1
|
Gregory KS, Hall PR, Onuh JP, Mojanaga OO, Liu SM, Acharya KR. Crystal Structure of the Catalytic Domain of a Botulinum Neurotoxin Homologue from Enterococcus faecium: Potential Insights into Substrate Recognition. Int J Mol Sci 2023; 24:12721. [PMID: 37628902 PMCID: PMC10454453 DOI: 10.3390/ijms241612721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/25/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Clostridium botulinum neurotoxins (BoNTs) are the most potent toxins known, causing the deadly disease botulism. They function through Zn2+-dependent endopeptidase cleavage of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins, preventing vesicular fusion and subsequent neurotransmitter release from motor neurons. Several serotypes of BoNTs produced by Clostridium botulinum (BoNT/A-/G and/X) have been well-characterised over the years. However, a BoNT-like gene (homologue of BoNT) was recently identified in the non-clostridial species, Enterococcus faecium, which is the leading cause of hospital-acquired multi-drug resistant infections. Here, we report the crystal structure of the catalytic domain of a BoNT homologue from Enterococcus faecium (LC/En) at 2.0 Å resolution. Detailed structural analysis in comparison with the full-length BoNT/En AlphaFold2-predicted structure, LC/A (from BoNT/A), and LC/F (from BoNT/F) revealed putative subsites and exosites (including loops 1-5) involved in recognition of LC/En substrates. LC/En also appears to possess a conserved autoproteolytic cleavage site whose function is yet to be established.
Collapse
Affiliation(s)
- Kyle S. Gregory
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK; (K.S.G.); (P.-R.H.); (J.P.O.); (O.O.M.)
| | - Peter-Rory Hall
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK; (K.S.G.); (P.-R.H.); (J.P.O.); (O.O.M.)
| | - Jude Prince Onuh
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK; (K.S.G.); (P.-R.H.); (J.P.O.); (O.O.M.)
| | - Otsile O. Mojanaga
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK; (K.S.G.); (P.-R.H.); (J.P.O.); (O.O.M.)
| | - Sai Man Liu
- Protein Sciences Department, Ipsen Bioinnovation Limited, 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK;
| | - K. Ravi Acharya
- Department of Life Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK; (K.S.G.); (P.-R.H.); (J.P.O.); (O.O.M.)
| |
Collapse
|
2
|
Abstract
Studies in the 1920s found that botulinum neurotoxin type A (BoNT/A) inhibited the activity of motor and parasympathetic nerve endings, confirmed several decades later to be due to decreased acetylcholine release. The 1970s were marked by studies of cellular mechanisms aided by use of neutralizing antibodies as pharmacologic tools: BoNT/A disappeared from accessibility to neutralizing antibodies within minutes, although it took several hours for onset of muscle weakness. The multi-step mechanism was experimentally confirmed and is now recognized to consist broadly of binding to nerve terminals, internalization, and lysis or cleavage of a protein (SNAP-25: synaptosomal associated protein-25 kDa) that is part of the SNARE (Soluble NSF Attachment protein REceptor) complex needed for synaptic vesicle docking and fusion. Clinical use of the BoNT/A product onabotulinumtoxinA was based on its ability to reduce muscle contractions via inhibition of acetylcholine from motor terminals. Sensory mechanisms of onabotulinumtoxinA have now been identified, supporting its successful treatment of chronic migraine and urgency in overactive bladder. Exploration into migraine mechanisms led to anatomical studies documenting pain fibers that send axons through sutures of the skull to outside the head-a potential route by which extracranial injections could affect intracranial processes. Several clinical studies have also identified benefits of onabotulinumtoxinA in major depression, which have been attributed to central responses induced by feedback from facial muscle and skin movement. Overall, the history of BoNT/A is distinguished by basic science studies that stimulated clinical use and, conversely, clinical observations that spurred basic research into novel mechanisms of action.
Collapse
Affiliation(s)
- Mitchell F Brin
- Allergan/AbbVie, Irvine, CA, USA
- University of California, Irvine, CA, USA
| | - Rami Burstein
- Departments of Anesthesia and Neuroscience, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Palfreyman MT, West SE, Jorgensen EM. SNARE Proteins in Synaptic Vesicle Fusion. ADVANCES IN NEUROBIOLOGY 2023; 33:63-118. [PMID: 37615864 DOI: 10.1007/978-3-031-34229-5_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Neurotransmitters are stored in small membrane-bound vesicles at synapses; a subset of synaptic vesicles is docked at release sites. Fusion of docked vesicles with the plasma membrane releases neurotransmitters. Membrane fusion at synapses, as well as all trafficking steps of the secretory pathway, is mediated by SNARE proteins. The SNAREs are the minimal fusion machinery. They zipper from N-termini to membrane-anchored C-termini to form a 4-helix bundle that forces the apposed membranes to fuse. At synapses, the SNAREs comprise a single helix from syntaxin and synaptobrevin; SNAP-25 contributes the other two helices to complete the bundle. Unc13 mediates synaptic vesicle docking and converts syntaxin into the permissive "open" configuration. The SM protein, Unc18, is required to initiate and proofread SNARE assembly. The SNAREs are then held in a half-zippered state by synaptotagmin and complexin. Calcium removes the synaptotagmin and complexin block, and the SNAREs drive vesicle fusion. After fusion, NSF and alpha-SNAP unwind the SNAREs and thereby recharge the system for further rounds of fusion. In this chapter, we will describe the discovery of the SNAREs, their relevant structural features, models for their function, and the central role of Unc18. In addition, we will touch upon the regulation of SNARE complex formation by Unc13, complexin, and synaptotagmin.
Collapse
Affiliation(s)
- Mark T Palfreyman
- School of Biological Sciences, and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Sam E West
- School of Biological Sciences, and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA
| | - Erik M Jorgensen
- School of Biological Sciences, and Howard Hughes Medical Institute, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
4
|
Fabris F, Šoštarić P, Matak I, Binz T, Toffan A, Simonato M, Montecucco C, Pirazzini M, Rossetto O. Detection of VAMP Proteolysis by Tetanus and Botulinum Neurotoxin Type B In Vivo with a Cleavage-Specific Antibody. Int J Mol Sci 2022; 23:ijms23084355. [PMID: 35457172 PMCID: PMC9024618 DOI: 10.3390/ijms23084355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 11/17/2022] Open
Abstract
Tetanus and Botulinum type B neurotoxins are bacterial metalloproteases that specifically cleave the vesicle-associated membrane protein VAMP at an identical peptide bond, resulting in inhibition of neuroexocytosis. The minute amounts of these neurotoxins commonly used in experimental animals are not detectable, nor is detection of their VAMP substrate sensitive enough. The immune detection of the cleaved substrate is much more sensitive, as we have previously shown for botulinum neurotoxin type A. Here, we describe the production in rabbit of a polyclonal antibody raised versus a peptide encompassing the 13 residues C-terminal with respect to the neurotoxin cleavage site. The antibody was affinity purified and found to recognize, with high specificity and selectivity, the novel N-terminus of VAMP that becomes exposed after cleavage by tetanus toxin and botulinum toxin type B. This antibody recognizes the neoepitope not only in native and denatured VAMP but also in cultured neurons and in neurons in vivo in neurotoxin-treated mice or rats, suggesting the great potential of this novel tool to elucidate tetanus and botulinum B toxin activity in vivo.
Collapse
Affiliation(s)
- Federico Fabris
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (F.F.); (C.M.)
| | - Petra Šoštarić
- Department of Pharmacology, School of Medicine, University of Zagreb, Šalata 11, 10000 Zagreb, Croatia; (P.Š.); (I.M.)
| | - Ivica Matak
- Department of Pharmacology, School of Medicine, University of Zagreb, Šalata 11, 10000 Zagreb, Croatia; (P.Š.); (I.M.)
| | - Thomas Binz
- Institute of Cellular Biochemistry, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany;
| | - Anna Toffan
- Istituto Zooprofilattico Sperimentale delle Venezie, Viale dell’Università 10, 35020 Legnaro, Italy;
| | - Morena Simonato
- Institute of Neuroscience, Italian Research Council, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy;
| | - Cesare Montecucco
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (F.F.); (C.M.)
- Institute of Neuroscience, Italian Research Council, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy;
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (F.F.); (C.M.)
- Interdepartmental Research Center of Myology CIR-Myo, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
- Correspondence: (M.P.); (O.R.)
| | - Ornella Rossetto
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy; (F.F.); (C.M.)
- Institute of Neuroscience, Italian Research Council, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy;
- Interdepartmental Research Center of Myology CIR-Myo, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
- Correspondence: (M.P.); (O.R.)
| |
Collapse
|
5
|
Knockin mouse models demonstrate differential contributions of synaptotagmin-1 and -2 as receptors for botulinum neurotoxins. PLoS Pathog 2021; 17:e1009994. [PMID: 34662366 PMCID: PMC8553082 DOI: 10.1371/journal.ppat.1009994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/28/2021] [Accepted: 09/30/2021] [Indexed: 12/11/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are the most potent toxins known and are also utilized to treat a wide range of disorders including muscle spasm, overactive bladder, and pain. BoNTs' ability to target neurons determines their specificity, potency, and therapeutic efficacy. Homologous synaptic vesicle membrane proteins synaptotagmin-1 (Syt1) and synaptotagmin-2 (Syt2) have been identified as receptors for BoNT family members including BoNT/B, DC, and G, but their contributions at physiologically relevant toxin concentrations in vivo have yet to be validated and established. Here we generated two knockin mutant mouse models containing three designed point-mutations that specifically disrupt BoNT binding in endogenous Syt1 or Syt2, respectively. Utilizing digit abduction score assay by injecting toxins into the leg muscle, we found that Syt1 mutant mice showed similar sensitivity as the wild type mice, whereas Syt2 mutant mice showed reduced sensitivity to BoNT/B, DC, and G, demonstrating that Syt2 is the dominant receptor at skeletal neuromuscular junctions. We further developed an in vivo bladder injection assay for analyzing BoNT action on bladder tissues and demonstrated that Syt1 is the dominant toxin receptor in autonomic nerves controlling bladder tissues. These findings establish the critical role of protein receptors for the potency and specificity of BoNTs in vivo and demonstrate the differential contributions of Syt1 and Syt2 in two sets of clinically relevant target tissues.
Collapse
|
6
|
Duchesne de Lamotte J, Perrier A, Martinat C, Nicoleau C. Emerging Opportunities in Human Pluripotent Stem-Cells Based Assays to Explore the Diversity of Botulinum Neurotoxins as Future Therapeutics. Int J Mol Sci 2021; 22:7524. [PMID: 34299143 PMCID: PMC8308099 DOI: 10.3390/ijms22147524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are produced by Clostridium botulinum and are responsible for botulism, a fatal disorder of the nervous system mostly induced by food poisoning. Despite being one of the most potent families of poisonous substances, BoNTs are used for both aesthetic and therapeutic indications from cosmetic reduction of wrinkles to treatment of movement disorders. The increasing understanding of the biology of BoNTs and the availability of distinct toxin serotypes and subtypes offer the prospect of expanding the range of indications for these toxins. Engineering of BoNTs is considered to provide a new avenue for improving safety and clinical benefit from these neurotoxins. Robust, high-throughput, and cost-effective assays for BoNTs activity, yet highly relevant to the human physiology, have become indispensable for a successful translation of engineered BoNTs to the clinic. This review presents an emerging family of cell-based assays that take advantage of newly developed human pluripotent stem cells and neuronal function analyses technologies.
