1
|
Haller OJ, Semendric I, Collins-Praino LE, Whittaker AL, George RP. Changes in cognition and astrocytic reactivity in a female rodent model of chemotherapy-induced cognitive impairment are variable both acutely and chronically. Behav Brain Res 2025; 480:115391. [PMID: 39667647 DOI: 10.1016/j.bbr.2024.115391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 12/07/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
Chemotherapy-induced cognitive impairment (CICI) affects female cancer survivors, with impairment recognised in populations such as breast cancer survivors, where 1 in 3 are affected. Impairments include issues with memory, learning, concentration, and processing speed, negatively impacting quality of life. Several mechanisms are proposed to drive these, with evidence implicating neuroinflammation as a key contributor. However, the time course over which impairments occur is less well-established, with fewer longer-term time-points investigated. This study aimed to understand the evolution of cognitive changes following methotrexate (MTX) or 5- fluorouracil (5-FU) chemotherapy, assessing three time-points: acute (96-hour), sub-acute (31-days) and chronic (93-days). Further, we investigated whether alterations in cognition were associated with concomitant changes in astrocytic reactivity. Female Sprague Dawley rats received two intraperitoneal injections of MTX, 5-FU or saline and were assessed on the novel object recognition, 5-choice serial reaction time task and Barnes maze. Hippocampal and prefrontal cortex tissue was examined for GFAP expression. Both MTX and 5-FU exposure were associated with spatial memory, task acquisition, and processing speed impairments at 31-days, with impairment ameliorated by 93-days. While both MTX and 5-FU induced changes in GFAP expression across various time-points and regions, with most notable changes at 96-hours, 5-FU exhibited expression changes in the hippocampus consistently across all time-points. These results provide valuable insight into the complexity of a mediator of neuroinflammation in CICI. While neuroinflammation may be a promising therapeutic target, further markers should be assessed to elucidate the full neuroimmune response, and thus which aspects to target and when, to ensure optimal outcomes for cancer patients treated with chemotherapy.
Collapse
Affiliation(s)
- Olivia J Haller
- School of Biomedicine, The University of Adelaide, South Australia, Australia.
| | - Ines Semendric
- School of Biomedicine, The University of Adelaide, South Australia, Australia
| | | | - Alexandra L Whittaker
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, South Australia, Australia
| | - Rebecca P George
- School of Biomedicine, The University of Adelaide, South Australia, Australia; School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, South Australia, Australia
| |
Collapse
|
2
|
Mostafa F, Mantawy EM, Said RS, Azab SS, El-Demerdash E. Captopril attenuates oxidative stress and neuroinflammation implicated in cisplatin-induced cognitive deficits in rats. Psychopharmacology (Berl) 2025:10.1007/s00213-024-06706-6. [PMID: 39809925 DOI: 10.1007/s00213-024-06706-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 10/18/2024] [Indexed: 01/16/2025]
Abstract
RATIONALE One of the most debilitating drawbacks of cisplatin chemotherapy is neurotoxicity which elicits memory impairment and cognitive dysfunction (chemobrain). This is primarily triggered by oxidative stress and inflammation. Captopril, an angiotensin-converting enzyme inhibitor, has been reported as a neuroprotective agent owing to its antioxidant and anti-inflammatory effects. OBJECTIVE We examined the possible neuroprotective effect of captopril against cisplatin-induced neurological and behavioral abnormalities in rats. METHODS Chemobrain was induced in rats by cisplatin (5 mg/kg, i.p.) on the 7th and 14th days of the study while captopril was administered orally (25 mg/kg) daily for three weeks. The effects of captopril were assessed by performing behavioral tests, histological examination, and evaluation of oxidative stress and inflammatory markers. RESULTS Cisplatin caused learning/memory dysfunction assessed by passive avoidance and Y-maze tests, decline in locomotion, and rotarod motor balance loss which were further verified by neurodegeneration observed in histological examination. Also, cisplatin aggravated oxidative stress by elevating lipid peroxidation (MDA) levels and diminishing catalase activity. Moreover, cisplatin upregulated the neuroinflammatory markers (TNF, IL-6, GFAP, and NF-κB). Captopril successfully ameliorated cisplatin damage on the levels of neurobehavioral and histopathological changes. Mechanistically, captopril significantly diminished MDA production and preserved catalase antioxidant activity. Captopril also counteracted neuroinflammation through inhibiting NF-κB and its downstream proinflammatory cytokines besides repressing astrocyte activity by reducing GFAP expression. CONCLUSION Our findings revealed that captopril could abrogate cisplatin neurotoxicity via reducing oxidative stress and neuroinflammation thus enhancing cognitive and behavioral performance. This could suggest the repurposing of captopril as a neuroprotective agent, especially in hypertensive cancer patients receiving cisplatin.
Collapse
Affiliation(s)
- Fatma Mostafa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Eman M Mantawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Riham S Said
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Samar S Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
3
|
Ormiston K, Melink Z, Andridge R, Lustberg M, Courtney DeVries A, Murphy K, Emmers K, Ziouzenkova O, Belury MA, Orchard TS. Dietary EPA and DHA enrichment of a high fat diet during doxorubicin-based chemotherapy attenuated neuroinflammatory gene expression in the brain of C57bl/6 ovariectomized mice. Brain Behav Immun 2025; 123:370-382. [PMID: 39313165 DOI: 10.1016/j.bbi.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/28/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024] Open
Abstract
Chemotherapy agents in breast cancer are associated with chemotherapy-related cognitive impairments (CRCI). Mechanisms are not fully clear, but alterations of glucose and lipid metabolism, neuroinflammation and neurodegeneration may contribute to CRCI. The aim of this study was to investigate the combined effects of a high fat (HF) diet combined with doxorubicin-based chemotherapy on glucose and lipid metabolism, neuroinflammation, and neurodegeneration in mice. Additionally, we examined the therapeutic potential of dietary eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) to attenuate these effects. Female C57Bl/6 mice (n = 42) were fed HF, HFn-3 (2 % kcals as EPA + DHA) or Low Fat (LF) diets for seven weeks, with and without chemotherapy. In this study, two chemotherapy injections led to weight and body fat loss associated with a decrease in insulin resistance measured by HOMA-IR. HOMA-IR was significantly greater in HF versus LF groups; but HOMA-IR in HFn-3 group did not significantly differ from either HF or LF groups. Chemotherapy resulted in higher brain concentrations of the inflammatory chemokine KC/GRO. Compared to LF diet plus chemotherapy, HF diet plus chemotherapy upregulated multiple genes involved in neuroinflammation and neurodegeneration pathways. HFn-3 diet plus chemotherapy attenuated gene expression by downregulating multiple genes involved in neuroinflammation and blood brain barrier regulation, including Mapkapk2, Aqp4, and s100b, and upregulating Kcnb1 and Atxn3, genes involved in reduction of oxidative stress and anxiety, respectively. Overall, a HF diet combined with chemotherapy is associated with neuroinflammatory and neurodegenerative gene expression changes in this mouse model; dietary enrichment of EPA and DHA attenuated these effects. Further studies are needed to understand how diet impacts behavioral outcomes of CRCI.
Collapse
Affiliation(s)
- Kate Ormiston
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, United States
| | - Zihan Melink
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, United States
| | - Rebecca Andridge
- Division of Biostatistics, College of Public Health, The Ohio State University, United States
| | | | | | - Kelly Murphy
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, United States
| | - Katie Emmers
- Department of Veterinary Medicine, The Ohio State University, United States
| | - Ouliana Ziouzenkova
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, United States
| | - Martha A Belury
- Department of Food Science and Technology, The Ohio State University, United States
| | - Tonya S Orchard
- Human Nutrition Program, Department of Human Sciences, The Ohio State University, United States.
| |
Collapse
|
4
|
Nordhjem BJT, Hjalgrim LL. Cancer-related cognitive impairment and hippocampal functioning: The role of dynamin-1. Neurotherapeutics 2024; 22:e00508. [PMID: 39676022 PMCID: PMC11742813 DOI: 10.1016/j.neurot.2024.e00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024] Open
Affiliation(s)
| | - Lisa Lyngsie Hjalgrim
- Department of Pediatrics and Adolescent Medicine, University Hospital Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
5
|
Ibrahim Fouad G, Rizk MZ. Neurotoxicity of the antineoplastic drugs: "Doxorubicin" as an example. J Mol Histol 2024; 55:1023-1050. [PMID: 39352546 DOI: 10.1007/s10735-024-10247-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/11/2024] [Indexed: 11/16/2024]
Abstract
There is an increased prevalence of cancer, and chemotherapy is widely and routinely utilized to manage the majority of cancers; however, administration of chemotherapeutic drugs has faced limitations concerning the "off-target" cytotoxicity. Chemobrain and impairment of neurocognitive functions have been observed in a significant fraction of cancer patients or survivors and reduce their life quality; this could be ascribed to the ability of chemotherapeutic drugs to alter the structure and function of the brain. Doxorubicin (DOX), an FDA-approved chemotherapeutic drug with therapeutic effectiveness, is commonly used to treat several carcinomas clinically. DOX-triggered neurotoxicity is the most serious adverse reaction after DOX-induced cardiotoxicity which greatly limits its clinical application. DOX-induced neurotoxicity is a net of multiple mechanisms that have been verified in pre-clinical and clinical studies, such as oxidative stress, neuroinflammation, mitochondrial disruption, apoptosis, autophagy, disruption of neurotransmitters, and impairment of neurogenesis. There is a massive need for developing novel therapeutics for both cancer and DOX-associated neurotoxicity; therefore investigating the implicated mechanisms of DOX-induced chemobrain will reveal multi-targets for novel curative strategies. Recently, various neuroprotective mechanisms were employed to mitigate DOX-mediated neurotoxicity. For this purpose, therapeutic interventions using pharmacological compounds were developed to protect healthy "off-target" tissues from DOX-induced toxicity. In addition, nanoplatforms were used to enable target delivery of DOX; to prevent its deposition in non-cancerous tissues. The aim of the current review is to provide some reference value for the future management of DOX-induced neurotoxicity and to summarize the underlying mechanisms of DOX-mediated neurotoxicity and the potential therapeutic interventions.
Collapse
Affiliation(s)
- Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt.
| | - Maha Z Rizk
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt
| |
Collapse
|
6
|
Gu Q, Wang L, King TZ, Chen H, Zhang L, Ni J, Mao H. Seeing through "brain fog": neuroimaging assessment and imaging biomarkers for cancer-related cognitive impairments. Cancer Imaging 2024; 24:158. [PMID: 39558401 PMCID: PMC11572057 DOI: 10.1186/s40644-024-00797-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024] Open
Abstract
Advances in cancer diagnosis and treatment have substantially improved patient outcomes and survival in recent years. However, up to 75% of cancer patients and survivors, including those with non-central nervous system (non-CNS) cancers, suffer from "brain fog" or impairments in cognitive functions such as attention, memory, learning, and decision-making. While we recognize the impact of cancer-related cognitive impairment (CRCI), we have not fully investigated and understood the causes, mechanisms and interplays of various involving factors. Consequently, there are unmet needs in clinical oncology in assessing the risk of CRCI and managing patients and survivors with this condition in order to make informed treatment decisions and ensure the quality of life for cancer survivors. The state-of-the-art neuroimaging technologies, particularly clinical imaging modalities like magnetic resonance imaging (MRI) and positron emission tomography (PET), have been widely used to study neuroscience questions, including CRCI. However, in-depth applications of these functional and molecular imaging methods in CRCI and their clinical implementation for CRCI management are largely limited. This scoping review provides the current understanding of contributing neurological factors to CRCI and applications of the state-of-the-art multi-modal neuroimaging methods in investigating the functional and structural alterations related to CRCI. Findings from these studies and potential imaging-biomarkers of CRCI that can be used to improve the assessment and characterization of CRCI as well as to predict the risk of CRCI are also highlighted. Emerging issues and perspectives on future development and applications of neuroimaging tools to better understand CRCI and incorporate neuroimaging-based approaches to treatment decisions and patient management are discussed.
Collapse
Affiliation(s)
- Quanquan Gu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1750 Haygood Drive NE, Atlanta, Georgia, 30322, USA
| | - Liya Wang
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1750 Haygood Drive NE, Atlanta, Georgia, 30322, USA
- Department of Radiology, Shenzhen Hyzen Hospital, Shenzhen, 518109, Guangdong, People's Republic of China
| | - Tricia Z King
- School of Nursing, Emory University, Atlanta, Georgia, 30322, USA
| | - Hongbo Chen
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin, 541004, Guangxi, People's Republic of China
| | - Longjiang Zhang
- Department of Radiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210002, Jiangsu, People's Republic of China
| | - Jianming Ni
- Wuxi Second Hospital Affiliated to Nanjing Medical University, Wuxi, 214042, People's Republic of China
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, 1750 Haygood Drive NE, Atlanta, Georgia, 30322, USA.
| |
Collapse
|
7
|
Mishra P, Bhurani D, Khan MA, Nidhi. Deranged cytokine levels are linked to cancer-related cognitive impairment in lymphoma patients receiving R-CHOP chemotherapy. Leuk Lymphoma 2024:1-13. [PMID: 39545327 DOI: 10.1080/10428194.2024.2424373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 11/17/2024]
Abstract
Cancer-related cognitive impairment (CRCI) is a significant issue commonly observed following chemotherapy treatment. The study aimed to investigate the changes in cognitive function and their association with IL-6, IL-1β, and IL-10 levels before and after R-CHOP chemotherapy over six cycles. Seventy chemotherapy naïve, newly diagnosed lymphoma patients were enrolled. Cognitive functions and inflammatory cytokines were assessed at baseline (TP1), after 3rd cycle (TP2), and after 6th cycle (TP3). Patients, with mean age of 44.17 ± 13.67 years, showed significantly increased levels of IL-6 and IL-1β and decreased IL-10 levels over time (p < .001). On the Montreal Cognitive Assessment (MoCA), scores of domains such as executive functioning (p = .002), attention (p < .001), language (p < .001), recall (p = .005), and orientation (p < .001) significantly decreased post six cycles of R-CHOP chemotherapy. Correlation analysis at TP2 indicated a positive association between elevated IL-6 levels with a decrease in MoCA scores indicating a decline in cognitive function (ρ = 0.68, p < .001). At TP3, no association of MoCA scores with IL-6 and IL-1β was observed. Decreased IL-10 levels showed a weak association with decreased MoCA scores at TP2 and TP3 (ρ = 0.2, p = .09; for TP3, ρ = 0.16, p = .17), but this was not significant. In summary, the findings of the present study highlight significant cognitive decline and changes in inflammatory cytokine levels following six cycles of R-CHOP. Objective cognitive assessments may be done to detect CRCI in patients treated with R-CHOP.
