1
|
Sakib S, Zou S. Attenuation of Chronic Inflammation in Intestinal Organoids with Graphene Oxide-Mediated Tumor Necrosis Factor-α_Small Interfering RNA Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38325360 PMCID: PMC10883062 DOI: 10.1021/acs.langmuir.3c02741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal tract with a complex and multifactorial etiology, making it challenging to treat. While recent advances in immunomodulatory biologics, such as antitumor necrosis factor-α (TNF-α) antibodies, have shown moderate success, systemic administration of antibody therapeutics may lead to several adverse effects, including the risk of autoimmune disorders due to systemic cytokine depletion. Transient RNA interference using exogenous short interfering RNA (siRNA) to regulate target gene expression at the transcript level offers an alternative to systemic immunomodulation. However, siRNAs are susceptible to premature degradation and have poor cellular uptake. Graphene oxide (GO) nanoparticles have been shown to be effective nanocarriers for biologics due to their reduced cytotoxicity and enhanced bioavailability. In this study, we evaluate the therapeutic efficacy of GO mediated TNF-α_siRNA using in vitro models of chronic inflammation generated by treating murine small intestines (enteroids) and large intestines (colonoids) with inflammatory agents IL-1β, TNF-α, and LPS. The organotypic mouse enteroids and colonoids developed an inflammatory phenotype similar to that of IBD, characterized by impaired epithelial homeostasis and an increased production of inflammatory cytokines such as TNF-α, IL-1β, and IL-6. We assessed siRNA delivery to these inflamed organoids using three different GO formulations. Out of the three, small-sized GO with polymer and dendrimer modifications (smGO) demonstrated the highest transfection efficiency, which led to the downregulation of inflammatory cytokines, indicating an attenuation of the inflammatory phenotype. Moreover, the transfection efficiency and inflammation-ameliorating effects could be further enhanced by increasing the TNF-α_siRNA/smGO ratio from 1:1 to 3:1. Overall, the results of this study demonstrate that ex vivo organoids with disease-specific phenotypes are invaluable models for assessing the therapeutic potential of nanocarrier-mediated drug and biologic delivery systems.
Collapse
Affiliation(s)
- Sadman Sakib
- Metrology Research Centre, National Research Council of Canada, 100 Sussex Drive, Ottawa, ONK1A 0R6, Canada
| | - Shan Zou
- Metrology Research Centre, National Research Council of Canada, 100 Sussex Drive, Ottawa, ONK1A 0R6, Canada
| |
Collapse
|
2
|
Di Vincenzo F, Yadid Y, Petito V, Emoli V, Masi L, Gerovska D, Araúzo-Bravo MJ, Gasbarrini A, Regenberg B, Scaldaferri F. Circular and Circulating DNA in Inflammatory Bowel Disease: From Pathogenesis to Potential Molecular Therapies. Cells 2023; 12:1953. [PMID: 37566032 PMCID: PMC10417561 DOI: 10.3390/cells12151953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Inflammatory bowel diseases (IBD), including Crohn's Disease (CD) and Ulcerative Colitis (UC) are chronic multifactorial disorders which affect the gastrointestinal tract with variable extent. Despite extensive research, their etiology and exact pathogenesis are still unknown. Cell-free DNAs (cfDNAs) are defined as any DNA fragments which are free from the origin cell and able to circulate into the bloodstream with or without microvescicles. CfDNAs are now being increasingly studied in different human diseases, like cancer or inflammatory diseases. However, to date it is unclear how IBD etiology is linked to cfDNAs in plasma. Extrachromosomal circular DNA (eccDNA) are non-plasmidic, nuclear, circular and closed DNA molecules found in all eukaryotes tested. CfDNAs appear to play an important role in autoimmune diseases, inflammatory processes, and cancer; recently, interest has also grown in IBD, and their role in the pathogenesis of IBD has been suggested. We now suggest that eccDNAs also play a role in IBD. In this review, we have comprehensively collected available knowledge in literature regarding cfDNA, eccDNA, and structures involving them such as neutrophil extracellular traps and exosomes, and their role in IBD. Finally, we focused on old and novel potential molecular therapies and drug delivery systems, such as nanoparticles, for IBD treatment.
Collapse
Affiliation(s)
- Federica Di Vincenzo
- IBD Unit, Centro di Malattie dell’Apparato Digerente (CeMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.D.V.); (L.M.); (A.G.); (F.S.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (Y.Y.); (V.E.)
| | - Ylenia Yadid
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (Y.Y.); (V.E.)
| | - Valentina Petito
- IBD Unit, Centro di Malattie dell’Apparato Digerente (CeMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.D.V.); (L.M.); (A.G.); (F.S.)
| | - Valeria Emoli
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (Y.Y.); (V.E.)
| | - Letizia Masi
- IBD Unit, Centro di Malattie dell’Apparato Digerente (CeMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.D.V.); (L.M.); (A.G.); (F.S.)
| | - Daniela Gerovska
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, Calle Doctor Begiristain s/n, 20014 San Sebastian, Spain; (D.G.); (M.J.A.-B.)
| | - Marcos Jesus Araúzo-Bravo
- Computational Biology and Systems Biomedicine, Biodonostia Health Research Institute, Calle Doctor Begiristain s/n, 20014 San Sebastian, Spain; (D.G.); (M.J.A.-B.)
- IKERBASQUE, Basque Foundation for Science, Calle María Díaz Harokoa 3, 48013 Bilbao, Spain
- Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Antonio Gasbarrini
- IBD Unit, Centro di Malattie dell’Apparato Digerente (CeMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.D.V.); (L.M.); (A.G.); (F.S.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (Y.Y.); (V.E.)
| | - Birgitte Regenberg
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 13, Room 426, DK-2100 Copenhagen, Denmark;
| | - Franco Scaldaferri
- IBD Unit, Centro di Malattie dell’Apparato Digerente (CeMAD), Medicina Interna e Gastroenterologia, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy; (F.D.V.); (L.M.); (A.G.); (F.S.)
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (Y.Y.); (V.E.)
| |
Collapse
|
3
|
Farina JM, Chen Y, Jaroszewski DE, Bostoros P, Wang J. Genetic variants in pectus excavatum. J Pediatr Surg 2023; 58:600-601. [PMID: 36384937 DOI: 10.1016/j.jpedsurg.2022.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/18/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Juan M Farina
- Department of Cardiovascular and Thoracic Surgery, Mayo Clinic Arizona, 5777 East Mayo Boulevard, Phoenix, AZ 85054, United States
| | - Yanxi Chen
- Department of Quantitative Health Sciences, Mayo Clinic Arizona, Phoenix, AZ, United States
| | - Dawn E Jaroszewski
- Department of Cardiovascular and Thoracic Surgery, Mayo Clinic Arizona, 5777 East Mayo Boulevard, Phoenix, AZ 85054, United States.
| | - Peter Bostoros
- Department of Cardiovascular and Thoracic Surgery, Mayo Clinic Arizona, 5777 East Mayo Boulevard, Phoenix, AZ 85054, United States
| | - Junwen Wang
- Department of Quantitative Health Sciences, Mayo Clinic Arizona, Phoenix, AZ, United States
| |
Collapse
|
4
|
Duarte INH, Bessa AFDO, Rola LD, Genuíno MVH, Rocha IM, Marcondes CR, Regitano LCDA, Munari DP, Berry DP, Buzanskas ME. Cross-population selection signatures in Canchim composite beef cattle. PLoS One 2022; 17:e0264279. [PMID: 35363779 PMCID: PMC8975110 DOI: 10.1371/journal.pone.0264279] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/07/2022] [Indexed: 12/15/2022] Open
Abstract
Analyses of livestock genomes have been used to detect selection signatures, which are genomic regions associated with traits under selection leading to a change in allele frequency. The objective of the present study was to characterize selection signatures in Canchim composite beef cattle using cross-population analyses with the founder Nelore and Charolais breeds. High-density single nucleotide polymorphism genotypes were available on 395 Canchim representing the target population, along with genotypes from 809 Nelore and 897 Charolais animals representing the reference populations. Most of the selection signatures were co-located with genes whose functions agree with the expectations of the breeding programs; these genes have previously been reported to associate with meat quality, as well as reproductive traits. Identified genes were related to immunity, adaptation, morphology, as well as behavior, could give new perspectives for understanding the genetic architecture of Canchim. Some selection signatures identified genes that were recently introduced in Canchim, such as the loci related to the polled trait.
Collapse
Affiliation(s)
| | | | - Luciana Diniz Rola
- Departamento de Zootecnia, Universidade Federal da Paraíba, Areia, Paraíba, Brazil
| | | | - Iasmin Marques Rocha
- Departamento de Zootecnia, Universidade Federal da Paraíba, Areia, Paraíba, Brazil
| | | | | | - Danísio Prado Munari
- Departamento de Engenharia e Ciências Exatas, Universidade Estadual Paulista, Jaboticabal, São Paulo, Brazil
| | - Donagh Pearse Berry
- Teagasc, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy Co. Cork., Ireland
| | - Marcos Eli Buzanskas
- Departamento de Zootecnia, Universidade Federal da Paraíba, Areia, Paraíba, Brazil
- * E-mail:
| |
Collapse
|
5
|
Lee Y, Kamada N, Moon JJ. Oral nanomedicine for modulating immunity, intestinal barrier functions, and gut microbiome. Adv Drug Deliv Rev 2021; 179:114021. [PMID: 34710529 PMCID: PMC8665886 DOI: 10.1016/j.addr.2021.114021] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 12/12/2022]
Abstract
The gastrointestinal tract (GIT) affects not only local diseases in the GIT but also various systemic diseases. Factors that can affect the health and disease of both GIT and the human body include 1) the mucosal immune system composed of the gut-associated lymphoid tissues and the lamina propria, 2) the intestinal barrier composed of mucus and intestinal epithelium, and 3) the gut microbiota. Selective delivery of drugs, including antigens, immune-modulators, intestinal barrier enhancers, and gut-microbiome manipulators, has shown promising results for oral vaccines, immune tolerance, treatment of inflammatory bowel diseases, and other systemic diseases, including cancer. However, physicochemical and biological barriers of the GIT present significant challenges for successful translation. With the advances of novel nanomaterials, oral nanomedicine has emerged as an attractive option to not only overcome these barriers but also to selectively deliver drugs to the target sites in GIT. In this review, we discuss the GIT factors and physicochemical and biological barriers in the GIT. Furthermore, we present the recent progress of oral nanomedicine for oral vaccines, immune tolerance, and anti-inflammation therapies. We also discuss recent advances in oral nanomedicine designed to fortify the intestinal barrier functions and modulate the gut microbiota and microbial metabolites. Finally, we opine about the future directions of oral nano-immunotherapy.
