD and nine age, sex, education, and handedness-matched comparison subjects underwent magnetic resonance proton spectroscopy (H(1)-MRS) using a 1.5 T magnet. Patients were assessed whilst hypomanic and euthymic. Metabolite (N-acetyl asparTate, NAA; myo-inositol, mI; choline, Cho) levels in the basal ganglia (BG), anterior cingulate cortex (AC), and frontal cortex (FC) were compared both between groups and within the patient group. RESULTS Multivariate analysis revealed significant complex relationships between metabolite levels and brain regions with significant differences observed both between bipolar patients (hypomanic and euthymic) and controls, and across the two mood states. Hypomanic patients had lower mean metabolite levels when averaged across the AC and FC regions, compared with the controls. They also had a smaller difference in mean metabolite levels between the BG and FC than the control group. Euthymic patients were also found to have a smaller difference in the level of NAA between the BG and AC than the control group. CONCLUSION This exploratory study of BD demonstrates significant differences in metabolite levels that vary both with respect to brain region and mood state. Not withstanding the confounding effects of medication and the limitation of small sample size the findings are important as they demonstrate that a longitudinal approach is a useful design especially in the context of a long-term phasic illness.
Collapse
Affiliation(s)
- G S Malhi
- Department of Psychological Medicine, Northern Clinical School, University of Sydney, Sydney, New South Wales, Australia.
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
OBJECTIVES Lithium, valproic acid (VPA) and carbamazepine (CBZ) are commonly used mood stabilizers, but their therapeutic mechanism is unclear. These drugs all cause the same morphological effects on postnatal rat neuronal dorsal root ganglia (DRG) growth cones via an inositol-reversible mechanism. However, due to limitations in earlier analysis, the effects of combining drugs, drug specificity and inositol stereoisomer specificity are unknown. We devised an improved analytical method to address these issues. METHODS Dorsal root ganglia explants were cultured individually and incubated with combinations of psychotropic drugs and inositol stereoisomers. We recorded axonal growth cone morphology and calculated growth cone area per a modified method described by Williams et al. (Nature 2002; 417: 292-295). Statistically significant changes in area were calculated using non-parametric statistical testing. RESULTS (i) Lithium and VPA showed an additive effect on growth cone spreading. (ii) Among eight additional psychotropic drugs to those previously tested, only imipramine and chlorpromazine altered DRG growth cone morphology. As this effect was not reversed by myo-inositol, it arises from a different mechanism to the mood stabilizers lithium, VPA and CBZ. (iii) Myo-inositol, but not scyllo- or epi-inositol, causes a significant reversal of the lithium effect on the growth cones spreading, consistent with the inositol depletion hypothesis. CONCLUSIONS These results show that lithium, VPA and CBZ are unique in causing altered neuronal morphology via myo-inositol depletion.
Collapse
Affiliation(s)
- Galit Shaltiel
- Stanley Research Center and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, and Mental Health Center, Beersheva, Israel
| | | | | | | | | |
Collapse
|
34
|
Azab AN, Greenberg ML. Anticonvulsant efficacy of valproate-like carboxylic acids: a potential target for anti-bipolar therapy. Bipolar Disord 2007; 9:197-205. [PMID: 17430293 DOI: 10.1111/j.1399-5618.2007.00351.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Bipolar disorder (BPD) is a severe and chronic illness, with a lifetime prevalence of approximately 1.5%. Despite the availability of some mood stabilizing drugs including lithium, valproate (valproic acid), lamotrigine and carbamazepine, BPD is characterized by high rates of recurrence, as treatment with these and other drugs is ineffective for and not well-tolerated by a significant percentage of patients. Most drugs currently used for the maintenance treatment of BPD are anticonvulsants (e.g., valproate, carbamazepine and lamotrigine). OBJECTIVES The aim of this paper is to review the studies characterizing the anticonvulsant efficacy of valproate-like carboxylic acids and related compounds, some of which may have potential for the treatment of manic-depressive illness. RESULTS The data reviewed herein demonstrate clearly that some dietary fatty acids and other valproate-like carboxylic acids exhibit potent anticonvulsant activity, and may thus be candidates for mood stabilizing treatment options for BPD.
