1
|
Kulawik A, Cielecka-Piontek J, Czerny B, Kamiński A, Zalewski P. The Relationship Between Lycopene and Metabolic Diseases. Nutrients 2024; 16:3708. [PMID: 39519540 PMCID: PMC11547539 DOI: 10.3390/nu16213708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Background: Metabolic syndrome, obesity, and type 2 diabetes are closely related. They are characterized by chronic inflammation and oxidative stress. Obesity is the most important risk factor for metabolic syndrome and type 2 diabetes. Metabolic syndrome is characterized by insulin resistance and elevated blood glucose levels, among other conditions. These disorders contribute to the development of type 2 diabetes, which can exacerbate other metabolic problems. Methods: Numerous studies indicate that diet and nutrients can have a major impact on preventing and treating these conditions. One such ingredient is lycopene. It is a naturally occurring carotenoid with a unique chemical structure. It exhibits strong antioxidant and anti-inflammatory properties due to its conjugated double bonds and its ability to neutralize reactive oxygen species. Its properties make lycopene indirectly affect many cellular processes. The article presents studies in animal models and humans on the activity of this carotenoid in metabolic problems. Results: The findings suggest that lycopene's antioxidant and anti-inflammatory activities make it a promising candidate for the prevention and treatment of metabolic syndrome, obesity, and type 2 diabetes. Conclusions: This review underscores the potential of lycopene as a beneficial dietary supplement in improving metabolic health and reducing the risk of associated chronic diseases. The conditions described are population diseases, so research into compounds with properties such as lycopene is growing in popularity.
Collapse
Affiliation(s)
- Anna Kulawik
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznań, Poland; (A.K.); (J.C.-P.)
- Phytopharm Klęka S.A., Klęka 1, 63-040 Nowe Miasto nad Wartą, Poland
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznań, Poland; (A.K.); (J.C.-P.)
- Department of Pharmacology and Phytochemistry, Institute of Natural Fibres and Medicinal Plants, Wojska Polskiego Str. 71b, 60-630 Poznań, Poland
| | - Bogusław Czerny
- Department of General Pharmacology and Pharmacoeconomics, Pomeranian Medical University in Szczecin, 71-210 Szczecin, Poland;
| | - Adam Kamiński
- Department of Orthopedics and Traumatology, Independent Public Clinical Hospital No. 1, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland;
| | - Przemysław Zalewski
- Department of Pharmacognosy and Biomaterials, Faculty of Pharmacy, Poznan University of Medical Sciences, 3 Rokietnicka St., 60-806 Poznań, Poland; (A.K.); (J.C.-P.)
| |
Collapse
|
2
|
Islam MR, Rauf A, Alash S, Fakir MNH, Thufa GK, Sowa MS, Mukherjee D, Kumar H, Hussain MS, Aljohani ASM, Imran M, Al Abdulmonem W, Thiruvengadam R, Thiruvengadam M. A comprehensive review of phytoconstituents in liver cancer prevention and treatment: targeting insights into molecular signaling pathways. Med Oncol 2024; 41:134. [PMID: 38703282 DOI: 10.1007/s12032-024-02333-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/13/2024] [Indexed: 05/06/2024]
Abstract
Primary liver cancer is a type of cancer that develops in the liver. Hepatocellular carcinoma is a primary liver cancer that usually affects adults. Liver cancer is a fatal global condition that affects millions of people worldwide. Despite advances in technology, the mortality rate remains alarming. There is growing interest in researching alternative medicines to prevent or reduce the effects of liver cancer. Recent studies have shown growing interest in herbal products, nutraceuticals, and Chinese medicines as potential treatments for liver cancer. These substances contain unique bioactive compounds with anticancer properties. The causes of liver cancer and potential treatments are discussed in this review. This study reviews natural compounds, such as curcumin, resveratrol, green tea catechins, grape seed extracts, vitamin D, and selenium. Preclinical and clinical studies have shown that these medications reduce the risk of liver cancer through their antiviral, anti-inflammatory, antioxidant, anti-angiogenic, and antimetastatic properties. This article discusses the therapeutic properties of natural products, nutraceuticals, and Chinese compounds for the prevention and treatment of liver cancer.
Collapse
Affiliation(s)
- Md Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, 23561, Khyber Pakhtunkhwa, Pakistan.
| | - Shopnil Alash
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Md Naeem Hossain Fakir
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Gazi Kaifeara Thufa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Mahbuba Sharmin Sowa
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Daffodil Smart City, Birulia, Savar, Dhaka, 1216, Bangladesh
| | - Dattatreya Mukherjee
- Raiganj Government Medical College and Hospital, Pranabananda Sarani, Raiganj, 733134, West Bengal, India
| | - Harendra Kumar
- Dow University of Health Sciences, Mission Rd, New Labour Colony Nanakwara, Karachi, 74200, Sindh, Pakistan
| | - Md Sadique Hussain
- School of Pharmacy, Suresh Gyan Vihar University, Mahal Road, Jagatpura, Jaipur, 302017, Rajasthan, India
| | - Abdullah S M Aljohani
- Department of Medical Biosciences, College of Veterinary Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Muhammad Imran
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Rekha Thiruvengadam
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai, 600077, Tamil Nadu, India.
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, 05029, South Korea
| |
Collapse
|
3
|
Chang YC, Yu MH, Huang HP, Chen DH, Yang MY, Wang CJ. Mulberry leaf extract inhibits obesity and protects against diethylnitrosamine-induced hepatocellular carcinoma in rats. J Tradit Complement Med 2024; 14:266-275. [PMID: 38707917 PMCID: PMC11068992 DOI: 10.1016/j.jtcme.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 05/07/2024] Open
Abstract
Mulberry leaf has been recognized as a traditional Chinese medicinal plant, which was distributed throughout the Asia. The aqueous extract of mulberry leaf extract (MLE) has various biologically active components such as polyphenols and flavonoids. However, the inhibitory effect of MLE in hepatocarcinogenesis is poorly understood. In this study, we determined the role of MLE supplementation in preventing hepatocarcinogenesis in a carcinogen-initiated high-fat diet (HFD)-promoted Sprague-Dawley (SD) rat model. The rats were fed an HFD to induce obesity and spontaneous hepatomas by administering 0.01% diethylnitrosamine (DEN) in their drinking water for 12 weeks (HD group), and also to fed MLE through oral ingestion at daily doses of 0.5%, 1%, or 2%. At the end of the 12-week experimental period, the liver tumors were analyzed to identify markers of oxidative stress and antioxidant enzyme activities, and their serum was analyzed to determine their nutritional status and liver function. Histopathological analysis revealed that MLE supplementation significantly suppressed the severity and incidence of hepatic tumors. Furthermore, compared with the HFD + DEN groups, the expression of protein kinase C (PKC)-α and Rac family small GTPase 1 (Rac1) was lower in the MLE groups. These findings suggest that MLE prevents obesity-enhanced, carcinogen-induced hepatocellular carcinoma development, potentially through the protein kinase C (PKC)α/Rac1 signaling pathway. MLE might be an effective chemoprevention modality for nonalcoholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH)-related hepatocarcinogenesis.
Collapse
Affiliation(s)
- Yun-Ching Chang
- Department of Health Diet and Industry Management, Chung Shan Medical University, Taichung, 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Meng-Hsun Yu
- Department of Nutrition, Chung Shan Medical University, Taichung, 402, Taiwan
- Department of Nutrition, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Hui-Pei Huang
- Department of Biochemistry, School of Medicine, Medical College, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Dong-Hui Chen
- Institute of Medicine, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Mon-Yuan Yang
- Department of Health Diet and Industry Management, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Chau-Jong Wang
- Department of Health Diet and Industry Management, Chung Shan Medical University, Taichung, 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, 402, Taiwan
| |
Collapse
|
4
|
Tyczyńska M, Hunek G, Szczasny M, Brachet A, Januszewski J, Forma A, Portincasa P, Flieger J, Baj J. Supplementation of Micro- and Macronutrients-A Role of Nutritional Status in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2024; 25:4916. [PMID: 38732128 PMCID: PMC11085010 DOI: 10.3390/ijms25094916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a condition in which the pathological cumulation of fat with coexisting inflammation and damage of hepatic cells leads to progressive dysfunctions of the liver. Except for the commonly well-known major causes of NAFLD such as obesity, dyslipidemia, insulin resistance, or diabetes, an unbalanced diet and imbalanced nutritional status should also be taken into consideration. In this narrative review, we summarized the current knowledge regarding the micro- and macronutrient status of patients suffering from NAFLD considering various diets and supplementation of chosen supplements. We aimed to summarize the knowledge indicating which nutritional impairments may be associated with the onset and progression of NAFLD at the same time evaluating the potential therapy targets that could facilitate the healing process. Except for the above-mentioned objectives, one of the most important aspects of this review was to highlight the possible strategies for taking care of NAFLD patients taking into account the challenges and opportunities associated with the micronutrient status of the patients. The current research indicates that a supplementation of chosen vitamins (e.g., vitamin A, B complex, C, or D) as well as chosen elements such as zinc may alleviate the symptoms of NAFLD. However, there is still a lack of sufficient data regarding healthy ranges of dosages; thus, further research is of high importance in this matter.
Collapse
Affiliation(s)
- Magdalena Tyczyńska
- Department of Correct, Clinical and Imaging Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland;
| | - Gabriela Hunek
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.H.); (A.B.)
| | - Martyna Szczasny
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (M.S.); (J.J.)
| | - Adam Brachet
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.H.); (A.B.)
| | - Jacek Januszewski
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (M.S.); (J.J.)
| | - Alicja Forma
- Chair and Department of Forensic Medicine, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland; (G.H.); (A.B.)
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy;
| | - Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland;
| | - Jacek Baj
- Chair and Department of Anatomy, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland; (M.S.); (J.J.)
| |
Collapse
|
5
|
Dzakovich MP, Goggans ML, Thomas-Ahner JM, Moran NE, Clinton SK, Francis DM, Cooperstone JL. Transcriptomics and Metabolomics Reveal Tomato Consumption Alters Hepatic Xenobiotic Metabolism and Induces Steroidal Alkaloid Metabolite Accumulation in Mice. Mol Nutr Food Res 2024; 68:e2300239. [PMID: 38212250 DOI: 10.1002/mnfr.202300239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/18/2023] [Indexed: 01/13/2024]
Abstract
SCOPE Tomato consumption is associated with many health benefits including lowered risk for developing certain cancers. It is hypothesized that tomato phytochemicals are transported to the liver and other tissues where they alter gene expression in ways that lead to favorable health outcomes. However, the effects of tomato consumption on mammalian liver gene expression and chemical profile are not well defined. METHODS AND RESULTS The study hypothesizes that tomato consumption would alter mouse liver transcriptomes and metabolomes compared to a control diet. C57BL/6J mice (n = 11-12/group) are fed a macronutrient matched diet containing either 10% red tomato, 10% tangerine tomato, or no tomato powder for 6 weeks after weaning. RNA-Seq followed by gene set enrichment analyses indicates that tomato type and consumption, in general, altered expression of phase I and II xenobiotic metabolism genes. Untargeted metabolomics experiments reveal distinct clustering between control and tomato fed animals. Nineteen molecular formulas (representing 75 chemical features) are identified or tentatively identified as steroidal alkaloids and isomers of their phase I and II metabolites; many of which are reported for the first time in mammals. CONCLUSION These data together suggest tomato consumption may impart benefits partly through enhancing detoxification potential.
