1
|
Wang H, Hao Y, Guo K, Liu L, Xia B, Gao X, Zheng X, Huang J. Quantitative Biofabrication Platform for Collagen-Based Peripheral Nerve Grafts with Structural and Chemical Guidance. Adv Healthc Mater 2024; 13:e2303505. [PMID: 37988388 DOI: 10.1002/adhm.202303505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/14/2023] [Indexed: 11/23/2023]
Abstract
Owing to its crucial role in the human body, collagen has immense potential as a material for the biofabrication of tissues and organs. However, highly refined fabrication using collagen remains difficult, primarily because of its notably soft properties. A quantitative biofabrication platform to construct collagen-based peripheral nerve grafts, incorporating bionic structural and chemical guidance cues, is introduced. A viscoelastic model for collagen, which facilitates simulating material relaxation and fabricating collagen-based neural grafts, achieving a maximum channel density similar to that of the native nerve structure of longitudinal microchannel arrays, is established. For axonal regeneration over considerable distances, a gradient printing control model and quantitative method are developed to realize the high-precision gradient distribution of nerve growth factor required to obtain nerve grafts through one-step bioprinting. Experiments verify that the bioprinted graft effectively guides linear axonal growth in vitro and in vivo. This study should advance biofabrication methods for a variety of human tissue-engineering applications requiring tailored cues.
Collapse
Affiliation(s)
- Heran Wang
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110169, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiming Hao
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Kai Guo
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110169, China
| | - Lianqing Liu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110169, China
| | - Bing Xia
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xue Gao
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| | - Xiongfei Zheng
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
- Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110169, China
| | - Jinghui Huang
- Department of Orthopaedics, Xijing Hospital, The Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
2
|
Chen T, Jiang Y, Huang JP, Wang J, Wang ZK, Ding PH. Essential elements for spatiotemporal delivery of growth factors within bio-scaffolds: A comprehensive strategy for enhanced tissue regeneration. J Control Release 2024; 368:97-114. [PMID: 38355052 DOI: 10.1016/j.jconrel.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/28/2024] [Accepted: 02/07/2024] [Indexed: 02/16/2024]
Abstract
The precise delivery of growth factors (GFs) in regenerative medicine is crucial for effective tissue regeneration and wound repair. However, challenges in achieving controlled release, such as limited half-life, potential overdosing risks, and delivery control complexities, currently hinder their clinical implementation. Despite the plethora of studies endeavoring to accomplish effective loading and gradual release of GFs through diverse delivery methods, the nuanced control of spatial and temporal delivery still needs to be elucidated. In response to this pressing clinical imperative, our review predominantly focuses on explaining the prevalent strategies employed for spatiotemporal delivery of GFs over the past five years. This review will systematically summarize critical aspects of spatiotemporal GFs delivery, including judicious bio-scaffold selection, innovative loading techniques, optimization of GFs activity retention, and stimulating responsive release mechanisms. It aims to identify the persisting challenges in spatiotemporal GFs delivery strategies and offer an insightful outlook on their future development. The ultimate objective is to provide an invaluable reference for advancing regenerative medicine and tissue engineering applications.
Collapse
Affiliation(s)
- Tan Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Yao Jiang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Jia-Ping Huang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Jing Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China
| | - Zheng-Ke Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, China.
| | - Pei-Hui Ding
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
3
|
Santos TCD, Obando JMC, Leite PEC, Pereira MR, Leitão MDF, Abujadi C, Pimenta LDFL, Martins RCC, Cavalcanti DN. Approaches of marine compounds and relevant immune mediators in Autism Spectrum Disorder: Opportunities and challenges. Eur J Med Chem 2024; 266:116153. [PMID: 38277916 DOI: 10.1016/j.ejmech.2024.116153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/28/2024]
Abstract
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that affects social skills, language, communication, and behavioral skills, significantly impacting the individual's quality of life. Recently, numerous works have centered on the connections between the immune and central nervous systems and the influence of neuroinflammation on autism symptomatology. Marine natural products are considered as important alternative sources of different types of compounds, including polysaccharides, polyphenols, sterols, carotenoids, terpenoids and, alkaloids. These compounds present anti-inflammatory, neuroprotective and immunomodulatory activities, exhibiting a potential for the treatment of many diseases. Although many studies address the marine compounds in the modulation of inflammatory mediators, there is a gap regarding their use in the regulation of the immune system in ASD. Thus, this review aims to provide a better understanding regarding cytokines, chemokines, growth factors and immune responses in ASD, as well as the potential of bioactive marine compounds in the immune regulation in ASD. We expect that this review would contribute to the development of therapeutic alternatives for controlling immune mediators and inflammation in ASD.
Collapse
Affiliation(s)
- Thalisia Cunha Dos Santos
- Programa de Pós-graduação em Química de Produtos Naturais, Instituto de Pesquisas de Produtos Naturais Walter Mors, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Laboratório de Produtos Naturais de Algas Marinha (ALGAMAR), Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Núcleo de Estudos e Pesquisas em Autismo (NEPA), Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | - Johana Marcela Concha Obando
- Laboratório de Produtos Naturais de Algas Marinha (ALGAMAR), Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Núcleo de Estudos e Pesquisas em Autismo (NEPA), Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Paulo Emílio Corrêa Leite
- Núcleo de Estudos e Pesquisas em Autismo (NEPA), Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Instituto LisMAPS, Niterói, RJ, Brazil
| | - Mariana Rodrigues Pereira
- Programa de Pós-graduação em Ciências e Biotecnologia, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Instituto LisMAPS, Niterói, RJ, Brazil; Programa de Pós-graduação em Neurociências, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | - Mônica de Freitas Leitão
- Núcleo de Estudos e Pesquisas em Autismo (NEPA), Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Faculdade de Medicina, Pontifícia Universidade Católica de Campinas (PUC-Camp), Campinas, SP, Brazil
| | - Caio Abujadi
- Núcleo de Estudos e Pesquisas em Autismo (NEPA), Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Programa de Pós-graduação em Ciência, Tecnologia e Inclusão (PGCTIn), Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil
| | | | - Roberto Carlos Campos Martins
- Programa de Pós-graduação em Química de Produtos Naturais, Instituto de Pesquisas de Produtos Naturais Walter Mors, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Diana Negrão Cavalcanti
- Laboratório de Produtos Naturais de Algas Marinha (ALGAMAR), Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Núcleo de Estudos e Pesquisas em Autismo (NEPA), Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil; Programa de Pós-graduação em Ciência, Tecnologia e Inclusão (PGCTIn), Instituto de Biologia, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| |
Collapse
|
4
|
Castro Nava A, Doolaar IC, Labude-Weber N, Malyaran H, Babu S, Chandorkar Y, Di Russo J, Neuss S, De Laporte L. Actuation of Soft Thermoresponsive Hydrogels Mechanically Stimulates Osteogenesis in Human Mesenchymal Stem Cells without Biochemical Factors. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30-43. [PMID: 38150508 PMCID: PMC10789260 DOI: 10.1021/acsami.3c11808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 12/29/2023]
Abstract
Mesenchymal stem cells (MSCs) have the potential to differentiate into multiple lineages and can be harvested relatively easily from adults, making them a promising cell source for regenerative therapies. While it is well-known how to consistently differentiate MSCs into adipose, chondrogenic, and osteogenic lineages by treatment with biochemical factors, the number of studies exploring how to achieve this with mechanical signals is limited. A relatively unexplored area is the effect of cyclic forces on the MSC differentiation. Recently, our group developed a thermoresponsive N-ethyl acrylamide/N-isopropylacrylamide (NIPAM/NEAM) hydrogel supplemented with gold nanorods that are able to convert near-infrared light into heat. Using light pulses allows for local hydrogel collapse and swelling with physiologically relevant force and frequency. In this study, MSCs are cultured on this hydrogel system with a patterned surface and exposed to intermittent or continuous actuation of the hydrogel for 3 days to study the effect of actuation on MSC differentiation. First, cells are harvested from the bone marrow of three donors and tested for their MSC phenotype, meeting the following criteria: the harvested cells are adherent and demonstrate a fibroblast-like bipolar morphology. They lack the expression of CD34 and CD45 but do express CD73, CD90, and CD105. Additionally, their differentiation potential into adipogenic, chondrogenic, and osteogenic lineages is validated by the addition of standardized differentiation media. Next, MSCs are exposed to intermittent or continuous actuation, which leads to a significantly enhanced cell spreading compared to nonactuated cells. Moreover, actuation results in nuclear translocation of Runt-related transcription factor 2 and the Yes-associated protein. Together, these results indicate that cyclic mechanical stimulation on a soft, ridged substrate modulates the MSC fate commitment in the direction of osteogenesis.