Collapse
Affiliation(s)
- Pinki Mishra
- Department of Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Dinesh Bhurani
- Department of Hemato-Oncology and Bone Marrow Transplant, Rajiv Gandhi Cancer Institute and Research Centre, Rohini, India
| | - Mohd Ashif Khan
- Department of Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Nidhi
- Department of Translational and Clinical Research, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
8
|
Otto-Dobos LD, Santos JC, Strehle LD, Grant CV, Simon LA, Oliver B, Godbout JP, Sheridan JF, Barrientos RM, Glasper ER, Pyter LM. The role of microglia in 67NR mammary tumor-induced suppression of brain responses to immune challenges in female mice. J Neurochem 2024; 168:3482-3499. [PMID: 37084026 PMCID: PMC10589388 DOI: 10.1111/jnc.15830] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/22/2023]
Abstract
It is poorly understood how solid peripheral tumors affect brain neuroimmune responses despite the various brain-mediated side effects and higher rates of infection reported in cancer patients. We hypothesized that chronic low-grade peripheral tumor-induced inflammation conditions microglia to drive suppression of neuroinflammatory responses to a subsequent peripheral immune challenge. Here, Balb/c murine mammary tumors attenuated the microglial inflammatory gene expression responses to lipopolysaccharide (LPS) and live Escherichia coli (E. coli) challenges and the fatigue response to an E. coli infection. In contrast, the inflammatory gene expression in response to LPS or a toll-like receptor 2 agonist of Percoll-enriched primary microglia cultures was comparable between tumor-bearing and -free mice, as were the neuroinflammatory and sickness behavioral responses to an intracerebroventricular interleukin (IL)-1β injection. These data led to the hypothesis that Balb/c mammary tumors blunt the neuroinflammatory responses to an immune challenge via a mechanism involving tumor suppression of the peripheral humoral response. Balb/c mammary tumors modestly attenuated select circulating cytokine responses to LPS and E. coli challenges. Further, a second mammary tumor/mouse strain model (E0771 tumors in C57Bl/6 mice) displayed mildly elevated inflammatory responses to an immune challenge. Taken together, these data indicate that tumor-induced suppression of neuroinflammation and sickness behaviors may be driven by a blunted microglial phenotype, partly because of an attenuated peripheral signal to the brain, which may contribute to infection responses and behavioral side effects reported in cancer patients. Finally, these neuroimmune effects likely vary based on tumor type and/or host immune phenotype.
Collapse
Affiliation(s)
- L D Otto-Dobos
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio, USA
| | - J C Santos
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio, USA
| | - L D Strehle
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio, USA
| | - C V Grant
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio, USA
| | - L A Simon
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio, USA
| | - B Oliver
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio, USA
| | - J P Godbout
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio, USA
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
- Chronic Brain Injury Program, The Ohio State University, Columbus, Ohio, USA
| | - J F Sheridan
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio, USA
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
- Division of Biosciences College of Dentistry, The Ohio State University, Columbus, Ohio, USA
| | - R M Barrientos
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio, USA
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
- Chronic Brain Injury Program, The Ohio State University, Columbus, Ohio, USA
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, Ohio, USA
| | - E R Glasper
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio, USA
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
| | - L M Pyter
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, Ohio, USA
- Department of Neuroscience, The Ohio State University, Columbus, Ohio, USA
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
9
|
Khaled N, Ibrahim N, Ali AE, Youssef FS, El-Ahmady SH. LC-qTOF-MS/MS phytochemical profiling of Tabebuia impetiginosa (Mart. Ex DC.) Standl. leaf and assessment of its neuroprotective potential in rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118292. [PMID: 38705428 DOI: 10.1016/j.jep.2024.118292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Tabebuia impetiginosa (Bignoniaceae) was traditionally used for memory enhancement and central nervous system (CNS) stimulation. AIM OF THE STUDY This study aims to create a metabolic profile of the ethyl acetate fraction of T. impetiginosa (TEF) and investigate for the first time its neuroprotective potential on cyclophosphamide (CP)-induced chemobrain, validating its traditional use. MATERIALS AND METHODS Metabolite profiling of TEF was performed using Liquid Chromatography coupled with Quadrupole Time of Flight-Mass/Mass Spectrometry (LC-qTOF-MS/MS). For the in vivo study, CP (200 mg/kg, i.p.) was administered to induce cognitive impairment in rats; TEF (30 mg/kg, p.o.) was administered throughout the 14 days of the experiment to assess its role in mitigating CP-induced neuronal deficits. Behavioral tests including locomotor, Y-maze, and passive avoidance tests were conducted. Additionally, biochemical markers such as reduced glutathione (GSH), malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), and caspase-3 immunoexpression were assessed in the hippocampus area. RESULTS Forty-four phytoconstituents were tentatively identified in TEF, mainly iridoids and organic acids. TEF showed significant memory enhancement as evidenced by the increase in step-through latency in the passive avoidance test by 1.5 folds and the increase in sequence alternation percentage (SAP) in the Y-maze test by 67.3%, as compared to CP-group. Moreover, it showed pronounced antioxidant and anti-inflammatory potentials evidenced by the significant elevation in reduced glutathione (GSH) levels by 80% and a pronounced decline in MDA and TNF-α levels by 24% and 45%, respectively relative to the CP group. TEF treatment restored normal hippocampal histological features and attenuated apoptotic caspase-3 expression by 70% compared to the CP group. CONCLUSIONS TEF can act as a promising natural scaffold in managing the chemobrain induced by CP in cancer patients.
Collapse
Affiliation(s)
- Nesma Khaled
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, 11566, Egypt.
| | - Nehal Ibrahim
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, 11566, Egypt.
| | - Alaa E Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| | - Fadia S Youssef
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, 11566, Egypt.
| | - Sherweit H El-Ahmady
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
10
|
Varpaei HA, Robbins LB, Farhadi K, Bender CM. Preoperative cognitive function as a risk factor of postoperative delirium in cancer surgeries: A systematic review and meta-analysis. J Surg Oncol 2024; 130:222-240. [PMID: 38865298 DOI: 10.1002/jso.27730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/14/2024]
Abstract
Postoperative delirium (POD) after cancer surgeries can be a result of chemo brain, anesthesia, surgery duration, and preoperative cognitive impairment. Although older age and preoperative cognitive dysfunction were reported to increase the risk of POD in noncardiac surgery, the role of preoperative cognitive function and age in the development of POD after all types of cancer surgeries is not clear. This study aimed to determine the relationship between preoperative cognitive function and likelihood of POD after cancer surgeries. This study used three main online databases and followed PRISMA guidelines. English language original articles that examined preoperative cognitive function before solid tumor cancer surgery and assessed patients for postoperative delirium were included. We employed the random effect meta-analysis method. The overall incidence of POD ranged from 8.7% to 50.9%. The confusion assessment method was the most common tool used to assess delirium. Mini-mental state evaluation (MMSE), Mini-cog, and Montreal cognitive assessment were the most common tools to assess cognitive function. The pooled (total observation = 4676) random effects SMD was estimated at -0.84 (95% confidence interval [CI]: -1.30 to -0.31), indicating that lower MMSE scores before surgery are associated with a higher risk of POD. The pooled (total observation = 2668) random effects OR was estimated at 5.17 (95% CI: 2.51 to -10.63), indicating preoperative cognitive dysfunction can significantly predict the occurrence of POD after cancer surgeries. In conclusion, preoperative cognitive function is an independent and significant predictor of POD after solid tumor cancer surgeries.
Collapse
Affiliation(s)
- Hesam A Varpaei
- College of Nursing Michigan State University, East Lansing, Michigan, USA
| | - Lorraine B Robbins
- College of Nursing Michigan State University, East Lansing, Michigan, USA
| | - Kousha Farhadi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Catherine M Bender
- Nursing and Clinical and Translational Science Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
11
|
Ziani H, Nasri S, Kamaoui I, Skiker I. 5-Fluorouracil-induced acute leukoencephalopathy: Case report and literature review. Radiol Case Rep 2024; 19:2801-2803. [PMID: 38689804 PMCID: PMC11058063 DOI: 10.1016/j.radcr.2024.03.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/18/2024] [Accepted: 03/24/2024] [Indexed: 05/02/2024] Open
Abstract
Toxic leukoencephalopathy (TL) refers to damage to the brain white matter following exposure to toxic agents. Multiple agents are incriminated in this condition, including chemotherapy drugs. 5-Fluorouracil, widely used in oncology, is responsible for neurotoxicity in less than 5% of cases. We report the case of a 54-year-old male patient who presented with neurological symptoms following 5-FU-based chemotherapy for gastric adenocarcinoma, and whose MRI scan revealed signs suggestive of toxic leukoencephalopathy. We also report on the evolution of the abnormalities described on his MRI after 1 year.
Collapse
Affiliation(s)
- Hamid Ziani
- Department of Radiology, Mohammed VI University Hospital, Faculty of Medicine, University Mohammed First, Oujda, Morocco
| | - Siham Nasri
- Department of Radiology, Mohammed VI University Hospital, Faculty of Medicine, University Mohammed First, Oujda, Morocco
| | - Imane Kamaoui
- Department of Radiology, Mohammed VI University Hospital, Faculty of Medicine, University Mohammed First, Oujda, Morocco
| | - Imane Skiker
- Department of Radiology, Mohammed VI University Hospital, Faculty of Medicine, University Mohammed First, Oujda, Morocco
| |
Collapse
|
12
|
Chen X, Gan Y, Au NPB, Ma CHE. Current understanding of the molecular mechanisms of chemotherapy-induced peripheral neuropathy. Front Mol Neurosci 2024; 17:1345811. [PMID: 38660386 PMCID: PMC11039947 DOI: 10.3389/fnmol.2024.1345811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is the most common off-target adverse effects caused by various chemotherapeutic agents, such as cisplatin, oxaliplatin, paclitaxel, vincristine and bortezomib. CIPN is characterized by a substantial loss of primary afferent sensory axonal fibers leading to sensory disturbances in patients. An estimated of 19-85% of patients developed CIPN during the course of chemotherapy. The lack of preventive measures and limited treatment options often require a dose reduction or even early termination of life-saving chemotherapy, impacting treatment efficacy and patient survival. In this Review, we summarized the current understanding on the pathogenesis of CIPN. One prominent change induced by chemotherapeutic agents involves the disruption of neuronal cytoskeletal architecture and axonal transport dynamics largely influenced by the interference of microtubule stability in peripheral neurons. Due to an ineffective blood-nerve barrier in our peripheral nervous system, exposure to some chemotherapeutic agents causes mitochondrial swelling in peripheral nerves, which lead to the opening of mitochondrial permeability transition pore and cytochrome c release resulting in degeneration of primary afferent sensory fibers. The exacerbated nociceptive signaling and pain transmission in CIPN patients is often linked the increased neuronal excitability largely due to the elevated expression of various ion channels in the dorsal root ganglion neurons. Another important contributing factor of CIPN is the neuroinflammation caused by an increased infiltration of immune cells and production of inflammatory cytokines. In the central nervous system, chemotherapeutic agents also induce neuronal hyperexcitability in the spinal dorsal horn and anterior cingulate cortex leading to the development of central sensitization that causes CIPN. Emerging evidence suggests that the change in the composition and diversity of gut microbiota (dysbiosis) could have direct impact on the development and progression of CIPN. Collectively, all these aspects contribute to the pathogenesis of CIPN. Recent advances in RNA-sequencing offer solid platform for in silico drug screening which enable the identification of novel therapeutic agents or repurpose existing drugs to alleviate CIPN, holding immense promises for enhancing the quality of life for cancer patients who undergo chemotherapy and improve their overall treatment outcomes.
Collapse
Affiliation(s)
- Xinyu Chen
- Department of Neuroscience, Hong Kong Special Administrative Region (HKSAR), City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Yumeng Gan
- Department of Neuroscience, Hong Kong Special Administrative Region (HKSAR), City University of Hong Kong, Kowloon, Hong Kong SAR, China
| | - Ngan Pan Bennett Au
- Department of Neuroscience, Hong Kong Special Administrative Region (HKSAR), City University of Hong Kong, Kowloon, Hong Kong SAR, China
- School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, United Kingdom
- Institute of Life Sciences and Healthcare, University of Portsmouth, Portsmouth, United Kingdom
| | - Chi Him Eddie Ma
- Department of Neuroscience, Hong Kong Special Administrative Region (HKSAR), City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
13
|
Lee HS, Kim JM, Lee HL, Go MJ, Lee DY, Kim CW, Kim HJ, Heo HJ. Eucommia ulmoides Leaves Alleviate Cognitive Dysfunction in Dextran Sulfate Sodium (DSS)-Induced Colitis Mice through Regulating JNK/TLR4 Signaling Pathway. Int J Mol Sci 2024; 25:4063. [PMID: 38612870 PMCID: PMC11012925 DOI: 10.3390/ijms25074063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Ulcerative colitis (UC) is one of the inflammatory bowel diseases (IBD) that is characterized by systemic immune system activation. This study was performed to assess the alleviative effect of administering an aqueous extract of Eucommia ulmoides leaves (AEEL) on cognitive dysfunction in mice with dextran sulfate sodium (DSS)-induced colitis. The major bioactive compounds of AEEL were identified as a quinic acid derivative, caffeic acid-O-hexoside, and 3-O-caffeoylquinic acid using UPLC Q-TOF/MSE. AEEL administration alleviated colitis symptoms, which are bodyweight change and colon shortening. Moreover, AEEL administration protected intestinal barrier integrity by increasing the tight junction protein expression levels in colon tissues. Likewise, AEEL improved behavioral dysfunction in the Y-maze, passive avoidance, and Morris water maze tests. Additionally, AEEL improved short-chain fatty acid (SCFA) content in the feces of DSS-induced mice. In addition, AEEL improved damaged cholinergic systems in brain tissue and damaged mitochondrial and antioxidant functions in colon and brain tissues caused by DSS. Also, AEEL protected against DSS-induced cytotoxicity and inflammation in colon and brain tissues by c-Jun N-terminal kinase (JNK) and the toll-like receptor 4 (TLR4) signaling pathway. Therefore, these results suggest that AEEL is a natural material that alleviates DSS-induced cognitive dysfunction with the modulation of gut-brain interaction.
