1
|
Guo M, Li M, Cui F, Wang H, Ding X, Gao W, Fang X, Chen L, Niu P, Ma J. Mediation effect of serum zinc on insulin secretion inhibited by methyl tert-butyl ether in gas station workers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8952-8962. [PMID: 38183540 DOI: 10.1007/s11356-023-31772-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 12/26/2023] [Indexed: 01/08/2024]
Abstract
Methyl tert-butyl ether (MTBE), a type of gasoline additive, has been found to affect insulin function and glucose homeostasis in animal experiments, but there is still no epidemiological evidence. Zinc (Zn) is a key regulatory element of insulin secretion and function, and Zn homeostasis can be disrupted by MTBE exposure through inducing oxidative stress. Therefore, we suspected that Zn might be involved and play an important role in the process of insulin secretion inhibited by MTBE exposure. In this study, we recruited 201 male subjects including occupational and non-occupational MTBE exposure from Anhui Province, China in 2019. Serum insulin and functional analog fibroblast growth factor 1 (FGF1) and blood MTBE were detected by Elisa and headspace solid-phase microextraction and gas chromatography-high-resolution mass spectrometry. According to MTBE internal exposure level, the workers were divided into low- and high-exposed groups and found that the serum insulin level in the high-exposed group was significantly lower than that in the low-exposed group (p = 0.003) while fasting plasma glucose (FPG) level increased obviously in the high-exposed group compared to the low-exposed group (p = 0.001). Further analysis showed that MTBE exposure level was positively correlated with FPG level, but negatively correlated with serum insulin level, which suggested that the FPG level increase might be related to the decrease of serum insulin level induced by MTBE exposure. The results of further mediation effect analysis showed that changes in serum zinc levels played a major intermediary role in the process of insulin secretion inhibition and blood glucose elevation caused by MTBE exposure. In addition, a significant negative correlation was found between MTBE exposure and serum Zn level, which might play a strong mediating effect on the inhibition of insulin secretion induced by MTBE exposure. In conclusion, our study provided evidence that MTBE could inhibit insulin secretion and interfere with Zn metabolism in gas station workers for the first time, and found that Zn might play an important mediation effect during the process of inhibiting insulin secretion and interfering with glucose metabolism induced by MTBE exposure.
Collapse
Affiliation(s)
- Mingxiao Guo
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Mengdi Li
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Fengtao Cui
- Occupational Disease Prevention and Control Hospital of Huaibei Mining Co., Ltd., Huaibei, 235000, Anhui Province, China
| | - Hanyun Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Xinping Ding
- Occupational Disease Prevention and Control Hospital of Huaibei Mining Co., Ltd., Huaibei, 235000, Anhui Province, China
| | - Wei Gao
- Occupational Disease Prevention and Control Hospital of Huaibei Mining Co., Ltd., Huaibei, 235000, Anhui Province, China
| | - Xingqiang Fang
- Occupational Disease Prevention and Control Hospital of Huaibei Mining Co., Ltd., Huaibei, 235000, Anhui Province, China
| | - Li Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Piye Niu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, 100069, China
| | - Junxiang Ma
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, China.
- Beijing Key Laboratory of Environmental Toxicology, School of Public Health, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
2
|
Balló A, Czétány P, Busznyákné KS, Márk L, Mike N, Török A, Szántó Á, Máté G. Oxido-Reduction Potential as a Method to Determine Oxidative Stress in Semen Samples. Int J Mol Sci 2023; 24:11981. [PMID: 37569357 PMCID: PMC10418886 DOI: 10.3390/ijms241511981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/16/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
There are different estimates for the incidence of infertility. Its occurrence may vary from area to area, but on average, it affects 15% of couples and 10-12% of men worldwide. Many aspects of infertility can be linked to reactive oxygen species (ROS) and the process of oxidative stress (OS). The association between poor semen quality and OS is well known. Unfortunately, there is no accepted protocol for the diagnosis and treatment of OS in andrology. Oxido-reduction potential (ORP) measurement is a new method for determining the ratio between oxidant and antioxidant molecules. Currently, ORP measurement is one of the fastest and most user-friendly methods of andrological OS determination and our goals were to confirm published correlations between ORP values and sperm parameters, examine how sperm concentration influences these results, and investigate whether intracellular ROS formations are also manifested in the ORP values or not after artificial ROS induction. Intracellular ROS formations were induced by menadione (superoxide anion inducer), hydrogen peroxide, and tert-butyl hydroperoxide (lipid peroxidation inducer) treatments; sperm parameters like motility and viability were determined with an SCA Scope system, and ORP changes were recorded by the Mioxsys system. Significant correlations were noticed among the ORP, spermatozoa concentration, motility, progressive motility, and viability. Nevertheless, only the ORP value after normalization with the sperm count correlated with these parameters. Due to normalization, very low and very high sperm concentrations can give misleading results. The means of the non-normalized ORP values were almost the same. All of the applied treatments resulted in decreases in the viability, motility, and progressive motility, and interestingly, altered ORP levels were detected. In addition, it was determined that seminal plasma had a significant protective effect on spermatozoa. The elimination of seminal plasma caused higher sensitivity of spermatozoa against used OS inducers, and higher ORP levels and decreased viabilities and motilities were measured. The ORP level could be a good indicator of male OS; however, in cases of low and high sperm counts, its result can be misleading. Overall, the conclusion can be drawn that ORP determination is a suitable method for detecting intracellular ROS accumulation, but it has limitations that still need to be clarified.