Collapse
Affiliation(s)
- Juliette Duchesne de Lamotte
- IPSEN Innovation, 91940 Les Ulis, France;
- I-STEM, INSERM UMR861, Université Evry-Paris Saclay, 91100 Corbeil-Essonne, France
| | - Anselme Perrier
- I-STEM, INSERM UMR861, Université Evry-Paris Saclay, 91100 Corbeil-Essonne, France
- Laboratoire des Maladies Neurodégénératives: Mécanismes, Thérapies, Imagerie, CEA/CNRS UMR9199, Université Paris Saclay, 92265 Fontenay-aux-Roses, France
| | - Cécile Martinat
- I-STEM, INSERM UMR861, Université Evry-Paris Saclay, 91100 Corbeil-Essonne, France
| | | |
Collapse
|
7
|
Lamotte JDD, Roqueviere S, Gautier H, Raban E, Bouré C, Fonfria E, Krupp J, Nicoleau C. hiPSC-Derived Neurons Provide a Robust and Physiologically Relevant In Vitro Platform to Test Botulinum Neurotoxins. Front Pharmacol 2021; 11:617867. [PMID: 33519485 PMCID: PMC7840483 DOI: 10.3389/fphar.2020.617867] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are zinc metalloproteases that block neurotransmitter release at the neuromuscular junction (NMJ). Their high affinity for motor neurons combined with a high potency have made them extremely effective drugs for the treatment of a variety of neurological diseases as well as for aesthetic applications. Current in vitro assays used for testing and developing BoNT therapeutics include primary rodent cells and immortalized cell lines. Both models have limitations concerning accuracy and physiological relevance. In order to improve the translational value of preclinical data there is a clear need to use more accurate models such as human induced Pluripotent Stem Cells (hiPSC)-derived neuronal models. In this study we have assessed the potential of four different human iPSC-derived neuronal models including Motor Neurons for BoNT testing. We have characterized these models in detail and found that all models express all proteins needed for BoNT intoxication and showed that all four hiPSC-derived neuronal models are sensitive to both serotype A and E BoNT with Motor Neurons being the most sensitive. We showed that hiPSC-derived Motor Neurons expressed authentic markers after only 7 days of culture, are functional and able to form active synapses. When cultivated with myotubes, we demonstrated that they can innervate myotubes and induce contraction, generating an in vitro model of NMJ showing dose-responsive sensitivity BoNT intoxication. Together, these data demonstrate the promise of hiPSC-derived neurons, especially Motor Neurons, for pharmaceutical BoNT testing and development.
Collapse
|
8
|
Winner BM, Bodt SML, McNutt PM. Special Delivery: Potential Mechanisms of Botulinum Neurotoxin Uptake and Trafficking within Motor Nerve Terminals. Int J Mol Sci 2020; 21:ijms21228715. [PMID: 33218099 PMCID: PMC7698961 DOI: 10.3390/ijms21228715] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 11/11/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are highly potent, neuroparalytic protein toxins that block the release of acetylcholine from motor neurons and autonomic synapses. The unparalleled toxicity of BoNTs results from the highly specific and localized cleavage of presynaptic proteins required for nerve transmission. Currently, the only pharmacotherapy for botulism is prophylaxis with antitoxin, which becomes progressively less effective as symptoms develop. Treatment for symptomatic botulism is limited to supportive care and artificial ventilation until respiratory function spontaneously recovers, which can take weeks or longer. Mechanistic insights into intracellular toxin behavior have progressed significantly since it was shown that toxins exploit synaptic endocytosis for entry into the nerve terminal, but fundamental questions about host-toxin interactions remain unanswered. Chief among these are mechanisms by which BoNT is internalized into neurons and trafficked to sites of molecular toxicity. Elucidating how receptor-bound toxin is internalized and conditions under which the toxin light chain engages with target SNARE proteins is critical for understanding the dynamics of intoxication and identifying novel therapeutics. Here, we discuss the implications of newly discovered modes of synaptic vesicle recycling on BoNT uptake and intraneuronal trafficking.
Collapse
Affiliation(s)
- Brittany M. Winner
- United States Army Medical Research Institute of Chemical Defense, Gunpowder, MD 21047, USA;
| | - Skylar M. L. Bodt
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA;
| | - Patrick M. McNutt
- Wake Forest Institute for Regenerative Medicine, Wake Forest University, Winston-Salem, NC 27101, USA
- Correspondence:
| |
Collapse
|
9
|
Melland H, Carr EM, Gordon SL. Disorders of synaptic vesicle fusion machinery. J Neurochem 2020; 157:130-164. [PMID: 32916768 DOI: 10.1111/jnc.15181] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022]
Abstract
The revolution in genetic technology has ushered in a new age for our understanding of the underlying causes of neurodevelopmental, neuromuscular and neurodegenerative disorders, revealing that the presynaptic machinery governing synaptic vesicle fusion is compromised in many of these neurological disorders. This builds upon decades of research showing that disturbance to neurotransmitter release via toxins can cause acute neurological dysfunction. In this review, we focus on disorders of synaptic vesicle fusion caused either by toxic insult to the presynapse or alterations to genes encoding the key proteins that control and regulate fusion: the SNARE proteins (synaptobrevin, syntaxin-1 and SNAP-25), Munc18, Munc13, synaptotagmin, complexin, CSPα, α-synuclein, PRRT2 and tomosyn. We discuss the roles of these proteins and the cellular and molecular mechanisms underpinning neurological deficits in these disorders.
Collapse
Affiliation(s)
- Holly Melland
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, Melbourne, Vic., Australia
| | - Elysa M Carr
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, Melbourne, Vic., Australia
| | - Sarah L Gordon
- The Florey Institute of Neuroscience and Mental Health, Melbourne Dementia Research Centre, The University of Melbourne, Melbourne, Vic., Australia
| |
Collapse
|
10
|
Kalb SR, Baudys J, Kiernan K, Wang D, Becher F, Barr JR. Proposed BoNT/A and /B Peptide Substrates Cannot Detect Multiple Subtypes in the Endopep-MS Assay. J Anal Toxicol 2020; 44:173-179. [PMID: 31287544 DOI: 10.1093/jat/bkz044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/24/2019] [Accepted: 04/27/2019] [Indexed: 11/14/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are a family of protein toxins consisting of seven known serotypes (BoNT/A-BoNT/G) and multiple subtypes within the serotypes, and all of which cause the disease botulism-a disease of great public health concern. Accurate detection of BoNTs in human clinical samples is therefore an important public health goal. To achieve this goal, our laboratory developed a mass spectrometry-based assay detecting the presence of BoNT via its enzymatic activity on a peptide substrate. Recently, publications reported the use of new peptide substrates to detect BoNT/A and /B with improved results over other peptide substrates. However, the authors did not provide results of their peptide substrate on multiple subtypes of BoNT. In this work, we describe the results of testing the new substrates with multiple BoNT/A and /B subtypes and find that the substrates cannot detect many subtypes of BoNT/A and /B.
Collapse
Affiliation(s)
- Suzanne R Kalb
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, National Center for Environmental Health, Buford Hwy, Northeast Atlanta, GA, USA
| | - Jakub Baudys
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, National Center for Environmental Health, Buford Hwy, Northeast Atlanta, GA, USA
| | - Kaitlyn Kiernan
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, National Center for Environmental Health, Buford Hwy, Northeast Atlanta, GA, USA
| | - Dongxia Wang
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, National Center for Environmental Health, Buford Hwy, Northeast Atlanta, GA, USA
| | - François Becher
- Service de Pharmacologie et Immunoanalyse, Laboratoire d'Etude du Métabolisme des Médicaments, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Institut National de la Recherche Agronomique, Université Paris Saclay, Gif-sur-Yvette, France
| | - John R Barr
- Division of Laboratory Sciences, Centers for Disease Control and Prevention, National Center for Environmental Health, Buford Hwy, Northeast Atlanta, GA, USA
| |
Collapse
|
11
|
Pellett S, Tepp WH, Johnson EA. Critical Analysis of Neuronal Cell and the Mouse Bioassay for Detection of Botulinum Neurotoxins. Toxins (Basel) 2019; 11:E713. [PMID: 31817843 PMCID: PMC6950160 DOI: 10.3390/toxins11120713] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/12/2019] [Accepted: 11/22/2019] [Indexed: 12/14/2022] Open
Abstract
Botulinum Neurotoxins (BoNTs) are a large protein family that includes the most potent neurotoxins known to humankind. BoNTs delivered locally in humans at low doses are widely used pharmaceuticals. Reliable and quantitative detection of BoNTs is of paramount importance for the clinical diagnosis of botulism, basic research, drug development, potency determination, and detection in clinical, environmental, and food samples. Ideally, a definitive assay for BoNT should reflect the activity of each of the four steps in nerve intoxication. The in vivo mouse bioassay (MBA) is the 'gold standard' for the detection of BoNTs. The MBA is sensitive, robust, semi-quantitative, and reliable within its sensitivity limits. Potential drawbacks with the MBA include assay-to-assay potency variations, especially between laboratories, and false positives or negatives. These limitations can be largely avoided by careful planning and performance. Another detection method that has gained importance in recent years for research and potency determination of pharmaceutical BoNTs is cell-based assays, as these assays can be highly sensitive, quantitative, human-specific, and detect fully functional holotoxins at physiologically relevant concentrations. A myriad of other in vitro BoNT detection methods exist. This review focuses on critical factors and assay limitations of the mouse bioassay and cell-based assays for BoNT detection.
Collapse
Affiliation(s)
| | | | - Eric A. Johnson
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI 53706, USA; (S.P.); (W.H.T.)
| |
Collapse
|
12
|
von Berg L, Stern D, Weisemann J, Rummel A, Dorner MB, Dorner BG. Optimization of SNAP-25 and VAMP-2 Cleavage by Botulinum Neurotoxin Serotypes A-F Employing Taguchi Design-of-Experiments. Toxins (Basel) 2019; 11:toxins11100588. [PMID: 31614566 PMCID: PMC6832249 DOI: 10.3390/toxins11100588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 10/01/2019] [Accepted: 10/09/2019] [Indexed: 11/17/2022] Open
Abstract
The detection of catalytically active botulinum neurotoxins (BoNTs) can be achieved by monitoring the enzymatic cleavage of soluble NSF (N-ethylmaleimide-sensitive-factor) attachment protein receptor (SNARE) proteins by the toxins’ light chains (LC) in cleavage-based assays. Thus, for sensitive BoNT detection, optimal cleavage conditions for the clinically relevant A–F serotypes are required. Until now, a systematic evaluation of cleavage conditions for the different BoNT serotypes is still lacking. To address this issue, we optimized cleavage conditions for BoNT/A–F using the Taguchi design-of-experiments (DoE) method. To this aim, we analyzed the influence of buffer composition (pH, Zn2+, DTT (dithiothreitol), NaCl) as well as frequently used additives (BSA (bovine serum albumin), Tween 20, trimethylamine N-oxide (TMAO)) on BoNT substrate cleavage. We identified major critical factors (DTT, Zn2+, TMAO) and were able to increase the catalytic efficiency of BoNT/B, C, E, and F when compared to previously described buffers. Moreover, we designed a single consensus buffer for the optimal cleavage of all tested serotypes. Our optimized buffers are instrumental to increase the sensitivity of cleavage-based assays for BoNT detection. Furthermore, the application of the Taguchi DoE approach shows how the method helps to rationally improve enzymatic assays.