Collapse
Affiliation(s)
- Yonghyun Lee
- Department of Pharmacy, College of Pharmacy, Ewha Womans University, Seoul 03760, South Korea; Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea.
| | - Nobuhiko Kamada
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA
| | - James J Moon
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109 USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109 USA; Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109 USA.
| |
Collapse
|
6
|
Schniers BK, Rajasekaran D, Korac K, Sniegowski T, Ganapathy V, Bhutia YD. PEPT1 is essential for the growth of pancreatic cancer cells: a viable drug target. Biochem J 2021; 478:3757-3774. [PMID: 34569600 PMCID: PMC8589330 DOI: 10.1042/bcj20210377] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022]
Abstract
PEPT1 is a proton-coupled peptide transporter that is up-regulated in PDAC cell lines and PDXs, with little expression in the normal pancreas. However, the relevance of this up-regulation to cancer progression and the mechanism of up-regulation have not been investigated. Herein, we show that PEPT1 is not just up-regulated in a large panel of PDAC cell lines and PDXs but is also functional and transport-competent. PEPT2, another proton-coupled peptide transporter, is also overexpressed in PDAC cell lines and PDXs, but is not functional due to its intracellular localization. Using glibenclamide as a pharmacological inhibitor of PEPT1, we demonstrate in cell lines in vitro and mouse xenografts in vivo that inhibition of PEPT1 reduces the proliferation of the cancer cells. These findings are supported by genetic knockdown of PEPT1 with shRNA, wherein the absence of the transporter significantly attenuates the growth of cancer cells, both in vitro and in vivo, suggesting that PEPT1 is critical for the survival of cancer cells. We also establish that the tumor-derived lactic acid (Warburg effect) in the tumor microenvironment supports the transport function of PEPT1 in the maintenance of amino acid nutrition in cancer cells by inducing MMPs and DPPIV to generate peptide substrates for PEPT1 and by generating a H+ gradient across the plasma membrane to energize PEPT1. Taken collectively, these studies demonstrate a functional link between PEPT1 and extracellular protein breakdown in the tumor microenvironment as a key determinant of pancreatic cancer growth, thus identifying PEPT1 as a potential therapeutic target for PDAC.
Collapse
Affiliation(s)
- Bradley K. Schniers
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, U.S.A
| | - Devaraja Rajasekaran
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, U.S.A
| | - Ksenija Korac
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, U.S.A
| | - Tyler Sniegowski
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, U.S.A
| | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, U.S.A
| | - Yangzom D. Bhutia
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, U.S.A
| |
Collapse
|
7
|
Sung J, Wang L, Long D, Yang C, Merlin D. PepT1-knockout mice harbor a protective metabolome beneficial for intestinal wound healing. Am J Physiol Gastrointest Liver Physiol 2021; 320:G888-G896. [PMID: 33759563 PMCID: PMC8202197 DOI: 10.1152/ajpgi.00299.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Genetic knockout (KO) of peptide transporter-1 (PepT1) protein is known to provide resistance to acute colitis and colitis-associated cancer (CAC) in mouse models. However, it was unclear which molecule(s) or pathway(s) formed the basis for these protective effects. Recently, we demonstrated that the PepT1-/- microbiota is sufficient to protect against colitis and CAC. Given that PepT1 KO alters the gut microbiome and thereby changes the intestinal metabolites that are ultimately reflected in the feces, we investigated the fecal metabolites of our PepT1 KO mice. Using a liquid chromatography-mass spectrometry (LC-MS)-based untargeted-metabolomics technique, we found that the fecal metabolites were significantly different between the KO and normal wild-type (WT) mice. Among the altered fecal metabolites, tuberonic acid (TA) was sevenfold higher in KO mouse feces than in WT mouse feces. Accordingly, we studied whether the increased TA could direct an anti-inflammatory effect. Using in vitro models, we discovered that TA not only prevented lipopolysaccharide (LPS)-induced inflammation in macrophages but also improved the epithelial cell healing processes. Our results suggest that TA, and possibly other fecal metabolites, play a crucial role in the pathway(s) associated with the anticolitis effects of PepT1 KO.NEW & NOTEWORTHY Fecal metabolites were significantly different between the KO and normal wild-type (WT) mice. One fecal metabolite, tuberonic acid (TA), was sevenfold higher in KO mouse feces than in WT mouse feces. TA prevented lipopolysaccharide (LPS)-induced inflammation in macrophages and improved the epithelial cell healing process.
Collapse
Affiliation(s)
- Junsik Sung
- 1Institute for Biomedical Sciences, Digestive Diseases Research Group, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Lixin Wang
- 1Institute for Biomedical Sciences, Digestive Diseases Research Group, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia,2Atlanta Veterans Affairs Medical Center, Decatur, Georgia
| | - Dingpei Long
- 1Institute for Biomedical Sciences, Digestive Diseases Research Group, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Chunhua Yang
- 1Institute for Biomedical Sciences, Digestive Diseases Research Group, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Didier Merlin
- 1Institute for Biomedical Sciences, Digestive Diseases Research Group, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia,2Atlanta Veterans Affairs Medical Center, Decatur, Georgia
| |
Collapse
|
8
|
Hu K, Yu W, Ajayi OE, Li L, Huang Z, Rong Q, Wang S, Wu QF. Integrated analysis of whole genome and transcriptome sequencing in a young patient with gastric cancer provides insights for precision therapy. Oncol Lett 2020; 20:115. [PMID: 32863928 PMCID: PMC7448559 DOI: 10.3892/ol.2020.11976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/17/2020] [Indexed: 11/25/2022] Open
Abstract
Gastric cancer is a leading cause of cancer-associated deaths worldwide and is considered to be an age-related disease. In younger patients, gastric cancer is biologically more aggressive, and prognosis is worse compared with that in elderly patients. In the present case report, the whole genome and transcriptome was sequenced in a 26-year-old patient with gastric cancer who presented with gastric cancer-related symptoms and was admitted to the First Affiliated Anhui Medical Hospital (Hefei, China) in December 2016. In total, 9 germline and 4 somatic mutations were identified in the patient, and there were more deleterious sites in the germline mutated genes. Genes with somatic mutations, such as MUC2, MUC4, SLC8A2, and with structural variations, including CCND3, FGFR2 and FGFR3, were found to be differentially expressed. Cancer-associated pathways, such as the 'calcium signaling pathway', 'cGMP-PKG signaling pathway' and 'transcriptional mis-regulation' were also enriched at both the genomic and transcriptomic levels. The genes found to have germline (SFRP4), somatic (MUC2, MUC4, SLC8A2) mutations, or structural variations (CCND3, FGFR2 and FGFR3) were differentially expressed in the patient and could be promising precision therapy targets.
Collapse
Affiliation(s)
- Kongwang Hu
- Division of Gastrointestinal Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Weiqiang Yu
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Olugbenga Emmanuel Ajayi
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Longlong Li
- Division of Gastrointestinal Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Zhiguo Huang
- Division of Gastrointestinal Surgery, Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Qiqi Rong
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Shuaili Wang
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| | - Qing-Fa Wu
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
| |
Collapse
|
9
|
Bermúdez de León M, León-Cachón RBR, Silva-Ramírez B, González-Ríos RN, Escobedo-Guajardo B, Leyva-Parra R, Tovar-Cisneros B, González-González E, Alvarado-Díaz A, Vázquez-Monsiváis O, Mata-Tijerina V, Puente-Lugo L, Álvarez-Galván E, Currás-Tuala MJ, Aguado-Barrera M, Castorena-Torres F, Alcocer-González JM, Elizondo G, Salinas-Martínez AM. Association study of genetic polymorphisms in proteins involved in oseltamivir transport, metabolism, and interactions with adverse reactions in Mexican patients with acute respiratory diseases. THE PHARMACOGENOMICS JOURNAL 2020; 20:613-620. [PMID: 32015454 PMCID: PMC7223759 DOI: 10.1038/s41397-020-0151-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 01/20/2020] [Accepted: 01/23/2020] [Indexed: 11/09/2022]
Abstract
Oseltamivir, a pro-drug, is the best option for treatment and chemoprophylaxis for influenza outbreaks. However, many patients treated with oseltamivir developed adverse reactions, including hypersensitivity, gastritis, and neurological symptoms. The aim of this study was to determine the adverse drug reactions (ADRs) in Mexican patients treated with oseltamivir and whether these ADRs are associated with SNPs of the genes involved in the metabolism, transport, and interactions of oseltamivir. This study recruited 310 Mexican patients with acute respiratory diseases and treated them with oseltamivir (75 mg/day for 5 days) because they were suspected to have influenza A/H1N1 virus infection. Clinical data were obtained from medical records and interviews. Genotyping was performed using real-time polymerase chain reaction and TaqMan probes. The association was assessed under genetic models with contingency tables and logistic regression analysis. Out of 310 patients, only 38 (12.25%) presented ADRs to oseltamivir: hypersensitivity (1.9%), gastritis (10%), and depression and anxiety (0.9%). The polymorphism ABCB1-rs1045642 was associated with adverse drug reactions under the recessive model (P = 0.017); allele C was associated with no adverse drug reactions, while allele T was associated with adverse drug reactions. The polymorphisms SLC15A1-rs2297322, ABCB1-rs2032582, and CES1-rs2307243 were not consistent with Hardy-Weinberg equilibrium, and no other associations were found for the remaining polymorphisms. In conclusion, the polymorphism rs1045642 in the transporter encoded by the ABCB1 gene is a potential predictive biomarker of ADRs in oseltamivir treatment.
Collapse
Affiliation(s)
- Mario Bermúdez de León
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 64720, Monterrey, Nuevo León, Mexico. .,Departamento de Ciencias Básicas, Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey, 66238, San Pedro Garza García, Nuevo León, Mexico.
| | - Rafael B R León-Cachón
- Departamento de Ciencias Básicas, Vicerrectoría de Ciencias de la Salud, Universidad de Monterrey, 66238, San Pedro Garza García, Nuevo León, Mexico
| | - Beatriz Silva-Ramírez
- Departamento de Inmunogenética, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 64720, Monterrey, Nuevo León, Mexico
| | - Rosa Nelly González-Ríos
- Laboratorio de Diagnóstico Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 64720, Monterrey, Nuevo León, Mexico
| | - Brenda Escobedo-Guajardo
- Laboratorio de Diagnóstico Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 64720, Monterrey, Nuevo León, Mexico
| | - Roberto Leyva-Parra
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 64720, Monterrey, Nuevo León, Mexico
| | - Benjamín Tovar-Cisneros
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Biológicas, 66455, San Nicolás de los Garza, Nuevo León, Mexico
| | - Everardo González-González
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 64720, Monterrey, Nuevo León, Mexico
| | - Abdiel Alvarado-Díaz
- Departamento de Biología Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 64720, Monterrey, Nuevo León, Mexico
| | - Ofelia Vázquez-Monsiváis
- Laboratorio de Diagnóstico Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 64720, Monterrey, Nuevo León, Mexico
| | - Viviana Mata-Tijerina
- Laboratorio de Diagnóstico Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 64720, Monterrey, Nuevo León, Mexico
| | - Lorena Puente-Lugo
- Laboratorio de Diagnóstico Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 64720, Monterrey, Nuevo León, Mexico
| | - Erick Álvarez-Galván
- Laboratorio de Diagnóstico Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 64720, Monterrey, Nuevo León, Mexico
| | - María José Currás-Tuala
- Laboratorio de Diagnóstico Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 64720, Monterrey, Nuevo León, Mexico
| | - Miguel Aguado-Barrera
- Laboratorio de Diagnóstico Molecular, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, 64720, Monterrey, Nuevo León, Mexico
| | | | - Juan Manuel Alcocer-González
- Universidad Autónoma de Nuevo León, UANL, Facultad de Ciencias Biológicas, 66455, San Nicolás de los Garza, Nuevo León, Mexico
| | - Guillermo Elizondo
- Departamento de Biología Celular, CINVESTAV-IPN, Zacatenco, 07360, Ciudad de México, Mexico
| | - Ana María Salinas-Martínez
- Unidad de Investigación Epidemiológica y en Servicios de Salud, Instituto Mexicano del Seguro Social, 64360, Monterrey, Nuevo León, Mexico
| |
Collapse
|
10
|
Yang C, Merlin D. Nanoparticle-Mediated Drug Delivery Systems For The Treatment Of IBD: Current Perspectives. Int J Nanomedicine 2019; 14:8875-8889. [PMID: 32009785 PMCID: PMC6859086 DOI: 10.2147/ijn.s210315] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 10/19/2019] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease (IBD), which mainly consists of Crohn’s disease and ulcerative colitis, is a chronic and relapsing inflammatory condition of the gastrointestinal tract. The traditional treatment strategies relied on frequent administration of high dosages of medications, including antibiotics, non-steroidal anti-inflammatory drugs, biologics, and immunomodulators, with the goal of reducing inflammation. Some of these medications were effective in alleviating the early-stage inflammatory symptoms, but their long-term efficacies were compromised by the accumulation of toxicities. Recently, nanoparticle (NP)-based drugs have been widely studied for their potential to solve such problems. Various mechanisms/strategies, including size-, charge-, pH-, pressure-, degradation-, ligand-receptor-, and microbiome- dependent drug delivery systems, have been exploited in preclinical studies. A certain number of NP delivery systems have sought to target drugs to the inflamed intestine. Although several NP-based drugs have entered clinical trials for the treatment of IBD, most have failed due to premature drug release, weak targeting ability, and the high immune toxicity of some of the synthetic nanomaterials that have been used to fabricate the NPs. Therefore, there is still a need for rationally designed and stable NP drug delivery system that can specifically target drugs to the disease site, prolong the drug’s residence time, and minimize systemic side effects. This review will analyze the current state of the art in NP-mediated drug delivery for IBD treatment. We will focus on topics such as deliverable targets (at the tissue or cellular level) for treating inflammation; the target-homing NP materials that can interact with such targets; and the major administration routes for treating IBD. These discussions will integrate notable trends in the research and development of IBD medications, including multi-responsive NP-mediated delivery and naturally-derived targeting NPs. Finally, current challenges and future directions will be presented in the hopes of advancing the study of NP-mediated strategies for treating IBD.
