1
|
Tilsed CM, Morales MLO, Zemek RM, Gordon BA, Piggott MJ, Nowak AK, Fisher SA, Lake RA, Lesterhuis WJ. Tretinoin improves the anti-cancer response to cyclophosphamide, in a model-selective manner. BMC Cancer 2024; 24:203. [PMID: 38350880 PMCID: PMC10865642 DOI: 10.1186/s12885-024-11915-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/23/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Chemotherapy is included in treatment regimens for many solid cancers, but when administered as a single agent it is rarely curative. The addition of immune checkpoint therapy to standard chemotherapy regimens has improved response rates and increased survival in some cancers. However, most patients do not respond to treatment and immune checkpoint therapy can cause severe side effects. Therefore, there is a need for alternative immunomodulatory drugs that enhance chemotherapy. METHODS We used gene expression data from cyclophosphamide (CY) responders and non-responders to identify existing clinically approved drugs that could phenocopy a chemosensitive tumor microenvironment (TME), and tested combination treatments in multiple murine cancer models. RESULTS The vitamin A derivative tretinoin was the top predicted upstream regulator of response to CY. Tretinoin pre-treatment induced an inflammatory, interferon-associated TME, with increased infiltration of CD8 + T cells, sensitizing the tumor to subsequent chemotherapy. However, while combination treatment significantly improved survival and cure rate in a CD4+ and CD8+ T cell dependent manner in AB1-HA murine mesothelioma, this effect was model-selective, and could not be replicated using other cell lines. CONCLUSIONS Despite the promising data in one model, the inability to validate the efficacy of combination treatment in multiple cancer models deprioritizes tretinoin/cyclophosphamide combination therapy for clinical translation.
Collapse
Affiliation(s)
- Caitlin M Tilsed
- National Centre for Asbestos Related Diseases, 6009, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, 6009, Crawley, WA, Australia
- Institute for Respiratory Health, 6101, Perth, WA, Australia
| | | | - Rachael M Zemek
- Telethon Kids Institute, University of Western Australia, 6872, West Perth, WA, Australia
| | - Brianna A Gordon
- School of Molecular Sciences, University of Western Australia, 6009, Crawley, WA, Australia
| | - Matthew J Piggott
- School of Molecular Sciences, University of Western Australia, 6009, Crawley, WA, Australia
| | - Anna K Nowak
- National Centre for Asbestos Related Diseases, 6009, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, 6009, Crawley, WA, Australia
- Institute for Respiratory Health, 6101, Perth, WA, Australia
- Department of Medical Oncology, Sir Charles Gairdner Hospital, 6009, Nedlands, WA, Australia
| | - Scott A Fisher
- National Centre for Asbestos Related Diseases, 6009, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, 6009, Crawley, WA, Australia
- Institute for Respiratory Health, 6101, Perth, WA, Australia
| | - Richard A Lake
- National Centre for Asbestos Related Diseases, 6009, Nedlands, WA, Australia
- School of Biomedical Sciences, University of Western Australia, 6009, Crawley, WA, Australia
- Institute for Respiratory Health, 6101, Perth, WA, Australia
| | - W Joost Lesterhuis
- National Centre for Asbestos Related Diseases, 6009, Nedlands, WA, Australia.
- School of Biomedical Sciences, University of Western Australia, 6009, Crawley, WA, Australia.
- Institute for Respiratory Health, 6101, Perth, WA, Australia.
- Telethon Kids Institute, University of Western Australia, 6872, West Perth, WA, Australia.
| |
Collapse
|
2
|
Bouriez D, Giraud J, Gronnier C, Varon C. Efficiency of All-Trans Retinoic Acid on Gastric Cancer: A Narrative Literature Review. Int J Mol Sci 2018; 19:ijms19113388. [PMID: 30380687 PMCID: PMC6275086 DOI: 10.3390/ijms19113388] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/26/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022] Open
Abstract
Gastric cancer (GC) is the third leading cause of cancer-related death worldwide with a five-year survival rate of around 25%, and 4% when diagnosed at a metastatic stage. Cancer stem cells (CSC) have recently been characterized as being responsible for resistance to radio/chemotherapies and metastasis formation, opening up perspectives for new targeted therapies. Those CSCs express biomarkers such as cluster of differentiation 44 (CD44) and display high aldehyde dehydrogenase activity that converts vitamin A-derived retinal into retinoic acids. All-trans retinoic acid (ATRA), which has pro-differentiating properties, has revolutionized the prognosis of acute promyelotic leukemia by increasing its remission rate from 15% to 85%. Recent studies have started to show that ATRA also has an anti-tumoral role on solid cancers such as GC. The purpose of this review is therefore to summarize the work that evaluated the effects of ATRA in GC and to evaluate whether its anti-cancerous action involves gastric CSCs targeting. It has been demonstrated that ATRA can block the cell cycle, enhance apoptosis, and decrease gastric CSCs properties in GC cell lines, tumorspheres, and patient-derived xenograft mice models. Therefore, retinoids and new synthetic retinoids seem to be a promising step forward in targeted therapy of gastric CSC in combination with existing chemotherapies. Future studies should probably focus on these points.
Collapse
Affiliation(s)
- Damien Bouriez
- INSERM, U1053, Bordeaux Research in Translational Oncology, 33000 Bordeaux, France.
- Department of Digestive Surgery, Haut-Lévêque Hospital, 33000 Bordeaux, France.
| | - Julie Giraud
- INSERM, U1053, Bordeaux Research in Translational Oncology, 33000 Bordeaux, France.
- Department of Life and Health Sciences, University of Bordeaux, 33000 Bordeaux, France.
| | - Caroline Gronnier
- INSERM, U1053, Bordeaux Research in Translational Oncology, 33000 Bordeaux, France.
- Department of Digestive Surgery, Haut-Lévêque Hospital, 33000 Bordeaux, France.
- Department of Life and Health Sciences, University of Bordeaux, 33000 Bordeaux, France.
| | - Christine Varon
- INSERM, U1053, Bordeaux Research in Translational Oncology, 33000 Bordeaux, France.
- Department of Life and Health Sciences, University of Bordeaux, 33000 Bordeaux, France.
| |
Collapse
|
3
|
Hitting two oncogenic machineries in cancer cells: cooperative effects of the multi-kinase inhibitor ponatinib and the BET bromodomain blockers JQ1 or dBET1 on human carcinoma cells. Oncotarget 2018; 9:26491-26506. [PMID: 29899872 PMCID: PMC5995173 DOI: 10.18632/oncotarget.25474] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/10/2018] [Indexed: 12/23/2022] Open
Abstract
In recent years, numerous new targeted drugs, including multi-kinase inhibitors and epigenetic modulators have been developed for cancer treatment. Ponatinib blocks a variety of tyrosine kinases including ABL and fibroblast growth factor receptor (FGFR), and the BET bromodomain (BRD) antagonists JQ1 and dBET1 impede MYC oncogene expression. Both drugs have demonstrated substantial anti-cancer efficacy against several hematological malignancies. Solid tumors, on the other hand, although frequently driven by FGFR and/or MYC, are often unresponsive to these drugs. This is due, at least in part, to compensatory feedback-loops in the kinome and transcription network of these tumors, which are activated in response to drug exposure. Therefore, we hypothesized that the combination of the multi-kinase inhibitor ponatinib with transcription modulators such as JQ1 or dBET1 might overcome this therapeutic recalcitrance. Using 3H-thymidine uptake, cell cycle analysis, and caspase-3 or Annexin V labeling, we demonstrate that single drugs induce moderate dose-dependent growth-inhibition and/or apoptosis in colon (HCT116, HT29), breast (MCF-7, SKBR3) and ovarian (A2780, SKOV3) cancer cells. Ponatinib elicited primarily apoptosis, while JQ1 and dBET1 caused G0/G1 cell cycle arrest and very mild cell death. Phospho-FGFR and MYC, major targets of ponatinib and BET inhibitors, were downregulated after treatment with single drugs. Remarkably, ponatinib was found to sensitize cells to BET antagonists by enhancing apoptotic cell death, and this effect was associated with downregulation of MYC. In summary, our data shows that ponatinib sensitizes colon, breast, and ovarian cancer cells to BET bromodomain inhibitors. Further studies are warranted to determine the clinical value of this phenomenon.