Collapse
Affiliation(s)
- András Balló
- Pannon Reproduction Institute, 8300 Tapolca, Hungary; (A.B.); (K.S.B.); (A.T.)
- Urology Clinic, University of Pécs Clinical Centre, 7621 Pécs, Hungary; (P.C.); (Á.S.)
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary;
| | - Péter Czétány
- Urology Clinic, University of Pécs Clinical Centre, 7621 Pécs, Hungary; (P.C.); (Á.S.)
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary;
| | | | - László Márk
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary;
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, University of Pécs Medical School, 7624 Pécs, Hungary
- MTA-PTE Human Reproduction Scientific Research Group, 7624 Pécs, Hungary
| | - Nóra Mike
- Szentágothai Research Centre, Department of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary;
| | - Attila Török
- Pannon Reproduction Institute, 8300 Tapolca, Hungary; (A.B.); (K.S.B.); (A.T.)
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary;
| | - Árpád Szántó
- Urology Clinic, University of Pécs Clinical Centre, 7621 Pécs, Hungary; (P.C.); (Á.S.)
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary;
| | - Gábor Máté
- Pannon Reproduction Institute, 8300 Tapolca, Hungary; (A.B.); (K.S.B.); (A.T.)
- Urology Clinic, University of Pécs Clinical Centre, 7621 Pécs, Hungary; (P.C.); (Á.S.)
- National Laboratory on Human Reproduction, University of Pécs, 7624 Pécs, Hungary;
| |
Collapse
|
3
|
Bus JS, Gollapudi BB, Hard GC. Methyl-tert-butyl ether (MTBE): integration of rat and mouse carcinogenicity data with mode of action and human and rodent bioassay dosimetry and toxicokinetics indicates MTBE is not a plausible human carcinogen. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2022; 25:135-161. [PMID: 35291916 DOI: 10.1080/10937404.2022.2041516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Methyl-tert-butyl ether (MTBE) is a fuel oxygenate used in non-United States geographies. Multiple health reviews conclude that MTBE is not a human-relevant carcinogen, and this review provides updated mode of action (MOA), exposure, dosimetry and risk perspectives supporting those conclusions. MTBE is non-genotoxic and has large margins of exposure between blood concentrations at the overall rat 400 ppm inhalation NOAEL and blood concentrations in typical workplace or general population exposures. Non-cancer and threshold cancer hazard quotients range from a high of 0.046 for fuel-pump gasoline station attendants and are 100-1,000-fold lower for general population exposures. Cancer risks conservatively assuming genotoxicity for these same scenarios are all less than 1 × 10-6. The onset of MTBE nonlinear toxicokinetics (TK) in rats at inhalation exposures less than 3,000 ppm, a dose that is also not practically achievable in fuel-use scenarios, indicates that high-dose specific male rat kidney and testes (3,000 and 8,000 ppm) and female mouse liver tumors (8000 ppm) are not quantitatively relevant to humans. Mode of action analyses also indicate MTBE male rat kidney tumors, and lesser so female mouse liver tumors, are not qualitatively relevant to humans. Thus, an integrated analysis of the toxicology, exposure/dosimetry, TK, and MOA data indicates that MTBE presents minimal human cancer and non-cancer risks.
