1
|
Ibrahim YM, Mohamed PA, Hanno KI, Abdul-Monem MM. Biaxial flexural strength of nanoglass and multiwalled carbon nanotubes reinforced 3D-printed denture base resins and their shear bond strength to 3D-printed and acrylic denture teeth. Dent Mater 2024; 40:1557-1567. [PMID: 39079766 DOI: 10.1016/j.dental.2024.07.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/23/2024] [Accepted: 07/24/2024] [Indexed: 09/17/2024]
Abstract
OBJECTIVE Evaluation of biaxial flexural strength (BFS) of nanoglass (NG) and multiwalled carbon nanotubes (MWCNTs) reinforced 3D-printed denture base resins and their shear bond strength (SBS) to 3D-printed and acrylic denture teeth. METHODS Silanized NG and MWCNTs were added to 3D-printed denture base resin to obtain four groups: Control, 0.25 wt% NG, 0.25 wt% MWCNTs, and a combination group with 0.25 wt% of both fillers. All specimens were tested before and after 600 cycles of thermal aging. BFS (n = 88) was tested using disk-shaped specimens (12 ×2 mm) centralized on an O ring in a universal testing machine. Weibull analysis was conducted to assess predictability of failure. SBS (n = 176) was tested for acrylic and 3D-printed denture teeth attached to bar-shaped specimens in a universal testing machine followed by failure mode analysis using stereomicroscope. Two and three-way ANOVA tests followed by Tukey post hoc test were conducted for BFS and SBS. Kruskal-Wallis test compared percent change among groups with subsequent Dunn post hoc test with Bonferroni correction (α = 0.05). RESULTS BFS was affected significantly by filler content (P < 0.001) and thermal cycling (P < 0.001), with thermal cycling displaying the uppermost effect (Ƞp2 =0.551). A significant interaction between filler content, thermal cycling, and teeth type was displayed by SBS results (P < 0.001, F=10.340, Ƞp2 =0.162). The highest BFS values belonged to 0.25 % MWCNTs while the highest SBS to printed teeth was displayed by the combination. SIGNIFICANCE The combination group displayed higher BFS and SBS to printed teeth compared to control which allows 3D-printed materials to have a long-term clinical success.
Collapse
Affiliation(s)
- Yomna M Ibrahim
- Department of Dental Biomaterials, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Pansai A Mohamed
- Department of Dental Biomaterials, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Kenda I Hanno
- Department of Prosthodontics, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Mohamed M Abdul-Monem
- Department of Dental Biomaterials, Faculty of Dentistry, Alexandria University, Alexandria, Egypt; Division of Dental Biomaterials, Department of Prosthodontics, Faculty of Dentistry, Alamein International University, Alamein, Egypt.
| |
Collapse
|
2
|
Altarazi A, Jadaan L, McBain AJ, Haider J, Kushnerev E, Yates JM, Alhotan A, Silikas N, Devlin H. 3D-printed nanocomposite denture base resin: The effect of incorporating TiO 2 nanoparticles on the growth of Candida albicans. J Prosthodont 2024; 33:25-34. [PMID: 37837403 DOI: 10.1111/jopr.13784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/23/2023] [Accepted: 10/06/2023] [Indexed: 10/16/2023] Open
Abstract
PURPOSE To develop a biocompatible denture base resin/TiO2 nanocomposite material with antifungal characteristics that is suitable for 3D-printing denture bases. MATERIALS AND METHODS TiO2 nanoparticles (NPs) with a 0.10, 0.25, 0.50, and 0.75 weight percent (wt.%) were incorporated into a commercially available 3D-printed resin material. The resulting nanocomposite material was analyzed using Lactate dehydrogenase (LDH) and AlamarBlue (AB) assays for biocompatibility testing with human gingival fibroblasts (HGF). The composite material was also tested for its antifungal efficacy against Candida albicans. Fourier transform infrared (FTIR) and Energy Dispersive X-ray Spectroscopy (EDX) mapping were conducted to assess the surface coating and the dispersion of the NPs. RESULTS LDH and AB assays confirmed the biocompatibility of the material showing cell proliferation at a rate of nearly 100% at day 10, with a cytotoxicity of less than 13% of the cells at day 10. The concentrations of 0.10, 0.25, and 0.50 wt.% caused a significant reduction (p < 0.05) in the number of candida cells attached to the surface of the specimens (p < 0.05), while 0.75 wt.% did not show any significant difference compared to the control (no TiO2 NPs) (p > 0.05). FTIR and EDX analysis confirmed the presence of TiO2 NPs within the nanocomposite material with a homogenous dispersion for 0.10 and 0.25 wt.% groups and an aggregation of the NPs within the material at higher concentrations. CONCLUSION The addition of TiO2 NPs into 3D-printed denture base resin proved to have an antifungal effect against Candida albicans. The resultant nanocomposite material was a biocompatible material with HGFs and was successfully used for 3D printing.