Collapse
Affiliation(s)
- Abed N Azab
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | |
Collapse
|
35
|
Blader JC, Kafantaris V. Pharmacological treatment of bipolar disorder among children and adolescents. Expert Rev Neurother 2007; 7:259-70. [PMID: 17341174 PMCID: PMC2946413 DOI: 10.1586/14737175.7.3.259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There is growing recognition that bipolar disorder frequently first presents in adolescence. Preadolescents with volatile behavior and severe mood swings also comprise a large group of patients whose difficulties may lie within the bipolar spectrum. However, the preponderance of scientific effort and clinical trials for this condition has focused on adults. This review summarizes the complexity of bipolar disorder and diagnosis of the disease among young people. It proceeds to review the principles of pharmacotherapy, assess current treatment options and to highlight areas where evidence-based guidance is lacking. Recent developments have enlarged the range of potential treatments for bipolar disorder. Nonetheless, differences in the phenomenology, course and sequelae of bipolar disorder among young people compel greater attention to the benefits and liabilities of therapy for those affected by this illness' early onset. By summarizing current research and opinion on diagnostic issues and treatment approaches, this review aims to provide an update on a clinically important yet controversial topic.
Collapse
Affiliation(s)
- Joseph C. Blader
- Psychiatry Stony Brook State University of New York T: (631) 632-8675 F: (631) 632-8953
| | - Vivian Kafantaris
- Psychiatry and Behavioral Sciences Albert Einstein College of Medicine T: (718) 470-8556 F: (718) 343-1659
| |
Collapse
|
36
|
Schloesser RJ, Chen G, Manji HK. Neurogenesis and Neuroenhancement in the Pathophysiology and Treatment of Bipolar Disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2007; 77:143-78. [PMID: 17178474 DOI: 10.1016/s0074-7742(06)77005-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Robert J Schloesser
- Laboratory of Molecular Pathophysiology, Mood and Anxiety Disorders Research Program National Institute of Mental Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
37
|
Patel NC, DelBello MP, Cecil KM, Adler CM, Bryan HS, Stanford KE, Strakowski SM. Lithium treatment effects on Myo-inositol in adolescents with bipolar depression. Biol Psychiatry 2006; 60:998-1004. [PMID: 17056394 PMCID: PMC1761698 DOI: 10.1016/j.biopsych.2006.07.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2005] [Revised: 07/11/2006] [Accepted: 07/13/2006] [Indexed: 01/10/2023]
Abstract
BACKGROUND The neurochemical effects of lithium in adolescents with bipolar disorder largely are unknown. This study used proton magnetic resonance spectroscopy (1H MRS) to identify the in vivo effects of lithium on myo-inositol (mI) concentrations in adolescent bipolar depression. METHODS Twenty-eight adolescents (12-18 years old) with bipolar I disorder, current episode depressed, received open-label lithium 30 mg/kg, adjusted to achieve serum levels of 1.0-1.2 mEq/L. The mI concentrations in the medial as well as the left and right lateral prefrontal cortices were measured at baseline, day 7, and day 42 of treatment. Changes in mI concentrations over time were analyzed. RESULTS Significant main effects of time were observed for mI concentrations in the medial (p = .03) and right lateral (p = .05) prefrontal cortices. Baseline concentrations of mI were not significantly different from day 7 or day 42 concentrations. However, mI concentrations on day 42 were significantly higher than those on day 7 (p = .02) in both regions. CONCLUSIONS This study demonstrates that prefrontal mI concentrations do not significantly change from baseline after acute and chronic lithium treatment in adolescents with bipolar depression. Further investigation of the effect of lithium on mI is warranted to better understand possible mechanisms by which lithium exerts antidepressant activity.