Collapse
Affiliation(s)
- Han Su Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.S.L.); (J.M.K.); (H.L.L.); (M.J.G.); (H.-J.K.)
| | - Jong Min Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.S.L.); (J.M.K.); (H.L.L.); (M.J.G.); (H.-J.K.)
| | - Hyo Lim Lee
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.S.L.); (J.M.K.); (H.L.L.); (M.J.G.); (H.-J.K.)
| | - Min Ji Go
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.S.L.); (J.M.K.); (H.L.L.); (M.J.G.); (H.-J.K.)
| | - Dong Yeol Lee
- Research & Development Team, Gyeongnam Anti-Aging Research Institute, Sancheong 52215, Republic of Korea;
| | - Chul-Woo Kim
- Division of special Forest Resources, Department of Forest Bio-Resources, National Institute of Forest Science, Seoul 02455, Republic of Korea;
| | - Hyun-Jin Kim
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.S.L.); (J.M.K.); (H.L.L.); (M.J.G.); (H.-J.K.)
| | - Ho Jin Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea; (H.S.L.); (J.M.K.); (H.L.L.); (M.J.G.); (H.-J.K.)
| |
Collapse
|
14
|
Fontvieille A, Parent-Roberge H, Fülöp T, Pavic M, Riesco E. The Mechanisms Underlying the Beneficial Impact of Aerobic Training on Cancer-Related Fatigue: A Conceptual Review. Cancers (Basel) 2024; 16:990. [PMID: 38473351 DOI: 10.3390/cancers16050990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Cancer-related fatigue (CRF) is a prevalent and persistent issue affecting cancer patients, with a broad impact on their quality of life even years after treatment completion. The precise mechanisms underlying CRF remain elusive, yet its multifaceted nature involves emotional, physical, and cognitive dimensions. The absence of effective medical treatments has prompted researchers to explore integrative models for potential insights. Notably, physical exercise emerges as a promising strategy for managing CRF and related symptoms, as studies showed a reduction in CRF ranging from 19% to 40%. Current recommendations highlight aerobic training at moderate intensity as beneficial, although questions about a dose-response relationship and the importance of exercise intensity persist. Despite the positive impact of exercise on CRF, the underlying mechanisms remain elusive. This review aims to provide a theoretical model explaining how aerobic exercise may alleviate CRF. Focusing on acute exercise effects, this review delves into the potential influence on peripheral and neural inflammation, immune function dysregulation, and neuroendocrine system disruptions. The objective is to enhance our understanding of the intricate relationship between exercise and CRF, ultimately paving the way for tailored interventions and potential pharmacological treatments for individuals unable to engage in physical exercise.
Collapse
Affiliation(s)
- Adeline Fontvieille
- Faculty of Physical Activity Sciences, University of Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada
- Research Centre on Aging, 1036 Rue Belvédère Sud, Sherbrooke, QC J1H 4C4, Canada
- Institut de Recherche sur le Cancer de l'Université de Sherbrooke, 12e Avenue N Porte 6, Sherbrooke, QC J1H 5N4, Canada
| | - Hugo Parent-Roberge
- Faculty of Physical Activity Sciences, University of Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada
- Research Centre on Aging, 1036 Rue Belvédère Sud, Sherbrooke, QC J1H 4C4, Canada
- Institut de Recherche sur le Cancer de l'Université de Sherbrooke, 12e Avenue N Porte 6, Sherbrooke, QC J1H 5N4, Canada
| | - Tamás Fülöp
- Research Centre on Aging, 1036 Rue Belvédère Sud, Sherbrooke, QC J1H 4C4, Canada
- Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001 12e Avenue N, Sherbrooke, QC J1H 5N4, Canada
| | - Michel Pavic
- Institut de Recherche sur le Cancer de l'Université de Sherbrooke, 12e Avenue N Porte 6, Sherbrooke, QC J1H 5N4, Canada
- Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001 12e Avenue N, Sherbrooke, QC J1H 5N4, Canada
| | - Eléonor Riesco
- Faculty of Physical Activity Sciences, University of Sherbrooke, 2500 Boulevard de l'Université, Sherbrooke, QC J1K 2R1, Canada
- Research Centre on Aging, 1036 Rue Belvédère Sud, Sherbrooke, QC J1H 4C4, Canada
- Institut de Recherche sur le Cancer de l'Université de Sherbrooke, 12e Avenue N Porte 6, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
15
|
He YQ, Zhou CC, Jiang SG, Lan WQ, Zhang F, Tao X, Chen WS. Natural products for the treatment of chemotherapy-related cognitive impairment and prospects of nose-to-brain drug delivery. Front Pharmacol 2024; 15:1292807. [PMID: 38348396 PMCID: PMC10859466 DOI: 10.3389/fphar.2024.1292807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 01/15/2024] [Indexed: 02/15/2024] Open
Abstract
Chemotherapy-related cognitive deficits (CRCI) as one of the common adverse drug reactions during chemotherapy that manifest as memory, attention, and executive function impairments. However, there are still no effective pharmacological therapies for the treatment of CRCI. Natural compounds have always inspired drug development and numerous natural products have shown potential therapeutic effects on CRCI. Nevertheless, improving the brain targeting of natural compounds in the treatment of CRCI is still a problem to be overcome at present and in the future. Accumulated evidence shows that nose-to-brain drug delivery may be an excellent carrier for natural compounds. Therefore, we reviewed natural products with potential anti-CRCI, focusing on the signaling pathway of these drugs' anti-CRCI effects, as well as the possibility and prospect of treating CRCI with natural compounds based on nose-to-brain drug delivery in the future. In conclusion, this review provides new insights to further explore natural products in the treatment of CRCI.
Collapse
Affiliation(s)
- Yu-Qiong He
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Can-Can Zhou
- Department of Pharmacy, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Sheng-Gui Jiang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wen-Qian Lan
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Zhang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Xia Tao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wan-Sheng Chen
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
16
|
Hopf NB, Suter-Dick L, Huwyler J, Borgatta M, Hegg L, Pamies D, Paschoud H, Puligilla RD, Reale E, Werner S, Zurich MG. Novel Strategy to Assess the Neurotoxicity of Organic Solvents Such as Glycol Ethers: Protocol for Combining In Vitro and In Silico Methods With Human-Controlled Exposure Experiments. JMIR Res Protoc 2024; 13:e50300. [PMID: 38236630 PMCID: PMC10835597 DOI: 10.2196/50300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Chemicals are not required to be tested systematically for their neurotoxic potency, although they may contribute to the development of several neurological diseases. The absence of systematic testing may be partially explained by the current Organisation for Economic Co-operation and Development (OECD) Test Guidelines, which rely on animal experiments that are expensive, laborious, and ethically debatable. Therefore, it is important to understand the risks to exposed workers and the general population exposed to domestic products. In this study, we propose a strategy to test the neurotoxicity of solvents using the commonly used glycol ethers as a case study. OBJECTIVE This study aims to provide a strategy that can be used by regulatory agencies and industries to rank solvents according to their neurotoxicity and demonstrate the use of toxicokinetic modeling to predict air concentrations of solvents that are below the no observed adverse effect concentrations (NOAECs) for human neurotoxicity determined in in vitro assays. METHODS The proposed strategy focuses on a complex 3D in vitro brain model (BrainSpheres) derived from human-induced pluripotent stem cells (hiPSCs). This model is accompanied by in vivo, in vitro, and in silico models for the blood-brain barrier (BBB) and in vitro models for liver metabolism. The data are integrated into a toxicokinetic model. Internal concentrations predicted using this toxicokinetic model are compared with the results from in vivo human-controlled exposure experiments for model validation. The toxicokinetic model is then used in reverse dosimetry to predict air concentrations, leading to brain concentrations lower than the NOAECs determined in the hiPSC-derived 3D brain model. These predictions will contribute to the protection of exposed workers and the general population with domestic exposures. RESULTS The Swiss Centre for Applied Human Toxicology funded the project, commencing in January 2021. The Human Ethics Committee approval was obtained on November 16, 2022. Zebrafish experiments and in vitro methods started in February 2021, whereas recruitment of human volunteers started in 2022 after the COVID-19 pandemic-related restrictions were lifted. We anticipate that we will be able to provide a neurotoxicity testing strategy by 2026 and predicted air concentrations for 6 commonly used propylene glycol ethers based on toxicokinetic models incorporating liver metabolism, BBB leakage parameters, and brain toxicity. CONCLUSIONS This study will be of great interest to regulatory agencies and chemical industries needing and seeking novel solutions to develop human chemical risk assessments. It will contribute to protecting human health from the deleterious effects of environmental chemicals. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/50300.
Collapse
Affiliation(s)
- Nancy B Hopf
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | - Laura Suter-Dick
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
| | - Jörg Huwyler
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Myriam Borgatta
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | - Lucie Hegg
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | - David Pamies
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Hélène Paschoud
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | - Ramya Deepthi Puligilla
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Elena Reale
- Center for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
| | - Sophie Werner
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, Switzerland
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Marie-Gabrielle Zurich
- Swiss Centre for Applied Human Toxicology (SCAHT), Basel, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
17
|
Skurlova M, Holubova K, Kleteckova L, Kozak T, Kubova H, Horacek J, Vales K. Chemobrain in blood cancers: How chemotherapeutics interfere with the brain's structure and functionality, immune system, and metabolic functions. Med Res Rev 2024; 44:5-22. [PMID: 37265248 DOI: 10.1002/med.21977] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 03/28/2023] [Accepted: 04/30/2023] [Indexed: 06/03/2023]
Abstract
Cancer treatment brings about a phenomenon not fully clarified yet, termed chemobrain. Its strong negative impact on patients' well-being makes it a trending topic in current research, interconnecting many disciplines from clinical oncology to neuroscience. Clinical and animal studies have often reported elevated concentrations of proinflammatory cytokines in various types of blood cancers. This inflammatory burst could be the background for chemotherapy-induced cognitive deficit in patients with blood cancers. Cancer environment is a dynamic interacting system. The review puts into close relationship the inflammatory dysbalance and oxidative/nitrosative stress with disruption of the blood-brain barrier (BBB). The BBB breakdown leads to neuroinflammation, followed by neurotoxicity and neurodegeneration. High levels of intracellular reactive oxygen species (ROS) induce the progression of cancer resulting in increased mutagenesis, conversion of protooncogenes to oncogenes, and inactivation of tumor suppression genes to trigger cancer cell growth. These cell alterations may change brain functionality, as well as morphology. Multidrug chemotherapy is not without consequences to healthy tissue and could even be toxic. Specific treatment impacts brain function and morphology, functions of the immune system, and metabolism in a unique mixture. In general, a chemo-drug's effects on cognition in cancer are not direct and/or in-direct, usually a combination of effects is more probable. Last but not least, chemotherapy strongly impacts the immune system and could contribute to BBB disruption. This review points out inflammation as a possible mechanism of brain damage during blood cancers and discusses chemotherapy-induced cognitive impairment.
Collapse
Affiliation(s)
- M Skurlova
- Department of Experimental Psychopharmacology, National Institute of Mental Health, Klecany, Czech Republic
| | - K Holubova
- Department of Experimental Psychopharmacology, National Institute of Mental Health, Klecany, Czech Republic
| | - L Kleteckova
- Department of Experimental Psychopharmacology, National Institute of Mental Health, Klecany, Czech Republic
| | - T Kozak
- Department of Developmental Epileptology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - H Kubova
- Department of Internal Medicine and Hematology, Faculty Hospital Kralovske Vinohrady and Third Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - J Horacek
- Department of Experimental Psychopharmacology, National Institute of Mental Health, Klecany, Czech Republic
| | - K Vales
- Department of Experimental Psychopharmacology, National Institute of Mental Health, Klecany, Czech Republic
| |
Collapse
|
18
|
Zhu M, Long S, Tao Y, Zhang Z, Zhou Z, Wang X, Chen W. The P38MAPK/ATF2 signaling pathway is involved in PND in mice. Exp Brain Res 2024; 242:109-121. [PMID: 37973625 PMCID: PMC10786957 DOI: 10.1007/s00221-023-06730-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/23/2023] [Indexed: 11/19/2023]
Abstract
Accumulating evidence indicates that microglia-mediated neuroinflammation in the hippocampus contributes to the development of perioperative neurocognitive disorder (PND). P38MAPK, a point of convergence for different signaling processes involved in inflammation, can be activated by various stresses. This study aims to investigate the role of the P38MAPK/ATF2 signaling pathway in the development of PND in mice. Aged C57BL/6 mice were subjected to tibial fracture surgery under isoflurane anesthesia to establish a PND animal model. The open field test was used to evaluate the locomotor activity of the mice. Neurocognitive function was assessed with the Morris water maze (MWM) and fear conditioning test (FCT) on postoperative days 1, 3 and 7. The mice exhibited cognitive impairment accompanied by increased expression of proinflammatory factors (IL-1β, TNF-α), proapoptotic molecules (caspase-3, bax) and microglial activation in the hippocampus 1, 3 and 7 days after surgery. Treatment with SB239063 (a P38MAPK inhibitor) decreased the expression of proinflammatory factors, proapoptotic molecules and Iba-1 in the CA1 region of the hippocampus. The number of surviving neurons was significantly increased. Inhibition of the P38MAPK/ATF2 signaling pathway attenuates hippocampal neuroinflammation and neuronal apoptosis in aged mice with PND, thus improving the perioperative cognitive function of the mice.