Collapse
Affiliation(s)
- James S Bus
- Toxicology and Mechanistic Biology, Exponent Inc, Apex, NC, USA
| | | | | |
Collapse
|
4
|
Ren Q, Xie X, Tang Y, Hu Q, Du Y. Methyl tertiary-butyl ether inhibits THP-1 macrophage cholesterol efflux in vitro and accelerates atherosclerosis in ApoE-deficient mice in vivo. J Environ Sci (China) 2021; 101:236-247. [PMID: 33334519 DOI: 10.1016/j.jes.2020.08.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 06/12/2023]
Abstract
The biosafety of methyl tertiary-butyl ether (MTBE), mainly used as a gasoline additive, has long been a contentious topic. In addition to its routine toxicities, MTBE has been demonstrated to disrupt glucose and lipid metabolism and contribute to the development of type 2 diabetes as well as obesity. As one of the morbidities related to dyslipidemia, atherosclerosis is worthy of being investigated under MTBE exposure. Since foam cells derived from macrophages play pivotal roles during atherosclerosis development, we studied the effects of MTBE on macrophages in vitro and assessed the effect of MTBE on atherosclerosis plaque formation with the ApoE-/- mouse model in vivo for the first time. Our results demonstrated that exposure to MTBE at environmentally relevant concentrations decreased the expression of ABCA1 and ABCG1, which are responsible for macrophage cholesterol efflux, at both mRNA and protein levels in THP-1 macrophages. Consequently, treatment with MTBE inhibited the transport of cholesterol from macrophages to High-density lipoprotein. ApoE-/- mice exposed to MTBE at environmentally relevant concentrations (100, 1000 μg/kg) displayed significant increases in lesion area in the aorta and aortic root compared to vehicle-treated ones. Further analysis indicated that MTBE exposure enhanced the macrophage-specific marker Mac-2 contents within plaques in the aortic root, implying that MTBE could promote macrophage-derived foam cell formation and thus accelerate atherosclerosis plaque formation. We for the first time demonstrated the pro-atherogenic effect of MTBE via eliciting disruption of macrophage cholesterol efflux and accelerating foam cell formation and atherosclerosis plaque development.
Collapse
Affiliation(s)
- Qidong Ren
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinni Xie
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yue Tang
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Hu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Tang Y, Ren Q, Wen Q, Yu C, Xie X, Hu Q, Du Y. Effect of methyl tert-butyl ether on adipogenesis and glucose metabolism in vitro and in vivo. J Environ Sci (China) 2019; 85:208-219. [PMID: 31471028 DOI: 10.1016/j.jes.2019.06.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 06/10/2023]
Abstract
Methyl tert-butyl ether (MTBE), as a widely used gasoline additive, is suspected of being environmentally toxic. MTBE accumulates mainly in adipose tissue, but its effect on obesity or obesity-related metabolic disorders has not been well understood yet. Therefore, we examined the effect of MTBE on the adipose function and the related metabolic processes with both 3T3-L1 cell line and C57BL/6J mice model. We found that exposure to MTBE at the environmental relevant concentration (100 μmol/L) could significantly induce differentiation of preadipocyte and disturb insulin-stimulated glucose uptake of mature adipocyte. The in vivo observation in male mice showed a positive correlation of visceral white adipose tissue (vWAT) expansion and cell size increase with MTBE treatment in 14 weeks. Glucose tolerance and insulin sensitivity tests demonstrated that MTBE at 1000 μg/(kg·day) disturbed the systemic glucose metabolism in a gender-specific manner, which might be partly attributed to the alterations of gut microbiota community at genus level with respect to Akkermansia, Clostridium XlVb, and Megamonas. In summary, our study characterized the effect of MTBE on adipose tissue function and glucose homeostasis in vitro and in vivo, and revealed that systemic disorders of the glucose metabolism might be modulated by the related gut microbiota.
Collapse
Affiliation(s)
- Yue Tang
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. E-mail: .; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qidong Ren
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. E-mail: .; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Wen
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. E-mail: .; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Caixia Yu
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. E-mail: .; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinni Xie
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. E-mail: ..
| | - Qing Hu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Eco-toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. E-mail: .; School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Xie G, Hong WX, Zhou L, Yang X, Huang H, Wu D, Huang X, Zhu W, Liu J. An investigation of methyl tert‑butyl ether‑induced cytotoxicity and protein profile in Chinese hamster ovary cells. Mol Med Rep 2017; 16:8595-8604. [PMID: 29039499 PMCID: PMC5779912 DOI: 10.3892/mmr.2017.7761] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 11/15/2016] [Indexed: 11/23/2022] Open
Abstract
Methyl tert-butyl ether (MTBE) is widely used as an oxygenating agent in gasoline to reduce harmful emissions. However, previous studies have demonstrated that MTBE is a cytotoxic substance that has harmful effects in vivo and in vitro. Although remarkable progress has been made in elucidating the mechanisms underlying the MTBE-induced reproductive toxicological effect in different cell lines, the precise mechanisms remain far from understood. The present study aimed to evaluate whether mammalian ovary cells were sensitive to MTBE exposure in vitro by assessing cell viability, lactate dehydrogenase (LDH) leakage, malondialdehyde (MDA) content and antioxidant enzyme activities. In addition, the effect of MTBE exposure on differential protein expression profiles was examined by two-dimensional electrophoresis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry. MTBE exposure induced significant effects on cell viability, LDH leakage, plasma membrane damage and the activity of antioxidant enzymes. In the proteomic analysis, 24 proteins were demonstrated to be significantly affected by MTBE exposure. Functional analysis indicated that these proteins were involved in catalytic activity, binding, structural molecule activity, metabolic processes, cellular processes and localization, highlighting the fact that the cytotoxic mechanisms resulting from MTBE exposure are complex and diverse. The altered expression levels of two representative proteins, heat shock protein family A (Hsp70) members 8 and 9, were further confirmed by western blot analysis. The results revealed that MTBE exposure affects protein expression in Chinese hamster ovary cells and that oxidative stress and altered protein levels constitute the mechanisms underlying MTBE-induced cytotoxicity. These findings provided novel insights into the biochemical mechanisms involved in MTBE-induced cytotoxicity in the reproductive system.
