1
|
Bakhrushina EO, Sakharova PS, Konogorova PD, Pyzhov VS, Kosenkova SI, Bardakov AI, Zubareva IM, Krasnyuk II, Krasnyuk II. Burst Release from In Situ Forming PLGA-Based Implants: 12 Effectors and Ways of Correction. Pharmaceutics 2024; 16:115. [PMID: 38258125 PMCID: PMC10819773 DOI: 10.3390/pharmaceutics16010115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/04/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
In modern pharmaceutical technology, modified-release dosage forms, such as in situ formed implants, are gaining rapidly in popularity. These dosage forms are created based on a configurable matrix consisting of phase-sensitive polymers capable of biodegradation, a hydrophilic solvent, and the active substance suspended or dissolved in it. The most used phase-sensitive implants are based on a biocompatible and biodegradable polymer, poly(DL-lactide-co-glycolide) (PLGA). OBJECTIVE This systematic review examines the reasons for the phenomenon of active ingredient "burst" release, which is a major drawback of PLGA-based in situ formed implants, and the likely ways to correct this phenomenon to improve the quality of in situ formed implants with a poly(DL-lactide-co-glycolide) matrix. DATA SOURCES Actual and relevant publications in PubMed and Google Scholar databases were studied. STUDY SELECTION The concept of the review was based on the theory developed during literature analysis of 12 effectors on burst release from in situ forming implants based on PLGA. Only those studies that sufficiently fully disclosed one or another component of the theory were included. RESULTS The analysis resulted in development of a systematic approach called the "12 Factor System", which considers various constant and variable, endogenous and exogenous factors that can influence the nature of 'burst release' of active ingredients from PLGA polymer-based in situ formed implants. These factors include matrix porosity, polymer swelling, LA:GA ratio, PLGA end groups, polymer molecular weight, active ingredient structure, polymer concentration, polymer loading with active ingredients, polymer combination, use of co-solvents, addition of excipients, and change of dissolution conditions. This review also considered different types of kinetics of active ingredient release from in situ formed implants and the possibility of using the "burst release" phenomenon to modify the active ingredient release profile at the site of application of this dosage form.
Collapse
Affiliation(s)
| | | | | | - Victor S. Pyzhov
- Department of Pharmaceutical Technology, A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119048, Russia; (E.O.B.); (P.S.S.); (P.D.K.); (S.I.K.); (A.I.B.); (I.M.Z.); (I.I.K.); (I.I.K.J.)
| | | | | | | | | | | |
Collapse
|
2
|
Zhang S, Zhao G, Mahotra M, Ma S, Li W, Lee HW, Yu H, Sampathkumar K, Xie D, Guo J, Loo SCJ. Chitosan nanofibrous scaffold with graded and controlled release of ciprofloxacin and BMP-2 nanoparticles for the conception of bone regeneration. Int J Biol Macromol 2024; 254:127912. [PMID: 37939763 DOI: 10.1016/j.ijbiomac.2023.127912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/18/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
The repair of bone defects using grafts is commonly employed in clinical practice. However, the risk of infection poses a significant concern. Tissue engineering scaffolds with antibacterial functionalities offer a better approach for bone tissue repair. In this work, firstly, two kinds of nanoparticles were prepared using chitosan to complex with ciprofloxacin and BMP-2, respectively. The ciprofloxacin complex nanoparticles improved the dissolution efficiency of ciprofloxacin achieving a potent antibacterial effect and cumulative release reached 95 % in 7 h. For BMP-2 complexed nanoparticles, the release time points can be programmed at 80 h, 100 h or 180 h by regulating the number of coating chitosan layers. Secondly, a functional scaffold was prepared by combining the two nanoparticles with chitosan nanofibers. The microscopic nanofiber structure of the scaffold with 27.28 m2/g specific surface area promotes cell adhesion, high porosity provides space for cell growth, and facilitates drug loading and release. The multifunctional scaffold exhibits programmed release function, and has obvious antibacterial effect at the initial stage of implantation, and releases BMP-2 to promote osteogenic differentiation of mesenchymal stem cells after the antibacterial effect ends. The scaffold is expected to be applied in clinical bone repair and graft infection prevention.
Collapse
Affiliation(s)
- Sihan Zhang
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou 510630, China
| | - Guanglei Zhao
- State Key Lab of Pulp and Papermaking Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510641, China.
| | - Manish Mahotra
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Shiyuan Ma
- Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenrui Li
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; NTU Institute for Health Technologies, Interdisciplinary Graduate Program, Nanyang Technological University, 61 Nanyang Drive, 637335, Singapore
| | - Hiang Wee Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Hong Yu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Kaarunya Sampathkumar
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Denghui Xie
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou 510630, China.
| | - Jinshan Guo
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Southern Medical University, Guangzhou 510630, China; Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Say Chye Joachim Loo
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, 308232, Singapore.
| |
Collapse
|
3
|
Wang P, Luo Q, Zhang L, Qu X, Che X, Cai S, Liu Y. A disulfiram/copper gluconate co-loaded bi-layered long-term drug delivery system for intraperitoneal treatment of peritoneal carcinomatosis. Colloids Surf B Biointerfaces 2023; 231:113558. [PMID: 37776774 DOI: 10.1016/j.colsurfb.2023.113558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/13/2023] [Accepted: 09/16/2023] [Indexed: 10/02/2023]
Abstract
To develop a long-term drug delivery system for the treatment of primary and metastatic peritoneal carcinoma (PC) by intraperitoneal (IP) injection, a disulfiram (DSF)/copper gluconate (Cu-Glu)-co-loaded bi-layered poly (lactic acid-coglycolic acid) (PLGA) microspheres (Ms) - thermosensitive hydrogel system (DSF-Ms-Cu-Glu-Gel) was established. Rate and mechanisms of drug release from DSF-Ms-Cu-Glu-Gel were explored. The anti-tumor effects of DSF-Ms-Cu-Glu-Gel by IP injection were evaluated using H22 xenograft tumor model mice. The accumulative release of DSF from Ms on the 10th day was 83.79% without burst release. When Ms were dispersed into B-Gel, burst release at 24 h decreased to 14.63%. The results showed that bis (diethyldithiocarbamate)-copper (Cu(DDC)2) was formed in DSF-Ms-Cu-Glu-Gel and slowly released from B-Gel. In a pharmacodynamic study, the mount of tumor nodes and ascitic fluid decreased in the DSF-Ms-Cu-Glu-Gel group. This was because: (1) DSF-Ms-Cu-Glu-Gel system co-loaded DSF and Cu-Glu, and physically isolated DSF and Cu-Glu before injection to protect DSF; (2) space and water were provided for the formation of Cu(DDC)2; (3) could provide an effective drug concentration in the abdominal cavity for a long time; (4) both DSF and Cu(DDC)2 were effective anti-tumor drugs, and the formation of Cu(DDC)2 occurred in the abdominal cavity, which further enhanced the anti-tumor activity. Thus, the DSF-Ms-Cu-Glu-Gel system can be potentially used for the IP treatment of PC in the future.
Collapse
Affiliation(s)
- Puxiu Wang
- Department of Pharmacy, the First Hospital of China Medical University, Shenyang, Liaoning, PR China; School of Pharmacy, China Medical University, Shenyang, Liaoning, PR China
| | - Qiuhua Luo
- Department of Pharmacy, the First Hospital of China Medical University, Shenyang, Liaoning, PR China; School of Pharmacy, China Medical University, Shenyang, Liaoning, PR China
| | - Ling Zhang
- Department of Biotherapy, Cancer Research Institute, the First Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Xiujuan Qu
- Department of Medical Oncology, the First Hospital of China Medical University, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, China; Liaoning Province Clinical Research Center for Cancer, China
| | - Xiaofang Che
- Department of Medical Oncology, the First Hospital of China Medical University, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, China; Liaoning Province Clinical Research Center for Cancer, China
| | - Shuang Cai
- Department of Pharmacy, the First Hospital of China Medical University, Shenyang, Liaoning, PR China; School of Pharmacy, China Medical University, Shenyang, Liaoning, PR China.
| | - Yunpeng Liu
- Department of Medical Oncology, the First Hospital of China Medical University, China; Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, the First Hospital of China Medical University, China; Liaoning Province Clinical Research Center for Cancer, China.
| |
Collapse
|
4
|
Jackson CE, Ramos-Rodriguez DH, Farr NTH, English WR, Green NH, Claeyssens F. Development of PCL PolyHIPE Substrates for 3D Breast Cancer Cell Culture. Bioengineering (Basel) 2023; 10:bioengineering10050522. [PMID: 37237592 DOI: 10.3390/bioengineering10050522] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/12/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023] Open
Abstract
Cancer is a becoming a huge social and economic burden on society, becoming one of the most significant barriers to life expectancy in the 21st century. In particular, breast cancer is one of the leading causes of death for women. One of the most significant difficulties to finding efficient therapies for specific cancers, such as breast cancer, is the efficiency and ease of drug development and testing. Tissue-engineered (TE) in vitro models are rapidly developing as an alternative to animal testing for pharmaceuticals. Additionally, porosity included within these structures overcomes the diffusional mass transfer limit whilst enabling cell infiltration and integration with surrounding tissue. Within this study, we investigated the use of high-molecular-weight polycaprolactone methacrylate (PCL-M) polymerised high-internal-phase emulsions (polyHIPEs) as a scaffold to support 3D breast cancer (MDA-MB-231) cell culture. We assessed the porosity, interconnectivity, and morphology of the polyHIPEs when varying mixing speed during formation of the emulsion, successfully demonstrating the tunability of these polyHIPEs. An ex ovo chick chorioallantoic membrane assay identified the scaffolds as bioinert, with biocompatible properties within a vascularised tissue. Furthermore, in vitro assessment of cell attachment and proliferation showed promising potential for the use of PCL polyHIPEs to support cell growth. Our results demonstrate that PCL polyHIPEs are a promising material to support cancer cell growth with tuneable porosity and interconnectivity for the fabrication of perfusable 3D cancer models.