Collapse
Affiliation(s)
- Mengjiao Zhu
- Department of Anesthesiology, The Central Hospital of Wuhan, Tongji Medical College of Huazhong University of Science and Technology, Nanjing Road, Wuhan, 430030, Hubei Province, China
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei Province, China
| | - Si Long
- Department of Anesthesiology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, 510080, Guangdong Province, China
| | - Yizhi Tao
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei Province, China
| | - Zhifa Zhang
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei Province, China
| | - Zhiqiang Zhou
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei Province, China
| | - Xueren Wang
- Department of Anesthesiology, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei Province, China.
| | - Wei Chen
- Department of Integrated Traditional Chinese and Western Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei Province, China.
| |
Collapse
|
19
|
Correa DD, Vachha BA, Baser RE, Koch A, Wong P, Gohel S, Giralt S, Root JC. Neuroimaging and Neurocognitive Outcomes in Older Patients with Multiple Myeloma Treated with Chemotherapy and Autologous Stem Cell Transplantation. Cancers (Basel) 2023; 15:4484. [PMID: 37760454 PMCID: PMC10526394 DOI: 10.3390/cancers15184484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/21/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
There is a paucity of research on treatment-related neurotoxicity in older adults with multiple myeloma (MM) treated with high-dose chemotherapy (HDC) and autologous SCT (HDC/ASCT), despite the increasing use of this regimen. We examined resting state functional connectivity (RSFC), gray matter (GM) volume, neurocognitive function (NF), and proinflammatory cytokines (PCy) in older patients with MM pre- and post-HDC/ASCT. Eighteen patients underwent MRI, NF tests, and serum PCy measurements prior to HDC/ASCT, and fifteen patients completed a follow up five-months post-HDC/ASCT. There were significant decreases in RSFC post-HDC/ASCT in (1) the central executive network (CEN) involving the left dorsolateral prefrontal cortex and right posterior parietal cortex (p = 0.022) and (2) the CEN involving the right posterior parietal cortex and the salience network involving the right dorsal anterior cingulate cortex (p = 0.029). There were no significant changes in GM or NF, except for improvements in attention (Digit Span Backward, p = 0.03). There were significant increases in several PCy post-HDC/ASCT (p ≤ 0.05). In conclusion, RSFC decreased in frontal, parietal, and cingulate cortices post-HDC/ASCT, NF was relatively stable, and several PCy increased. These findings are congruent with other studies in cancer patients and provide supporting evidence for the vulnerability of frontoparietal regions to chemotherapy's adverse effects.
Collapse
Affiliation(s)
- Denise D. Correa
- Department of Neurology, MSKCC—Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Neurology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Behroze A. Vachha
- Department of Radiology, UMass Chan Medical School, Worcester, MA 01665, USA
| | - Raymond E. Baser
- Department of Epidemiology & Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Adrian Koch
- Department of Neurology, MSKCC—Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Phillip Wong
- Department of Immune Monitoring Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Suril Gohel
- Department of Heath Informatics, Rutgers University School of Health Professions, Newark, NJ 08854, USA
| | - Sergio Giralt
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - James C. Root
- Department of Psychiatry & Behavioral Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Departments of Psychiatry, Weill Cornell Medical College, New York, NY 10065, USA
| |
Collapse
|
20
|
Maddern AS, Coller JK, Bowen JM, Gibson RJ. The Association between the Gut Microbiome and Development and Progression of Cancer Treatment Adverse Effects. Cancers (Basel) 2023; 15:4301. [PMID: 37686576 PMCID: PMC10487104 DOI: 10.3390/cancers15174301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Adverse effects are a common consequence of cytotoxic cancer treatments. Over the last two decades there have been significant advances in exploring the relationship between the gut microbiome and these adverse effects. Changes in the gut microbiome were shown in multiple clinical studies to be associated with the development of acute gastrointestinal adverse effects, including diarrhoea and mucositis. However, more recent studies showed that changes in the gut microbiome may also be associated with the long-term development of psychoneurological changes, cancer cachexia, and fatigue. Therefore, the aim of this review was to examine the literature to identify potential contributions and associations of the gut microbiome with the wide range of adverse effects from cytotoxic cancer treatments.
Collapse
Affiliation(s)
- Amanda S. Maddern
- School of Allied Health Science and Practice, The University of Adelaide, Adelaide, SA 5005, Australia;
| | - Janet K. Coller
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; (J.K.C.); (J.M.B.)
| | - Joanne M. Bowen
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; (J.K.C.); (J.M.B.)
| | - Rachel J. Gibson
- School of Allied Health Science and Practice, The University of Adelaide, Adelaide, SA 5005, Australia;
| |
Collapse
|
21
|
Oliveros A, Poleschuk M, Cole PD, Boison D, Jang MH. Chemobrain: An accelerated aging process linking adenosine A 2A receptor signaling in cancer survivors. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 170:267-305. [PMID: 37741694 PMCID: PMC10947554 DOI: 10.1016/bs.irn.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Chemotherapy has a significant positive impact in cancer treatment outcomes, reducing recurrence and mortality. However, many cancer surviving children and adults suffer from aberrant chemotherapy neurotoxic effects on learning, memory, attention, executive functioning, and processing speed. This chemotherapy-induced cognitive impairment (CICI) is referred to as "chemobrain" or "chemofog". While the underlying mechanisms mediating CICI are still unclear, there is strong evidence that chemotherapy accelerates the biological aging process, manifesting as effects which include telomere shortening, epigenetic dysregulation, oxidative stress, mitochondrial defects, impaired neurogenesis, and neuroinflammation, all of which are known to contribute to increased anxiety and neurocognitive decline. Despite the increased prevalence of CICI, there exists a lack of mechanistic understanding by which chemotherapy detrimentally affects cognition in cancer survivors. Moreover, there are no approved therapeutic interventions for this condition. To address this gap in knowledge, this review attempts to identify how adenosine signaling, particularly through the adenosine A2A receptor, can be an essential tool to attenuate accelerated aging phenotypes. Importantly, the adenosine A2A receptor uniquely stands at the crossroads of cancer treatment and improved cognition, given that it is widely known to control tumor induced immunosuppression in the tumor microenvironment, while also posited to be an essential regulator of cognition in neurodegenerative disease. Consequently, we propose that the adenosine A2A receptor may provide a multifaceted therapeutic strategy to enhance anticancer activity, while combating chemotherapy induced cognitive deficits, both which are essential to provide novel therapeutic interventions against accelerated aging in cancer survivors.
Collapse
Affiliation(s)
- Alfredo Oliveros
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Michael Poleschuk
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Peter D Cole
- Division of Pediatric Hematology/Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, United States.
| | - Mi-Hyeon Jang
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, United States.
| |
Collapse
|
22
|
Jaiswara PK, Shukla SK. Chemotherapy-Mediated Neuronal Aberration. Pharmaceuticals (Basel) 2023; 16:1165. [PMID: 37631080 PMCID: PMC10459787 DOI: 10.3390/ph16081165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Chemotherapy is a life-sustaining therapeutic option for cancer patients. Despite the advancement of several modern therapies, such as immunotherapy, gene therapy, etc., chemotherapy remains the first-line therapy for most cancer patients. Along with its anti-cancerous effect, chemotherapy exhibits several detrimental consequences that restrict its efficacy and long-term utilization. Moreover, it effectively hampers the quality of life of cancer patients. Cancer patients receiving chemotherapeutic drugs suffer from neurological dysfunction, referred to as chemobrain, that includes cognitive and memory dysfunction and deficits in learning, reasoning, and concentration ability. Chemotherapy exhibits neurotoxicity by damaging the DNA in neurons by interfering with the DNA repair system and antioxidant machinery. In addition, chemotherapy also provokes inflammation by inducing the release of various pro-inflammatory cytokines, including NF-kB, IL-1β, IL-6, and TNF-α. The chemotherapy-mediated inflammation contributes to chemobrain in cancer patients. These inflammatory cytokines modulate several growth signaling pathways and reactive oxygen species homeostasis leading to systemic inflammation in the body. This review is an effort to summarize the available information which discusses the role of chemotherapy-induced inflammation in chemobrain and how it impacts different aspects of therapeutic outcome and the overall quality of life of the patient. Further, this article also discusses the potential of herbal-based remedies to overcome chemotherapy-mediated neuronal toxicity as well as to improve the quality of life of cancer patients.
Collapse
Affiliation(s)
| | - Surendra Kumar Shukla
- Department of Oncology Science, University of Oklahoma Health Science Centre, Oklahoma City, OK 73104, USA;
| |
Collapse
|
23
|
Chamberlain BH, Rhiner M, Slatkin NE, Stambler N, Israel RJ. Methylnaltrexone Treatment for Opioid-Induced Constipation in Patients with and without Cancer: Effect of Initial Dose. J Pain Res 2023; 16:2595-2607. [PMID: 37533563 PMCID: PMC10391063 DOI: 10.2147/jpr.s405825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 07/09/2023] [Indexed: 08/04/2023] Open
Abstract
Purpose Opioid-induced constipation (OIC) is a common side effect of opioid therapy. Methylnaltrexone (MNTX) is a selective, peripherally acting μ-opioid receptor antagonist, with demonstrated efficacy in treating OIC. We pooled results from MNTX clinical trials to compare responses to an initial dose in patients with chronic cancer and noncancer pain. Patients and Methods This post hoc analysis used pooled data from 3 randomized, placebo-controlled studies of MNTX in patients with advanced illness with OIC. Assessments included the proportions of patients achieving rescue-free laxation (RFL) within 4 and 24 hours of the first study drug dose, time to RFL, current and worst pain intensity, and adverse events, stratified by the presence/absence of cancer. Results A total of 355 patients with cancer (MNTX n = 198, placebo n = 157) and 163 without active cancer (MNTX n = 83; placebo n = 80) were included. More patients treated with MNTX compared with those who received placebo achieved an RFL within 4 (cancer: MNTX, 61.1% vs placebo,15.3%, p<0.0001; noncancer: MNTX, 62.2% vs placebo, 17.5%, p<0.0001) and 24 hours (cancer: MNTX, 71.2% vs placebo, 41.4%, p<0.0001; noncancer: MNTX, 74.4% vs placebo, 37.5%, p<0.0001) of the initial dose. Cumulative RFL response rates within 4 hours of the first, second, or third dose of study drug were also higher in MNTX-treated patients. The estimated time to RFL was shorter among those who received MNTX and similar in cancer and noncancer patients. Mean pain scores declined similarly in all groups. The most common adverse events in both cancer and noncancer patients were abdominal pain, flatulence, and nausea. Conclusion After the first dose, MNTX rapidly induced a laxation response in the majority of both cancer and noncancer patients with advanced illness. Opioid-induced analgesia was not compromised, and adverse events were primarily gastrointestinal in nature. Methylnaltrexone is a well-tolerated and effective treatment for OIC in both cancer and noncancer patients.
Collapse
Affiliation(s)
| | - Michelle Rhiner
- Department of Family Medicine, Loma Linda University Health, Loma Linda, CA, USA
| | - Neal E Slatkin
- University of California Riverside, School of Medicine, Riverside, CA, USA
- Salix Pharmaceuticals, Medical Affairs, Bridgewater, NJ, USA
| | - Nancy Stambler
- Progenics Pharmaceuticals, Inc, a subsidiary of Lantheus Holdings, Inc, Clinical Research, North Billerica, MA, USA
| | - Robert J Israel
- Bausch Health US, LLC, Clinical and Medical Affairs, Bridgewater, NJ, USA
| |
Collapse
|
24
|
Lin Z, Ma J, Ma Y, Li Q, Kang H, Zhang M, Chen B, Xia R. Prognostic impact of peripheral natural killer cells in primary central nervous system lymphoma. Front Immunol 2023; 14:1191033. [PMID: 37426647 PMCID: PMC10326164 DOI: 10.3389/fimmu.2023.1191033] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/08/2023] [Indexed: 07/11/2023] Open
Abstract
Background Primary central nervous system lymphoma (PCNSL) is an aggressive extranodal non-Hodgkin lymphoma with a poor prognosis. We aimed to evaluate the prognostic impact of circulating NK cells in PCNSL. Materials and methods Patients diagnosed with PCNSL who were treated at our institution between December 2018 and December 2019 were retrospectively screened. Patient variables including age, sex, Karnofsky performance status, diagnostic methods, location of lesions, lactate dehydrogenase, cerebrospinal fluids (CSF), and vitreous fluids involvement or not were documented. NK cell count and NK cell proportion (NK cell count/lymphocyte count) in the peripheral blood were evaluated by flow cytometry. Some patients underwent two consecutive NK cell tests before and three weeks after chemotherapy (before the next chemotherapy). The fold change in NK cell proportion and NK cell counts were calculated. CD56-positive NK cells in tumor tissue were assessed by immunohistochemistry. NK cell cytotoxicity assay was performed using flow cytometry. Results A total of 161 patients with PCNSL were included in this study. The median NK cell count of all NK cell tests was 197.73/μL (range 13.11-1889.90 cells/μL). The median proportion of NK cells was 14.11% (range 1.68-45.15%) for all. Responders had a higher median NK cell count (p<0.0001) and NK cell proportion (p<0.0001) than non-responders. Furthermore, Responders had a higher median fold change in NK cell proportion than non-responders (p=0.019) or patients in complete remission/partial remission (p<0.0001). A higher median fold change in NK cell count was observed in responders than in non-responders (p=0.0224) or patients in complete remission/partial remission (p=0.0002). For newly diagnosed PCNSL, patients with a high NK cell count (>165 cells/μL) appeared to have a longer median overall survival than those with a low NK cell count (p=0.0054). A high fold change in the proportion of NK cells (>0.1957; p=0.0367) or NK cell count (>0.1045; p=0.0356) was associated with longer progression-free survival. Circulating NK cells from newly-diagnosed PCNSL demonstrated an impaired cytotoxicity capacity compared to those from patients with PCNSL in complete remission or healthy donors. Conclusion Our study indicated that circulating NK cells had some impact on the outcome of PCNSL.
Collapse
Affiliation(s)
- Zhiguang Lin
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jingjing Ma
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yan Ma
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qing Li
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Hui Kang
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Mengxue Zhang
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Bobin Chen
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Rong Xia
- Department of Blood Transfusion, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
25
|
de Rus Jacquet A, Alpaugh M, Denis HL, Tancredi JL, Boutin M, Decaestecker J, Beauparlant C, Herrmann L, Saint-Pierre M, Parent M, Droit A, Breton S, Cicchetti F. The contribution of inflammatory astrocytes to BBB impairments in a brain-chip model of Parkinson's disease. Nat Commun 2023; 14:3651. [PMID: 37339976 DOI: 10.1038/s41467-023-39038-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 05/26/2023] [Indexed: 06/22/2023] Open
Abstract
Astrocyte dysfunction has previously been linked to multiple neurodegenerative disorders including Parkinson's disease (PD). Among their many roles, astrocytes are mediators of the brain immune response, and astrocyte reactivity is a pathological feature of PD. They are also involved in the formation and maintenance of the blood-brain barrier (BBB), but barrier integrity is compromised in people with PD. This study focuses on an unexplored area of PD pathogenesis by characterizing the interplay between astrocytes, inflammation and BBB integrity, and by combining patient-derived induced pluripotent stem cells with microfluidic technologies to generate a 3D human BBB chip. Here we report that astrocytes derived from female donors harboring the PD-related LRRK2 G2019S mutation are pro-inflammatory and fail to support the formation of a functional capillary in vitro. We show that inhibition of MEK1/2 signaling attenuates the inflammatory profile of mutant astrocytes and rescues BBB formation, providing insights into mechanisms regulating barrier integrity in PD. Lastly, we confirm that vascular changes are also observed in the human postmortem substantia nigra of both males and females with PD.