Collapse
Affiliation(s)
- Arturo Castro Nava
- DWI—Leibniz
Institute for Interactive Materials, Forckenbeckstrasse 50, Aachen D-52074, Germany
- Institute
for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, Aachen D-52074, Germany
| | - Iris C. Doolaar
- DWI—Leibniz
Institute for Interactive Materials, Forckenbeckstrasse 50, Aachen D-52074, Germany
- Institute
for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, Aachen D-52074, Germany
| | - Norina Labude-Weber
- Helmholtz
Institute for Biomedical Engineering, BioInterface Group, RWTH Aachen University, Pauwelsstrasse 20, Aachen D-52074, Germany
| | - Hanna Malyaran
- Helmholtz
Institute for Biomedical Engineering, BioInterface Group, RWTH Aachen University, Pauwelsstrasse 20, Aachen D-52074, Germany
- Interdisciplinary
Centre for Clinical Research, RWTH Aachen
University, Pauwelsstrasse
30, Aachen D-52074, Germany
| | - Susan Babu
- DWI—Leibniz
Institute for Interactive Materials, Forckenbeckstrasse 50, Aachen D-52074, Germany
- Institute
for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, Aachen D-52074, Germany
| | - Yashoda Chandorkar
- DWI—Leibniz
Institute for Interactive Materials, Forckenbeckstrasse 50, Aachen D-52074, Germany
| | - Jacopo Di Russo
- DWI—Leibniz
Institute for Interactive Materials, Forckenbeckstrasse 50, Aachen D-52074, Germany
- Interdisciplinary
Centre for Clinical Research, RWTH Aachen
University, Pauwelsstrasse
30, Aachen D-52074, Germany
- Institute
of Molecular and Cellular Anatomy, RWTH
Aachen University, Pauwelsstrasse
30, Aachen D-52074, Germany
| | - Sabine Neuss
- Helmholtz
Institute for Biomedical Engineering, BioInterface Group, RWTH Aachen University, Pauwelsstrasse 20, Aachen D-52074, Germany
- Institute
of Pathology, RWTH Aachen University Hospital, Pauwelsstrasse 30, Aachen D-52074, Germany
| | - Laura De Laporte
- DWI—Leibniz
Institute for Interactive Materials, Forckenbeckstrasse 50, Aachen D-52074, Germany
- Institute
for Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 1-2, Aachen D-52074, Germany
- Institute
of Applied Medical Engineering, Department of Advanced Materials for
Biomedicine, RWTH Aachen University, Forckenbeckstraße 55, Aachen D-52074, Germany
| |
Collapse
|
5
|
Poerio A, Mano JF, Cleymand F. Advanced 3D Printing Strategies for the Controlled Delivery of Growth Factors. ACS Biomater Sci Eng 2023; 9:6531-6547. [PMID: 37968925 DOI: 10.1021/acsbiomaterials.3c00873] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
The controlled delivery of growth factors (GFs) from tissue engineered constructs represents a promising strategy to improve tissue repair and regeneration. However, despite their established key role in tissue regeneration, the use of GFs is limited by their short half-life in the in vivo environment, their dose-dependent effectiveness, and their space- and time-dependent activity. Promising results have been obtained both in vitro and in vivo in animal models. Nevertheless, the clinical application of tissue engineered constructs releasing GFs is still challenging due to the several limitations and risks associated with their use. 3D printing and bioprinting, by allowing the microprecise spatial deposition of multiple materials and the fabrication of complex geometries with high resolution, offer advanced strategies for an optimal release of GFs from tissue engineered constructs. This review summarizes the strategies that have been employed to include GFs and their delivery system into biomaterials used for 3D printing applications to optimize their controlled release and to improve both the in vitro and in vivo regeneration processes. The approaches adopted to overcome the above-mentioned limitations are presented, showing the potential of the technology of 3D printing to get one step closer to clinical applications.
Collapse
Affiliation(s)
- Aurelia Poerio
- Institut Jean Lamour, University of Lorraine, Nancy 54011, France
| | - João F Mano
- Department of Chemistry, CICECO─Aveiro Institute of Materials, University of Aveiro, Aveiro 3810-193, Portugal
| | - Franck Cleymand
- Institut Jean Lamour, University of Lorraine, Nancy 54011, France
| |
Collapse
|
6
|
Lee Y, Lim S, Kim JA, Chun YH, Lee HJ. Development of Thiol-Ene Reaction-Based HA Hydrogel with Sustained Release of EGF for Enhanced Skin Wound Healing. Biomacromolecules 2023; 24:5342-5352. [PMID: 37734002 DOI: 10.1021/acs.biomac.3c00810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
This study develops a novel drug delivery system using a hyaluronic acid (HA) hydrogel for controlled release of epidermal growth factor (EGF) to enhance skin wound healing. Conventional hydrogel-based methods suffer from a burst release and limited drug delivery times. To address this, we employ bioconjugation to introduce an acrylate group to EGF, enabling chemical bonding to the HA hydrogel matrix through thiol-ene cross-linking. This approach results in sustained-release delivery of EGF based on the degradation rate of the HA matrix, overcoming diffusion-based limitations. We confirm the introduction of the acrylate group using matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry. We evaluated the hydrogel morphology and rheological properties following binding of acrylate-conjugated EGF to the HA matrix. Assessment of the EGF release profile demonstrates delayed release compared to unconjugated EGF. We evaluate the impact on cells through cell proliferation and scratch assays, indicating the system's efficacy. In a rat wound healing model, the sustained release of EGF from the hydrogel system promotes appropriate tissue healing and restores it to a normal state. These findings suggest that this practical drug delivery system, involving the modification of growth factors or drugs to chemically bind healing factors to hydrogels, can achieve long-lasting effects.
Collapse
Affiliation(s)
- Yerin Lee
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Saebin Lim
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| | - Ji An Kim
- Department of Pediatrics, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon 21431, Republic of Korea
| | - Yoon Hong Chun
- Department of Pediatrics, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Incheon 21431, Republic of Korea
| | - Hyun Jong Lee
- Department of Chemical and Biological Engineering, Gachon University, 1342 Seongnam-daero, Seongnam-si, Gyeonggi-do 13120, Republic of Korea
| |
Collapse
|
7
|
Hadi H, Louis H, Gber TE, Ogungbemiro FO. Molecular modeling of the structural, electronic, excited state dynamic, and the photovoltaic properties of the oligomers of n-corannulene (n = 1-4). Heliyon 2023; 9:e20706. [PMID: 37860554 PMCID: PMC10582301 DOI: 10.1016/j.heliyon.2023.e20706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/01/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023] Open
Abstract
Despite the fact that n-corannulene oligomers (n = 1-4) have a variety of electronic and optical properties, including the ability to be tuned and the potential to be used as light-harvesting materials, there has not been a computational assessment of their structural, electronic, and optical properties. Herein, a computational evaluation of the concerned materials regarding their potent use in solar cell technology has been conducted via DFT/CAM-B3LYP and M062X/6-311+G level of theory. It was observed that the calculated 1st frequency of the n-Corannulene (n = 1-4) were 144.15, 106.36, 48.96 and 42.21 respectively. Notably, the computed cohesive energy value increased as the number of Corannulene units increases while the electronic characteristics revealed that the chemical activity of the structures increased as the number of oligomers rose. Both calculation techniques demonstrate that the number of n-Corannulene oligomers increases the HOMO energy while decreasing the LUMO energy based on the external electric field (EF) effect. The findings demonstrated that as EF intensity increases, the energy gap (Eg/eV = |EHOMO-ELUMO|) of these molecular systems decreases which can be attributed to a decrease in the electron transfer potential barrier. The 4-Corannulene systems showed the highest wave length of adsorption for the investigated compound at 546.18 nm, with the highest oscillator strength of 0.2708 and the lowest transition energy of 2.2700 eV, arising from S0-S1 (H-L) and the highest major percentage contribution of 93.34 % in comparison to the investigated compounds. We are hopeful that this research will help experimental researchers understand the potential of n-Corannulene, specifically 4-corannulene, as powerful material for a variety of applications ranging from solar cell, photovoltaic properties and many others.
Collapse
Affiliation(s)
- Hamid Hadi
- Department of Chemistry, Physical Chemistry group, Lorestan University, Khorramabad, Iran
| | - Hitler Louis
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Terkumbur E. Gber
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Festus O. Ogungbemiro
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| |
Collapse
|
8
|
Kaur T, Joshi A, Singh N. Natural cocktail of bioactive factors conjugated on nanofibrous dressing for improved wound healing. BIOMATERIALS ADVANCES 2022; 143:213163. [PMID: 36327826 DOI: 10.1016/j.bioadv.2022.213163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/07/2022] [Accepted: 10/16/2022] [Indexed: 06/16/2023]
Abstract
Any interference in the timely and orderly progression through all the phases of healing process can turn a minor injury into a chronic wound. Most of the wound dressings available in the market are moderately effective and have not shown satisfactory improvement in healing. Along with the appropriate wound management, it is imperative for a dressing to facilitate the wound repair process too. In the present research, we hypothesize to improve the wound healing process by applying cost effective natural cocktail of various bioactive factors. Bovine colostrum contains high levels of immunoglobulins, lactoferrin, hormones and cytokines which play significant role in wound healing. Hence, multifunctional colostrum conjugated PCL-PEG based nanofibrous dressings were developed and analyzed for their physicochemical properties and cellular responses. The dressings were also evaluated for cell migration, antioxidant, anti-inflammatory and anti-bacterial properties. In-vivo wound healing ability was validated on a rat wound model. Numerous growth factors present in the colostrum showed their role in stimulation of skin repair and regeneration by direct action on genetic material. Significantly less inflammation in colostrum treated wounds was observed due to anti-inflammatory properties of lactoferrin. Thus obtained results confirmed the suitability of these multifunctional colostrum conjugated nanofibrous dressings for improved wound healing.