Collapse
Affiliation(s)
- Laura von Berg
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany.
| | - Daniel Stern
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany.
| | - Jasmin Weisemann
- Institut für Toxikologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Andreas Rummel
- Institut für Toxikologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| | - Martin Bernhard Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany.
| | - Brigitte Gertrud Dorner
- Biological Toxins, Centre for Biological Threats and Special Pathogens, Robert Koch Institute, Seestr. 10, 13353 Berlin, Germany.
| |
Collapse
|
13
|
Ca 2+-independent but voltage-dependent quantal catecholamine secretion (CiVDS) in the mammalian sympathetic nervous system. Proc Natl Acad Sci U S A 2019; 116:20201-20209. [PMID: 31530723 DOI: 10.1073/pnas.1902444116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Action potential-induced vesicular exocytosis is considered exclusively Ca2+ dependent in Katz's Ca2+ hypothesis on synaptic transmission. This long-standing concept gets an exception following the discovery of Ca2+-independent but voltage-dependent secretion (CiVDS) and its molecular mechanisms in dorsal root ganglion sensory neurons. However, whether CiVDS presents only in sensory cells remains elusive. Here, by combining multiple independent recordings, we report that [1] CiVDS robustly presents in the sympathetic nervous system, including sympathetic superior cervical ganglion neurons and slice adrenal chromaffin cells, [2] uses voltage sensors of Ca2+ channels (N-type and novel L-type), and [3] contributes to catecholamine release in both homeostatic and fight-or-flight like states; [4] CiVDS-mediated catecholamine release is faster than that of Ca2+-dependent secretion at the quantal level and [5] increases Ca2+ currents and contractility of cardiac myocytes. Together, CiVDS presents in the sympathetic nervous system with potential physiological functions, including cardiac muscle contractility.
Collapse
|
14
|
Construction of functional chimeras of syntaxin-1A and its yeast orthologue, and their application to the yeast cell-based assay for botulinum neurotoxin serotype C. Biochim Biophys Acta Gen Subj 2019; 1863:129396. [PMID: 31302181 DOI: 10.1016/j.bbagen.2019.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 06/14/2019] [Accepted: 07/10/2019] [Indexed: 11/23/2022]
Abstract
BACKGROUND Botulinum neurotoxins (BoNTs) prevent synaptic transmission because they hydrolyze synaptic N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). BoNT serotype C (BoNT/C) targets syntaxin-1A and SNAP-25, and is expected to be applied to cosmetic and therapeutic uses. SNAREs are evolutionally conserved proteins and in yeast a syntaxin-1A orthologue Sso1 is involved in exocytosis. The substrate specificity of BoNT/C is strict and it cannot cleave Sso1. METHODS Domain swapping and mutational screenings were performed to generate functional chimeras SNAREs of syntaxin-1A and Sso1. Such chimeras are expressed in yeast cells and assessed whether they are susceptible to BoNT/C digestion. RESULTS The Sso1 and syntaxin-1A chimera (Sso1/STX1A), in which the SNARE domain in Sso1 was replaced with that of syntaxin-1A, was not functional in yeast. The functional incompatibility of Sso1/STX1A was attributable to its accumulation in the ER. We found several mutations that could release Sso1/STX1A from the ER to make the chimera functional in yeast. Yeast cells harboring the mutant chimeras grew similarly to wild-type cells. However, unlike wild-type, yeast harboring the mutant chimeras exhibited a severe growth defect upon expression of BoNT/C. Results of further domain swapping analyses suggest that Sso1 is not digested by BoNT/C because it lacks a binding region to BoNT/C (α-exosite-binding region). CONCLUSIONS We obtained functional Sso1/STX1A chimeras, which can be applied to a yeast cell-based BoNT/C assay. BoNT/C can recognize these chimeras in a similar manner to syntaxin-1A. GENERAL SIGNIFICANCE The yeast cell-based BoNT/C assay would be useful to characterize and engineer BoNT/C.
Collapse
|
15
|
Abstract
Ca2+-dependent secretion is a process by which important signaling molecules that are produced within a cell-including proteins and neurotransmitters-are expelled to the extracellular environment. The cellular mechanism that underlies secretion is referred to as exocytosis. Many years of work have revealed that exocytosis in neurons and neuroendocrine cells is tightly coupled to Ca2+ and orchestrated by a series of protein-protein/protein-lipid interactions. Here, we highlight landmark discoveries that have informed our current understanding of the process. We focus principally on reductionist studies performed using powerful model secretory systems and cell-free reconstitution assays. In recent years, molecular cloning and genetics have implicated the involvement of a sizeable number of proteins in exocytosis. We expect reductionist approaches will be central to attempts to resolve their roles. The Journal of General Physiology will continue to be an outlet for much of this work, befitting its tradition of publishing strongly mechanistic, basic research.
Collapse
Affiliation(s)
- Arun Anantharam
- Department of Pharmacology, University of Michigan, Ann Arbor, MI
| | - Alex J B Kreutzberger
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA
| |
Collapse
|
16
|
Bioinformatic discovery of a toxin family in Chryseobacterium piperi with sequence similarity to botulinum neurotoxins. Sci Rep 2019; 9:1634. [PMID: 30733520 PMCID: PMC6367388 DOI: 10.1038/s41598-018-37647-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 12/05/2018] [Indexed: 11/12/2022] Open
Abstract
Clostridial neurotoxins (CNTs), which include botulinum neurotoxins (BoNTs) and tetanus neurotoxin (TeNT), are the most potent toxins known to science and are the causative agents of botulism and tetanus, respectively. The evolutionary origins of CNTs and their relationships to other proteins remains an intriguing question. Here we present a large-scale bioinformatic screen for putative toxin genes in all currently available genomes. We detect a total of 311 protein sequences displaying at least partial homology to BoNTs, including 161 predicted toxin sequences that have never been characterized. We focus on a novel toxin family from Chryseobacterium piperi with homology to BoNTs. We resequenced the genome of C. piperi to confirm and further analyze the genomic context of these toxins, and also examined their potential toxicity by expression of the protease domain of one C. piperi toxin in human cells. Our analysis suggests that these C. piperi sequences encode a novel family of metalloprotease toxins that are distantly related to BoNTs with similar domain architecture. These toxins target a yet unknown class of substrates, potentially reflecting divergence in substrate specificity between the metalloprotease domains of these toxins and the related metalloprotease domain of clostridial neurotoxins.
Collapse
|
17
|
Fuschini G, Cotrufo T, Ros O, Muhaisen A, Andrés R, Comella JX, Soriano E. Syntaxin-1/TI-VAMP SNAREs interact with Trk receptors and are required for neurotrophin-dependent outgrowth. Oncotarget 2018; 9:35922-35940. [PMID: 30542508 PMCID: PMC6267591 DOI: 10.18632/oncotarget.26307] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 10/24/2018] [Indexed: 01/19/2023] Open
Abstract
SNARE proteins are essential components of the machinery that regulates vesicle trafficking and exocytosis. Their role is critical for the membrane-fusion processes that occur during neurotransmitter release. However, research in the last decade has also unraveled the relevance of these proteins in membrane expansion and cytoskeletal rearrangements during developmental processes such as neuronal migration and growth cone extension and attraction. Neurotrophins are neurotrophic factors that are required for many cellular functions throughout the brain, including neurite outgrowth and guidance, synaptic formation, and plasticity. Here we show that neurotrophin Trk receptors form a specific protein complex with the t-SNARE protein Syntaxin 1, both in vivo and in vitro. We also demonstrate that blockade of Syntaxin 1 abolishes neurotrophin-dependent growth of axons in neuronal cultures and decreases exocytotic events at the tip of axonal growth cones. 25-kDa soluble N-ethylmaleimide-sensitive factor attachment protein and Vesicle-associated membrane protein 2 do not participate in the formation of this SNARE complex, while tetanus neurotoxin-insensitive vesicle-associated membrane protein interacts with Trk receptors; knockdown of this (v) SNARE impairs Trk-dependent outgrowth. Taken together, our results support the notion that an atypical SNARE complex comprising Syntaxin 1 and tetanus neurotoxin-insensitive vesicle-associated membrane protein is required for axonal neurotrophin function.
Collapse
Affiliation(s)
- Giulia Fuschini
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031 Madrid, Spain
| | - Tiziana Cotrufo
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031 Madrid, Spain
- Vall d'Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
| | - Oriol Ros
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031 Madrid, Spain
| | - Ashraf Muhaisen
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Vall d'Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
| | - Rosa Andrés
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031 Madrid, Spain
| | - Joan X. Comella
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031 Madrid, Spain
- Vall d'Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031 Madrid, Spain
- Vall d'Hebron Institute of Research (VHIR), 08035 Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
18
|
Light Chain Diversity among the Botulinum Neurotoxins. Toxins (Basel) 2018; 10:toxins10070268. [PMID: 30004421 PMCID: PMC6070880 DOI: 10.3390/toxins10070268] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 12/30/2022] Open
Abstract
Botulinum neurotoxins (BoNT) are produced by several species of clostridium. There are seven immunologically unique BoNT serotypes (A⁻G). The Centers for Disease Control classifies BoNTs as 'Category A' select agents and are the most lethal protein toxins for humans. Recently, BoNT-like proteins have also been identified in several non-clostridia. BoNTs are di-chain proteins comprised of an N-terminal zinc metalloprotease Light Chain (LC) and a C-terminal Heavy Chain (HC) which includes the translocation and receptor binding domains. The two chains are held together by a disulfide bond. The LC cleaves Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). The cleavage of SNAREs inhibits the fusion of synaptic vesicles to the cell membrane and the subsequent release of acetylcholine, which results in flaccid paralysis. The LC controls the catalytic properties and the duration of BoNT action. This review discusses the mechanism for LC catalysis, LC translocation, and the basis for the duration of LC action. Understanding these properties of the LC may expand the applications of BoNT as human therapies.
Collapse
|
19
|
Blitzer A, Brin MF, Simonyan K, Ozelius LJ, Frucht SJ. Phenomenology, genetics, and CNS network abnormalities in laryngeal dystonia: A 30-year experience. Laryngoscope 2018; 128 Suppl 1:S1-S9. [PMID: 29219190 PMCID: PMC5757628 DOI: 10.1002/lary.27003] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 09/23/2017] [Accepted: 10/16/2017] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Laryngeal dystonia (LD) is a functionally specific disorder of the afferent-efferent motor coordination system producing action-induced muscle contraction with a varied phenomenology. This report of long-term studies aims to review and better define the phenomenology and central nervous system abnormalities of this disorder and improve diagnosis and treatment. METHODS Our studies categorized over 1,400 patients diagnosed with LD over the past 33 years, including demographic and medical history records and their phenomenological presentations. Patients were grouped on clinical phenotype (adductor or abductor) and genotype (sporadic and familial) and with DNA analysis and functional magnetic resonance imaging (fMRI) to investigate brain organization differences and characterize neural markers for genotype/phenotype categorization. A number of patients with alcohol-sensitive dystonia were also studied. RESULTS A spectrum of LD phenomena evolved: adductor, abductor, mixed, singer's, dystonic tremor, and adductor respiratory dystonia. Patients were genetically screened for DYT (dystonia) 1, DYT4, DYT6, and DYT25 (GNAL)-and several were positive. The functional MRI studies showed distinct alterations within the sensorimotor network, and the LD patients with a family history had distinct cortical and cerebellar abnormalities. A linear discriminant analysis of fMRI findings showed a 71% accuracy in characterizing LD from normal and in characterizing adductor from abductor forms. CONCLUSION Continuous studies of LD patients over 30 years has led to an improved understanding of the phenomenological characteristics of this neurological disorder. Genetic and fMRI studies have better characterized the disorder and raise the possibility of making objective rather than subjective diagnoses, potentially leading to new therapeutic approaches. Laryngoscope, 128:S1-S9, 2018.