Collapse
Affiliation(s)
- A de Rus Jacquet
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC, G1V 4G2, Canada.
- Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, G1V 0A6, Canada.
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA.
| | - M Alpaugh
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC, G1V 4G2, Canada
- Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, G1V 0A6, Canada
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - H L Denis
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC, G1V 4G2, Canada
- Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, G1V 0A6, Canada
| | - J L Tancredi
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
- Cell Biology R&D, Thermo Fisher Scientific, Frederick, MD, 21704, USA
| | - M Boutin
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC, G1V 4G2, Canada
| | - J Decaestecker
- Centre de Recherche du CHU de Québec - Université Laval, Axe Endocrinologie et Néphrologie, Québec, QC, G1V 4G2, Canada
| | - C Beauparlant
- Centre de Recherche du CHU de Québec - Université Laval, Axe Endocrinologie et Néphrologie, Québec, QC, G1V 4G2, Canada
| | - L Herrmann
- Centre de Recherche du CHU de Québec - Université Laval, Axe Endocrinologie et Néphrologie, Québec, QC, G1V 4G2, Canada
| | - M Saint-Pierre
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC, G1V 4G2, Canada
| | - M Parent
- Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, G1V 0A6, Canada
- CERVO Brain Research Center, Québec, QC, G1E 1T2, Canada
| | - A Droit
- Centre de Recherche du CHU de Québec - Université Laval, Axe Endocrinologie et Néphrologie, Québec, QC, G1V 4G2, Canada
| | - S Breton
- Centre de Recherche du CHU de Québec - Université Laval, Axe Reproduction, santé de la mère et de l'enfant, Québec, QC, G1V 4G2, Canada
- Centre de recherche en reproduction, développement et santé intergénérationnelle, Université Laval, Québec, QC, G1V 4G2, Canada
| | - F Cicchetti
- Centre de Recherche du CHU de Québec - Université Laval, Axe Neurosciences, Québec, QC, G1V 4G2, Canada.
- Département de Psychiatrie & Neurosciences, Université Laval, Québec, QC, G1V 0A6, Canada.
| |
Collapse
|
26
|
Wu D, Chen Q, Chen X, Han F, Chen Z, Wang Y. The blood-brain barrier: structure, regulation, and drug delivery. Signal Transduct Target Ther 2023; 8:217. [PMID: 37231000 PMCID: PMC10212980 DOI: 10.1038/s41392-023-01481-w] [Citation(s) in RCA: 297] [Impact Index Per Article: 148.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/19/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023] Open
Abstract
Blood-brain barrier (BBB) is a natural protective membrane that prevents central nervous system (CNS) from toxins and pathogens in blood. However, the presence of BBB complicates the pharmacotherapy for CNS disorders as the most chemical drugs and biopharmaceuticals have been impeded to enter the brain. Insufficient drug delivery into the brain leads to low therapeutic efficacy as well as aggravated side effects due to the accumulation in other organs and tissues. Recent breakthrough in materials science and nanotechnology provides a library of advanced materials with customized structure and property serving as a powerful toolkit for targeted drug delivery. In-depth research in the field of anatomical and pathological study on brain and BBB further facilitates the development of brain-targeted strategies for enhanced BBB crossing. In this review, the physiological structure and different cells contributing to this barrier are summarized. Various emerging strategies for permeability regulation and BBB crossing including passive transcytosis, intranasal administration, ligands conjugation, membrane coating, stimuli-triggered BBB disruption, and other strategies to overcome BBB obstacle are highlighted. Versatile drug delivery systems ranging from organic, inorganic, and biologics-derived materials with their synthesis procedures and unique physio-chemical properties are summarized and analyzed. This review aims to provide an up-to-date and comprehensive guideline for researchers in diverse fields, offering perspectives on further development of brain-targeted drug delivery system.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, China.
- Zhejiang Rehabilitation Medical Center, The Third Affiliated Hospital of Zhejiang Chinese Medical University, 310053, Hangzhou, China.
| | - Qi Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, China
| | - Xiaojie Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, China
| | - Feng Han
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, Drug Target and Drug Discovery Center, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, China.
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, 310053, Hangzhou, China.
- Zhejiang Rehabilitation Medical Center, The Third Affiliated Hospital of Zhejiang Chinese Medical University, 310053, Hangzhou, China.
| |
Collapse
|
27
|
Nordhjem BJT, Tjørnlund M, Thomsen BL, Hjerming M, Kjær TW, Pappot H, Hjalgrim LL. Protocol for a prospective, longitudinal study of cognitive impairment in young patients with cancer: a multidisciplinary neuroscience approach (MyBrain). BMJ Open 2023; 13:e070534. [PMID: 37202143 DOI: 10.1136/bmjopen-2022-070534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
INTRODUCTION The aim of this research is to investigate young cancer patients' cognitive functioning and the underlying neurobiological mechanisms when cognitive functions are impaired. The MyBrain protocol is a multidisciplinary study that investigates cancer-related cognitive impairment in children, adolescents and young adults, combining neuropsychology, cognitive neuroscience and cellular neuroscience. The study is exploratory with a wide focus on trajectories of cognitive functions from diagnosis to the end of treatment and into survivorship. METHODS AND ANALYSIS Prospective longitudinal study including patients diagnosed with non-brain cancers at age 7-29 years. Each patient is paired with a control matched on age and social circle. PRIMARY OBJECTIVE Evaluation of neurocognitive function over time. SECONDARY OBJECTIVES Evaluation of self-perceived quality of life and fatigue, P300 in an electroencephalography (EEG) oddball paradigm, power spectrum in resting state EEG, serum and cerebrospinal fluid levels of biomarkers of neuronal damage, neuroplasticity, proinflammatory and anti-inflammatory markers and their association with cognitive function. ETHICS AND DISSEMINATION The study is approved by the Regional Ethics Committee for the Capital Region of Denmark (no. H-21028495), and the Danish Data Protection Agency (no. P-2021-473). Results are expected to guide future interventions to prevent brain damage and support patients with cognitive difficulties. TRIAL REGISTRATION NUMBER The article is registered at clinicaltrials.gov NCT05840575 (https://clinicaltrials.gov/ct2/show/NCT05840575).
Collapse
Affiliation(s)
| | - Morten Tjørnlund
- Center for Rehabilitation of Brain Injury, University of Copenhagen, Copenhagen, Denmark
| | - Birthe Lykke Thomsen
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Public Health, Section of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Maiken Hjerming
- Department of Haematology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | | | - Helle Pappot
- Department of Oncology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Lisa Lyngsie Hjalgrim
- Department of Paediatrics and Adolescent Medicine, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
28
|
Lentoor AG, Motsamai TB, Nxiweni T, Mdletshe B, Mdingi S. Protocol for a systematic review of the effects of gardening physical activity on neuroplasticity and cognitive function. AIMS Neurosci 2023; 10:118-129. [PMID: 37426777 PMCID: PMC10323255 DOI: 10.3934/neuroscience.2023009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 07/11/2023] Open
Abstract
Background The beneficial effects of gardening as a form of physical activity have garnered growing interest in recent years. Existing research suggests that physical activity enhances brain function through modifying synaptic plasticity, growth factor synthesis, and neurogenesis. Gardening physical activity is a promising, cost-effective, non-invasive intervention that can easily be augmented in the rehabilitation of neurodegenerative conditions. However, there is still insufficient literature. This protocol describes a systematic review to be conducted of scientific literature on the benefits of gardening as a physical activity that can promote neuroplasticity and improve cognitive function. This information can be useful as an intervention for persons who experience cognitive impairment brought on by cancer and chemotherapy in developing countries such as South Africa where there is real need to access cognitive rehabilitation. Methods and analysis The systematic review strategy will be conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. An electronic literature database search of MEDLINE (PubMed), Embase, Scopus, Cochrane Central Register of Controlled Trials (CENTRAL), and Web of Science will be carried out using medical search terms (MeSH), with English as the only permitted language, during the time period of January 2010 to December 2022. We will search for and review studies on how gardening as a physical activity impacts neuroplasticity and cognition. Two reviewers will read the titles, and abstracts and full text of the studies identified during the search to exclude records that do not meet the inclusion criteria. Data will then be extracted from the remaining studies. Any differences in opinion arising between the reviewers during the procedure will be resolved through discussion with a third reviewer. The Joanna Briggs Institute (JBI) Critical Appraisal Tool checklist will be utilized independently by two reviewers to evaluate the possibility of bias. The included articles will be subjected to narrative synthesis, with the results being presented in a thematic manner. Ethics and dissemination There are no need for ethical approval because no patient data will be gathered. The results will be disseminated through an open-access peer-reviewed indexed journal, presented scientific meetings.PROSPERO registration number: CRD42023394493.
Collapse
|
29
|
Murillo LC, Sutachan JJ, Albarracín SL. An update on neurobiological mechanisms involved in the development of chemotherapy-induced cognitive impairment (CICI). Toxicol Rep 2023; 10:544-553. [PMID: 37396847 PMCID: PMC10313882 DOI: 10.1016/j.toxrep.2023.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 04/08/2023] [Accepted: 04/25/2023] [Indexed: 07/04/2023] Open
Abstract
Cancer is the second leading cause of death worldwide despite efforts in early diagnosis of the disease and advances in treatment. The use of drugs that exert toxic effects on tumor cells or chemotherapy is one of the most widely used treatments against cancer. However, its low toxic selectivity affects both healthy cells and cancer cells. It has been reported that chemotherapeutic drugs may generate neurotoxicity that induces deleterious effects of chemotherapy in the central nervous system. In this sense, patients report decreased cognitive abilities, such as memory, learning, and some executive functions after chemotherapy. This chemotherapy-induced cognitive impairment (CICI) develops during treatment and persists even after chemotherapy. Here we present a review of the literature on the main neurobiological mechanisms involved in CICI using a Boolean formula following the steps of the PRISMA guidelines that were used to perform statements searches in various databases. The main mechanisms described in the literature to explain CRCI include direct and indirect mechanisms that induce neurotoxicity by chemotherapeutic agents. Therefore, this review provides a general understanding of the neurobiological mechanisms of CICI and the possible therapeutic targets to prevent it..
Collapse
Affiliation(s)
| | | | - Sonia Luz Albarracín
- Correspondence to: Carrera 7 No. 43–82, Edificio Jesús Emilio Ramírez, Lab 304A, Bogotá C.P.110211, Colombia.
| |
Collapse
|
30
|
Rahman MH, Jeong ES, You HS, Kim CS, Lee KJ. Redox-Mechanisms of Molecular Hydrogen Promote Healthful Longevity. Antioxidants (Basel) 2023; 12:988. [PMID: 37237854 PMCID: PMC10215238 DOI: 10.3390/antiox12050988] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/07/2023] [Accepted: 04/21/2023] [Indexed: 05/28/2023] Open
Abstract
Age-related diseases represent the largest threat to public health. Aging is a degenerative, systemic, multifactorial and progressive process, coupled with progressive loss of function and eventually leading to high mortality rates. Excessive levels of both pro- and anti-oxidant species qualify as oxidative stress (OS) and result in damage to molecules and cells. OS plays a crucial role in the development of age-related diseases. In fact, damage due to oxidation depends strongly on the inherited or acquired defects of the redox-mediated enzymes. Molecular hydrogen (H2) has recently been reported to function as an anti-oxidant and anti-inflammatory agent for the treatment of several oxidative stress and aging-related diseases, including Alzheimer's, Parkinson's, cancer and osteoporosis. Additionally, H2 promotes healthy aging, increases the number of good germs in the intestine that produce more intestinal hydrogen and reduces oxidative stress through its anti-oxidant and anti-inflammatory activities. This review focuses on the therapeutic role of H2 in the treatment of neurological diseases. This review manuscript would be useful in knowing the role of H2 in the redox mechanisms for promoting healthful longevity.
Collapse
Affiliation(s)
- Md. Habibur Rahman
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Republic of Korea (C.-S.K.)
| | - Eun-Sook Jeong
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Republic of Korea (C.-S.K.)
| | - Hae Sun You
- Department of Anesthesiology & Pain Medicine, Anam Hospital, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Cheol-Su Kim
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Republic of Korea (C.-S.K.)
| | - Kyu-Jae Lee
- Department of Convergence Medicine, Wonju College of Medicine, Yonsei University, Wonju 26426, Republic of Korea (C.-S.K.)
| |
Collapse
|
31
|
Correa DD, Vachha BA, Baser RE, Koch A, Wong P, Gohel S, Giralt S, Root JC. Neuroimaging and Neurocognitive Outcomes in Older Patients with Multiple Myeloma Treated with Chemotherapy and Autologous Stem Cell Transplantation. RESEARCH SQUARE 2023:rs.3.rs-2733807. [PMID: 37066224 PMCID: PMC10104268 DOI: 10.21203/rs.3.rs-2733807/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Background Many patients with hematological malignancies treated with stem cell transplantation (SCT) experience cognitive dysfunction. However, few studies have investigated treatment-related neurotoxicity in older adults with multiple myeloma (MM) treated with high dose chemotherapy (HDC) and autologous SCT (HDC/ASCT). In this study, we examined gray matter (GM) volume, resting state functional connectivity (RSFC), neurocognitive function (NF), and proinflammatory cytokines (PCy) in older patients with MM pre- and post-HDC/ASCT. Methods Eighteen MM patients underwent magnetic resonance imaging, neurocognitive tests, and serum PCy measurement prior to HDC/ASCT, and fifteen patients completed follow ups an average of five months post-HDC/ASCT. Results There were significant decreases in RSFC from pre- to post-HDC/ASCT in (1) the central executive network (CEN) involving the left dorsolateral prefrontal cortex and right posterior parietal cortex (p = 0.022), and (2) the CEN involving the right posterior parietal cortex and the salience network involving the right dorsal anterior cingulate cortex (p = 0.029); these comparisons were no longer significant after multiple comparisons correction. There were no significant changes in GM volumes or NF, except for improvement in attention (Digit Span Backward, p = 0.03). There were significant increases in several PCy post-HDC/ASCT (p ≤ 0.05). Conclusions This pilot study showed decreased RSFC involving the left frontal, right posterior parietal and right anterior cingulate cortices in MM patients post-HDC/ASCT, relatively stable NF, and increases in PCy. These findings are congruent with studies in patients with hematological malignancies and other cancers and provide supporting evidence for the vulnerability of frontoparietal regions to chemotherapy adverse effects.