Collapse
Affiliation(s)
- Guangshan Xie
- Shenzhen Research Institute of Population and Family Planning, Shenzhen, Guangdong 518040, P.R. China
| | - Wen-Xu Hong
- Shenzhen Research Institute of Population and Family Planning, Shenzhen, Guangdong 518040, P.R. China
| | - Li Zhou
- Key Laboratory of Modern Toxicology of Shenzhen, Medical Key Laboratory of Guangdong Province, Medical Key Laboratory of Health Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, P.R. China
| | - Xifei Yang
- Key Laboratory of Modern Toxicology of Shenzhen, Medical Key Laboratory of Guangdong Province, Medical Key Laboratory of Health Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, P.R. China
| | - Haiyan Huang
- Key Laboratory of Modern Toxicology of Shenzhen, Medical Key Laboratory of Guangdong Province, Medical Key Laboratory of Health Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, P.R. China
| | - Desheng Wu
- Key Laboratory of Modern Toxicology of Shenzhen, Medical Key Laboratory of Guangdong Province, Medical Key Laboratory of Health Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, P.R. China
| | - Xinfeng Huang
- Key Laboratory of Modern Toxicology of Shenzhen, Medical Key Laboratory of Guangdong Province, Medical Key Laboratory of Health Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, P.R. China
| | - Weiguo Zhu
- Department of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, P.R. China
| | - Jianjun Liu
- Shenzhen Research Institute of Population and Family Planning, Shenzhen, Guangdong 518040, P.R. China
| |
Collapse
|
7
|
Ma J, Chen L, Song D, Zhang Y, Chen T, Niu P. SIRT1 attenuated oxidative stress induced by methyl tert-butyl ether in HT22 cells. Toxicol Res (Camb) 2017; 6:290-296. [PMID: 30090498 PMCID: PMC6062265 DOI: 10.1039/c7tx00016b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 03/17/2017] [Indexed: 12/22/2022] Open
Abstract
Methyl tertiary-butyl ether (MTBE), an unleaded gasoline additive, can lead to oxidative stress, thus injuring the nervous system after long-term exposure. SIRT1, a NAD+-dependent histone deacetylase, can play a neuroprotective role in brain injury. However, the mechanism is unclear. This present study intended to define the role of SIRT1 during the process of MTBE-induced oxidative stress in mouse hippocampal neurons (HT22 cells). Our data showed that MTBE could directly trigger oxidative stress in HT22 cells by decreasing the activity of superoxide dismutase (SOD) and GSH/T-GSH level while increasing ROS, lipid peroxidation product malondialdehyde (MDA) and GSSG level. Similarly, the expression of SIRT1, an antioxidant, decreased in a dose-dependent manner. To further explore whether SIRT1 plays a key role during the process of oxidative stress, HT22 cells were transfected with siRNA-SIRT1 and preconditioned with the agonist of SIRT1 (SRT1720) for 2 h. The levels of oxidative stress (ROS, SOD, MDA, GSH/GSSG) were detected again after siRNA-SIRT1 HT22 cells and SRT1720 HT22 cells were exposed to MTBE for 6 h. In contrast to the non-pretreated group, levels of oxidative stress were tonic in siRNA-SIRT1 HT22 cells and attenuated in SRT1720 HT22 cells. Our results indicate that MTBE could directly cause oxidative stress in HT-22 cells, and SIRT1 might be an important antioxidant during MTBE-induced oxidative stress.