Collapse
Affiliation(s)
- Michael P Dzakovich
- Department of Horticulture and Crop Science, The Ohio State University, 2001 Fyffe Court, Columbus, OH, 43210, USA
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Ave., Houston, TX, 77030, USA
| | - Mallory L Goggans
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Court, Columbus, OH, 43210, USA
| | - Jennifer M Thomas-Ahner
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Nancy E Moran
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Ave., Houston, TX, 77030, USA
| | - Steven K Clinton
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - David M Francis
- Ohio Agricultural Research and Development Center, Department of Horticulture and Crop Science, The Ohio State University, 1680 Madison Ave, Wooster, OH, 44691, USA
| | - Jessica L Cooperstone
- Department of Horticulture and Crop Science, The Ohio State University, 2001 Fyffe Court, Columbus, OH, 43210, USA
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Court, Columbus, OH, 43210, USA
| |
Collapse
|
6
|
Wang Y, Fleishman JS, Li T, Li Y, Ren Z, Chen J, Ding M. Pharmacological therapy of metabolic dysfunction-associated steatotic liver disease-driven hepatocellular carcinoma. Front Pharmacol 2024; 14:1336216. [PMID: 38313077 PMCID: PMC10834746 DOI: 10.3389/fphar.2023.1336216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/31/2023] [Indexed: 02/06/2024] Open
Abstract
In light of a global rise in the number of patients with type 2 diabetes mellitus (T2DM) and obesity, non-alcoholic fatty liver disease (NAFLD), now known as metabolic dysfunction-associated fatty liver disease (MAFLD) or metabolic dysfunction-associated steatotic liver disease (MASLD), has become the leading cause of hepatocellular carcinoma (HCC), with the annual occurrence of MASLD-driven HCC expected to increase by 45%-130% by 2030. Although MASLD has become a serious major public health threat globally, the exact molecular mechanisms mediating MASLD-driven HCC remain an open problem, necessitating future investigation. Meanwhile, emerging studies are focusing on the utility of bioactive compounds to halt the progression of MASLD to MASLD-driven HCC. In this review, we first briefly review the recent progress of the possible mechanisms of pathogenesis and progression for MASLD-driven HCC. We then discuss the application of bioactive compounds to mitigate MASLD-driven HCC through different modulatory mechanisms encompassing anti-inflammatory, lipid metabolic, and gut microbial pathways, providing valuable information for future treatment and prevention of MASLD-driven HCC. Nonetheless, clinical research exploring the effectiveness of herbal medicines in the treatment of MASLD-driven HCC is still warranted.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Joshua S. Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Tongda Li
- Department of Traditional Chinese Medicine, Beijing Geriatric Hospital, Beijing, China
| | - Yulin Li
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Zhao Ren
- Department of Pharmacy, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Mingchao Ding
- Department of Peripheral Vascular Intervention, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| |
Collapse
|
7
|
Terao J. Revisiting carotenoids as dietary antioxidants for human health and disease prevention. Food Funct 2023; 14:7799-7824. [PMID: 37593767 DOI: 10.1039/d3fo02330c] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
Humans are unique indiscriminate carotenoid accumulators, so the human body accumulates a wide range of dietary carotenoids of different types and to varying concentrations. Carotenoids were once recognized as physiological antioxidants because of their ability to quench singlet molecular oxygen (1O2). In the 1990s, large-scale intervention studies failed to demonstrate that supplementary β-carotene intake reduces the incidence of lung cancer, although its antioxidant activity was supposed to contribute to the prevention of oxidative stress-induced carcinogenesis. Nevertheless, the antioxidant activity of carotenoids has attracted renewed attention as the pathophysiological role of 1O2 has emerged, and as the ability of dietary carotenoids to induce antioxidant enzymes has been revealed. This review focuses on six major carotenoids from fruit and vegetables and revisits their physiological functions as biological antioxidants from the standpoint of health promotion and disease prevention. β-Carotene 9',10'-oxygenase-derived oxidative metabolites trigger increases in the activities of antioxidant enzymes. Lutein and zeaxanthin selectively accumulate in human macular cells to protect against light-induced macular impairment by acting as antioxidants. Lycopene accumulates exclusively and to high concentrations in the testis, where its antioxidant activity may help to eliminate oxidative damage. Dietary carotenoids appear to exert their antioxidant activity in photo-irradiated skin after their persistent deposition in the skin. An acceptable level of dietary carotenoids for disease prevention should be established because they can have deleterious effects as prooxidants if they accumulate to excess levels. Finally, it is expected that the reason why humans are indiscriminate carotenoid accumulators will be understood soon.
Collapse
Affiliation(s)
- Junji Terao
- Faculty of Medicine, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.
| |
Collapse
|
8
|
Promising hepatoprotective effects of lycopene in different liver diseases. Life Sci 2022; 310:121131. [PMID: 36306869 DOI: 10.1016/j.lfs.2022.121131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/13/2022] [Accepted: 10/23/2022] [Indexed: 11/07/2022]
|
9
|
Mediterranean Diet: The Beneficial Effects of Lycopene in Non-Alcoholic Fatty Liver Disease. J Clin Med 2022; 11:jcm11123477. [PMID: 35743545 PMCID: PMC9225137 DOI: 10.3390/jcm11123477] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/10/2022] [Accepted: 06/15/2022] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) presents the most common chronic liver disease globally; it is estimated that 25.24% of the world’s population has NAFLD. NAFLD is a multi-factorial disease whose development involves various processes, such as insulin resistance, lipotoxicity, inflammation, cytokine imbalance, the activation of innate immunity, microbiota and environmental and genetic factors. Numerous clinical studies have shown that the Mediterranean diet produces beneficial effects in NAFLD patients. The aim of this review is to summarize the beneficial effects of lycopene, a soluble pigment found in fruit and vegetables, in NAFLD.
Collapse
|
10
|
Liu A, Chen X, Huang Z, Chen D, Yu B, Chen H, He J, Yan H, Zheng P, Yu J, Luo Y. Effects of dietary lycopene supplementation on intestinal morphology, antioxidant capability and inflammatory response in finishing pigs. Anim Biotechnol 2021; 33:563-570. [PMID: 34866548 DOI: 10.1080/10495398.2021.2009490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In this study, eighteen healthy Duroc × Landrace × Yorkshire barrows with initial body weight of 63.89 ± 1.15 kg were randomly allotted to three treatments and fed a basal diet or a basal diet supplemented with 100 mg/kg and 200 mg/kg lycopene, respectively. Data showed that villus height to crypt depth ratio increased with 200 mg/kg lycopene (p < 0.05) in the jejunum. In duodenum, the malondialdehyde content was decreased (p < 0.05) in 100 and 200 mg/kg lycopene groups. Furthermore, in the jejunum, dietary 100 and 200 mg/kg lycopene supplementation increased (p < 0.05) catalase activity. In the duodenum, interleukin-1β (IL-1β), nuclear factor-κB and tumor necrosis factor-α contents were decreased (p < 0.05) in 200 mg/kg lycopene group. In the jejunum, IL-1β content was reduced (p < 0.05) and IL-1β mRNA expression was down-regulated (p = 0.046) in 200 mg/kg lycopene group. Additionally, claudin-1 mRNA and protein levels in 200 mg/kg group were also increased (p < 0.05). These results indicated that dietary lycopene supplementation could maintain intestinal health, which was associated with improving intestinal morphology, enhancing tight junction function, inhibiting inflammatory response, and elevating antioxidant capacity in finishing pigs.
Collapse
Affiliation(s)
- Aimin Liu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Yaan, P. R. China
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| | - Hui Yan
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| | - Jie Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China
| |
Collapse
|
11
|
Gao PC, Chu JH, Chen XW, Li LX, Fan RF. Selenium alleviates mercury chloride-induced liver injury by regulating mitochondrial dynamics to inhibit the crosstalk between energy metabolism disorder and NF-κB/NLRP3 inflammasome-mediated inflammation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:113018. [PMID: 34837874 DOI: 10.1016/j.ecoenv.2021.113018] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Mercury (Hg) is a persistent heavy metal contaminant with definite hepatotoxicity. Selenium (Se) has been shown to alleviate liver damage induced by heavy metals. Therefore, the present study aimed to explore the mechanism of the antagonistic effect of Se on mercury chloride (HgCl2)-induced hepatotoxicity in chickens. Firstly, we confirmed that Se alleviated HgCl2-induced liver injury through histopathological observation and liver function analyzation. The results also showed that Se prevented HgCl2-induced liver lipid accumulation and dyslipidemia by regulating the gene expression related to lipid as well as glucose metabolism. Moreover, Se blocked the nuclear factor kappa B (NF-κB)/NLR family pyrin domain containing 3 (NLRP3) inflammasome signaling pathway, which was the key to alleviate the inflammation caused by HgCl2. Mechanically, Se inhibited immoderate mitochondrial division, fusion, and biogenesis caused by HgCl2, and also improved mitochondrial respiration, which were essential for preventing energy metabolism disorder and inflammation. In conclusion, our results suggested that Se inhibited energy metabolism disorder and inflammation by regulating mitochondrial dynamics, thereby alleviating HgCl2-induced liver injury in chickens. These results are expected to provide potential intervention and therapeutic targets for diseases caused by inorganic mercury poisoning.
Collapse
Affiliation(s)
- Pei-Chao Gao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Jia-Hong Chu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Xue-Wei Chen
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Lan-Xin Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China
| | - Rui-Feng Fan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province 271018, China.
| |
Collapse
|
12
|
Siraj MA, Islam MA, Al Fahad MA, Kheya HR, Xiao J, Simal-Gandara J. Cancer Chemopreventive Role of Dietary Terpenoids by Modulating Keap1-Nrf2-ARE Signaling System—A Comprehensive Update. APPLIED SCIENCES 2021; 11:10806. [DOI: 10.3390/app112210806] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
ROS, RNS, and carcinogenic metabolites generate excessive oxidative stress, which changes the basal cellular status and leads to epigenetic modification, genomic instability, and initiation of cancer. Epigenetic modification may inhibit tumor-suppressor genes and activate oncogenes, enabling cells to have cancer promoting properties. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a transcription factor that in humans is encoded by the NFE2L2 gene, and is activated in response to cellular stress. It can regulate redox homoeostasis by expressing several cytoprotective enzymes, including NADPH quinine oxidoreductase, heme oxygenase-1, UDP-glucuronosyltransferase, glutathione peroxidase, glutathione-S-transferase, etc. There is accumulating evidence supporting the idea that dietary nutraceuticals derived from commonly used fruits, vegetables, and spices have the ability to produce cancer chemopreventive activity by inducing Nrf2-mediated detoxifying enzymes. In this review, we discuss the importance of these nutraceuticals in cancer chemoprevention and summarize the role of dietary terpenoids in this respect. This approach was taken to accumulate the mechanistic function of these terpenoids to develop a comprehensive understanding of their direct and indirect roles in modulating the Keap1-Nrf2-ARE signaling system.