Collapse
Affiliation(s)
- Andrew Blitzer
- Dept of Otolaryngology-Head and Neck Surgery, Columbia University, College of Physicians and Surgeons
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School
- New York Center for Voice and Swallowing Disorders
| | | | - Kristina Simonyan
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School
- Department of Otolaryngology, Massachusetts Eye and Ear Infirmary, Harvard Medical School
| | | | - Steven J Frucht
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School
| |
Collapse
|
20
|
Carle S, Pirazzini M, Rossetto O, Barth H, Montecucco C. High Conservation of Tetanus and Botulinum Neurotoxins Cleavage Sites on Human SNARE Proteins Suggests That These Pathogens Exerted Little or No Evolutionary Pressure on Humans. Toxins (Basel) 2017; 9:toxins9120404. [PMID: 29257047 PMCID: PMC5744124 DOI: 10.3390/toxins9120404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 01/07/2023] Open
Abstract
The Genome Aggregation Database presently contains >120,000 human genomes. We searched in this database for the presence of mutations at the sites of tetanus (TeNT) and botulinum neurotoxins (BoNTs) cleavages of the three SNARE proteins: VAMP, SNAP-25 and Syntaxin. These mutations could account for some of the BoNT/A resistant patients. At the same time, this approach was aimed at testing the possibility that TeNT and BoNT may have acted as selective agents in the development of resistance to tetanus or botulism. We found that mutations of the SNARE proteins are very rare and concentrated outside the SNARE motif required for the formation of the SNARE complex involved in neuroexocytosis. No changes were found at the BoNT cleavage sites of VAMP and syntaxins and only one very rare mutation was found in the essential C-terminus region of SNAP-25, where Arg198 was replaced with a Cys residue. This is the P1’ cleavage site for BoNT/A and the P1 cleavage site for BoNT/C. We found that the Arg198Cys mutation renders SNAP-25 resistant to BoNT/A. Nonetheless, its low frequency (1.8 × 10−5) indicates that mutations of SNAP-25 at the BoNT/A cleavage site are unlikely to account for the existence of BoNT/A resistant patients. More in general, the present findings indicate that tetanus and botulinum neurotoxins have not acted as selective agents during human evolution as it appears to have been the case for tetanus in rats and chicken.
Collapse
Affiliation(s)
- Stefan Carle
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy.
| | - Ornella Rossetto
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy.
| | - Holger Barth
- Institute of Pharmacology and Toxicology, University of Ulm Medical Center, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | - Cesare Montecucco
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy.
- Institute for Neuroscience, National Research Council, Via Ugo Bassi 58/B, 35131 Padova, Italy.
| |
Collapse
|
21
|
Chai Z, Wang C, Huang R, Wang Y, Zhang X, Wu Q, Wang Y, Wu X, Zheng L, Zhang C, Guo W, Xiong W, Ding J, Zhu F, Zhou Z. Ca V2.2 Gates Calcium-Independent but Voltage-Dependent Secretion in Mammalian Sensory Neurons. Neuron 2017; 96:1317-1326.e4. [PMID: 29198756 DOI: 10.1016/j.neuron.2017.10.028] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 09/15/2017] [Accepted: 10/24/2017] [Indexed: 01/13/2023]
Abstract
Action potential induces membrane depolarization and triggers intracellular free Ca2+ concentration (Ca2+)-dependent secretion (CDS) via Ca2+ influx through voltage-gated Ca2+ channels. We report a new type of somatic exocytosis triggered by the action potential per se-Ca2+-independent but voltage-dependent secretion (CiVDS)-in dorsal root ganglion neurons. Here we uncovered the molecular mechanism of CiVDS, comprising a voltage sensor, fusion machinery, and their linker. Specifically, the voltage-gated N-type Ca2+ channel (CaV2.2) is the voltage sensor triggering CiVDS, the SNARE complex functions as the vesicle fusion machinery, the "synprint" of CaV2.2 serves as a linker between the voltage sensor and the fusion machinery, and ATP is a cargo of CiVDS vesicles. Thus, CiVDS releases ATP from the soma while CDS releases glutamate from presynaptic terminals, establishing the CaV2.2-SNARE "voltage-gating fusion pore" as a novel pathway co-existing with the canonical "Ca2+-gating fusion pore" pathway for neurotransmitter release following action potentials in primary sensory neurons.
Collapse
Affiliation(s)
- Zuying Chai
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Changhe Wang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China; Center for Mitochondrial Biology and Medicine, Key Laboratory of Biomedical Information Engineering of The Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Rong Huang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Yuan Wang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Xiaoyu Zhang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China; School of Stomatology, Peking University, Beijing 100871, China
| | - Qihui Wu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Yeshi Wang
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Xi Wu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Lianghong Zheng
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Chen Zhang
- College of Life Sciences, Peking University, Beijing 100871, China
| | - Wei Guo
- THU IDG/McGovern Institute, Tsinghua University, Beijing 100084, China
| | - Wei Xiong
- THU IDG/McGovern Institute, Tsinghua University, Beijing 100084, China
| | - Jiuping Ding
- Institute of Biophysics and Biochemistry, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Feipeng Zhu
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China
| | - Zhuan Zhou
- State Key Laboratory of Membrane Biology and Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing 100871, China.
| |
Collapse
|
22
|
Abstract
K+-Cl- co-transporter 2 (KCC2/SLC12A5) is a neuronal specific cation chloride co-transporter which is active under isotonic conditions, and thus a key regulator of intracellular Cl- levels. It also has an ion transporter-independent structural role in modulating the maturation and regulation of excitatory glutamatergic synapses. KCC2 levels are developmentally regulated, and a postnatal upregulation of KCC2 generates a low intracellular chloride concentration that allows the neurotransmitters γ-aminobutyric acid (GABA) and glycine to exert inhibitory neurotransmission through its Cl- permeating channel. Functional expression of KCC2 at the neuronal cell surface is necessary for its activity, and impairment in KCC2 cell surface transport and/or internalization may underlie a range of neuropathological conditions. Although recent advances have shed light on a range of cellular mechanisms regulating KCC2 activity, little is known about its membrane trafficking itinerary and regulatory proteins. In this review, known membrane trafficking signals, pathways and mechanisms pertaining to KCC2's functional surface expression are discussed.
Collapse
Affiliation(s)
- Bor Luen Tang
- a Department of Biochemistry, Yong Loo Lin School of Medicine , National University Health System , Singapore.,b NUS Graduate School for Integrative Sciences and Engineering , National University of Singapore , Singapore
| |
Collapse
|
23
|
Zanetti G, Sikorra S, Rummel A, Krez N, Duregotti E, Negro S, Henke T, Rossetto O, Binz T, Pirazzini M. Botulinum neurotoxin C mutants reveal different effects of syntaxin or SNAP-25 proteolysis on neuromuscular transmission. PLoS Pathog 2017; 13:e1006567. [PMID: 28800600 PMCID: PMC5568444 DOI: 10.1371/journal.ppat.1006567] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 08/23/2017] [Accepted: 08/03/2017] [Indexed: 11/30/2022] Open
Abstract
Botulinum neurotoxin serotype C (BoNT/C) is a neuroparalytic toxin associated with outbreaks of animal botulism, particularly in birds, and is the only BoNT known to cleave two different SNARE proteins, SNAP-25 and syntaxin. BoNT/C was shown to be a good substitute for BoNT/A1 in human dystonia therapy because of its long lasting effects and absence of neuromuscular damage. Two triple mutants of BoNT/C, namely BoNT/C S51T/R52N/N53P (BoNT/C α-51) and BoNT/C L200W/M221W/I226W (BoNT/C α-3W), were recently reported to selectively cleave syntaxin and have been used here to evaluate the individual contribution of SNAP-25 and syntaxin cleavage to the effect of BoNT/C in vivo. Although BoNT/C α-51 and BoNT/C α-3W toxins cleave syntaxin with similar efficiency, we unexpectedly found also cleavage of SNAP-25, although to a lesser extent than wild type BoNT/C. Interestingly, the BoNT/C mutants exhibit reduced lethality compared to wild type toxin, a result that correlated with their residual activity against SNAP-25. In spite of this, a local injection of BoNT/C α-51 persistently impairs neuromuscular junction activity. This is due to an initial phase in which SNAP-25 cleavage causes a complete blockade of neurotransmission, and to a second phase of incomplete impairment ascribable to syntaxin cleavage. Together, these results indicate that neuroparalysis of BoNT/C at the neuromuscular junction is due to SNAP-25 cleavage, while the proteolysis of syntaxin provides a substantial, but incomplete, neuromuscular impairment. In light of this evidence, we discuss a possible clinical use of BoNT/C α-51 as a botulinum neurotoxin endowed with a wide safety margin and a long lasting effect. The seven established Botulinum Neurotoxins serotypes (BoNT/A to G) and the many BoNT subtypes, the causative agents of botulism, are the most poisonous substances known (lethal doses in the low ng/kg range). Due to their toxicological properties, BoNTs are Janus-faced toxins: potent pathogenic factors and potential bioterrorism agents as well as safe and efficacious therapeutics. BoNTs exert their neuroparalytic action by cleaving SNARE proteins, either SNAP-25 or synaptobrevin/VAMP, which mediate neurotransmitter release at the neuromuscular junction; BoNT/C is the only serotype shown to cleave SNAP-25 and syntaxin-1 in vitro. Our study shows for the first time that this parallel cleavage also occurs in vivo. By using mutated toxins reported to be syntaxin-selective, we found that SNAP-25 proteolysis at the neuromuscular junction is the key determinant of BoNT/C lethality as it completely blocks nerve-muscle transmission. Conversely, syntaxin-1 cleavage only attenuates nerve terminal activity without inactivating the synapse, leading to only a partial decrease of neuromuscular functionality. As a result, the BoNT/C mutants have dramatically reduced lethality, but still modulate neuromuscular junction activity upon intramuscular injection. This aspect is particularly relevant considering the possible use of syntaxin-specific BoNT/C derivatives to improve the present clinical utilization of BoNTs.
Collapse
Affiliation(s)
- Giulia Zanetti
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Stefan Sikorra
- Institut für Zellbiochemie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Andreas Rummel
- Institut für Toxikologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Nadja Krez
- Institut für Toxikologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Elisa Duregotti
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Samuele Negro
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Tina Henke
- Institut für Zellbiochemie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Ornella Rossetto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Thomas Binz
- Institut für Zellbiochemie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- * E-mail:
| |
Collapse
|
24
|
Yue HY, Bieberich E, Xu J. Promotion of endocytosis efficiency through an ATP-independent mechanism at rat calyx of Held terminals. J Physiol 2017; 595:5265-5284. [PMID: 28555839 DOI: 10.1113/jp274275] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 05/15/2017] [Indexed: 01/14/2023] Open
Abstract
KEY POINTS At rat calyx of Held terminals, ATP was required not only for slow endocytosis, but also for rapid phase of compensatory endocytosis. An ATP-independent form of endocytosis was recruited to accelerate membrane retrieval at increased activity and temperature. ATP-independent endocytosis primarily involved retrieval of pre-existing membrane, which depended on Ca2+ and the activity of neutral sphingomyelinase but not clathrin-coated pit maturation. ATP-independent endocytosis represents a non-canonical mechanism that can efficiently retrieve membrane at physiological conditions without competing for the limited ATP at elevated neuronal activity. ABSTRACT Neurotransmission relies on membrane endocytosis to maintain vesicle supply and membrane stability. Endocytosis has been generally recognized as a major ATP-dependent function, which efficiently retrieves more membrane at elevated neuronal activity when ATP consumption within nerve terminals increases drastically. This paradox raises the interesting question of whether increased activity recruits ATP-independent mechanism(s) to accelerate endocytosis at the same time as preserving ATP availability for other tasks. To address this issue, we studied ATP requirement in three typical forms of endocytosis at rat calyx of Held terminals by whole-cell membrane capacitance measurements. At room temperature, blocking ATP hydrolysis effectively abolished slow endocytosis and rapid endocytosis but only partially inhibited excess endocytosis following intense stimulation. The ATP-independent endocytosis occurred at calyces from postnatal days 8-15, suggesting its existence before and after hearing onset. This endocytosis was not affected by a reduction of exocytosis using the light chain of botulinum toxin C, nor by block of clathrin-coat maturation. It was abolished by EGTA, which preferentially blocked endocytosis of retrievable membrane pre-existing at the surface, and was impaired by oxidation of cholesterol and inhibition of neutral sphingomyelinase. ATP-independent endocytosis became more significant at 34-35°C, and recovered membrane by an amount that, on average, was close to exocytosis. The results of the present study suggest that activity and temperature recruit ATP-independent endocytosis of pre-existing membrane (in addition to ATP-dependent endocytosis) to efficiently retrieve membrane at nerve terminals. This less understood endocytosis represents a non-canonical mechanism regulated by lipids such as cholesterol and sphingomyelinase.