Collapse
Affiliation(s)
- Nick C Patel
- Division of Bipolar Disorders Research, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0004, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
McGrath BM, Greenshaw AJ, McKay R, Slupsky CM, Silverstone PH. Lithium alters regional rat brain myo-inositol at 2 and 4 weeks: an ex-vivo magnetic resonance spectroscopy study at 18.8 T. Neuroreport 2006; 17:1323-6. [PMID: 16951578 DOI: 10.1097/01.wnr.0000230501.40349.41] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Lithium has been the mainstay of treatment for bipolar disorder. Early studies suggest that lithium acts via inositol depletion. This study assesses the effect of 1, 2 and 4 weeks of lithium treatment on myo-inositol concentrations across several brain regions. Thirty-six Sprague-Dawley rats were treated for 2 weeks with an intraperitoneal injection of either 1 mmol/kg/day, twice daily lithium chloride (n=18) or placebo (2 ml/kg of saline) (n=18). The rats were separated into three groups: 1 week, 2 weeks and 4 weeks. Brains were dissected into prefrontal, temporal and occipital cortical areas, as well as hippocampus, and analyzed at 18.8 T. Myo-inositol was quantified using the Chenomx Profiler software. Lithium did not alter myo-inositol concentrations at 1 week. A significant reduction exists in myo-inositol concentrations in lithium-treated rats at 2 and 4 weeks, across all four brain regions. Studies suggest brain region-specific alterations in myo-inositol concentrations among bipolar patients. Our findings suggest that lithium-induced reduction of myo-inositol is more global.
Collapse
Affiliation(s)
- Brent M McGrath
- Department of Psychiatry, National High Field Magnetic Resonance Centre, University of Alberta, Edmonton, Alberta, Canada.
| | | | | | | | | |
Collapse
|
39
|
Yildiz-Yesiloglu A, Ankerst DP. Neurochemical alterations of the brain in bipolar disorder and their implications for pathophysiology: a systematic review of the in vivo proton magnetic resonance spectroscopy findings. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30:969-95. [PMID: 16677749 DOI: 10.1016/j.pnpbp.2006.03.012] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVE To perform systematic analysis of current proton magnetic resonance spectroscopy ((1)H MRS) findings in bipolar disorder (BD). METHOD We grouped the (1)H MRS studies documenting data on the metabolites of N-acetylaspartate (NAA), Choline (Cho), myo-inositol (mI), Glutamate (Glu)/Glutamine (Gln) and Creatine (Cr) separately, for each of the euthymic, manic, depressed adult and child/adolescent bipolar patients. RESULTS For NAA resonance, 22 studies involving 328 adult bipolar and 349 control subjects were identified. NAA levels were lower in euthymic bipolar patients in the frontal lobe structures and hippocampus. Lithium seems to have an increasing effect on NAA in those brain regions. Available data in children indicates lower NAA levels in euthymic bipolar patients in dorsolateral prefrontal cortex (DLPFC) and cerebellar vermis. Existing data over 25 studies on 366 adult bipolar and 393 control subjects, although inconsistent, may suggest higher Cho/Cr ratios in the basal ganglia (BG) of euthymic bipolar patients. The metabolite mI seems to be increased both in euthymic and manic bipolar children, while most of the available data does not support such alteration in adults. Glu/Gln levels in adult bipolar patients were higher in all mood states compared to controls. Limited data in children supports such an alteration only in the euthymic state. CONCLUSION The studies reviewed in this paper suggest regional abnormalities of NAA, Cho and Glu/Gln in BD, with the DLPFC, prefrontal and anterior cingulate cortices, hippocampus, and BG being specifically implicated. Systematic analysis of (1)H MRS findings so far helps to define future strategies in this field for delineation of actual neurochemical framework in BD.