Collapse
Affiliation(s)
- Chunhua Yang
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Digestive Disease Research Group, Georgia State University, Atlanta, GA 30302, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Digestive Disease Research Group, Georgia State University, Atlanta, GA 30302, USA.,Atlanta Veterans Affairs Medical Center, Decatur, GA 30033, USA
| |
Collapse
|
11
|
Walther B, Lett AM, Bordoni A, Tomás‐Cobos L, Nieto JA, Dupont D, Danesi F, Shahar DR, Echaniz A, Re R, Fernandez AS, Deglaire A, Gille D, Schmid A, Vergères G. GutSelf: Interindividual Variability in the Processing of Dietary Compounds by the Human Gastrointestinal Tract. Mol Nutr Food Res 2019; 63:e1900677. [PMID: 31483113 PMCID: PMC6900003 DOI: 10.1002/mnfr.201900677] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 07/25/2019] [Indexed: 12/19/2022]
Abstract
Nutritional research is currently entering the field of personalized nutrition, to a large extent driven by major technological breakthroughs in analytical sciences and biocomputing. An efficient launching of the personalized approach depends on the ability of researchers to comprehensively monitor and characterize interindividual variability in the activity of the human gastrointestinal tract. This information is currently not available in such a form. This review therefore aims at identifying and discussing published data, providing evidence on interindividual variability in the processing of the major nutrients, i.e., protein, fat, carbohydrates, vitamins, and minerals, along the gastrointestinal tract, including oral processing, intestinal digestion, and absorption. Although interindividual variability is not a primary endpoint of most studies identified, a significant number of publications provides a wealth of information on this topic for each category of nutrients. This knowledge remains fragmented, however, and understanding the clinical relevance of most of the interindividual responses to food ingestion described in this review remains unclear. In that regard, this review has identified a gap and sets the base for future research addressing the issue of the interindividual variability in the response of the human organism to the ingestion of foods.
Collapse
Affiliation(s)
- Barbara Walther
- AgroscopeFederal Department of Economic AffairsEducation and Research EAER3003BerneSwitzerland
| | - Aaron M. Lett
- Section for Nutrition ResearchDepartment of MedicineImperial College LondonLondonUK
| | - Alessandra Bordoni
- Department of Agri‐Food Sciences and TechnologiesUniversity of Bologna47521CesenaItaly
| | | | | | - Didier Dupont
- UMR 1253Science et Technologie du Lait et de l'ŒufINRA35000RennesFrance
| | - Francesca Danesi
- Department of Agri‐Food Sciences and TechnologiesUniversity of Bologna47521CesenaItaly
| | - Danit R. Shahar
- Department of Public HealthThe S. Daniel Abraham International Center for Health and NutritionBen‐Gurion University of the Negev84105Beer‐ShevaIsrael
| | - Ana Echaniz
- Cambridge Food Science LtdCB23 5ABCambridgeUK
| | - Roberta Re
- Cambridge Food Science LtdCB23 5ABCambridgeUK
| | | | - Amélie Deglaire
- UMR 1253Science et Technologie du Lait et de l'ŒufINRA35000RennesFrance
| | - Doreen Gille
- AgroscopeFederal Department of Economic AffairsEducation and Research EAER3003BerneSwitzerland
| | - Alexandra Schmid
- AgroscopeFederal Department of Economic AffairsEducation and Research EAER3003BerneSwitzerland
| | - Guy Vergères
- AgroscopeFederal Department of Economic AffairsEducation and Research EAER3003BerneSwitzerland
| |
Collapse
|
12
|
Spanier B, Rohm F. Proton Coupled Oligopeptide Transporter 1 (PepT1) Function, Regulation, and Influence on the Intestinal Homeostasis. Compr Physiol 2018; 8:843-869. [DOI: 10.1002/cphy.c170038] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Viennois E, Pujada A, Zen J, Merlin D. Function, Regulation, and Pathophysiological Relevance of the POT Superfamily, Specifically PepT1 in Inflammatory Bowel Disease. Compr Physiol 2018; 8:731-760. [PMID: 29687900 DOI: 10.1002/cphy.c170032] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mammalian members of the proton-coupled oligopeptide transporter family are integral membrane proteins that mediate the cellular uptake of di/tripeptides and peptide-like drugs and couple substrate translocation to the movement of H+ , with the transmembrane electrochemical proton gradient providing the driving force. Peptide transporters are responsible for the (re)absorption of dietary and/or bacterial di- and tripeptides in the intestine and kidney and maintaining homeostasis of neuropeptides in the brain. These proteins additionally contribute to absorption of a number of pharmacologically important compounds. In this overview article, we have provided updated information on the structure, function, expression, localization, and activities of PepT1 (SLC15A1), PepT2 (SLC15A2), PhT1 (SLC15A4), and PhT2 (SLC15A3). Peptide transporters, in particular, PepT1 are discussed as drug-delivery systems in addition to their implications in health and disease. Particular emphasis has been placed on the involvement of PepT1 in the physiopathology of the gastrointestinal tract, specifically, its role in inflammatory bowel diseases. © 2018 American Physiological Society. Compr Physiol 8:731-760, 2018.
Collapse
Affiliation(s)
- Emilie Viennois
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Adani Pujada
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Jane Zen
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, USA.,Veterans Affairs Medical Center, Decatur, Georgia, USA
| |
Collapse
|
14
|
Wang CY, Liu S, Xie XN, Luo ZY, Yang L, Tan ZR. Association between polymorphisms in SLC15A1 and PLA2G16 genes and development of obesity in Chinese subjects. Diabetes Metab Syndr Obes 2018; 11:439-446. [PMID: 30174451 PMCID: PMC6110659 DOI: 10.2147/dmso.s161808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION The small peptide transporter 1 (PepT-1) and adipose phospholipase A2 (AdPLA) play a key role in the development of obesity. However, there are no data assessing the impact of PepT-1 (SLC15A1) and AdPLA (PLA2G16) variants on obesity susceptibility. Therefore, we assessed the contribution of 9 single-nucleotide polymorphisms (SNPs) between these two genes on obesity susceptibility in Chinese subjects. MATERIALS AND METHODS A total of 611 participants were enrolled in the study, and 9 SNPs in the SLC15A1 and PLA2G16 genes were selected. Blood samples were collected for genotyping. Overweight and obesity were established by body mass index. Regression analyses were performed to test for any association of genetic polymorphisms with weight abnormality. RESULTS The genotype frequencies (P=0.04 for rs9557029, P=0.027 for rs1289389) were significantly different between obese or overweight subjects and healthy controls. However, no significant difference in allele was found between these three groups (P>0.05). Further logistic regression analyses adjusted for age and sex also failed to reveal significant associations between overweight, obesity, and the selected SNPs (P>0.05). CONCLUSION Data indicate that the selected 9 SNPs in SLC15A1 and PLA2G16 genes were not related to obesity susceptibility in the Han Chinese population.
Collapse
Affiliation(s)
- Chun-Yang Wang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China, ;
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, People's Republic of China, ;
| | - Shu Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China, ;
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, People's Republic of China, ;
| | - Xiao-Nv Xie
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China, ;
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, People's Republic of China, ;
| | - Zhi-Ying Luo
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China, ;
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, People's Republic of China, ;
| | - Li Yang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China, ;
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, People's Republic of China, ;
| | - Zhi-Rong Tan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, People's Republic of China, ;
- Department of Clinical Pharmacology, Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, People's Republic of China, ;
| |
Collapse
|
15
|
Di- and tripeptide transport in vertebrates: the contribution of teleost fish models. J Comp Physiol B 2016; 187:395-462. [PMID: 27803975 DOI: 10.1007/s00360-016-1044-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/12/2016] [Accepted: 10/20/2016] [Indexed: 02/06/2023]
Abstract
Solute Carrier 15 (SLC15) family, alias H+-coupled oligopeptide cotransporter family, is a group of membrane transporters known for their role in the cellular uptake of di- and tripeptides (di/tripeptides) and peptide-like molecules. Of its members, SLC15A1 (PEPT1) chiefly mediates intestinal absorption of luminal di/tripeptides from dietary protein digestion, while SLC15A2 (PEPT2) mainly allows renal tubular reabsorption of di/tripeptides from ultrafiltration, SLC15A3 (PHT2) and SLC15A4 (PHT1) possibly interact with di/tripeptides and histidine in certain immune cells, and SLC15A5 has unknown function. Our understanding of this family in vertebrates has steadily increased, also due to the surge of genomic-to-functional information from 'non-conventional' animal models, livestock, poultry, and aquaculture fish species. Here, we review the literature on the SLC15 transporters in teleost fish with emphasis on SLC15A1 (PEPT1), one of the solute carriers better studied amongst teleost fish because of its relevance in animal nutrition. We report on the operativity of the transporter, the molecular diversity, and multiplicity of structural-functional solutions of the teleost fish orthologs with respect to higher vertebrates, its relevance at the intersection of the alimentary and osmoregulative functions of the gut, its response under various physiological states and dietary solicitations, and its possible involvement in examples of total body plasticity, such as growth and compensatory growth. By a comparative approach, we also review the few studies in teleost fish on SLC15A2 (PEPT2), SLC15A4 (PHT1), and SLC15A3 (PHT2). By representing the contribution of teleost fish to the knowledge of the physiology of di/tripeptide transport and transporters, we aim to fill the gap between higher and lower vertebrates.
Collapse
|
16
|
Einarsdottir E, Hafrén L, Leinonen E, Bhutta MF, Kentala E, Kere J, Mattila PS. Genome-wide association analysis reveals variants on chromosome 19 that contribute to childhood risk of chronic otitis media with effusion. Sci Rep 2016; 6:33240. [PMID: 27632927 PMCID: PMC5025747 DOI: 10.1038/srep33240] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 08/22/2016] [Indexed: 02/07/2023] Open
Abstract
To identify genetic risk factors of childhood otitis media (OM), a genome-wide association study was performed on Finnish subjects, 829 affected children, and 2118 randomly selected controls. The most significant and validated finding was an association with an 80 kb region on chromosome 19. It includes the variants rs16974263 (P = 1.77 × 10(-7), OR = 1.59), rs268662 (P = 1.564 × 10(-6), OR = 1.54), and rs4150992 (P = 3.37 × 10(-6), OR = 1.52), and harbors the genes PLD3, SERTAD1, SERTAD3, HIPK4, PRX, and BLVRB, all in strong linkage disequilibrium. In a sub-phenotype analysis of the 512 patients with chronic otitis media with effusion, one marker reached genome-wide significance (rs16974263, P = 2.92 × 10(-8)). The association to this locus was confirmed but with an association signal in the opposite direction, in a UK family cohort of 4860 subjects (rs16974263, P = 3.21 × 10(-4), OR = 0.72; rs4150992, P = 1.62 × 10(-4), OR = 0.71). Thus we hypothesize that this region is important for COME risk in both the Finnish and UK populations, although the precise risk variants or haplotype background remain unclear. Our study suggests that the identified region on chromosome 19 includes a novel and previously uncharacterized risk locus for OM.