Collapse
Affiliation(s)
- Md Afjalus Siraj
- Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI 96720, USA
| | - Md. Arman Islam
- Pharmacy Discipline, Life Science School, Khulna University, Khulna 9208, Bangladesh
| | - Md. Abdullah Al Fahad
- Department of Regenerative Medicine, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| | - Habiba Rahman Kheya
- Department of Sociology, Faculty of Social Sciences, University of Dhaka, Dhaka 1000, Bangladesh
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo—Ourense Campus, E32004 Ourense, Spain
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo—Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
13
|
Alarcón-Sánchez BR, Pérez-Carreón JI, Villa-Treviño S, Arellanes-Robledo J. Molecular alterations that precede the establishment of the hallmarks of cancer: An approach on the prevention of hepatocarcinogenesis. Biochem Pharmacol 2021; 194:114818. [PMID: 34757033 DOI: 10.1016/j.bcp.2021.114818] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023]
Abstract
Chronic liver injury promotes the molecular alterations that precede the establishment of cancer. Usually, several decades of chronic insults are needed to develop the most common primary liver tumor known as hepatocellular carcinoma. As other cancer types, liver cancer cells are governed by a common set of rules collectively called the hallmarks of cancer. Although those rules have provided a conceptual framework for understanding the complex pathophysiology of established tumors, therapeutic options are still ineffective in advanced stages. Thus, the molecular alterations that precede the establishment of cancer remain an attractive target for therapeutic interventions. Here, we first summarize the chemopreventive interventions targeting the early liver carcinogenesis stages. After an integrative analysis on the plethora of molecular alterations regulated by anticancer agents, we then underline and discuss that two critical processes namely oxidative stress and genetic alterations, play the role of 'dirty work laborer' in the initial cell damage and drive the transformation of preneoplastic into neoplastic cells, respectively; besides, the activation of cellular senescence works as a key mechanism in attempting to prevent the onset and establishment of liver cancer. Whereas the detrimental effects of the binomial made up of oxidative stress and genetic alterations are either eliminated or reduced, senescence activation is promoted by anticancer agents. We argue that collectively, oxidative stress, genetic alterations, and senescence are key events that influence the fate of initiated cells and the establishment of the hallmarks of cancer.
Collapse
Affiliation(s)
- Brisa Rodope Alarcón-Sánchez
- Laboratory of Liver Diseases, National Institute of Genomic Medicine - INMEGEN, CDMX, Mexico; Departament of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute - CINVESTAV-IPN, CDMX, Mexico
| | | | - Saúl Villa-Treviño
- Departament of Cell Biology, Center for Research and Advanced Studies of the National Polytechnic Institute - CINVESTAV-IPN, CDMX, Mexico
| | - Jaime Arellanes-Robledo
- Laboratory of Liver Diseases, National Institute of Genomic Medicine - INMEGEN, CDMX, Mexico; Directorate of Cátedras, National Council of Science and Technology - CONACYT, CDMX, Mexico.
| |
Collapse
|
14
|
Mandlik DS, Mandlik SK. An Overview of Hepatocellular Carcinoma with Emphasis on Dietary Products and Herbal Remedies. Nutr Cancer 2021; 74:1549-1567. [PMID: 34396860 DOI: 10.1080/01635581.2021.1965630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The most common principal malignant tumor that accounts for ∼80% of cases of liver cancer across the world is hepatocellular carcinoma (HCC). It is a multifacetedillness that is caused by several risk factors and often progresses in the context of underlying cirrhosis. It is tremendously difficult and essential for the screening of novel therapeutic medications to establish HCC preclinical models that are equivalent to clinical diseases settings, i.e., representing the tumor microenvironment of HCC. In the progress of HCC, numerous molecular cascades have been supposed to play a part. Sorafenib is the only drug permitted by the US Food and Drug Administration for the treatment of HCC. Yet because of the increasing resistance to the drug and its toxicity, clinical treatment methods are not completely adequate. Newer treatment therapy options are essential for the management of HCC in patients. Natural compounds can be afforded by the patients with improved results with less toxicity and fewer side effects, among different methods of liver cancer treatment. The treatment and management of HCC with natural drugs and their phytoconstituents are connected to several paths that can prevent the occurrence and progress of HCC in several ways. The present review summarizes the etiology of HCC, molecular pathways, newer therapeutic approaches, natural dietary products, herbal plants and phytoconstituents for HCC treatment.
Collapse
Affiliation(s)
- Deepa S Mandlik
- Poona College of Pharmacy, Bharati Vidyapeeth, Deemed to be University, Pune, India
| | - Satish K Mandlik
- Poona College of Pharmacy, Bharati Vidyapeeth, Deemed to be University, Pune, India
| |
Collapse
|
15
|
Puah BP, Jalil J, Attiq A, Kamisah Y. New Insights into Molecular Mechanism behind Anti-Cancer Activities of Lycopene. Molecules 2021; 26:molecules26133888. [PMID: 34202203 PMCID: PMC8270321 DOI: 10.3390/molecules26133888] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/05/2021] [Accepted: 06/17/2021] [Indexed: 12/15/2022] Open
Abstract
Lycopene is a well-known compound found commonly in tomatoes which brings wide range of health benefits against cardiovascular diseases and cancers. From an anti-cancer perspective, lycopene is often associated with reduced risk of prostate cancer and people often look for it as a dietary supplement which may help to prevent cancer. Previous scientific evidence exhibited that the anti-cancer activity of lycopene relies on its ability to suppress oncogene expressions and induce proapoptotic pathways. To further explore the real potential of lycopene in cancer prevention, this review discusses the new insights and perspectives on the anti-cancer activities of lycopene which could help to drive new direction for research. The relationship between inflammation and cancer is being highlighted, whereby lycopene suppresses cancer via resolution of inflammation are also discussed herein. The immune system was found to be a part of the anti-cancer system of lycopene as it modulates immune cells to suppress tumor growth and progression. Lycopene, which is under the family of carotenoids, was found to play special role in suppressing lung cancer.
Collapse
Affiliation(s)
- Boon-Peng Puah
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
| | - Juriyati Jalil
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia;
- Correspondence: ; Tel.: +603-9289-7533
| | - Ali Attiq
- Faculty of Pharmacy, MAHSA University, Bandar Saujana Putra, Jenjarom 42610, Malaysia;
| | - Yusof Kamisah
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
16
|
BAKİ AM, VURAL P, AYDIN AF, SOLUK TEKKEŞİN M, DOĞRU-ABBASOĞLU S, UYSAL M. Effect of α-lipoic acid and N-acetylcysteine on liver oxidative stress, preneoplastic lesions induced by diethylnitrosamine plus high-fat diet. ARCHIVES OF CLINICAL AND EXPERIMENTAL MEDICINE 2021. [DOI: 10.25000/acem.830126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
17
|
Dietary lycopene attenuates cigarette smoke-promoted nonalcoholic steatohepatitis by preventing suppression of antioxidant enzymes in ferrets. J Nutr Biochem 2021; 91:108596. [PMID: 33548472 DOI: 10.1016/j.jnutbio.2021.108596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 03/01/2020] [Accepted: 12/31/2020] [Indexed: 12/16/2022]
Abstract
Cigarette smoke (CS) is an independent risk factor in development of nonalcoholic steatohepatitis (NASH) and fibrosis. Lycopene, a carotenoid naturally occurring in tomatoes, has been shown to be a protective agent against tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced NASH. In the present study using a ferret model we investigated whether CS promotes NASH and whether dietary lycopene can inhibit CS-promoted NASH development, and if so, what potential mechanisms were involved. Ferrets were divided into 4 groups (n=12-16/group): control, NNK/CS exposed, NNK/CS plus low-dose lycopene (2.2 mg/kg BW/day), and NNK/CS plus high-dose lycopene (6.6 mg/kg BW/day) groups, for 26 weeks. Results showed that hepatic steatosis, infiltrates of inflammatory cells, and the number and size of inflammatory foci in liver, together with key genes involved in hepatic fibrogenesis were higher in the NNK/CS group compared to the control group; a lycopene diet reversed these changes to the levels of the control group. Interestingly, a major lycopene cleavage enzyme, beta-carotene 9',10'-oxygenase (BCO2), which recently has been recognized to play metabolic roles beyond cleavage function, was down-regulated by NNK/CS exposure, but this decrease was prevented by lycopene feeding. NNK/CS exposure also downregulated liver expression of antioxidant enzymes and upregulated oxidative stress marker, which were all prevented by lycopene. In conclusion, our results suggest that CS can promote development of NASH and liver fibrosis in ferrets, which is associated with downregulation of BCO2 and impairment of antioxidant system in liver; dietary lycopene may inhibit CS-promoted NASH by preventing suppression of BCO2 and decline in antioxidant network.
Collapse
|
18
|
Saeed NM, Mansour AM, Allam S. Lycopene induces insulin signaling and alleviates fibrosis in experimental model of non-alcoholic fatty liver disease in rats. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Mekuria AN, Tura AK, Hagos B, Sisay M, Abdela J, Mishore KM, Motbaynor B. Anti-Cancer Effects of Lycopene in Animal Models of Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. Front Pharmacol 2020; 11:1306. [PMID: 32982734 PMCID: PMC7475703 DOI: 10.3389/fphar.2020.01306] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/06/2020] [Indexed: 12/18/2022] Open
Abstract
Introduction Globally, hepatocellular carcinoma (HCC) is the sixth most diagnosed cancer and the third important cause of cancer-related death. As there are only two targeted drugs for the treatment of advanced HCC—that merely extend survival by a few months—the need for alternative treatments is inevitable. Lycopene, a carotenoid that is known to be most abundant in red tomatoes and tomato-based products, has been investigated for its anticancer activity in various types of cancers including HCC. This review was conducted to evaluate the effects of lycopene on HCC from animal models to pave the way for further clinical studies. Methods Electronic databases and search engines including PubMed, EMBASE, and Google Scholar were searched for original records addressing the anticancer effect of lycopene in animal models of HCC. Data were extracted using a format prepared in Microsoft Excel and exported to Stata 15.0 for analyses. A meta-analysis was performed using a random-effects model at a 95% confidence level for the outcome measures: tumor incidence, number, and growth (tumor volume and size). The presence of publication bias between studies was evaluated using Egger’s test and funnel plot. The study protocol was registered in the PROSPERO database with reference number: CRD42019159312. Results The initial database search yields 286 articles, of which 15 studies met the inclusion criteria. The characteristics of the included studies were a bit diversified. The studies involved a total of 644 animals (312 treatment and 332 control groups) and mice shared the majority (488) followed by rats (117) and ferrets (39). The meta-analysis showed that lycopene significantly reduced the incidence [RR 0.8; 95% CI 0.69, 0.92 (p=0.00); I2 = 30.4%, p=0.16; n=11], number [SMD-1.83; 95% CI -3.10, -0.57 (p=0.01); I2 = 95.9%, p=0.00; n=9], and growth [SMD -2.13; 95% CI -4.20, -0.04 (p=0.04); I2 = 94.6%, p=0.00; n=4] of HCC. Conclusions Administration of lycopene appears to inhibit the initiation and progression of cancer in animal models of HCC. However, more controlled and thorough preclinical studies are needed to further evaluate its anti-HCC effects and associated molecular mechanisms.