Collapse
Affiliation(s)
- Ahmed Altarazi
- Division of Dentistry, School of Medical Sciences, University of Manchester, Manchester, UK
- Restorative Dental Science, College of Dentistry, Taibah University, Madinah, Saudi Arabia
| | - Layali Jadaan
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Andrew J McBain
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Julfikar Haider
- Division of Dentistry, School of Medical Sciences, University of Manchester, Manchester, UK
- Department of Engineering, Manchester Metropolitan University, Manchester, UK
| | - Evgeny Kushnerev
- Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Manchester, Manchester, UK
| | - Julian M Yates
- Department of Oral and Maxillofacial Surgery, School of Dentistry, University of Manchester, Manchester, UK
| | - Abdulaziz Alhotan
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nick Silikas
- Division of Dentistry, School of Medical Sciences, University of Manchester, Manchester, UK
| | - Hugh Devlin
- Division of Dentistry, School of Medical Sciences, University of Manchester, Manchester, UK
- School of Dentistry, University of Jordan, Jordan
| |
Collapse
|
3
|
Janyaprasert P, Kamonkhantikul K, Homsiang W, Arksornnukit M. Effect of thermocycling on tensile bond strength of autopolymerized, heat-polymerized, milled, and 3D printed denture base materials bonded to 4 different denture liners: an in vitro study. BMC Oral Health 2024; 24:1000. [PMID: 39183299 PMCID: PMC11344950 DOI: 10.1186/s12903-024-04776-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Digitally fabricated dentures may require relining due to continual alveolar ridge resorption. However, studies evaluating the tensile bond strength (TBS) of digitally fabricated dentures bonded to denture liners are lacking. This study aimed to evaluate the TBS of autopolymerized, heat-polymerized, milled, and 3D printed denture base materials bonded to 2 acrylic-based and 2 silicone-based denture liners, both before and after thermocycling. Additionally, the impact of thermocycling on the TBS were also evaluated. METHODS The TBS of 4 different denture base materials (Palapress (PL), Vertex Rapid Simplified (VR), Smile CAM total prosthesis (SC), and NextDent denture 3D+ (ND)) bonded to 2 acrylic-based (GC Soft-Liner (GC) and Tokuyama Rebase II (RB)) and 2 silicone-based (Ufi Gel P (UP) and Sofreliner Tough M (ST)) denture liners were tested. Specimens (n = 8) were divided into non-thermocycling and thermocycling groups. Non-thermocycling specimens were tested after 24-hours water immersion, while thermocycling specimens were underwent 5000 cycle and were immediately tested. Mode of failure was examined under a stereomicroscope. Data were analyzed using 2-way ANOVA and Tukey HSD tests (α = 0.05), and independent samples t test (α = 0.05) for TBS between non-thermocycling and thermocycling groups. RESULTS For the non-thermocycling groups, within the same denture liner material, no significant differences were found between denture base materials, except the ND + RB group, which had significantly lower TBS. For the thermocycling groups, within the same denture liner material, the TBS in the PL group exhibited the highest and the ND group exhibited the lowest. Within the same denture base material, in both non-thermocycling and thermocycling groups, the TBS in the ST group exhibited the highest; in contrast, that in the GC group exhibited the lowest. No significant differences were observed in TBS between non-thermocycling and thermocycling groups, except for denture base materials bonded to the ST group, SC + UP, and ND + UP groups. CONCLUSIONS Milled denture base can be relined with acrylic-based or silicone-based denture liner. However, cautions should be exercised when relining 3D printed denture base. Thermocycling did not affect TBS between acrylic-based denture liners and denture bases. In contrast, it affected the bond between silicone-based denture liner and denture base.
Collapse
Affiliation(s)
- Pilipda Janyaprasert
- Department of Prosthodontics, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Road, Pathumwan, Bangkok, 10300, Thailand
| | - Krid Kamonkhantikul
- Department of Prosthodontics, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Road, Pathumwan, Bangkok, 10300, Thailand.
| | - Woraporn Homsiang
- Department of Family and Community Dentistry, Faculty of Dentistry, Chiang Mai University, Suthep Road, Suthep, Chiang Mai, 50200, Thailand
| | - Mansuang Arksornnukit
- Department of Prosthodontics, Faculty of Dentistry, Chulalongkorn University, 34 Henri-Dunant Road, Pathumwan, Bangkok, 10300, Thailand
| |
Collapse
|
4
|
Lee J, Park HK, Hwang GW, Kang GR, Choi YS, Pang C. Highly Adaptive Kirigami-Metastructure Adhesive with Vertically Self-Aligning Octopus-like 3D Suction Cups for Efficient Wet Adhesion to Complexly Curved Surfaces. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37147-37156. [PMID: 38949691 DOI: 10.1021/acsami.4c03363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
An essential requirement for biomedical devices is the capability of conformal adaptability on diverse irregular 3D (three-dimensional) nonflat surfaces in the human body that may be covered with liquids such as mucus or sweat. However, the development of reversible adhesive interface materials for biodevices that function on complex biological surfaces is challenging due to the wet, slippery, smooth, and curved surface properties. Herein, we present an ultra-adaptive bioadhesive for irregular 3D oral cavities covered with saliva by integrating a kirigami-metastructure and vertically self-aligning suction cups. The flared suction cup, inspired by octopus tentacles, allows adhesion to moist surfaces. Additionally, the kirigami-based auxetic metastructure with a negative Poisson's ratio relieves the stress caused by tensile strain, thereby mitigating the stress caused by curved surfaces and enabling conformal contact with the surface. As a result, the adhesive strength of the proposed auxetic adhesive is twice that of adhesives with a flat backbone on highly curved porcine palates. For potential application, the proposed auxetic adhesive is mounted on a denture and performs successfully in human subject feasibility evaluations. An integrated design of these two structures may provide functionality and potential for biomedical applications.