Collapse
Affiliation(s)
- Hai-Yuan Yue
- Departments of Neuroscience and Regenerative Medicine, Augusta University, USA
| | - Erhard Bieberich
- Departments of Neuroscience and Regenerative Medicine, Augusta University, USA
| | - Jianhua Xu
- Departments of Neuroscience and Regenerative Medicine, Augusta University, USA.,Department of Neurology, Medical College of Georgia, Augusta University, USA
| |
Collapse
|
25
|
Pirazzini M, Rossetto O, Eleopra R, Montecucco C. Botulinum Neurotoxins: Biology, Pharmacology, and Toxicology. Pharmacol Rev 2017; 69:200-235. [PMID: 28356439 PMCID: PMC5394922 DOI: 10.1124/pr.116.012658] [Citation(s) in RCA: 410] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The study of botulinum neurotoxins (BoNT) is rapidly progressing in many aspects.
Novel BoNTs are being discovered owing to next generation sequencing, but their
biologic and pharmacological properties remain largely unknown. The molecular
structure of the large protein complexes that the toxin forms with accessory
proteins, which are included in some BoNT type A1 and B1 pharmacological
preparations, have been determined. By far the largest effort has been dedicated to
the testing and validation of BoNTs as therapeutic agents in an ever increasing
number of applications, including pain therapy. BoNT type A1 has been also exploited
in a variety of cosmetic treatments, alone or in combination with other agents, and
this specific market has reached the size of the one dedicated to the treatment of
medical syndromes. The pharmacological properties and mode of action of BoNTs have
shed light on general principles of neuronal transport and protein-protein
interactions and are stimulating basic science studies. Moreover, the wide array of
BoNTs discovered and to be discovered and the production of recombinant BoNTs endowed
with specific properties suggest novel uses in therapeutics with increasing
disease/symptom specifity. These recent developments are reviewed here to provide an
updated picture of the biologic mechanism of action of BoNTs, of their increasing use
in pharmacology and in cosmetics, and of their toxicology.
Collapse
Affiliation(s)
- Marco Pirazzini
- Department of Biomedical Sciences, University of Padova, Italy (M.P., O.R., C.M.); Neurologic Department, University-Hospital S. Maria della Misericordia, Udine, Italy (R.E.); and Consiglio Nazionale delle Ricerche, Institute of Neuroscience, University of Padova, Italy (C.M.)
| | - Ornella Rossetto
- Department of Biomedical Sciences, University of Padova, Italy (M.P., O.R., C.M.); Neurologic Department, University-Hospital S. Maria della Misericordia, Udine, Italy (R.E.); and Consiglio Nazionale delle Ricerche, Institute of Neuroscience, University of Padova, Italy (C.M.)
| | - Roberto Eleopra
- Department of Biomedical Sciences, University of Padova, Italy (M.P., O.R., C.M.); Neurologic Department, University-Hospital S. Maria della Misericordia, Udine, Italy (R.E.); and Consiglio Nazionale delle Ricerche, Institute of Neuroscience, University of Padova, Italy (C.M.)
| | - Cesare Montecucco
- Department of Biomedical Sciences, University of Padova, Italy (M.P., O.R., C.M.); Neurologic Department, University-Hospital S. Maria della Misericordia, Udine, Italy (R.E.); and Consiglio Nazionale delle Ricerche, Institute of Neuroscience, University of Padova, Italy (C.M.)
| |
Collapse
|
26
|
Yang NJ, Chiu IM. Bacterial Signaling to the Nervous System through Toxins and Metabolites. J Mol Biol 2017; 429:587-605. [PMID: 28065740 PMCID: PMC5325782 DOI: 10.1016/j.jmb.2016.12.023] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 12/21/2016] [Accepted: 12/29/2016] [Indexed: 12/31/2022]
Abstract
Mammalian hosts interface intimately with commensal and pathogenic bacteria. It is increasingly clear that molecular interactions between the nervous system and microbes contribute to health and disease. Both commensal and pathogenic bacteria are capable of producing molecules that act on neurons and affect essential aspects of host physiology. Here we highlight several classes of physiologically important molecular interactions that occur between bacteria and the nervous system. First, clostridial neurotoxins block neurotransmission to or from neurons by targeting the SNARE complex, causing the characteristic paralyses of botulism and tetanus during bacterial infection. Second, peripheral sensory neurons-olfactory chemosensory neurons and nociceptor sensory neurons-detect bacterial toxins, formyl peptides, and lipopolysaccharides through distinct molecular mechanisms to elicit smell and pain. Bacteria also damage the central nervous system through toxins that target the brain during infection. Finally, the gut microbiota produces molecules that act on enteric neurons to influence gastrointestinal motility, and metabolites that stimulate the "gut-brain axis" to alter neural circuits, autonomic function, and higher-order brain function and behavior. Furthering the mechanistic and molecular understanding of how bacteria affect the nervous system may uncover potential strategies for modulating neural function and treating neurological diseases.
Collapse
Affiliation(s)
- Nicole J Yang
- Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Isaac M Chiu
- Department of Microbiology and Immunobiology, Division of Immunology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
27
|
Entry of Botulinum Neurotoxin Subtypes A1 and A2 into Neurons. Infect Immun 2016; 85:IAI.00795-16. [PMID: 27795365 DOI: 10.1128/iai.00795-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 10/05/2016] [Indexed: 11/20/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are the most toxic proteins for humans but also are common therapies for neurological diseases. BoNTs are dichain toxins, comprising an N-terminal catalytic domain (LC) disulfide bond linked to a C-terminal heavy chain (HC) which includes a translocation domain (HN) and a receptor binding domain (HC). Recently, the BoNT serotype A (BoNT/A) subtypes A1 and A2 were reported to possess similar potencies but different rates of cellular intoxication and pathology in a mouse model of botulism. The current study measured HCA1 and HCA2 entry into rat primary neurons and cultured Neuro2A cells. We found that there were two sequential steps during the association of BoNT/A with neurons. The initial step was ganglioside dependent, while the subsequent step involved association with synaptic vesicles. HCA1 and HCA2 entered the same population of synaptic vesicles and entered cells at similar rates. The primary difference was that HCA2 had a higher degree of receptor occupancy for cells and neurons than HcA1. Thus, HCA2 and HCA1 share receptors and entry pathway but differ in their affinity for receptor. The initial interaction of HCA1 and HCA2 with neurons may contribute to the unique pathologies of BoNT/A1 and BoNT/A2 in mouse models.
Collapse
|
28
|
Abstract
One quarter of all deaths worldwide each year result from infectious diseases caused by microbial pathogens. Pathogens infect and cause disease by producing virulence factors that target host cell molecules. Studying how virulence factors target host cells has revealed fundamental principles of cell biology. These include important advances in our understanding of the cytoskeleton, organelles and membrane-trafficking intermediates, signal transduction pathways, cell cycle regulators, the organelle/protein recycling machinery, and cell-death pathways. Such studies have also revealed cellular pathways crucial for the immune response. Discoveries from basic research on the cell biology of pathogenesis are actively being translated into the development of host-targeted therapies to treat infectious diseases. Thus there are many reasons for cell biologists to incorporate the study of microbial pathogens into their research programs.
Collapse
Affiliation(s)
- Matthew D Welch
- Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
29
|
Kumar G, Agarwal R, Swaminathan S. Small molecule non-peptide inhibitors of botulinum neurotoxin serotype E: Structure-activity relationship and a pharmacophore model. Bioorg Med Chem 2016; 24:3978-3985. [PMID: 27353886 DOI: 10.1016/j.bmc.2016.06.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 06/15/2016] [Accepted: 06/17/2016] [Indexed: 10/21/2022]
Abstract
Botulinum neurotoxins (BoNTs) are the most poisonous biological substance known to humans. They cause flaccid paralysis by blocking the release of acetylcholine at the neuromuscular junction. Here, we report a number of small molecule non-peptide inhibitors of BoNT serotype E. The structure-activity relationship and a pharmacophore model are presented. Although non-peptidic in nature, these inhibitors mimic key features of the uncleavable substrate peptide Arg-Ile-Met-Glu (RIME) of the SNAP-25 protein. Among the compounds tested, most of the potent inhibitors bear a zinc-chelating moiety connected to a hydrophobic and aromatic moiety through a carboxyl or amide linker. All of them show low micromolar IC50 values.
Collapse
Affiliation(s)
- Gyanendra Kumar
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Rakhi Agarwal
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | | |
Collapse
|
30
|
Toft-Bertelsen TL, Ziomkiewicz I, Houy S, Pinheiro PS, Sørensen JB. Regulation of Ca2+ channels by SNAP-25 via recruitment of syntaxin-1 from plasma membrane clusters. Mol Biol Cell 2016; 27:3329-3341. [PMID: 27605709 PMCID: PMC5170865 DOI: 10.1091/mbc.e16-03-0184] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 09/01/2016] [Indexed: 12/20/2022] Open
Abstract
SNAP-25 regulates Ca2+ channels in an unknown manner. Endogenous and exogenous SNAP-25 inhibit Ca2+ currents indirectly by recruiting syntaxin-1 from clusters on the plasma membrane, thereby making it available for Ca2+ current inhibition. Thus the cell can regulate Ca2+ influx by expanding or contracting syntaxin-1 clusters. SNAP-25 regulates Ca2+ channels, with potentially important consequences for diseases involving an aberrant SNAP-25 expression level. How this regulation is executed mechanistically remains unknown. We investigated this question in mouse adrenal chromaffin cells and found that SNAP-25 inhibits Ca2+ currents, with the B-isoform being more potent than the A-isoform, but not when syntaxin-1 is cleaved by botulinum neurotoxin C. In contrast, syntaxin-1 inhibits Ca2+ currents independently of SNAP-25. Further experiments using immunostaining showed that endogenous or exogenous SNAP-25 expression recruits syntaxin-1 from clusters on the plasma membrane, thereby increasing the immunoavailability of syntaxin-1 and leading indirectly to Ca2+ current inhibition. Expression of Munc18-1, which recruits syntaxin-1 within the exocytotic pathway, does not modulate Ca2+ channels, whereas overexpression of the syntaxin-binding protein Doc2B or ubMunc13-2 increases syntaxin-1 immunoavailability and concomitantly down-regulates Ca2+ currents. Similar findings were obtained upon chemical cholesterol depletion, leading directly to syntaxin-1 cluster dispersal and Ca2+ current inhibition. We conclude that clustering of syntaxin-1 allows the cell to maintain a high syntaxin-1 expression level without compromising Ca2+ influx, and recruitment of syntaxin-1 from clusters by SNAP-25 expression makes it available for regulating Ca2+ channels. This mechanism potentially allows the cell to regulate Ca2+ influx by expanding or contracting syntaxin-1 clusters.