Collapse
Affiliation(s)
- Elisabet Einarsdottir
- Folkhälsan Institute of Genetics, and Molecular Neurology Research Program, University of Helsinki, Helsinki, Finland.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Lena Hafrén
- Folkhälsan Institute of Genetics, and Molecular Neurology Research Program, University of Helsinki, Helsinki, Finland.,Department of Otorhinolaryngology, Helsinki University Hospital, Helsinki, Finland
| | - Eira Leinonen
- Folkhälsan Institute of Genetics, and Molecular Neurology Research Program, University of Helsinki, Helsinki, Finland
| | | | - Erna Kentala
- Department of Otorhinolaryngology, Helsinki University Hospital, Helsinki, Finland
| | - Juha Kere
- Folkhälsan Institute of Genetics, and Molecular Neurology Research Program, University of Helsinki, Helsinki, Finland.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Petri S Mattila
- Department of Otorhinolaryngology, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
17
|
Identification of Susceptibility Genes of Adult Asthma in French Canadian Women. Can Respir J 2016; 2016:3564341. [PMID: 27445529 PMCID: PMC4904514 DOI: 10.1155/2016/3564341] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 12/05/2015] [Indexed: 11/18/2022] Open
Abstract
Susceptibility genes of asthma may be more successfully identified by studying subgroups of phenotypically similar asthma patients. This study aims to identify single nucleotide polymorphisms (SNPs) associated with asthma in French Canadian adult women. A pooling-based genome-wide association study was performed in 240 allergic asthmatic and 120 allergic nonasthmatic women. The top associated SNPs were selected for individual genotyping in an extended cohort of 349 asthmatic and 261 nonasthmatic women. The functional impact of asthma-associated SNPs was investigated in a lung expression quantitative trait loci (eQTL) mapping study (n = 1035). Twenty-one of the 38 SNPs tested by individual genotyping showed P values lower than 0.05 for association with asthma. Cis-eQTL analyses supported the functional contribution of rs17801353 associated with C3AR1 (P = 7.90E - 10). The asthma risk allele for rs17801353 is associated with higher mRNA expression levels of C3AR1 in lung tissue. In silico functional characterization of the asthma-associated SNPs also supported the contribution of C3AR1 and additional genes including SYNE1, LINGO2, and IFNG-AS1. This pooling-based GWAS in French Canadian adult women followed by lung eQTL mapping suggested C3AR1 as a functional locus associated with asthma. Additional susceptibility genes were suggested in this homogenous subgroup of asthma patients.
Collapse
|
18
|
Intestinal barrier dysfunction: implications for chronic inflammatory conditions of the bowel. Nutr Res Rev 2016; 29:40-59. [DOI: 10.1017/s0954422416000019] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AbstractThe intestinal epithelium of adult humans acts as a differentially permeable barrier that separates the potentially harmful contents of the lumen from the underlying tissues. Any dysfunction of this boundary layer that disturbs the homeostatic equilibrium between the internal and external environments may initiate and sustain a biochemical cascade that results in inflammation of the intestine. Key to such dysfunction are genetic, microbial and other environmental factors that, singularly or in combination, result in chronic inflammation that is symptomatic of inflammatory bowel disease (IBD). The aim of the present review is to assess the scientific evidence to support the hypothesis that defective transepithelial transport mechanisms and the heightened absorption of intact antigenic proinflammatory oligopeptides are important contributing factors in the pathogenesis of IBD.
Collapse
|
19
|
Viennois E, Ingersoll SA, Ayyadurai S, Zhao Y, Wang L, Zhang M, Han MK, Garg P, Xiao B, Merlin D. Critical role of PepT1 in promoting colitis-associated cancer and therapeutic benefits of the anti-inflammatory PepT1-mediated tripeptide KPV in a murine model. Cell Mol Gastroenterol Hepatol 2016; 2:340-357. [PMID: 27458604 PMCID: PMC4957955 DOI: 10.1016/j.jcmgh.2016.01.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS The human intestinal peptide transporter 1, hPepT1, is expressed in the small intestine at low levels in the healthy colon and upregulated during inflammatory bowel disease. hPepT1 plays a role in mouse colitis and human studies have demonstrated that chronic intestinal inflammation leads to colorectal cancer (colitis-associated cancer; CAC). Hence, we assessed here the role of PepT1 in CAC. METHODS Mice with hPepT1 overexpression in intestinal epithelial cells (TG) or PepT1 (PepT1-KO) deletion were used and CAC was induced by AOM/DSS. RESULTS TG mice had larger tumor sizes, increased tumor burdens, and increased intestinal inflammation compared to WT mice. Conversely, tumor number and size and intestinal inflammation were significantly decreased in PepT1-KO mice. Proliferating crypt cells were increased in TG mice and decreased in PepT1-KO mice. Analysis of human colonic biopsies revealed an increased expression of PepT1 in patients with colorectal cancer, suggesting that PepT1 might be targeted for the treatment of CAC. The use of an anti-inflammatory tripeptide KPV (Lys-Pro-Val) transported by PepT1 was able to prevent carcinogenesis in WT mice. When administered to PepT1-KO mice, KPV did not trigger any of the inhibitory effect on tumorigenesis observed in WT mice. CONCLUSIONS The observations that pepT1 was highly expressed in human colorectal tumor and that its overexpression and deletion in mice increased and decreased colitis associated tumorigenesis, respectively, suggest that PepT1 is a potential therapeutic target for the treatment of colitis associated tumorigenesis.
Collapse
Affiliation(s)
- Emilie Viennois
- Institute for Biomedical Sciences, Center Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
- Veterans Affairs Medical Center, Decatur, Georgia
- Correspondence Address correspondence to: Emilie Viennois, PhD, Institute for Biomedical Sciences, Georgia State University, 100 Piedmont Avenue, PSC 757, Atlanta, Georgia 30303. fax: (404) 413-3580.Institute for Biomedical SciencesGeorgia State University100 Piedmont AvenuePSC 757AtlantaGeorgia 30303
| | - Sarah A. Ingersoll
- Institute for Biomedical Sciences, Center Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Saravanan Ayyadurai
- Institute for Biomedical Sciences, Center Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Yuan Zhao
- Institute for Biomedical Sciences, Center Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, China
| | - Lixin Wang
- Institute for Biomedical Sciences, Center Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
- Veterans Affairs Medical Center, Decatur, Georgia
| | - Mingzhen Zhang
- Institute for Biomedical Sciences, Center Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Moon K. Han
- Institute for Biomedical Sciences, Center Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Pallavi Garg
- Institute for Biomedical Sciences, Center Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Bo Xiao
- Institute for Biomedical Sciences, Center Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
| | - Didier Merlin
- Institute for Biomedical Sciences, Center Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia
- Veterans Affairs Medical Center, Decatur, Georgia
| |
Collapse
|
20
|
Freeman HJ. Clinical relevance of intestinal peptide uptake. World J Gastrointest Pharmacol Ther 2015; 6:22-27. [PMID: 25949847 PMCID: PMC4419090 DOI: 10.4292/wjgpt.v6.i2.22] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/22/2014] [Accepted: 04/02/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine available information on an independent peptide transporter 1 (PepT1) and its potential relevance to treatment, this evaluation was completed.
METHODS: Fully published English language literature articles sourced through PubMed related to protein digestion and absorption, specifically human peptide and amino acid transport, were accessed and reviewed. Papers from 1970 to the present, with particular emphasis on the past decade, were examined. In addition, abstracted information translated to English in PubMed was also included. Finally, studies and reviews relevant to nutrient or drug uptake, particularly in human intestine were included for evaluation. This work represents a summary of all of these studies with particular reference to peptide transporter mediated assimilation of nutrients and pharmacologically active medications.
RESULTS: Assimilation of dietary protein in humans involves gastric and pancreatic enzyme hydrolysis to luminal oligopeptides and free amino acids. During the ensuing intestinal phase, these hydrolytic products are transported into the epithelial cell and, eventually, the portal vein. A critical component of this process is the uptake of intact di-peptides and tri-peptides by an independent PepT1. A number of “peptide-mimetic” pharmaceutical agents may also be transported through this carrier, important for uptake of different antibiotics, antiviral agents and angiotensin-converting enzyme inhibitors. In addition, specific peptide products of intestinal bacteria may also be transported by PepT1, with initiation and persistence of an immune response including increased cytokine production and associated intestinal inflammatory changes. Interestingly, these inflammatory changes may also be attenuated with orally-administered anti-inflammatory tripeptides administered as site-specific nanoparticles and taken up by this PepT1 transport protein.
CONCLUSION: Further evaluation of the role of this transporter in treatment of intestinal disorders, including inflammatory bowel disease is needed.
Collapse
|
21
|
Abstract
The epithelium of the gastrointestinal tract is one of the most versatile tissues in the organism, responsible for providing a tight barrier between dietary and bacterial antigens and the mucosal and systemic immune system while maintaining efficient digestive and absorptive processes to ensure adequate nutrient and energy supply. Inflammatory bowel diseases (Crohn's disease and ulcerative colitis) are associated with a breakdown of both functions, which in some cases are clearly interrelated. In this updated literature review, we focus on the effects of intestinal inflammation and the associated immune mediators on selected aspects of the transepithelial transport of macronutrients and micronutrients. The mechanisms responsible for nutritional deficiencies are not always clear and could be related to decreased intake, malabsorption, and excess losses. We summarize the known causes of nutrient deficiencies and the mechanism of inflammatory bowel disease-associated diarrhea. We also overview the consequences of impaired epithelial transport, which infrequently transcend its primary purpose to affect the gut microbial ecology and epithelial integrity. Although some of those regulatory mechanisms are relatively well established, more work needs to be done to determine how inflammatory cytokines can alter the transport process of nutrients across the gastrointestinal and renal epithelia.
Collapse
|
22
|
Colonic expression of the peptide transporter PEPT1 is downregulated during intestinal inflammation and is not required for NOD2-dependent immune activation. Inflamm Bowel Dis 2014; 20:671-84. [PMID: 24583477 DOI: 10.1097/01.mib.0000443336.71488.08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
BACKGROUND PEPT1 was proposed to be expressed only in inflamed colonic tissues in which it could contribute to inflammatory bowel disease (IBD) development by transporting bacterial peptides, such as muramyl dipeptide (MDP), that activate intracellular pattern recognition receptors, such as the nucleotide-binding and oligomerization domain 2. To better define the pathological relevance of this transporter, we analyzed PEPT1 expression during intestinal inflammation and studied the susceptibility of Pept1-deficient (Pept1) mice to experimental colitis. METHODS Wild-type and Pept1 mice were treated with dextran sulfate sodium and 2,4,6-trinitrobenzene sulfonic acid to induce colitis, and MDP-induced cytokine expression was studied in colonic tissue cultures. PEPT1 expression was characterized in mouse models of Crohn's disease-like ileitis (Tnf) or colitis (Il-10, Il-10XTlr2) and endoscopic tissue samples from descending colon of patients with IBD (n = 11) and controls (n = 17). Moreover, the prevalence of the PEPT1 single-nucleotide polymorphism rs2297322 was tested in German patients with IBD (n = 458) and controls (n = 452). RESULTS PEPT1 expression was consistently reduced under condition of acute or chronic experimental inflammation. Wild-type and Pept1 mice revealed comparable susceptibility to dextran sulfate sodium-induced and 2,4,6-trinitrobenzene sulfonic acid-induced colitis, and MDP-induced cytokine expression was PEPT1-independent. PEPT1 expression levels were also decreased in descending colon of patients with IBD during acute inflammation, but the rs2297322 single-nucleotide polymorphism was not associated with IBD susceptibility in the German cohort. CONCLUSIONS PEPT1 expression is reduced during intestinal inflammation and PEPT1 is neither required for MDP-induced immune response nor is the PEPT1 rs2297322 single-nucleotide polymorphism associated with IBD susceptibility in our German cohort. These data strongly argue against a primary role of PEPT1 in the initiation or progression of IBD.