Collapse
Affiliation(s)
- Jihyun Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Hyoung-Ki Park
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Gui Won Hwang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Gyun Ro Kang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Yoon Seok Choi
- Department of Internal Medicine, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Changhyun Pang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| |
Collapse
|
5
|
Schwärzler A, Ludwig B, Chitan P, Lettner S, Sagl B, Jonke E. Transfer accuracy of 3D printed versus CAD/CAM milled surgical guides for temporary orthodontic implants: A preclinical micro CT study. J Dent 2024; 146:105060. [PMID: 38735471 DOI: 10.1016/j.jdent.2024.105060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/14/2024] Open
Abstract
OBJECTIVES Temporary anchorage devices (TADs) have become an integral part of comprehensive orthodontic treatments. This study evaluated the transfer accuracy of three-dimensional (3D) printed and computer-aided design/computer-aided manufacturing (CAD/CAM) milled surgical guides for orthodontic TADs using micro-computed tomography (CT) imaging in a preclinical trial. METHODS Overall, 30 surgical guides were used to place TADs into typodonts; 3D printing and CAD/CAM milling were used to produce the guides. The virtual target positions of the TADs were compared to the real positions in terms of spatial and angular deviations using digital superimposition. Micro-CT imaging was used to detect the positions. To evaluate reliability, two investigators collected the measurements twice. Intra-rater and inter-rater correlations were tested. RESULTS In total, 60 palatal TADs were evaluated. The mean coronal deviations in the print group ranged from 0.15 ± 0.20 mm to 0.71 ± 0.22 mm, whereas in the mill group, they ranged from 0.09 ± 0.15 mm to 0.83 ± 0.23 mm. At the apical tip, the overall deviations in the print group ranged from 0.14 ± 0.56 mm to 1.27 ± 0.66 mm, whereas in the mill group, they ranged from 0.15 ± 0.57 mm to 1.09 ± 0.44 mm. The mean intra-class and inter-class correlation coefficients ranged from 0.904 to 0.987. No statistically significant differences were found between the groups. CONCLUSIONS CAD/CAM milled guides yielded spatial and angular accuracies comparable to those of 3D printed guides with notable deviations in the vertical positioning of TADs. CLINICAL SIGNIFICANCE Digital planning of orthodontic temporary implants combines clinical predictability and the safety of surrounding tissue. Therefore, the transfer accuracy of the guides is crucial. This preclinical study was the first to evaluate CAD/CAM milling for orthodontic guides and found its accuracy comparable to that of the current "gold standard".
Collapse
Affiliation(s)
- Alexander Schwärzler
- Department of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, Austria
| | - Björn Ludwig
- Department of Orthodontics, Saarland University, Saar, Germany; Private Practice of Orthodontics in Trarbach, Germany
| | - Patrick Chitan
- Department of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, Austria
| | - Stefan Lettner
- Karl Donath Laboratory for Hard Tissue and Biomaterial Research, University Clinic of Dentistry, Medical University of Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Benedikt Sagl
- Center for Clinical Research, University Clinic of Dentistry, Medical University of Vienna, Austria.
| | - Erwin Jonke
- Department of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, Austria
| |
Collapse
|
6
|
Sayuri Cardoso Ohashi A, Reis de Souza Schacher H, Staub Pizzato C, Ryff Moreira Roca Vianna M, Macedo de Menezes L. Embryotoxicity and teratogenesis of orthodontic acrylic resin in zebrafish. Heliyon 2024; 10:e32067. [PMID: 38952375 PMCID: PMC11215258 DOI: 10.1016/j.heliyon.2024.e32067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 05/09/2024] [Accepted: 05/28/2024] [Indexed: 07/03/2024] Open
Abstract
Objectives This study investigated the in vivo embryotoxicity, teratogenic potential, and additional effects of orthodontic acrylic resin as well as its components, utilizing zebrafish as a model organism. The research focused on morphological, cardiac, behavioral, and cognitive evaluations that were performed on embryos and larval-stage animals subjected to chronic exposure. Materials and methods Embryo and larval-stage zebrafish were categorized into five experimental groups, which were further subdivided into five subgroups. These subgroups included three specific doses for each tested substance, a control with the vehicle (0.1 % dimethyl sulfoxide in water), and an absolute control (water). Assessments were performed on day 5 post-fertilization, which included morphological, cardiac, behavioral, and cognitive evaluations. All experiments had a sample size of ten animals and were performed in triplicate. Survival and hatching rates were analyzed using the Kaplan-Meier test, while other measurements were assessed using one-way analysis of variance (ANOVA), followed by the Tukey post hoc test. Results Statistically significant differences were observed between the control and treatment groups across all the tested substances for heart rate, cognitive responsiveness, and cellular apoptosis. However, survival, hatching rate, and other parameters exhibited no significant variation, except for the highest dose in the dibutyl phthalate group, which demonstrated a notable difference in survival. Conclusions Chronic exposure to acrylic resin and its components may be associated with decreased cognitive ability and cardiac rhythm, as well as an increase in the level of cellular apoptosis in zebrafish.