Collapse
Affiliation(s)
- Abraham Nigussie Mekuria
- Department of Pharmacology, School of Pharmacy, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
| | - Abera Kenay Tura
- School of Nursing and Midwifery, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
| | - Bisrat Hagos
- Social Pharmacy Unit, School of Pharmacy, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
| | - Mekonnen Sisay
- Department of Pharmacology, School of Pharmacy, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
| | - Jemal Abdela
- Department of Pharmacology, School of Pharmacy, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
| | - Kirubel Minsamo Mishore
- Department of Clinical Pharmacy, School of Pharmacy, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
| | - Birhanu Motbaynor
- Department of Pharmaceutical Chemistry, School of Pharmacy, College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
| |
Collapse
|
20
|
Thomas CE, Luu HN, Wang R, Adams-Haduch J, Jin A, Koh WP, Yuan JM. Association between Dietary Tomato Intake and the Risk of Hepatocellular Carcinoma: The Singapore Chinese Health Study. Cancer Epidemiol Biomarkers Prev 2020; 29:1430-1435. [PMID: 32284341 PMCID: PMC7685773 DOI: 10.1158/1055-9965.epi-20-0051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 02/28/2020] [Accepted: 04/08/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Intake of tomato and/or lycopene has been associated with reduced risk of several cancers, but there is no report on the association with risk of hepatocellular carcinoma (HCC). METHODS The associations of tomato and lycopene consumption with risk of HCC were examined in the Singapore Chinese Health Study, a prospective cohort of 63,257 Chinese ages 45 to 74 years at enrollment. Diet was assessed using a validated semiquantitative food frequency questionnaire. Cox proportional hazard regression models were used to estimate HR and its 95% confidence interval (CI) of HCC with the consumption of tomato and lycopene among all cohort participants, and unconditional logistic regression was used to assess the association by hepatitis B surface antigen (HBsAg) positivity in a nested case-control study. RESULTS After a mean follow-up of 17.6 years, 561 incident HCC cases were identified. Higher tomato intake was associated with lower risk of HCC after adjustment for potential confounders (P trend < 0.001). Compared with the lowest quartile, HRs (95% CIs) of HCC for the second, third, and fourth quartile of tomato intake were 0.70 (0.56-0.88), 0.73 (0.58-0.92), and 0.63 (0.49-0.81). Among HBsAg-negative individuals, the inverse association remained (P trend = 0.03). There was no association between lycopene intake and HCC risk (P trend = 0.54). CONCLUSIONS Tomato intake may offer protection against the development of HCC, particularly among individuals without chronic infection with hepatitis B virus. IMPACT Tomato intake is a low-cost preventative measure against HCC that may help reduce risk due to increasing rates of nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Claire E Thomas
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Hung N Luu
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania.
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Renwei Wang
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jennifer Adams-Haduch
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Aizhen Jin
- Health Services and Systems Research, Duke-NUS Medical School Singapore, Singapore
| | - Woon-Puay Koh
- Health Services and Systems Research, Duke-NUS Medical School Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| | - Jian-Min Yuan
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
21
|
Lycopene in protection against obesity and diabetes: A mechanistic review. Pharmacol Res 2020; 159:104966. [PMID: 32535223 DOI: 10.1016/j.phrs.2020.104966] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022]
Abstract
Lycopene, a natural pigment that mainly exists in the mature fruit of tomatoes, has gained increasing attention due to its protective effects against obesity and diabetes. The aim of this review is to summarize the potential mechanisms in which lycopene exerts protection against obesity and diabetes, along with highlighting its bioavailability, synthesis and safety. Literature sources used in this review were from the PubMed Database, China Knowledge Resource Integrated Database, China Science and Technology Journal Database, National Science and Technology Library, Wanfang Data, and the Web of Science. For the inquiries, keywords such as lycopene, properties, synthesis, diabetes, obesity, and safety were used in various combinations. About 200 articles and reviews were evaluated. Lycopene exhibits anti-obesity and anti-diabetic activities in different organs and/or tissues, including adipose tissue, liver, kidney, pancreas, brain, ovaries, intestine, and eyes. The underlying mechanism may be attributed to its anti-oxidant and anti-inflammatory properties and through its ability to regulate of AGE/RAGE, JNK/MAPK, PI3K/Akt, SIRT1/FoxO1/PPARγ signaling pathways and AchE activity. The epidemiological investigations support that lycopene consumption may contribute to lowering the risk of obesity and diabetes. The cis-isomers of lycopene are more bioavailable and better absorbed than trans-lycopene, and mainly distribute in liver and adipose tissue. Lycopene exhibits a good margin of safety and can be obtained by plant extraction, chemical synthesis and microbial fermentation. In summary, lycopene consumption beneficially contributes to protecting against diabetes and obesity in animal studies and epidemiological investigations, which supports the potential of this compound as a preventive/therapeutic agent against these disorders. Well-designed, prospective clinical studies are warranted to evaluate the potential therapeutic effect of lycopene against common metabolic diseases.
Collapse
|
22
|
Nutraceutical Effects of Lycopene in Experimental Varicocele: An "In Vivo" Model to Study Male Infertility. Nutrients 2020; 12:nu12051536. [PMID: 32466161 PMCID: PMC7284888 DOI: 10.3390/nu12051536] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/09/2020] [Accepted: 05/22/2020] [Indexed: 12/14/2022] Open
Abstract
Varicocele is one of the main causes of infertility in men. Oxidative stress and consequently apoptosis activation contribute to varicocele pathogenesis, worsening its prognosis. Natural products, such as lycopene, showed antioxidant and anti-inflammatory effects in several experimental models, also in testes. In this study we investigated lycopene effects in an experimental model of varicocele. Male rats (n = 14) underwent sham operations and were administered with vehicle (n = 7) or with lycopene (n = 7; 1 mg/kg i.p., daily). Another group of animals (n = 14) underwent surgical varicocele. After 28 days, the sham and 7 varicocele animals were euthanized, and both operated and contralateral testes were weighted and processed. The remaining rats were treated with lycopene (1 mg/kg i.p., daily) for 30 days. Varicocele rats showed reduced testosterone levels, testes weight, Bcl-2 mRNA expression, changes in testes structure and increased malondialdehyde levels and BAX gene expression. TUNEL (Terminal Deoxynucleotidyl Transferase dUTP Nick End Labeling) assay showed an increased number of apoptotic cells. Treatment with lycopene significantly increased testosterone levels, testes weight, and Bcl-2 mRNA expression, improved tubular structure and decreased malondialdehyde levels, BAX mRNA expression and TUNEL-positive cells. The present results show that lycopene exerts beneficial effects in testes, and suggest that supplementation with the tomato-derived carotenoid might be considered a novel nutraceutical strategy for the treatment of varicocele and male infertility.
Collapse
|
23
|
Ni Y, Zhuge F, Nagashimada M, Nagata N, Xu L, Yamamoto S, Fuke N, Ushida Y, Suganuma H, Kaneko S, Ota T. Lycopene prevents the progression of lipotoxicity-induced nonalcoholic steatohepatitis by decreasing oxidative stress in mice. Free Radic Biol Med 2020; 152:571-582. [PMID: 31790829 DOI: 10.1016/j.freeradbiomed.2019.11.036] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/28/2019] [Accepted: 11/28/2019] [Indexed: 12/12/2022]
Abstract
Excessive fatty acid uptake-induced oxidative stress causes liver injury and the consecutive recruitment of inflammatory immune cells, thereby promoting the progression of simple steatosis to nonalcoholic steatohepatitis (NASH). Lycopene, the most effective singlet oxygen scavenger of the antioxidant carotenoids, has anti-inflammatory activity. Here, we investigated the preventive and therapeutic effects of lycopene in a lipotoxic model of NASH: mice fed a high-cholesterol and high-fat diet. Lycopene alleviated excessive hepatic lipid accumulation and enhanced lipolysis, decreased the proportion of M1-type macrophages/Kupffer cells, and activated stellate cells to improve hepatic inflammation and fibrosis, and subsequently reduced the recruitment of CD4+ and CD8+ T cells in the liver. Importantly, lycopene reversed insulin resistance, as well as hepatic inflammation and fibrosis, in pre-existing NASH. In parallel, lycopene decreased LPS-/IFN-γ-/TNFα-induced M1 marker mRNA levels in peritoneal macrophages, as well as TGF-β1-induced expression of fibrogenic genes in a stellate cell line, in a dose-dependent manner. These results were associated with decreased oxidative stress in cells, which might be mediated by the expression of NADPH oxidase subunits. In summary, lycopene prevented and reversed lipotoxicity-induced inflammation and fibrosis in NASH mice by reducing oxidative stress. Therefore, it might be a novel and promising treatment for NASH.
Collapse
Affiliation(s)
- Yinhua Ni
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Fen Zhuge
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan; Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, 310015, China
| | - Mayumi Nagashimada
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan; Division of Health Science, Graduate of Medical Science, Kanazawa University, Kanazawa, 920-0942, Japan
| | - Naoto Nagata
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Liang Xu
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Sayo Yamamoto
- Innovation Division, KAGOME CO., LTD, Nasushiobara, 329-2762, Japan
| | - Nobuo Fuke
- Innovation Division, KAGOME CO., LTD, Nasushiobara, 329-2762, Japan
| | - Yusuke Ushida
- Innovation Division, KAGOME CO., LTD, Nasushiobara, 329-2762, Japan
| | | | - Shuichi Kaneko
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | - Tsuguhito Ota
- Advanced Preventive Medical Sciences Research Center, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan; Division of Metabolism and Biosystemic Science, Department of Medicine, Asahikawa Medical University, Asahikawa, 078-8510, Japan.
| |
Collapse
|
24
|
Lycopene prevents lipid accumulation in hepatocytes by stimulating PPARα and improving mitochondrial function. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103857] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
25
|
Mechanistic understanding of β-cryptoxanthin and lycopene in cancer prevention in animal models. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158652. [PMID: 32035228 DOI: 10.1016/j.bbalip.2020.158652] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/26/2020] [Accepted: 01/28/2020] [Indexed: 02/07/2023]
Abstract
To better understand the potential function of carotenoids in the chemoprevention of cancers, mechanistic understanding of carotenoid action on genetic and epigenetic signaling pathways is critically needed for human studies. The use of appropriate animal models is the most justifiable approach to resolve mechanistic issues regarding protective effects of carotenoids at specific organs and tissue sites. While the initial impetus for studying the benefits of carotenoids in cancer prevention was their antioxidant capacity and pro-vitamin A activity, significant advances have been made in the understanding of the action of carotenoids with regards to other mechanisms. This review will focus on two common carotenoids, provitamin A carotenoid β-cryptoxanthin and non-provitamin A carotenoid lycopene, as promising chemopreventive agents or chemotherapeutic compounds against cancer development and progression. We reviewed animal studies demonstrating that β-cryptoxanthin and lycopene effectively prevent the development or progression of various cancers and the potential mechanisms involved. We highlight recent research that the biological functions of β-cryptoxanthin and lycopene are mediated, partially via their oxidative metabolites, through their effects on key molecular targeting events, such as NF-κB signaling pathway, RAR/PPARs signaling, SIRT1 signaling pathway, and p53 tumor suppressor pathways. The molecular targets by β-cryptoxanthin and lycopene, offer new opportunities to further our understanding of common and distinct mechanisms that involve carotenoids in cancer prevention. This article is part of a Special Issue entitled Carotenoids recent advances in cell and molecular biology edited by Johannes von Lintig and Loredana Quadro.