Collapse
|
40
|
Shi Y, Azab AN, Thompson MN, Greenberg ML. Inositol phosphates and phosphoinositides in health and disease. Subcell Biochem 2006; 39:265-92. [PMID: 17121279 DOI: 10.1007/0-387-27600-9_11] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In the past two decades, considerable progress has been made toward understanding inositol phosphates and PI metabolism. However, there is still much to learn. The present challenge is to understand how inositol phosphates and PIs are compartmentalized, identify new targets of inositol phosphates and PIs, and elucidate the mechanisms underlying spatial and temporal regulation of the enzymes that metabolize inositol phosphates and PIs. Answers to these questions will help clarify the mechanisms of the diseases associated with these molecules and identify new possibilities for drug design.
Collapse
Affiliation(s)
- Yihui Shi
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | | | | | |
Collapse
|
41
|
Willson MC, Bell EC, Dave S, Asghar SJ, McGrath BM, Silverstone PH. Valproate attenuates dextroamphetamine-induced subjective changes more than lithium. Eur Neuropsychopharmacol 2005; 15:633-9. [PMID: 15949922 DOI: 10.1016/j.euroneuro.2005.04.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 04/12/2005] [Accepted: 04/12/2005] [Indexed: 11/17/2022]
Abstract
Dextroamphetamine administration in healthy controls produces a range of subjective and physiological effects, which have been likened to those occurring during mania. However, it is uncertain if these can be attenuated by lithium since conflicting results have been reported. To date there have been no previous studies examining the effects of valproate on dextroamphetamine-induced mood and physiological changes. The current study was a double-blind, placebo-controlled, study in which volunteers received either 1000 mg sodium valproate (n=12), 900 mg lithium (n=9), or placebo (n=12) pre-treatment for 14 days. Subjective and physiological measures were then obtained prior to administration of a 25 mg dose of dextroamphetamine, and at two time points after administration. Differences in the response to dextroamphetamine were assessed between the three treatment groups. The results of this study show that pre-treatment with lithium only significantly attenuated dextroamphetamine-induced change in happiness, while valproate pre-treatment significantly attenuated the effects of dextroamphetamine on happiness, energy, alertness and on the diastolic blood pressure. These results suggest that lithium and valproate do not have the same mechanism of action on dextroamphetamine-induced changes, and this finding may relate to differences in their mechanism of action in mood disorders.
Collapse
Affiliation(s)
- Morgan C Willson
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | |
Collapse
|
42
|
Stork C, Renshaw PF. Mitochondrial dysfunction in bipolar disorder: evidence from magnetic resonance spectroscopy research. Mol Psychiatry 2005; 10:900-19. [PMID: 16027739 DOI: 10.1038/sj.mp.4001711] [Citation(s) in RCA: 322] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Magnetic resonance spectroscopy (MRS) affords a noninvasive window on in vivo brain chemistry and, as such, provides a unique opportunity to gain insight into the biochemical pathology of bipolar disorder. Studies utilizing proton ((1)H) MRS have identified changes in cerebral concentrations of N-acetyl aspartate, glutamate/glutamine, choline-containing compounds, myo-inositol, and lactate in bipolar subjects compared to normal controls, while studies using phosphorus ((31)P) MRS have examined additional alterations in levels of phosphocreatine, phosphomonoesters, and intracellular pH. We hypothesize that the majority of MRS findings in bipolar subjects can be fit into a more cohesive bioenergetic and neurochemical model of bipolar illness that is both novel and yet in concordance with findings from complementary methodological approaches. In this review, we propose a hypothesis of mitochondrial dysfunction in bipolar disorder that involves impaired oxidative phosphorylation, a resultant shift toward glycolytic energy production, a decrease in total energy production and/or substrate availability, and altered phospholipid metabolism.