Collapse
Affiliation(s)
- Tejinder Kaur
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Akshay Joshi
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Neetu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India; Biomedical Engineering Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.
| |
Collapse
|
9
|
Osteogenic Differentiation of Human Adipose-Derived Stem Cells Seeded on a Biomimetic Spongiosa-like Scaffold: Bone Morphogenetic Protein-2 Delivery by Overexpressing Fascia. Int J Mol Sci 2022; 23:ijms23052712. [PMID: 35269855 PMCID: PMC8911081 DOI: 10.3390/ijms23052712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/18/2022] [Accepted: 02/21/2022] [Indexed: 01/27/2023] Open
Abstract
Human adipose-derived stem cells (hADSCs) have the capacity for osteogenic differentiation and, in combination with suitable biomaterials and growth factors, the regeneration of bone defects. In order to differentiate hADSCs into the osteogenic lineage, bone morphogenetic proteins (BMPs) have been proven to be highly effective, especially when expressed locally by route of gene transfer, providing a constant stimulus over an extended period of time. However, the creation of genetically modified hADSCs is laborious and time-consuming, which hinders clinical translation of the approach. Instead, expedited single-surgery gene therapy strategies must be developed. Therefore, in an in vitro experiment, we evaluated a novel growth factor delivery system, comprising adenoviral BMP-2 transduced fascia tissue in terms of BMP-2 release kinetics and osteogenic effects, on hADSCs seeded on an innovative biomimetic spongiosa-like scaffold. As compared to direct BMP-2 transduction of hADSCs or addition of recombinant BMP-2, overexpressing fascia provided a more uniform, constant level of BMP-2 over 30 days. Despite considerably higher BMP-2 peak levels in the comparison groups, delivery by overexpressing fascia led to a strong osteogenic response of hADSCs. The use of BMP-2 transduced fascia in combination with hADSCs may evolve into an expedited single-surgery gene transfer approach to bone repair.
Collapse
|
10
|
Schumacher M, Habibović P, van Rijt S. Peptide-Modified Nano-Bioactive Glass for Targeted Immobilization of Native VEGF. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4959-4968. [PMID: 35041377 PMCID: PMC8815037 DOI: 10.1021/acsami.1c21378] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
A limiting factor in large bone defect regeneration is the slow and disorganized formation of a functional vascular network in the defect area, often resulting in delayed healing or implant failure. To overcome this, strategies that induce angiogenic processes should be combined with potent bone graft substitutes in new bone regeneration approaches. To this end, we describe a unique approach to immobilize the pro-angiogenic growth factor VEGF165 in its native state on the surface of nanosized bioactive glass particles (nBGs) via a binding peptide (PR1P). We demonstrate that covalent coupling of the peptide to amine functional groups grafted on the nBG surface allows immobilization of VEGF with high efficiency and specificity. The amount of coupled peptide could be controlled by varying amine density, which eventually allows tailoring the amount of bound VEGF within a physiologically effective range. In vitro analysis of endothelial cell tube formation in response to VEGF-carrying nBG confirmed that the biological activity of VEGF is not compromised by the immobilization. Instead, comparable angiogenic stimulation was found for lower doses of immobilized VEGF compared to exogenously added VEGF. The described system, for the first time, employs a binding peptide for growth factor immobilization on bioactive glass nanoparticles and represents a promising strategy to overcome the problem of insufficient neovascularization in large bone defect regeneration.
Collapse
|
11
|
Guan G, Qizhuang Lv, Liu S, Jiang Z, Zhou C, Liao W. 3D-bioprinted peptide coupling patches for wound healing. Mater Today Bio 2022; 13:100188. [PMID: 34977527 PMCID: PMC8683759 DOI: 10.1016/j.mtbio.2021.100188] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic wounds caused by severe trauma remain a serious challenge for clinical treatment. In this study, we developed a novel angiogenic 3D-bioprinted peptide patch to improve skin wound healing. The 3D-bioprinted technology can fabricate individual patches according to the shape characteristics of the damaged tissue. Gelatin methacryloyl (GelMA) and hyaluronic acid methacryloyl (HAMA) have excellent biocompatibility and biodegradability, and were used as a biomaterial to produce bioprinted patches. The pro-angiogenic QHREDGS peptide was covalently conjugated to the 3D-bioprinted GelMA/HAMA patches, extending the release of QHREDGS and improving the angiogenic properties of the patch. Our results demonstrated that these 3D-bioprinted peptide patches showed excellent biocompatibility, angiogenesis, and tissue repair both in vivo and in vitro. These findings indicated that 3D-bioprinted peptide patches improved skin wound healing and could be used in other tissue engineering applications.
Collapse
Affiliation(s)
- Gaopeng Guan
- Clinical Medical College Jiujiang University Hospital, Jiujiang University, Jiujiang, 332000, Jiangxi, China
| | - Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Yulin, 537000, Guangxi, China
| | - Shengyuan Liu
- Longyan People Hospital of Fujian, Pneumology Department, Longlan, 361000, Fujian, China
| | - Zhenzhen Jiang
- Clinical Medical College Jiujiang University Hospital, Jiujiang University, Jiujiang, 332000, Jiangxi, China
| | - Chunxia Zhou
- Clinical Medical College Jiujiang University Hospital, Jiujiang University, Jiujiang, 332000, Jiangxi, China
| | - Weifang Liao
- Clinical Medical College Jiujiang University Hospital, Jiujiang University, Jiujiang, 332000, Jiangxi, China
| |
Collapse
|
12
|
Shaw GS, Samavedi S. Potent Particle-Based Vehicles for Growth Factor Delivery from Electrospun Meshes: Fabrication and Functionalization Strategies for Effective Tissue Regeneration. ACS Biomater Sci Eng 2021; 8:1-15. [PMID: 34958569 DOI: 10.1021/acsbiomaterials.1c00942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Functionalization of electrospun meshes with growth factors (GFs) is a common strategy for guiding specific cell responses in tissue engineering. GFs can exert their intended biological effects only when they retain their bioactivity and can be subsequently delivered in a temporally controlled manner. However, adverse processing conditions encountered in electrospinning can potentially disrupt GFs and diminish their biological efficacy. Further, meshes prepared using conventional approaches often promote an initial burst and rely solely on intrinsic fiber properties to provide extended release. Sequential delivery of multiple GFs─a strategy that mimics the natural tissue repair cascade─is also not easily achievable with traditional fabrication techniques. These limitations have hindered the effective use and translation of mesh-based strategies for tissue repair. An attractive alternative is the use of carrier vehicles (e.g., nanoparticles, microspheres) for GF incorporation into meshes. This review presents advances in the development of particle-integrated electrospun composites for safe and effective delivery of GFs. Compared to traditional approaches, we reveal how particles can protect GF activity, permit the incorporation of multiple GFs, decouple release from fiber properties, help achieve spatiotemporal control over delivery, enhance surface bioactivity, exert independent biological effects, and augment matrix mechanics. In presenting innovations in GF functionalization and composite engineering strategies, we also discuss specific in vitro and in vivo biological effects and their implications for diverse tissue engineering applications.
Collapse
Affiliation(s)
- Gauri Shankar Shaw
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, NH 65, Sangareddy, Telangana 502285, India
| | - Satyavrata Samavedi
- Department of Chemical Engineering, Indian Institute of Technology Hyderabad, NH 65, Sangareddy, Telangana 502285, India
| |
Collapse
|
13
|
DOĞAN M. Preparation of Chitosan-Polyvinyl Prolidone (PVP) Hydrogels with Fibroblast Growth Factor (FGF) and Investigation of in Vitro Characteristics. CLINICAL AND EXPERIMENTAL HEALTH SCIENCES 2021. [DOI: 10.33808/clinexphealthsci.972758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
Seims KB, Hunt NK, Chow LW. Strategies to Control or Mimic Growth Factor Activity for Bone, Cartilage, and Osteochondral Tissue Engineering. Bioconjug Chem 2021; 32:861-878. [PMID: 33856777 DOI: 10.1021/acs.bioconjchem.1c00090] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Growth factors play a critical role in tissue repair and regeneration. However, their clinical success is limited by their low stability, short half-life, and rapid diffusion from the delivery site. Supraphysiological growth factor concentrations are often required to demonstrate efficacy but can lead to adverse reactions, such as inflammatory complications and increased cancer risk. These issues have motivated the development of delivery systems that enable sustained release and controlled presentation of growth factors. This review specifically focuses on bioconjugation strategies to enhance growth factor activity for bone, cartilage, and osteochondral applications. We describe approaches to localize growth factors using noncovalent and covalent methods, bind growth factors via peptides, and mimic growth factor function with mimetic peptide sequences. We also discuss emerging and future directions to control spatiotemporal growth factor delivery to improve functional tissue repair and regeneration.