Collapse
Affiliation(s)
- Caitlin E Jackson
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK
- Insigneo Institute for In Silico Medicine, The Pam Liversidge Building, University of Sheffield, Sheffield S1 3JD, UK
| | | | - Nicholas T H Farr
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK
- Insigneo Institute for In Silico Medicine, The Pam Liversidge Building, University of Sheffield, Sheffield S1 3JD, UK
| | - William R English
- Norwich Medical School, University of East Anglia, Norwich NR3 7TJ, UK
| | - Nicola H Green
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK
- Insigneo Institute for In Silico Medicine, The Pam Liversidge Building, University of Sheffield, Sheffield S1 3JD, UK
| | - Frederik Claeyssens
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, UK
- Insigneo Institute for In Silico Medicine, The Pam Liversidge Building, University of Sheffield, Sheffield S1 3JD, UK
| |
Collapse
|
5
|
Lu Y, Cheng D, Niu B, Wang X, Wu X, Wang A. Properties of Poly (Lactic-co-Glycolic Acid) and Progress of Poly (Lactic-co-Glycolic Acid)-Based Biodegradable Materials in Biomedical Research. Pharmaceuticals (Basel) 2023; 16:ph16030454. [PMID: 36986553 PMCID: PMC10058621 DOI: 10.3390/ph16030454] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
In recent years, biodegradable polymers have gained the attention of many researchers for their promising applications, especially in drug delivery, due to their good biocompatibility and designable degradation time. Poly (lactic-co-glycolic acid) (PLGA) is a biodegradable functional polymer made from the polymerization of lactic acid (LA) and glycolic acid (GA) and is widely used in pharmaceuticals and medical engineering materials because of its biocompatibility, non-toxicity, and good plasticity. The aim of this review is to illustrate the progress of research on PLGA in biomedical applications, as well as its shortcomings, to provide some assistance for its future research development.
Collapse
Affiliation(s)
- Yue Lu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
| | - Dongfang Cheng
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
| | - Baohua Niu
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
| | - Xiuzhi Wang
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Xiaxia Wu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
- Yantai Key Laboratory of Nanomedicine and Advanced Preparations, Yantai Institute of Materia Medica, Yantai 264000, China
| | - Aiping Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai 264005, China
- Correspondence:
| |
Collapse
|
6
|
Microbial Poly(hydroxybutyrate-co-hydroxyvalerate) Scaffold for Periodontal Tissue Engineering. Polymers (Basel) 2023; 15:polym15040855. [PMID: 36850140 PMCID: PMC9962980 DOI: 10.3390/polym15040855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
In this study, we fabricated three dimensional (3D) porous scaffolds of poly(hydroxybutyrate-co-hydroxyvalerate) with 50% HV content. P(HB-50HV) was biosynthesized from bacteria Cupriavidus necator H16 and the in vitro proliferation of dental cells for tissue engineering application was evaluated. Comparisons were made with scaffolds prepared by poly(hydroxybutyrate) (PHB), poly(hydroxybutyrate-co-12%hydroxyvalerate) (P(HB-12HV)), and polycaprolactone (PCL). The water contact angle results indicated a hydrophobic character for all polymeric films. All fabricated scaffolds exhibited a high porosity of 90% with a sponge-like appearance. The P(HB-50HV) scaffolds were distinctively different in compressive modulus and was the material with the lowest stiffness among all scaffolds tested between the dry and wet conditions. The human gingival fibroblasts (HGFs) and periodontal ligament stem cells (PDLSCs) cultured onto the P(HB-50HV) scaffold adhered to the scaffold and exhibited the highest proliferation with a healthy morphology, demonstrating excellent cell compatibility with P(HB-50HV) scaffolds. These results indicate that the P(HB-50HV) scaffold could be applied as a biomaterial for periodontal tissue engineering and stem cell applications.
Collapse
|
7
|
Tilton M, Jacobs E, Overdorff R, Astudillo Potes M, Lu L, Manogharan G. Biomechanical behavior of PMMA 3D printed biomimetic scaffolds: Effects of physiologically relevant environment. J Mech Behav Biomed Mater 2023; 138:105612. [PMID: 36509012 PMCID: PMC9845185 DOI: 10.1016/j.jmbbm.2022.105612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 11/22/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
Functional cellular structures with controllable mechanical and morphological properties are of great interest for applications including tissue engineering, energy storage, and aerospace. Additive manufacturing (AM), also referred to as 3D printing, has enabled the potential for fabrication of functional porous scaffolds (i.e., meta-biomaterials) with controlled geometrical, morphological, and mechanical properties. Understanding the biomechanical behavior of 3D printed porous scaffolds under physiologically relevant loading and environmental conditions is crucial in accurately predicting the in vivo performance. This study was aimed to investigate the environmental dependency of the mechanical responses of 3D printed porous scaffolds of poly(methyl methacrylate) (PMMA) Class IIa biomaterial that was based on triply periodic minimal surfaces - TPMS (i.e., Primitive and Schoen-IWP). The 3D printed scaffolds (n = 5/study group) were tested under compressive loading in both ambient and fluidic (distilled water with pH = 7.4) environments according to ASTM D1621 standards. Outcomes of this study showed that compressive properties of the developed scaffolds are significantly lower in the fluidic condition than the ambient environment for the same topological and morphological group (p≤0.023). Additionally, compressive properties and flexural stiffness of the studied scaffolds were within the range of trabecular bone's properties, for both topological classes. Relationships between predicted mechanical responses and morphological properties (i.e., porosity) were evaluated for each topological class. Quantitative correlation analysis indicated that mechanical behavior of the developed 3D printed scaffolds can be controlled based on both topology and morphology.
Collapse
Affiliation(s)
- Maryam Tilton
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA.
| | - Erik Jacobs
- Additive Manufacturing and Design Program, Pennsylvania State University, University Park, PA, USA
| | | | - Maria Astudillo Potes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Lichun Lu
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Orthopedic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Guha Manogharan
- Additive Manufacturing and Design Program, Pennsylvania State University, University Park, PA, USA; Department of Mechanical Engineering, Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
8
|
Cao D, Ding J. Recent advances in regenerative biomaterials. Regen Biomater 2022; 9:rbac098. [PMID: 36518879 PMCID: PMC9745784 DOI: 10.1093/rb/rbac098] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 07/22/2023] Open
Abstract
Nowadays, biomaterials have evolved from the inert supports or functional substitutes to the bioactive materials able to trigger or promote the regenerative potential of tissues. The interdisciplinary progress has broadened the definition of 'biomaterials', and a typical new insight is the concept of tissue induction biomaterials. The term 'regenerative biomaterials' and thus the contents of this article are relevant to yet beyond tissue induction biomaterials. This review summarizes the recent progress of medical materials including metals, ceramics, hydrogels, other polymers and bio-derived materials. As the application aspects are concerned, this article introduces regenerative biomaterials for bone and cartilage regeneration, cardiovascular repair, 3D bioprinting, wound healing and medical cosmetology. Cell-biomaterial interactions are highlighted. Since the global pandemic of coronavirus disease 2019, the review particularly mentions biomaterials for public health emergency. In the last section, perspectives are suggested: (i) creation of new materials is the source of innovation; (ii) modification of existing materials is an effective strategy for performance improvement; (iii) biomaterial degradation and tissue regeneration are required to be harmonious with each other; (iv) host responses can significantly influence the clinical outcomes; (v) the long-term outcomes should be paid more attention to; (vi) the noninvasive approaches for monitoring in vivo dynamic evolution are required to be developed; (vii) public health emergencies call for more research and development of biomaterials; and (viii) clinical translation needs to be pushed forward in a full-chain way. In the future, more new insights are expected to be shed into the brilliant field-regenerative biomaterials.
Collapse
Affiliation(s)
- Dinglingge Cao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
9
|
Abedi F, Moghaddam SV, Ghandforoushan P, Aghazadeh M, Ebadi H, Davaran S. Synthesis and characterization of growth factor free nanoengineered bioactive scaffolds for bone tissue engineering. J Biol Eng 2022; 16:28. [PMID: 36253790 PMCID: PMC9578226 DOI: 10.1186/s13036-022-00303-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 09/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To address the obstacles that come with orthopedic surgery for biological graft tissues, including immune rejections, bacterial infections, and weak osseointegration, bioactive nanocomposites have been used as an alternative for bone grafting since they can mimic the biological and mechanical properties of the native bone. Among them, PCL-PEG-PCL (PCEC) copolymer has gained much attention for bone tissue engineering as a result of its biocompatibility and ability for osteogenesis. METHODS Here, we designed a growth factor-free nanoengineered scaffold based on the incorporation of Fe3O4 and hydroxyapatite (HA) nanoparticles into the PCL-PEG-PCL/Gelatin (PCEC/Gel) nanocomposite. We characterized different formulations of nanocomposite scaffolds in terms of physicochemical properties. Also, the mechanical property and specific surface area of the prepared scaffolds, as well as their feasibility for human dental pulp stem cells (hDPSCs) adhesion were assessed. RESULTS The results of in vitro cell culture study revealed that the PCEC/Gel Fe3O4&HA scaffold could promote osteogenesis in comparison with the bare scaffold, which confirmed the positive effect of the Fe3O4 and HA nanoparticles in the osteogenic differentiation of hDPSCs. CONCLUSION The incorporation of Fe3O4 and HA with PCEC/gelatin could enhance osteogenic differentiation of hDPSCs for possible substitution of bone grafting tissue.