Collapse
Affiliation(s)
- Junxiang Ma
- Department of Occupational Health and Environmental Health , School of Public Health , Capital Medical University , Beijing , China 100069 . ; Tel: +86 10 83911509
- Beijing Key Laboratory of Environmental Toxicology , School of Public Health , Capital Medical University , Beijing , China 100069
| | - Li Chen
- Department of Occupational Health and Environmental Health , School of Public Health , Capital Medical University , Beijing , China 100069 . ; Tel: +86 10 83911509
- Beijing Key Laboratory of Environmental Toxicology , School of Public Health , Capital Medical University , Beijing , China 100069
| | - Dongmei Song
- Department of Occupational Health and Environmental Health , School of Public Health , Capital Medical University , Beijing , China 100069 . ; Tel: +86 10 83911509
- Beijing Key Laboratory of Environmental Toxicology , School of Public Health , Capital Medical University , Beijing , China 100069
| | - Yuanyuan Zhang
- Department of Occupational Health and Environmental Health , School of Public Health , Capital Medical University , Beijing , China 100069 . ; Tel: +86 10 83911509
- Beijing Key Laboratory of Environmental Toxicology , School of Public Health , Capital Medical University , Beijing , China 100069
| | - Tian Chen
- Department of Occupational Health and Environmental Health , School of Public Health , Capital Medical University , Beijing , China 100069 . ; Tel: +86 10 83911509
- Beijing Key Laboratory of Environmental Toxicology , School of Public Health , Capital Medical University , Beijing , China 100069
| | - Piye Niu
- Department of Occupational Health and Environmental Health , School of Public Health , Capital Medical University , Beijing , China 100069 . ; Tel: +86 10 83911509
- Beijing Key Laboratory of Environmental Toxicology , School of Public Health , Capital Medical University , Beijing , China 100069
| |
Collapse
|
8
|
Yang J, Wei Q, Peng X, Peng X, Yuan J, Hu D. Relationship between Methyl Tertiary Butyl Ether Exposure and Non-Alcoholic Fatty Liver Disease: A Cross-Sectional Study among Petrol Station Attendants in Southern China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13100946. [PMID: 27669281 PMCID: PMC5086685 DOI: 10.3390/ijerph13100946] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 09/07/2016] [Accepted: 09/20/2016] [Indexed: 01/29/2023]
Abstract
Methyl tertiary butyl ether (MTBE)—A well known gasoline additive substituting for lead alkyls—causes lipid disorders and liver dysfunctions in animal models. However, whether MTBE exposure is a risk factor for non-alcoholic fatty liver disease (NAFLD) remains uncertain. We evaluate the possible relationship between MTBE exposure and the prevalence of NAFLD among 71 petrol station attendants in southern China. The personal exposure concentrations of MTBE were analyzed by Head Space Solid Phase Microextraction GC/MS. NAFLD was diagnosed by using abdominal ultrasonography according to the guidelines for the diagnosis and treatment of NAFLD suggested by the Chinese Hepatology Association. Demographic and clinical characteristics potentially associated with NAFLD were investigated. Mutivariate logistic regression analysis was applied to measure odds ratios and 95% confidence intervals (CI). The result showed that the total prevalence of NAFLD was 15.49% (11/71) among the study subjects. The average exposure concentrations of MTBE were 292.98 ± 154.90 μg/m3 and 286.64 ± 122.28 μg/m3 in NAFLD and non-NAFLD groups, respectively, and there was no statistically significant difference between them (p > 0.05). After adjusting for age, gender, physical exercise, body mass index (BMI), systolic blood pressure (SBP), diastolic blood pressure (DBP), alanine aminotransferase (ALT), white blood cell (WBC), total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL), the odds ratios were 1.31 (95% CI: 0.85–1.54; p > 0.05), 1.14 (95% CI: 0.81–1.32; p > 0.05), 1.52 (95% CI: 0.93–1.61; p > 0.05) in the groups (including men and women) with exposure concentrations of MTBE of 100–200 μg/m3, 200–300 μg/m3, and ≥300 μg/m3, respectively, as compared to the group (including men and women) ≤100 μg/m3. Our investigation indicates that exposure to MTBE does not seem to be a significant risk factor for the prevalence of NAFLD among petrol station attendants in southern China.
Collapse
Affiliation(s)
- Jianping Yang
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou 510515, China.
- Department of Occupational Health, Baoan Center for Disease Control and Prevention of Shenzhen, Shenzhen 518100, China.
| | - Qinzhi Wei
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Toxicology, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| | - Xiaochun Peng
- South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China.
| | - Xiaowu Peng
- South China Institute of Environmental Sciences, Ministry of Environmental Protection, Guangzhou 510655, China.
| | - Jianhui Yuan
- Department of Toxicology, Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China.