Collapse
|
23
|
Ayyadurai S, Charania MA, Xiao B, Viennois E, Zhang Y, Merlin D. Colonic miRNA expression/secretion, regulated by intestinal epithelial PepT1, plays an important role in cell-to-cell communication during colitis. PLoS One 2014; 9:e87614. [PMID: 24586284 PMCID: PMC3929505 DOI: 10.1371/journal.pone.0087614] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/23/2013] [Indexed: 12/20/2022] Open
Abstract
PepT1 is a member of the proton-oligopeptide cotransporter family SLC15, which mediates the transport of di/tripeptides from intestinal lumen into epithelial cells. MicroRNAs (miRNAs), a small noncoding RNAs (21–23 nucleotides), post-transcriptionally regulate gene expression by binding to the 3′-untranslated regions (UTRs) of their target mRNAs. Although the role of most miRNAs remains elusive, they have been implicated in vital cellular functions such as intestinal epithelial cells differentiation, proliferation, and apoptosis. In the present study, we investigated the effect of intestinal epithelial PepT1 expression on microRNA (miRNA) expression/secretion in the colons of control mice and in mice with experimentally induced colonic inflammation (colitis). The colonic miRNA expression was deregulated in both colitis and control mice but the deregulation of miRNA expression/secretion was specific to colonic tissue and did not affect other tissues such as spleen and liver. Intestinal epithelial PepT1-dependent deregulation of colonic miRNA expression not only affects epithelial cells but also other cell types, such as intestinal macrophages. Importantly, we found the miRNA 23b which was known to be involved in inflammatory bowel disease was secreted and transported between cells to impose a gene-silencing effect on recipient intestinal macrophages. Based on our data, we may conclude that the expression of a specific protein, PepT1, in the intestine affects local miRNA expression/secretion in the colon on a tissue specific manner and may play an important role during the induction and progression of colitis. Colonic miRNA expression/secretion, regulated by intestinal epithelial PepT1, could play a crucial role in cell-to-cell communication during colitis.
Collapse
Affiliation(s)
- Saravanan Ayyadurai
- Department of Biology and Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, United States of America
- * E-mail:
| | - Moiz A. Charania
- Department of Biology and Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, United States of America
| | - Bo Xiao
- Department of Biology and Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, United States of America
| | - Emilie Viennois
- Department of Biology and Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, United States of America
- Veterans Affairs Medical Center, Decatur, Georgia, United States of America
| | - Yuchen Zhang
- Department of Biology and Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, United States of America
| | - Didier Merlin
- Department of Biology and Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, Georgia, United States of America
- Veterans Affairs Medical Center, Decatur, Georgia, United States of America
| |
Collapse
|
24
|
Smith DE, Clémençon B, Hediger MA. Proton-coupled oligopeptide transporter family SLC15: physiological, pharmacological and pathological implications. Mol Aspects Med 2013; 34:323-36. [PMID: 23506874 DOI: 10.1016/j.mam.2012.11.003] [Citation(s) in RCA: 224] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 06/22/2012] [Indexed: 01/04/2023]
Abstract
Mammalian members of the proton-coupled oligopeptide transporter family (SLC15) are integral membrane proteins that mediate the cellular uptake of di/tripeptides and peptide-like drugs. The driving force for uphill electrogenic symport is the chemical gradient and membrane potential which favors proton uptake into the cell along with the peptide/mimetic substrate. The peptide transporters are responsible for the absorption and conservation of dietary protein digestion products in the intestine and kidney, respectively, and in maintaining homeostasis of neuropeptides in the brain. They are also responsible for the absorption and disposition of a number of pharmacologically important compounds including some aminocephalosporins, angiotensin-converting enzyme inhibitors, antiviral prodrugs, and others. In this review, we provide updated information on the structure-function of PepT1 (SLC15A1), PepT2 (SLC15A2), PhT1 (SLC15A4) and PhT2 (SLC15A3), and their expression and localization in key tissues. Moreover, mammalian peptide transporters are discussed in regard to pharmacogenomic and regulatory implications on host pharmacology and disease, and as potential targets for drug delivery. Significant emphasis is placed on the evolving role of these peptide transporters as elucidated by studies using genetically modified animals. Whenever possible, the relevance of drug-drug interactions and regulatory mechanisms are evaluated using in vivo studies.
Collapse
Affiliation(s)
- David E Smith
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
25
|
Rider MA, Zou J, Vanlandingham D, Nuckols JT, Higgs S, Zhang Q, Lacey M, Kim J, Wang G, Hong YS. Quantitative proteomic analysis of the Anopheles gambiae (Diptera: Culicidae) midgut infected with o'nyong-nyong virus. JOURNAL OF MEDICAL ENTOMOLOGY 2013; 50:1077-1088. [PMID: 24180113 DOI: 10.1603/me12155] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Alphaviruses are arthropod-borne pathogens that infect a range of hosts. In humans and other mammals, alphavirus infection can cause severe disease. In mosquito hosts, however, there are generally few symptoms. Little is known about the cellular responses of mosquitoes that allow them to cope with infection. In this investigation, a six-plex tandem mass tagging proteomic approach was used to study protein accumulation changes in the midgut of Anopheles gambiae (Giles) (Diptera: Culicidae) mosquitoes infected with o'nyong-nyong virus (Togaviridae, Alphavirus). Five hundred thirty-six nonredundant proteins were identified. Twenty-two were found in significantly different quantities in infected midguts compared with controls. Of interest, analysis revealed molecular pathways possibly targeted by virus proteins, such as those involving TAF4 and DNA polymerase phi proteins. Also identified was an FK506-binding protein. FK506-binding protein orthologs have been described as conserved host resistance factors, which suppress dengue and West Nile virus infection in human HeLa cells. This investigation constitutes the first study of the midgut-specific proteome of An. gambiae in relation to alphavirus infection. Our findings offer insight into mosquito immunity, including factors that possibly contribute to the different pathological outcomes observed in vertebrate and insect hosts.
Collapse
Affiliation(s)
- Mark A Rider
- Department of Tropical Medicine, Tulane University, 1430 Tulane Ave, SL-17, New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Jeon H, Jang IJ, Lee S, Ohashi K, Kotegawa T, Ieiri I, Cho JY, Yoon SH, Shin SG, Yu KS, Lim KS. Apple juice greatly reduces systemic exposure to atenolol. Br J Clin Pharmacol 2013; 75:172-9. [PMID: 22574741 DOI: 10.1111/j.1365-2125.2012.04324.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIM Fruit juice reduces the plasma concentrations of several β-adrenoceptor blockers, likely by inhibiting OATP2B1-mediated intestinal absorption. The aim of this study was to investigate the effects of apple juice on the pharmacokinetics of atenolol. METHODS Twelve healthy Korean volunteers with genotypes of SLCO2B1 c.1457C> T (*1/*1 (n = 6) and *3/*3 (n = 6)) were enrolled in this study. In a three-phase, one-sequence crossover study, the pharmacokinetics (PK) of atenolol was evaluated after administration of 50 mg atenolol. Subjects received atenolol with either 300 ml water, 1200 ml apple juice or 600 ml apple juice. RESULTS Apple juice markedly reduced the systemic exposure to atenolol. The geometric mean ratios (95% confidence intervals) of apple juice : water were 0.18 (0.13, 0.25, 1200 ml) and 0.42 (0.30, 0.59, 600 ml) for the AUC(0,t(last)). In this study, the PK parameters of atenolol responded in a dose-dependent manner to apple juice. CONCLUSIONS Apple juice markedly reduced systemic exposure to atenolol. The genetic variation of SLCO2B1 c.1457C>T had a minimal effect on the pharmacokinetics of atenolol when the drug was administered with water or apple juice.
Collapse
Affiliation(s)
- Hyewon Jeon
- Department of Clinical Pharmacology and Therapeutics, Seoul National University College of Medicine and Hospital, Seoul, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
PepT1 expressed in immune cells has an important role in promoting the immune response during experimentally induced colitis. J Transl Med 2013; 93:888-99. [PMID: 23797361 DOI: 10.1038/labinvest.2013.77] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/02/2013] [Accepted: 05/13/2013] [Indexed: 11/08/2022] Open
Abstract
We and others have shown that the dipeptide cotransporter PepT1 is expressed in immune cells, including macrophages that are in close contact with the lamina propria of the small and large intestines. In the present study, we used PepT1-knockout (KO) mice to explore the role played by PepT1 in immune cells during dextran sodium sulfate (DSS)-induced colitis. DSS treatment caused less severe body weight loss, diminished rectal bleeding, and less diarrhea in PepT1-KO mice than in wild-type (WT) animals. A histological examination of colonic sections revealed that the colonic architecture was less disrupted and the extent of immune cell infiltration into the mucosa and submucosa following DSS treatment was reduced in PepT1-KO mice compared with WT animals. Consistent with these results, the DSS-induced colitis increase in colonic myeloperoxidase activity was significantly less in PepT1-KO mice than in WT littermates. The colonic levels of mRNAs encoding the inflammatory cytokines CXCL1, interleukin (IL)-6, monocyte chemotactic protein-1, IL-12, and interferon-γ were significantly lower in DSS-treated PepT1-KO mice than in DSS-treated WT animals. Colonic immune cells from WT had significantly higher level of proinflammatory cytokines then PepT1 KO. In addition, we observed that knocking down the PepT1 expression decreases chemotaxis of immune cells recruited during intestinal inflammation. Antibiotic treatment before DSS-induced colitis eliminated the differential expression of inflammatory cytokines between WT and PepT1-KO mice. In conclusion, PepT1 in immune cells regulates the secretion of proinflammatory cytokines triggered by bacteria and/or bacterial products, and thus has an important role in the induction of colitis. PepT1 may transport small bacterial products, such as muramyl dipeptide and the tripeptide L-Ala-gamma-D-Glu-meso-DAP, into macrophages. These materials may be sensed by members of the nucleotide-binding site-leucine-rich repeat family of intracellular receptors, ultimately resulting in altered homeostasis of the intestinal microbiota.