Collapse
Affiliation(s)
- Fatemeh Abedi
- Clinical Research Development, Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran. .,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sevil Vaghefi Moghaddam
- Clinical Research Development, Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Ghandforoushan
- Department of Medicinal chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| | - Marziyeh Aghazadeh
- Stem Cell Research Center and Oral Medicine Department of Dental Faculty, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hafez Ebadi
- Department of Materials Engineering, Faculty of Mechanical Engineering, University of Tabriz, Tabriz, Iran
| | - Soodabeh Davaran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Medicinal chemistry, Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
10
|
A bioactive porous scaffold containing collagen/ phosphorous-modified polycaprolactone for osteogenesis of adipose-derived mesenchymal stem cells. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Krieghoff J, Kascholke C, Loth R, Starke A, Koenig A, Schulz-Siegmund M, Hacker MC. Composition-controlled degradation behavior of macroporous scaffolds from three-armed biodegradable macromers. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2021.109775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Siehr A, Flory C, Callaway T, Schumacher RJ, Siegel RA, Shen W. Implantable and Degradable Thermoplastic Elastomer. ACS Biomater Sci Eng 2021; 7:5598-5610. [PMID: 34788004 DOI: 10.1021/acsbiomaterials.1c01123] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Biodegradable and implantable materials having elastomeric properties are highly desirable for many biomedical applications. Here, we report that poly(lactide)-co-poly(β-methyl-δ-valerolactone)-co-poly(lactide) (PLA-PβMδVL-PLA), a thermoplastic triblock poly(α-ester), has combined favorable properties of elasticity, biodegradability, and biocompatibility. This material exhibits excellent elastomeric properties in both dry and aqueous environments. The elongation at break is approximately 1000%, and stretched specimens completely recover to their original shape after force is removed. The material is degradable both in vitro and in vivo; it degrades more slowly than poly(glycerol sebacate) and more rapidly than poly(caprolactone) in vivo. Both the polymer and its degradation product show high cytocompatibility in vitro. The histopathological analysis of PLA-PβMδVL-PLA specimens implanted in the gluteal muscle of rats for 1, 4, and 8 weeks revealed similar tissue responses as compared with poly(glycerol sebacate) and poly(caprolactone) controls, two widely accepted implantable polymers, suggesting that PLA-PβMδVL-PLA can potentially be used as an implantable material with favorable in vivo biocompatibility. The thermoplastic nature allows this elastomer to be readily processed, as demonstrated by the facile fabrication of the substrates with topographical cues to enhance muscle cell alignment. These properties collectively make this polymer potentially highly valuable for applications such as medical devices and tissue engineering scaffolds.
Collapse
Affiliation(s)
- Allison Siehr
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, Minnesota 55455, United States
| | - Craig Flory
- Center for Translational Medicine, University of Minnesota, Phillips-Wangensteen Building 516 Delaware St. SE, MMC 367, Minneapolis, Minnesota 55455, United States
| | - Trenton Callaway
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, Minnesota 55455, United States
| | - Robert J Schumacher
- Center for Translational Medicine, University of Minnesota, Phillips-Wangensteen Building 516 Delaware St. SE, MMC 367, Minneapolis, Minnesota 55455, United States.,Experimental and Clinical Pharmacology, University of Minnesota, 7-115 Weaver-Densford Hall, 308 Harvard St. SE, Minneapolis, Minnesota 55455, United States
| | - Ronald A Siegel
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, Minnesota 55455, United States.,Department of Pharmaceutics, University of Minnesota, 308 Harvard St. SE, Room 9-177 Weaver Densford Hall, Minneapolis, Minnesota 55455, United States.,Institute for Engineering in Medicine, University of Minnesota, 420 Delaware St. SE, 725 Mayo Memorial Building, MMC 609, Minneapolis, Minnesota 55455, United States
| | - Wei Shen
- Department of Biomedical Engineering, University of Minnesota, 312 Church St. SE, 7-105 Nils Hasselmo Hall, Minneapolis, Minnesota 55455, United States.,Institute for Engineering in Medicine, University of Minnesota, 420 Delaware St. SE, 725 Mayo Memorial Building, MMC 609, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
13
|
Hua Y, Su Y, Zhang H, Liu N, Wang Z, Gao X, Gao J, Zheng A. Poly(lactic-co-glycolic acid) microsphere production based on quality by design: a review. Drug Deliv 2021; 28:1342-1355. [PMID: 34180769 PMCID: PMC8245074 DOI: 10.1080/10717544.2021.1943056] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Poly(lactic-co-glycolic acid) (PLGA) has garnered increasing attention as a candidate drug delivery polymer owing to its favorable properties, including its excellent biocompatibility, biodegradability, non-toxicity, non-immunogenicity, and mechanical strength. PLAG are specifically used as microspheres for the sustained/controlled and targeted delivery of hydrophilic or hydrophobic drugs, as well as biological therapeutic macromolecules, including peptide and protein drugs. PLGAs with different molecular weights, lactic acid (LA)/glycolic acid (GA) ratios, and end groups exhibit unique release characteristics, which is beneficial for obtaining diverse therapeutic effects. This review aims to analyze the composition of PLGA microspheres, and understand the manufacturing process involved in their production, from a quality by design perspective. Additionally, the key factors affecting PLGA microsphere development are explored as well as the principles involved in the synthesis and degradation of PLGA and its interaction with active drugs. Further, the effects elicited by microcosmic conditions on PLGA macroscopic properties, are analyzed. These conditions include variations in the organic phase (organic solvent, PLGA, and drug concentration), continuous phase (emulsifying ability), emulsifying stage (organic phase and continuous phase interaction, homogenization parameters), and solidification process (relationship between solvent volatilization rate and curing conditions). The challenges in achieving consistency between batches during manufacturing are addressed, and continuous production is discussed as a potential solution. Finally, potential critical quality attributes are introduced, which may facilitate the optimization of process parameters.
Collapse
Affiliation(s)
- Yabing Hua
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yuhuai Su
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Hui Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Nan Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Zengming Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Xiang Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jing Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Aiping Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
14
|
Quality by design prospects of pharmaceuticals application of double emulsion method for PLGA loaded nanoparticles. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04609-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Abstract
QbD approach empowers the pharma researchers to minimize the number of experimental trials and time. It helps identify the significant, influential factors such as critical material attributes, critical formulation variables, and critical process parameters, which may significantly impact the quality of the products. Poly lactic-co-glycolic acid (PLGA), a biocompatible and biodegradable polymer, has gained an immense potential and wide range of applications as a carrier for manufacturing of polymeric nanoparticle drug delivery systems as per US-FDA and European Medicine Agency for drug delivery. The double emulsion method for preparing PLGA nanoparticles to encapsulate hydrophilic drugs has attracted interest in manufacturing processes. The double emulsion is a two-step process consisting of two different emulsification, making the process more complicated. The stability of nanoparticles obtained by a double emulsion method remains questionable due to the many formulations and process attributes. Currently, PLGA based nanoparticles prepared by a double emulsion technique are an alternative pharmaceutical manufacturing operation for getting the quality product by employing the Quality by Design approach. This present review has discussed the QbD elements to elucidate the effect of material attributes, formulation, and process variables on the critical quality attributes of the drug product, such as particle size distribution, encapsulation efficiency, etc. The components of a double emulsion, characteristics of drugs, polymers, and stabilizers used have been discussed in detail in this review.
Graphic abstract
Collapse
|
15
|
Yao X, Wang X, Ding J. Exploration of possible cell chirality using material techniques of surface patterning. Acta Biomater 2021; 126:92-108. [PMID: 33684535 DOI: 10.1016/j.actbio.2021.02.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023]
Abstract
Consistent left-right (LR) asymmetry or chirality is critical for embryonic development and function maintenance. While chirality on either molecular or organism level has been well established, that on the cellular level has remained an open question for a long time. Although it remains unclear whether chirality exists universally on the cellular level, valuable efforts have recently been made to explore this fundamental topic pertinent to both cell biology and biomaterial science. The development of material fabrication techniques, surface patterning, in particular, has afforded a unique platform to study cell-material interactions. By using patterning techniques, chirality on the cellular level has been examined for cell clusters and single cells in vitro in well-designed experiments. In this review, we first introduce typical fabrication techniques of surface patterning suitable for cell studies and then summarize the main aspects of preliminary evidence of cell chirality on patterned surfaces to date. We finally indicate the limitations of the studies conducted thus far and describe the perspectives of future research in this challenging field. STATEMENT OF SIGNIFICANCE: While both biomacromolecules and organisms can exhibit chirality, it is not yet conclusive whether a cell has left-right (LR) asymmetry. It is important yet challenging to study and reveal the possible existence of cell chirality. By using the technique of surface patterning, the recent decade has witnessed progress in the exploration of possible cell chirality within cell clusters and single cells. Herein, some important preliminary evidence of cell chirality is collected and analyzed. The open questions and perspectives are also described to promote further investigations of cell chirality in biomaterials.
Collapse
|
16
|
Moetazedian A, Gleadall A, Mele E, Silberschmidt VV. Damage in extrusion additive manufactured biomedical polymer: Effects of testing direction and environment during cyclic loading. J Mech Behav Biomed Mater 2021; 118:104397. [PMID: 33743441 DOI: 10.1016/j.jmbbm.2021.104397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/02/2021] [Accepted: 02/11/2021] [Indexed: 10/22/2022]
Abstract
Although biodegradable polymers were widely researched, this is the first study considering the effect of combined testing environments and cyclic loading on the most important aspect related to additive manufacturing: the interfacial bond between deposited layers. Its results give confidence in applicability of the material extrusion additive manufacturing technology for biomedical fields, by demonstrating that the interface behaves in a manner similar to that of the bulk-polymer material. To do this, especially designed tensile specimens were used to analyse the degradation of 3D-printed polymers subjected to constant-amplitude and incremental cyclic loads when tested in air at room temperature (control) and submerged at 37 °C (close to in-vivo conditions). The mechanical properties of the interface between extruded filaments were compared against the bulk material, i.e. along filaments. In both cases, cyclic loading caused only a negligible detrimental effect compared to non-cyclic loading (less than 10 % difference in ultimate tensile strength), demonstrating the suitability of using 3D-printed components in biomedical applications, usually exposed to cyclic loading. For cyclic tests with a constant loading amplitude, larger residual deformation (>100 % greater) and energy dissipation (>15 % greater) were found when testing submerged in solution at 37 °C as opposed to in laboratory conditions (air at room temperature), as used by many studies. This difference may be due to plasticisation effects of water and temperature. For cyclic tests with incrementally increasing loading amplitudes, the vast majority of energy dissipation happened in the last two cycles prior to failure, when the polymer approached the yield point. The results demonstrate the importance of using an appropriate methodology for biomedical applications; otherwise, mechanical properties may be overestimated.