Collapse
Affiliation(s)
- Kelly B Seims
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Natasha K Hunt
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Lesley W Chow
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
- Department of Bioengineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
15
|
Lyu Y, Azevedo HS. Supramolecular Hydrogels for Protein Delivery in Tissue Engineering. Molecules 2021; 26:873. [PMID: 33562215 PMCID: PMC7914635 DOI: 10.3390/molecules26040873] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/31/2021] [Accepted: 02/03/2021] [Indexed: 12/20/2022] Open
Abstract
Therapeutic proteins, such as growth factors (GFs), have been used in tissue engineering (TE) approaches for their ability to provide signals to cells and orchestrate the formation of functional tissue. However, to be effective and minimize off-target effects, GFs should be delivered at the target site with temporal control. In addition, protein drugs are typically sensitive water soluble macromolecules with delicate structure. As such, hydrogels, containing large amounts of water, provide a compatible environment for the direct incorporation of proteins within the hydrogel network, while their release rate can be tuned by engineering the network chemistry and density. Being formed by transient crosslinks, afforded by non-covalent interactions, supramolecular hydrogels offer important advantages for protein delivery applications. This review describes various types of supramolecular hydrogels using a repertoire of diverse building blocks, their use for protein delivery and their further application in TE contexts. By reviewing the recent literature on this topic, the merits of supramolecular hydrogels are highlighted as well as their limitations, with high expectations for new advances they will provide for TE in the near future.
Collapse
Affiliation(s)
| | - Helena S. Azevedo
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary University of London, Mile End Road, London E1 4NS, UK;
| |
Collapse
|
16
|
Bavaro T, Tengattini S, Rezwan R, Chiesa E, Temporini C, Dorati R, Massolini G, Conti B, Ubiali D, Terreni M. Design of epidermal growth factor immobilization on 3D biocompatible scaffolds to promote tissue repair and regeneration. Sci Rep 2021; 11:2629. [PMID: 33514813 PMCID: PMC7846569 DOI: 10.1038/s41598-021-81905-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/13/2021] [Indexed: 01/05/2023] Open
Abstract
Exogenous application of human epidermal growth factor (hEGF) stimulates epidermal wound healing. The aim of this study was to develop bioconjugates based on hEGF mimicking the protein in its native state and thus suitable for tissue engineering applications, in particular for treating skin-related disorders as burns. Ribonuclease A (RNase A) was used to investigate a number of different activated-agarose carriers: cyanogen bromide (CNBr)-activated-agarose and glyoxyl-agarose showed to preserve the appropriate orientation of the protein for receptor binding. EGF was immobilized on these carriers and immobilization yield was evaluated (100% and 12%, respectively). A peptide mapping of unbound protein regions was carried out by LC-MS to take evidence of the residues involved in the immobilization and, consequently, the flexibility and surface accessibility of immobilized EGF. To assess cell proliferative activities, 10, 25, 50, and 100 ng/mL of each immobilized EGF sample were seeded on fibroblast cells and incubated for 24, 48 and 72 h. The immobilized growth factor showed significantly high cell proliferative activity at 50 and 100 ng/mL compared to control and soluble EGF. Although both of the immobilized samples show dose-dependency when seeded with high number of fibroblast cells, CNBr-agarose-EGF showed a significantly high activity at 100 ng/mL and 72 h incubation, compared to glyoxyl-agarose-EGF.
Collapse
Affiliation(s)
- Teodora Bavaro
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy.
| | - Sara Tengattini
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Refaya Rezwan
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
- Department of Pharmacy, ASA University Bangladesh, 23/3 Bir Uttam A.N.M Nuruzzaman Sarak, Dhaka, 1207, Bangladesh
| | - Enrica Chiesa
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Caterina Temporini
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Gabriella Massolini
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Daniela Ubiali
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| | - Marco Terreni
- Department of Drug Sciences, University of Pavia, Viale Taramelli 12, 27100, Pavia, Italy
| |
Collapse
|
17
|
Chen G, Kong P, Jiang A, Wang X, Sun Y, Yu T, Chi H, Song C, Zhang H, Subedi D, Ravi Kumar P, Bai K, Liu K, Ji Y, Yan J. A modular programmed biphasic dual-delivery system on 3D ceramic scaffolds for osteogenesis in vitro and in vivo. J Mater Chem B 2020; 8:9697-9717. [PMID: 32789334 DOI: 10.1039/c9tb02127b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Single-factor delivery is the most common characteristic of bone tissue engineering techniques. However, bone regeneration is a complex process requiring multiple factors and specialized release mechanisms. Therefore, the development of a dual-delivery system allowing for programmed release kinetics would be highly desirable. Improvement of the molarity and versatility of the delivery system has rarely been studied. Herein, we report the development of a novel, modular programmed biphasic dual-release system (SCB), carrying a BMP2 and an engineered collagen I-derived recognition motif (Stath-DGEA), with a self-remodification feature on hydroxyapatite (HA)-based materials. The SCB system was loaded onto an additive manufactured (AM) scaffold in order to evaluate its bifactor osteogenic potential and its biphasic release behavior. Further, the biomechanical properties of the scaffold were studied by using the fluid-structure interaction (FSI) method. Section fluorescent labeling revealed that the HA scaffold has a relatively higher density and efficiency. Additionally, the results of the release and inhibition experiment suggested that the SCB system could facilitate the sustained release of therapeutic levels of two factors during the initial stage of implantation, thereby exhibiting a rapid high-dose release pattern at a specific time point during the second stage. The FSI prediction model indicated that the scaffold provides an excellent biomimetic mechanical and fluid dynamic microenvironment to promote osteogenesis. Our results indicated that incorporation of BMP2 with Stath-DGEA in the biphasic SCB system could have a synergetic effect in promoting the adhesion, proliferation, and differentiation of bone marrow mesenchymal stem cells (BMSCs) in vitro, under staged stimulations. Further, in vivo studies in both ectopic and orthotopic rat models showed that the SCB system loaded onto an AM scaffold could enhance osteointegration and osteoinduction throughout the osteogenic process. Thus, the novel synthetic SCB system described herein used on an AM scaffold provides a biomimetic extracellular environment that enhances bone regeneration and is a promising multifunctional, dual-release platform.
Collapse
Affiliation(s)
- Guanghua Chen
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Shen YY, Gu XK, Zhang RR, Qian TM, Li SY, Yi S. Biological characteristics of dynamic expression of nerve regeneration related growth factors in dorsal root ganglia after peripheral nerve injury. Neural Regen Res 2020; 15:1502-1509. [PMID: 31997815 PMCID: PMC7059586 DOI: 10.4103/1673-5374.274343] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 06/21/2019] [Accepted: 09/20/2019] [Indexed: 01/23/2023] Open
Abstract
The regenerative capacity of peripheral nerves is limited after nerve injury. A number of growth factors modulate many cellular behaviors, such as proliferation and migration, and may contribute to nerve repair and regeneration. Our previous study observed the dynamic changes of genes in L4-6 dorsal root ganglion after rat sciatic nerve crush using transcriptome sequencing. Our current study focused on upstream growth factors and found that a total of 19 upstream growth factors were dysregulated in dorsal root ganglions at 3, 9 hours, 1, 4, or 7 days after nerve crush, compared with the 0 hour control. Thirty-six rat models of sciatic nerve crush injury were prepared as described previously. Then, they were divided into six groups to measure the expression changes of representative genes at 0, 3, 9 hours, 1, 4 or 7 days post crush. Our current study measured the expression levels of representative upstream growth factors, including nerve growth factor, brain-derived neurotrophic factor, fibroblast growth factor 2 and amphiregulin genes, and explored critical signaling pathways and biological process through bioinformatic analysis. Our data revealed that many of these dysregulated upstream growth factors, including nerve growth factor, brain-derived neurotrophic factor, fibroblast growth factor 2 and amphiregulin, participated in tissue remodeling and axon growth-related biological processes Therefore, the experiment described the expression pattern of upstream growth factors in the dorsal root ganglia after peripheral nerve injury. Bioinformatic analysis revealed growth factors that may promote repair and regeneration of damaged peripheral nerves. All animal surgery procedures were performed in accordance with Institutional Animal Care Guidelines of Nantong University and ethically approved by the Administration Committee of Experimental Animals, China (approval No. 20170302-017) on March 2, 2017.
Collapse
Affiliation(s)
- Yin-Ying Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Xiao-Kun Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
- Department of Hand Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Rui-Rui Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Tian-Mei Qian
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Shi-Ying Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Sheng Yi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
19
|
Enriquez-Ochoa D, Robles-Ovalle P, Mayolo-Deloisa K, Brunck MEG. Immobilization of Growth Factors for Cell Therapy Manufacturing. Front Bioeng Biotechnol 2020; 8:620. [PMID: 32637403 PMCID: PMC7317031 DOI: 10.3389/fbioe.2020.00620] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022] Open
Abstract
Cell therapy products exhibit great therapeutic potential but come with a deterring price tag partly caused by their costly manufacturing processes. The development of strategies that lead to cost-effective cell production is key to expand the reach of cell therapies. Growth factors are critical culture media components required for the maintenance and differentiation of cells in culture and are widely employed in cell therapy manufacturing. However, they are expensive, and their common use in soluble form is often associated with decreased stability and bioactivity. Immobilization has emerged as a possible strategy to optimize growth factor use in cell culture. To date, several immobilization techniques have been reported for attaching growth factors onto a variety of biomaterials, but these have been focused on tissue engineering. This review briefly summarizes the current landscape of cell therapy manufacturing, before describing the types of chemistry that can be used to immobilize growth factors for cell culture. Emphasis is placed to identify strategies that could reduce growth factor usage and enhance bioactivity. Finally, we describe a case study for stem cell factor.