Collapse
|
28
|
Wuensch T, Schulz S, Ullrich S, Lill N, Stelzl T, Rubio-Aliaga I, Loh G, Chamaillard M, Haller D, Daniel H. The peptide transporter PEPT1 is expressed in distal colon in rodents and humans and contributes to water absorption. Am J Physiol Gastrointest Liver Physiol 2013; 305:G66-73. [PMID: 23660505 DOI: 10.1152/ajpgi.00491.2012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The peptide transporter PEPT1, expressed in the brush border membrane of enterocytes, mediates the uptake of di- and tripeptides from luminal protein digestion in the small intestine. PEPT1 was proposed not to be expressed in normal colonic mucosa but may become detectable in inflammatory states such as Crohn's disease or ulcerative colitis. We reassessed colonic expression of PEPT1 by performing a systematic analysis of PEPT1 mRNA and protein levels in healthy colonic tissues in mice, rats, and humans. Immunofluorescence analysis of different mouse strains (C57BL/6N, 129/Sv, BALB/c) demonstrated the presence of PEPT1 in the distal part of the colon but not in proximal colon. Rat and human intestines display a similar distribution of PEPT1 as found in mice. However, localization in human sigmoid colon revealed immunoreactivity present at low levels in apical membranes but substantial staining in distinct intracellular compartments. Functional activity of PEPT1 in colonic tissues from mice was assessed in everted sac preparations using [¹⁴C]Gly-Sar and found to be 5.7-fold higher in distal compared with proximal colon. In intestinal tissues from Pept1-/- mice, no [¹⁴C]Gly-Sar transport was detectable but feces samples revealed significantly higher water content than in wild-type mice, suggesting that PEPT1 contributes to colonic water absorption. In conclusion, our studies unequivocally demonstrate the presence of PEPT1 protein in healthy distal colonic epithelium in mice, rats, and humans and proved that the protein is functional and contributes to electrolyte and water handling in mice.
Collapse
Affiliation(s)
- Tilo Wuensch
- Technische Universität München, Biochemistry Unit, ZIEL-Research Center for Nutrition and Food Science, CDD-Center for Diet and Disease, Freising-Weihenstephan, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Xiang Q, Wang Z, Zhang Y, Wang H. An oligopeptide transporter gene family in Phanerochaete chrysosporium. Gene 2013; 522:133-41. [DOI: 10.1016/j.gene.2013.03.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 02/21/2013] [Accepted: 03/16/2013] [Indexed: 10/27/2022]
|
30
|
Wu SP, Smith DE. Impact of intestinal PepT1 on the kinetics and dynamics of N-formyl-methionyl-leucyl-phenylalanine, a bacterially-produced chemotactic peptide. Mol Pharm 2013; 10:677-84. [PMID: 23259992 DOI: 10.1021/mp300477w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The primary purpose of this study was to evaluate the intestinal permeability (P(eff)) of N-formyl-methionyl-leucyl-phenylalanine (fMet-Leu-Phe), a bacterially derived chemotactic tripeptide, in the duodenum, jejunum, ileum, and colon of wild-type and PepT1 knockout mice. A secondary purpose was to determine if the presence of intestinal PepT1 translated into fMet-Leu-Phe directed neutrophil migration in these animals. Using an in situ single pass perfusion technique, the P(eff) of [(3)H]fMet-Leu-Phe was substantially reduced in the duodenum, jejunum, and ileum of PepT1 knockout mice as compared to wild-type animals. In contrast, the P(eff) of [(3)H]fMet-Leu-Phe in colon was unchanged between genotypes and about 5% of that in small intestine. Jejunal uptake of [(3)H]fMet-Leu-Phe was specific for PepT1 and saturable with an intrinsic K(0.5) of 1.6 mM. The peptide/histidine transporters PhT1 and PhT2 were not involved in [(3)H]fMet-Leu-Phe uptake. Myeloperoxidase activity (a measure of neutrophil migration) was significantly increased following 4 h perfusions of 10 μM fMet-Leu-Phe in the jejunum of wild-type mice and was abolished by 50 mM glycylglycine; no change was observed in the jejunum of PepT1 knockout mice. Likewise, fMet-Leu-Phe perfusions had no effect on myeloperoxidase activity in the colon of either genotype. In conclusion, these findings demonstrated that PepT1 had a major influence on the permeability of fMet-Leu-Phe in duodenum, jejunum, and ileum in wild-type mice and on inflammatory response in intestinal regions that expressed PepT1.
Collapse
Affiliation(s)
- Shu-Pei Wu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan , Ann Arbor, Michigan 48109, United States
| | | |
Collapse
|
31
|
Abstract
Inflammatory bowel diseases (IBD) including ulcerative colitis and Crohn's disease are chronically relapsing, immune-mediated disorders of the gastrointestinal tract. A major challenge in the treatment of IBD is the heterogenous nature of these pathologies. Both, ulcerative colitis and Crohn's disease are of multifactorial etiology and feature a complex interaction of host genetic susceptibility and environmental factors such as diet and gut microbiota. Genome-wide association studies identified disease-relevant single-nucleotide polymorphisms in approximately 100 genes, but at the same time twin studies also clearly indicated a strong environmental impact in disease development. However, attempts to link dietary factors to the risk of developing IBD, based on epidemiological observations showed controversial outcomes. Yet, emerging high-throughput technologies implying complete biological systems might allow taking nutrient-gene interactions into account for a better classification of patient subsets in the future. In this context, 2 new scientific fields, "nutrigenetics" and "nutrigenomics" have been established. "Nutrigenetics," studying the effect of genetic variations on nutrient-gene interactions and "Nutrigenomics," describing the impact of nutrition on physiology and health status on the level of gene transcription, protein expression, and metabolism. It is hoped that the integration of both research areas will promote the understanding of the complex gene-environment interaction in IBD etiology and in the long-term will lead to personalized nutrition for disease prevention and treatment. This review briefly summarizes data on the impact of nutrients on intestinal inflammation, highlights nutrient-gene interactions, and addresses the potential of applying "omic" technologies in the context of IBD.
Collapse
|
32
|
Neuman MG, Nanau RM. Single-nucleotide polymorphisms in inflammatory bowel disease. Transl Res 2012; 160:45-64. [PMID: 22687962 DOI: 10.1016/j.trsl.2011.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2011] [Revised: 10/17/2011] [Accepted: 10/19/2011] [Indexed: 12/23/2022]
Abstract
Strong evidence indicates that inflammatory bowel disease, including Crohn disease and ulcerative colitis, is a result of an inappropriate inflammatory response in which genetic and environmental factors play important roles. This review discusses several single-nucleotide polymorphisms with either susceptibility or protective effects on inflammatory bowel disease.
Collapse
Affiliation(s)
- Manuela G Neuman
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, and In Vitro Drug Safety and Biotechnology, MaRS, Toronto, Ontario, Canada.
| | | |
Collapse
|
33
|
Ingersoll SA, Ayyadurai S, Charania MA, Laroui H, Yan Y, Merlin D. The role and pathophysiological relevance of membrane transporter PepT1 in intestinal inflammation and inflammatory bowel disease. Am J Physiol Gastrointest Liver Physiol 2012; 302:G484-92. [PMID: 22194420 PMCID: PMC3311434 DOI: 10.1152/ajpgi.00477.2011] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 12/21/2011] [Indexed: 01/31/2023]
Abstract
Intestinal inflammation is characterized by epithelial disruption, leading to loss of barrier function and the recruitment of immune cells, including neutrophils. Although the mechanisms are not yet completely understood, interactions between environmental and immunological factors are thought to be critical in the initiation and progression of intestinal inflammation. In recent years, it has become apparent that the di/tripeptide transporter PepT1 may play an important role in the pathogenesis of such inflammation. In healthy individuals, PepT1 is primarily expressed in the small intestine and transports di/tripeptides for metabolic purposes. However, during chronic inflammation such as that associated with inflammatory bowel disease, PepT1 expression is upregulated in the colon, wherein the protein is normally expressed either minimally or not at all. Several recent studies have shown that PepT1 binds to and transports various bacterial di/tripeptides into colon cells, leading to activation of downstream proinflammatory responses via peptide interactions with innate immune receptors. In the present review, we examine the relationship between colonic PepT1-mediated peptide transport in the colon and activation of innate immune responses during disease. It is important to understand the mechanisms of PepT1 action during chronic intestinal inflammation to develop future therapies addressing inappropriate immune activation in the colon.
Collapse
Affiliation(s)
- Sarah A Ingersoll
- Center for Diagnostics & Therapeutics, Department of Biology, Georgia State University, Atlanta, 30302-5090, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Coskun M, Olsen AK, Holm TL, Kvist PH, Nielsen OH, Riis LB, Olsen J, Troelsen JT. TNF-α-induced down-regulation of CDX2 suppresses MEP1A expression in colitis. Biochim Biophys Acta Mol Basis Dis 2012; 1822:843-51. [PMID: 22326557 DOI: 10.1016/j.bbadis.2012.01.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 01/24/2012] [Accepted: 01/25/2012] [Indexed: 12/17/2022]
Abstract
BACKGROUND/AIMS High levels of pro-inflammatory cytokines are linked to inflammatory bowel disease (IBD). The transcription factor Caudal-related homeobox transcription factor 2 (CDX2) plays a crucial role in differentiation of intestinal epithelium and regulates IBD-susceptibility genes, including meprin 1A (MEP1A). The aim was to investigate the expression of CDX2 and MEP1A in colitis; to assess if they are regulated by tumor necrosis factor-α (TNF-α), and finally to reveal if CDX2 is involved in a TNF-α-induced down-regulation of MEP1A. METHODS Expression of CDX2 and MEP1A was investigated in colonic biopsies of ulcerative colitis (UC) patients and in dextran sodium sulfate (DSS)-induced colitis. CDX2 protein expression was investigated by immunoblotting and immunohistochemical procedures. CDX2 and MEP1A regulation was examined in TNF-α-treated Caco-2 cells by reverse transcription-polymerase chain reaction and with reporter gene assays, and the effect of anti-TNF-α treatment was assessed using infliximab. Finally, in vivo CDX2-DNA interactions were investigated by chromatin immunoprecipitation. RESULTS The CDX2 and MEP1A mRNA expression was significantly decreased in active UC patients and in DSS-colitis. Colonic biopsy specimens from active UC showed markedly decreased CDX2 staining. TNF-α treatment diminished the CDX2 and MEP1A mRNA levels, a decrease which, was counteracted by infliximab treatment. Reporter gene assays showed significantly reduced CDX2 and MEP1A activity upon TNF-α stimulation. Finally, TNF-α impaired the ability of CDX2 to interact and activate its own, as well as the MEP1A expression. CONCLUSIONS The present results indicate that a TNF-α-mediated down-regulation of CDX2 can be related to suppressed expression of MEP1A during intestinal inflammation.
Collapse
Affiliation(s)
- Mehmet Coskun
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Herlev, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Anedda F, Zucchelli M, Schepis D, Hellquist A, Corrado L, D'Alfonso S, Achour A, McInerney G, Bertorello A, Lördal M, Befrits R, Björk J, Bresso F, Törkvist L, Halfvarson J, Kere J, D'Amato M. Multiple polymorphisms affect expression and function of the neuropeptide S receptor (NPSR1). PLoS One 2011; 6:e29523. [PMID: 22216302 PMCID: PMC3244468 DOI: 10.1371/journal.pone.0029523] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 11/29/2011] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND neuropeptide S (NPS) and its receptor NPSR1 act along the hypothalamic-pituitary-adrenal axis to modulate anxiety, fear responses, nociception and inflammation. The importance of the NPS-NPSR1 signaling pathway is highlighted by the observation that, in humans, NPSR1 polymorphism associates with asthma, inflammatory bowel disease, rheumatoid arthritis, panic disorders, and intermediate phenotypes of functional gastrointestinal disorders. Because of the genetic complexity at the NPSR1 locus, however, true causative variations remain to be identified, together with their specific effects on receptor expression or function. To gain insight into the mechanisms leading to NPSR1 disease-predisposing effects, we performed a thorough functional characterization of all NPSR1 promoter and coding SNPs commonly occurring in Caucasians (minor allele frequency >0.02). PRINCIPAL FINDINGS we identified one promoter SNP (rs2530547 [-103]) that significantly affects luciferase expression in gene reporter assays and NPSR1 mRNA levels in human leukocytes. We also detected quantitative differences in NPS-induced genome-wide transcriptional profiles and CRE-dependent luciferase activities associated with three NPSR1 non-synonymous SNPs (rs324981 [Ile107Asn], rs34705969 [Cys197Phe], rs727162 [Arg241Ser]), with a coding variant exhibiting a loss-of-function phenotype (197Phe). Potential mechanistic explanations were sought with molecular modelling and bioinformatics, and a pilot study of 2230 IBD cases and controls provided initial support to the hypothesis that different cis-combinations of these functional SNPs variably affect disease risk. SIGNIFICANCE these findings represent a first step to decipher NPSR1 locus complexity and its impact on several human conditions NPS antagonists have been recently described, and our results are of potential pharmacogenetic relevance.