Collapse
Affiliation(s)
- Amirpasha Moetazedian
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, LE11 3TU, UK
| | - Andrew Gleadall
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, LE11 3TU, UK.
| | - Elisa Mele
- Department of Materials, Loughborough University, Loughborough, LE11 3TU, UK
| | - Vadim V Silberschmidt
- Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough, LE11 3TU, UK
| |
Collapse
|
17
|
Alhudaithy S, Abdulmalik S, Kumbar SG, Hoshino K. Design, Fabrication, and Validation of a Petri Dish-Compatible PDMS Bioreactor for the Tensile Stimulation and Characterization of Microtissues. MICROMACHINES 2020; 11:E892. [PMID: 32993158 PMCID: PMC7650815 DOI: 10.3390/mi11100892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/11/2020] [Accepted: 09/24/2020] [Indexed: 11/16/2022]
Abstract
In this paper, we report on a novel biocompatible micromechanical bioreactor (actuator and sensor) designed for the in situ manipulation and characterization of live microtissues. The purpose of this study was to develop and validate an application-targeted sterile bioreactor that is accessible, inexpensive, adjustable, and easily fabricated. Our method relies on a simple polydimethylsiloxane (PDMS) molding technique for fabrication and is compatible with commonly-used laboratory equipment and materials. Our unique design includes a flexible thin membrane that allows for the transfer of an external actuation into the PDMS beam-based actuator and sensor placed inside a conventional 35 mm cell culture Petri dish. Through computational analysis followed by experimental testing, we demonstrated its functionality, accuracy, sensitivity, and tunable operating range. Through time-course testing, the actuator delivered strains of over 20% to biodegradable electrospun poly (D, L-lactide-co-glycolide) (PLGA) 85:15 non-aligned nanofibers (~91 µm thick). At the same time, the sensor was able to characterize time-course changes in Young's modulus (down to 10-150 kPa), induced by an application of isopropyl alcohol (IPA). Furthermore, the actuator delivered strains of up to 4% to PDMS monolayers (~30 µm thick), simultaneously characterizing their elastic modulus up to ~2.2 MPa. The platform repeatedly applied dynamic (0.23 Hz) tensile stimuli to live Human Dermal Fibroblast (HDF) cells for 12 hours (h) and recorded the cellular reorientation towards two angle regimes, with averages of -58.85° and +56.02°. The device biocompatibility with live cells was demonstrated for one week, with no signs of cytotoxicity. We can conclude that our PDMS bioreactor is advantageous for low-cost tissue/cell culture micromanipulation studies involving mechanical actuation and characterization. Our device eliminates the need for an expensive experimental setup for cell micromanipulation, increasing the ease of live-cell manipulation studies by providing an affordable way of conducting high-throughput experiments without the need to open the Petri dish, reducing manual handling, cross-contamination, supplies, and costs. The device design, material, and methods allow the user to define the operational range based on their targeted samples/application.
Collapse
Affiliation(s)
- Soliman Alhudaithy
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; (S.A.); (S.A.); (S.K.)
- Department of Biomedical Technology, King Saud University, Riyadh 12372, Saudi Arabia
| | - Sama Abdulmalik
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; (S.A.); (S.A.); (S.K.)
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT 06030, USA
| | - Sangamesh G. Kumbar
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; (S.A.); (S.A.); (S.K.)
- Department of Orthopedic Surgery, University of Connecticut Health, Farmington, CT 06030, USA
- Department of Materials Science and Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Kazunori Hoshino
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA; (S.A.); (S.A.); (S.K.)
| |
Collapse
|
18
|
Moetazedian A, Gleadall A, Han X, Silberschmidt VV. Effect of environment on mechanical properties of 3D printed polylactide for biomedical applications. J Mech Behav Biomed Mater 2020; 102:103510. [DOI: 10.1016/j.jmbbm.2019.103510] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 10/14/2019] [Accepted: 10/23/2019] [Indexed: 01/20/2023]
|
19
|
Mechanical performance of elastomeric PGS scaffolds under dynamic conditions. J Mech Behav Biomed Mater 2019; 102:103474. [PMID: 31655336 DOI: 10.1016/j.jmbbm.2019.103474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 01/29/2023]
Abstract
In developing novel scaffolds, addressing mechanical properties is essential especially when future applications involve cyclic mechanical loading. Therefore, it is important to understand the behaviour of its physical properties with the evolution of its weight loss. Poly(glycerol sebacate) (PGS) is a promising material for tissue and biomedical engineering applications due to its biocompatibility, biodegradability and mechanical properties. To understand the impact of the hydrolytic degradation on the density, cross-linking degree and porosity; scaffolds with an average porosity of 93 ± 2% were synthetized by salt leaching technique and submitted to hydrolytic degradation. The scaffold showed a Young modulus of 17.3 ± 3.4 kPa, with a negligible energy loss during the mechanical solicitation. Moreover, a weight loss of 28 ± 2% followed by an increase in the swelling ratio of the scaffold was observed after 8 weeks of hydrolytic degradation. When submitted to cyclic mechanical loading-unloading, the PGS scaffolds present an outstanding fatigue behaviour under dry and wet conditions, with a remarkable resilience to the cyclic mechanical solicitation, and even after 1000 mechanical cycles, the construct was able to recover to its initial geometry. Overall, the PGS scaffolds demonstrate promising mechanical properties for biomedical applications, especially under dynamic conditions.
Collapse
|
20
|
Wang T, Xue P, Wang A, Yin M, Han J, Tang S, Liang R. Pore change during degradation of octreotide acetate-loaded PLGA microspheres: The effect of polymer blends. Eur J Pharm Sci 2019; 138:104990. [DOI: 10.1016/j.ejps.2019.104990] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/26/2019] [Accepted: 07/07/2019] [Indexed: 10/26/2022]
|
21
|
Often neglected: PLGA/PLA swelling orchestrates drug release: HME implants. J Control Release 2019; 306:97-107. [DOI: 10.1016/j.jconrel.2019.05.039] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 05/13/2019] [Accepted: 05/26/2019] [Indexed: 11/22/2022]
|
22
|
Anandan D, Madhumathi G, Nambiraj NA, Jaiswal AK. Gum based 3D composite scaffolds for bone tissue engineering applications. Carbohydr Polym 2019; 214:62-70. [DOI: 10.1016/j.carbpol.2019.03.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 03/04/2019] [Accepted: 03/06/2019] [Indexed: 11/15/2022]
|
23
|
Bakry A. Synergistic effects of surface grafting with heparin and addition of poly(
d
,
l
‐lactide) microparticles on properties of poly(
l
‐lactide) single crystals scaffolds. J Appl Polym Sci 2019. [DOI: 10.1002/app.47797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ahmed Bakry
- Faculty of Science, Chemistry DepartmentHelwan University Ain Helwan 11795 Cairo Egypt
| |
Collapse
|
24
|
Liang X, Duan P, Gao J, Guo R, Qu Z, Li X, He Y, Yao H, Ding J. Bilayered PLGA/PLGA-HAp Composite Scaffold for Osteochondral Tissue Engineering and Tissue Regeneration. ACS Biomater Sci Eng 2018; 4:3506-3521. [PMID: 33465902 DOI: 10.1021/acsbiomaterials.8b00552] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Xiangyu Liang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Pingguo Duan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jingming Gao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Runsheng Guo
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Zehua Qu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Xiaofeng Li
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yao He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| | - Haoqun Yao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China
| |
Collapse
|
25
|
Del Vento F, Vermeulen M, de Michele F, Giudice MG, Poels J, des Rieux A, Wyns C. Tissue Engineering to Improve Immature Testicular Tissue and Cell Transplantation Outcomes: One Step Closer to Fertility Restoration for Prepubertal Boys Exposed to Gonadotoxic Treatments. Int J Mol Sci 2018; 19:ijms19010286. [PMID: 29346308 PMCID: PMC5796232 DOI: 10.3390/ijms19010286] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 12/15/2022] Open
Abstract
Despite their important contribution to the cure of both oncological and benign diseases, gonadotoxic therapies present the risk of a severe impairment of fertility. Sperm cryopreservation is not an option to preserve prepubertal boys’ reproductive potential, as their seminiferous tubules only contain spermatogonial stem cells (as diploid precursors of spermatozoa). Cryobanking of human immature testicular tissue (ITT) prior to gonadotoxic therapies is an accepted practice. Evaluation of cryopreserved ITT using xenotransplantation in nude mice showed the survival of a limited proportion of spermatogonia and their ability to proliferate and initiate differentiation. However, complete spermatogenesis could not be achieved in the mouse model. Loss of germ cells after ITT grafting points to the need to optimize the transplantation technique. Tissue engineering, a new branch of science that aims at improving cellular environment using scaffolds and molecules administration, might be an approach for further progress. In this review, after summarizing the lessons learned from human prepubertal testicular germ cells or tissue xenotransplantation experiments, we will focus on the benefits that might be gathered using bioengineering techniques to enhance transplantation outcomes by optimizing early tissue graft revascularization, protecting cells from toxic insults linked to ischemic injury and exploring strategies to promote cellular differentiation.
Collapse
Affiliation(s)
- Federico Del Vento
- Gynecology-Andrology Unit, Medical School, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium; (F.D.V.); (M.V.); (F.d.M.); (M.G.G.)
| | - Maxime Vermeulen
- Gynecology-Andrology Unit, Medical School, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium; (F.D.V.); (M.V.); (F.d.M.); (M.G.G.)
| | - Francesca de Michele
- Gynecology-Andrology Unit, Medical School, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium; (F.D.V.); (M.V.); (F.d.M.); (M.G.G.)
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium;
| | - Maria Grazia Giudice
- Gynecology-Andrology Unit, Medical School, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium; (F.D.V.); (M.V.); (F.d.M.); (M.G.G.)
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium;
| | - Jonathan Poels
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium;
| | - Anne des Rieux
- Advanced Drug Delivery and Biomaterials Unit, Louvain Drug Research Institute, Université Catholique de Louvain, 1200 Brussels, Belgium;
| | - Christine Wyns
- Gynecology-Andrology Unit, Medical School, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, 1200 Brussels, Belgium; (F.D.V.); (M.V.); (F.d.M.); (M.G.G.)
- Department of Gynecology-Andrology, Cliniques Universitaires Saint-Luc, 1200 Brussels, Belgium;
- Correspondence: ; Tel.: +32-2-764-95-01
| |
Collapse
|
26
|
Bakry A, Darwish MSA, El Naggar AMA. Assembling of hydrophilic and cytocompatible three-dimensional scaffolds based on aminolyzed poly(l-lactide) single crystals. NEW J CHEM 2018. [DOI: 10.1039/c8nj03205j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
3D scaffolds based on aminolyzed poly(l-lactide) single crystals have suitable hydrophilicity and cytocompatibility toward fibroblast cell growth and adhesion.