Collapse
Affiliation(s)
- Amanda Sayuri Cardoso Ohashi
- Dental Program, School of Health and Life Sciences Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Helena Reis de Souza Schacher
- Dental Program, School of Health and Life Sciences Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Christiane Staub Pizzato
- ZebLab & Laboratory of Biology and Development of the Nervous System, School of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Monica Ryff Moreira Roca Vianna
- ZebLab & Laboratory of Biology and Development of the Nervous System, School of Biosciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Luciane Macedo de Menezes
- Dental Program, School of Health and Life Sciences Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
7
|
Albadwi MM, Elsheikh HA, Abozaed HW, ELdegla HEA, Mostafa AZH, Emera RMK. Impact of adding zirconium oxide nanoparticles to the 3D printable acrylic resin base material for implant-retained overdentures: A clinical comparative parallel study. J Prosthet Dent 2024:S0022-3913(24)00354-8. [PMID: 38862339 DOI: 10.1016/j.prosdent.2024.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 06/13/2024]
Abstract
STATEMENT OF PROBLEM Three-dimensionally (3D) printed acrylic resin base materials have been adopted in prosthetic dentistry. However, their mechanical and biological properties require improvement. PURPOSE The purpose of this clinical study was to evaluate the effect of adding zirconium oxide nanoparticles to a 3D printable acrylic resin base material for a 2-implant-retained complete mandibular overdenture in terms of peri-implant tissue health, surface roughness, and biofilm formation. MATERIAL AND METHODS Twenty edentulous patients were enrolled in this clinical parallel study. All patients received maxillary complete dentures opposing a 2-implant-retained mandibular overdenture. The participants were randomly divided into 2 equal groups according to the mandibular overdenture base material, nonmodified 3D printable acrylic resin (control group) or 3D printable acrylic resin base material modified with 3.0 wt% zirconium oxide nanoparticles (study group). Peri-implant tissue health and surface roughness were measured immediately at the insertion of the mandibular overdenture (T0), after 3 months (T1), and after 6 months (T2). Microbiological assessment of the denture base was done after 1 week, 1 month, 3 months, and 6 months of overdenture use. The data were analyzed using a statistical software program. The Wilcoxon signed-rank test, paired t test, and Fisher exact test were used to compare distributed data. The Mann Whitney U test and repeated measures ANOVA test were used to compare distributed data at different times (α=.05). RESULTS The gingival index (GI), plaque index (PI), probing depth (PD), and surface roughness values at the baseline, 3 months, and 6 months were statistically higher with the nonmodified compared with the modified group (P=.001). Regarding the microbiological analysis, the nonmodified group also had a statistically higher mean bacterial and Candida albicans count than the modified group (P<.05). No significant increase in the bacteria was found in the nonmodified group with time (P=.252), but, for the modified group, a statistically significant decrease in bacteria count was found with time (P<.001). CONCLUSIONS Adding zirconium oxide nanoparticles to a 3D printable acrylic resin base material was found to be promising. This addition improved the peri-implant tissue health and decreased surface roughness and biofilm formation.
Collapse
Affiliation(s)
- Mona M Albadwi
- PhD student, Graduate Prosthodontics, Department Faculty of Dentistry, Mansoura University, Mansoura, Egypt; and Assistant Lecturer, Prosthodontics Department, Faculty of Dentistry, Elmergib University, Al Khums, Libya.
| | - Heba A Elsheikh
- Assistant Professor, Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Heba W Abozaed
- Associate Professor, Department of Removable Prosthodontics, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Heba E A ELdegla
- Professor, Department of Medical Microbiology and Immunology, Faculty of Medicine-Mansoura University, Mansoura, Egypt
| | - Aisha Z H Mostafa
- Professor, Department of Removable Prosthodontics, Faculty of Dentistry, Mansoura University, Mansoura, Egypt
| | - Radwa M K Emera
- Professor, Department of Removable Prosthodontics, Faculty of Dentistry, Mansoura University, Mansoura, Egypt; and Director, Mansoura Manchester Dental Program, Mansoura, Egypt
| |
Collapse
|
8
|
Nabil MS, Mahanna FF, Said MM. Evaluation of masticatory performance and patient satisfaction for conventional and 3D-printed implant overdentures: a randomized crossover study. BMC Oral Health 2024; 24:672. [PMID: 38851676 PMCID: PMC11162030 DOI: 10.1186/s12903-024-04389-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/20/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND This crossover clinical study aimed to evaluate and compare masticatory performance and patient satisfaction for patients rehabilitated with conventional heat-cured acrylic resin and 3D-printed mandibular implant overdentures retained with bar attachment. MATERIALS AND METHODS Sixteen completely edentulous healthy participants received new conventional dentures. In the mandible, four interforaminal implants were inserted. Following the stage of osseointegration, the bar was constructed in a trapezoidal configuration. Each patient randomly received the following overdentures using a crossover design: (1) conventional heat-cured acrylic resin overdenture and (2) 3D-printed overdenture (developed by scanning of mandibular conventional overdenture). The masticatory performance was assessed by conducting a two-colour mixing ability test at 5, 10, 20, 30, and 50 masticatory cycles. Moreover, the McGill Denture Satisfaction Questionnaire (MDSQ) was employed to assess patient satisfaction. Evaluation was performed after 3 months of using each overdenture. Paired sample t tests were used to compare the masticatory performance and MDSQ scores of patients for both prostheses. RESULTS No significant difference in masticatory performance was reported between the two types of overdentures. Regarding patient satisfaction, only the esthetic aspect was significantly better for conventionally processed overdentures than for printed overdentures. Insignificant differences were observed regarding other MDSQ items between the two overdentures. CONCLUSION Within this clinical study, 3D-printed implant overdentures showed promising results in terms of chewing efficiency and patient satisfaction compared to conventionally fabricated implant overdentures. TRIAL REGISTRATION Retrospectively registered at www. CLINICALTRIALS gov : NCT06148727.(28/11/2023).