Collapse
|
26
|
Honda M, Nakayama Y, Nishikawa S, Tsuda T. Z-Isomers of lycopene exhibit greater liver accumulation than the all-E-isomer in mice. Biosci Biotechnol Biochem 2020; 84:428-431. [DOI: 10.1080/09168451.2019.1677144] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
ABSTRACT
The effect of oral administration of all-E-isomer-rich and Z-isomer-rich lycopene on liver accumulation in mice was investigated. When a diet rich in the Z-isomers was administered for 4 weeks, the total lycopene concentration in the liver was more than 3 times higher than that of all-E-isomer administration. This result clearly indicates that lycopene Z-isomers show greater bioavailability and/or liver accumulation than the all-E-isomer in mice.
Collapse
Affiliation(s)
- Masaki Honda
- Department of Chemistry, Faculty of Science & Technology, Meijo University, Nagoya, Japan
| | - Yuki Nakayama
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Sho Nishikawa
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Takanori Tsuda
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| |
Collapse
|
27
|
Kaur N, Chugh H, Tomar V, Sakharkar MK, Dass SK, Chandra R. Cinnamon attenuates adiposity and affects the expression of metabolic genes in Diet-Induced obesity model of zebrafish. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2930-2939. [PMID: 31317780 DOI: 10.1080/21691401.2019.1641509] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The prevalence of obesity is increasing at an alarming rate worldwide with about 30% of the world population classified as obese. Obese body structure results when energy intake exceeds energy expenditure in an individual. Increase in the consumption of high-energy eatables, in the context of portion and energy provided, has resulted in obese populations which is becoming the leading cause of metabolic disorders related to morbidity. The obesity-related comorbidity is an enormous liability on health services and will affect measures taken in tackling the increasing obesity rate. Prevention of an obese phenotype is the most suitable long-term strategy. Another approach towards the treatment of obesity is weight management through phytotherapeutics. In this study, we explored the anti-obesity effects of Cinnamon (Cinnamomum zeylanicum) in adult male zebrafish. Through BMI measurements, blood glucose level analyses, serum triglyceride analyses, Oil Red O staining as well as quantitative Real Time-PCR, the ability of cinnamon to reduce metabolic disorders associated with obesity is investigated for the first time in a zebrafish model. Our studies indicate that cinnamon ameliorates the genotypic and phonotypic characteristics associated with obesity through lowering of BMI, blood glucose, triglyceride levels, lipid levels in the liver and through gene modulation.
Collapse
Affiliation(s)
- Navrinder Kaur
- a Department of Chemistry, University of Delhi , Delhi , India.,b Department of Research and Education, Artemis Hospitals , Gurgaon , India
| | - Heerak Chugh
- a Department of Chemistry, University of Delhi , Delhi , India
| | - Vartika Tomar
- a Department of Chemistry, University of Delhi , Delhi , India
| | | | - Sujata K Dass
- d Department of Neurology, B.L. Kapur Hospital , New Delhi , India
| | - Ramesh Chandra
- a Department of Chemistry, University of Delhi , Delhi , India.,e Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi , Delhi , India
| |
Collapse
|
28
|
Heidor R, Affonso JM, Ong TP, Moreno FS. Nutrition and Liver Cancer Prevention. NUTRITION AND CANCER PREVENTION 2019:339-367. [DOI: 10.1039/9781788016506-00339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Liver cancer represents a major public health problem. Hepatocarcinogenesis is a complex process that comprises several stages and is caused by multiple factors. Both progressive genetic and epigenetic alterations are described in liver cancer development. The most effective strategy to reduce the impact of this disease is through prevention. In addition to vaccination against HBV and treatment of HCV infection, other preventive measures include avoiding ingesting aflatoxin-contaminated foods and drinking alcoholic beverages, as well as maintaining healthy body weight and practicing physical exercise. Bioactive compounds from fruits and vegetables present great potential for liver cancer chemoprevention. Among them, tea catechins, carotenoids, retinoids, β-ionone, geranylgeraniol and folic acid can be highlighted. In addition, butyric acid, tributyrin and structured lipids based on butyric acid and other fatty acids represent additional promising chemopreventive agents. These bioactive food compounds have been shown to modulate key cellular and molecular processes that are deregulated in hepatocarcinogenesis. Furthermore, combinations of different classes of bioactive food compounds or of bioactive food compounds with synthetic drugs could lead to synergistic liver cancer chemopreventive effects.
Collapse
Affiliation(s)
- R. Heidor
- University of São Paulo, Faculty of Pharmaceutical Sciences, Department of Food and Experimental Nutrition, Food Research Center (FoRC) São Paulo 05508-000 Brazil
| | - J. M. Affonso
- University of São Paulo, Faculty of Pharmaceutical Sciences, Department of Food and Experimental Nutrition, Food Research Center (FoRC) São Paulo 05508-000 Brazil
| | - T. P. Ong
- University of São Paulo, Faculty of Pharmaceutical Sciences, Department of Food and Experimental Nutrition, Food Research Center (FoRC) São Paulo 05508-000 Brazil
| | - F. S. Moreno
- University of São Paulo, Faculty of Pharmaceutical Sciences, Department of Food and Experimental Nutrition, Food Research Center (FoRC) São Paulo 05508-000 Brazil
| |
Collapse
|
29
|
Ma JK, Saad Eldin WF, El-Ghareeb WR, Elhelaly AE, Khedr MHE, Li X, Huang XC. Effects of Pyrene on Human Liver HepG2 Cells: Cytotoxicity, Oxidative Stress, and Transcriptomic Changes in Xenobiotic Metabolizing Enzymes and Inflammatory Markers with Protection Trial Using Lycopene. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7604851. [PMID: 31687396 PMCID: PMC6803749 DOI: 10.1155/2019/7604851] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/11/2019] [Accepted: 09/20/2019] [Indexed: 01/05/2023]
Abstract
Pyrene is one of the major polycyclic aromatic hydrocarbons formed during heat treatment of meat and in car exhausts; however, few studies have investigated pyrene-induced adverse effects on human cell lines. This study aimed at the investigation of pyrene-induced cytotoxicity and oxidative damage in human liver HepG2 cells at environmentally relevant concentrations. Pyrene-induced changes in mRNA expression of xenobiotic metabolizing enzymes (XMEs), xenobiotic transporters, antioxidant enzymes, and inflammatory markers were investigated using real-time PCR. As a protection trial, the ameliorative effects of lycopene, a carotenoid abundantly found in tomato, were investigated. The possible mechanisms behind such effects were examined via studying the co exposure effects of pyrene and lycopene on regulatory elements including the aryl hydrocarbon receptor (Air) and elytroid 2-related factor 2 (RF). The achieved results indicated that pyrene caused significant cytotoxicity at 50 n, with a clear production of reactive oxygen species (ROS) in a dose-dependent manner. Pyrene upregulated mRNA expression of phase I enzymes including CYP1A1, 1A2, and CYP1B1 and inflammatory markers including TNFα and Cox2. However, pyrene significantly downregulated phase II enzymes, xenobiotic transporters, and antioxidant enzymes. Interestingly, lycopene significantly reduced pyrene-induced cytotoxicity and ROS production. Moreover, lycopene upregulated detoxification and antioxidant enzymes, probably via its regulatory effects on Air- and RF-dependent pathways.
Collapse
Affiliation(s)
- Jin-Kui Ma
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing 526061, China
| | - Walaa Fathy Saad Eldin
- Educational Veterinary Hospital, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Waleed Rizk El-Ghareeb
- Department of Veterinary Public Health and Animal Husbandry, College of Veterinary Medicine, King Faisal University, Al Hofuf, Saudi Arabia
| | - Abdelazim Elsayed Elhelaly
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
- Center for Emerging Infectious Diseases, School of Medicine, Gifu University, Gifu 501-1193, Japan
| | - Mariam H. E. Khedr
- Department of Veterinary Hygiene, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Xiang Li
- College of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China
| | - Xiao-Chen Huang
- School of Food & Pharmaceutical Engineering, Zhaoqing University, Zhaoqing 526061, China
| |
Collapse
|
30
|
β-ionone inhibits nonalcoholic fatty liver disease and its association with hepatocarcinogenesis in male Wistar rats. Chem Biol Interact 2019; 308:377-384. [PMID: 31150631 DOI: 10.1016/j.cbi.2019.05.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/24/2019] [Accepted: 05/27/2019] [Indexed: 02/07/2023]
Abstract
Among the primary neoplasias that affect the liver, hepatocellular carcinoma (HCC) is the most frequent and the third leading cause of death related to cancer. Several risk factors predispose individuals to HCC such as nonalcoholic fatty liver disease (NAFLD), whose incidence has significantly increased worldwide. β-ionone (βI) isoprenoid is a known chemopreventive of hepatocarcinogenesis. However, the effects of this compound on NAFLD isolated or in association with hepatocarcinogenesis have not yet been evaluated. A high-fat emulsion administered for 6 weeks resulted in NAFLD in male rats, and oral treatment with βI during this period significantly attenuated its development. Moreover, the presence of NAFLD potentiated hepatocarcinogenesis induced by the resistant hepatocyte (RH) model in these animals by increasing the number and percentage of the liver section area occupied by placental glutathione S-transferase (GST-P)-positive persistent preneoplastic lesions (pPNLs), that are thought to evolve into HCC. This indicates that this NAFLD/RH protocol is suitable for studies of the influence of NAFLD on the HCC development. Therefore, here we also investigated the chemopreventive effect of βI under these two associated conditions. In this context, βI reduced the number and percentage of the liver section area occupied by pPNLs, as well as cell proliferation and the number of oval cells, which are considered potential targets for the development of HCC. Thus, βI presents not only a promising inhibitory effect on NAFLD isolated but also chemopreventive activity when it is associated with hepatocarcinogenesis.
Collapse
|
31
|
Elvira-Torales LI, García-Alonso J, Periago-Castón MJ. Nutritional Importance of Carotenoids and Their Effect on Liver Health: A Review. Antioxidants (Basel) 2019; 8:antiox8070229. [PMID: 31330977 PMCID: PMC6681007 DOI: 10.3390/antiox8070229] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 12/11/2022] Open
Abstract
The consumption of carotenoids has beneficial effects on health, reducing the risk of certain forms of cancer, cardiovascular diseases, and macular degeneration, among others. The mechanism of action of carotenoids has not been clearly identified; however, it has been associated with the antioxidant capacity of carotenoids, which acts against reactive oxygen species and inactivating free radicals, although it has also been shown that carotenoids modulate gene expression. Dietary carotenoids are absorbed and accumulated in the liver and other organs, where they exert their beneficial effects. In recent years, it has been described that the intake of carotenoids can significantly reduce the risk of suffering from liver diseases, such as non-alcoholic fatty liver disease (NAFLD). This disease is characterized by an imbalance in lipid metabolism producing the accumulation of fat in the hepatocyte, leading to lipoperoxidation, followed by oxidative stress and inflammation. In the first phases, the main treatment of NAFLD is to change the lifestyle, including dietary habits. In this sense, carotenoids have been shown to have a hepatoprotective effect due to their ability to reduce oxidative stress and regulate the lipid metabolism of hepatocytes by modulating certain genes. The objective of this review was to provide a description of the effects of dietary carotenoids from fruits and vegetables on liver health.