Collapse
Affiliation(s)
- Ahmed Bakry
- Chemistry Department, Faculty of Science
- Helwan University
- Ain Helwan
- 11795-Cairo
- Egypt
| | | | | |
Collapse
|
27
|
Mir M, Ahmed N, Rehman AU. Recent applications of PLGA based nanostructures in drug delivery. Colloids Surf B Biointerfaces 2017; 159:217-231. [DOI: 10.1016/j.colsurfb.2017.07.038] [Citation(s) in RCA: 325] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 07/06/2017] [Accepted: 07/16/2017] [Indexed: 12/12/2022]
|
28
|
Zhang YT, Niu J, Wang Z, Liu S, Wu J, Yu B. Repair of Osteochondral Defects in a Rabbit Model Using Bilayer Poly(Lactide-co-Glycolide) Scaffolds Loaded with Autologous Platelet-Rich Plasma. Med Sci Monit 2017; 23:5189-5201. [PMID: 29088126 PMCID: PMC5676501 DOI: 10.12659/msm.904082] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/08/2017] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND To examine the effects of the addition of autologous platelet-rich plasma (PRP) into bilayer poly(lactide-co-glycolide) (PLGA) scaffolds on the reconstruction of osteochondral defects in a rabbit model. MATERIAL AND METHODS Porous PLGA scaffolds were prepared in a bilayered manner to reflect the structure of chondral and subchondral bone. Bone defects, measuring 4 mm in diameter and 4 mm in thickness, were created in both knee joints in 18 healthy New Zealand white rabbits, aged between 120-180 days old. Rabbits were randomly divided into three groups: rabbits with bone defects implanted with bilayer PLGA scaffolds (PLGA group) (N=6); or with bilayer PLGA and autologous PRP (PLGA/PRP group) (N=6); and the untreated group (control group) (N=6). The gross morphology, histology, and immunohistochemistry for the expression of collagen type II and aggrecan were observed at 12 weeks after surgery and compared using a scoring system. Micro-computed tomography (CT) imaging and relative expression of specific genes were also assessed. RESULTS The platelet concentrations in the PRP samples were found to be 4.9 times greater than that of whole blood samples. The total score on gross appearance and histology was greatest in the PLGA/PRP group, as was the expression of collagen II and aggrecan of the neo-tissue. Micro-CT imaging showed that more subchondral bone was formed in the PLGA/PRP group. CONCLUSIONS Bilayer PLGA scaffolds loaded with autologous PRP improve the reconstruction of osteochondral defects in the rabbit model.
Collapse
Affiliation(s)
- Yong-tao Zhang
- Department of Trauma and Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
- Department of Orthopedics, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, P.R. China
| | - Jing Niu
- Department of Orthopedics, Affiliated Hospital of Hebei University of Engineering, Handan, Hebei, P.R. China
| | - Zhao Wang
- Institute of Orthopedics and Traumatology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Song Liu
- Institute of Orthopedics and Traumatology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, P.R. China
| | - Jianqun Wu
- Department of Trauma and Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| | - Bin Yu
- Department of Trauma and Orthopedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
29
|
Guex AG, Puetzer JL, Armgarth A, Littmann E, Stavrinidou E, Giannelis EP, Malliaras GG, Stevens MM. Highly porous scaffolds of PEDOT:PSS for bone tissue engineering. Acta Biomater 2017; 62:91-101. [PMID: 28865991 PMCID: PMC5639149 DOI: 10.1016/j.actbio.2017.08.045] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 08/24/2017] [Accepted: 08/29/2017] [Indexed: 11/04/2022]
Abstract
Conjugated polymers have been increasingly considered for the design of conductive materials in the field of regenerative medicine. However, optimal scaffold properties addressing the complexity of the desired tissue still need to be developed. The focus of this study lies in the development and evaluation of a conductive scaffold for bone tissue engineering. In this study PEDOT:PSS scaffolds were designed and evaluated in vitro using MC3T3-E1 osteogenic precursor cells, and the cells were assessed for distinct differentiation stages and the expression of an osteogenic phenotype. Ice-templated PEDOT:PSS scaffolds presented high pore interconnectivity with a median pore diameter of 53.6 ± 5.9 µm and a total pore surface area of 7.72 ± 1.7 m2·g−1. The electrical conductivity, based on I-V curves, was measured to be 140 µS·cm−1 with a reduced, but stable conductivity of 6.1 µS·cm−1 after 28 days in cell culture media. MC3T3-E1 gene expression levels of ALPL, COL1A1 and RUNX2 were significantly enhanced after 4 weeks, in line with increased extracellular matrix mineralisation, and osteocalcin deposition. These results demonstrate that a porous material, based purely on PEDOT:PSS, is suitable as a scaffold for bone tissue engineering and thus represents a promising candidate for regenerative medicine. Statement of Significance Tissue engineering approaches have been increasingly considered for the repair of non-union fractions, craniofacial reconstruction or large bone defect replacements. The design of complex biomaterials and successful engineering of 3-dimensional tissue constructs is of paramount importance to meet this clinical need. Conductive scaffolds, based on conjugated polymers, present interesting candidates to address the piezoelectric properties of bone tissue and to induce enhanced osteogenesis upon implantation. However, conductive scaffolds have not been investigated in vitro in great measure. To this end, we have developed a highly porous, electrically conductive scaffold based on PEDOT:PSS, and provide evidence that this purely synthetic material is a promising candidate for bone tissue engineering.
Collapse
|
30
|
Sadeghi-Avalshahr A, Nokhasteh S, Molavi AM, Khorsand-Ghayeni M, Mahdavi-Shahri M. Synthesis and characterization of collagen/PLGA biodegradable skin scaffold fibers. Regen Biomater 2017; 4:309-314. [PMID: 29026645 PMCID: PMC5633691 DOI: 10.1093/rb/rbx026] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/20/2017] [Accepted: 08/23/2017] [Indexed: 12/02/2022] Open
Abstract
The aim of this study is to investigate the applicability of poly(lactic-co-glycolic acid) (PLGA)/collagen composite scaffold for skin tissue engineering. PLGA and collagen were dissolved in HFIP as a common solvent and fibrous scaffolds were prepared by electrospinning method. The scaffolds were characterized by scanning electron microscopy (SEM), FTIR spectroscopy, mercury porosimetry, tensile strength, biocompatibility assays and Biodegradation. Cytotoxicity and cell adhesion were tested for two cell line groups, human dermal fibroblast (HDF) and human keratinocyte (HaCat). SEM images showed appropriate cell adhesion to the scaffold for both cell lines. MTT assays indicated that the cell viability of HDF cells increased with time, but the number of HaCat cells decreased after 14 days. The ultimate tensile strength was suitable for skin substitute application, but its elongation at break was rather low. For successful clinical application of the PLGA/collagen scaffold, some properties especially mechanical strain needs to be improved.
Collapse
Affiliation(s)
- Alireza Sadeghi-Avalshahr
- Materials Research Department, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Samira Nokhasteh
- Materials Research Department, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Amir Mahdi Molavi
- Materials Research Department, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Mohammad Khorsand-Ghayeni
- Materials Research Department, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| | - Meysam Mahdavi-Shahri
- Materials Research Department, Iranian Academic Center for Education, Culture and Research (ACECR), Khorasan Razavi Branch, Mashhad, Iran
| |
Collapse
|
31
|
Díaz E, Puerto I, Ribeiro S, Lanceros-Mendez S, Barandiarán JM. The Influence of Copolymer Composition on PLGA/nHA Scaffolds' Cytotoxicity and In Vitro Degradation. NANOMATERIALS 2017; 7:nano7070173. [PMID: 28684725 PMCID: PMC5535239 DOI: 10.3390/nano7070173] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/21/2017] [Accepted: 06/28/2017] [Indexed: 12/21/2022]
Abstract
The influence of copolymer composition on Poly(Lactide-co-Glycolide)/nanohydroxyapatite (PLGA/nHA) composite scaffolds is studied in the context of bone tissue engineering and regenerative medicine. The composite scaffolds are fabricated by thermally-induced phase separation and the effect of bioactive nanoparticles on their in vitro degradation in phosphate-buffered solution at 37 °C is analyzed over eight weeks. The indirect cytotoxicity evaluation of the samples followed an adaptation of the ISO 10993-5 standard test method. Based on the measurement of their molecular weight, molar mass, pH, water absorption and dimensions, the porous scaffolds of PLGA with a lower lactide/glycolide (LA/GA) molar ratio degraded faster due to their higher hydrophilicity. All of the samples without and with HA are not cytotoxic, demonstrating their potential for tissue engineering applications.
Collapse
Affiliation(s)
- Esperanza Díaz
- Departamento de Ingeniería Minera, Metalúrgica y Ciencia de Materiales, Universidad del País Vasco (UPV/EHU), 48920 Portugalete, Spain.
- BCMaterials, Parque Científico y Tecnológico de Bizkaia, 48160 Derio, Spain.
| | - Igor Puerto
- Departamento de Ingeniería Minera, Metalúrgica y Ciencia de Materiales, Universidad del País Vasco (UPV/EHU), 48920 Portugalete, Spain.
| | - Silvie Ribeiro
- Centro/Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal.
| | - Senentxu Lanceros-Mendez
- BCMaterials, Parque Científico y Tecnológico de Bizkaia, 48160 Derio, Spain.
- Centro/Departamento de Física, Universidade do Minho, 4710-057 Braga, Portugal.