Collapse
Affiliation(s)
- Mohamed Shady Nabil
- Removable Prosthodontics Department, Faculty of Dentistry, Mansoura University, Mansoura, 35511, Egypt
| | - Fatma Fathe Mahanna
- Removable Prosthodontics Department, Faculty of Dentistry, Mansoura University, Mansoura, 35511, Egypt.
| | - Mohamed Moustafa Said
- Removable Prosthodontics Department, Faculty of Dentistry, Mansoura University, Mansoura, 35511, Egypt
- Restorative Dentistry and Prosthodontics, College of Dentistry, American University Iraq Baghdad (AUIB), Baghdad, Iraq
| |
Collapse
|
9
|
Hogerheyde T, Coates D, Walsh L, Zafar S. Biocompatibility and acid resistance of preformed crowns in children: an in vitro study. Eur Arch Paediatr Dent 2024; 25:417-425. [PMID: 38662172 PMCID: PMC11233320 DOI: 10.1007/s40368-024-00898-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/13/2024] [Indexed: 04/26/2024]
Abstract
PURPOSE To investigate the in vitro biocompatibility of human gingival fibroblasts with preformed paediatric crowns and resistance to acid exposure at levels that simulate the oral environment. METHODS This laboratory study investigated primary HGFs viability, metabolic activity, cytotoxicity, and apoptotic events on preformed metal crown discs, composite resin-coated wells, and monolithic zirconia fragments at 24, 48, and 72 h using the ApoTox-Glo Triplex assay. The PPCs were also immersed in 0.1% lactic acid, 0.2% phosphoric acid, or 10% citric acid for 7 days at 37 °C to reproduce conditions associated with dietary intake or gastric reflux. Samples were then subject to inductively coupled plasma optical emission spectrometry to quantitate the release of ions. RESULTS The viability of HGFs on stainless steel and CR significantly declined at 48 and 72 h, representing potential cytotoxicity (p < 0.05). Cytotoxicity of HGFs was also higher for stainless steel and ZR compared to control (p < 0.05). PMCs and ZR crowns gave minimal ion release. Meanwhile, significant quantities of metallic ions, including copper (Cu), iron (Fe), nickel (Ni), and zinc (Zn), were present in eluates from veneered-preformed metal crowns. CONCLUSION As PPCs can be exposed to highly acidic environments for many years, thus the release of metallic ions from V-PMCs should form the further investigation in future studies.
Collapse
Affiliation(s)
- T Hogerheyde
- School of Dentistry, The University of Queensland, 288 Herston Road, Herston, 4006, Australia
| | - D Coates
- Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| | - L Walsh
- School of Dentistry, The University of Queensland, 288 Herston Road, Herston, 4006, Australia
| | - S Zafar
- School of Dentistry, The University of Queensland, 288 Herston Road, Herston, 4006, Australia.
| |
Collapse
|
10
|
Della Rocca Y, Traini EM, Trubiani O, Traini T, Mazzone A, Marconi GD, Pizzicannella J, Diomede F. Biological Effects of PMMA and Composite Resins on Human Gingival Fibroblasts: An In Vitro Comparative Study. Int J Mol Sci 2024; 25:4880. [PMID: 38732100 PMCID: PMC11084492 DOI: 10.3390/ijms25094880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
The use of temporary resin for provisional restorations is a fundamental step to maintain the position of prepared teeth, to protect the pulpal vitality and the periodontal health as well as the occlusion. The present study aimed at evaluating the biological effects of two resins used in dentistry for temporary restorations, Coldpac (Yates Motloid) and ProTemp 4™ (3M ESPE ™), and their eluates, in an in vitro model of human gingival fibroblasts (hGFs). The activation of the inflammatory pathway NFκB p65/NLRP3/IL-1β induced by the self-curing resin disks was evaluated by real-time PCR, Western blotting and immunofluorescence analysis. The hGFs adhesion on resin disks was investigated by means of inverted light microscopy and scanning electron microscopy (SEM). Our results suggest that hGF cells cultured in adhesion and with eluate derived from ProTemp 4™ (3M ESPE ™) resin evidenced a downregulation in the expression of the inflammatory mediators such as NFκB p65, NLRP3 and IL-1β compared to the cells cultured with Coldpac (Yates Motloid) after 24 h and 1 week of culture. Furthermore, the cells cultured with ProTemp 4™ (3M ESPE ™) after 24 h and 1 week of culture reported a higher cell viability compared to the cells cultured with Coldpac (Yates Motloid), established by MTS cell analysis. Similar results were obtained when hGFs were placed in culture with the eluate derived from ProTemp 4™ (3M ESPE ™) resin which showed a higher cell viability compared to the cells cultured with eluate derived from Coldpac (Yates Motloid). These results highlighted the lower pro-inflammatory action and improved cell biocompatibility of ProTemp 4™ (3M ESPE ™), suggesting a better performance in terms of cells-material interaction.