Collapse
Affiliation(s)
- Laura Inés Elvira-Torales
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence "Campus Mare Nostrum", Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital "Virgen de la Arrixaca", University of Murcia, Espinardo, 30071 Murcia, Spain.
- Department of Food Engineering, Tierra Blanca Superior Technological Institute, Tierra Blanca 95180, Mexico.
| | - Javier García-Alonso
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence "Campus Mare Nostrum", Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital "Virgen de la Arrixaca", University of Murcia, Espinardo, 30071 Murcia, Spain
| | - María Jesús Periago-Castón
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence "Campus Mare Nostrum", Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU), University Clinical Hospital "Virgen de la Arrixaca", University of Murcia, Espinardo, 30071 Murcia, Spain.
| |
Collapse
|
32
|
Ore A, Akinloye OA. Oxidative Stress and Antioxidant Biomarkers in Clinical and Experimental Models of Non-Alcoholic Fatty Liver Disease. ACTA ACUST UNITED AC 2019; 55:medicina55020026. [PMID: 30682878 PMCID: PMC6410206 DOI: 10.3390/medicina55020026] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 01/18/2019] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a term that covers a range of hepatic disorders involving fat deposits in the liver. NAFLD begins with simple steatosis and progresses into non-alcoholic steatohepatitis (NASH) characterised by inflammation, fibrosis, apoptosis, oxidative stress, lipid peroxidation, mitochondrial dysfunction and release of adipokines and pro-inflammatory cytokines. Oxidative stress and antioxidants are known to play a vital role in the pathogenesis and severity of NAFLD/NASH. A number of oxidative stress and antioxidant markers are employed in the assessment of the pathological state and progression of the disease. In this article, we review several biomarkers of oxidative stress and antioxidants that have been measured at clinical and experimental levels. Also included is a comprehensive description of oxidative stress, sources and contribution to the pathogenesis of NAFLD/NASH.
Collapse
Affiliation(s)
- Ayokanmi Ore
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria.
- Biochemistry Division, Department of Chemical Sciences, Faculty of Natural Sciences, Ajayi Crowther University, Oyo, Nigeria.
| | - Oluseyi Adeboye Akinloye
- Department of Biochemistry, College of Biosciences, Federal University of Agriculture, Abeokuta, Nigeria.
| |
Collapse
|
33
|
Zeng J, Zhao J, Dong B, Cai X, Jiang J, Xue R, Yao F, Dong Y, Liu C. Lycopene protects against pressure overload-induced cardiac hypertrophy by attenuating oxidative stress. J Nutr Biochem 2019; 66:70-78. [PMID: 30772766 DOI: 10.1016/j.jnutbio.2019.01.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/02/2018] [Accepted: 01/02/2019] [Indexed: 12/19/2022]
Abstract
Oxidative stress is considered an important pathogenic process of cardiac hypertrophy. Lycopene is a kind of carotenoid antioxidant that protects the cardiovascular system, so we hypothesized that lycopene might inhibit cardiac hypertrophy by attenuating oxidative stress. Phenylephrine and pressure overload were used to set up the hypertrophic models in vitro and in vivo respectively. Our data revealed that treatment with lycopene can significantly block pressure overload-induced cardiac hypertrophy in in vitro and in vivo studies. Further studies demonstrated that lycopene can reverse the increase in reactive oxygen species (ROS) generation during the process of hypertrophy and can retard the activation of ROS-dependent pro-hypertrophic MAPK and Akt signaling pathways. In addition, protective effects of lycopene on the permeability transition pore opening in neonatal cardiomyocytes were observed. Moreover, we demonstrated that lycopene restored impaired antioxidant response element (ARE) activity and activated ARE-driven expression of antioxidant genes. Consequently, our findings indicated that lycopene inhibited cardiac hypertrophy by suppressing ROS-dependent mechanisms.
Collapse
Affiliation(s)
- Junyi Zeng
- Department of Cardiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; NHC Key Laboratory on Assisted Circulation (Sun Yat-Sen University), Guangzhou, China.; Graceland Medical Center, the Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jingjing Zhao
- Department of Cardiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; NHC Key Laboratory on Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
| | - Bin Dong
- Department of Cardiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; NHC Key Laboratory on Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
| | - Xingming Cai
- Department of Cardiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; NHC Key Laboratory on Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
| | - Jingzhou Jiang
- Department of Cardiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; NHC Key Laboratory on Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
| | - Ruicong Xue
- Department of Cardiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; NHC Key Laboratory on Assisted Circulation (Sun Yat-Sen University), Guangzhou, China
| | - Fengjuan Yao
- NHC Key Laboratory on Assisted Circulation (Sun Yat-Sen University), Guangzhou, China.; Division of Ultrasound, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yugang Dong
- Department of Cardiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; NHC Key Laboratory on Assisted Circulation (Sun Yat-Sen University), Guangzhou, China..
| | - Chen Liu
- Department of Cardiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China; NHC Key Laboratory on Assisted Circulation (Sun Yat-Sen University), Guangzhou, China..
| |
Collapse
|
34
|
Tomato Powder Modulates NF- κB, mTOR, and Nrf2 Pathways during Aging in Healthy Rats. J Aging Res 2019; 2019:1643243. [PMID: 30719353 PMCID: PMC6334329 DOI: 10.1155/2019/1643243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 07/30/2018] [Accepted: 09/16/2018] [Indexed: 11/27/2022] Open
Abstract
Purpose In the present study, we aimed to investigate the effects of tomato powder (TP) on glucose and lipid metabolism, as well as oxidative stress and the NF-κB, mTOR, and Nrf2 pathways during the aging process in healthy rats. Methods and Results Male Wistar rats were randomly assigned to four groups as follows: (i) Control group 1 (n=15, 3-week old): rats were fed standard diet for 7 weeks; (ii) TP group 1 (n=15, 3-week old): rats were fed standard diet supplemented with TP for 7 weeks; (iii) Control group 2 (n=15, 8-week old): rats were fed standard diet for 69 weeks; and (iv) TP group 2 (8-week old): rats were fed standard diet supplemented with TP for 69 weeks. TP supplementation significantly reduced the hyperglycemia, hypertriglyceridemia, and hypercholesterolemia and improved liver function and kidney function in 77-week old rats compared with the control animals (P < 0.05). In addition, TP significantly decreased the serum and liver MDA levels (P < 0.003 and P < 0.001, respectively) while increasing the activities of liver SOD (P < 0.001), CAT (P < 0.008), and GPx (P < 0.01) compared with the control groups in both 10-week-old and 77-week-old rats (P < 0.05). Age-related increases in phosphorylation of NF-κBp65, mTOR, 4E-BP1, and P70S6K were observed in livers of 77-week-old rats compared to those of 10-week-old rats (P < 0.001). TP supplementation decreased the expression of NF-κBp65 and activation of mTOR, 4E-BP1, and P70S6K in livers of 77-week-old rats compared to the control animals. Moreover, TP supplementation significantly elevated Nrf2 expression in livers of both 10-week-old and 77-week-old rats (P < 0.05). Conclusion TP ameliorates age-associated inflammation and oxidative stress through the inhibition of NF-κBp65, mTOR pathways, and Nrf2 activation may explain the observed improvement in glucose and lipid metabolism as well as the improved liver and kidney functions.
Collapse
|
35
|
Tomato lycopene prevention of alcoholic fatty liver disease and hepatocellular carcinoma development. Chronic Dis Transl Med 2018; 4:211-224. [PMID: 30603740 PMCID: PMC6308920 DOI: 10.1016/j.cdtm.2018.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Indexed: 12/18/2022] Open
Abstract
Alcoholic liver disease (ALD) is a major cause of morbidity and mortality worldwide. The incidence of hepatocellular carcinoma (HCC) is increasing in the United States, and chronic, excessive alcohol consumption is responsible for 32%–45% of all the liver cancer cases in the United States. Avoidance of chronic or excessive alcohol intake is the best protection against alcohol-related liver injury; however, the social presence and addictive power of alcohol are strong. Induction of the cytochrome P450 2E1 (CYP2E1) enzyme by chronic and excessive alcohol intake is known to play a role in the pathogenesis of ALD. High intake of tomatoes, rich in the carotenoid lycopene, is associated with a decreased risk of chronic disease. The review will overview the prevention of ALD and HCC through dietary tomato rich in lycopene as an effective intervention strategy and the crucial role of CYP2E1 induction as a molecular target. The review also indicates a need for caution among individuals consuming both alcohol and high dose lycopene as a dietary supplement.
Collapse
|
36
|
Dallak M. Crataegus aronia enhances sperm parameters and preserves testicular architecture in both control and non-alcoholic fatty liver disease-induced rats. PHARMACEUTICAL BIOLOGY 2018; 56:535-547. [PMID: 30375253 PMCID: PMC6211218 DOI: 10.1080/13880209.2018.1523934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 08/18/2018] [Accepted: 09/05/2018] [Indexed: 06/08/2023]
Abstract
CONTEXT Crataegus aronia (syn. Azarolus L.) (Rosaceae) is used in traditional medicine due to its hypolipidaemic and antioxidant properties. OBJECTIVES This study investigates the effect of C. aronia whole plant aqueous extract on sperm parameter and testicular structure in control and non-alcoholic fatty liver disease (NAFLD)-induced rats. MATERIALS AND METHODS Male rats were divided into six groups (10 rats each) as control fed a standard diet (STD) (10% kcal), STD + C. aronia (200 mg/kg), high-fat diet (HFD) (45% kcal), HFD + C. aronia, HFD followed by C. aronia, and C. aronia followed by HFD. Rats were treated with C. aronia (once/day, orally) for four weeks. RESULTS Compared with STD rats, STD rats co-treated with C. aronia had lower hepatic triglycerides (0.58 vs. 0.42 mg/g) and cholesterol (5.4 vs. 3.27 mg/g) contents, higher levels of testosterone (8.43 vs. 10.9 ng/mL), luteinizing hormone (6.05 vs. 8.1 mIU/mL) and follicle-stimulating hormone (5.8 vs. 8.0 mIU/mL) and increased epididymis weight (1.28 vs. 1.5g) and sperm count (133.2 vs. 148.3 million/0.1 mg) and motility (66.8%vs. 77.6%). They showed increased testicular levels of glutathione (6.3 vs. 7.75 µM/L) and higher protein levels of Nrf2 (0.37 vs. 0.79), γ-glutamylcysteine synthetase (0.27 vs. 0.5) and superoxide dismutase (0.92 vs. 2.1). Concomitant or post-treatment of C. aronia to NAFLD rats prevented the declines in sperm parameters and damage in the testis by similar effects like those found in the STD rats. DISCUSSION AND CONCLUSIONS This study encourages the use of C. aronia in further future clinical studies.