Collapse
|
4
|
Najafzadeh N, Mazani M, Abbasi A, Farassati F, Amani M. Low-dose all-trans retinoic acid enhances cytotoxicity of cisplatin and 5-fluorouracil on CD44(+) cancer stem cells. Biomed Pharmacother 2015; 74:243-51. [PMID: 26349992 DOI: 10.1016/j.biopha.2015.08.019] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 08/04/2015] [Indexed: 02/02/2023] Open
Abstract
Cis-diamminedichloridoplatinum(II)(CDDP)-based combination chemotherapy is frequently used in gastrointestinal cancer. The synergistic mechanism of all-trans retinoic acid (ATRA), cisplatin (CDDP) and 5-fluorouracil (5-FU) in combination remains unclear. Despite their potent antitumor properties, resistance to CDDP and 5-FU develops frequently in tumors. To clarify this mechanism, we determined the sensitivity to each drug and their combination in two gastrointestinal cancer stem cells (CSCs) subpopulation. Here, we report the identification and separation of CD44(+) cells from human gastric carcinoma (AGS) and human esophageal squamous cell carcinoma (KYSE-30) cancer cell lines by magnetic activated cell sorting (MACS). We allowed the CD44(±) cells to grow 6 days at a subtoxic concentration of ATRA and then treated with different concentration of CDDP and 5-FU for 24h. The cytotoxicity was examined by cell proliferation MTT assay. Additionally, AO/EB staining was used for detection of apoptotic cells. In order to determine whether the growth inhibition was also associated with changes in cell cycle distribution, cell cycle analysis was performed using flow cytometry. Low concentration of ATRA (1μM, 6days) followed by 5-FU and CDDP was found to be more effective than either drugs alone, thus resulting in synergistic cytotoxicity in Kyse-30 and AGSCD44(±) cells. Furthermore, there was an indication that the combination of ATRA with 5FU and CDDP caused an increase in cell cycle arrest in G2/M and G0/G1. We conclude that low concentration of ATRA enhances the cytotoxicity of CDDP and 5FU by facilitating apoptosis and cell cycle arrest in gastrointestinal CSCs and provide a rational basis for the design of novel, well-tolerated CDDP- and 5FU-based chemotherapy in human gastrointestinal carcinoma.
Collapse
Affiliation(s)
- Nowruz Najafzadeh
- Research laboratory for Embryology and Stem Cells, Department of Anatomical Sciences and Pathology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Mazani
- Department of Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Asadollah Abbasi
- Department of Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Faris Farassati
- Department of Medicine, The University of Kansas Medical School, Molecular Medicine Laboratory, KUMC, Kansas City, KS, USA
| | - Mojtaba Amani
- Department of Biochemistry, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
5
|
Evaluation of the retinoids with cisplatin and vincristine in xenograft models of neuroblastoma. J Pediatr Hematol Oncol 2014; 36:e23-7. [PMID: 23669732 PMCID: PMC3766379 DOI: 10.1097/mph.0b013e3182915d4a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Retinoids have been studied for the treatment of children with neuroblastoma for >25 years. Posttransplant administration of isotretinoin is standard of care for children with high-risk neuroblastoma, whereas fenretinide remains investigational. Previous preclinical studies have evaluated the interaction of retinoids and cytotoxic agents with conflicting results. We evaluated the schedule-dependent interaction of the cytotoxic agents, vincristine and cisplatin, with the retinoids, isotretinoin and fenretinide, in xenograft models of neuroblastoma. Concomitant administration of isotretinoin or fenretinide with the cytotoxic agents did not result in any clear potentiation of cytotoxicity.
Collapse
|
6
|
Dalirsani Z, Farajnia S, Javadzadeh Y, Mehdipour M, Koozegari S. The effects of 5-fluorouracil alone and in combination with 13-cis retinoic acid and vitamin D3 on human oral squamous cell carcinoma lines. J Contemp Dent Pract 2012; 13:345-50. [PMID: 22918008 DOI: 10.5005/jp-journals-10024-1149] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
AIM Oral squamous cell carcinoma (OSCC) is responsible for about 90% of oral malignancies and its incidence is increasing. Despite various treatment protocols, survival rate of OSCC is low. Chemotherapy that is used for treating this carcinoma in advanced stages is systemic therapy that destroys carcinogenic cells, and controls tumor metastasis. Chemotherapy is very toxic and has limitations, especially for patients in advanced stages. Considering positive effects of retinoid and vitamin D3 derivatives in treating some carcinomas, we decided to evaluate the effect of combination of these drugs on OSCC. In this study the effects of combination of 5-fluorouracil, 13-cis retinoic acid and vitamin D3 on cultured cell of OSCC have been evaluated. MATERIALS AND METHODS OSCC cells were cultured in culture media and different concentration of 5-fluorouracil, 13-cis retinoic acid and vitamin D3 were added to cultured cell as separately and in combinations. The effect of treatment on cell proliferation and induction of apoptosis were evaluated by MTT and TUNEL assays respectively. RESULTS Combination of 5-fluorouracil and 13- cis retinoic acid had the highest inhibitory effect on SCC cell proliferation. Combination of two drugs had more apoptotic effect than each of them separately, and combination of three drugs had more effect than combination of two drugs. CONCLUSION Because combination of drugs had more inhibitory effect on cell proliferation than one of them and combination of three drugs had the most apoptotic effect than one of these drugs separately, these drugs may have synergic effect on OSCC. CLINICAL SIGNIFICANCE Combination of three drugs has more inhibitory effect on cell proliferation and apoptotic effect than one of these drugs.
Collapse
Affiliation(s)
- Zohreh Dalirsani
- Department of Oral Medicine, Mashhad School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | | | | | | |
Collapse
|
7
|
Abstract
Data on cell viability have long been obtained from in vitro cytotoxicity assays. Today, there is a focus on markers of cell death, and the MTT cell survival assay is widely used for measuring cytotoxic potential of a compound. However, a comprehensive evaluation of cytotoxicity requires additional assays which -measure short and long-term cytotoxicity. Assays which measure the cytostatic effects of compounds are not less important, particularly for newer anticancer agents. This overview discusses the advantages and disadvantages of different non-clonogenic assays for measuring short and medium-term cytotoxicity. It also discusses clonogenic assays, which accurately measure long-term cytostatic effects of drugs and toxic agents. For certain compounds and cell types, the advent of high throughput, multiparameter, cytotoxicity assays, and gene expression assays have made it possible to predict cytotoxic potency in vivo.
Collapse
Affiliation(s)
- Venil N Sumantran
- Department of Biotechnology, Indian Institute of Technology (IIT)-Chennai, 201, Bhupat & Jyothi Mehta School of Biosciences Chennai, Tamil Nadu, Chennai, India.
| |
Collapse
|
8
|
Liu X, Chan SY, Ho PCL. Comparison of the in vitro and in vivo effects of retinoids either alone or in combination with cisplatin and 5-fluorouracil on tumor development and metastasis of melanoma. Cancer Chemother Pharmacol 2008; 63:167-74. [PMID: 18465132 DOI: 10.1007/s00280-008-0763-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Accepted: 04/18/2008] [Indexed: 11/25/2022]
Abstract
PURPOSE Retinoids have previously been reported to inhibit proliferation of melanoma cell lines in vitro. However, the relative antimetastatic efficacy of various retinoids on melanoma in vivo is unknown. Therefore, we investigated the effects of different retinoids on the invasion and metastasis of murine melanoma B16-F10 cells in vitro and in vivo. Based on the findings, the antitumor effects of a selected retinoid either alone or in combination with cisplatin were also investigated in a preclinical mouse melanoma model. METHODS Cell proliferation and invasion analyses of murine melanoma B16-F10 cells were assessed in the presence of different retinoids, either alone or in combination with cisplatin (CDDP) or 5-fluorouracil (5-FU). Experimental lung metastasis assay was performed in this study to investigate the antimetastatic efficacy of retinoids. Additionally, a mouse melanoma model was used to assess the antitumor efficacy of a selected retinoid in combination with cisplatin. RESULTS Retinoids showed significant antiproliferation and anti-invasion effects on murine melanoma B16-F10 cells. Pretreatment with retinoids increased the sensitivity to CDDP but not to 5-FU in in-vitro. Moreover, the number of metastatic colonies formed in the lungs of mice injected intravenously with B16-F10 cells was significantly reduced by injecting the respective retinoid once a day for 10 days. Treatment with a combination of cisplatin and 13-cis-retinoic acid resulted in a significant reduction in primary tumor size and the number of lung metastatic nodules in melanoma-bearing mice. CONCLUSION These results suggest that retinoids not only exhibit antimetastatic effect, but also enhance the antitumor activity of cisplatin in vivo.