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain.
| | | |
Collapse
|
32
|
Choi HJ, Lee JJ, Lee JB, Sung HJ, Shin JW, Shin JW, Wu Y, Kim JK. MG-63 cells proliferation following various types of mechanical stimulation on cells by auxetic hybrid scaffolds. Biomater Res 2016; 20:32. [PMID: 27826455 PMCID: PMC5098278 DOI: 10.1186/s40824-016-0079-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 10/06/2016] [Indexed: 11/24/2022] Open
Abstract
Background Mechanical properties and cyto-compatibility of a composite scaffold which possessed negative (−) Poisson’s ratio (NPR) was investigated for effective load transfer from auxetic scaffold to cell. Methods Organic/inorganic composite scaffolds were prepared by mixing hydroxyapatite (HA) to poly(lactide-co-glycolide) (PLGA). To induce NPR in composite scaffold, 3-directional volumetric compression was applied during the scaffold fabrication at adequate temperature(60°C). The pore size of scaffold ranged between 355–400 μm. Results Poisson’s ratios of NPR scaffolds and control scaffolds were −0.07 and 0.16 at 10 % strain. For stable physical stimulating to loaded cells, ceramic/polymer composite scaffold was prepared by incorporating HA in PLGA to increase mechanical strength. Compressive strength of the HA/PLGA composite scaffold (15 wt. % HA to PLGA) was about 21.7 % higher than that of PLGA-only scaffold. The recovery rates of the NPR composite scaffold after applying compression in the dry and wet states were 90 % and 60 %, respectively. Also the composite scaffold was shown to have better hydrophilicity (61.9°) compared to the PLGA-only scaffolds (65.3°). Cell proliferation of osteoblast-like cell line (MG-63) in the composite scaffold was 20 % higher than in PLGA-only scaffold at static compressive stimulation. For dynamic compressive stimulation (15 min cyclic interval), cell proliferation in the composite scaffold was 2 times higher than that of in PLGA-only scaffold. In conclusion, NPR composite (HA/PLGA) scaffold was effective in isotropic compressive load delivery for osteogenic cell proliferation. Conclusion This composite scaffold with stimulation can be used as tissue engineered scaffold and dynamic cell culture system for bone tissue regeneration.
Collapse
Affiliation(s)
- Hong Jin Choi
- Department of Biomedical Engineering, Inje University, Obang-Dong, Gimhae, Gyeongnam 621-749 South Korea
| | - Jun Jae Lee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212 USA
| | - Jung Bok Lee
- Department of Biomedical Engineering, Inje University, Obang-Dong, Gimhae, Gyeongnam 621-749 South Korea
| | - Hak-Joon Sung
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212 USA
| | - Jung-Woog Shin
- Department of Biomedical Engineering, Inje University, Obang-Dong, Gimhae, Gyeongnam 621-749 South Korea
| | - Ji Won Shin
- Department of Biomedical Engineering, Inje University, Obang-Dong, Gimhae, Gyeongnam 621-749 South Korea
| | - Yanru Wu
- Department of Biomedical Engineering, Inje University, Obang-Dong, Gimhae, Gyeongnam 621-749 South Korea
| | - Jeong Koo Kim
- Department of Biomedical Engineering, Inje University, Obang-Dong, Gimhae, Gyeongnam 621-749 South Korea
| |
Collapse
|
33
|
Choi HJ, Lee JJ, Park YJ, Shin JW, Sung HJ, Shin JW, Wu Y, Kim JK. MG-63 osteoblast-like cell proliferation on auxetic PLGA scaffold with mechanical stimulation for bone tissue regeneration. Biomater Res 2016; 20:33. [PMID: 27807475 PMCID: PMC5087120 DOI: 10.1186/s40824-016-0080-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 10/08/2016] [Indexed: 12/04/2022] Open
Abstract
Background Auxetic scaffolds (experimental) was fabricated by using poly(D, L-lactic-co-glycolic acid), 50:50, (PLGA) for effective bone cell proliferation with mechanical stimulation. Methods Negative Poisson’s ratio in scaffold, 3-directional volumetric compression was applied during the scaffold fabrication at adequate temperature (60 °C). The pore size of scaffold ranged between 355 and 400 μm. Results The porous morphology of the prepared auxetic scaffolds had shown partially concave and dent shapes in SEM image as expected. The lowest Poisson’s ratios of experimental group was −0.07 at 60 °C/10 min. Compressive strength of experimental group was shown about 3.12 times higher than control group (conventional scaffold) in dry state at 25 °C. The compressive strengths of both groups were tended to be decreased dramatically in wet state compared to in dry state. However, compressive strengths of experimental group were higher 3.08 times and 1.88 times in EtOH/PBS (25 °C) and EtOH/PBS/DMEM (37 °C) than control group in wet state, respectively. Degradation rate of the scaffolds showed about 16 % weight loss in 5 weeks. In cell attachment test, experimental group showed 1.46 times higher cell proliferation than control group at 1-day with compressive stimulation. In 3-day culture, the experimental group showed 1.32 times higher than control group. However, there was no significant difference in cell proliferation in 5-day cultivation. Conclusion Overall, negative Poisson’s ratio scaffolds with static mechanical stimulation could affect the cell proliferation at initial cultivation time.
Collapse
Affiliation(s)
- Hong Jin Choi
- Department of Biomedical Engineering, Inje University, Obang-Dong, Gimhae, Gyeongnam 621-749 Korea
| | - Jun Jae Lee
- Department of Biomedical Engineering, Inje University, Obang-Dong, Gimhae, Gyeongnam 621-749 Korea
| | - Yeong Jun Park
- Department of Biomedical Engineering, Inje University, Obang-Dong, Gimhae, Gyeongnam 621-749 Korea
| | - Jung-Woog Shin
- Department of Biomedical Engineering, Inje University, Obang-Dong, Gimhae, Gyeongnam 621-749 Korea
| | - Hak-Joon Sung
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37212 USA
| | - Ji Won Shin
- Department of Biomedical Engineering, Inje University, Obang-Dong, Gimhae, Gyeongnam 621-749 Korea
| | - Yanru Wu
- Department of Biomedical Engineering, Inje University, Obang-Dong, Gimhae, Gyeongnam 621-749 Korea
| | - Jeong Koo Kim
- Department of Biomedical Engineering, Inje University, Obang-Dong, Gimhae, Gyeongnam 621-749 Korea
| |
Collapse
|
34
|
Barros A, Quraishi S, Martins M, Gurikov P, Subrahmanyam R, Smirnova I, Duarte ARC, Reis RL. Hybrid Alginate-Based Cryogels for Life Science Applications. CHEM-ING-TECH 2016. [DOI: 10.1002/cite.201600096] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
35
|
Poly(lactide-co-glycolide)/Hydroxyapatite Porous Scaffold with Microchannels for Bone Regeneration. Polymers (Basel) 2016; 8:polym8060218. [PMID: 30979320 PMCID: PMC6432299 DOI: 10.3390/polym8060218] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/06/2016] [Accepted: 05/30/2016] [Indexed: 02/06/2023] Open
Abstract
Mass transfer restrictions of scaffolds are currently hindering the development of three-dimensional (3D), clinically viable, and tissue-engineered constructs. For this situation, a 3D poly(lactide-co-glycolide)/hydroxyapatite porous scaffold, which was very favorable for the transfer of nutrients to and waste products from the cells in the pores, was developed in this study. The 3D scaffold had an innovative structure, including macropores with diameters of 300–450 μm for cell ingrowth and microchannels with diameters of 2–4 μm for nutrition and waste exchange. The mechanical strength in wet state was strong enough to offer structural support. The typical structure was more beneficial for the attachment, proliferation, and differentiation of rabbit bone marrow mesenchymal stem cells (rBMSCs). The alkaline phosphatase (ALP) activity and calcium (Ca) deposition were evaluated on the differentiation of rBMSCs, and the results indicated that the microchannel structure was very favorable for differentiating rBMSCs into maturing osteoblasts. For repairing rabbit radius defects in vivo, there was rapid healing in the defects treated with the 3D porous scaffold with microchannels, where the bridging by a large bony callus was observed at 12 weeks post-surgery. Based on the results, the 3D porous scaffold with microchannels was a promising candidate for bone defect repair.
Collapse
|
36
|
Karahaliloğlu Z, Demirbilek M, Ulusoy İ, Gümüşkaya B, Denkbaş EB. Active nano/microbilayer hemostatic agents for diabetic rat bleeding model. J Biomed Mater Res B Appl Biomater 2016; 105:1573-1585. [DOI: 10.1002/jbm.b.33696] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/20/2016] [Accepted: 04/06/2016] [Indexed: 01/10/2023]
Affiliation(s)
- Zeynep Karahaliloğlu
- Department of Biology; Faculty of Science and Arts, Aksaray University; Aksaray Turkey
| | - Murat Demirbilek
- Advanced Technologies Research and Application Center, Hacettepe University, Beytepe; Ankara Turkey
| | - İbrahim Ulusoy
- Adacell, Yıldırım Beyazıt Training and Research Hospital, Dışkapı; Ankara Turkey
| | - Berrak Gümüşkaya
- Department of Pathology; Faculty of Medicine, Yıldırım Beyazıt University, Bilkent; Ankara Turkey
- Department of Pathology; Atatürk Training and Research Hospital, Bilkent; Ankara Turkey
| | - Emir Baki Denkbaş
- Department of Chemistry; Faculty of Science, Hacettepe University, Beytepe; Ankara Turkey
| |
Collapse
|
37
|
Salerno A, Guarino V, Oliviero O, Ambrosio L, Domingo C. Bio-safe processing of polylactic-co-caprolactone and polylactic acid blends to fabricate fibrous porous scaffolds for in vitro mesenchymal stem cells adhesion and proliferation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 63:512-21. [PMID: 27040246 DOI: 10.1016/j.msec.2016.03.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 02/09/2016] [Accepted: 03/06/2016] [Indexed: 10/22/2022]
Abstract
In this study, the design and fabrication of porous scaffolds, made of blends of polylactic-co-caprolactone (PLC) and polylactic acid (PLA) polymers, for tissue engineering applications is reported. The scaffolds are prepared by means of a bio-safe thermally induced phase separation (TIPS) approach with or without the addition of NaCl particles used as particulate porogen. The scaffolds are characterized to assess their crystalline structure, morphology and mechanical properties, and the texture of the pores and the pore size distribution. Moreover, in vitro human mesenchymal stem cells (hMSCs) culture tests have been carried out to demonstrate the biocompatibility of the scaffolds. The results of this study demonstrate that all of the scaffold materials processed by means of TIPS process are semi-crystalline. Furthermore, the blend composition affected polymer crystallization and, in turn, the nano and macro-structural properties of the scaffolds. Indeed, neat PLC and neat PLA crystallize into globular and randomly arranged sub micro-size scale fibrous conformations, respectively. Concomitantly, the addition of NaCl particles during the fabrication route allows for the creation of an interconnected network of large pores inside the primary structure while resulted in a significant decrease of scaffolds mechanical response. Finally, the results of cell culture tests demonstrate that both the micro and macro-structure of the scaffold affect the in vitro hMSCs adhesion and proliferation.