Collapse
Affiliation(s)
| | | | - Karla Mayolo-Deloisa
- Tecnologico de Monterrey, School of Engineering and Science, FEMSA Biotechnology Center, Monterrey, Mexico
| | - Marion E. G. Brunck
- Tecnologico de Monterrey, School of Engineering and Science, FEMSA Biotechnology Center, Monterrey, Mexico
| |
Collapse
|
20
|
Wang L, Zhao Y, Yang F, Feng M, Zhao Y, Chen X, Mi J, Yao Y, Guan D, Xiao Z, Chen B, Dai J. Biomimetic collagen biomaterial induces in situ lung regeneration by forming functional alveolar. Biomaterials 2020; 236:119825. [PMID: 32044576 DOI: 10.1016/j.biomaterials.2020.119825] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/07/2020] [Accepted: 01/25/2020] [Indexed: 01/02/2023]
Abstract
In situ restoration of severely damaged lung remains difficult due to its limited regeneration capacity after injury. Artificial lung scaffolds are emerging as potential substitutes, but it is still a challenge to reconstruct lung regeneration microenvironment in scaffold after lung resection injury. Here, a 3D biomimetic porous collagen scaffold with similar structure characteristics as lung is fabricated, and a novel collagen binding hepatocyte growth factor (CBD-HGF) is tethered on the collagen scaffold for maintaining the biomimetic function of HGF to improve the lung regeneration microenvironment. The biomimetic scaffold was implanted into the operative region of a rat partial lung resection model. The results revealed that vascular endothelial cells and endogenous alveolar stem cells entered the scaffold at the early stage of regeneration. At the later stage, inflammation and fibrosis were attenuated, the microvascular and functional alveolar-like structures were formed, and the general morphology of the injured lung was restored. Taken together, the functional 3D biomimetic collagen scaffold facilitates recovery of the injured lung, alveolar regeneration, and angiogenesis after acute lung injury. Particularly, this is the first study of lung regeneration in vivo guided by biomimetic collagen scaffold materials, which supports the concept that tissue engineering is an effective strategy for alveolar regeneration.
Collapse
Affiliation(s)
- Linjie Wang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yannan Zhao
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Feng Yang
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Meng Feng
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yazhen Zhao
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xi Chen
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Junwei Mi
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yuanjiang Yao
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Dongwei Guan
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Zhifeng Xiao
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Bing Chen
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jianwu Dai
- Institute of Combined Injury, State Key Laboratory of Trauma, Burns and Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Chongqing Engineering Research Center for Biomaterials and Regenerative Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, China; State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
21
|
Functionalization of Silk Fibers by PDGF and Bioceramics for Bone Tissue Regeneration. COATINGS 2019. [DOI: 10.3390/coatings10010008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Bone regeneration is a complex, well-organized physiological process of bone formation observed during normal fracture healing and involved in continuous remodeling throughout adult life. An ideal medical device for bone regeneration requires interconnected pores within the device to allow for penetration of blood vessels and cells, enabling material biodegradation and bone ingrowth. Additional mandatory characteristics include an excellent resorption rate, a 3D structure similar to natural bone, biocompatibility, and customizability to multiple patient-specific geometries combined with adequate mechanical strength. Therefore, endless silk fibers were spun from native silk solution isolated from silkworm larvae and functionalized with osteoconductive bioceramic materials. In addition, transgenic silkworms were generated to functionalize silk proteins with human platelet-derived growth factor (hPDGF). Both, PDGF-silk and bioceramic modified silk were then assembled into 3D textile implants using an additive manufacturing approach. Textile implants were characterized in terms of porosity, compressive strength, and cyclic load. In addition, osteogenic differentiation of mesenchymal stem cells was evaluated. Silk fiber-based 3D textile implants showed good cytocompatibility and stem cells cultured on bioceramic material functionalized silk implants were differentiating into bone cells. Thus, functionalized 3D interconnected porous textile scaffolds were shown to be promising biomaterials for bone regeneration.
Collapse
|
22
|
Güler R, Thatikonda N, Ghani HA, Hedhammar M, Löfblom J. VEGFR2-Specific Ligands Based on Affibody Molecules Demonstrate Agonistic Effects when Tetrameric in the Soluble Form or Immobilized via Spider Silk. ACS Biomater Sci Eng 2019; 5:6474-6484. [PMID: 33417800 DOI: 10.1021/acsbiomaterials.9b00994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Strategies to promote vascularization are being developed in order to improve long-term survival of artificial tissue constructs. Vascular endothelial growth factor A (VEGFA) has an important role in both pathological and physiological angiogenesis, mediated by binding to VEGF receptors (VEGFRs). In nature, signaling can be modulated by presentation of growth factors in either soluble form or bound to the extracellular matrix. Herein, a previously reported VEGFR2-binding antagonistic affibody heterodimer (di-ZVEGFR2) was formatted into a tetrameric construct (tetra-ZVEGFR2) with the intention of generating artificial agonistic ligands for VEGFR2 signaling. In vitro cell assays demonstrated that tetra-ZVEGFR2 induced VEGFR2 phosphorylation and increased cell proliferation, in contrast to di-ZVEGFR2. In order to simulate matrix-bound factors, both constructs were fused at the genetic level to a partial spider silk protein, 4RepCT. Assembly of the silk fusion proteins onto a solid surface was verified by quartz crystal microbalance with dissipation analysis. Moreover, surface plasmon resonance studies demonstrated retained VEGFR2 binding ability of di-ZVEGFR2-silk and tetra-ZVEGFR2-silk after silk-mediated immobilization. Cell culture studies demonstrated that VEGFR2-overexpressing cells adhered to di-ZVEGFR2-silk and tetra-ZVEGFR2-silk and had activated VEGFR2 signaling. Altogether, we demonstrate the potential of especially tetra-ZVEGFR2-silk to promote angiogenesis in tissue-engineering applications. The results from the study also show that molecules can obtain completely new functions when presented on materials, and verifying the biological effects after functionalizing materials is thus always recommended.
Collapse
Affiliation(s)
- Rezan Güler
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, SE-10691 Stockholm, Sweden
| | - Naresh Thatikonda
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, SE-10691 Stockholm, Sweden
| | - Hawraa Ali Ghani
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, SE-10691 Stockholm, Sweden
| | - My Hedhammar
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, SE-10691 Stockholm, Sweden
| | - John Löfblom
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, SE-10691 Stockholm, Sweden
| |
Collapse
|
23
|
Ettelt V, Belitsky A, Lehnert M, Loidl-Stahlhofen A, Epple M, Veith M. Enhanced selective cellular proliferation by multi-biofunctionalization of medical implant surfaces with heterodimeric BMP-2/6, fibronectin, and FGF-2. J Biomed Mater Res A 2019; 106:2910-2922. [PMID: 30447103 DOI: 10.1002/jbm.a.36480] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 06/04/2018] [Accepted: 06/06/2018] [Indexed: 11/07/2022]
Abstract
Increasing cell adhesion on implant surfaces is an issue of high biomedical importance. Early colonization with endogenous cells reduces the risk of bacterial contamination and enhances the integration of an implant into the diverse cellular tissues surrounding it. In vivo integration of implants is controlled by a complex spatial and temporal interplay of cytokines and adhesive molecules. The concept of a multi-biofunctionalized TiO2 surface for stimulating bone and soft tissue growth is presented here. All supramolecular architectures were built with a biotin-streptavidin coupling system. Biofunctionalization of TiO2 with immobilized FGF-2 and heparin could be shown to selectively increase the proliferation of fibroblasts while immobilized BMP-2 only stimulated the growth of osteoblasts. Furthermore, TiO2 surfaces biofunctionalized with either the BMP-2 or BMP-2/6 growth factor and the cell adhesion-enhancing protein fibronectin showed higher osteoblast adhesion than a TiO2 surface functionalized with only one of these proteins. In conclusion, the presented immobilization strategy is applicable in vivo for a selective surface coating of implants in both hard and connective tissue. The combined immobilization of different extracellular proteins on implants has the potential to further influence cell-specific reactions. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 2910-2922, 2018.
Collapse
Affiliation(s)
- Volker Ettelt
- Laboratory of Biophysics, Faculty of Applied Natural Sciences, Westphalian University of Applied Sciences, D-45665, Recklinghausen, Germany.,Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), Faculty of Chemistry, University of Duisburg-Essen, D-45141, Essen, Germany
| | - Alice Belitsky
- Laboratory of Biophysics, Faculty of Applied Natural Sciences, Westphalian University of Applied Sciences, D-45665, Recklinghausen, Germany
| | - Michael Lehnert
- Laboratory of Biophysics, Faculty of Applied Natural Sciences, Westphalian University of Applied Sciences, D-45665, Recklinghausen, Germany
| | - Angelika Loidl-Stahlhofen
- Laboratory of Protein Chemistry, Faculty of Applied Natural Sciences, Westphalian University of Applied Sciences, D-45665, Recklinghausen, Germany
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CeNIDE), Faculty of Chemistry, University of Duisburg-Essen, D-45141, Essen, Germany
| | - Michael Veith
- Laboratory of Biophysics, Faculty of Applied Natural Sciences, Westphalian University of Applied Sciences, D-45665, Recklinghausen, Germany
| |
Collapse
|
24
|
Tang RZ, Gu SS, Chen XT, He LJ, Wang KP, Liu XQ. Immobilized Transforming Growth Factor-Beta 1 in a Stiffness-Tunable Artificial Extracellular Matrix Enhances Mechanotransduction in the Epithelial Mesenchymal Transition of Hepatocellular Carcinoma. ACS APPLIED MATERIALS & INTERFACES 2019; 11:14660-14671. [PMID: 30973698 DOI: 10.1021/acsami.9b03572] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cancer progression is regulated by multiple factors of extracellular matrix (ECM). Understanding how cancer cells integrate multiple signaling pathways to achieve specific behaviors remains a challenge because of the lack of appropriate models to copresent and modulate ECM properties. Here we proposed a strategy to build a thin biomaterial matrix by poly(l-lysine) and hyaluronan as an artificial stiffness-tunable ECM. Transforming growth factor-beta 1 (TGF-β1) was used as a biochemical cue to present in an immobilized and spatially controlled manner, with a high loading efficiency of 90%. Either soft matrix with immobilized TGF-β1 (i-TGF) or bare stiff matrix could only promote HCC cells to form the epithelial phenotype, whereas stiff matrix with i-TGF was the only condition to induce the mesenchymal phenotype. Further investigation revealed that i-TGF increased the specific TGF-β1 receptor (TβRI) expression to activate PI3K pathway. i-TGF-TβRI interactions also promoted HCC cell adhesion to enlarge contact area for stiffness sensing, resulting in the raising expression of the mechano-sensor (β1 integrin). Mechanotransduction would then be enhanced by the β1 integrin/vinculin/p-FAK pathway, leading to a noble PI3K activation. Using our model, a novel mechanism was discovered to elucidate regulation of cell fates by coupling mechanotransduction and biochemical signaling.