Collapse
Affiliation(s)
- Xin Liu
- Department of Pharmacy, National University of Singapore, Singapore
| | | | | |
Collapse
|
9
|
Chou TC. Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev 2006; 58:621-81. [PMID: 16968952 DOI: 10.1124/pr.58.3.10] [Citation(s) in RCA: 3775] [Impact Index Per Article: 209.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The median-effect equation derived from the mass-action law principle at equilibrium-steady state via mathematical induction and deduction for different reaction sequences and mechanisms and different types of inhibition has been shown to be the unified theory for the Michaelis-Menten equation, Hill equation, Henderson-Hasselbalch equation, and Scatchard equation. It is shown that dose and effect are interchangeable via defined parameters. This general equation for the single drug effect has been extended to the multiple drug effect equation for n drugs. These equations provide the theoretical basis for the combination index (CI)-isobologram equation that allows quantitative determination of drug interactions, where CI < 1, = 1, and > 1 indicate synergism, additive effect, and antagonism, respectively. Based on these algorithms, computer software has been developed to allow automated simulation of synergism and antagonism at all dose or effect levels. It displays the dose-effect curve, median-effect plot, combination index plot, isobologram, dose-reduction index plot, and polygonogram for in vitro or in vivo studies. This theoretical development, experimental design, and computerized data analysis have facilitated dose-effect analysis for single drug evaluation or carcinogen and radiation risk assessment, as well as for drug or other entity combinations in a vast field of disciplines of biomedical sciences. In this review, selected examples of applications are given, and step-by-step examples of experimental designs and real data analysis are also illustrated. The merging of the mass-action law principle with mathematical induction-deduction has been proven to be a unique and effective scientific method for general theory development. The median-effect principle and its mass-action law based computer software are gaining increased applications in biomedical sciences, from how to effectively evaluate a single compound or entity to how to beneficially use multiple drugs or modalities in combination therapies.
Collapse
Affiliation(s)
- Ting-Chao Chou
- Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10021, USA.
| |
Collapse
|
10
|
Bjelogrlic SK, Radic J, Jovic V, Radulovic S. Activity of d,l-alpha-Tocopherol (Vitamin E) against Cardiotoxicity Induced by Doxorubicin and Doxorubicin with Cyclophosphamide in Mice. Basic Clin Pharmacol Toxicol 2005; 97:311-9. [PMID: 16236144 DOI: 10.1111/j.1742-7843.2005.pto_166.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The aim of this study was to investigate the cardioprotective activity of vitamin E against doxorubicin alone and doxorubicin in combination with cyclophosphamide in mice. Female BalbC/NIH mice were treated with vitamin E (100 IU/kg, orally) 24 hr before single bolus doses of doxorubicin (10 mg/kg, intravenously), or doxorubicin and cyclophosphamide (150 mg/kg, intraperitoneally). Non-treated animals served as negative controls, while positive control groups received doxorubicin or doxorubicin and cyclophosphamide. For evaluation, serum enzyme activity of aspartate aminotransferase (AST), lactate dehidrogenase (LDH), alpha-hydroxybutirate dehydrogenase (alpha-HBDH), and creatine kinase (CK) at 48 hr and histopathology examination of the heart tissue (Billigham rules) at 1.5 and 3 months followed to treatments were used. In sera of mice treated with vitamin E prior to doxorubicin, the creatine kinase and % alpha-HBDH activity were significantly reduced, compared to positive control. Histopathology changes (scored as 1.5 at 1.5 and 3 months respectively) were not significant compared to negative control at both time points of examination. In animals which received vitamin E before doxorubicin and cyclophosphamide, none of the serum enzymes was significantly reduced compared to positive control, but non-significant increase in AST and creatine kinase activity was detected (3% and 16.57% respectively). The degree of myocardial damage was significantly higher compared to non-treated group (2.0 and 2.5 at 1.5 and 3 months respectively). Current results show that vitamin E in single oral dose failed to inhibit acute cardiotoxic activity of doxorubicin, but suspended further progression of the heart muscle damage over the time. On the contrary, vitamin E did not attain any cardioprotection against doxorubicin and cyclophosphamide in combination.
Collapse
Affiliation(s)
- Snezana K Bjelogrlic
- Department of Experimental Oncology, National Cancer Research Center, Belgrade, Serbia & Montenegro.
| | | | | | | |
Collapse
|
11
|
Tomek S, Horak P, Pribill I, Haller G, Rössler M, Zielinski CC, Pils D, Krainer M. Resistance to TRAIL-induced apoptosis in ovarian cancer cell lines is overcome by co-treatment with cytotoxic drugs. Gynecol Oncol 2004; 94:107-14. [PMID: 15262127 DOI: 10.1016/j.ygyno.2004.04.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2003] [Indexed: 11/18/2022]
Abstract
BACKGROUND TRAIL, tumor necrosis factor-related apoptosis-inducing ligand, is a recently identified cytokine that preferentially kills transformed cells while sparing most normal cells. METHODS We investigated the ability of TRAIL alone and TRAIL in combination with cytotoxic drugs to induce apoptosis in six ovarian cancer cell lines. To get some insight into the resistance to TRAIL, the expression of TRAIL receptors and selected downstream signaling elements was determined. RESULTS TRAIL induced significant apoptosis (up to 80%) in three out of six ovarian cancer cell lines (MZ-26, CaOV-3, ES-2). In A2780 and A2780ADR cells, resistance to TRAIL-induced apoptosis correlated with their lack of DR4-expression. MZ-15 cells, which expressed the processed form of FLIP(L), p43 (FADD-like IL-1beta-converting enzyme (FLICE)-like inhibitory protein (FLIP)), and FLIP(S), were resistant to TRAIL in spite of the presence of DR4. When TRAIL-resistant cell lines were co-incubated with routinely used cytotoxic agents, TRAIL exerted a synergistic effect leading to apoptosis rates unachievable by incubation with cytotoxic agents alone. CONCLUSION The ability of TRAIL to induce apoptosis in ovarian cancer cells as well as to potentiate the activity of chemotherapeutic agents even in cell lines that are resistant to TRAIL-induced cytotoxicity is a powerful promise in the fight against this deadly disease.
Collapse
Affiliation(s)
- Sandra Tomek
- Department of Medicine I, University Hospital Vienna, Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Choi Y, Kim SY, Kim SH, Park TG, Moon HT, Byun Y. In vivo biocompatibility studies of poly(D,L-lactide)/poly(ethylene glycol)-poly(L-lactide) microspheres containing all-trans-retinoic acid. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2003; 13:301-22. [PMID: 12102596 DOI: 10.1163/156856202320176547] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Biocompatibility studies of all-trans-retinoic acid (RA)-loaded microspheres were carried out after they were subcutaneously injected into rats. To characterize the inflammatory response to these microspheres, tissue reactions at the implantation site and cell types in the interstices of the microspheres were evaluated for 180 days. On the 15th day, the cross-sectional area of the fibrous capsules surrounding the implantation site of the RA-loaded microspheres was four times larger than that of the control microspheres. The size of the fibrous capsules surrounding the implantation site of the RA-loaded microspheres decreased significantly over a period of 75 days, while the size of the fibrous capsules surrounding the implantation site of the control microspheres remained almost constant throughout the entire course of 180 days. The tissue response to the RA-loaded microspheres was more intensified by the increased extensive cellular infiltration of macrophages, granulation tissue, and fibrosis than that to the control microspheres. The difference in the inflammatory response between the RA-loaded microspheres and the control microspheres was significant for 75 days after implantation. It was suggested that the released RA from the microspheres stimulated inflammatory responses. However, no further enhanced inflammation reactions were detected after RA had been completely released from the microspheres.
Collapse
Affiliation(s)
- Yongdoo Choi
- Department of Materials Science and Engineering, Kwangju Institute of Science and Technology, Gwangju, Korea
| | | | | | | | | | | |
Collapse
|
13
|
Tomek S, Koestler W, Horak P, Grunt T, Brodowicz T, Pribill I, Halaschek J, Haller G, Wiltschke C, Zielinski CC, Krainer M. Trail-induced apoptosis and interaction with cytotoxic agents in soft tissue sarcoma cell lines. Eur J Cancer 2003; 39:1318-29. [PMID: 12763223 DOI: 10.1016/s0959-8049(03)00227-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Five human soft tissue sarcoma (STS) cell lines (HTB-82 rhabdomyosarcoma, HTB-91 fibrosarcoma, HTB-92 liposarcoma, HTB-93 synovial sarcoma and HTB-94 chondrosarcoma) were analysed for their sensitivity to tumour necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and the function of the TRAIL apoptotic pathway in these cells. TRAIL induced significant apoptosis (>90%) in HTB-92 and HTB-93 cells, whereas no effect was observed in HTB-82, HTB-91 and HTB-94 cells. TRAIL-Receptor 1 (TRAIL-R1) was expressed in TRAIL-sensitive HTB-92 and HTB-93 cell lines, but not in TRAIL-resistant HTB-91 and HTB-94 cells. HTB-82 cells, which expressed the long (c-FLIP(L)) and short (c-FLIP(S)) splice variants of the FLICE-like inhibitory protein (FLIP), were resistant to TRAIL in spite of the presence of TRAIL-R1. TRAIL-R2,-R3,-R4 and osteoprotegerin (OPG) expression did not correlate with TRAIL sensitivity. Coincubation of TRAIL and doxorubicin led to the overexpression of TRAIL-R2 resulting in a synergistic effect of doxorubicin and TRAIL in TRAIL-sensitive cell lines and in the overcoming of TRAIL-resistance in all of the TRAIL-resistant cell lines, except HTB-91, which lacked caspase 8 expression. These data suggest that TRAIL, either as a single agent or in combination with cytotoxic agents, might represent a new treatment option for advanced STS, which constitutes a largely chemotherapy-resistant disease.