Collapse
Affiliation(s)
- Francesca Anedda
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Institute of Neurogenetics and Neuropharmacology - CNR, Monserrato, Italy
| | - Marco Zucchelli
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Danika Schepis
- Department of Microbiology Tumor Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Anna Hellquist
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - Lucia Corrado
- Department of Medical Sciences, University of Eastern Piedmont and IRCAD, Novara, Italy
| | - Sandra D'Alfonso
- Department of Medical Sciences, University of Eastern Piedmont and IRCAD, Novara, Italy
| | - Adnane Achour
- Department of Microbiology Tumor Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Center for Infectious Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Gerald McInerney
- Department of Microbiology Tumor Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Mikael Lördal
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ragnar Befrits
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jan Björk
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Francesca Bresso
- Department of Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Leif Törkvist
- Department for Clinical Science Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Jonas Halfvarson
- Department of Internal Medicine, Örebro University Hospital, Örebro, Sweden
- School of Health and Medical Sciences, Örebro University, Örebro, Sweden
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
- Center for Biosciences, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Genetics, University of Helsinki, and Folkhälsan Institute of Genetics, Helsinki, Finland
- Science for Life Laboratory, Stockholm, Sweden
| | - Mauro D'Amato
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
36
|
Dalmasso G, Nguyen HTT, Ingersoll SA, Ayyadurai S, Laroui H, Charania MA, Yan Y, Sitaraman SV, Merlin D. The PepT1-NOD2 signaling pathway aggravates induced colitis in mice. Gastroenterology 2011; 141:1334-45. [PMID: 21762661 PMCID: PMC3186842 DOI: 10.1053/j.gastro.2011.06.080] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 06/02/2011] [Accepted: 06/29/2011] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS The human di/tripeptide transporter human intestinal H-coupled oligonucleotide transporter (hPepT1) is abnormally expressed in colons of patients with inflammatory bowel disease, although its exact role in pathogenesis is unclear. We investigated the contribution of PepT1 to intestinal inflammation in mouse models of colitis and the involvement of the nucleotide-binding oligomerization domain 2 (NOD2) signaling pathway in the pathogenic activity of colonic epithelial hPepT1. METHODS Transgenic mice were generated in which hPepT1 expression was regulated by the β-actin or villin promoters; colitis was induced using 2,4,6-trinitrobenzene sulfonic acid (TNBS) or dextran sodium sulfate (DSS) and the inflammatory responses were assessed. The effects of NOD2 deletion in the hPepT1 transgenic mice also was studied to determine the involvement of the PepT1-NOD2 signaling pathway. RESULTS TNBS and DSS induced more severe levels of inflammation in β-actin-hPepT1 transgenic mice than wild-type littermates. Intestinal epithelial cell-specific hPepT1 overexpression in villin-hPepT1 transgenic mice increased the severity of inflammation induced by DSS, but not TNBS. Bone marrow transplantation studies showed that hPepT1 expression in intestinal epithelial cells and immune cells has an important role in the proinflammatory response. Antibiotics abolished the effect of hPepT1 overexpression on the inflammatory response in DSS-induced colitis in β-actin-hPepT1 and villin-hPepT1 transgenic mice, indicating that commensal bacteria are required to aggravate intestinal inflammation. Nod2-/-, β-actin-hPepT1 transgenic/Nod2-/-, and villin-hPepT1 transgenic/Nod2-/- littermates had similar levels of susceptibility to DSS-induced colitis, indicating that hPepT1 overexpression increased intestinal inflammation in a NOD2-dependent manner. CONCLUSIONS The PepT1-NOD2 signaling pathway is involved in aggravation of DSS-induced colitis in mice.
Collapse
Affiliation(s)
- Guillaume Dalmasso
- Department of Medicine, Division of Digestive Diseases, Emory University Atlanta, GA, USA
| | - Hang Thi Thu Nguyen
- Department of Medicine, Division of Digestive Diseases, Emory University Atlanta, GA, USA
| | - Sarah A. Ingersoll
- Department of Medicine, Division of Digestive Diseases, Emory University Atlanta, GA, USA
| | - Saravanan Ayyadurai
- Department of Medicine, Division of Digestive Diseases, Emory University Atlanta, GA, USA
| | - Hamed Laroui
- Department of Medicine, Division of Digestive Diseases, Emory University Atlanta, GA, USA
| | - Moiz A Charania
- Department of Medicine, Division of Digestive Diseases, Emory University Atlanta, GA, USA
| | - Yutao Yan
- Department of Medicine, Division of Digestive Diseases, Emory University Atlanta, GA, USA
| | - Shanthi V Sitaraman
- Department of Medicine, Division of Digestive Diseases, Emory University Atlanta, GA, USA
| | - Didier Merlin
- Department of Medicine, Division of Digestive Diseases, Emory University Atlanta, GA, USA,Veterans Affairs Medical Center, Decatur, GA, USA
| |
Collapse
|
37
|
Laroui H, Yan Y, Narui Y, Ingersoll SA, Ayyadurai S, Charania MA, Zhou F, Wang B, Salaita K, Sitaraman SV, Merlin D. L-Ala-γ-D-Glu-meso-diaminopimelic acid (DAP) interacts directly with leucine-rich region domain of nucleotide-binding oligomerization domain 1, increasing phosphorylation activity of receptor-interacting serine/threonine-protein kinase 2 and its interaction with nucleotide-binding oligomerization domain 1. J Biol Chem 2011; 286:31003-31013. [PMID: 21757725 DOI: 10.1074/jbc.m111.257501] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The oligopeptide transporter PepT1 expressed in inflamed colonic epithelial cells transports small bacterial peptides, such as muramyl dipeptide (MDP) and l-Ala-γ-D-Glu-meso-diaminopimelic acid (Tri-DAP) into cells. The innate immune system uses various proteins to sense pathogen-associated molecular patterns. Nucleotide-binding oligomerization domain (NOD)-like receptors of which there are more than 20 related family members are present in the cytosol and recognize intracellular ligands. NOD proteins mediate NF-κB activation via receptor-interacting serine/threonine-protein kinase 2 (RICK or RIPK). The specific ligands for some NOD-like receptors have been identified. NOD type 1 (NOD1) is activated by peptides that contain a diaminophilic acid, such as the PepT1 substrate Tri-DAP. In other words, PepT1 transport activity plays an important role in controlling intracellular loading of ligands for NOD1 in turn determining the activation level of downstream inflammatory pathways. However, no direct interaction between Tri-DAP and NOD1 has been identified. In the present work, surface plasmon resonance and atomic force microscopy experiments showed direct binding between NOD1 and Tri-DAP with a K(d) value of 34.5 μM. In contrast, no significant binding was evident between muramyl dipeptide and NOD1. Furthermore, leucine-rich region (LRR)-truncated NOD1 did not interact with Tri-DAP, indicating that Tri-DAP interacts with the LRR domain of NOD1. Next, we examined binding between RICK and NOD1 proteins and found that such binding was significant with a K(d) value of 4.13 μM. However, NOD1/RICK binding was of higher affinity (K(d) of 3.26 μM) when NOD1 was prebound to Tri-DAP. Furthermore, RICK phosphorylation activity was increased when NOD was prebound to Tri-DAP. In conclusion, we have shown that Tri-DAP interacts directly with the LRR domain of NOD1 and consequently increases RICK/NOD1 association and RICK phosphorylation activity.
Collapse
Affiliation(s)
- Hamed Laroui
- Department of Medicine, Division of Digestive Diseases, Emory University, Atlanta, Georgia 30322.
| | - Yutao Yan
- Department of Medicine, Division of Digestive Diseases, Emory University, Atlanta, Georgia 30322
| | - Yoshie Narui
- Department of Chemistry, Emory University, Atlanta, Georgia 30322
| | - Sarah A Ingersoll
- Department of Medicine, Division of Digestive Diseases, Emory University, Atlanta, Georgia 30322
| | - Saravanan Ayyadurai
- Department of Medicine, Division of Digestive Diseases, Emory University, Atlanta, Georgia 30322
| | - Moiz A Charania
- Department of Medicine, Division of Digestive Diseases, Emory University, Atlanta, Georgia 30322
| | - Feimeng Zhou
- Department of Chemistry and Biochemistry, California State University, Los Angeles, California 90032
| | - Binghe Wang
- Department of Chemistry, Georgia State University, Atlanta, Georgia 30302-4098
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, Georgia 30322
| | - Shanthi V Sitaraman
- Department of Medicine, Division of Digestive Diseases, Emory University, Atlanta, Georgia 30322
| | - Didier Merlin
- Department of Medicine, Division of Digestive Diseases, Emory University, Atlanta, Georgia 30322; Veterans Affairs Medical Center, Decatur, Georgia 30033
| |
Collapse
|
38
|
Nguyen HTT, Dalmasso G, Torkvist L, Halfvarson J, Yan Y, Laroui H, Shmerling D, Tallone T, D'Amato M, Sitaraman SV, Merlin D. CD98 expression modulates intestinal homeostasis, inflammation, and colitis-associated cancer in mice. J Clin Invest 2011; 121:1733-47. [PMID: 21490400 DOI: 10.1172/jci44631] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 01/26/2011] [Indexed: 12/12/2022] Open
Abstract
Expression of the transmembrane glycoprotein CD98 (encoded by SLC3A2) is increased in intestinal inflammatory conditions, such as inflammatory bowel disease (IBD), and in various carcinomas, yet its pathogenetic role remains unknown. By generating gain- and loss-of-function mouse models with genetically manipulated CD98 expression specifically in intestinal epithelial cells (IECs), we explored the role of CD98 in intestinal homeostasis, inflammation, and colitis-associated tumorigenesis. IEC-specific CD98 overexpression induced gut homeostatic defects and increased inflammatory responses to DSS-induced colitis, promoting colitis-associated tumorigenesis in mice. Further analysis indicated that the ability of IEC-specific CD98 overexpression to induce tumorigenesis was linked to its capacity to induce barrier dysfunction and to stimulate cell proliferation and production of proinflammatory mediators. To validate these results, we constructed mice carrying conditional floxed Slc3a2 alleles and crossed them with Villin-Cre mice such that CD98 was downregulated only in IECs. These mice exhibited attenuated inflammatory responses and resistance to both DSS-induced colitis and colitis-associated tumorigenesis. Together, our data show that intestinal CD98 expression has a crucial role in controlling homeostatic and innate immune responses in the gut. Modulation of CD98 expression in IECs therefore represents a promising therapeutic strategy for the treatment and prevention of inflammatory intestinal diseases, such as IBD and colitis-associated cancer.