Collapse
Affiliation(s)
- Ylenia Della Rocca
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (Y.D.R.); (E.M.T.); (O.T.); (T.T.); (A.M.); (F.D.)
| | - Enrico Matteo Traini
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (Y.D.R.); (E.M.T.); (O.T.); (T.T.); (A.M.); (F.D.)
| | - Oriana Trubiani
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (Y.D.R.); (E.M.T.); (O.T.); (T.T.); (A.M.); (F.D.)
| | - Tonino Traini
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (Y.D.R.); (E.M.T.); (O.T.); (T.T.); (A.M.); (F.D.)
| | - Antonella Mazzone
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (Y.D.R.); (E.M.T.); (O.T.); (T.T.); (A.M.); (F.D.)
| | - Guya Diletta Marconi
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (Y.D.R.); (E.M.T.); (O.T.); (T.T.); (A.M.); (F.D.)
| | - Jacopo Pizzicannella
- Department of Engineering and Geology, University “G. d’Annunzio” Chieti-Pescara, Viale Pindaro, 42, 65127 Pescara, Italy;
| | - Francesca Diomede
- Department of Innovative Technologies in Medicine & Dentistry, University “G. d’Annunzio” Chieti-Pescara, Via dei Vestini, 31, 66100 Chieti, Italy; (Y.D.R.); (E.M.T.); (O.T.); (T.T.); (A.M.); (F.D.)
| |
Collapse
|
11
|
Mateu-Sanz M, Fuenteslópez CV, Uribe-Gomez J, Haugen HJ, Pandit A, Ginebra MP, Hakimi O, Krallinger M, Samara A. Redefining biomaterial biocompatibility: challenges for artificial intelligence and text mining. Trends Biotechnol 2024; 42:402-417. [PMID: 37858386 DOI: 10.1016/j.tibtech.2023.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/21/2023]
Abstract
The surge in 'Big data' has significantly influenced biomaterials research and development, with vast data volumes emerging from clinical trials, scientific literature, electronic health records, and other sources. Biocompatibility is essential in developing safe medical devices and biomaterials to perform as intended without provoking adverse reactions. Therefore, establishing an artificial intelligence (AI)-driven biocompatibility definition has become decisive for automating data extraction and profiling safety effectiveness. This definition should both reflect the attributes related to biocompatibility and be compatible with computational data-mining methods. Here, we discuss the need for a comprehensive and contemporary definition of biocompatibility and the challenges in developing one. We also identify the key elements that comprise biocompatibility, and propose an integrated biocompatibility definition that enables data-mining approaches.
Collapse
Affiliation(s)
- Miguel Mateu-Sanz
- Biomaterials, Biomechanics, and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Barcelona 08019, Spain
| | - Carla V Fuenteslópez
- Institute of Biomedical Engineering, Botnar Research Centre, Nuffield Orthopaedic Centre, University of Oxford, Oxford OX3 7LD, UK
| | - Juan Uribe-Gomez
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway H92 W2TY, Ireland
| | - Håvard Jostein Haugen
- Department of Biomaterials, Center for Functional Tissue Reconstruction, Faculty of Dentistry, University of Oslo, Oslo 0317, Norway
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway H92 W2TY, Ireland
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics, and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya, Barcelona 08019, Spain
| | - Osnat Hakimi
- aMoon Ventures, Yerushalaim Rd 34, Ra'anana 4350108, Israel
| | | | - Athina Samara
- Department of Biomaterials, Center for Functional Tissue Reconstruction, Faculty of Dentistry, University of Oslo, Oslo 0317, Norway.
| |
Collapse
|
12
|
Kumari S, Mishra RK, Parveen S, Avinashi SK, Hussain A, Kumar S, Banerjee M, Rao J, Kumar R, Gautam RK, Gautam C. Fabrication, structural, and enhanced mechanical behavior of MgO substituted PMMA composites for dental applications. Sci Rep 2024; 14:2128. [PMID: 38267527 PMCID: PMC10808548 DOI: 10.1038/s41598-024-52202-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 01/16/2024] [Indexed: 01/26/2024] Open
Abstract
The most common denture material used for dentistry is poly-methyl-methacrylate (PMMA). Usually, the polymeric PMMA material has numerous biological, mechanical and cost-effective shortcomings. Hence, to resolve such types of drawbacks, attempts have been made to investigate fillers of the PMMA like alumina (Al2O3), silica (SiO2), zirconia (ZrO2) etc. For the enhancement of the PMMA properties a suitable additive is required for its orthopedic applications. Herein, the main motive of this study was to synthesize a magnesium oxide (MgO) reinforced polymer-based hybrid nano-composites by using heat cure method with superior optical, biological and mechanical characteristics. For the structural and vibrational studies of the composites, XRD and FT-IR were carried out. Herein, the percentage of crystallinity for all the fabricated composites were also calculated and found to be 14.79-30.31. Various physical and optical parameters such as density, band gap, Urbach energy, cutoff energy, cutoff wavelength, steepness parameter, electron-phonon interaction, refractive index, and optical dielectric constant were also studied and their values are found to be in the range of 1.21-1.394 g/cm3, 5.44-5.48 eV, 0.167-0.027 eV, 5.68 eV, 218 nm, 0.156-0.962, 4.273-0.693, 1.937-1.932, and 3.752-3.731 respectively. To evaluate the mechanical properties like compressive strength, flexural strength, and fracture toughness of the composites a Universal Testing Machine (UTM) was used and their values were 60.3 and 101 MPa, 78 and 40.3 MPa, 5.85 and 9.8 MPa-m1/2 respectively. Tribological tests of the composites were also carried out. In order to check the toxicity, MTT assay was also carried out for the PM0 and PM15 [(x)MgO + (100 - x) (C5O2H8)n] (x = 0 and 15) composites. This study provides a comprehensive insight into the structural, physical, optical, and biological features of the fabricated PMMA-MgO composites, highlighting the potential of the PM15 composite with its enhanced density, mechanical strength, and excellent biocompatibility for denture applications.