Collapse
Affiliation(s)
- C Stork
- Brain Imaging Center, McLean Hospital, Belmont, MA 02478, USA.
| | | |
Collapse
|
43
|
Kim H, McGrath BM, Silverstone PH. A review of the possible relevance of inositol and the phosphatidylinositol second messenger system (PI-cycle) to psychiatric disorders--focus on magnetic resonance spectroscopy (MRS) studies. Hum Psychopharmacol 2005; 20:309-26. [PMID: 15880397 DOI: 10.1002/hup.693] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Myo-inositol is an important part of the phosphatidylinositol second messenger system (PI-cycle). Abnormalities in nerve cell myo-inositol levels and/or PI-cycle regulation has been suggested as being involved in the pathophysiology and/or treatment of many psychiatric disorders including bipolar disorder, major depressive disorder, panic disorder, obsessive-compulsive disorder, eating disorders and schizophrenia. This review examines the metabolism and biochemical importance of myo-inositol and the PI-cycle. It relates this to the current in vivo evidence for myo-inositol and PI-cycle involvement in these psychiatric disorders, particularly focusing upon the magnetic resonance spectroscopy (MRS) findings in patient studies to date. From this review it is concluded that while the evidence suggests probable relevance to the pathophysiology and/or treatment of bipolar disorder, there is much less support for a significant role for the PI-cycle or myo-inositol in any other psychiatric disorder. More definitive investigation is required before PI-cycle dysfunction can be considered specific to bipolar disorder.
Collapse
Affiliation(s)
- Hyeonjin Kim
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | | | | |
Collapse
|
44
|
Abstract
The MR findings reviewed in this article suggest structural, chemical, and functional abnormalities in specific brain regions participating in mood and cognitive regulation, such as the DLPFC, anterior cingulate, amygdala,STG, and corpus callosum in subjects with bipolar disorder. These abnormalities would represent an altered anterior-limbic network disrupting inter- and intrahemispheric communication and underlying the expression of bipolar disorder. Available studies are limited by several confounding variables, such as small and heterogeneous patient samples, differences in clinical and medication status, and cross-sectional design. It is still unclear whether abnormalities in neurodevelopment or neurodegeneration play a major role in the pathophysiology of bipolar disorder. These processes could act together in a unitary model of the disease, with excessive neuronal pruning/apoptosis during childhood and adolescence being responsible for the onset of the disorder and subsequent neurotoxic mechanisms and impaired neuroplasticity and cellular resilience being responsible for further disease progression. Future MR studies should investigate larger samples of first-episode drug-free patients, pediatric patients, subjects at high risk for bipolar disorder, and unaffected family members longitudinally. Such a study population is crucial to examine systematically whether brain changes are present before the appearance of symptoms (eg, maldevelopment) or whether they develop afterwards, as a result of illness course (eg, neurodegeneration). These studies will also be instrumental in minimizing potentially confounding factors commonly found in adult samples, such as the effects of long-term medication, chronicity, and hospitalizations. Juvenile bipolar patients often have a strong family history of bipolar disorder. Future studies could help elucidate the relevance of brain abnormalities as reflections of genetic susceptibility to the disorder. MR studies associated with genetic, post-mortem, and neuropsychologic studies will be valuable in separating state from trait brain abnormalities and in further characterizing the genetic determinants, the neuropathologic underpinnings, and the cognitive disturbances of bipolar disorder.
Collapse
Affiliation(s)
- Paolo Brambilla
- Section of Psychiatry, Department of Pathology and Experimental & Clinical Medicine, University of Udine, Udine, Italy
| | | | | | | |
Collapse
|
45
|
Silverstone PH, McGrath BM, Kim H. Bipolar disorder and myo-inositol: a review of the magnetic resonance spectroscopy findings. Bipolar Disord 2005; 7:1-10. [PMID: 15654927 DOI: 10.1111/j.1399-5618.2004.00174.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Myo-inositol is an important component of the phosphatidylinositol second messenger system (PI-cycle). Alterations in PI-cycle activity have been suggested to be involved in the pathophysiology and/or treatment of bipolar disorder. More specifically, lithium has been suggested to act primarily by lowering myo-inositol concentrations, the so-called inositol-depletion hypothesis. myo-Inositol concentrations can be measured in vivo with magnetic resonance spectroscopy (MRS). METHODS The current review primarily examines animal and human MRS studies that evaluated the role of myo-inositol in bipolar illness and treatment. RESULTS Studies have been carried out in patients who are manic, depressed, and euthymic, both on and off treatment. However, there are several limitations of these studies. CONCLUSIONS The preclinical and clinical MRS findings were generally supportive of the involvement of myo-inositol in bipolar disorder and its treatment. Overall, in bipolar patients who are manic or depressed there are abnormalities in brain myo-inositol concentrations, with changes in frontal and temporal lobes, as well as the cingulate gyrus and basal ganglia. These abnormalities are not seen in either euthymic patients or healthy controls, possibly due to a normalizing effect of treatment with either lithium or sodium valproate. There is also increasing evidence that sodium valproate may also act upon the PI-cycle. Nonetheless, it remains uncertain if these changes in myo-inositol concentration are primary or secondary. Findings regarding the specific inositol-depletion hypothesis are also generally supportive in acutely ill patients, although it is not yet possible to definitively confirm or refute this hypothesis based on the current MRS evidence.