Collapse
Affiliation(s)
| | | | | | - Li-Jie He
- Graphitene Ltd. , Flixborough , North Lincolnshire DN15 8SJ , United Kingdom
| | | | | |
Collapse
|
25
|
Affiliation(s)
- Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
26
|
Pensa NW, Curry AS, Reddy MS, Bellis SL. The addition of a polyglutamate domain to the angiogenic QK peptide improves peptide coupling to bone graft materials leading to enhanced endothelial cell activation. PLoS One 2019; 14:e0213592. [PMID: 30856221 PMCID: PMC6411101 DOI: 10.1371/journal.pone.0213592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 02/25/2019] [Indexed: 12/26/2022] Open
Abstract
Vascularization of bone grafts is vital for graft integration and bone repair, however non-autologous graft sources have limited potential to induce angiogenesis. Accordingly, intensive research has focused on functionalizing non-autologous materials with angiogenic factors. In the current study we evaluated a method for coupling an angiogenic peptide to the surface of two clinically-relevant graft materials, anorganic bovine bone (ABB) and synthetic hydroxyapatite (HA). Specifically, the VEGF-derived “QK” peptide was synthesized with a heptaglutamate (E7) domain, a motif that has strong affinity for calcium phosphate graft materials. Compared with unmodified QK, a 4–6 fold enrichment was observed in the binding of E7-modified QK (E7-QK) to ABB and HA. The E7-QK peptide was then assessed for its capacity to stimulate angiogenic cell behaviors. Human umbilical vein endothelial cells (HUVECs) were treated with solutions of either QK or E7-QK, and it was found that QK and E7-QK elicited equivalent levels of cell migration, tubule formation and activation of the Akt and ERK signaling pathways. These data confirmed that the inherent bioactivity of the QK sequence was not diminished by the addition of the E7 domain. We further verified that the activity of E7-QK was retained following peptide binding to the graft surface. HA disks were coated with QK or E7-QK, and then HUVECs were seeded onto the disks. Consistent with the increased amount of E7-QK bound to HA, relative to QK, markedly greater activation of Akt and ERK 1/2 was observed in cells exposed to the E7-QK-coated disks. Taken together, these results suggest that the E7 domain can be leveraged to concentrate angiogenic peptides on graft materials, facilitating delivery of higher peptide concentrations within the graft site. The ability to endow diverse graft materials with angiogenic potential holds promise for augmenting the regenerative capacity of non-autologous bone grafts.
Collapse
Affiliation(s)
- Nicholas W. Pensa
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Andrew S. Curry
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Michael S. Reddy
- School of Dentistry, University of California, San Francisco, California, United States of America
- * E-mail: (SLB); (MSR)
| | - Susan L. Bellis
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail: (SLB); (MSR)
| |
Collapse
|
27
|
Nakayama KH, Shayan M, Huang NF. Engineering Biomimetic Materials for Skeletal Muscle Repair and Regeneration. Adv Healthc Mater 2019; 8:e1801168. [PMID: 30725530 PMCID: PMC6589032 DOI: 10.1002/adhm.201801168] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/21/2018] [Indexed: 11/12/2022]
Abstract
Although skeletal muscle is highly regenerative following injury or disease, endogenous self-regeneration is severely impaired in conditions of volume traumatic muscle loss. Consequently, tissue engineering approaches are a promising means to regenerate skeletal muscle. Biological scaffolds serve as not only structural support for the promotion of cellular ingrowth but also impart potent modulatory signaling cues that may be beneficial for tissue regeneration. In this work, the progress of tissue engineering approaches for skeletal muscle engineering and regeneration is overviewed, with a focus on the techniques to create biomimetic engineered tissue using extracellular cues. These factors include mechanical and electrical stimulation, geometric patterning, and delivery of growth factors or other bioactive molecules. The progress of evaluating the therapeutic efficacy of these approaches in preclinical models of muscle injury is further discussed.
Collapse
Affiliation(s)
- Karina H Nakayama
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, 94305, USA
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, 94304, USA
- The Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94305, USA
| | - Mahdis Shayan
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, 94305, USA
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, 94304, USA
- The Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94305, USA
| | - Ngan F Huang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, 94305, USA
- Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, 94304, USA
- The Stanford Cardiovascular Institute, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
28
|
Chisini LA, Conde MCM, Grazioli G, Martin ASS, Carvalho RVD, Sartori LRM, Demarco FF. Bone, Periodontal and Dental Pulp Regeneration in Dentistry: A Systematic Scoping Review. Braz Dent J 2019; 30:77-95. [DOI: 10.1590/0103-6440201902053] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 07/02/2018] [Indexed: 02/07/2023] Open
Abstract
Abstract The aim of presented systematic scoping review was to investigate the actual and future clinical possibilities of regenerative therapies and their ability to regenerate bone, periodontal and pulp with histological confirmation of the nature of formed tissue. Electronic search was conducted using a combination between Keywords and MeSH terms in PubMed, Scopus, ISI-Web of Science and Cochrane library databases up to January 2016. Two reviewers conducted independently the papers judgment. Screened studies were read following the predetermined inclusion criteria. The included studies were evaluated in accordance with Arksey and O’Malley’s modified framework. From 1349 papers, 168 completed inclusion criteria. Several characterized and uncharacterized cells used in Cell Therapy have provided bone regeneration, demonstrating bone gain in quantity and quality, even as accelerators for bone and periodontal regeneration. Synthetic and natural scaffolds presented good cell maintenance, however polyglycolid-polylactid presented faster resorption and consequently poor bone gain. The Growth Factor-Mediated Therapy was able to regenerate bone and all features of a periodontal tissue in bone defects. Teeth submitted to Revascularization presented an increase of length and width of root canal. However, formed tissues not seem able to deposit dentin, characterizing a repaired tissue. Both PRP and PRF presented benefits when applied in regenerative therapies as natural scaffolds. Therefore, most studies that applied regenerative therapies have provided promising results being possible to regenerate bone and periodontal tissue with histological confirmation. However, pulp regeneration was not reported. These results should be interpreted with caution due to the short follow-up periods.
Collapse
|
29
|
Ren X, Akimoto J, Miyatake H, Tada S, Zhu L, Mao H, Isoshima T, Müller S, Kim SM, Zhou Y, Ito Y. Cell migration and growth induced by photo-immobilised vascular endothelial growth factor (VEGF) isoforms. J Mater Chem B 2019. [DOI: 10.1039/c9tb00407f] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
VEGF isoforms immobilised by photo-reactive gelatin (AzPhe-gelatin) enhance cell migration and proliferation.
Collapse
|
30
|
Bittner SM, Guo JL, Mikos AG. Spatiotemporal Control of Growth Factors in Three-Dimensional Printed Scaffolds. BIOPRINTING (AMSTERDAM, NETHERLANDS) 2018; 12:e00032. [PMID: 31106279 PMCID: PMC6519969 DOI: 10.1016/j.bprint.2018.e00032] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Three-dimensional printing (3DP) has enabled the fabrication of tissue engineering scaffolds that recapitulate the physical, architectural, and biochemical cues of native tissue matrix more effectively than ever before. One key component of biomimetic scaffold fabrication is the patterning of growth factors, whose spatial distribution and temporal release profile should ideally match that seen in native tissue development. Tissue engineers have made significant progress in improving the degree of spatiotemporal control over which growth factors are presented within 3DP scaffolds. However, significant limitations remain in terms in pattern resolution, the fabrication of true gradients, temporal control of growth factor release, the maintenance of growth factor distributions against diffusion, and more. This review summarizes several key areas for advancement of the field in terms of improving spatiotemporal control over growth factor presentation, and additionally highlights several major tissues of interest that have been targeted by 3DP growth factor patterning strategies.