Collapse
Affiliation(s)
- S Tomek
- Clinical Division of Oncology, Department of Medicine I, Waehringer Guertel 18-20, A-1090, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kim IS, Kim SH. Development of polymeric nanoparticulate drug delivery systems: evaluation of nanoparticles based on biotinylated poly(ethylene glycol) with sugar moiety. Int J Pharm 2003; 257:195-203. [PMID: 12711174 DOI: 10.1016/s0378-5173(03)00128-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Liver specific polymeric nanoparticles were designed and synthesized from biotinylated poly(ethylene glycol) conjugated with lactobionic acid containing a galactose moiety (abbreviated as BEL). Synthesized BEL conjugate was identified by Fourier transform-infrared (FT-IR) and 1H-nuclear magnetic resonance (NMR) spectroscopy. The fluorescence spectroscopy data showed that BEL conjugate was self-assembled in water to form core-shell structure nanoparticles, and the critical association concentration (CAC) value was estimated as 0.028 g/l. From the transmission electron microscope (TEM) observation, the BEL nanoparticles were spherically shaped and ranged in size between 30 and 60 nm. The particle size distribution was measured by photon correlation spectroscopy (PCS), and the result was 41.2+/-11.7 nm. Anti-cancer drug all-trans-retinoic acid (ATRA) was loaded into the BEL nanoparticles for evaluating its efficacy as a drug delivery carrier. The crystallinities of ATRA and ATRA-loaded nanoparticles were examined by X-ray diffraction (XRD) patterns. The ATRA release kinetics from the BEL nanoparticles showed a pseudo zero-order pattern during 1-month period.
Collapse
Affiliation(s)
- In-Sook Kim
- Department of Biological Chemistry, College of Pharmacy, Chosun University, 375 Seosuk-dong, Dong-gu, Gwangju 501-759, South Korea
| | | |
Collapse
|
15
|
Grunt TW. Tyrphostins and retinoids cooperate during inhibition of in vitro growth of ovarian cancer cells. Cancer Lett 2003; 189:147-56. [PMID: 12490307 DOI: 10.1016/s0304-3835(02)00512-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Chemoresistance of ovarian cancer can be overcome by co-administration of retinoids, albeit clinical proof of this hypothesis is pending. Moreover, growth factor/c-erbB signaling is crucial for ovarian tumor growth/chemosensitivity. Retinoids and c-erbB modulators therefore represent promising drugs for ovarian cancer. We demonstrate that c-erbB-1 (RG-14620, AG1517) and c-erbB-2 selective tyrphostins (AG825, AG879), and all-trans and 9-cis retinoic acid inhibit ovarian cancer cell proliferation (HOC-7, OVCAR-3). Unlike retinoids, AG1517 and AG879 induce apoptosis. The antiproliferative activity of AG1517 is enhanced by all-trans retinoic acid suggesting that c-erbB and retinoid pathways interact. Thus, these agents cooperate during ovarian cancer cell growth inhibition.
Collapse
Affiliation(s)
- Thomas W Grunt
- Signaling Networks Program, Clinical Division of Oncology, Department of Medicine I, University Hospital, Waehringer Guertel 18-20, A-1090 Vienna, Austria.
| |
Collapse
|
16
|
Rossi L, Corvò R. Retinoic acid modulates the radiosensitivity of head-and-neck squamous carcinoma cells grown in collagen gel. Int J Radiat Oncol Biol Phys 2002; 53:1319-27. [PMID: 12128135 DOI: 10.1016/s0360-3016(02)02865-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE Collagen gels are increasingly regarded as reliable scaffolds for studying cells in vitro, displaying the same three-dimensional network of collagen fibers as encountered in vivo. As a contribution to therapeutic control of head-and-neck cancer, we grew HSCO86 cells in collagen gel and assessed their behavior in the presence of retinoic acid (RA) and radiation. METHODS AND MATERIALS The malignant epithelial cell line HSCO86 was isolated from a postirradiation human oropharyngeal squamous carcinoma; it was EGFR-negative by immunocytochemical criteria. The cells were embedded in hydrated collagen I at a density of 10(6) cells/mL, and on Days 8, 10, and 12 of culture, they were treated with 10(-5) M retinoic acid. Radiation was administered using two different schedules: simultaneously with RA in three daily doses totaling 10 Gy, or with a single dose of 8 Gy on Day 29 of culture, after the effects of RA had taken place. Cell proliferation was evaluated by the MTT assay, whereas morphometric characteristics were detected in the cultured gels directly or in the gels after they were fixed and stained with hematoxylin. RESULTS Contrary to growth in monolayer, where HSCO86 cells displayed a high proliferation rate, in collagen gel only a tiny fraction of the cells, usually less than 0.02%, survived the environmental stress; these cells spontaneously organized themselves into clonal multicellular spheroids growing up to 0.8 mm in diameter. After exposure to 10(-5) M retinoic acid, cell proliferation first declined and then, about 15 days after treatment, it started to increase to a level far above that in the control group. This surge in proliferation was ascribed to the appearance of numerous fibroblast-like cells at the edge of the spheroids. These cells, called HSCO-F, were the result of epithelial-to-mesenchymal conversion. When the gels were disaggregated by collagenase, and the cells were seeded in monolayer, HSCO-F cells reversed their morphology into parental HSCO86 cells. Treatment of collagen gels with 10 Gy, fractionated in three daily doses, did not substantially affect the growth of HSCO86 spheroids. However, when radiation was given simultaneously with RA, cell growth was significantly inhibited, both in terms of cell proliferation and size of spheroids (p < 0.0001 vs. untreated controls). This synergism applied mainly to parental HSCO86 cells, because no significant damage was induced by radiation on the HSCO-F cells previously generated by treatment with RA. CONCLUSION Differences in the radiosensitivity of HSCO86 and HSCO-F cells are surprising in view of their common origin; this suggests a scenario in which, to overcome a microenvironmental stress, head-and-neck carcinoma cells can temporarily shift from an epithelial to a mesenchymal phenotype. In particular, morphologic and functional data suggested that HSCO-F cells were transformed into vascular endothelial cells whose characteristics included the following: (1) distinctive expression of Factor VIII and beta(1)-integrin, not detected in parental HSCO86 cells; (2) active migration in the collagen network by extruded pseudopodia, frequently appearing as colonies of filamentous cells aligned along the radial axis of the spheroids; and (3) efficient contraction of floating collagen gels. The implication of our study is that head-and-neck carcinomas may respond to RA treatment by selecting cell populations both resistant to radiation and capable of migrating inside the connective tissue, mimicking the behavior of vascular capillaries.