| | - Dalin Hu
- Guangdong Provincial Key Laboratory of Tropical Disease Research, Department of Environmental Health, School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
9
|
Salimi A, Vaghar-Moussavi M, Seydi E, Pourahmad J. Toxicity of methyl tertiary-butyl ether on human blood lymphocytes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:8556-8564. [PMID: 26797945 DOI: 10.1007/s11356-016-6090-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 01/11/2016] [Indexed: 06/05/2023]
Abstract
Methyl tertiary-butyl ether (MTBE) is a synthetic solvent widely used as oxygenate in unleaded gasoline. Few studies have addressed the cellular toxicity of MTBE on some cell lines, and so far, no comprehensive study has been conducted to investigate the probable immunotoxicity of this compound. In this study, the toxicity of MTBE on human blood lymphocytes was evaluated. Blood lymphocytes were isolated from healthy male volunteers' blood, using Ficoll polysaccharide followed by gradient centrifugation. Cell viability, reactive oxygen species (ROS) formation, lipid peroxidation, glutathione levels, and damage to mitochondria and lysosome were determined in blood lymphocytes after 6-h incubation with different concentrations of MTBE (0.1, 0.5, 1, and 2 mM). Our results showed that MTBE, in particular, decreased cell viability, which was associated with significant increase at intracellular ROS level and toxic alterations in mitochondria and lysosomes in human blood lymphocytes. Moreover, it was shown that MTBE strongly provoked lipid peroxidation and also depleted glutathione level at higher concentrations. Interestingly, MTBE exhibited its cytotoxic effects at low concentrations that may resemble to its concentrations in human blood following occupational and environmental exposure. It is therefore concluded that MTBE was capable of inducing oxidative stress and damage to mitochondria and lysosomes in human lymphocytes at concentrations ranging from 5 to 40 μg/L, which may be present in human blood as a result of environmental exposure.
Collapse
Affiliation(s)
- Ahmad Salimi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, P.O. Box: 14155-6153, Tehran, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Ardabil University of Medical Science, Ardabil, Iran
- Students Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Vaghar-Moussavi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, P.O. Box: 14155-6153, Tehran, Iran
- Students Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Enayatollah Seydi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, P.O. Box: 14155-6153, Tehran, Iran
- Students Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jalal Pourahmad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, P.O. Box: 14155-6153, Tehran, Iran.
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Saeedi A, Omidi M, Khoshnoud MJ, Mohammadi-Bardbori A. Exposure to methyl tert-butyl ether (MTBE) is associated with mitochondrial dysfunction in rat. Xenobiotica 2015; 47:423-430. [DOI: 10.3109/00498254.2015.1125040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Arastoo Saeedi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Mahmoud Omidi
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Mohammad Javad Khoshnoud
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| | - Afshin Mohammadi-Bardbori
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Fars, Iran
| |
Collapse
|
11
|
Khalili L, Gholami S, Ansari-Lari M. Evaluation of offspring sex ratio, sex hormones and antioxidant enzymes following exposure to methyl tertiary butyl ether in adult male Sprague-Dawley rats. EXCLI JOURNAL 2015; 14:75-82. [PMID: 26417352 PMCID: PMC4553898 DOI: 10.17179/excli2014-580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 10/28/2014] [Indexed: 11/30/2022]
Abstract
Methyl tertiary butyl ether (MTBE) is an oxygenated fuel additive which has been used widely in many parts of the world. This experiment was performed to determine the effect of MTBE on offspring sex ratio, sex hormones and antioxidant enzymes. A total of 20 adult Sprague-Dawley male rats were divided into four groups and received 0, 400, 800 and 1600 mg/kg/day MTBE by gavages for 30 consecutive days. At the end of the experiment, blood samples were taken for determination of sex hormones and antioxidant enzymes. Then, male rats were mated with healthy unexposed female rats and sex of offspring was determined after birth. Sex ratio was 0.48, 0.50, 0.43 and 0.50 in 0, 400, 800 and 1600 mg/kg/day MTBE groups, respectively (P = 0.91). There was significant decreasing trend for luteinizing hormone (LH) and testosterone in experimental groups (rs = -0.50, P = 0.030 and rs = -0.67, P = 0.002, respectively). No changes were observed for superoxide dismutase. However, decrease in glutathione peroxidase (GPX) was observed in all treatment groups compared with control which was significant in 400 mg/kg/day MTBE group (P = 0.016). The present study showed that paternal exposure to oral MTBE has no effect on offspring sex ratio; while, MTBE exposure could exert dose-dependent changes in serum testosterone and LH in treatment groups. The results of the present study, need to be clarified in the future studies.