Collapse
Affiliation(s)
| | | | | | | | | | - Suril Gohel
- Rutgers University School of Health Professions
| | | | | |
Collapse
|
32
|
Fleming B, Edison P, Kenny L. Cognitive impairment after cancer treatment: mechanisms, clinical characterization, and management. BMJ 2023; 380:e071726. [PMID: 36921926 DOI: 10.1136/bmj-2022-071726] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Cognitive impairment is a debilitating side effect experienced by patients with cancer treated with systemically administered anticancer therapies. With around 19.3 million new cases of cancer worldwide in 2020 and the five year survival rate growing from 50% in 1970 to 67% in 2013, an urgent need exists to understand enduring side effects with severe implications for quality of life. Whereas cognitive impairment associated with chemotherapy is recognized in patients with breast cancer, researchers have started to identify cognitive impairment associated with other treatments such as immune, endocrine, and targeted therapies only recently. The underlying mechanisms are diverse and therapy specific, so further evaluation is needed to develop effective therapeutic interventions. Drug and non-drug management strategies are emerging that target mechanistic pathways or the cognitive deficits themselves, but they need to be rigorously evaluated. Clinically, consistent use of objective diagnostic tools is necessary for accurate diagnosis and clinical characterization of cognitive impairment in patients treated with anticancer therapies. This should be supplemented with clinical guidelines that could be implemented in daily practice. This review summarizes the recent advances in the mechanisms, clinical characterization, and novel management strategies of cognitive impairment associated with treatment of non-central nervous system cancers.
Collapse
Affiliation(s)
- Ben Fleming
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
| | - Paul Edison
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK
- College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Laura Kenny
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| |
Collapse
|
33
|
Haller OJ, Semendric I, George RP, Collins-Praino LE, Whittaker AL. The effectiveness of anti-inflammatory agents in reducing chemotherapy-induced cognitive impairment in preclinical models - A systematic review. Neurosci Biobehav Rev 2023; 148:105120. [PMID: 36906244 DOI: 10.1016/j.neubiorev.2023.105120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023]
Abstract
Chemotherapy-induced cognitive impairment (CICI) is a debilitating condition resulting from chemotherapy administration for cancer treatment. CICI is characterised by various cognitive impairments, including issues with learning, memory, and concentration, impacting quality of life. Several neural mechanisms are proposed to drive CICI, including inflammation, therefore, anti-inflammatory agents could ameliorate such impairments. Research is still in the preclinical stage; however, the efficacy of anti-inflammatories to reduce CICI in animal models is unknown. Therefore, a systematic review was conducted, with searches performed in PubMed, Scopus, Embase, PsycInfo and Cochrane Library. A total of 64 studies were included, and of the 50 agents identified, 41 (82%) reduced CICI. Interestingly, while non-traditional anti-inflammatory agents and natural compounds reduced impairment, the traditional agents were unsuccessful. Such results must be taken with caution due to the heterogeneity observed in terms of methods employed. Nevertheless, preliminary evidence suggests anti-inflammatory agents could be beneficial for treating CICI, although it may be critical to think beyond the use of traditional anti-inflammatories when considering which specific compounds to prioritise in development.
Collapse
Affiliation(s)
- Olivia J Haller
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| | - Ines Semendric
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Rebecca P George
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, South Australia 5371, Australia
| | | | - Alexandra L Whittaker
- School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy Campus, Roseworthy, South Australia 5371, Australia.
| |
Collapse
|
34
|
Subramaniam CB, Wardill HR, Davies MR, Heng V, Gladman MA, Bowen JM. 5-Fluorouracil Induces an Acute Reduction in Neurogenesis and Persistent Neuroinflammation in a Mouse Model of the Neuropsychological Complications of Chemotherapy. Mol Neurobiol 2023; 60:1408-1424. [PMID: 36449255 DOI: 10.1007/s12035-022-03136-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 11/12/2022] [Indexed: 12/05/2022]
Abstract
The neuropsychological symptoms associated with chemotherapy treatment remain a major challenge with their prevention hampered by insufficient understanding of pathophysiology. While long-term neuroimmune changes have been identified as a hallmark feature shared by neurological symptoms, the exact timeline of mechanistic events preceding neuroinflammation, and the relationship between the glial cells driving this neuroinflammatory response, remain unclear. We therefore aimed to longitudinally characterize the neuroimmunological changes following systemic 5-fluorouracil (5-FU) treatment to gain insight into the timeline of events preceding the well-documented chronic neuroinflammation seen following chemotherapy. Eighteen female C57Bl/6 mice received a single intraperitoneal dose of 5-FU and groups were killed at days 1 and 2 (acute timepoint), days 4 and 8 (subacute timepoint), and days 16 and 32 (chronic timepoint). A further six mice were administered with vehicle control with tissues collected from three mice on day 1 and day 32 of the study. The expression of key genes of interest, BCL2, BDNF, TIMP1, MMP-9, MMP-2, TNFα, IL-1β, and IL-6R were assessed using real time polymerase chain reaction. Levels of neurogenesis were determined through immunofluorescent staining of doublecortin (DCX). The density of microglia and astrocytes were assessed using immunofluorescence staining of Iba1 and GFAP respectively. 5-FU treatment caused significant decreases to DCX staining at acute timepoints (p = 0.0030) which was positively correlated with BCL2 expression levels. An increase to microglial density was observed in the prefrontal cortex (p = 0.0256), CA3 region (p = 0.0283), and dentate gyrus (p = 0.0052) of the hippocampus at acute timepoints. 5-FU caused increases to astrocyte density, across multiple brains regions, at subacute and chronic timepoints which were positively correlated with TNFα, TIMP-1, MMP-2, and IL-6R expression. This study has identified acute objective neuroinflammatory changes suggesting that the role of early intervention should be explored to prevent the development of neuropsychological deficits in the longer-term following chemotherapy.
Collapse
Affiliation(s)
- Courtney B Subramaniam
- School of Biomedicine, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia.
- Supportive Oncology Research Group, Precision Medicine (Cancer), South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, South Australia, Australia.
| | - Hannah R Wardill
- Supportive Oncology Research Group, Precision Medicine (Cancer), South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, South Australia, Australia
| | - Maya R Davies
- Supportive Oncology Research Group, Precision Medicine (Cancer), South Australian Health and Medical Research Institute (SAHMRI), University of Adelaide, Adelaide, South Australia, Australia
| | - Vivien Heng
- School of Biomedicine, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Marc A Gladman
- School of Biomedicine, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Joanne M Bowen
- School of Biomedicine, Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
35
|
Mysonhimer AR, Cannavale CN, Bailey MA, Khan NA, Holscher HD. Prebiotic Consumption Alters Microbiota but Not Biological Markers of Stress and Inflammation or Mental Health Symptoms in Healthy Adults: A Randomized, Controlled, Crossover Trial. J Nutr 2023; 153:1283-1296. [PMID: 36841506 DOI: 10.1016/j.tjnut.2023.02.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/26/2023] [Accepted: 02/08/2023] [Indexed: 02/27/2023] Open
Abstract
BACKGROUND Chronic stress contributes to systemic inflammation and diminished mental health. Although animal work suggests strong links with the microbiota-gut-brain axis, clinical trials investigating the effectiveness of prebiotics in improving mental health and reducing inflammation are lacking. OBJECTIVES We aimed to determine fructooligosaccharide (FOS) and galactooligosaccharide (GOS) effects on biological markers of stress and inflammation and mental health symptoms in adults. Secondary outcomes included fecal microbiota and metabolites, digestive function, emotion, and sleep. METHODS Twenty-four healthy adults (25-45 y; 14 females, 10 males; BMI, 29.3 ± 1.8 kg/m2) from central Illinois participated in a 2-period, randomized, controlled, single-blinded crossover trial. Interventions included the prebiotic (PRE) treatment (237 mL/d Lactaid low-fat 1% milk, 5 g/d FOS, 5 g/d GOS) and control (CON) (237 mL/d Lactaid), which were consumed in counterbalanced order for 4 wk each, separated by ≥4-wk washout. Inflammatory markers were measured in blood plasma (>10-h fast) and cortisol in urine. The Depression Anxiety Stress Scales-42 assessed mental health symptoms. Fecal samples were collected for 16S rRNA gene (V4 region) sequencing and analysis. Emotion was measured by rating images from a computer task. Sleep was assessed using 7-d records and accelerometers. Change scores were analyzed using linear mixed models with treatment and baseline covariate as fixed effects and participant ID as the random effect. RESULTS There were no differences in change scores between PRE and CON treatments on biological markers of stress and inflammation or mental health. PRE increased change in percent sequences (q = 0.01) of Actinobacteriota (CON: 0.46 ± 0.70%; PRE: 5.40 ± 1.67%) and Bifidobacterium (CON: -1.72 ± 0.43%; PRE: 4.92 ± 1.53%). There were also no differences in change scores between treatments for microbial metabolites, digestive function, emotion, or sleep quality. CONCLUSIONS FOS+GOS did not affect biological markers of stress and inflammation or mental health symptoms in healthy adults; however, it increased Bifidobacterium. CLINICAL TRIAL REGISTRY NCT04551937, www. CLINICALTRIALS gov.
Collapse
Affiliation(s)
| | | | - Melisa A Bailey
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA
| | - Naiman A Khan
- Neuroscience Program, University of Illinois, Urbana, IL, USA; Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA; Department of Kinesiology and Community Health, University of Illinois, Urbana, IL, USA
| | - Hannah D Holscher
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, USA; Division of Nutritional Sciences, University of Illinois, Urbana, IL, USA.
| |
Collapse
|
36
|
Guran E, Hu J, Wefel JS, Chung C, Cata JP. Perioperative considerations in patients with chemotherapy-induced cognitive impairment: a narrative review. Br J Anaesth 2022; 129:909-922. [PMID: 36270848 DOI: 10.1016/j.bja.2022.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/01/2022] [Accepted: 08/23/2022] [Indexed: 11/02/2022] Open
Abstract
Patients with cancer may suffer from a decline in their cognitive function after various cancer therapies, including surgery, radiation, and chemotherapy, and in some cases, this decline in cognitive function persists even years after completion of treatment. Chemobrain or chemotherapy-induced cognitive impairment, a well-established clinical syndrome, has become an increasing concern as the number of successfully treated cancer patients has increased significantly. Chemotherapy-induced cognitive impairment can originate from direct neurotoxicity, neuroinflammation, and oxidative stress, resulting in alterations in grey matter volume, white matter integrity, and brain connectivity. Surgery has been associated with exacerbating the inflammatory response associated with chemotherapy and predisposes patients to develop postoperative cognitive dysfunction. As the proportion of patients living longer after these therapies increases, the magnitude of impact and growing concern of post-treatment cognitive dysfunction in these patients has also come to the fore. We review the clinical presentation, potential mechanisms, predisposing factors, diagnostic methods, neuropsychological testing, and imaging findings of chemotherapy-induced cognitive impairment and its intersection with postoperative cognitive dysfunction.
Collapse
Affiliation(s)
- Ekin Guran
- Department of Anaesthesiology and Reanimation, University of Health Sciences, Ankara Oncology Training and Research Hospital, Ankara, Turkey; Anaesthesiology and Surgical Oncology Research Group, Houston, TX, USA
| | - Jian Hu
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeffrey S Wefel
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Caroline Chung
- Department of Neuro-Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Juan P Cata
- Anaesthesiology and Surgical Oncology Research Group, Houston, TX, USA; Department of Anaesthesiology and Perioperative Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
37
|
Secondary Psychosis Following Neoadjuvant AC-T Chemotherapy for Triple-Negative Breast Cancer: Case Report and Literature Review of Psychosis Postchemotherapy. Case Rep Psychiatry 2022; 2022:4939219. [PMCID: PMC9635971 DOI: 10.1155/2022/4939219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Triple-negative breast cancer is a unique subtype among breast cancers. Management includes a neoadjuvant chemotherapy regimen. Psychiatric complications of the regimen have not been reported before. We present a case of acute psychosis after the second cycle of chemotherapy in a 42-year-old woman with triple-negative breast cancer. The patient presented with sudden irritability, agitation, disorganization in speech and behavior, and paranoia involving her coworkers conspiring against her and causing her trouble with the law for 4 days. She was in her usual state of health until after her second cycle of chemotherapy. This was the first presentation of psychotic symptoms in her life. She was conscious and oriented. There were no neurologic deficits. She denied any change in her mood and any features of hallucinations. She was uncooperative, restless, had flight of ideas, and persecutory delusions. The remainder of the examination was normal. An autoimmune process, nervous system infection, or psychosis secondary to the chemotherapy were suspected. Serum electrolytes and other biochemical parameters were normal. Imaging of the brain showed no signs of acute brain insults or intracranial metastasis. Cerebrospinal fluid analysis and culture showed no abnormality or growth. The work-up revealed that neurologic, infectious, or autoimmune causes of her psychotic symptoms were less likely. Thus, a diagnosis of psychosis secondary to chemotherapy was considered. Treatment was with paliperidone, risperidone, clonazepam, and sertraline. Over the course of treatment, she showed substantial improvement and completed all of the chemotherapy sessions without adverse effects. In summary, we report a case of a patient whose initial chemotherapy course was complicated by psychosis. Since the neurotoxic and psychiatric effects of chemotherapeutics are not yet sufficiently elucidated, our case emphasizes that early signs of behavioral changes in patients receiving chemotherapy should trigger comprehensive psychiatric evaluation and monitoring of the patient’s mental state.
Collapse
|
38
|
Wu Y, Berisha A, Borniger JC. Neuropeptides in Cancer: Friend and Foe? Adv Biol (Weinh) 2022; 6:e2200111. [PMID: 35775608 DOI: 10.1002/adbi.202200111] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/31/2022] [Indexed: 01/28/2023]
Abstract
Neuropeptides are small regulatory molecules found throughout the body, most notably in the nervous, cardiovascular, and gastrointestinal systems. They serve as neurotransmitters or hormones in the regulation of diverse physiological processes. Cancer cells escape normal growth control mechanisms by altering their expression of growth factors, receptors, or intracellular signals, and neuropeptides have recently been recognized as mitogens in cancer growth and development. Many neuropeptides and their receptors exist in multiple subtypes, coupling with different downstream signaling pathways and playing distinct roles in cancer progression. The consideration of neuropeptide/receptor systems as anticancer targets is already leading to new biological and diagnostic knowledge that has the potential to enhance the understanding and treatment of cancer. In this review, recent discoveries regarding neuropeptides in a wide range of cancers, emphasizing their mechanisms of action, signaling cascades, regulation, and therapeutic potential, are discussed. Current technologies used to manipulate and analyze neuropeptides/receptors are described. Applications of neuropeptide analogs and their receptor inhibitors in translational studies and radio-oncology are rapidly increasing, and the possibility for their integration into therapeutic trials and clinical treatment appears promising.