Collapse
Affiliation(s)
- Savita Kumari
- Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India
| | - Rajat Kumar Mishra
- Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India
| | - Shama Parveen
- Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India
| | | | - Ajaz Hussain
- Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India
| | - Saurabh Kumar
- Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India
| | - Monisha Banerjee
- Department of Zoology, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India
| | - Jitendra Rao
- Department of Prosthodontics, King George Medical University, Shah Mina Road, Chowk, Lucknow, Uttar Pradesh, 226003, India
| | - Rupesh Kumar
- Department of Mechanical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Rakesh Kumar Gautam
- Department of Mechanical Engineering, Indian Institute of Technology, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Chandkiram Gautam
- Department of Physics, University of Lucknow, Lucknow, Uttar Pradesh, 226007, India.
| |
Collapse
|
13
|
Ku FH, Chen PH, Du JK, Wang YH. Water temperature for fabrication of autopolymerizing polymethyl methacrylate (PMMA) interim fixed restoration affects cytotoxicity and residual methyl methacrylate (MMA). J Dent Sci 2024; 19:124-129. [PMID: 38303821 PMCID: PMC10829666 DOI: 10.1016/j.jds.2023.05.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/22/2023] [Indexed: 02/03/2024] Open
Abstract
Background/purpose Clinically, dentists are suggested to immerse autopolymerizing interim fixed restorations in hot water during fabrication. However, this suggestion, without including the best temperature, mostly comes from clinical experience instead of scientific evidence. This in vitro study evaluated the effect of water temperature on the cytotoxicity of interim partial fixed dental prostheses (FDPs) and examined its correlation with residual MMA. Materials and methods Tempron was chosen as the autopolymerizing polymethyl methacrylate material. Tempron was mixed and then soaked in water at different temperatures, except control group (Controlair) was not being soaking in water. The specimens were incubated with conditioned medium. The concentration of residual MMA was determined by liquid chromatography-tandem mass spectrometry (LC-MS-MS). The cell viability of human gingival fibroblasts (HGFs) was evaluated by MTT assay. Results The 60 °C and 80 °C groups exhibited significantly higher cell viabilities than those of the other groups (P < 0.05) at 48 and 72 h. The concentration of residual MMA was highly correlated with this outcome: the higher the concentration of residual MMA detected in the eluates, the poorer the cell viability was; the longer the incubation time was, the stronger the correlation was between the concentration of residual MMA and the cell viability. Conclusion Autopolymerizing PMMA interim FDPs that are polymerized in water up to at least 60 °C could reduce cell toxicity. Higher water temperature could certainly decrease the amount of residual MMA, which is closely correlated with the outcome of cell viability.
Collapse
Affiliation(s)
- Fang-Hsuan Ku
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ping-Ho Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung, Taiwan
| | - Je-Kang Du
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yan-Hsiung Wang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Orthopaedic Research Center, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
14
|
Kalyoncuoğlu ÜT, Atik E. Impact of effervescent denture cleaning tablets on color and surface characteristics of additively manufactured and hand-cast splint materials. Clin Oral Investig 2023; 28:54. [PMID: 38157078 DOI: 10.1007/s00784-023-05433-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024]
Abstract
OBJECTIVES This study is to evaluate the color stability, surface roughness, and hardness of additively manufactured and hand-cast splint materials after a 6-month commercially available denture cleaning tablet immersion simulation. MATERIALS AND METHODS Disc-shaped additively manufactured and hand-cast auto polymerizing acrylic resin specimens were prepared (N = 40 each). All specimens were exposed to coffee solution totally 2 days. Thereafter, all specimens were immersed into three different effervescent solutions that simulated 6 months of clinical use. The total color change (ΔE*ab), surface roughness (Ra), and Vickers hardness (Vh) were measured at baseline and after immersion protocols. A two-way ANOVA and Bonferroni's post hoc test were used for color change. The dependent t-test and ANOVA were used for roughness and hardness evaluation. RESULTS Additively manufactured splint materials were more affected by coffee immersion. It was observed that all denture cleaning tablets induced a noticeable alteration in color of the specimens (p < 0.05). Roughness and hardness measurement changes after solution immersions were statistically significant for both splint groups (p < 0.05). On the other hand, distilled water and denture cleaning tablets created similar roughness and hardness measurements at baseline and after immersion. CONCLUSIONS After 6 months use of tested cleaning tables, the color stability, surface roughness, and hardness of both groups were affected. The evaluation of the surface properties of splint materials could be recommended to the dentists in periodic controls during splint treatments. CLINICAL RELEVANCE The use effervescent denture cleaning tablets altered the surface characteristics of tested splint materials over time with nonsignificant difference between each other. After 6 months, awareness should be raised about surface characteristics of splint materials.