Collapse
Affiliation(s)
- Leila Khalili
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, PO Box 1731, Postal code 71345, Iran
| | - Soghra Gholami
- Department of Basic Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, PO Box 1731, Postal code 71345, Iran
| | - Maryam Ansari-Lari
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, PO Box 1731, Postal code 71345, Iran
| |
Collapse
|
12
|
de Peyster A, Mihaich E. Hypothesis-driven weight of evidence analysis to determine potential endocrine activity of MTBE. Regul Toxicol Pharmacol 2014; 69:348-70. [DOI: 10.1016/j.yrtph.2014.04.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 04/10/2014] [Accepted: 04/28/2014] [Indexed: 12/16/2022]
|
13
|
Wang X, Shi W, Wu J, Hao Y, Hu G, Liu H, Han X, Yu H. Reproductive toxicity of organic extracts from petrochemical plant effluents discharged to the Yangtze River, China. J Environ Sci (China) 2010; 22:297-303. [PMID: 20397421 DOI: 10.1016/s1001-0742(09)60108-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Water pollution of the Yangtze River in China became one of challenges that the government is facing today. Increasing numbers of petrochemical plants were built along the river in past decades, and numbers of organic chemicals were discharged into the river. Our goal was to establish in vitro system on rat sertoli cells, spermatogenic cells and leydig cells to investigate the reproductive toxicity potential induced by organic extracts from petrochemical effluents. Our results showed that the organic extract depressed the viability (p < 0.01) and destroyed the plasma membrane integrity of sertoli cells and spermatogenic cells to a certain degree. Accordingly, proportion of early apoptotic sertoli cells and late apoptotic spermatogenic cells increased significantly. Although significant morphological changes were not detected for leydig cells, the extract was observed to inhibit their testosterone production (p < 0.01). Sertoli cells and spermatogenic cells appeared to be more sensitive and maybe the main targets of the key toxins. Theseresults suggested that the in vitro system on rat testicular cells may be useful to predicate reproductive toxicity potential of organic extracts from petrochemical effluents. More attention should be paid to the petrochemical effluents, because long-term accumulation of these organic compounds in organisms may cause spermatogenesis malfunction and testosterone reduction.
Collapse
Affiliation(s)
- Xiaoyi Wang
- The State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210093, China.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Tomei G, Tomao E, Ciarrocca M, Rosati MV, Caciari T, Gamberale D, Palermo P, Sio SD, Tria M, Panfili A, Tomei F. Follicle-stimulating hormone levels in male workers exposed to urban chemical, physical, and psychosocial stressors. Toxicol Ind Health 2009; 25:395-402. [DOI: 10.1177/0748233709106466] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The aim of this study is to evaluate whether occupational exposure to urban stressors could cause alterations in the follicle-stimulating hormone (FSH) levels in traffic policemen compared to a control group. After excluding the subjects with main confounding factors, traffic policemen and male controls were matched by age, working life, body mass index (BMI), drinking habit, cigarette smoking history, and daily consumption of Italian coffee, 166 traffic policemen and 166 controls were included into the study. FSH levels were significantly higher in traffic policemen compared to male controls ( P < 0.05). The distribution of FSH values in traffic policemen and controls was significant ( P < 0.05). Our results suggest that occupational exposure to low doses of chemical and psychosocial stressors may alter plasma levels of FSH in traffic policemen more than in the control group. If the results obtained are confirmed by further research, the plasma levels of FSH may be used as early biological markers, valuable for the group, used in occupational set even before the appearance of disorders of male fertility.
Collapse
Affiliation(s)
- G Tomei
- Department of Psychiatric Science and Psychological Medicine, University of Rome “Sapienza”, Piazzale Aldo Moro, Rome, Italy
| | - E Tomao
- General Office for Military Health-Defence General Staff, Rome, Italy
| | - M Ciarrocca
- Department of Occupational Medicine, University of Rome “Sapienza”, Viale Regina Elena, Rome, Italy
| | - MV Rosati
- Department of Occupational Medicine, University of Rome “Sapienza”, Viale Regina Elena, Rome, Italy
| | - T Caciari
- Department of Occupational Medicine, University of Rome “Sapienza”, Viale Regina Elena, Rome, Italy
| | - D Gamberale
- S. Pre. S. A.L. Azienda ASL RM/E Service of Prevention and Safety in the Workplace, Rome, Italy
| | - P Palermo
- Department of Occupational Medicine, University of Rome “Sapienza”, Viale Regina Elena, Rome, Italy
| | - S De Sio