Collapse
Affiliation(s)
- Mohammad Dallak
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
37
|
Sheriff SA, Devaki T. Lycopene stabilizes liver function duringd-galactosamine/lipopolysaccharide induced hepatitis in rats. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2018. [DOI: 10.1016/j.jtusci.2013.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
38
|
Li CC, Liu C, Fu M, Hu KQ, Aizawa K, Takahashi S, Hiroyuki S, Cheng J, von Lintig J, Wang XD. Tomato Powder Inhibits Hepatic Steatosis and Inflammation Potentially Through Restoring SIRT1 Activity and Adiponectin Function Independent of Carotenoid Cleavage Enzymes in Mice. Mol Nutr Food Res 2018; 62:e1700738. [PMID: 29266812 DOI: 10.1002/mnfr.201700738] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/04/2017] [Indexed: 12/16/2022]
Abstract
SCOPE Beta-carotene-15,15'-oxygenase (BCO1) and beta-carotene-9',10'-oxygenase (BCO2) metabolize lycopene to biologically active metabolites, which can ameliorate nonalcoholic fatty liver disease (NAFLD). We investigate the effects of tomato powder (TP containing substantial lycopene (2.3 mg/g)) on NAFLD development and gut microbiome in the absence of both BCO1 and BCO2 in mice. METHOD AND RESULTS BCO1-/- /BCO2-/- double knockout mice were fed a high fat diet (HFD) alone (n = 9) or with TP feeding (n = 9) for 24 weeks. TP feeding significantly reduced pathological severity of steatosis and hepatic triglyceride levels in BCO1-/- /BCO2-/- mice (p < 0.04 vs HFD alone). This was associated with increased SIRT1 activity, nicotinamide phosphoribosyltransferase expression and AMP-activated protein kinase phosphorylation, and subsequently decreased lipogenesis, hepatic fatty acid uptake, and increasing fatty acid β-oxidation (p < 0.05). TP feeding significantly decreased mRNA expression of proinflammatory genes (tnf-α, il-1β, and il-6) in both liver and mesenteric adipose tissue, which were associated with increased plasma adiponectin and hepatic adiponectin receptor-2. Multiplexed 16S rRNA gene sequencing was performed using DNA extracted from cecum fecal samples. TP feeding increased microbial richness and decreased relative abundance of the genus Clostridium. CONCLUSION Dietary TP can inhibit NAFLD independent of carotenoid cleavage enzymes, potentially through increasing SIRT1 activity and adiponectin production and decreasing Clostridium abundance.
Collapse
Affiliation(s)
- Cheng-Chung Li
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Chun Liu
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Maobin Fu
- Nature and Wellness Research Department, Research and Development Division, Kagome Co., Ltd., Tochigi, Japan
| | - Kang-Quan Hu
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Koichi Aizawa
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA.,Nature and Wellness Research Department, Research and Development Division, Kagome Co., Ltd., Tochigi, Japan
| | - Shingo Takahashi
- Nature and Wellness Research Department, Research and Development Division, Kagome Co., Ltd., Tochigi, Japan
| | - Suganuma Hiroyuki
- Nature and Wellness Research Department, Research and Development Division, Kagome Co., Ltd., Tochigi, Japan
| | - Junrui Cheng
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Johannes von Lintig
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Xiang-Dong Wang
- Nutrition and Cancer Biology Laboratory, Jean Mayer USDA-Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| |
Collapse
|
39
|
Navarro-González I, García-Alonso J, Periago MJ. Bioactive compounds of tomato: Cancer chemopreventive effects and influence on the transcriptome in hepatocytes. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
40
|
Apo-10'-lycopenoic acid inhibits cancer cell migration and angiogenesis and induces peroxisome proliferator-activated receptor γ. J Nutr Biochem 2018; 56:26-34. [PMID: 29454996 DOI: 10.1016/j.jnutbio.2018.01.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 12/21/2017] [Accepted: 01/11/2018] [Indexed: 12/13/2022]
Abstract
SCOPE We have previously shown that apo-10'-lycopenoic acid (ALA), a derivative of lycopene through cleavage by carotene-9',10'-oxygenase, inhibits tumor progression and metastasis in both liver and lung cancer animal models. The underlying mechanism remains unknown. We hypothesized that ALA inhibits cancer cell motility and angiogenesis by up-regulating peroxisome proliferator-activated receptor γ (PPARγ) which is involved in controlling angiogenesis, tumor progression and metastasis. METHODS AND RESULTS ALA treatment, in dose-dependent manner, was effective at inhibiting migration and invasion of liver and lung cancer cells (HuH7 and A549) in both Transwell and wound-healing models, as well as suppressing actin remodeling and ruffling/lamellipodia formation in HuH7 and immortalized lung BEAS-2B cells. ALA treatment resulted in suppression of angiogenesis in both tube formation and aortic ring assays and inhibition of matrix metalloproteinase-2 expression and activation in both HuH7 and A549 cells. Additionally, ALA dose-dependently increased the mRNA expression and protein levels of PPARγ in human THLE-2 liver cells. CONCLUSION ALA inhibits cancer cell motility and angiogenesis and induces PPARγ expression, which could be one of the potential mechanisms for ALA protecting against tumor progression.
Collapse
|
41
|
Zhang Y, Zhang Z, Gou Y, Jiang M, Khan H, Zhou Z, Liang H, Yang F. Design an anticancer copper(II) pro-drug based on the flexible IIA subdomain of human serum albumin. J Inorg Biochem 2017; 172:1-8. [DOI: 10.1016/j.jinorgbio.2017.04.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 03/21/2017] [Accepted: 04/02/2017] [Indexed: 12/20/2022]
|
42
|
Zelber-Sagi S, Salomone F, Mlynarsky L. The Mediterranean dietary pattern as the diet of choice for non-alcoholic fatty liver disease: Evidence and plausible mechanisms. Liver Int 2017; 37:936-949. [PMID: 28371239 DOI: 10.1111/liv.13435] [Citation(s) in RCA: 166] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/22/2017] [Indexed: 12/11/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become a major global health burden, leading to increased risk for cirrhosis, hepatocellular carcinoma, type-2 diabetes and cardiovascular disease. Lifestyle intervention aiming at weight reduction is the most established treatment. However, changing the dietary composition even without weight loss can also reduce steatosis and improve metabolic alterations as insulin resistance and lipid profile. The Mediterranean diet (MD) pattern has been proposed as appropriate for this goal, and was recommended as the diet of choice for the treatment of NAFLD by the EASL-EASD-EASO Clinical Practice Guidelines. The MD has an established superiority in long term weight reduction over low fat diet, but it improves metabolic status and steatosis even without it. However, the effect on liver inflammation and fibrosis was tested only in few observational studies with positive results. Furthermore, considering the strong association between NAFLD and diabetes and CVD, the MD has a highly established advantage in prevention of these diseases, demonstrated in randomized clinical trials. The individual components of the MD such as olive oil, fish, nuts, whole grains, fruits, and vegetables, have been shown to beneficially effect or negatively correlate with NAFLD, while consumption of components that characterize a Western dietary pattern as soft drinks, fructose, meat and saturated fatty acids have been shown to have detrimental association with NAFLD. In this review we will cover the epidemiological evidence and the plausible molecular mechanisms by which the MD as a whole and each of its components can be of benefit in NAFLD.
Collapse
Affiliation(s)
- Shira Zelber-Sagi
- School of Public Health, University of Haifa, Haifa, Israel.,Liver Unit, Department of Gastroenterology, Tel Aviv Medical Center, Tel-Aviv, Israel
| | - Federico Salomone
- Division of Gastroenterology, Ospedale di Acireale, Azienda Sanitaria Provinciale di Catania, Catania, Italy
| | - Liat Mlynarsky
- Liver Unit, Department of Gastroenterology, Tel Aviv Medical Center, Tel-Aviv, Israel.,The Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
43
|
Ferramosca A, Di Giacomo M, Zara V. Antioxidant dietary approach in treatment of fatty liver: New insights and updates. World J Gastroenterol 2017; 23:4146-4157. [PMID: 28694655 PMCID: PMC5483489 DOI: 10.3748/wjg.v23.i23.4146] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/22/2017] [Accepted: 06/01/2017] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common clinicopathological condition, encompassing a range of conditions caused by lipid deposition within liver cells. To date, no approved drugs are available for the treatment of NAFLD, despite the fact that it represents a serious and growing clinical problem in the Western world. Identification of the molecular mechanisms leading to NAFLD-related fat accumulation, mitochondrial dysfunction and oxidative balance impairment facilitates the development of specific interventions aimed at preventing the progression of hepatic steatosis. In this review, we focus our attention on the role of dysfunctions in mitochondrial bioenergetics in the pathogenesis of fatty liver. Major data from the literature about the mitochondrial targeting of some antioxidant molecules as a potential treatment for hepatic steatosis are described and critically analysed. There is ample evidence of the positive effects of several classes of antioxidants, such as polyphenols (i.e., resveratrol, quercetin, coumestrol, anthocyanins, epigallocatechin gallate and curcumin), carotenoids (i.e., lycopene, astaxanthin and fucoxanthin) and glucosinolates (i.e., glucoraphanin, sulforaphane, sinigrin and allyl-isothiocyanate), on the reversion of fatty liver. Although the mechanism of action is not yet fully elucidated, in some cases an indirect interaction with mitochondrial metabolism is expected. We believe that such knowledge will eventually translate into the development of novel therapeutic approaches for fatty liver.
Collapse
|
44
|
de Castro CA, dos Santos Dias MM, da Silva KA, dos Reis SA, da Conceição LL, De Nadai Marcon L, de Sousa Moraes LF, do Carmo Gouveia Peluzio M. Liver Biomarkers and Their Applications to Nutritional Interventions in Animal Studies. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-94-007-7675-3_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Kitade H, Chen G, Ni Y, Ota T. Nonalcoholic Fatty Liver Disease and Insulin Resistance: New Insights and Potential New Treatments. Nutrients 2017; 9:E387. [PMID: 28420094 PMCID: PMC5409726 DOI: 10.3390/nu9040387] [Citation(s) in RCA: 323] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/06/2017] [Accepted: 04/10/2017] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver disorders worldwide. It is associated with clinical states such as obesity, insulin resistance, and type 2 diabetes, and covers a wide range of liver changes, ranging from simple steatosis to non-alcoholic steatohepatitis (NASH), liver cirrhosis, and hepatocellular carcinoma. Metabolic disorders, such as lipid accumulation, insulin resistance, and inflammation, have been implicated in the pathogenesis of NAFLD, but the underlying mechanisms, including those that drive disease progression, are not fully understood. Both innate and recruited immune cells mediate the development of insulin resistance and NASH. Therefore, modifying the polarization of resident and recruited macrophage/Kupffer cells is expected to lead to new therapeutic strategies in NAFLD. Oxidative stress is also pivotal for the progression of NASH, which has generated interest in carotenoids as potent micronutrient antioxidants in the treatment of NAFLD. In addition to their antioxidative function, carotenoids regulate macrophage/Kupffer cell polarization and thereby prevent NASH progression. In this review, we summarize the molecular mechanisms involved in the pathogenesis of NAFLD, including macrophage/Kupffer cell polarization, and disturbed hepatic function in NAFLD. We also discuss dietary antioxidants, such as β-cryptoxanthin and astaxanthin, that may be effective in the prevention or treatment of NAFLD.