Collapse
|
46
|
Eickholt BJ, Towers GJ, Ryves WJ, Eikel D, Adley K, Ylinen LMJ, Chadborn NH, Harwood AJ, Nau H, Williams RSB. Effects of valproic acid derivatives on inositol trisphosphate depletion, teratogenicity, glycogen synthase kinase-3beta inhibition, and viral replication: a screening approach for new bipolar disorder drugs derived from the valproic acid core structure. Mol Pharmacol 2005; 67:1426-33. [PMID: 15687223 PMCID: PMC1360212 DOI: 10.1124/mol.104.009308] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inositol-1,4,5-trisphosphate (InsP3) depletion has been implicated in the therapeutic action of bipolar disorder drugs, including valproic acid (VPA). It is not currently known whether the effect of VPA on InsP3 depletion is related to the deleterious effects of teratogenicity or elevated viral replication, or if it occurs via putative inhibitory effects on glycogen synthase kinase-3beta (GSK-3beta). In addition, the structural requirements of VPA-related compounds to cause InsP3 depletion are unknown. In the current study, we selected a set of 10 VPA congeners to examine their effects on InsP3 depletion, in vivo teratogenic potency, HIV replication, and GSK-3beta activity in vitro. We found four compounds that function to deplete InsP3 in the model eukaryote Dictyostelium discoideum, and these drugs all cause growth-cone enlargement in mammalian primary neurons, consistent with the effect of InsP3 depletion. No relationship was found between InsP3 depletion and teratogenic or elevated viral replication effects, and none of the VPA congeners were found to affect GSK-3beta activity. Structural requirements of VPA congers to maintain InsP3 depletion efficacy greater than that of lithium are a carboxylic-acid function without dependence on side-chain length, branching, or saturation. Noteworthy is the enantiomeric differentiation if a chiral center exists, suggesting that InsP3 depletion is mediated by a stereoselective mode of action. Thus, the effect of InsP3 depletion can be separated from that of teratogenic potency and elevated viral replication effect. We have used this to identify two VPA derivatives that share the common InsP3-depleting action of VPA, lithium and carbamazepine, but do not show the side effects of VPA, thus providing promising novel candidates for bipolar disorder treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - R. S. B. Williams
- Address correspondence to: Dr. R. S. B. Williams, Department of Biology and Wolfson Institute for Biomedical Research, University College London, London, WC1 E6BT, United Kingdom. E-mail:
| |
Collapse
|
47
|
Abstract
Inositol, a simple six-carbon sugar, forms the basis of a number of important intracellular signaling molecules. Over the last 35 years, a series of biochemical and cell biological experiments have shown that lithium (Li(+)) reduces the cellular concentration of myo-inositol and as a consequence attenuates signaling within the cell. Based on these observations, inositol-depletion was proposed as a therapeutic mechanism in the treatment of bipolar mood disorder. Recent results have added significant new dimensions to the original hypothesis. However, despite a number of clinical studies, this hypothesis still remains to be either proven or refuted. In this review of our current knowledge, I will consider where the inositol-depletion hypothesis stands today and how it may be further investigated in the future.