Collapse
Affiliation(s)
- Trine Lisberg Toft-Bertelsen
- Neurosecretion Group, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Iwona Ziomkiewicz
- Neurosecretion Group, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Sébastien Houy
- Neurosecretion Group, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Paulo S Pinheiro
- Neurosecretion Group, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Jakob B Sørensen
- Neurosecretion Group, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
31
|
Azarnia Tehran D, Pirazzini M, Leka O, Mattarei A, Lista F, Binz T, Rossetto O, Montecucco C. Hsp90 is involved in the entry of clostridial neurotoxins into the cytosol of nerve terminals. Cell Microbiol 2016; 19. [DOI: 10.1111/cmi.12647] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/06/2016] [Accepted: 07/08/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Domenico Azarnia Tehran
- Department of Biomedical Sciences; University of Padova; Via Ugo Bassi 58/B 35121 Padova Italy
| | - Marco Pirazzini
- Department of Biomedical Sciences; University of Padova; Via Ugo Bassi 58/B 35121 Padova Italy
| | - Oneda Leka
- Department of Biomedical Sciences; University of Padova; Via Ugo Bassi 58/B 35121 Padova Italy
| | - Andrea Mattarei
- Department of Chemical Sciences; University of Padova; Via F. Marzolo 1 35131 Padova Italy
| | - Florigio Lista
- Histology and Molecular Biology Section; Army Medical and Veterinary Research Center; Via Santo Stefano Rotondo 4 00184 Rome Italy
| | - Thomas Binz
- Medizinische Hochschule Hannover; Institut für Physiologische Chemie OE4310; 30625 Hannover Germany
| | - Ornella Rossetto
- Department of Biomedical Sciences; University of Padova; Via Ugo Bassi 58/B 35121 Padova Italy
| | - Cesare Montecucco
- Department of Biomedical Sciences; University of Padova; Via Ugo Bassi 58/B 35121 Padova Italy
- National Research Institute of Neuroscience; University of Padova; Via Ugo Bassi 58/B 35121 Padova Italy
| |
Collapse
|
32
|
Current status and future directions of botulinum neurotoxins for targeting pain processing. Toxins (Basel) 2015; 7:4519-63. [PMID: 26556371 PMCID: PMC4663519 DOI: 10.3390/toxins7114519] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/29/2015] [Accepted: 10/19/2015] [Indexed: 12/20/2022] Open
Abstract
Current evidence suggests that botulinum neurotoxins (BoNTs) A1 and B1, given locally into peripheral tissues such as skin, muscles, and joints, alter nociceptive processing otherwise initiated by inflammation or nerve injury in animal models and humans. Recent data indicate that such locally delivered BoNTs exert not only local action on sensory afferent terminals but undergo transport to central afferent cell bodies (dorsal root ganglia) and spinal dorsal horn terminals, where they cleave SNAREs and block transmitter release. Increasing evidence supports the possibility of a trans-synaptic movement to alter postsynaptic function in neuronal and possibly non-neuronal (glial) cells. The vast majority of these studies have been conducted on BoNT/A1 and BoNT/B1, the only two pharmaceutically developed variants. However, now over 40 different subtypes of botulinum neurotoxins (BoNTs) have been identified. By combining our existing and rapidly growing understanding of BoNT/A1 and /B1 in altering nociceptive processing with explorations of the specific characteristics of the various toxins from this family, we may be able to discover or design novel, effective, and long-lasting pain therapeutics. This review will focus on our current understanding of the molecular mechanisms whereby BoNTs alter pain processing, and future directions in the development of these agents as pain therapeutics.
Collapse
|
33
|
Kalb SR, Baudys J, Barr JR. Detection of the HA-33 protein in botulinum neurotoxin type G complex by mass spectrometry. BMC Microbiol 2015; 15:227. [PMID: 26494251 PMCID: PMC4619279 DOI: 10.1186/s12866-015-0567-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 10/15/2015] [Indexed: 11/30/2022] Open
Abstract
Background The disease botulism is caused by intoxication with botulinum neurotoxins (BoNTs), extremely toxic proteins which cause paralysis. This neurotoxin is produced by some members of the Clostridium botulinum and closely related species, and is produced as a protein complex consisting of the neurotoxin and neurotoxin-associated proteins (NAPs). There are seven known serotypes of BoNT, A-G, and the composition of the NAPs can differ between these serotypes. It was previously published that the BoNT/G complex consisted of BoNT/G, nontoxic-nonhemagglutinin (NTNH), Hemagglutinin 70 (HA-70), and HA-17, but that HA-33, a component of the protein complex of other serotypes of BoNT, was not found. Methods Components of the BoNT/G complex were first separated by SDS-PAGE, and bands corresponding to components of the complex were digested and analyzed by LC-MS/MS. Results Gel bands were identified with sequence coverages of 91 % for BoNT/G, 91 % for NTNH, 89 % for HA-70, and 88 % for HA-17. Notably, one gel band was also clearly identified as HA-33 with 93 % sequence coverage. Conclusions The BoNT/G complex consists of BoNT/G, NTNH, HA-70, HA-17, and HA-33. These proteins form the progenitor form of BoNT/G, similar to all other HA positive progenitor toxin complexes.
Collapse
Affiliation(s)
- Suzanne R Kalb
- Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laboratory Sciences, 4770 Buford Hwy, NE, Atlanta, GA, 30341, USA.
| | - Jakub Baudys
- Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laboratory Sciences, 4770 Buford Hwy, NE, Atlanta, GA, 30341, USA.
| | - John R Barr
- Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laboratory Sciences, 4770 Buford Hwy, NE, Atlanta, GA, 30341, USA.
| |
Collapse
|
34
|
Kumaran D, Adler M, Levit M, Krebs M, Sweeney R, Swaminathan S. Interactions of a potent cyclic peptide inhibitor with the light chain of botulinum neurotoxin A: Insights from X-ray crystallography. Bioorg Med Chem 2015; 23:7264-73. [PMID: 26522088 DOI: 10.1016/j.bmc.2015.10.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 10/09/2015] [Accepted: 10/16/2015] [Indexed: 10/22/2022]
Abstract
The seven antigenically distinct serotypes (A-G) of botulinum neurotoxin (BoNT) are responsible for the deadly disease botulism. BoNT serotype A (BoNT/A) exerts its lethal action by cleaving the SNARE protein SNAP-25, leading to inhibition of neurotransmitter release, flaccid paralysis and autonomic dysfunction. BoNTs are dichain proteins consisting of a ∼ 100 kDa heavy chain and a ∼ 50 kDa light chain; the former is responsible for neurospecific binding, internalization and translocation, and the latter for cleavage of neuronal SNARE proteins. Because of their extreme toxicity and history of weaponization, the BoNTs are regarded as potential biowarfare/bioterrorism agents. No post-symptomatic therapeutic interventions are available for BoNT intoxication other than intensive care; therefore it is imperative to develop specific antidotes against this neurotoxin. To this end, a cyclic peptide inhibitor (CPI-1) was evaluated in a FRET assay for its ability to inhibit BoNT/A light chain (Balc). CPI was found to be highly potent, exhibiting a Ki of 12.3 nM with full-length Balc448 and 39.2 nM using a truncated crystallizable form of the light chain (Balc424). Cocrystallization studies revealed that in the Balc424-CPI-1 complex, the inhibitor adopts a helical conformation, occupies a high percentage of the active site cavity and interacts in an amphipathic manner with critical active site residues. The data suggest that CPI-1 prevents SNAP-25 from accessing the Balc active site by blocking both the substrate binding path at the surface and the Zn(2+) binding region involved in catalysis. This differs from linear peptide inhibitors described to date which block only the latter.
Collapse
Affiliation(s)
- Desigan Kumaran
- Biological, Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, NY 11973, United States
| | - Michael Adler
- Analytical Toxicology Division, U.S. Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, MD 21010, United States.
| | - Matthew Levit
- Analytical Toxicology Division, U.S. Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, MD 21010, United States
| | - Michael Krebs
- Analytical Toxicology Division, U.S. Army Medical Research Institute of Chemical Defense (USAMRICD), Aberdeen Proving Ground, MD 21010, United States
| | - Richard Sweeney
- Research Division, USAMRICD, Aberdeen Proving Ground, MD 21010, United States
| | - Subramanyam Swaminathan
- Biological, Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, NY 11973, United States
| |
Collapse
|
35
|
Abstract
To create a presynaptic terminal, molecular signaling events must be orchestrated across a number of subcellular compartments. In the soma, presynaptic proteins need to be synthesized, packaged together, and attached to microtubule motors for shipment through the axon. Within the axon, transport of presynaptic packages is regulated to ensure that developing synapses receive an adequate supply of components. At individual axonal sites, extracellular interactions must be translated into intracellular signals that can incorporate mobile transport vesicles into the nascent presynaptic terminal. Even once the initial recruitment process is complete, the components and subsequent functionality of presynaptic terminals need to constantly be remodeled. Perhaps most remarkably, all of these processes need to be coordinated in space and time. In this review, we discuss how these dynamic cellular processes occur in neurons of the central nervous system in order to generate presynaptic terminals in the brain.
Collapse
Affiliation(s)
- Luke A D Bury
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Shasta L Sabo
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, USA Department of Neuroscience, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
36
|
Tsukamoto K, Ozeki C, Kohda T, Tsuji T. CRISPR/Cas9-Mediated Genomic Deletion of the Beta-1, 4 N-acetylgalactosaminyltransferase 1 Gene in Murine P19 Embryonal Carcinoma Cells Results in Low Sensitivity to Botulinum Neurotoxin Type C. PLoS One 2015; 10:e0132363. [PMID: 26177297 PMCID: PMC4503621 DOI: 10.1371/journal.pone.0132363] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/13/2015] [Indexed: 11/19/2022] Open
Abstract
Botulinum neurotoxins produced by Clostridium botulinum cause flaccid paralysis by inhibiting neurotransmitter release at peripheral nerve terminals. Previously, we found that neurons derived from the murine P19 embryonal carcinoma cell line exhibited high sensitivity to botulinum neurotoxin type C. In order to prove the utility of P19 cells for the study of the intracellular mechanism of botulinum neurotoxins, ganglioside-knockout neurons were generated by deletion of the gene encoding beta-1,4 N-acetylgalactosaminyltransferase 1 in P19 cells using the clustered regularly interspaced short palindromic repeats combined with Cas9 (CRISPR/Cas9) system. By using this system, knockout cells could be generated more easily than with previous methods. The sensitivity of the generated beta-1,4 N-acetylgalactosaminyltransferase 1-depleted P19 neurons to botulinum neurotoxin type C was decreased considerably, and the exogenous addition of the gangliosides GD1a, GD1b, and GT1b restored the susceptibility of P19 cells to botulinum neurotoxin type C. In particular, addition of a mixture of these three ganglioside more effectively recovered the sensitivity of knockout cells compared to independent addition of GD1a, GD1b, or GT1b. Consequently, the genome-edited P19 cells generated by the CRISPR/Cas9 system were useful for identifying and defining the intracellular molecules involved in the toxic action of botulinum neurotoxins.
Collapse
Affiliation(s)
- Kentaro Tsukamoto
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Chikako Ozeki
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Tomoko Kohda
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Takao Tsuji
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| |
Collapse
|
37
|
|
38
|
Kalb SR, Baudys J, Wang D, Barr JR. Recommended mass spectrometry-based strategies to identify botulinum neurotoxin-containing samples. Toxins (Basel) 2015; 7:1765-78. [PMID: 25996606 PMCID: PMC4448173 DOI: 10.3390/toxins7051765] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/04/2015] [Accepted: 05/11/2015] [Indexed: 01/01/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) cause the disease called botulism, which can be lethal. BoNTs are proteins secreted by some species of clostridia and are known to cause paralysis by interfering with nerve impulse transmission. Although the human lethal dose of BoNT is not accurately known, it is estimated to be between 0.1 μg to 70 μg, so it is important to enable detection of small amounts of these toxins. Our laboratory previously reported on the development of Endopep-MS, a mass-spectrometric‑based endopeptidase method to detect, differentiate, and quantify BoNT immunoaffinity purified from complex matrices. In this work, we describe the application of Endopep-MS for the analysis of thirteen blinded samples supplied as part of the EQuATox proficiency test. This method successfully identified the presence or absence of BoNT in all thirteen samples and was able to successfully differentiate the serotype of BoNT present in the samples, which included matrices such as buffer, milk, meat extract, and serum. Furthermore, the method yielded quantitative results which had z-scores in the range of -3 to +3 for quantification of BoNT/A containing samples. These results indicate that Endopep-MS is an excellent technique for detection, differentiation, and quantification of BoNT in complex matrices.