Collapse
Affiliation(s)
- Lorenzo Rossi
- Laboratory of Comparative Oncology, University of Genoa, Genoa, Italy.
| | | |
Collapse
|
17
|
Masuda M, Toh S, Koike K, Kuratomi Y, Suzui M, Deguchi A, Komiyama S, Weinstein IB. The roles of JNK1 and Stat3 in the response of head and neck cancer cell lines to combined treatment with all-trans-retinoic acid and 5-fluorouracil. Jpn J Cancer Res 2002; 93:329-39. [PMID: 11927016 PMCID: PMC5926966 DOI: 10.1111/j.1349-7006.2002.tb02176.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We have used a combination of vitamin A (all-trans-retinyl palmitate), 5-fluorouracil (5-FU) and radiation to treat human head and neck squamous cell carcinoma (HNSCC). This chemoradiotherapy is called "FAR therapy." In this study we examined the effects of all-trans-retinoic acid (ATRA), the active metabolite of vitamin A, and ATRA plus 5-FU on two HNSCC cell lines (YCU-N861 and YCU-H891) to gain insight into the molecular mechanisms of FAR therapy. ATRA at 1 mM (the order of concentration found in HNSCC tumors treated with FAR therapy) inhibited cell proliferation and caused G1 cell cycle arrest in both cell lines. This was associated with a decrease in cyclin D1, an increase in p27(Kip1) and a reduction in the hyperphosphorylated form of retinoblastoma protein (pRB). With YCU-N861 cells, ATRA also caused a decrease in Bcl-2 and Bcl-X(L) and an increase in Bax. Both ATRA and 5-FU activated c-Jun N-terminal kinase (JNK) 1 and the combination of both agents resulted in additive or synergistic activation of JNK1, and also enhanced the induction of apoptosis. The YCU-H891 cells, in which the epidermal growth factor receptor (EGFR)-signal transducer and activator of transcription 3 (Stat3) pathway is constitutively activated, were more resistant to treatments with ATRA, 5-FU and the combination of both agents than YCU-N861 cells. A dominant negative Stat3 construct strongly enhanced the cellular sensitivity of this cell line to 5-FU but not to ATRA. In addition there is evidence that activation of Stat3 is associated with cellular resistance to radiation in HNSCC. Therefore, the addition to FAR therapy of agents that inhibit activation of the Stat3 pathway may enhance the clinical response of patients with HNSCC to FAR therapy.
Collapse
Affiliation(s)
- Muneyuki Masuda
- Department of Otorhinolaryngology, Head and Neck Surgery, Faculty of Medicine, Kyushu University, Fukuoka 812-0052, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
In vitro studies that showed RA could cause growth arrest and differentiation of myelogenous leukemia and neuroblastoma led to clinical trials of retinoids in APL and neuroblastoma that increased survival for both of those diseases. In the case of APL, ATRA has been the drug of choice, and preclinical and clinical data support direct combinations of ATRA with cytotoxic chemotherapy. For neuroblastoma, a phase I study defined a dose of 13-cis-RA, which was tolerable in patients after myeloablative therapy, and a phase III trial that showed postconsolidation therapy with 13-cis-RA improved EFS for patients with high-risk neuroblastoma. Preclinical studies in neuroblastoma indicate that ATRA or 13-cis-RA can antagonize cytotoxic chemotherapy and radiation, so use of 13-cis-RA in neuroblastoma is limited to maintenance after completion of cytotoxic chemotherapy and radiation. A limitation on the antitumor benefit of ATRA in APL is the marked decrease in drug levels that occurs during therapy as a result of induction of drug metabolism, resulting in a shorter drug half-life and decreased plasma levels. Although early studies sought to overcome the pharmacologic limitations of ATRA therapy in APL, the demonstration that ATO is active against APL in RA-refractory patients has led to a focus on studies employing ATO. Use of 13-cis-RA in neuroblastoma has avoided the decreased plasma levels seen with ATRA. It is likely that recurrent disease seen during or after 13-cis-RA therapy in neuroblastoma is due to tumor cell resistance to retinoid-mediated differentiation induction. Studies in neuroblastoma cell lines resistant to 13-cis-RA and ATRA have shown that they can be sensitive, and in some cases collaterally hypersensitive, to the cytotoxic retinoid fenretinide. Fenretinide induces tumor cell cytotoxicity rather than differentiation, acts independently from RA receptors, and in initial phase I trials has been well tolerated. Clinical trials of fenretinide, alone and in combination with ceramide modulators, are in development.
Collapse
Affiliation(s)
- C P Reynolds
- Developmental Therapeutics Section, Division of Hematology-Oncology, Children's Hospital of Los Angeles, University of Southern California, Keck School of Medicine, Los Angeles, California, USA.
| | | |
Collapse
|
19
|
Nehmé A, Varadarajan P, Sellakumar G, Gerhold M, Niedner H, Zhang Q, Lin X, Christen RD. Modulation of docetaxel-induced apoptosis and cell cycle arrest by all- trans retinoic acid in prostate cancer cells. Br J Cancer 2001; 84:1571-6. [PMID: 11384110 PMCID: PMC2363662 DOI: 10.1054/bjoc.2001.1818] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
We report that all- trans retinoic acid (ATRA) enhanced the toxicity of docetaxel against DU145 and LNCaP prostate cancer cells, and that the nature of the interaction between ATRA and docetaxel was highly synergistic. Docetaxel-induced apoptotic cell death was associated with phosphorylation and hence inactivation of Bcl-2. ATRA enhanced docetaxel-induced apoptosis and combined treatment with ATRA and docetaxel resulted in down-regulation of Bcl-2. Docetaxel caused phosphorylation and hence inactivation of cdc2 kinase result ing in G2/M arrest. ATRA inhibited docetaxel-induced phosphorylation of cdc2 resulting in activation of cdc2 kinase and partial reversal of the G2/M arrest. ATRA also inhibited docetaxel-induced activation of MAPK indicating that the effects of docetaxel and ATRA on cdc2 phosphorylation are dependent on MAPK. We conclude that ATRA synergistically enhances docetaxel toxicity by down-regulating Bcl-2 expression and partially reverses the docetaxel-induced G2/M arrest by inhibiting docetaxel-induced cdc2 phosphorylation in a pathway that is dependent on MAPK.
Collapse
Affiliation(s)
- A Nehmé
- Department of Medicine and the Cancer Center, University of California, 9500 Gilman Drive, San Diego, La Jolla, CA 92093-0058, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Formelli F, Cleris L. Therapeutic effects of the combination of fenretinide and all-trans-retinoic acid and of the two retinoids with cisplatin in a human ovarian carcinoma xenograft and in a cisplatin-resistant sub-line. Eur J Cancer 2000; 36:2411-9. [PMID: 11094318 DOI: 10.1016/s0959-8049(00)00335-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We previously showed that fenretinide (4-HPR), a synthetic derivative of all-traits retinoic acid (RA), is effective in mice bearing the human ovarian carcinoma IGROV-1 and it significantly enhances the antitumour activity of cisplatin on the same tumour. The present study examined the therapeutic effects of the combination of 4-HPR and RA and of the two retinoids with cisplatin as intracavitary treatments of mice bearing IGROV-1 and IGROV-1/cisplatin tumours, the latter derived from a sub-line with an in vivo reduced sensitivity to cisplatin. 4-HPR, as a single agent, was effective against both tumours, whereas RA had no effect. In IGROV-1 tumour-bearing mice, the combination of RA and 4-HPR significantly improved the efficacy of 4-HPR, resulting in an antitumour activity similar to that obtained with cisplatin alone. N-(4-methoxyphenylretinamide), the main metabolite of 4-HPR, had no antitumour effect and it did not increase 4-HPR activity in IGROV-1 tumour-bearing mice. In the same tumour model, 4-HPR and RA separately increased cisplatin activity, even though for RA the increase was not statistically significant. In contrast, the association of the two retinoids together with cisplatin did not produce any benefit and resulted in increased toxicity. In IGROV-1/cisplatin tumour-bearing mice, the association of 4-HPR (but not of RA) to cisplatin significantly increased cisplatin activity, resulting in the reversal of cisplatin resistance. These findings demonstrate that 4-HPR may be effective and enhance cisplatin sensitivity in cisplatin-sensitive and -resistant ovarian tumours and that the association of RA and 4-HPR may result in increased 4-HPR antitumour activity.