Collapse
Affiliation(s)
- Sean M. Bittner
- Department of Bioengineering, Rice University, Houston, TX, United States
- Center for Engineering Complex Tissues, United States
| | - Jason L. Guo
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - Antonios G. Mikos
- Department of Bioengineering, Rice University, Houston, TX, United States
- Center for Engineering Complex Tissues, United States
| |
Collapse
|
31
|
Kim HY, Park JH, Byun JH, Lee JH, Oh SH. BMP-2-Immobilized Porous Matrix with Leaf-Stacked Structure as a Bioactive GBR Membrane. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30115-30124. [PMID: 30130399 DOI: 10.1021/acsami.8b09558] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We developed an asymmetrically porous membrane with a leaf-stacked structure (LSS membrane; top with nanosized pores and bulk/bottom with leaf-stacked structure) via immersion-precipitation using polycarprolactone (PCL)/Pluronic F127 mixture solution (in tetraglycol). The bone morphogenetic protein-2 (BMP-2) is immobilized on the pore surfaces of the LSS membrane by immersing the membrane in the BMP-2 solution. The BMP-2 loaded in the LSS membrane is continuously released for 38 days (without additional modifications of the matrix) to improve osteogenic differentiation of cells and new bone formation (carvarial defect rat model). The leaf-stacked structure is recognized to be a physical stimulus for bone regeneration, and the stimulation effect is comparable to that of continuously released BMP-2. Moreover, we observe the combined effect of BMP-2 and the leaf-stacked structure for bone healing. Thus, we suggest that the BMP-2-immobilized LSS membrane may be a candidate as a bioactive guided bone regeneration (GBR) membrane for clinical applications, due to the use of clinically acceptable biomaterials and fabrication procedures as well as effective osteogenic differentiation and bone regeneration.
Collapse
Affiliation(s)
- Ho Yong Kim
- Department of Nanobiomedical Science , Dankook University , Cheonan 31116 , Republic of Korea
| | - Jin Hyun Park
- Department of Nanobiomedical Science , Dankook University , Cheonan 31116 , Republic of Korea
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery , Gyeongsang National University School of Medicine and Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University , Jinju 52828 , Republic of Korea
| | - Jin Ho Lee
- Department of Advanced Materials and Chemical Engineering , Hannam University , Daejeon 34054 , Republic of Korea
| | - Se Heang Oh
- Department of Nanobiomedical Science , Dankook University , Cheonan 31116 , Republic of Korea
- Department of Pharmaceutical Engineering , Dankook University , Cheonan 31116 , Republic of Korea
| |
Collapse
|
32
|
Wöltje M, Böbel M, Bienert M, Neuss S, Aibibu D, Cherif C. Functionalized silk fibers from transgenic silkworms for wound healing applications: Surface presentation of bioactive epidermal growth factor. J Biomed Mater Res A 2018; 106:2643-2652. [DOI: 10.1002/jbm.a.36458] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/18/2018] [Accepted: 05/11/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Michael Wöltje
- Institute of Textile Machinery and High Performance Material Technology, TU Dresden, Hohe Str. 6 Dresden 01069 Germany
| | - Melanie Böbel
- Institute of Textile Machinery and High Performance Material Technology, TU Dresden, Hohe Str. 6 Dresden 01069 Germany
| | - Michaela Bienert
- Institute of Pathology & Helmholtz Institute for Biomedical Engineering, Biointerface Group, RWTH Aachen University, Pauwelsstr. 30 Aachen 52074 Germany
| | - Sabine Neuss
- Institute of Pathology & Helmholtz Institute for Biomedical Engineering, Biointerface Group, RWTH Aachen University, Pauwelsstr. 30 Aachen 52074 Germany
| | - Dilibaier Aibibu
- Institute of Textile Machinery and High Performance Material Technology, TU Dresden, Hohe Str. 6 Dresden 01069 Germany
| | - Chokri Cherif
- Institute of Textile Machinery and High Performance Material Technology, TU Dresden, Hohe Str. 6 Dresden 01069 Germany
| |
Collapse
|
33
|
Thatikonda N, Nilebäck L, Kempe A, Widhe M, Hedhammar M. Bioactivation of Spider Silk with Basic Fibroblast Growth Factor for in Vitro Cell Culture: A Step toward Creation of Artificial ECM. ACS Biomater Sci Eng 2018; 4:3384-3396. [DOI: 10.1021/acsbiomaterials.8b00844] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Naresh Thatikonda
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, 114 28, Sweden
| | - Linnea Nilebäck
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, 114 28, Sweden
| | - Adam Kempe
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, 114 28, Sweden
| | - Mona Widhe
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, 114 28, Sweden
| | - My Hedhammar
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, 114 28, Sweden
| |
Collapse
|
34
|
Kim HY, Lee JH, Lee HAR, Park JS, Woo DK, Lee HC, Rho GJ, Byun JH, Oh SH. Sustained Release of BMP-2 from Porous Particles with Leaf-Stacked Structure for Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2018; 10:21091-21102. [PMID: 29863327 DOI: 10.1021/acsami.8b02141] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sustained release of bioactive molecules from delivery systems is a common strategy for ensuring their prolonged bioactivity and for minimizing safety issues. However, residual toxic reagents, the use of harsh organic solvents, and complex fabrication procedures in conventional delivery systems are considered enormous impediments toward clinical use. Herein, we describe bone morphogenetic protein-2 (BMP-2)-immobilized porous polycaprolactone particles with unique leaf-stacked structures (LSS particles) prepared using clinically feasible materials and procedures. The BMP-2 immobilized in these LSS particles is continuously released up to 36 days to provide an appropriate environment for osteogenic differentiation of human periosteum-derived cells and new bone formation. Thus, the leaf-stacked structures of these LSS particles provide a simple but clinically applicable platform for effectively delivering a variety of bioactive molecules, such as growth factors, hormones, cytokines, peptides, etc.
Collapse
Affiliation(s)
| | - Jin Ho Lee
- Department of Advanced Materials , Hannam University , Daejeon 34054 , Republic of Korea
| | | | | | | | | | | | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, Gyeongsang National University School of Medicine, Gyeongsang National University Hospital, Institute of Health Sciences , Gyeongsang National University , Jinju 52727 , Republic of Korea
| | | |
Collapse
|
35
|
Gerli MFM, Guyette JP, Evangelista-Leite D, Ghoshhajra BB, Ott HC. Perfusion decellularization of a human limb: A novel platform for composite tissue engineering and reconstructive surgery. PLoS One 2018; 13:e0191497. [PMID: 29352303 PMCID: PMC5774802 DOI: 10.1371/journal.pone.0191497] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 01/05/2018] [Indexed: 12/28/2022] Open
Abstract
Muscle and fasciocutaneous flaps taken from autologous donor sites are currently the most utilized approach for trauma repair, accounting annually for 4.5 million procedures in the US alone. However, the donor tissue size is limited and the complications related to these surgical techniques lead to morbidities, often involving the donor sites. Alternatively, recent reports indicated that extracellular matrix (ECM) scaffolds boost the regenerative potential of the injured site, as shown in a small cohort of volumetric muscle loss patients. Perfusion decellularization is a bioengineering technology that allows the generation of clinical-scale ECM scaffolds with preserved complex architecture and with an intact vascular template, from a variety of donor organs and tissues. We recently reported that this technology is amenable to generate full composite tissue scaffolds from rat and non-human primate limbs. Translating this platform to human extremities could substantially benefit soft tissue and volumetric muscle loss patients providing tissue- and species-specific grafts. In this proof-of-concept study, we show the successful generation a large-scale, acellular composite tissue scaffold from a full cadaveric human upper extremity. This construct retained its morphological architecture and perfusable vascular conduits. Histological and biochemical validation confirmed the successful removal of nuclear and cellular components, and highlighted the preservation of the native extracellular matrix components. Our results indicate that perfusion decellularization can be applied to produce human composite tissue acellular scaffolds. With its preserved structure and vascular template, these biocompatible constructs, could have significant advantages over the currently implanted matrices by means of nutrient distribution, size-scalability and immunological response.
Collapse
Affiliation(s)
- Mattia Francesco Maria Gerli
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jacques Paul Guyette
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Daniele Evangelista-Leite
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Brian Burns Ghoshhajra
- Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Division of Cardiology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Harald Christian Ott
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Stem Cell Institute, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
36
|
Palumbo FS, Agnello S, Fiorica C, Pitarresi G, Puleio R, Loria GR, Giammona G. Spray dried hyaluronic acid microparticles for adhesion controlled aggregation and potential stimulation of stem cells. Int J Pharm 2017; 519:332-342. [DOI: 10.1016/j.ijpharm.2017.01.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/13/2017] [Accepted: 01/16/2017] [Indexed: 12/24/2022]
|
37
|
Mao H, Kim SM, Ueki M, Ito Y. Serum-free culturing of human mesenchymal stem cells with immobilized growth factors. J Mater Chem B 2017; 5:928-934. [DOI: 10.1039/c6tb02867e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Growth factors were immobilized with photo-reactive gelatin and used for serum-free human mesenchymal stem cell (hMSC) culturing.