Collapse
Affiliation(s)
- Aurelio Salerno
- Centre for Advanced Biomaterials for Health Care, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125 Napoli, Italy; Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus de la UAB s/n, Bellaterra 08193, Spain.
| | - Vincenzo Guarino
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, V.le Kennedy 54, Pad 20, Mostra d'Oltremare, 80125 Naples, Italy
| | - Olimpia Oliviero
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, V.le Kennedy 54, Pad 20, Mostra d'Oltremare, 80125 Naples, Italy
| | - Luigi Ambrosio
- Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, V.le Kennedy 54, Pad 20, Mostra d'Oltremare, 80125 Naples, Italy
| | - Concepción Domingo
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus de la UAB s/n, Bellaterra 08193, Spain
| |
Collapse
|
38
|
Wright B, Parmar N, Bozec L, Aguayo SD, Day RM. A simple and robust method for pre-wetting poly (lactic-co-glycolic) acid microspheres. J Biomater Appl 2015; 30:147-59. [PMID: 25791685 PMCID: PMC4509882 DOI: 10.1177/0885328215577297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Poly (lactic-co-glycolic) acid microspheres are amenable to a number of biomedical procedures that support delivery of cells, drugs, peptides or genes. Hydrophilisation or wetting of poly (lactic-co-glycolic) acid are an important pre-requisites for attachment of cells and can be achieved via exposure to plasma oxygen or nitrogen, surface hydrolysis with NaOH or chloric acid, immersion in ethanol and water, or prolonged incubation in phosphate buffered saline or cell culture medium. The aim of this study is to develop a simple method for wetting poly (lactic-co-glycolic) acid microspheres for cell delivery applications. A one-step ethanol immersion process that involved addition of serum-supplemented medium and ethanol to PLGA microspheres over 30 min–24 h is described in the present study. This protocol presents a more efficient methodology than conventional two-step wetting procedures. Attachment of human skeletal myoblasts to poly (lactic-co-glycolic) acid microspheres was dependent on extent of wetting, changes in surface topography mediated by ethanol pre-wetting and serum protein adsorption. Ethanol, at 70% (v/v) and 100%, facilitated similar levels of wetting. Wetting with 35% (v/v) ethanol was only achieved after 24 h. Pre-wetting (over 3 h) with 70% (v/v) ethanol allowed significantly greater (p ≤ 0.01) serum protein adsorption to microspheres than wetting with 35% (v/v) ethanol. On serum protein-loaded microspheres, greater numbers of myoblasts attached to constructs wetted with 70% ethanol than those partially wetted with 35% (v/v) ethanol. Microspheres treated with 70% (v/v) ethanol presented a more rugose surface than those treated with 35% (v/v) ethanol, indicating that more efficient myoblast adhesion to the former may be at least partially attributed to differences in surface structure. We conclude that our novel protocol for pre-wetting poly (lactic-co-glycolic) acid microspheres that incorporates biochemical and structural features into this biomaterial can facilitate myoblast delivery for use in clinical settings.
Collapse
Affiliation(s)
- Bernice Wright
- Applied Biomedical Engineering Group, Division of Medicine, University College London
| | - Nina Parmar
- Applied Biomedical Engineering Group, Division of Medicine, University College London
| | - Laurent Bozec
- Division Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London
| | - Sebastian D Aguayo
- Division Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, University College London
| | - Richard M Day
- Applied Biomedical Engineering Group, Division of Medicine, University College London
| |
Collapse
|
39
|
Wang J, Li D, Li T, Ding J, Liu J, Li B, Chen X. Gelatin Tight-Coated Poly(lactide- co-glycolide) Scaffold Incorporating rhBMP-2 for Bone Tissue Engineering. MATERIALS 2015; 8:1009-1026. [PMID: 28787985 PMCID: PMC5455445 DOI: 10.3390/ma8031009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/02/2015] [Accepted: 03/04/2015] [Indexed: 01/05/2023]
Abstract
Surface coating is the simplest surface modification. However, bioactive molecules can not spread well on the commonly used polylactone-type skeletons; thus, the surface coatings of biomolecules are typically unstable due to the weak interaction between the polymer and the bioactive molecules. In this study, a special type of poly(lactide-co-glycolide) (PLGA)-based scaffold with a loosened skeleton was fabricated by phase separation, which allowed gelatin molecules to more readily diffuse throughout the structure. In this application, gelatin modified both the internal substrate and external surface. After cross-linking with glutaraldehyde, the surface layer gelatin was tightly bound to the diffused gelatin, thereby preventing the surface layer gelatin coating from falling off within 14 days. After gelatin modification, PLGA scaffold demonstrated enhanced hydrophilicity and improved mechanical properties (i.e., increased compression strength and elastic modulus) in dry and wet states. Furthermore, a sustained release profile of recombinant human bone morphogenetic protein-2 (rhBMP-2) was achieved in the coated scaffold. The coated scaffold also supported the in vitro attachment, proliferation, and osteogenesis of rabbit bone mesenchymal stem cells (BMSCs), indicating the bioactivity of rhBMP-2. These results collectively demonstrate that the cross-linked-gelatin-coated porous PLGA scaffold incorporating bioactive molecules is a promising candidate for bone tissue regeneration.
Collapse
Affiliation(s)
- Juan Wang
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300070, China.
- Department of Radiation Oncology, Shandong Cancer Hospital, Shandong Academy of Medical Sciences, Jinan 250117, China.
| | - Dongsong Li
- Department of Orthopaedic Surgery, the First Hospital of Jilin University, Changchun 130021, China.
| | - Tianyi Li
- Orthopedics Dept. 2, Heilongjiang Provincial Corps Hospital of Chinese People's Armed Police Forces, Harbin 150076, China.
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| | - Jianguo Liu
- Department of Orthopaedic Surgery, the First Hospital of Jilin University, Changchun 130021, China.
| | - Baosheng Li
- Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300070, China.
- Department of Radiation Oncology, Shandong Cancer Hospital, Shandong Academy of Medical Sciences, Jinan 250117, China.
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China.
| |
Collapse
|
40
|
Pan Z, Duan P, Liu X, Wang H, Cao L, He Y, Dong J, Ding J. Effect of porosities of bilayered porous scaffolds on spontaneous osteochondral repair in cartilage tissue engineering. Regen Biomater 2015; 2:9-19. [PMID: 26813511 PMCID: PMC4669027 DOI: 10.1093/rb/rbv001] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 08/06/2014] [Indexed: 12/21/2022] Open
Abstract
Poly(lactide-co-glycolide)-bilayered scaffolds with the same porosity or different ones on the two layers were fabricated, and the porosity effect on in vivo repairing of the osteochondral defect was examined in a comparative way for the first time. The constructs of scaffolds and bone marrow-derived mesenchymal stem cells were implanted into pre-created osteochondral defects in the femoral condyle of New Zealand white rabbits. After 12 weeks, all experimental groups exhibited good cartilage repairing according to macroscopic appearance, cross-section view, haematoxylin and eosin staining, toluidine blue staining, immunohistochemical staining and real-time polymerase chain reaction of characteristic genes. The group of 92% porosity in the cartilage layer and 77% porosity in the bone layer resulted in the best efficacy, which was understood by more biomechanical mimicking of the natural cartilage and subchondral bone. This study illustrates unambiguously that cartilage tissue engineering allows for a wide range of scaffold porosity, yet some porosity group is optimal. It is also revealed that the biomechanical matching with the natural composite tissue should be taken into consideration in the design of practical biomaterials, which is especially important for porosities of a multi-compartment scaffold concerning connected tissues.
Collapse
Affiliation(s)
- Zhen Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Advanced Materials Laboratory, Fudan University, Shanghai 200433, China; Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China; Department of Orthopaedic Surgery, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, China
| | - Pingguo Duan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Advanced Materials Laboratory, Fudan University, Shanghai 200433, China; Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China; Department of Orthopaedic Surgery, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, China
| | - Xiangnan Liu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Advanced Materials Laboratory, Fudan University, Shanghai 200433, China; Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China; Department of Orthopaedic Surgery, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, China
| | - Huiren Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Advanced Materials Laboratory, Fudan University, Shanghai 200433, China; Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China; Department of Orthopaedic Surgery, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, China
| | - Lu Cao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Advanced Materials Laboratory, Fudan University, Shanghai 200433, China; Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China; Department of Orthopaedic Surgery, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, China
| | - Yao He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Advanced Materials Laboratory, Fudan University, Shanghai 200433, China; Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China; Department of Orthopaedic Surgery, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, China
| | - Jian Dong
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Advanced Materials Laboratory, Fudan University, Shanghai 200433, China; Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China; Department of Orthopaedic Surgery, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, China
| | - Jiandong Ding
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Advanced Materials Laboratory, Fudan University, Shanghai 200433, China; Department of Orthopaedic Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China; Department of Orthopaedic Surgery, Zhongshan Hospital, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200032, China
| |
Collapse
|
41
|
Wang Q, Yang X, Ren M, Hu Y, Chen Q, Xing L, Meng C, Liu T. Effect of chitosan/type I collagen/gelatin composites in biocompatibility and nerve repair. Neural Regen Res 2015; 7:1179-84. [PMID: 25722712 PMCID: PMC4340036 DOI: 10.3969/j.issn.1673-5374.2012.15.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 04/24/2012] [Indexed: 11/18/2022] Open
Abstract
Chitosan, collagen I and gelatin were mixed in appropriate quantities to develop a new nerve repair material, with good arrangement and structure, as well as even aperture size. The composite material was sterilized by (60)Co irradiation for 24 hours prior to implantation in the right thigh of rats following sciatic nerve damage. Results showed that the material was nontoxic to the kidneys and the liver, and did not induce an inflammatory response in the muscles. The composite material enhanced the recovery of sciatic nerve damage in rats. These experimental findings indicate that the composite material offers good biocompatibility and has a positive effect on injured nerve rehabilitation.