Collapse
Affiliation(s)
- F Formelli
- Chemoprevention Unit, Istituto Nazionale Tumori, Milan, Italy.
| | | |
Collapse
|
21
|
Na K, Park KH, Kim SW, Bae YH. Self-assembled hydrogel nanoparticles from curdlan derivatives: characterization, anti-cancer drug release and interaction with a hepatoma cell line (HepG2). J Control Release 2000; 69:225-36. [PMID: 11064130 DOI: 10.1016/s0168-3659(00)00256-x] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Self-assembled hydrogel nanoparticles were synthesized from carboxymethylated (CM)-curdlan, substituted with a sulfonylurea (SU) as a hydrophobic moiety for self-assembly. The degree of SU substitution was 2.4, 5.6, or 7.2 SU groups per hundred anhydroglucose units of curdlan. The physicochemical properties of the self-assembled hydrogel nanoparticles (DS 2.4, DS 5.6, and DS 7.2) in aqueous media were characterized by dynamic light scattering, transmission electron microscopy, and fluorescence spectroscopy. The mean diameter of all samples was less than 300 nm with a unimodal size distribution. The critical aggregation concentrations (CAC) of self-assembled hydrogel nanoparticles in distilled water were 4.2 x 10(-2), 3.1 x 10(-2) and 1.9 x 10(-2) mg/ml for DS 2.4, 5.6 and 7.2, respectively. The loading and release of all-trans retinoic acid (ATRA) was studied. The ATRA loading efficiencies and loading contents of CM-curdlan/SU nanoparticles increased as the degree of SU substitution increased. The ATRA release rate was controlled by the degree of substitution and drug-loading. For specific interaction with a hepatic carcinoma cell line (HepG2), CM-curdlan was additionally conjugated with lactobionic acid (LBA; galactose moiety) (5.5 LBA molecules per hundred glucose units). HepG2 was strongly luminated by ligand-receptor interactions with fluorescence-labeled LBA/CM-curdlan/SU hydrogel nanoparticles. The luminescence was not observed for other control cases. It is concluded that LBA/CM-curdlan/SU hydrogel nanoparticles are a useful drug carrier for the treatment of liver cancer, because of the potential immunological enhancement activities of CM-curdlan in the body, the ligand-receptor mediated specific interactions, and the controlled release of the anti-cancer drug.
Collapse
Affiliation(s)
- K Na
- Center for Biomaterial and Biotechnology, Department of Materials Science and Engineering, Kwangju Institute of Science and Technology, 1 Oryong-Dong, Puk-gu, Kwangju 500-712, South Korea
| | | | | | | |
Collapse
|
22
|
Lingen MW. Angiogenesis in the development of head and neck cancer and its inhibition by chemopreventive agents. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2000; 10:153-64. [PMID: 10759419 DOI: 10.1177/10454411990100020301] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Squamous cell carcinoma is an aggressive malignancy that often develops as multiple independent lesions throughout the mucosa of the upper aerodigestive tract. Therefore, the comprehensive treatment of this disease must not only address the initial primary neoplasm, but also prevent the progression of the premalignant lesions lurking throughout the rest of the mucosal surfaces. The need to treat these lesions has resulted in a search for chemopreventive agents that can halt or even reverse their malignant progression. The biologic and molecular mechanisms by which most chemopreventive agents act have remained unclear and controversial. Recent work from several laboratories has demonstrated that some drugs may act in part by inhibiting the ability of tumors to induce blood vessel growth. Angiogenesis, the growth of new blood vessels from pre-existing ones, is absolutely required for solid neoplasms to grow beyond 2-3 mm in diameter. Therefore, chemopreventive agents that act to inhibit angiogenesis may provide a very powerful modality by which one may limit the growth of both pre-malignant lesions and small nests of tumor cells. This review will outline the basic changes that occur in tumor cells that result in the switch from an anti-angiogenic to an angiogenic phenotype. In addition, it will discuss the mechanisms by which some chemopreventive agents, presently under clinical investigation, inhibit tumor angiogenesis. Finally, this paper will present a rationale for the use of multiple anti-angiogenic agents as a means of developing new chemopreventive protocols that result in reduced patient toxicity while maintaining similar clinical efficacies.
Collapse
Affiliation(s)
- M W Lingen
- Department of Pathology and the Cardinal Bernardin Cancer Center, Loyola University Medical Center, Maywood, Illinois 60153, USA
| |
Collapse
|
23
|
Haghighi A, Lebedeva S, Gjerset RA. Preferential platination of an activated cellular promoter by cis-diamminedichloroplatinum. Biochemistry 1999; 38:12432-8. [PMID: 10493812 DOI: 10.1021/bi991079r] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study examines how accessibility to cisplatin on various genomic regions in T47D breast cancer cells, including the retinoic acid receptor beta gene promoter and coding region and the dihydrofolate reductase gene promoter and coding region, is affected by treatment of the cells with 9-cis retinoic acid, a treatment that activates the retinoic acid receptor beta gene promoter in these cells. A PCR-based assay was used to measure cisplatin adduct density based on the inhibition of PCR amplification of templates from cisplatin treated versus untreated cells. Treatment of cells with 9-cis retinoic acid enhanced accessibility to cisplatin on the retinoic acid receptor beta gene promoter region, but not on the coding regions of that gene nor on the dihydrofolate reductase gene promoter or coding regions, where accessibilities to cisplatin remained 2-4 times lower than on the activated retinoic acid receptor beta gene promoter. Examination of smaller regions within this promoter region showed a repression of platination in the 500 bp region surrounding the TATA box in cells prior to 9-cis retinoic acid treatment, which was abolished following promoter activation. Differences in sequence composition between the various regions could not fully account for differences in platination, suggesting that structural features such as bends in retinoic acid receptor beta gene promoter DNA following gene activation, create energetically favorable sites for platination, and contribute to the cytotoxicity of the drug.
Collapse
Affiliation(s)
- A Haghighi
- Sidney Kimmel Cancer Center, San Diego, California 92121, USA
| | | | | |
Collapse
|
24
|
Abstract
Vitamin A and its biologically active derivatives, retinal and retinoic acid (RA), together with a large repertoire of synthetic analogues are collectively referred to as retinoids. Naturally occurring retinoids regulate the growth and differentiation of a wide variety of cell types and play a crucial role in the physiology of vision and as morphogenic agents during embryonic development. Retinoids and their analogues have been evaluated as chemoprevention agents, and also in the management of acute promyelocytic leukaemia. Retinoids exert most of their effects by binding to specific receptors and modulating gene expression. The development of new active retinoids and the identification of two distinct families of retinoid receptors has led to an increased understanding of the cellular effects of activation of these receptors. In this article we review the use of retinoids in chemoprevention strategies, discuss the cellular consequences of activated retinoid receptors, and speculate on how our increasing understanding of retinoid-induced signalling pathways may contribute to future therapeutic strategies in the management of malignant disease.
Collapse
Affiliation(s)
- T R Evans
- CRC Department of Medical Oncology, University of Glasgow, Bearsden, UK
| | | |
Collapse
|
25
|
Fischer K, Lutz V, Wilhelm O, Schmitt M, Graeff H, Heiss P, Nishiguchi T, Harbeck N, Kessler H, Luther T, Magdolen V, Reuning U. Urokinase induces proliferation of human ovarian cancer cells: characterization of structural elements required for growth factor function. FEBS Lett 1998; 438:101-5. [PMID: 9821967 DOI: 10.1016/s0014-5793(98)01279-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ovarian cancer metastasis is associated with an increase in the urokinase-type plasminogen activator (uPA) and its receptor uPAR. We present evidence that binding of uPA to uPAR provokes a mitogenic response in the human ovarian cancer cell line OV-MZ-6 in which endogenous uPA production had been significantly reduced by stable uPA 'antisense' transfection. High molecular weight (HMW) uPA, independent of its enzymatic activity, produced an up to 95% increase in cell number concomitant with 2-fold elevated [3H]thymidine incorporation as did the catalytically inactive but uPAR binding amino-terminal fragment of uPA, ATF. uPA-induced cell proliferation was significantly decreased by blocking uPA/uPAR interaction by the monoclonal antibody IIIF10 and by soluble uPAR. The efficiency of the uPAR binding synthetic peptide cyclo19,31 uPA19-31 to enhance OV-MZ-6 cell growth proved this molecular domain to be the minimal structural determinant for uPA mitogenic activity. Dependence of uPA-provoked cell proliferation on uPAR was further demonstrated in Raji cells which do not express uPAR and were thus not induced by uPA. However, upon transfection with full-length uPAR, Raji cells acquired a significant growth response to HMW uPA and ATF.
Collapse
Affiliation(s)
- K Fischer
- Frauenklinik der Technischen Universität München, Klinikum rechts der Isar, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Kim SY, Han IS, Yu HK, Lee HR, Chung JW, Choi JH, Kim SH, Byun Y, Carey TE, Lee KS. The induction of P450-mediated oxidation of all-trans retinoic acid by retinoids in head and neck squamous cell carcinoma cell lines. Metabolism 1998; 47:955-8. [PMID: 9711991 DOI: 10.1016/s0026-0495(98)90350-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
All-trans retinoic acid (RA) can be catabolized into polar metabolites by cytochrome P450 (P450) in several tissues including the skin. We examined eight different squamous cell carcinoma (SCC) cell lines to determine their capacity to induce P450-mediated oxidation of RA. Among the eight different cell lines, enhanced catabolism was detected in AMC-HN-1, -2, -5, and -6, whereas it was not found in the cell lines of AMC-HN-3, -4, -7, and -8. It was found that the enhanced catabolism brought on by P450 induction was blocked when RA was added to AMC-HN-6 along with actinomycin D or cyclohexamide. Also, this catabolism was inhibited by ketoconazole. P450-mediated oxidation was detectable within 4 hours of RA treatment, and RA catabolism reached its maximum 16 hours after treatment. P450 was induced by 13-cis-RA, 9-cis-RA, and retinal; however, retinol could not induce P450. In conclusion, P450 can be induced by retinoids in head and neck SCC (HNSCC) cells and the ability of retinoids to induce P450 can serve as an important factor in determining the biological effect of retinoids.