Collapse
Affiliation(s)
- Suzanne R Kalb
- Centers for Disease Control and Prevention, 4770 Buford Hwy NE, Atlanta, GA 30341, USA.
| | - Jakub Baudys
- Centers for Disease Control and Prevention, 4770 Buford Hwy NE, Atlanta, GA 30341, USA.
| | - Dongxia Wang
- Centers for Disease Control and Prevention, 4770 Buford Hwy NE, Atlanta, GA 30341, USA.
| | - John R Barr
- Centers for Disease Control and Prevention, 4770 Buford Hwy NE, Atlanta, GA 30341, USA.
| |
Collapse
|
39
|
Farrow B, Wong M, Malette J, Lai B, Deyle KM, Das S, Nag A, Agnew HD, Heath JR. Epitope Targeting of Tertiary Protein Structure Enables Target-Guided Synthesis of a Potent In-Cell Inhibitor of Botulinum Neurotoxin. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201502451] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Farrow B, Wong M, Malette J, Lai B, Deyle KM, Das S, Nag A, Agnew HD, Heath JR. Epitope targeting of tertiary protein structure enables target-guided synthesis of a potent in-cell inhibitor of botulinum neurotoxin. Angew Chem Int Ed Engl 2015; 54:7114-9. [PMID: 25925721 DOI: 10.1002/anie.201502451] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 04/09/2015] [Indexed: 12/14/2022]
Abstract
Botulinum neurotoxin (BoNT) serotype A is the most lethal known toxin and has an occluded structure, which prevents direct inhibition of its active site before it enters the cytosol. Target-guided synthesis by in situ click chemistry is combined with synthetic epitope targeting to exploit the tertiary structure of the BoNT protein as a landscape for assembling a competitive inhibitor. A substrate-mimicking peptide macrocycle is used as a direct inhibitor of BoNT. An epitope-targeting in situ click screen is utilized to identify a second peptide macrocycle ligand that binds to an epitope that, in the folded BoNT structure, is active-site-adjacent. A second in situ click screen identifies a molecular bridge between the two macrocycles. The resulting divalent inhibitor exhibits an in vitro inhibition constant of 165 pM against the BoNT/A catalytic chain. The inhibitor is carried into cells by the intact holotoxin, and demonstrates protection and rescue of BoNT intoxication in a human neuron model.
Collapse
Affiliation(s)
- Blake Farrow
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125 (USA).,Department of Applied Physics and Materials Science, California Institute of Technology (USA)
| | - Michelle Wong
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125 (USA)
| | - Jacquie Malette
- Indi Molecular, 6162 Bristol Parkway, Culver City, CA 90230 (USA)
| | - Bert Lai
- Indi Molecular, 6162 Bristol Parkway, Culver City, CA 90230 (USA)
| | - Kaycie M Deyle
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125 (USA)
| | - Samir Das
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125 (USA)
| | - Arundhati Nag
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125 (USA)
| | - Heather D Agnew
- Indi Molecular, 6162 Bristol Parkway, Culver City, CA 90230 (USA)
| | - James R Heath
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 E. California Blvd, Pasadena, CA 91125 (USA).
| |
Collapse
|
41
|
Wang D, Krilich J, Baudys J, Barr JR, Kalb SR. Enhanced detection of type C botulinum neurotoxin by the Endopep-MS assay through optimization of peptide substrates. Bioorg Med Chem 2015; 23:3667-73. [PMID: 25913863 DOI: 10.1016/j.bmc.2015.04.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/25/2015] [Accepted: 04/03/2015] [Indexed: 10/23/2022]
Abstract
It is essential to have a simple, quick and sensitive method for the detection and quantification of botulinum neurotoxins, the most toxic substances and the causative agents of botulism. Type C botulinum neurotoxin (BoNT/C) represents one of the seven members of distinctive BoNT serotypes (A to G) that cause botulism in animals and avians. Here we report the development of optimized peptide substrates for improving the detection of BoNT/C and /CD mosaic toxins using an Endopep-MS assay, a mass spectrometry-based method that is able to rapidly and sensitively detect and differentiate all types of BoNTs by extracting the toxin with specific antibodies and detecting the unique cleavage products of peptide substrates. Based on the sequence of a short SNAP-25 peptide, we conducted optimization through a comprehensive process including length determination, terminal modification, single and multiple amino acid residue substitution, and incorporation of unnatural amino acid residues. Our data demonstrate that an optimal peptide provides a more than 200-fold improvement over the substrate currently used in the Endopep-MS assay for the detection of BoNT/C1 and /CD mosaic. Using the new substrate in a four-hour cleavage reaction, the limit of detection for the BoNT/C1 complex spiked in buffer, serum and milk samples was determined to be 0.5, 0.5 and 1mouseLD50/mL, respectively, representing a similar or higher sensitivity than that obtained by traditional mouse bioassay.
Collapse
Affiliation(s)
- Dongxia Wang
- Division of Laboratory Sciences, National Center for the Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, Atlanta, GA 30341, United States
| | - Joan Krilich
- Division of Laboratory Sciences, National Center for the Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, Atlanta, GA 30341, United States
| | - Jakub Baudys
- Division of Laboratory Sciences, National Center for the Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, Atlanta, GA 30341, United States
| | - John R Barr
- Division of Laboratory Sciences, National Center for the Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, Atlanta, GA 30341, United States
| | - Suzanne R Kalb
- Division of Laboratory Sciences, National Center for the Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Highway, Atlanta, GA 30341, United States.
| |
Collapse
|
42
|
Ha JC, Richman DP. Myasthenia gravis and related disorders: Pathology and molecular pathogenesis. Biochim Biophys Acta Mol Basis Dis 2015; 1852:651-7. [DOI: 10.1016/j.bbadis.2014.11.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 11/20/2014] [Accepted: 11/29/2014] [Indexed: 12/21/2022]
|
43
|
Ulloa F, Gonzàlez-Juncà A, Meffre D, Barrecheguren PJ, Martínez-Mármol R, Pazos I, Olivé N, Cotrufo T, Seoane J, Soriano E. Blockade of the SNARE protein syntaxin 1 inhibits glioblastoma tumor growth. PLoS One 2015; 10:e0119707. [PMID: 25803850 PMCID: PMC4372377 DOI: 10.1371/journal.pone.0119707] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 01/15/2015] [Indexed: 11/19/2022] Open
Abstract
Glioblastoma (GBM) is the most prevalent adult brain tumor, with virtually no cure, and with a median overall survival of 15 months from diagnosis despite of the treatment. SNARE proteins mediate membrane fusion events in cells and are essential for many cellular processes including exocytosis and neurotransmission, intracellular trafficking and cell migration. Here we show that the blockade of the SNARE protein Syntaxin 1 (Stx1) function impairs GBM cell proliferation. We show that Stx1 loss-of-function in GBM cells, through ShRNA lentiviral transduction, a Stx1 dominant negative and botulinum toxins, dramatically reduces the growth of GBM after grafting U373 cells into the brain of immune compromised mice. Interestingly, Stx1 role on GBM progression may not be restricted just to cell proliferation since the blockade of Stx1 also reduces in vitro GBM cell invasiveness suggesting a role in several processes relevant for tumor progression. Altogether, our findings indicate that the blockade of SNARE proteins may represent a novel therapeutic tool against GBM.
Collapse
Affiliation(s)
- Fausto Ulloa
- Department of Cell Biology, University of Barcelona, Parc Cientific de Barcelona, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031, Madrid, Spain
- * E-mail:
| | - Alba Gonzàlez-Juncà
- Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, 08035, Barcelona, Spain
- Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Delphine Meffre
- Department of Cell Biology, University of Barcelona, Parc Cientific de Barcelona, 08028, Barcelona, Spain
| | - Pablo José Barrecheguren
- Department of Cell Biology, University of Barcelona, Parc Cientific de Barcelona, 08028, Barcelona, Spain
- Institute for Research in Biomedicine (IRB), Cell and Developmental Biology Program, Barcelona, 08028, Spain
| | - Ramón Martínez-Mármol
- Department of Cell Biology, University of Barcelona, Parc Cientific de Barcelona, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031, Madrid, Spain
| | - Irene Pazos
- Department of Cell Biology, University of Barcelona, Parc Cientific de Barcelona, 08028, Barcelona, Spain
| | - Núria Olivé
- Department of Cell Biology, University of Barcelona, Parc Cientific de Barcelona, 08028, Barcelona, Spain
| | - Tiziana Cotrufo
- Department of Cell Biology, University of Barcelona, Parc Cientific de Barcelona, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031, Madrid, Spain
| | - Joan Seoane
- Translational Research Program, Vall d'Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, 08035, Barcelona, Spain
- Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain
| | - Eduardo Soriano
- Department of Cell Biology, University of Barcelona, Parc Cientific de Barcelona, 08028, Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, 28031, Madrid, Spain
- Vall d´Hebron Institute of Research (VHIR), 08035, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain
| |
Collapse
|
44
|
Kalb SR, Baudys J, Raphael BH, Dykes JK, Lúquez C, Maslanka SE, Barr JR. Functional characterization of botulinum neurotoxin serotype H as a hybrid of known serotypes F and A (BoNT F/A). Anal Chem 2015; 87:3911-7. [PMID: 25731972 DOI: 10.1021/ac504716v] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A unique strain of Clostridium botulinum (IBCA10-7060) was recently discovered which produces two toxins: botulinum neurotoxin (BoNT) serotype B and a novel BoNT reported as serotype H. Previous molecular assessment showed that the light chain (LC) of the novel BoNT most resembled the bont of the light chain of known subtype F5, while the C-terminus of the heavy chain (HC) most resembled the binding domain of serotype A. We evaluated the functionality of both toxins produced in culture by first incorporating an immunoaffinity step using monoclonal antibodies to purify BoNT from culture supernatants and tested each immune-captured neurotoxin with full-length substrates vesicle-associated membrane protein 2 (VAMP-2), synaptosomal-associated protein 25 (SNAP-25), syntaxin, and shortened peptides representing the substrates. The BoNT/B produced by this strain behaved as a typical BoNT/B, having immunoaffinity for anti-B monoclonal antibodies and cleaving both full length VAMP-2 and a peptide based on the sequence of VAMP-2 in the expected location. As expected, there was no activity toward SNAP-25 or syntaxin. The novel BoNT demonstrated immunoaffinity for anti-A monoclonal antibodies but did not cleave SNAP-25 as expected for BoNT/A. Instead, the novel BoNT cleaved VAMP-2 and VAMP-2-based peptides in the same location as BoNT/F5. This is the first discovery of a single botulinum neurotoxin with BoNT/A antigenicity and BoNT/F light chain function. This work suggests that the newly reported serotype H may actually be a hybrid of previously known BoNT serotype A and serotype F, specifically subtype F5.