Collapse
Affiliation(s)
- Yue Wu
- Cold Spring Harbor Laboratory, One Bungtown Rd, Cold Spring Harbor, NY, 11724, USA
| | - Adrian Berisha
- Cold Spring Harbor Laboratory, One Bungtown Rd, Cold Spring Harbor, NY, 11724, USA
| | - Jeremy C Borniger
- Cold Spring Harbor Laboratory, One Bungtown Rd, Cold Spring Harbor, NY, 11724, USA
| |
Collapse
|
39
|
Chronic allergic lung inflammation negatively influences neurobehavioral outcomes in mice. J Neuroinflammation 2022; 19:210. [PMID: 36045388 PMCID: PMC9429782 DOI: 10.1186/s12974-022-02575-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/23/2022] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Asthma is a major public health problem worldwide. Emerging data from epidemiological studies show that allergies and allergic diseases may be linked to anxiety, depression and cognitive decline. However, little is known about the effect of asthma, an allergic lung inflammation, on cognitive decline/behavioral changes. Therefore, we investigated the hypothesis that allergic lung inflammation causes inflammation in the brain and leads to neurobehavioral changes in mice. METHODS Wild-type C57BL/6J female mice were sensitized with nasal house dust mite (HDM) antigen or control PBS for 6 weeks to induce chronic allergic lung inflammation. A series of neurocognitive tests for anxiety and/or depression were performed before and after the intranasal HDM administration. After the behavior tests, tissues were harvested to measure inflammation in the lungs and the brains. RESULTS HDM-treated mice exhibited significantly increased immobility times during tail suspension tests and significantly decreased sucrose preference compared with PBS controls, suggesting a more depressed and anhedonia phenotype. Spatial memory impairment was also observed in HDM-treated mice when assessed by the Y-maze novel arm tests. Development of lung inflammation after 6 weeks of HDM administration was confirmed by histology, bronchoalveolar lavage (BAL) cell count and lung cytokine measurements. Serum pro-inflammatory cytokines and Th2-related cytokines levels were elevated in HDM-sensitized mice. In the brain, the chemokine fractalkine was increased in the HDM group. The c-Fos protein, a marker for neuronal activity, Glial Fibrillary Acidic Protein (GFAP) and chymase, a serine protease from mast cells, were increased in the brains from mice in HDM group. Chymase expression in the brain was negatively correlated with the results of sucrose preference rate in individual mice. CONCLUSIONS 6 weeks of intranasal HDM administration in mice to mimic the chronic status of lung inflammation in asthma, caused significant inflammatory histological changes in the lungs, and several behavioral changes consistent with depression and altered spatial memory. Chymase and c-Fos proteins were increased in the brain from HDM-treated mice, suggesting links between lung inflammation and brain mast cell activation, which could be responsible for depression-like behavior.
Collapse
|
40
|
Yu S, Zhao J, Wang M, Cheng G, Li W, Tang L, Yao S, Pang L, Yin X, Jing Y, Cheng H. The correlation between neutrophil-to-lymphocyte ratio, carcinoembryonic antigen, and carbohydrate antigen 153 levels with chemotherapy-related cognitive impairment in early-stage breast cancer patients. Front Med (Lausanne) 2022; 9:945433. [PMID: 36091709 PMCID: PMC9453200 DOI: 10.3389/fmed.2022.945433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/01/2022] [Indexed: 11/24/2022] Open
Abstract
Background The changes in inflammation and tumor biomarkers are associated with the anti-tumor immunological processes. Early detection and intervention are of great significance to the clinical management of cancer-related diseases. Peripheral blood biomarkers [e.g., neutrophil-to-lymphocyte ratio (NLR), carcinoembryonic antigen (CEA), and carbohydrate antigen 153 (CA153)] are obtained in real-timely, conveniently, and less invasively, and proved to availably predicted the disease states and prognosis of various cancers, including breast cancer (BC). Inflammation and poor disease management promote cognitive impairment. Chemotherapy-related cognitive impairment (CRCI) hazard long-term survival and quality of life (QOL) of BC patients, but its correlation with NLR, CEA, and CA153 is not clear. Purpose This study aimed to investigate changes in NLR, CEA, and CA153 levels before and after chemotherapy and their correlation with CRCI in patients with early-stage BC. Materials and methods The 187 patients with BC who were measured for NLR, CEA, and CA153 values within the first 24 hours of admission, were assigned into two groups: the before/after chemotherapy group (BCG/ACG). The ACG was assigned into two subgroups based on the cognitive assessment results: the cognitive normal/impaired group (CNG/CIG). Patients’ self-perceived cognitive impairments were evaluated using a mini-mental state examination (MMSE), prospective and retrospective memory (PM and RM) questionnaire (PRMQ), and functional assessment of cancer therapy-cognitive function version 3 (FACT-Cog, version 3, including CogPCI, CogOth, CogPCA, and CogQOL). Their QOL was also evaluated. Results The NLR and CA153 levels were elevated after chemotherapy (BCG vs ACG: Z = −1.996 and −1.615, P = 0.046 and 0.106, respectively), and significantly elevated in patients with CRCI (BCG vs CIG: Z = −2.444 and -2.293, P = 0.015 and 0.022; respectively). However, there was not reach significant difference in CEA levels between the four groups. In addition, there was a weak to moderate correlation between peripheral blood biomarkers (NLR, CEA, and CA153) levels and CRCI (r = −0.404, −0.205, −0.322; respectively; P < 0.001). Cognitive impairment scores (MMSE, PM, RM, and FACT-Cog) had a strong correlation with QOL in patients with early-stage BC (r = −0.786, 0.851, 0.849, and 0.938; respectively; P < 0.001). Conclusion NLR and CA153 m be valuable diagnostic adjuncts of CRCI, and CRCI has a strong correlation with QOL in patients with early-stage BC.
Collapse
Affiliation(s)
- Sheng Yu
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jingjing Zhao
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Menglian Wang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guo Cheng
- Department of Finance, University of Connecticut, Storrs, CT, United States
| | - Wen Li
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lingxue Tang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Senbang Yao
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Lulian Pang
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiangxiang Yin
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yanyan Jing
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Huaidong Cheng
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Huaidong Cheng,
| |
Collapse
|
41
|
Ibrahim Fouad G, El-Sayed SAM, Mabrouk M, Ahmed KA, Beherei HH. Neuroprotective Potential of Intranasally Delivered Sulforaphane-Loaded Iron Oxide Nanoparticles Against Cisplatin-Induced Neurotoxicity. Neurotox Res 2022; 40:1479-1498. [PMID: 35969308 PMCID: PMC9515146 DOI: 10.1007/s12640-022-00555-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/06/2022] [Accepted: 08/01/2022] [Indexed: 11/28/2022]
Abstract
Cisplatin (CIS) is a platinum-based chemotherapeutic drug that is widely used to treat cancer. However, its therapeutic efficiency is limited due to its potential to provoke neurotoxicity. Sulforaphane (SF) is a natural phytochemical that demonstrated several protective activities. Iron oxide nanoparticles (Fe3O4-NPs) could be used as drug carriers. This study aimed to explore the nanotoxic influence of SF-loaded within Fe3O4-NPs (N.SF), and to compare the neuroprotective potential of both N.SF and SF against CIS-induced neurotoxicity. N.SF or SF was administrated intranasally for 5 days before and 3 days after a single dose of CIS (12 mg/kg/week, i.p.) on the 6th day. Neuromuscular coordination was assessed using hanging wire and tail-flick tests. Acetylcholinesterase (AChE) activities and markers of oxidative stress were measured in the brain. In addition, the brain iron (Fe) content was estimated. CIS significantly induced a significant increase in AChE activities and lipid peroxides, and a significant decrement in glutathione (GSH) and nitric oxide (NO) contents. CIS elicited impaired neuromuscular function and thermal hyperalgesia. CIS-induced brains displayed a significant reduction in Fe content. Histopathological examination of different brain regions supported the biochemical and behavioral results. Contradict, treatment of CIS-rats with either N.SF or SF significantly decreased AChE activity, mitigated oxidative stress, and ameliorated the behavioral outcome. The histopathological features supported our results. Collectively, N.SF demonstrated superior neuroprotective activities on the behavioral, biochemical, and histopathological (striatum and cerebral cortex) aspects. N.SF could be regarded as a promising “pre-clinical” neuroprotective agent. Furthermore, this study confirmed the safe toxicological profile of Fe3O4-NPs.
Collapse
Affiliation(s)
- Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt.
| | - Sara A M El-Sayed
- Refractories, Ceramics and Building Materials Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, Cairo, 12622, Egypt
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, Cairo, 12622, Egypt
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt
| | - Hanan H Beherei
- Refractories, Ceramics and Building Materials Department, Advanced Materials Technology and Mineral Resources Research Institute, National Research Centre, 33 El Bohouth St., Dokki, Cairo, 12622, Egypt
| |
Collapse
|
42
|
Liu S, Guo Y, Ni J, Yin N, Li C, Pan X, Ma R, Wu J, Li S, Li X. Chemotherapy-induced functional brain abnormality in colorectal cancer patients: a resting‐state functional magnetic resonance imaging study. Front Oncol 2022; 12:900855. [PMID: 35924154 PMCID: PMC9339615 DOI: 10.3389/fonc.2022.900855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/28/2022] [Indexed: 12/02/2022] Open
Abstract
Introduction Chemotherapy-induced cognitive impairment (i.e., “chemobrain”) is a common neurotoxic side-effect experienced by many cancer survivors who undergone chemotherapy. However, the central mechanism underlying chemotherapy-related cognitive impairment is still unclear. The purpose of this study was to investigate the changes of intrinsic brain activity and their associations with cognitive impairment in colorectal cancer (CRC) patients after chemotherapy. Methods Resting‐state functional magnetic resonance imaging data of 29 CRC patients following chemotherapy and 29 matched healthy controls (HCs) were collected in this study, as well as cognitive test data including Mini Mental State Exam (MMSE), Montreal Cognitive Assessment (MoCA) and Functional Assessment of Cancer Therapy-Cognitive Function (FACT-Cog). The measure of fractional amplitude of low-frequency fluctuation (fALFF) was calculated and compared between groups. The correlations between the fALFF of impaired brain region and cognitive performance were also analyzed. Results Compared with HCs, CRC patients following chemotherapy showed decreased fALFF values in the left anterior cingulate gyrus (ACG) and middle frontal gyrus, as well as increased fALFF values in the left superior frontal gyrus (orbital part) and middle occipital gyrus. Moreover, positive associations were identified between fALFF values of the left ACG and the total scores of MMSE, MoCA and FACT-Cog in the patient group. Conclusion These findings indicated that CRC patients after chemotherapy had decreased intrinsic brain activity in the left ACG, which might be vulnerable to the neurotoxic side-effect of chemotherapeutic drugs and related to chemotherapy-induced cognitive impairment.
Collapse
Affiliation(s)
- Siwen Liu
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yesong Guo
- Department of Radiotherapy, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Ni
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Na Yin
- Department of Radiology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Chenchen Li
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Xuan Pan
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Rong Ma
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jianzhong Wu
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Shengwei Li
- Department of Anorectal, Yangzhou Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Yangzhou, China
- *Correspondence: Xiaoyou Li, ; Shengwei Li,
| | - Xiaoyou Li
- Department of Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Xiaoyou Li, ; Shengwei Li,
| |
Collapse
|
43
|
Arshad R, Kiani MH, Rahdar A, Sargazi S, Barani M, Shojaei S, Bilal M, Kumar D, Pandey S. Nano-Based Theranostic Platforms for Breast Cancer: A Review of Latest Advancements. Bioengineering (Basel) 2022; 9:bioengineering9070320. [PMID: 35877371 PMCID: PMC9311542 DOI: 10.3390/bioengineering9070320] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is a highly metastatic multifactorial disease with various histological and molecular subtypes. Due to recent advancements, the mortality rate in BC has improved over the past five decades. Detection and treatment of many cancers are now possible due to the application of nanomedicine in clinical practice. Nanomedicine products such as Doxil® and Abraxane® have already been extensively used for BC adjuvant therapy with favorable clinical outcomes. However, these products were designed initially for generic anticancer purposes and not specifically for BC treatment. With a better understanding of the molecular biology of BC, several novel and promising nanotherapeutic strategies and devices have been developed in recent years. In this context, multi-functionalized nanostructures are becoming potential carriers for enhanced chemotherapy in BC patients. To design these nanostructures, a wide range of materials, such as proteins, lipids, polymers, and hybrid materials, can be used and tailored for specific purposes against BC. Selective targeting of BC cells results in the activation of programmed cell death in BC cells and can be considered a promising strategy for managing triple-negative BC. Currently, conventional BC screening methods such as mammography, digital breast tomosynthesis (DBT), ultrasonography, and magnetic resonance imaging (MRI) are either costly or expose the user to hazardous radiation that could harm them. Therefore, there is a need for such analytical techniques for detecting BC that are highly selective and sensitive, have a very low detection limit, are durable, biocompatible, and reproducible. In detecting BC biomarkers, nanostructures are used alone or in conjunction with numerous molecules. This review intends to highlight the recent advances in nanomedicine in BC treatment and diagnosis, emphasizing the targeting of BC cells that overexpress receptors of epidermal growth factors. Researchers may gain insight from these strategies to design and develop more tailored nanomedicine for BC to achieve further improvements in cancer specificity, antitumorigenic effects, anti-metastasis effects, and drug resistance reversal effects.