Collapse
Affiliation(s)
- S Y Kim
- Department of Otolaryngology and Dermatology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Dittrich E, Offterdinger M, Schneider SM, Dittrich C, Huber H. Effects of retinoic acid and fenretinide on the c-erbB-2 expression, growth and cisplatin sensitivity of breast cancer cells. Br J Cancer 1998; 78:79-87. [PMID: 9662255 PMCID: PMC2062943 DOI: 10.1038/bjc.1998.446] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We investigated the effects of all-trans retinoic acid (ATRA) and fenretinide (4-HPR) on c-erbB-2 expression in SK-BR-3, BT-474 and MCF-7 breast cancer cells and on the growth, differentiation, apoptosis and cisplatin (CDDP) sensitivity of SK-BR-3 cells. It has been reported that oestrogen inhibits c-erbB-2 in oestrogen receptor-positive breast cancer cells. Using ELISA, Western and Northern analysis we have demonstrated that ATRA and 4-HPR exert similar effects down-regulating c-erbB-2 protein and mRNA in c-erbB-2-overexpressing SK-BR-3 and BT-474 and in normally expressing MCF-7 cells. Both retinoids inhibit SK-BR-3 cell growth. ATRA induces cellular enlargement and flattening, suggesting epithelial differentiation. 4-HPR causes nuclear and cytoplasmic condensation, DNA fragmentation and externalization of phosphatidylserine, indicating apoptosis. c-erbB-2 expression/activity has been linked to sensitivity against CDDP. Therefore, combinations of ATRA or 4-HPR with CDDP were tested for their anti-proliferative activity. Retinoid-conditioned cells were either exposed to retinoid and CDDP (schedule I, 'continuous retinoid treatment') or to CDDP alone (schedule II, 'retinoid pretreatment'). This retinoid-conditioning followed by CDDP +/- retinoid yields stronger growth inhibition compared with unconditioned cells, which were exposed to CDDP +/- retinoid (schedule III, 'no retinoid pretreatment'). The inefficacy of schedule III indicates that retinoid-conditioning is essential for the improvement of the antiproliferative effect. The interactions in schedules I and II are synergistic for ATRA and CDDP, but slightly antagonistic for 4-HPR and CDDR However, 4-HPR + CDDP is more effective in growth inhibition than each drug alone.
Collapse
|
28
|
Aghi M, Kramm CM, Chou TC, Breakefield XO, Chiocca EA. Synergistic anticancer effects of ganciclovir/thymidine kinase and 5-fluorocytosine/cytosine deaminase gene therapies. J Natl Cancer Inst 1998; 90:370-80. [PMID: 9498487 DOI: 10.1093/jnci/90.5.370] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND A bacterial enzyme, Escherichia coli cytosine deaminase, which converts the prodrug 5-fluorocytosine into the toxic drug 5-fluorouracil, and a viral enzyme, herpes simplex virus thymidine kinase, which converts ganciclovir from an inactive prodrug to a cytotoxic agent by phosphorylation, are being actively investigated for use in gene therapy for cancer. The purpose of this study was to determine whether combining these prodrug-activating gene therapies might result in enhanced anticancer effects. METHODS Rat 9L gliosarcoma cells were transfected with plasmids containing the E. coli cytosine deaminase gene (9L/CD cells), with plasmids containing the herpes simplex virus thymidine kinase gene (9L/TK cells), or with both expression plasmids (9L/CD-TK cells). The drug sensitivities of the cell lines were evaluated; in addition, the sensitivities of 9L and 9L/CD-TK cells mixed in varied proportions were measured. The effects of prodrug treatment on 9L/CD-TK tumor growth (i.e., size and volume) in nude mice were monitored. The isobologram method of Loewe and the multiple drug-effect analysis method of Chou-Talalay were used to measure the interaction between the two prodrug-activating gene therapies. To elucidate the mechanism of interaction, the phosphorylation of ganciclovir in 9L/CD-TK cells after varying prodrug treatments was studied. RESULTS AND CONCLUSIONS The presence of transfected cytosine deaminase and thymidine kinase genes in 9L gliosarcoma cells reduced cell survival, both in vitro and in vivo, following treatment with the relevant prodrugs; the effects of the two components appeared to be synergistic and related mechanistically to the enhancement of ganciclovir phosphorylation by thymidine kinase following 5-fluorouracil treatment.
Collapse
Affiliation(s)
- M Aghi
- Molecular Neuro-Oncology Laboratories, Neurosurgical Service, Massachusetts General Hospital, Charlestown 02129, USA
| | | | | | | | | |
Collapse
|
29
|
Kunz-Schughart LA, Kreutz M, Knuechel R. Multicellular spheroids: a three-dimensional in vitro culture system to study tumour biology. Int J Exp Pathol 1998; 79:1-23. [PMID: 9614346 PMCID: PMC3219428 DOI: 10.1046/j.1365-2613.1998.00051.x] [Citation(s) in RCA: 230] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The growth of tumour cells as three-dimensional multicellular spheroids in vitro has led to important insights in tumour biology, since properties of the in vivo-tumour such as proliferation or nutrient gradients, can be studied under controlled conditions. While this review starts with an update of recent data on spheroid monocultures, especially concerning tumour microenvironment and therapeutic modalities, the main emphasis is put on the spectrum of heterologous cultures which have evolved in previous years. This type of culture includes tumour cell interaction with endothelial, fibroblast or immunocompetent cells. The relation of the spheroid culture model to other types of three-dimensional culture and our critical evaluation and presentation of the technical aspects of growing and analysing spheroids are included in the text. These topics are chosen to help the experimental pathologist design experiments with tumour spheroids and to stimulate discussion.
Collapse
|
30
|
Stewart LV, Thomas ML. Retinoids differentially regulate the proliferation of colon cancer cell lines. Exp Cell Res 1997; 233:321-9. [PMID: 9194494 DOI: 10.1006/excr.1997.3569] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this study, the proliferative effects of retinoids were examined in the MC-26 and LoVo colon adenocarcinoma cell lines. The proliferation of the LoVo cell line was not altered in the presence of the retinoids all trans-retinoic acid (atRA) and 9-cis-retinoic acid (9-cis-RA). Both retinoids, however, stimulated the growth, as measured by cell proliferation, of MC-26 cells. atRA and 9-cis-RA were equipotent in increasing MC-26 cell proliferation, suggesting that the growth stimulation is mediated by one or more retinoic acid receptors (RARs). To determine the RAR which might be responsible for this growth stimulatory effect, we characterized the RAR subtypes which were present in both cell lines. mRNA for the RAR alpha, RAR beta, and RAR gamma were detected in the MC-26 cell. Of the RARs present in MC-26 cells, the RAR alpha does not mediate the growth stimulatory effects of retinoids, for a selective RAR alpha antagonist was unable to prevent the retinoid-induced increase in MC-26 cell growth. RAR alpha, RAR beta, and RAR gamma mRNA are also expressed in the LoVo cell line; the lack of growth-stimulation by retinoids in LoVo cells, therefore, does not seem to be due to the absence of RARs. The results obtained in these experiments demonstrate that the growth response elicited by retinoids can vary between colon cancer cells and that the differences in response may not be solely determined by the RAR subtypes which are expressed in a colon cancer cell line.
Collapse
Affiliation(s)
- L V Stewart
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston 77555-1031, USA
| | | |
Collapse
|
31
|
Toma S, Maselli G, Dastoli G, De Francisci E, Raffo P. Synergistic effect between doxorubicin and a low dose of all-trans-retinoic acid in MCF-7 breast cancer cell line. Cancer Lett 1997; 116:103-10. [PMID: 9177464 DOI: 10.1016/s0304-3835(97)00169-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effect of doxorubicin (DOX) used in combination with a low dose (10(-7) M) of all-trans-retinoic acid (tRA) was tested on MCF-7 breast carcinoma cell line. Both drugs are able to inhibit cell proliferation in these cells in a dose-dependent way. The combined treatment with DOX and tRA was more effective in inhibiting cell growth than each of the two compounds alone. This was evidenced in the following experimental conditions: pre-treatments with tRA, for 72 h or 18 h, before DOX incubation; post-treatment with tRA for 18 h after DOX incubation. A consistent synergism was reached by 72 h pre-treatment with tRA and also with brief pre- and post-treatments, but only if tRA was also present during DOX incubation (co-treatments). The mechanisms involved in this interaction between chemotherapeutics and differentiating agents are as yet unclear and should be evaluated further.