Collapse
Affiliation(s)
- Qing Wang
- China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| | - Xiaolei Yang
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, Jilin Province, China
| | - Ming Ren
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, Jilin Province, China
| | - Yulin Hu
- Department of Liver, Gall and Pancreas, First Hospital of Jilin University, Changchun 130021, Jilin Province, China
| | - Qiang Chen
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, Jilin Province, China
| | - Lei Xing
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, Jilin Province, China
| | - Chunyang Meng
- Department of Toxicology, School of Public Health, Jilin University, Changchun 130021, Jilin Province, China
| | - Tiemei Liu
- China-Japan Union Hospital, Jilin University, Changchun 130033, Jilin Province, China
| |
Collapse
|
42
|
Abstract
Biodegradable polymers have played an important role in the delivery of drugs in a controlled and targeted manner. Polylactic-co-glycolic acid (PLGA) is one of the extensively researched synthetic biodegradable polymers due to its favorable properties. It is also known as a ‘Smart Polymer’ due to its stimuli sensitive behavior. A wide range of PLGA-based drug delivery systems have been reported for the treatment or diagnosis of various diseases and disorders. The present review provides an overview of the chemistry, physicochemical properties, biodegradation behavior, evaluation parameters and applications of PLGA in drug delivery. Different drug–polymer combinations developed into drug delivery or carrier systems are enumerated and discussed.
Collapse
|
43
|
Nanomechanical properties of poly(lactic-co-glycolic) acid film during degradation. Acta Biomater 2014; 10:4695-4703. [PMID: 25117951 DOI: 10.1016/j.actbio.2014.08.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/12/2014] [Accepted: 08/03/2014] [Indexed: 11/23/2022]
Abstract
Despite the potential applications of poly(lactic-co-glycolic) acid (PLGA) coatings in medical devices, the mechanical properties of this material during degradation are poorly understood. In the present work, the nanomechanical properties and degradation of PLGA film were investigated. Hydrolysis of solvent-cast PLGA film was studied in buffer solution at 37 °C. The mass loss, water uptake, molecular weight, crystallinity and surface morphology of the film were tracked during degradation over 20 days. Characterization of the surface hardness and Young's modulus was performed using the nanoindentation technique for different indentation loads. The initially amorphous films were found to remain amorphous during degradation. The molecular weight of the film decreased quickly during the initial days of degradation. Diffusion of water into the film resulted in a reduction in surface hardness during the first few days, followed by an increase that was due to the surface roughness. There was a significant delay between the decrease in the mechanical properties of the film and the decrease in the molecular weight. A sudden decline in mechanical properties indicated that significant bulk degradation had occurred.
Collapse
|
44
|
Designed composites for mimicking compressive mechanical properties of articular cartilage matrix. J Mech Behav Biomed Mater 2014; 36:32-46. [DOI: 10.1016/j.jmbbm.2014.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Revised: 04/05/2014] [Accepted: 04/07/2014] [Indexed: 12/19/2022]
|
45
|
Clark A, Milbrandt TA, Hilt JZ, Puleo DA. Mechanical properties and dual drug delivery application of poly(lactic-co-glycolic acid) scaffolds fabricated with a poly(β-amino ester) porogen. Acta Biomater 2014; 10:2125-32. [PMID: 24424269 DOI: 10.1016/j.actbio.2013.12.061] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/22/2013] [Accepted: 12/30/2013] [Indexed: 10/25/2022]
Abstract
Polymeric scaffolds that are biocompatible and biodegradable are widely used for tissue engineering applications. Scaffolds can be further enhanced by enabling the release of one or more drugs to stimulate regeneration or for the treatment of a specific disease or condition. In this study, poly(lactic-co-glycolic acid) (PLGA) microspheres were mixed with poly(β-amino ester) (PBAE) particles to create novel hybrid scaffolds capable of dual release of drug and growth factor. Fast-degrading PBAE particles loaded with the drug ketoprofen acted as porogens that provided a rapid 12h release. The PLGA microspheres were loaded with a growth factor, bone morphogenetic protein 2, and fused together around the porogens to create a slow-degrading matrix that provided sustained release lasting 70days. Drug release was further tailored by varying the amount of porogen added to the scaffold. Bioactivity measurements demonstrated that the scaffold fabrication technique did not damage the drug or protein. The compressive modulus was affected by the amount of porogen added, extending from 50 to 111MPa for loadings from 60 to 40% PBAE, and after 5days of degradation, it decreased to 0.6 to 1.1kPa when the porogen was gone. PLGA containing a quick-degrading porogen can be used to release two drugs while developing a porous microarchitecture for cell ingrowth with in a matrix capable of maintaining a compressive modulus applicable for soft tissue implants.
Collapse
|
46
|
Yao X, Peng R, Ding J. Cell-material interactions revealed via material techniques of surface patterning. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:5257-5286. [PMID: 24038153 DOI: 10.1002/adma.201301762] [Citation(s) in RCA: 369] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Revised: 07/15/2013] [Indexed: 06/02/2023]
Abstract
Cell-material interactions constitute a key fundamental topic in biomaterials study. Various cell cues and matrix cues as well as soluble factors regulate cell behaviors on materials. These factors are coupled with each other as usual, and thus it is very difficult to unambiguously elucidate the role of each regulator. The recently developed material techniques of surface patterning afford unique ways to reveal the underlying science. This paper reviews the pertinent material techniques to fabricate patterns of microscale and nanoscale resolutions, and corresponding cell studies. Some issues are emphasized, such as cell localization on patterned surfaces of chemical contrast, and effects of cell shape, cell size, cell-cell contact, and seeding density on differentiation of stem cells. Material cues to regulate cell adhesion, cell differentiation and other cell events are further summed up. Effects of some physical properties, such as surface topography and matrix stiffness, on cell behaviors are also discussed; nanoscaled features of substrate surfaces to regulate cell fate are summarized as well. The pertinent work sheds new insight into the cell-material interactions, and is stimulating for biomaterial design in regenerative medicine, tissue engineering, and high-throughput detection, diagnosis, and drug screening.
Collapse
Affiliation(s)
- Xiang Yao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Advanced Materials Laboratory, Fudan University, 200433, Shanghai, China
| | | | | |
Collapse
|
47
|
EFFECTS OF DEGRADATION MEDIA OF POLYESTER POROUS SCAFFOLDS ON VIABILITY AND OSTEOGENIC DIFFERENTIATION OF MESENCHYMAL STEM CELLS. ACTA POLYM SIN 2013. [DOI: 10.3724/sp.j.1105.2013.12439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Hydrophilic Gelatin and Hyaluronic Acid-Treated PLGA Scaffolds for Cartilage Tissue Engineering. J Appl Biomater Funct Mater 2013; 11:e45-52. [DOI: 10.5301/jabfm.2012.9253] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2011] [Indexed: 11/20/2022] Open
Abstract
Tissue engineering provides a new strategy for repairing damaged cartilage. Surface and mechanical properties of scaffolds play important roles in inducing cell growth. Aim The aim of this study was to fabricate and characterize PLGA and gelatin/hyaluronic acid-treated PLGA (PLGA-GH) sponge scaffolds for articular cartilage tissue engineering. Methods The PLGA-GH scaffolds were cross-linked with gelatin and hyaluronic acid. Primary chondrocytes isolated from porcine articular cartilages were used to assess cell compatibility. The characteristic PLGA-GH scaffold was higher in water uptake ratio and degradation rate within 42 days than the PLGA scaffold. Results The mean compressive moduli of PLGA and PLGA-GH scaffolds were 1.72±0.50 MPa and 1.86±0.90 MPa, respectively. The cell attachment ratio, proliferation, and extracellular matrix secretion on PLGA-GH scaffolds are superior to those of PLGA scaffolds. Conclusions In our study, PLGA-GH scaffolds exhibited improvements in cell biocompatibility, cell proliferation, extracellular matrix synthesis, and appropriate mechanical and structural properties for potential engineering cartilage applications.
Collapse
|
49
|
Wang DX, He Y, Bi L, Qu ZH, Zou JW, Pan Z, Fan JJ, Chen L, Dong X, Liu XN, Pei GX, Ding JD. Enhancing the bioactivity of Poly(lactic-co-glycolic acid) scaffold with a nano-hydroxyapatite coating for the treatment of segmental bone defect in a rabbit model. Int J Nanomedicine 2013; 8:1855-65. [PMID: 23690683 PMCID: PMC3656818 DOI: 10.2147/ijn.s43706] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
PURPOSE Poly(lactic-co-glycolic acid) (PLGA) is excellent as a scaffolding matrix due to feasibility of processing and tunable biodegradability, yet the virgin scaffolds lack osteoconduction and osteoinduction. In this study, nano-hydroxyapatite (nHA) was coated on the interior surfaces of PLGA scaffolds in order to facilitate in vivo bone defect restoration using biomimetic ceramics while keeping the polyester skeleton of the scaffolds. METHODS PLGA porous scaffolds were prepared and surface modification was carried out by incubation in modified simulated body fluids. The nHA coated PLGA scaffolds were compared to the virgin PLGA scaffolds both in vitro and in vivo. Viability and proliferation rate of bone marrow stromal cells of rabbits were examined. The constructs of scaffolds and autogenous bone marrow stromal cells were implanted into the segmental bone defect in the rabbit model, and the bone regeneration effects were observed. RESULTS In contrast to the relative smooth pore surface of the virgin PLGA scaffold, a biomimetic hierarchical nanostructure was found on the surface of the interior pores of the nHA coated PLGA scaffolds by scanning electron microscopy. Both the viability and proliferation rate of the cells seeded in nHA coated PLGA scaffolds were higher than those in PLGA scaffolds. For bone defect repairing, the radius defects had, after 12 weeks implantation of nHA coated PLGA scaffolds, completely recuperated with significantly better bone formation than in the group of virgin PLGA scaffolds, as shown by X-ray, Micro-computerized tomography and histological examinations. CONCLUSION nHA coating on the interior pore surfaces can significantly improve the bioactivity of PLGA porous scaffolds.
Collapse
Affiliation(s)
- De-Xin Wang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Effects of L-lactic acid and D,L-lactic acid on viability and osteogenic differentiation of mesenchymal stem cells. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11434-013-5798-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|