Collapse
Affiliation(s)
- A J Harwood
- MRC Laboratory for Molecular Biology, Department of Biology, University College London, London, UK.
| |
Collapse
|
48
|
Strakowski SM, Delbello MP, Adler CM. The functional neuroanatomy of bipolar disorder: a review of neuroimaging findings. Mol Psychiatry 2005; 10:105-16. [PMID: 15340357 DOI: 10.1038/sj.mp.4001585] [Citation(s) in RCA: 571] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The authors review existing structural and functional neuroimaging studies of patients with bipolar disorder and discuss how these investigations enhance our understanding of the neurophysiology of this illness. Findings from structural magnetic resonance imaging (MRI) studies suggest that some abnormalities, such as those in prefrontal cortical areas (SGPFC), striatum and amygdala exist early in the course of illness and, therefore, potentially, predate illness onset. In contrast, other abnormalities, such as those found in the cerebellar vermis, lateral ventricles and other prefrontal regions (eg, left inferior), appear to develop with repeated affective episodes, and may represent the effects of illness progression and associated factors. Magnetic resonance spectroscopy investigations have revealed abnormalities of membrane and second messenger metabolism, as well as bioenergetics, in striatum and prefrontal cortex. Functional imaging studies report activation differences between bipolar and healthy controls in these same anterior limibic regions. Together, these studies support a model of bipolar disorder that involves dysfunction within subcortical (striatal-thalamic)-prefrontal networks and the associated limbic modulating regions (amygdala, midline cerebellum). These studies suggest that, in bipolar disorder, there may be diminished prefrontal modulation of subcortical and medial temporal structures within the anterior limbic network (eg, amygdala, anterior striatum and thalamus) that results in dysregulation of mood. Future prospective and longitudinal studies focusing on these specific relationships are necessary to clarify the functional neuroanatomy of bipolar disorder.
Collapse
Affiliation(s)
- S M Strakowski
- Center for Imaging Research, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | | | | |
Collapse
|
49
|
McGrath BM, Wessels PH, Bell EC, Ulrich M, Silverstone PH. Neurobiological findings in bipolar II disorder compared with findings in bipolar I disorder. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2004; 49:794-801. [PMID: 15679202 DOI: 10.1177/070674370404901202] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE To determine whether there are consistent neurobiological differences between patients with bipolar I disorder (BD I) and those with bipolar II disorder (BD II). METHOD We reviewed the literature in areas where the most consistent neurobiological findings have been reported for bipolar disorder, specifically, neuroimaging and brain metabolism. The imaging studies reviewed examined structure, using magnetic resonance imaging (MRI), and function, using functional MRI, positron emission tomography, and single photon emission computed tomography. We used magnetic resonance spectroscopy to examine brain chemistry. We reviewed those metabolic studies that examined cell calcium, 3-methoxy-4-hydroxyphenylglycol, and protein kinase C. RESULTS Some genetic studies suggest that there may be differences between BD II and BD I patients. However, our review of the imaging and metabolic studies identified few studies directly comparing these 2 groups. In those studies, there were few differences, if any, and these were not consistent. CONCLUSIONS While genetic data suggest there may be differences between BD II patients and BD I patients, the neurobiological findings to date do not provide support. However, this may be owing to the small number of studies directly comparing the 2 groups and also to the fact that those carried out have not been adequately powered to detect possible small true differences. This is an important issue because, if there are no neurobiological differences, it would be anticipated that similar treatments would be similarly effective in both groups. Given the importance of understanding whether there are neurochemical differences between these groups, further research in this area is clearly needed.
Collapse
|
50
|
McNamara RK, Lenox RH. The myristoylated alanine-rich C kinase substrate: a lithium-regulated protein linking cellular signaling and cytoskeletal plasticity. ACTA ACUST UNITED AC 2004. [DOI: 10.1016/j.cnr.2004.09.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|