Collapse
Affiliation(s)
- Suzanne R Kalb
- †Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laboratory Sciences, 4770 Buford Hwy NE, Atlanta, Georgia 30341, United States
| | - Jakub Baudys
- †Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laboratory Sciences, 4770 Buford Hwy NE, Atlanta, Georgia 30341, United States
| | - Brian H Raphael
- ‡Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Enteric Diseases Laboratory Branch, 1600 Clifton Road, Atlanta, Georgia 30329, United States
| | - Janet K Dykes
- ‡Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Enteric Diseases Laboratory Branch, 1600 Clifton Road, Atlanta, Georgia 30329, United States
| | - Carolina Lúquez
- ‡Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Enteric Diseases Laboratory Branch, 1600 Clifton Road, Atlanta, Georgia 30329, United States
| | - Susan E Maslanka
- ‡Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Enteric Diseases Laboratory Branch, 1600 Clifton Road, Atlanta, Georgia 30329, United States
| | - John R Barr
- †Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laboratory Sciences, 4770 Buford Hwy NE, Atlanta, Georgia 30341, United States
| |
Collapse
|
45
|
Kull S, Schulz KM, Strotmeier JWN, Kirchner S, Schreiber T, Bollenbach A, Dabrowski PW, Nitsche A, Kalb SR, Dorner MB, Barr JR, Rummel A, Dorner BG. Isolation and functional characterization of the novel Clostridium botulinum neurotoxin A8 subtype. PLoS One 2015; 10:e0116381. [PMID: 25658638 PMCID: PMC4320087 DOI: 10.1371/journal.pone.0116381] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/06/2014] [Indexed: 12/31/2022] Open
Abstract
Botulism is a severe neurological disease caused by the complex family of botulinum neurotoxins (BoNT). Based on the different serotypes known today, a classification of serotype variants termed subtypes has been proposed according to sequence diversity and immunological properties. However, the relevance of BoNT subtypes is currently not well understood. Here we describe the isolation of a novel Clostridium botulinum strain from a food-borne botulism outbreak near Chemnitz, Germany. Comparison of its botulinum neurotoxin gene sequence with published sequences identified it to be a novel subtype within the BoNT/A serotype designated BoNT/A8. The neurotoxin gene is located within an ha-orfX+ cluster and showed highest homology to BoNT/A1, A2, A5, and A6. Unexpectedly, we found an arginine insertion located in the HC domain of the heavy chain, which is unique compared to all other BoNT/A subtypes known so far. Functional characterization revealed that the binding characteristics to its main neuronal protein receptor SV2C seemed unaffected, whereas binding to membrane-incorporated gangliosides was reduced in comparison to BoNT/A1. Moreover, we found significantly lower enzymatic activity of the natural, full-length neurotoxin and the recombinant light chain of BoNT/A8 compared to BoNT/A1 in different endopeptidase assays. Both reduced ganglioside binding and enzymatic activity may contribute to the considerably lower biological activity of BoNT/A8 as measured in a mouse phrenic nerve hemidiaphragm assay. Despite its reduced activity the novel BoNT/A8 subtype caused severe botulism in a 63-year-old male. To our knowledge, this is the first description and a comprehensive characterization of a novel BoNT/A subtype which combines genetic information on the neurotoxin gene cluster with an in-depth functional analysis using different technical approaches. Our results show that subtyping of BoNT is highly relevant and that understanding of the detailed toxin function might pave the way for the development of novel therapeutics and tailor-made antitoxins.
Collapse
Affiliation(s)
- Skadi Kull
- Biological Toxins (ZBS3), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Berlin, Germany
| | - K. Melanie Schulz
- Biological Toxins (ZBS3), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Berlin, Germany
| | | | - Sebastian Kirchner
- Biological Toxins (ZBS3), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Berlin, Germany
| | - Tanja Schreiber
- Biological Toxins (ZBS3), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Berlin, Germany
| | | | - P. Wojtek Dabrowski
- Highly Pathogenic Viruses (ZBS1), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Berlin, Germany
| | - Andreas Nitsche
- Highly Pathogenic Viruses (ZBS1), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Berlin, Germany
| | - Suzanne R. Kalb
- Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laboratory Sciences, Atlanta, Georgia, United States of America
| | - Martin B. Dorner
- Biological Toxins (ZBS3), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Berlin, Germany
| | - John R. Barr
- Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laboratory Sciences, Atlanta, Georgia, United States of America
| | - Andreas Rummel
- Institut für Toxikologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Brigitte G. Dorner
- Biological Toxins (ZBS3), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Berlin, Germany
- * E-mail:
| |
Collapse
|
46
|
Südhof TC. Der molekulare Mechanismus der Neurotransmitterfreisetzung und Nervenzell-Synapsen (Nobel-Aufsatz). Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201406359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
47
|
Südhof TC. The molecular machinery of neurotransmitter release (Nobel lecture). Angew Chem Int Ed Engl 2014; 53:12696-717. [PMID: 25339369 DOI: 10.1002/anie.201406359] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Indexed: 12/18/2022]
Abstract
The most important property of synaptic transmission is its speed, which is crucial for the overall workings of the brain. In his Nobel Lecture, T. C. Südhof explains how the synaptic vesicle and the plasma membrane undergo rapid fusion during neurotransmitter release and how this process is spatially organized, such that opening of Ca(2+) -channels allows rapid translation of the entering Ca(2+) signal into a fusion event.
Collapse
Affiliation(s)
- Thomas C Südhof
- Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Lorry Lokey SIM1 Building 07-535 Room G1021, 265 Campus Drive, Stanford University School of Medicine, CA 94305 (USA)
| |
Collapse
|
48
|
Wang D, Baudys J, Krilich J, Smith TJ, Barr JR, Kalb SR. A two-stage multiplex method for quantitative analysis of botulinum neurotoxins type A, B, E, and F by MALDI-TOF mass spectrometry. Anal Chem 2014; 86:10847-54. [PMID: 25285509 DOI: 10.1021/ac502948v] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In this publication, we report on the development of a quantitative enzymatic method for the detection of four botulinum neurotoxin (BoNT) serotypes responsible for human botulism by MALDI-TOF mass spectrometry. Factors that might affect the linearity and dynamic range for detection of BoNT cleavage products were initially examined, including the amount of peptide substrate and internal standard, the timing of cleavage reaction, and the components in the reaction solution. It was found that a long incubation time produced sensitive results, but was not capable of determining higher toxin concentrations, whereas a short incubation time was less sensitive so that lower toxin concentrations were not detected. In order to overcome these limitations, a two-stage analysis strategy was applied. The first stage analysis involved a short incubation period (e.g., 30 min). If no toxin was detected at this stage, the cleavage reaction was allowed to continue and the samples were analyzed at a second time point (4 h), so that toxin levels lower than 1 mouse LD50 or 55 attomoles per milliliter (55 amol/mL) could be quantified. By combining the results from two-stage quantification, 4 or 5 orders of magnitude in dynamic range were achieved for the detection of the serotypes of BoNT/A, BoNT/B, BoNT/E, or BoNT/F. The effect of multiplexing the assay by mixing substrates for different BoNT serotypes into a single reaction was also investigated in order to reduce the numbers of the cleavage reactions and save valuable clinical samples.
Collapse
Affiliation(s)
- Dongxia Wang
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention , Atlanta, Georgia 30341, United States
| | | | | | | | | | | |
Collapse
|
49
|
Videnović M, Opsenica DM, Burnett J, Gomba L, Nuss JE, Selaković Ž, Konstantinović J, Krstić M, Šegan S, Zlatović M, Sciotti RJ, Bavari S, Šolaja BA. Second generation steroidal 4-aminoquinolines are potent, dual-target inhibitors of the botulinum neurotoxin serotype A metalloprotease and P. falciparum malaria. J Med Chem 2014; 57:4134-53. [PMID: 24742203 PMCID: PMC4032193 DOI: 10.1021/jm500033r] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Indexed: 01/25/2023]
Abstract
Significantly more potent second generation 4-amino-7-chloroquinoline (4,7-ACQ) based inhibitors of the botulinum neurotoxin serotype A (BoNT/A) light chain were synthesized. Introducing an amino group at the C(3) position of the cholate component markedly increased potency (IC50 values for such derivatives ranged from 0.81 to 2.27 μM). Two additional subclasses were prepared: bis(steroidal)-4,7-ACQ derivatives and bis(4,7-ACQ)cholate derivatives; both classes provided inhibitors with nanomolar-range potencies (e.g., the Ki of compound 67 is 0.10 μM). During BoNT/A challenge using primary neurons, select derivatives protected SNAP-25 by up to 89%. Docking simulations were performed to rationalize the compounds' in vitro potencies. In addition to specific residue contacts, coordination of the enzyme's catalytic zinc and expulsion of the enzyme's catalytic water were a consistent theme. With respect to antimalarial activity, the compounds provided better IC90 activities against chloroquine resistant (CQR) malaria than CQ, and seven compounds were more active than mefloquine against CQR strain W2.
Collapse
Affiliation(s)
- Milica Videnović
- Faculty
of Chemistry, University of Belgrade, Studentski trg 16, P.O. Box 51, 11158, Belgrade, Serbia
| | - Dejan M. Opsenica
- Institute
of Chemistry, Technology, and Metallurgy, University of Belgrade, Njegoseva 12, 11000 Belgrade, Serbia
| | - James
C. Burnett
- Computational
Drug Development Group, Leidos Biomedical
Research, Inc., FNLCR at Frederick, P.O.
Box B, Frederick, Maryland 21701, United States
| | - Laura Gomba
- Department
of Bacteriology, United States Army Medical
Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, Maryland 21702, United States
| | - Jonathan E. Nuss
- Department
of Bacteriology, United States Army Medical
Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, Maryland 21702, United States
| | - Života Selaković
- Faculty
of Chemistry, University of Belgrade, Studentski trg 16, P.O. Box 51, 11158, Belgrade, Serbia
| | - Jelena Konstantinović
- Faculty
of Chemistry Innovative Centre, Studentski trg 12-16, 11158 Belgrade, Serbia
| | - Maja Krstić
- Faculty
of Chemistry, University of Belgrade, Studentski trg 16, P.O. Box 51, 11158, Belgrade, Serbia
| | - Sandra Šegan
- Institute
of Chemistry, Technology, and Metallurgy, University of Belgrade, Njegoseva 12, 11000 Belgrade, Serbia
| | - Mario Zlatović
- Faculty
of Chemistry, University of Belgrade, Studentski trg 16, P.O. Box 51, 11158, Belgrade, Serbia
| | - Richard J. Sciotti
- Division
of Experimental Therapeutics, Walter Reed
Army Institute of Research, Silver
Spring, Maryland 20910, United States
| | - Sina Bavari
- Target
Discovery and Experimental Microbiology, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, Maryland 21702, United States
| | - Bogdan A. Šolaja
- Faculty
of Chemistry, University of Belgrade, Studentski trg 16, P.O. Box 51, 11158, Belgrade, Serbia
| |
Collapse
|
50
|
Cijsouw T, Weber JP, Broeke JH, Broek JAC, Schut D, Kroon T, Saarloos I, Verhage M, Toonen RF. Munc18-1 redistributes in nerve terminals in an activity- and PKC-dependent manner. ACTA ACUST UNITED AC 2014; 204:759-75. [PMID: 24590174 PMCID: PMC3941046 DOI: 10.1083/jcb.201308026] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
PKC-dependent dynamic control of Munc18-1 levels enables individual synapses to tune their output during periods of activity. Munc18-1 is a soluble protein essential for synaptic transmission. To investigate the dynamics of endogenous Munc18-1 in neurons, we created a mouse model expressing fluorescently tagged Munc18-1 from the endogenous munc18-1 locus. We show using fluorescence recovery after photobleaching in hippocampal neurons that the majority of Munc18-1 trafficked through axons and targeted to synapses via lateral diffusion together with syntaxin-1. Munc18-1 was strongly expressed at presynaptic terminals, with individual synapses showing a large variation in expression. Axon–synapse exchange rates of Munc18-1 were high: during stimulation, Munc18-1 rapidly dispersed from synapses and reclustered within minutes. Munc18-1 reclustering was independent of syntaxin-1, but required calcium influx and protein kinase C (PKC) activity. Importantly, a PKC-insensitive Munc18-1 mutant did not recluster. We show that synaptic Munc18-1 levels correlate with synaptic strength, and that synapses that recruit more Munc18-1 after stimulation have a larger releasable vesicle pool. Hence, PKC-dependent dynamic control of Munc18-1 levels enables individual synapses to tune their output during periods of activity.
Collapse
Affiliation(s)
- Tony Cijsouw
- Department of Functional Genomics and Clinical Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam and VU Medical Center, 1081 HV Amsterdam, Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|