Collapse
|
39
|
Contribution of the intestinal microbiota to human health: from birth to 100 years of age. Curr Top Microbiol Immunol 2011; 358:323-46. [PMID: 22094893 DOI: 10.1007/82_2011_189] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Our intestinal tract is colonized since birth by multiple microbial species that show a characteristic succession in time. Notably the establishment of the microbiota in early life is important as it appears to impact later health. While apparently stable in healthy adults, the intestinal microbiota is changing significantly during aging. After 100 years of symbiosis marked changes have been observed that may relate to an increased level of intestinal inflammation. There is considerable interest in the microbiota in health and disease as it may provide functional biomarkers, the possibility to differentiate subjects, and avenues for interventions. This chapter reviews the present state of the art on the research to investigate the contribution of the intestinal microbiota to human health. Specific attention will be given to the healthy microbiota and aberrations due to disturbances such as celiac disease, irritable bowel syndrome, inflammatory bowel disease, obesity and diabetes, and non-alcoholic fatty liver disease.
Collapse
|
40
|
Chen HQ, Shen TY, Zhou YK, Zhang M, Chu ZX, Hang XM, Qin HL. Lactobacillus plantarum consumption increases PepT1-mediated amino acid absorption by enhancing protein kinase C activity in spontaneously colitic mice. J Nutr 2010; 140:2201-6. [PMID: 20980636 DOI: 10.3945/jn.110.123265] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Although probiotic consumption has generally been shown to have many beneficial effects for the prevention and treatment of inflammatory bowel disease, the effects of Lactobacillus plantarum (LP) on intestinal nutrient absorption, particularly oligopeptide transporter 1 (PepT1)-mediated absorption of dietary protein under inflammatory conditions, has not yet been characterized. In this study, we first investigated the effects of LP consumption on plasma amino acid concentrations and PepT1-mediated absorption of cephalexin in the small intestine of wild-type (WT) mice and interleukin-10 knockout (IL-10(-/-)) mice, a model of spontaneous colitis. We then analyzed expression and distribution of PepT1 and protein kinase C (PKC) activity in the jejunum of these mice. LP consumption (10(9) colony-forming units/0.5 mL) delivered by gavage once per day for 4 wk increased the total plasma amino acid concentration and the concentration of plasma cephalexin through enhancement of PepT1-mediated uptake in LP treated IL-10(-/-) mice compared with IL-10(-/-) mice. However, Western blotting and quantitative PCR analysis revealed no significant differences in PepT1 protein and mRNA expression between LP-treated and untreated mice. Additionally, immunofluorescence analysis showed that PepT1 did not appear to be mislocalized in IL-10(-/-) mice. Interestingly, IL-10(-/-) mice had significantly lower PKC activity and expression of phosphorylated PKC compared with WT mice, and these decreases could be prevented by LP treatment. These data suggest that consumption of LP enhances PepT1-mediated amino acid absorption, likely through alterations in PKC activity, as opposed to changes in expression or distribution of PepT1 in the small intestine of IL-10(-/-) mice.
Collapse
Affiliation(s)
- Hong-Qi Chen
- Department of General Surgery, Affiliated Sixth People's Hospital, Shanghai, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
41
|
Dalmasso G, Nguyen HTT, Charrier-Hisamuddin L, Yan Y, Laroui H, Demoulin B, Sitaraman SV, Merlin D. PepT1 mediates transport of the proinflammatory bacterial tripeptide L-Ala-{gamma}-D-Glu-meso-DAP in intestinal epithelial cells. Am J Physiol Gastrointest Liver Physiol 2010; 299:G687-96. [PMID: 20558765 PMCID: PMC2950691 DOI: 10.1152/ajpgi.00527.2009] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
PepT1 is a di/tripeptide transporter highly expressed in the small intestine, but poorly or not expressed in the colon. However, during chronic inflammation, such as inflammatory bowel disease, PepT1 expression is induced in the colon. Commensal bacteria that colonize the human colon produce a large amount of di/tripeptides. To date, two bacterial peptides (N-formylmethionyl-leucyl-phenylalanine and muramyl dipeptide) have been identified as substrates of PepT1. We hypothesized that the proinflammatory tripeptide l-Ala-gamma-d-Glu-meso-DAP (Tri-DAP), a breakdown product of bacterial peptidoglycan, is transported into intestinal epithelial cells via PepT1. We found that uptake of glycine-sarcosine, a specific substrate of PepT1, in intestinal epithelial Caco2-BBE cells was inhibited by Tri-DAP in a dose-dependent manner. Tri-DAP induced activation of NF-kappaB and MAP kinases, consequently leading to production of the proinflammatory cytokine interleukin-8. Tri-DAP-induced inflammatory response in Caco2-BBE cells was significantly suppressed by silencing of PepT1 expression by using PepT1-shRNAs in a tetracycline-regulated expression (Tet-off) system. Colonic epithelial HT29-Cl.19A cells, which do not express PepT1 under basal condition, were mostly insensitive to Tri-DAP-induced inflammation. However, HT29-Cl.19A cells exhibited proinflammatory response to Tri-DAP upon stable transfection with a plasmid encoding PepT1. Accordingly, Tri-DAP significantly increased keratinocyte-derived chemokine production in colonic tissues from transgenic mice expressing PepT1 in intestinal epithelial cells. Finally, Tri-DAP induced a significant drop in intracellular pH in intestinal epithelial cells expressing PepT1, but not in cells that did not express PepT1. Our data collectively support the classification of Tri-DAP as a novel substrate of PepT1. Given that PepT1 is highly expressed in the colon during inflammation, PepT1-mediated Tri-DAP transport may occur more effectively during such conditions, further contributing to intestinal inflammation.
Collapse
Affiliation(s)
| | - Hang Thi Thu Nguyen
- 1Department of Medicine, Division of Digestive Diseases, Emory University, Atlanta; and
| | | | - Yutao Yan
- 1Department of Medicine, Division of Digestive Diseases, Emory University, Atlanta; and
| | - Hamed Laroui
- 1Department of Medicine, Division of Digestive Diseases, Emory University, Atlanta; and
| | - Benjamin Demoulin
- 1Department of Medicine, Division of Digestive Diseases, Emory University, Atlanta; and
| | - Shanthi V. Sitaraman
- 1Department of Medicine, Division of Digestive Diseases, Emory University, Atlanta; and
| | - Didier Merlin
- 1Department of Medicine, Division of Digestive Diseases, Emory University, Atlanta; and ,2Veterans Affairs Medical Center, Decatur, Georgia
| |
Collapse
|
42
|
Errasti-Murugarren E, Pastor-Anglada M. Drug transporter pharmacogenetics in nucleoside-based therapies. Pharmacogenomics 2010; 11:809-41. [PMID: 20504255 DOI: 10.2217/pgs.10.70] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This article focuses on the different types of transporter proteins that have been implicated in the influx and efflux of nucleoside-derived drugs currently used in the treatment of cancer, viral infections (i.e., AIDS) and other conditions, including autoimmune and inflammatory diseases. Genetic variations in nucleoside-derived drug transporter proteins encoded by the gene families SLC15, SLC22, SLC28, SLC29, ABCB, ABCC and ABCG will be specifically considered. Variants known to affect biological function are summarized, with a particular emphasis on those for which clinical correlations have already been established. Given that relatively little is known regarding the genetic variability of the players involved in determining nucleoside-derived drug bioavailability, it is anticipated that major challenges will be faced in this area of research.
Collapse
Affiliation(s)
- Ekaitz Errasti-Murugarren
- The Department of Biochemistry and Molecular Biology, Institute of Biomedicine, University of Barcelona, Diagonal 645, 08028 Barcelona, Spain
- Center for Biomedical Research Network in the Subject Area of Liver and Digestive Diseases (CIBERehd), Barcelona 08071, Spain
| | | |
Collapse
|
43
|
Shigeoka AA, Kambo A, Mathison JC, King AJ, Hall WF, da Silva Correia J, Ulevitch RJ, McKay DB. Nod1 and nod2 are expressed in human and murine renal tubular epithelial cells and participate in renal ischemia reperfusion injury. THE JOURNAL OF IMMUNOLOGY 2010; 184:2297-304. [PMID: 20124104 DOI: 10.4049/jimmunol.0903065] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nucleotide-binding oligomerization domain (Nod) 1 and Nod2 are members of a family of intracellular innate sensors that participate in innate immune responses to pathogens and molecules released during the course of tissue injury, including injury induced by ischemia. Ischemic injury to the kidney is characterized by renal tubular epithelial apoptosis and inflammation. Among the best studied intracellular innate immune receptors known to contribute to apoptosis and inflammation are Nod1 and Nod2. Our study compared and contrasted the effects of renal ischemia in wild-type mice and mice deficient in Nod1, Nod2, Nod(1 x 2), and in their downstream signaling molecule receptor-interacting protein 2. We found that Nod1 and Nod2 were present in renal tubular epithelial cells in both mouse and human kidneys and that the absence of these receptors in mice resulted in protection from kidney ischemia reperfusion injury. Significant protection from kidney injury was seen with a deficiency of Nod2 and receptor-interacting protein 2, and the simultaneous deficiency of Nod1 and Nod2 provided even greater protection. We conclude that the intracellular sensors Nod1 and Nod2 play an important role in the pathogenesis of acute ischemic injury of the kidney, although possibly through different mechanisms.
Collapse
Affiliation(s)
- Alana A Shigeoka
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Lee J, Tattoli I, Wojtal KA, Vavricka SR, Philpott DJ, Girardin SE. pH-dependent internalization of muramyl peptides from early endosomes enables Nod1 and Nod2 signaling. J Biol Chem 2009; 284:23818-29. [PMID: 19570976 PMCID: PMC2749154 DOI: 10.1074/jbc.m109.033670] [Citation(s) in RCA: 159] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Indexed: 01/01/2023] Open
Abstract
Nod1 and Nod2 are members of the Nod-like receptor family that detect intracellular bacterial peptidoglycan-derived muramyl peptides. The biological effects of muramyl peptides have been described for over three decades, but the mechanism underlying their internalization to the cytosol remains unclear. Using the human epithelial cell line HEK293T as a model system, we demonstrate here that Nod1-activating ligands entered cells through endocytosis, most likely by the clathrin-coated pit pathway, as internalization was dynamin-dependent but not inhibited by methyl-beta-cyclodextrin. In the endocytic pathway, the cytosolic internalization of Nod1 ligands was pH-dependent, occurred prior to the acidification mediated by the vacuolar ATPase, and was optimal at pH ranging from 5.5 to 6. Similarly, the Nod2 ligand MDP was internalized into host cytosol through a similar pathway with optimal pH for internalization ranging from 5.5 to 6.5. Moreover, Nod1-activating muramyl peptides likely required processing by endosomal enzymes, prior to transport into the cytosol, suggesting the existence of a sterically gated endosomal transporter for Nod1 ligands. In support for this, we identified a role for SLC15A4, an oligopeptide transporter expressed in early endosomes, in Nod1-dependent NF-kappaB signaling. Interestingly, SLC15A4 expression was also up-regulated in colonic biopsies from patients with inflammatory bowel disease, a disorder associated with mutations in Nod1 and Nod2. Together, our results shed light on the mechanisms by which muramyl peptides get access to the host cytosol, where they are detected by Nod1 and Nod2, and might have implications for the understanding of human diseases, such as inflammatory bowel disease.
Collapse
Affiliation(s)
- Jooeun Lee
- From the Department of Laboratory Medicine and Pathobiology and
| | - Ivan Tattoli
- From the Department of Laboratory Medicine and Pathobiology and
- Department of Immunology, Medical Sciences Building, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada and
| | - Kacper A. Wojtal
- the Division of Gastroenterology and Hepatology, University Hospital Raemistrasse, 100 CH-8091 Zurich, Switzerland
| | - Stephan R. Vavricka
- the Division of Gastroenterology and Hepatology, University Hospital Raemistrasse, 100 CH-8091 Zurich, Switzerland
| | - Dana J. Philpott
- Department of Immunology, Medical Sciences Building, University of Toronto, 1 King's College Circle, Toronto, Ontario M5S 1A8, Canada and
| | | |
Collapse
|