- Department of Occupational Medicine, University of Rome “Sapienza”, Viale Regina Elena, Rome, Italy
| | - M Tria
- Department of Occupational Medicine, University of Rome “Sapienza”, Viale Regina Elena, Rome, Italy
| | - A Panfili
- Department of Occupational Medicine, University of Rome “Sapienza”, Viale Regina Elena, Rome, Italy
| | - F Tomei
- Department of Occupational Medicine, University of Rome “Sapienza”, Viale Regina Elena, Rome, Italy
| |
Collapse
|
15
|
Cytotoxicity and oxidative stress study in cultured rat Sertoli cells with Methyl tert-butyl ether (MTBE) exposure. Reprod Toxicol 2009; 27:170-6. [DOI: 10.1016/j.reprotox.2008.12.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 11/27/2008] [Accepted: 12/15/2008] [Indexed: 11/21/2022]
|
16
|
de Peyster A, Rodriguez Y, Shuto R, Goldberg B, Gonzales F, Pu X, Klaunig JE. Effect of oral methyl-t-butyl ether (MTBE) on the male mouse reproductive tract and oxidative stress in liver. Reprod Toxicol 2008; 26:246-53. [PMID: 18824092 DOI: 10.1016/j.reprotox.2008.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Revised: 08/18/2008] [Accepted: 08/29/2008] [Indexed: 12/31/2022]
Abstract
MTBE is found in water supplies used for drinking and other purposes. These experiments follow up on earlier reports of reproductive tract alterations in male mice exposed orally to MTBE and explored oxidative stress as a mode of action. CD-1 mice were gavaged with 400-2000 mg/kg MTBE on days 1, 3, and 5, injected i.p. with hCG (2.5 IU/g) on day 6, and necropsied on day 7. No effect was seen in testis histology or testosterone levels. Using a similar dosing protocol, others had initially reported disruption of seminiferous tubules in MTBE-gavaged mice, although later conclusions published were consistent with our findings. Another group had also reported testicular and other reproductive system abnormalities in male BALB/c mice exposed for 28 days to 80-8000 microg/ml MTBE in drinking water. We gave these MTBE concentrations to adult mice for 28 days and juvenile mice for 51 days through PND 77. Evidence of oxidative stress was examined in liver homogenates from the juvenile study using MDA, TEAC and 8OH2hG as endpoints. MTBE exposures at the levels examined indicated no significant changes in the male mouse reproductive tract and no signs of hepatic oxidative stress. This appears to be the first oral MTBE exposure of juvenile animals, and also the first to examine potential for MTBE to cause oxidative stress in vivo using a typical route of human exposure.
Collapse
Affiliation(s)
- Ann de Peyster
- Graduate School of Public Health, San Diego State University, San Diego, CA 92182, United States.
| | | | | | | | | | | | | |
Collapse
|
17
|
Methyl tert-butyl ether (MTBE) induced Ca(2+)-dependent cytotoxicity in isolated rabbit tracheal epithelial cells. Toxicol In Vitro 2008; 22:1734-41. [PMID: 18715547 DOI: 10.1016/j.tiv.2008.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 06/19/2008] [Accepted: 07/21/2008] [Indexed: 12/17/2022]
Abstract
As a volatile synthetic organic chemical, methyl tert-butyl ether (MTBE) was the most common gasoline additive. The increasing use of MTBE raised concern over its health safety. Inhalation was the principle route of exposure for the general population. This study used a model of rabbit tracheal epithelial cells (RTEs) in primary culture to investigate the cytotoxic effects induced by MTBE and the potential mechanism. RTEs were incubated with medium alone (control), 0.5, 50, 5000ppm MTBE respectively. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazo liumbromide) assay, staining with fluorescein diacetate, propidium iodide and lactate dehydrogenase leakage ratio were used to assess MTBE cytotoxicity on cells. We also observed a significant elevation in cytosolic Ca2+ by fluorescence probe Fluo-3AM at 3, 6 and 12h following exposure to MTBE. Loss of mitochondrial membrane potential (MMP) was detected following 12 and 24h treatment of NP and assessment by rhodamine 123 (Rh123) staining. Activity changes of the Ca(2+)-ATPase, Ca(2+)-Mg(2+)-ATPase following MTBE treatment displayed a similar trend, suggesting an initial elevation before 6h and subsequent dramatic decrease at 12h. Our results demonstrated that induction of cell injury, associated with mitochondrial dysfunction, and alterations in cytosolic Ca2+ in RTEs represent key mechanisms by which MTBE exerts its cytotoxic effects.
Collapse
|
18
|
Li D, Yuan C, Gong Y, Huang Y, Han X. The effects of methyl tert-butyl ether (MTBE) on the male rat reproductive system. Food Chem Toxicol 2008; 46:2402-8. [DOI: 10.1016/j.fct.2008.03.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2007] [Revised: 03/12/2008] [Accepted: 03/23/2008] [Indexed: 11/28/2022]
|
19
|
Bartos P, Balázs M, Kiss I, Bihari Z, Kelemen O, Mécs I. Toxic effect of methyl tert-butyl ether on growth of soil isolate Pseudomonas veronii T1/1. World J Microbiol Biotechnol 2007. [DOI: 10.1007/s11274-007-9540-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|