Collapse
Affiliation(s)
- S Toma
- National Institute for Cancer Research (IST), Department of Medical Oncology, University of Genoa, Italy
| | | | | | | | | |
Collapse
|
32
|
Majewski S, Jabłońska S, Orth G. Epidermodysplasia verruciformis. Immunological and nonimmunological surveillance mechanisms: role in tumor progression. Clin Dermatol 1997; 15:321-34. [PMID: 9255439 DOI: 10.1016/s0738-081x(96)00169-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- S Majewski
- Department of Dermatology, Warsaw School of Medicine, Poland
| | | | | |
Collapse
|
33
|
Braakhuis BJ, Klaassen I, van der Leede BM, Cloos J, Brakenhoff RH, Copper MP, Teerlink T, Hendriks HF, van der Saag PT, Snow GB. Retinoid metabolism and all-trans retinoic acid-induced growth inhibition in head and neck squamous cell carcinoma cell lines. Br J Cancer 1997; 76:189-97. [PMID: 9231918 PMCID: PMC2223946 DOI: 10.1038/bjc.1997.361] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Retinoids can reverse potentially premalignant lesions and prevent second primary tumours in patients with head and neck squamous cell carcinoma (HNSCC). Furthermore, it has been reported that acquired resistance to all-trans retinoic acid (RA) in leukaemia is associated with decreased plasma peak levels, probably the result of enhanced retinoid metabolism. The aim of this study was to investigate the metabolism of retinoids and relate this to growth inhibition in HNSCC. Three HNSCC cell lines were selected on the basis of a large variation in the all-trans RA-induced growth inhibition. Cells were exposed to 9.5 nM (radioactive) for 4 and 24 h, and to 1 and 10 microM (nonradioactive) all-trans RA for 4, 24, 48 and 72 h, and medium and cells were analysed for retinoid metabolites. At all concentrations studied, the amount of growth inhibition was proportional to the extent at which all-trans-, 13- and 9-cis RA disappeared from the medium as well as from the cells. This turnover process coincided with the formation of a group of as yet unidentified polar retinoid metabolites. The level of mRNA of cellular RA-binding protein II (CRABP-II), involved in retinoid homeostasis, was inversely proportional to growth inhibition. These findings indicate that for HNSCC retinoid metabolism may be associated with growth inhibition.
Collapse
Affiliation(s)
- B J Braakhuis
- Department of Otolaryngology/Head and Neck Surgery, University Hospital Vrije Universiteit, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Cassand P, Maziere S, Champ M, Meflah K, Bornet F, Narbonne JF. Effects of resistant starch- and vitamin A-supplemented diets on the promotion of precursor lesions of colon cancer in rats. Nutr Cancer 1997; 27:53-9. [PMID: 8970182 DOI: 10.1080/01635589709514501] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have evaluated the potential protective effect of resistant starch (RS)- and vitamin A-supplemented diets on the promotion of preneoplasic lesions of rat colon, aberrant crypt foci (ACF), induced by 1,2-dimethylhydrazine dihydrochloride (DMH). We have tried to show whether the association of these two dietary constituents in the same diet could have synergistic effects. RS, vitamin A, and RS+ vitamin A were incorporated into the rat diets. Experimental diets were given one week after DMH injection and maintained for 12 weeks until the animals were sacrificed. The total number of ACF decreased with the three experimental diets. For RS- and RS + vitamin A-supplemented diets, this decrease is primarily due to a decrease in small ACF. For the vitamin A-supplemented diet, small and large ACF have a tendency to decrease. The effects of the diets on parameters influencing colon carcinogenesis were also studied. Only RS- and RS + vitamin A-supplemented diets have modified cecal pH, fecal and cecal butyrate contents, fecal excretion, cecal weight, and colon length. Vitamin A has been observed in colonic epithelial cells of rats receiving vitamin A- and RS+ vitamin A-supplemented diets. The association between RS and vitamin A shows neither a cumulative nor a synergistic protective effect.
Collapse
Affiliation(s)
- P Cassand
- Laboratoire de Toxicologie Alimentaire, Université Bordeaux I, Talence, France
| | | | | | | | | | | |
Collapse
|
35
|
Caliaro MJ, Vitaux P, Lafon C, Lochon I, Néhmé A, Valette A, Canal P, Bugat R, Jozan S. Multifactorial mechanism for the potentiation of cisplatin (CDDP) cytotoxicity by all-trans retinoic acid (ATRA) in human ovarian carcinoma cell lines. Br J Cancer 1997; 75:333-40. [PMID: 9020476 PMCID: PMC2063358 DOI: 10.1038/bjc.1997.55] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
All-trans retinoic acid (ATRA) has been previously shown to inhibit the proliferation of some human ovarian carcinoma cell lines, and this inhibition was accompanied by cellular changes that were indicative of differentiation (Caliaro et al, 1994). In this work, a pretreatment of these adenocarcinoma cells with ATRA, for their respective doubling time, enhanced cisplatin (CDDP) cytotoxicity in the cell ines that were sensitive to its antiproliferative effect, but not in the ATRA-resistant ones. Results were assessed using median effect analysis in two ATRA-sensitive cell lines (OVCCR1 and NIHOVCAR3 cells) and in one ATRA-insensitive cell line (IGROV1 cells). Synergy between these two agents was observed only in cells sensitive to ATRA, regardless of their relative sensitivity to CDDP. Potential mechanisms for this synergy were investigated. ATRA did not increase the cellular platinum content, did not decrease the cellular glutathione and had no influence on the metallothionein IIA mRNA levels in NIHOVCAR3 cells. Moreover, the protein kinase C (PKC) activity was modulated by this differentiating agent in all cell lines tested, indicating that this activity was not directly involved in this potentiation. However, an ATRA inhibition of glutathione-S-transferase activity associated with an increase in the total DNA adducts formation could explain the potentiation of the CDDP cytotoxicity observed in NIHOVCAR3 cells. Finally, the ATRA modulation of the epidermal growth factor (EGF) receptor mRNA level could also be implicated in this synergy.
Collapse
Affiliation(s)
- M J Caliaro
- Groupe de Pharmacologie Clinique et Expérimentale des Médicaments Anticancéreux, Centre Claudius Regaud, Toulouse, France
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
|
37
|
Sacks PG. Cell, tissue and organ culture as in vitro models to study the biology of squamous cell carcinomas of the head and neck. Cancer Metastasis Rev 1996; 15:27-51. [PMID: 8842478 DOI: 10.1007/bf00049486] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In vitro models are currently being used to study head and neck squamous cell carcinoma (HNSCC). Several hundred HNSCC cell lines have been established by various investigators and used to study a broad spectrum of questions related to head and neck cancer. The head and neck model with respect to multistage carcinogenesis is now complete. Several techniques exist for the culture of normal epithelial cells from the upper aerodigestive tract (UADT). The biology of these UADT cells (oral cavity, oropharynx, hypopharynx and larynx) is being studied. Successful culture of premalignant lesions (dysplastic mucosa, leukoplakia, erythroplakia) has resulted in establishment of a limited number of premalignant cell lines and cell cultures. HPV infection of normal oral epithelial cells for immortalization (approximately premalignant cells) coupled with transformation with carcinogens (malignant cells) has established an experimental model for progression. Two in vivo models for oral carcinogenesis, the 7,12 dimethylbenz(a)anthracene-induced hamster cheek pouch model and the 4-nitroquinoline-N-oxide rat oral model, have been established in culture. Thus, multistage carcinogenesis models have been established from both human tissues and animal models and include cultures of normal, premalignant and malignant cells. Culture techniques for growing dissociated primary tumor cells for short term experimental analysis are being used. The culture of normal or tumor tissue as organ/explant cultures allows for the maintenance of normal cell-cell and cell-matrix interaction, but limits experimentation since these cultures cannot be propagated. Several three dimensional model systems are being used to obtain this histological complexity but allow for experimentation. The ability to culture normal, premalignant and malignant cells coupled with the use of a variety of culture techniques, should allow for the continued growth and experimentation in head and neck cancer research.
Collapse
Affiliation(s)
- P G Sacks
- Department of Surgery, Memorial Sloan-Kettering Cancer Center, New York, N.Y. 10021, USA
| |
Collapse
|