Collapse
Affiliation(s)
- Rabia Arshad
- Faculty of Pharmacy, University of Lahore, Lahore 54000, Pakistan;
| | | | - Abbas Rahdar
- Department of Physics, University of Zabol, Zabol 98613-35856, Iran
- Correspondence: (A.R.); or (S.P.)
| | - Saman Sargazi
- Cellular and Molecular Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran;
| | - Mahmood Barani
- Medical Mycology and Bacteriology Research Center, Kerman University of Medical Sciences, Kerman 76169-13555, Iran;
| | - Shirin Shojaei
- Imam Ali Hospital, Kermanshah University of Medical Sciences, Kermanshah 67158-47141, Iran;
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China;
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan 173229, India;
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
- Correspondence: (A.R.); or (S.P.)
| |
Collapse
|
44
|
Berisha A, Shutkind K, Borniger JC. Sleep Disruption and Cancer: Chicken or the Egg? Front Neurosci 2022; 16:856235. [PMID: 35663547 PMCID: PMC9160986 DOI: 10.3389/fnins.2022.856235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/05/2022] [Indexed: 11/13/2022] Open
Abstract
Sleep is a nearly ubiquitous phenomenon across the phylogenetic tree, highlighting its essential role in ensuring fitness across evolutionary time. Consequently, chronic disruption of the duration, timing, or structure of sleep can cause widespread problems in multiple physiological systems, including those that regulate energy balance, immune function, and cognitive capacity, among others. Many, if not all these systems, become altered throughout the course of cancer initiation, growth, metastatic spread, treatment, and recurrence. Recent work has demonstrated how changes in sleep influence the development of chronic diseases, including cancer, in both humans and animal models. A common finding is that for some cancers (e.g., breast), chronic disruption of sleep/wake states prior to disease onset is associated with an increased risk for cancer development. Additionally, sleep disruption after cancer initiation is often associated with worse outcomes. Recently, evidence suggesting that cancer itself can affect neuronal circuits controlling sleep and wakefulness has accumulated. Patients with cancer often report difficulty falling asleep, difficulty staying asleep, and severe fatigue, during and even years after treatment. In addition to the psychological stress associated with cancer, cancer itself may alter sleep homeostasis through changes to host physiology and via currently undefined mechanisms. Moreover, cancer treatments (e.g., chemotherapy, radiation, hormonal, and surgical) may further worsen sleep problems through complex biological processes yet to be fully understood. This results in a "chicken or the egg" phenomenon, where it is unclear whether sleep disruption promotes cancer or cancer reciprocally disrupts sleep. This review will discuss existing evidence for both hypotheses and present a framework through which the interactions between sleep and cancer can be dissociated and causally investigated.
Collapse
Affiliation(s)
- Adrian Berisha
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Kyle Shutkind
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | | |
Collapse
|
45
|
Hiengrach P, Visitchanakun P, Tongchairawewat P, Tangsirisatian P, Jungteerapanich T, Ritprajak P, Wannigama DL, Tangtanatakul P, Leelahavanichkul A. Sepsis Encephalopathy Is Partly Mediated by miR370-3p-Induced Mitochondrial Injury but Attenuated by BAM15 in Cecal Ligation and Puncture Sepsis Male Mice. Int J Mol Sci 2022; 23:5445. [PMID: 35628259 PMCID: PMC9141734 DOI: 10.3390/ijms23105445] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 02/06/2023] Open
Abstract
BAM15 (a mitochondrial uncoupling agent) was tested on cecal ligation and puncture (CLP) sepsis mice with in vitro experiments. BAM15 attenuated sepsis as indicated by survival, organ histology (kidneys and livers), spleen apoptosis (activated caspase 3), brain injury (SHIRPA score, serum s100β, serum miR370-3p, brain miR370-3p, brain TNF-α, and apoptosis), systemic inflammation (cytokines, cell-free DNA, endotoxemia, and bacteremia), and blood-brain barrier (BBB) damage (Evan's blue dye and the presence of green fluorescent E. coli in brain after an oral administration). In parallel, brain miR arrays demonstrated miR370-3p at 24 h but not 120 h post-CLP, which was correlated with metabolic pathways. Either lipopolysaccharide (LPS) or TNF-α upregulated miR370-3p in PC12 (neuron cells). An activation by sepsis factors (LPS, TNF-α, or miR370-3p transfection) damaged mitochondria (fluorescent color staining) and reduced cell ATP, possibly through profound mitochondrial activity (extracellular flux analysis) that was attenuated by BAM15. In bone-marrow-derived macrophages, LPS caused mitochondrial injury, decreased cell ATP, enhanced glycolysis activity (extracellular flux analysis), and induced pro-inflammatory macrophages (iNOS and IL-1β) which were neutralized by BAM15. In conclusion, BAM15 attenuated sepsis through decreased mitochondrial damage, reduced neuronal miR370-3p upregulation, and induced anti-inflammatory macrophages. BAM15 is proposed to be used as an adjuvant therapy against sepsis hyperinflammation.
Collapse
Affiliation(s)
- Pratsanee Hiengrach
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (P.H.); (P.V.)
| | - Peerapat Visitchanakun
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (P.H.); (P.V.)
| | - Pakteema Tongchairawewat
- Chulalongkorn University International Medical Program, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.T.); (P.T.); (T.J.)
| | - Ponphisudti Tangsirisatian
- Chulalongkorn University International Medical Program, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.T.); (P.T.); (T.J.)
| | - Thitiphat Jungteerapanich
- Chulalongkorn University International Medical Program, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.T.); (P.T.); (T.J.)
| | - Patcharee Ritprajak
- Research Unit in Integrative Immuno-Microbial Biochemistry and Bioresponsive Nanomaterials, Department of Microbiology, Faculty of Dentistry, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Dhammika Leshan Wannigama
- Antimicrobial Resistance and Stewardship Research Unit, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
- School of Medicine, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Pattarin Tangtanatakul
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Immunology and Immune-Mediated Disease, Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand
| | - Asada Leelahavanichkul
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Chulalongkorn University, Bangkok 10330, Thailand; (P.H.); (P.V.)
- Nephrology Unit, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
46
|
Was H, Borkowska A, Bagues A, Tu L, Liu JYH, Lu Z, Rudd JA, Nurgali K, Abalo R. Mechanisms of Chemotherapy-Induced Neurotoxicity. Front Pharmacol 2022; 13:750507. [PMID: 35418856 PMCID: PMC8996259 DOI: 10.3389/fphar.2022.750507] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/02/2022] [Indexed: 12/15/2022] Open
Abstract
Since the first clinical trials conducted after World War II, chemotherapeutic drugs have been extensively used in the clinic as the main cancer treatment either alone or as an adjuvant therapy before and after surgery. Although the use of chemotherapeutic drugs improved the survival of cancer patients, these drugs are notorious for causing many severe side effects that significantly reduce the efficacy of anti-cancer treatment and patients’ quality of life. Many widely used chemotherapy drugs including platinum-based agents, taxanes, vinca alkaloids, proteasome inhibitors, and thalidomide analogs may cause direct and indirect neurotoxicity. In this review we discuss the main effects of chemotherapy on the peripheral and central nervous systems, including neuropathic pain, chemobrain, enteric neuropathy, as well as nausea and emesis. Understanding mechanisms involved in chemotherapy-induced neurotoxicity is crucial for the development of drugs that can protect the nervous system, reduce symptoms experienced by millions of patients, and improve the outcome of the treatment and patients’ quality of life.
Collapse
Affiliation(s)
- Halina Was
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Agata Borkowska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Ana Bagues
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain.,High Performance Research Group in Experimental Pharmacology (PHARMAKOM-URJC), URJC, Alcorcón, Spain.,Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Longlong Tu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Julia Y H Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zengbing Lu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - John A Rudd
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,The Laboratory Animal Services Centre, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.,Department of Medicine Western Health, University of Melbourne, Melbourne, VIC, Australia.,Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia
| | - Raquel Abalo
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain.,Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), URJC, Alcorcón, Spain.,Grupo de Trabajo de Ciencias Básicas en Dolor y Analgesia de la Sociedad Española del Dolor, Madrid, Spain
| |
Collapse
|
47
|
Al-Qadami G, Van Sebille Y, Bowen J, Wardill H. Oral-Gut Microbiome Axis in the Pathogenesis of Cancer Treatment-Induced Oral Mucositis. FRONTIERS IN ORAL HEALTH 2022; 3:881949. [PMID: 35419563 PMCID: PMC8996059 DOI: 10.3389/froh.2022.881949] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Oral mucositis (OM) is one of the most common and debilitating oral complications of cancer treatments including chemotherapy, radiotherapy, and hematopoietic stem cell transplantation. It is associated with severe pain and difficulties in chewing, swallowing, and speech. This leads to impairment of basic oral functions and could result in unplanned treatment interruption or modification. As such, OM negatively impacts both patients' quality of life as well as tumor prognostic outcomes. Understanding pathways underlying OM pathogenesis help identify new targets for intervention or prevention. The pathophysiology of OM has been widely studied over past decades with several pathways related to oxidative stress, inflammation, and molecular and cellular signaling being implicated. In this mini-review, we will discuss the emerging role of the oral-gut microbiome axis in the development of OM. Particularly, we will elaborate on how the alterations in the oral and gut microbiota as well as intestinal dysfunction caused by cancer treatments could contribute to the pathogenesis of OM. Further, we will briefly discuss the potential methods for targeting the oral-gut microbiome axis to improve OM outcomes.
Collapse
Affiliation(s)
- Ghanyah Al-Qadami
- School of Biomedicine, University of Adelaide, Adelaide, SA, Australia
| | | | - Joanne Bowen
- School of Biomedicine, University of Adelaide, Adelaide, SA, Australia
| | - Hannah Wardill
- School of Biomedicine, University of Adelaide, Adelaide, SA, Australia
- Precision Medicine Theme (Cancer), South Australian Health and Medical Research Institute, Adelaide, SA, Australia
| |
Collapse
|
48
|
Cognitive adverse effects of chemotherapy and immunotherapy: are interventions within reach? Nat Rev Neurol 2022; 18:173-185. [PMID: 35140379 DOI: 10.1038/s41582-021-00617-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/23/2021] [Indexed: 02/06/2023]
Abstract
One in three people will be diagnosed with cancer during their lifetime. The community of cancer patients is growing, and several common cancers are becoming increasingly chronic; thus, cancer survivorship is an important part of health care. A large body of research indicates that cancer and cancer therapies are associated with cognitive impairment. This research has mainly concentrated on chemotherapy-associated cognitive impairment but, with the arrival of immunotherapies, the focus is expected to widen and the number of studies investigating the potential cognitive effects of these new therapies is rising. Meanwhile, patients with cognitive impairment and their healthcare providers are eagerly awaiting effective approaches to intervene against the cognitive effects of cancer treatment. In this Review, we take stock of the progress that has been made and discuss the steps that need to be taken to accelerate research into the biology underlying cognitive decline following chemotherapy and immunotherapy and to develop restorative and preventive interventions. We also provide recommendations to clinicians on how to best help patients who are currently experiencing cognitive impairment.
Collapse
|
49
|
Janelsins MC, Lei L, Netherby-Winslow C, Kleckner AS, Kerns S, Gilmore N, Belcher E, Thompson BD, Werner ZA, Hopkins JO, Long J, Cole S, Culakova E. Relationships between cytokines and cognitive function from pre- to post-chemotherapy in patients with breast cancer. J Neuroimmunol 2022; 362:577769. [PMID: 34871864 PMCID: PMC10659959 DOI: 10.1016/j.jneuroim.2021.577769] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/01/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022]
Abstract
Cancer-related cognitive decline (CRCD) is a clinically important problem and negatively affects daily functioning and quality of life. We conducted a pilot longitudinal study from pre- to post-chemotherapy in patients with breast cancer to assess changes in inflammation and cognition over time, as well as the impact of baseline cytokine level on post-chemotherapy cognitive scores. We found that concentrations of IL-6, MCP-1, sTNFRI, and sTNFRII significantly increased in patients, while IL-1β significantly decreased (p < 0.05). After controlling for covariates, increases in IL-6 and MCP-1 were associated with worse executive function and verbal fluency in patients from pre- to post-chemotherapy (p < 0.05). Higher baseline IL-6 was associated with better performance on executive function and verbal fluency post chemotherapy (p < 0.05). Overall, these results suggest that chemotherapy-associated increases in cytokines/receptors is associated with worse cognitive function. Larger studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Michelle C Janelsins
- Department of Surgery, Supportive Care in Cancer, University of Rochester, 265 Crittenden Blvd., Rochester, NY 14642, United States; Wilmot Cancer Institute, Rochester, NY 14642, United States.
| | - Lianlian Lei
- Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, United States
| | - Colleen Netherby-Winslow
- Department of Surgery, Supportive Care in Cancer, University of Rochester, 265 Crittenden Blvd., Rochester, NY 14642, United States
| | - Amber S Kleckner
- Department of Surgery, Supportive Care in Cancer, University of Rochester, 265 Crittenden Blvd., Rochester, NY 14642, United States; Wilmot Cancer Institute, Rochester, NY 14642, United States
| | - Sarah Kerns
- Wilmot Cancer Institute, Rochester, NY 14642, United States; Department of Radiation Oncology, University of Rochester, Rochester, NY 14624, United States
| | - Nikesha Gilmore
- Department of Surgery, Supportive Care in Cancer, University of Rochester, 265 Crittenden Blvd., Rochester, NY 14642, United States; Wilmot Cancer Institute, Rochester, NY 14642, United States
| | - Elizabeth Belcher
- Department of Surgery, Supportive Care in Cancer, University of Rochester, 265 Crittenden Blvd., Rochester, NY 14642, United States; Wilmot Cancer Institute, Rochester, NY 14642, United States
| | - Bryan D Thompson
- Department of Surgery, Supportive Care in Cancer, University of Rochester, 265 Crittenden Blvd., Rochester, NY 14642, United States
| | - Zachary A Werner
- Department of Surgery, Supportive Care in Cancer, University of Rochester, 265 Crittenden Blvd., Rochester, NY 14642, United States
| | - Judith O Hopkins
- Southeast Clinical Oncology Research Consortium (SCOR), 2150 Country Club Road Suite 200, Winston Salem, NC 27104, United States
| | - Joan Long
- Cancer Research Consortium of West Michigan NCORP (CRCWM), 25 Michigan St. NE, Suite 3100, Grand Rapids, MI 49503, United States
| | - Sharon Cole
- Dayton Clinical Oncology Program, 3123 Research Blvd., Suite 150, Dayton, OH 45420, United States
| | - Eva Culakova
- Department of Surgery, Supportive Care in Cancer, University of Rochester, 265 Crittenden Blvd., Rochester, NY 14642, United States
| |
Collapse
|
50
|
Bülbül O, Göksel S, Nak D. Changes in glucose metabolism of the brain after immunochemotherapy in patients with diffuse large B-Cell lymphoma on fluorodeoxyglucose positron emission tomography/computed tomography. JOURNAL OF RADIATION AND CANCER RESEARCH 2022. [DOI: 10.4103/jrcr.jrcr_37_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|