Collapse
Affiliation(s)
- Hironori Kitade
- Department of Cell Metabolism and Nutrition, Brain/Liver Interface Medicine Research Center, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan.
| | - Guanliang Chen
- Department of Cell Metabolism and Nutrition, Brain/Liver Interface Medicine Research Center, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan.
| | - Yinhua Ni
- Department of Cell Metabolism and Nutrition, Brain/Liver Interface Medicine Research Center, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan.
| | - Tsuguhito Ota
- Department of Cell Metabolism and Nutrition, Brain/Liver Interface Medicine Research Center, Kanazawa University, Kanazawa, Ishikawa 920-8640, Japan.
| |
Collapse
|
46
|
Fenni S, Hammou H, Astier J, Bonnet L, Karkeni E, Couturier C, Tourniaire F, Landrier JF. Lycopene and tomato powder supplementation similarly inhibit high-fat diet induced obesity, inflammatory response, and associated metabolic disorders. Mol Nutr Food Res 2017; 61. [PMID: 28267248 DOI: 10.1002/mnfr.201601083] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 02/23/2017] [Accepted: 02/27/2017] [Indexed: 01/14/2023]
Abstract
SCOPE Several studies have linked the high intake of lycopene or tomatoes products with lower risk for metabolic diseases. The aim of the present study was to evaluate and to compare the effect of lycopene and tomato powder on obesity-associated disorders. METHODS AND RESULTS Male C57BL/J6 mice were assigned into four groups to receive: control diet (CD), high fat diet (HFD), high fat diet supplemented with lycopene or with tomato powder (TP) for 12 weeks. In HFD condition, lycopene and TP supplementation significantly reduced adiposity index, organ, and relative organ weights, serum triglycerides, free fatty acids, 8-iso-prostaglandin GF2α and improved glucose homeostasis, but did not affect total body weight. Lycopene and TP supplementation prevented HFD-induced hepatosteatosis and hypertrophy of adipocytes. Lycopene and TP decreased HFD-induced proinflammatory cytokine mRNA expression in the liver and in the epididymal adipose tissue. The anti-inflammatory effect of lycopene and TP was related to a reduction in the phosphorylation levels of IκB, and p65, and resulted in a decrease of inflammatory proteins in adipose tissue. CONCLUSION These results suggest that lycopene or TP supplementation display similar beneficial health effects that could be particularly relevant in the context of nutritional approaches to fight obesity-associated pathologies.
Collapse
Affiliation(s)
- Soumia Fenni
- NORT, Aix-Marseille Université, INRA, INSERM, Marseille, France.,LPNSA, Département de Biologie, Faculté des Sciences de la Nature et de la Vie, Université d'Oran 1 Ahmed Benbella, Oran, Algérie
| | - Habib Hammou
- LPNSA, Département de Biologie, Faculté des Sciences de la Nature et de la Vie, Université d'Oran 1 Ahmed Benbella, Oran, Algérie
| | - Julien Astier
- NORT, Aix-Marseille Université, INRA, INSERM, Marseille, France
| | - Lauriane Bonnet
- NORT, Aix-Marseille Université, INRA, INSERM, Marseille, France
| | - Esma Karkeni
- NORT, Aix-Marseille Université, INRA, INSERM, Marseille, France
| | | | | | | |
Collapse
|
47
|
Zidani S, Benakmoum A, Ammouche A, Benali Y, Bouhadef A, Abbeddou S. Effect of dry tomato peel supplementation on glucose tolerance, insulin resistance, and hepatic markers in mice fed high-saturated-fat/high-cholesterol diets. J Nutr Biochem 2017; 40:164-171. [DOI: 10.1016/j.jnutbio.2016.11.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 11/01/2016] [Accepted: 11/07/2016] [Indexed: 11/17/2022]
|
48
|
García-Alonso FJ, González-Barrio R, Martín-Pozuelo G, Hidalgo N, Navarro-González I, Masuero D, Soini E, Vrhovsek U, Periago MJ. A study of the prebiotic-like effects of tomato juice consumption in rats with diet-induced non-alcoholic fatty liver disease (NAFLD). Food Funct 2017; 8:3542-3552. [DOI: 10.1039/c7fo00393e] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Tomato juice intake partially ameliorated high-fat diet-induced disturbances of gut microbiota, particularly by increasingLactobacillusabundance and diminishing the acetate to propionate ratio.
Collapse
Affiliation(s)
- F. J. García-Alonso
- Department of Food Technology
- Food Science and Nutrition
- Faculty of Veterinary Sciences
- Regional Campus of International Excellence “Campus Mare-Nostrum”
- University of Murcia. Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU)
| | - R. González-Barrio
- Department of Food Technology
- Food Science and Nutrition
- Faculty of Veterinary Sciences
- Regional Campus of International Excellence “Campus Mare-Nostrum”
- University of Murcia. Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU)
| | - G. Martín-Pozuelo
- Department of Food Technology
- Food Science and Nutrition
- Faculty of Veterinary Sciences
- Regional Campus of International Excellence “Campus Mare-Nostrum”
- University of Murcia. Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU)
| | - N. Hidalgo
- Department of Food Technology
- Food Science and Nutrition
- Faculty of Veterinary Sciences
- Regional Campus of International Excellence “Campus Mare-Nostrum”
- University of Murcia. Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU)
| | - I. Navarro-González
- Department of Food Technology
- Food Science and Nutrition
- Faculty of Veterinary Sciences
- Regional Campus of International Excellence “Campus Mare-Nostrum”
- University of Murcia. Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU)
| | - D. Masuero
- Research and Innovation Centre
- Fondazione Edmund Mach (FEM)
- 38010 San Michele all'Adige
- Italy
| | - E. Soini
- Research and Innovation Centre
- Fondazione Edmund Mach (FEM)
- 38010 San Michele all'Adige
- Italy
| | - U. Vrhovsek
- Research and Innovation Centre
- Fondazione Edmund Mach (FEM)
- 38010 San Michele all'Adige
- Italy
| | - M. J. Periago
- Department of Food Technology
- Food Science and Nutrition
- Faculty of Veterinary Sciences
- Regional Campus of International Excellence “Campus Mare-Nostrum”
- University of Murcia. Biomedical Research Institute of Murcia (IMIB-Arrixaca-UMU)
| |
Collapse
|
49
|
Jiang Z, Jiang X, Li C, Xue H, Zhang X. Development of an IgY Antibody-Based Immunoassay for the Screening of the CYP2E1 Inhibitor/Enhancer from Herbal Medicines. Front Pharmacol 2016; 7:502. [PMID: 28066249 PMCID: PMC5177661 DOI: 10.3389/fphar.2016.00502] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/07/2016] [Indexed: 12/18/2022] Open
Abstract
Cytochrome P450 (CYP) 2E1 is an important enzyme involved in the metabolism of many endogenous and exogenous compounds. It is essential to evaluate the expression of CYP2E1 in the studies of drug–drug interactions and the screening of drugs, natural products, and foodstuffs. The present work is a feasibility study on the development of immunoassays using a specific and sensitive chicken-sourced anti-CYP2E1 IgY antibody. Cloning, expression, and purification of a recombinant CYP2E1 (mice origin) protein were carried out. Anti-CYP2E1 IgY antibodies were generated by immunizing white Leghorn chickens with purified recombinant CYP2E1 protein and were purified by immune affinity chromatography. The IgY titer attained a peak level (≥1:128,000) after the fifth booster injection. For evaluation of the expression of CYP2E1 in different herbal treatment samples, the mice were treated by oral gavage for 3 days with alcohol (50% 15 mL/kg), acetaminophen (APAP, 300 mg/kg), Cornus officinalis extract (100 mg/kg), Alhagi-honey extract (100 mg/kg), Apocynum venetum extract (100 mg/kg), hyperoside (50 mg/kg), isoquercetin (50 mg/kg), 4-hydroxyphenylacetic acid (50 mg/kg), 3-hydroxyphenylacetic acid (50 mg/kg), and 3,4-hydroxyphenylacetic acid (50 mg/kg). The expression of CYP2E1 was determined by Western blot analysis, immunohistochemistry, ELISA, and immunomagnetic beads (IMBs) using anti-CYP2E1 IgY in liver tissue. The results showed that C. officinalis extract, Alhagi-honey extract, A. venetum extract, hyperoside, isoquercetin, and their xenobiotics 4-hydroxyphenylacetic acid, 3-hydroxyphenylacetic acid, and 3,4-hydroxyphenylacetic acid significantly decreased CYP2E1 levels. Alcohol and APAP treatments significantly increased CYP2E1 levels as analyzed with Western blot analysis, immunohistochemistry, and ELISA. The IMB method is suitable for large-scale screening, and it is a rapid screening (20 min) that uses a portable magnet and has no professional requirements for the operator, which makes it useful for on-the-spot analysis. Considering these results, the anti-CYP2E1 IgY could be applied as a novel research tool in screening for the CYP2E1 inhibitor/enhancer.
Collapse
Affiliation(s)
- Zhihui Jiang
- College of Veterinary Medicine, Northwest A&F UniversityYangling, China; Chinese-German Joint Laboratory for Natural Product Research, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C., College of Biological Science and Engineering, Shaanxi University of TechnologyHanzhong, China
| | - Xuemei Jiang
- College of Veterinary Medicine, Northwest A&F University Yangling, China
| | - Cui Li
- College of Veterinary Medicine, Northwest A&F University Yangling, China
| | - Huiting Xue
- College of Veterinary Medicine, Xinjiang Agricultural University Urumqi, China
| | - Xiaoying Zhang
- College of Veterinary Medicine, Northwest A&F UniversityYangling, China; Chinese-German Joint Laboratory for Natural Product Research, Qinling-Bashan Mountains Bioresources Comprehensive Development C.I.C., College of Biological Science and Engineering, Shaanxi University of TechnologyHanzhong, China
| |
Collapse
|
50
|
Naturally Occurring Nrf2 Activators: Potential in Treatment of Liver Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3453926. [PMID: 28101296 PMCID: PMC5215260 DOI: 10.1155/2016/3453926] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 11/08/2016] [Accepted: 11/28/2016] [Indexed: 12/26/2022]
Abstract
Oxidative stress plays a major role in acute and chronic liver injury. In hepatocytes, oxidative stress frequently triggers antioxidant response by activating nuclear erythroid 2-related factor 2 (Nrf2), a transcription factor, which upregulates various cytoprotective genes. Thus, Nrf2 is considered a potential therapeutic target to halt liver injury. Several studies indicate that activation of Nrf2 signaling pathway ameliorates liver injury. The hepatoprotective potential of naturally occurring compounds has been investigated in various models of liver injuries. In this review, we comprehensively appraise various phytochemicals that have been assessed for their potential to halt acute and chronic liver injury by enhancing the activation of Nrf2 and have the potential for use in humans.
Collapse
|