Collapse
Affiliation(s)
- Hongli Mao
- Nano Medical Engineering Laboratory
- RIKEN
- Wako
- Japan
| | | | - Masashi Ueki
- Nano Medical Engineering Laboratory
- RIKEN
- Wako
- Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory
- RIKEN
- Wako
- Japan
- Emergent Bioengineering Materials Research Team
| |
Collapse
|
38
|
Curry AS, Pensa NW, Barlow AM, Bellis SL. Taking cues from the extracellular matrix to design bone-mimetic regenerative scaffolds. Matrix Biol 2016; 52-54:397-412. [PMID: 26940231 DOI: 10.1016/j.matbio.2016.02.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/25/2016] [Accepted: 02/25/2016] [Indexed: 12/30/2022]
Abstract
There is an ongoing need for effective materials that can replace autologous bone grafts in the clinical treatment of bone injuries and deficiencies. In recent years, research efforts have shifted away from a focus on inert biomaterials to favor scaffolds that mimic the biochemistry and structure of the native bone extracellular matrix (ECM). The expectation is that such scaffolds will integrate with host tissue and actively promote osseous healing. To further enhance the osteoinductivity of bone graft substitutes, ECM-mimetic scaffolds are being engineered with a range of growth factors (GFs). The technologies used to generate GF-modified scaffolds are often inspired by natural processes that regulate the association between endogenous ECMs and GFs. The purpose of this review is to summarize research centered on the development of regenerative scaffolds that replicate the fundamental collagen-hydroxyapatite structure of native bone ECM, and the functionalization of these scaffolds with GFs that stimulate critical events in osteogenesis.
Collapse
Affiliation(s)
- Andrew S Curry
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1918 University Boulevard, Birmingham, AL 35294, United States
| | - Nicholas W Pensa
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1918 University Boulevard, Birmingham, AL 35294, United States
| | - Abby M Barlow
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, Birmingham, AL 35294, United States
| | - Susan L Bellis
- Department of Biomedical Engineering, University of Alabama at Birmingham, 1918 University Boulevard, Birmingham, AL 35294, United States; Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Boulevard, Birmingham, AL 35294, United States.
| |
Collapse
|
39
|
Dong C, Lv Y. Application of Collagen Scaffold in Tissue Engineering: Recent Advances and New Perspectives. Polymers (Basel) 2016; 8:polym8020042. [PMID: 30979136 PMCID: PMC6432532 DOI: 10.3390/polym8020042] [Citation(s) in RCA: 383] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 01/24/2016] [Accepted: 01/27/2016] [Indexed: 12/11/2022] Open
Abstract
Collagen is the main structural protein of most hard and soft tissues in animals and the human body, which plays an important role in maintaining the biological and structural integrity of the extracellular matrix (ECM) and provides physical support to tissues. Collagen can be extracted and purified from a variety of sources and offers low immunogenicity, a porous structure, good permeability, biocompatibility and biodegradability. Collagen scaffolds have been widely used in tissue engineering due to these excellent properties. However, the poor mechanical property of collagen scaffolds limits their applications to some extent. To overcome this shortcoming, collagen scaffolds can be cross-linked by chemical or physical methods or modified with natural/synthetic polymers or inorganic materials. Biochemical factors can also be introduced to the scaffold to further improve its biological activity. This review will summarize the structure and biological characteristics of collagen and introduce the preparation methods and modification strategies of collagen scaffolds. The typical application of a collagen scaffold in tissue engineering (including nerve, bone, cartilage, tendon, ligament, blood vessel and skin) will be further provided. The prospects and challenges about their future research and application will also be pointed out.
Collapse
Affiliation(s)
- Chanjuan Dong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Yonggang Lv
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Bioengineering College, Chongqing University, Chongqing 400044, China.
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
40
|
Mitchell AC, Briquez PS, Hubbell JA, Cochran JR. Engineering growth factors for regenerative medicine applications. Acta Biomater 2016; 30:1-12. [PMID: 26555377 PMCID: PMC6067679 DOI: 10.1016/j.actbio.2015.11.007] [Citation(s) in RCA: 229] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Revised: 10/27/2015] [Accepted: 11/06/2015] [Indexed: 01/10/2023]
Abstract
Growth factors are important morphogenetic proteins that instruct cell behavior and guide tissue repair and renewal. Although their therapeutic potential holds great promise in regenerative medicine applications, translation of growth factors into clinical treatments has been hindered by limitations including poor protein stability, low recombinant expression yield, and suboptimal efficacy. This review highlights current tools, technologies, and approaches to design integrated and effective growth factor-based therapies for regenerative medicine applications. The first section describes rational and combinatorial protein engineering approaches that have been utilized to improve growth factor stability, expression yield, biodistribution, and serum half-life, or alter their cell trafficking behavior or receptor binding affinity. The second section highlights elegant biomaterial-based systems, inspired by the natural extracellular matrix milieu, that have been developed for effective spatial and temporal delivery of growth factors to cell surface receptors. Although appearing distinct, these two approaches are highly complementary and involve principles of molecular design and engineering to be considered in parallel when developing optimal materials for clinical applications. STATEMENT OF SIGNIFICANCE Growth factors are promising therapeutic proteins that have the ability to modulate morphogenetic behaviors, including cell survival, proliferation, migration and differentiation. However, the translation of growth factors into clinical therapies has been hindered by properties such as poor protein stability, low recombinant expression yield, and non-physiological delivery, which lead to suboptimal efficacy and adverse side effects. To address these needs, researchers are employing clever molecular and material engineering and design strategies to both improve the intrinsic properties of growth factors and effectively control their delivery into tissue. This review highlights examples of interdisciplinary tools and technologies used to augment the therapeutic potential of growth factors for clinical applications in regenerative medicine.
Collapse
Affiliation(s)
- Aaron C Mitchell
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Priscilla S Briquez
- Institute for Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Jeffrey A Hubbell
- Institute for Bioengineering, School of Life Sciences and School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Institute for Molecular Engineering, University of Chicago, Chicago, IL, USA; Materials Science Division, Argonne National Laboratory, Argonne, IL, USA.
| | - Jennifer R Cochran
- Department of Bioengineering, Stanford University, Stanford, CA, USA; Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
| |
Collapse
|
41
|
Xiong K, Qi P, Yang Y, Li X, Qiu H, Li X, Shen R, Tu Q, Yang Z, Huang N. Facile immobilization of vascular endothelial growth factor on a tannic acid-functionalized plasma-polymerized allylamine coating rich in quinone groups. RSC Adv 2016. [DOI: 10.1039/c5ra25917g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Biomolecules like VEGF with thiol or amine groups can easily be covalently immobilized onto a Tannic Acid functional plasma polymerized allylamine surface rich in quinone groups in a mild alkali buffer solution based on Schiff base or Michael addition reactions.
Collapse
|
42
|
Suttinont C, Mashimo Y, Mie M, Kobatake E. Delivery of bFGF for Tissue Engineering by Tethering to the ECM. BIOMED RESEARCH INTERNATIONAL 2015; 2015:208089. [PMID: 26539469 PMCID: PMC4619752 DOI: 10.1155/2015/208089] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 07/14/2015] [Accepted: 08/16/2015] [Indexed: 11/17/2022]
Abstract
Delivery of growth factors to target cells is an important subject in tissue engineering. Towards that end, we have developed a growth factor-tethered extracellular matrix (ECM). Here, basic fibroblast growth factor (bFGF) was tethered to extracellular matrix noncovalently. The designed ECM was comprised of 12 repeats of the APGVGV peptide motif derived from elastin as a stable structural unit and included the well-known cell adhesive RGD peptide as an active functional unit. To bind bFGF to the ECM, an acidic amino acid-rich sequence was introduced at the C-terminus of the ECM protein. It consisted of 5 repeats of 4 aspartic acids and a serine, DDDDS. bFGF has a highly basic amino acid domain. Therefore, bFGF was tethered to the ECM protein by electrostatic interaction. Cells cultured on bFGF-tethered ECM were well attached to the ECM and induced proliferation without addition of soluble bFGF.
Collapse
Affiliation(s)
- Chawapun Suttinont
- Department of Environmental Chemistry and Engineering, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
| | - Yasumasa Mashimo
- Department of Environmental Chemistry and Engineering, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
| | - Masayasu Mie
- Department of Environmental Chemistry and Engineering, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
| | - Eiry Kobatake
- Department of Environmental Chemistry and Engineering, Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502, Japan
| |
Collapse
|
43
|
Hajimiri M, Shahverdi S, Esfandiari MA, Larijani B, Atyabi F, Rajabiani A, Dehpour AR, Amini M, Dinarvand R. Preparation of hydrogel embedded polymer-growth factor conjugated nanoparticles as a diabetic wound dressing. Drug Dev Ind Pharm 2015; 42:707-19. [DOI: 10.3109/03639045.2015.1075030] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Mirhamed Hajimiri
- Nanomedicine and Biomaterial Laboratory, Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran,
- Nano Alvand Co., Avicenna Tech Park, Tehran University of Medical Sciences, Tehran, Iran,
| | - Sheida Shahverdi
- Nanomedicine and Biomaterial Laboratory, Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran,
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran,
| | - Mohammad Amin Esfandiari
- Nanomedicine and Biomaterial Laboratory, Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran,
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center (EMRC), Tehran University Medical Sciences, Tehran, Iran,
| | - Fatemeh Atyabi
- Nanomedicine and Biomaterial Laboratory, Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran,
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran,
| | - Afsaneh Rajabiani
- Department of Pathology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran,
| | - Ahmad Reza Dehpour
- Department of Pharmacology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran, and
| | - Mohsen Amini
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Nanomedicine and Biomaterial Laboratory, Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran,
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran,
| |
Collapse
|