Collapse
Affiliation(s)
- Ülkü Tuğba Kalyoncuoğlu
- Department of Prosthodontics, Gülhane Faculty of Dentistry, University of Health Science, 06018 Emrah Mah., Etlik, Keçiören, Ankara, Turkey.
| | - Ezgi Atik
- Department of Orthodontics, Faculty of Dentistry, Hacettepe University, 06230Sıhhiye, Altındağ, Ankara, Turkey
| |
Collapse
|
15
|
Matsuura T, Stavrou S, Komatsu K, Cheng J, Pham A, Ferreira S, Baba T, Chang TL, Chao D, Ogawa T. Disparity in the Influence of Implant Provisional Materials on Human Gingival Fibroblasts with Different Phases of Cell Settlement: An In Vitro Study. Int J Mol Sci 2023; 25:123. [PMID: 38203293 PMCID: PMC10779283 DOI: 10.3390/ijms25010123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
The development of healthy peri-implant soft tissues is critical to achieving the esthetic and biological success of implant restorations throughout all stages of healing and tissue maturation, starting with provisionalization. The purpose of this study was to investigate the effects of eight different implant provisional materials on human gingival fibroblasts at various stages of cell settlement by examining initial cell attachment, growth, and function. Eight different specimens-bis-acrylic 1 and 2, flowable and bulk-fill composites, self-curing acrylic 1 and 2, milled acrylic, and titanium (Ti) alloy as a control-were fabricated in rectangular plates (n = 3). The condition of human gingival fibroblasts was divided into two groups: those in direct contact with test materials (contact experiment) and those in close proximity to test materials (proximity experiment). The proximity experiment was further divided into three phases: pre-settlement, early settlement, and late settlement. A cell culture insert containing each test plate was placed into a well where the cells were pre-cultured. The number of attached cells, cell proliferation, resistance to detachment, and collagen production were evaluated. In the contact experiment, bis-acrylics and composites showed detrimental effects on cells. The number of cells attached to milled acrylic and self-curing acrylic was relatively high, being approximately 70% and 20-30%, respectively, of that on Ti alloy. There was a significant difference between self-curing acrylic 1 and 2, even with the same curing modality. The cell retention ability also varied considerably among the materials. Although the detrimental effects were mitigated in the proximity experiment compared to the contact experiment, adverse effects on cell growth and collagen production remained significant during all phases of cell settlement for bis-acrylics and flowable composite. Specifically, the early settlement phase was not sufficient to significantly mitigate the material cytotoxicity. The flowable composite was consistently more cytotoxic than the bulk-fill composite. The harmful effects of the provisional materials on gingival fibroblasts vary considerably depending on the curing modality and compositions. Pre-settlement of cells mitigated the harmful effects, implying the susceptibility to material toxicity varies depending on the progress of wound healing and tissue condition. However, cell pre-settlement was not sufficient to fully restore the fibroblastic function to the normal level. Particularly, the adverse effects of bis-acrylics and flowable composite remained significant. Milled and self-curing acrylic exhibited excellent and acceptable biocompatibility, respectively, compared to other materials.
Collapse
Affiliation(s)
- Takanori Matsuura
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA; (S.S.); (J.C.); (A.P.); (T.B.); (T.-L.C.); (D.C.); (T.O.)
| | - Stella Stavrou
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA; (S.S.); (J.C.); (A.P.); (T.B.); (T.-L.C.); (D.C.); (T.O.)
| | - Keiji Komatsu
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA; (S.S.); (J.C.); (A.P.); (T.B.); (T.-L.C.); (D.C.); (T.O.)
| | - James Cheng
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA; (S.S.); (J.C.); (A.P.); (T.B.); (T.-L.C.); (D.C.); (T.O.)
| | - Alisa Pham
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA; (S.S.); (J.C.); (A.P.); (T.B.); (T.-L.C.); (D.C.); (T.O.)
| | | | - Tomomi Baba
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA; (S.S.); (J.C.); (A.P.); (T.B.); (T.-L.C.); (D.C.); (T.O.)
| | - Ting-Ling Chang
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA; (S.S.); (J.C.); (A.P.); (T.B.); (T.-L.C.); (D.C.); (T.O.)
| | - Denny Chao
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA; (S.S.); (J.C.); (A.P.); (T.B.); (T.-L.C.); (D.C.); (T.O.)
| | - Takahiro Ogawa
- Weintraub Center for Reconstructive Biotechnology, Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA 90095, USA; (S.S.); (J.C.); (A.P.); (T.B.); (T.-L.C.); (D.C.); (T.O.)
| |
Collapse
|
16
|
Song D, Husari A, Kotz-Helmer F, Tomakidi P, Rapp BE, Rühe J. Two-Photon Direct Laser Writing of 3D Scaffolds through C, H-Insertion Crosslinking in a One-Component Material System. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2306682. [PMID: 38059850 DOI: 10.1002/smll.202306682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/18/2023] [Indexed: 12/08/2023]
Abstract
The popularity of two-photon direct laser writing in biological research is remarkable as this technique is capable of 3D fabrication of microstructures with unprecedented control, flexibility and precision. Nevertheless, potential impurities such as residual monomers and photoinitiators remaining unnoticed from the photopolymerization in the structures pose strong challenges for biological applications. Here, the first use of high-precision 3D microstructures fabricated from a one-component material system (without monomers and photoinitiators) as a 3D cell culture platform is demonstrated. The material system consists of prepolymers with built- in crosslinker motieties, requiring only aliphatic C, H units as reaction partners following two-photon excitation. The material is written by direct laser writing using two-photon processes in a solvent-free state, which enables the generation of structures at a rapid scan speed of up to 500 mm s-1 with feature sizes scaling down to few micrometers. The generated structures possess stiffnesses close to those of common tissue and demonstrate excellent biocompatibility and cellular adhesion without any additional modification. The demonstrated approach holds great promise for fabricating high-precision complex 3D cell culture scaffolds that are safe in biological environments.
Collapse
Affiliation(s)
- Dan Song
- Cluster of Excellence livMatS @ FIT-Freiburg Center of Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
- Laboratory of Chemistry & Physics of Interfaces (CPI), Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany
| | - Ayman Husari
- Division of Oral Biotechnology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Frederik Kotz-Helmer
- Laboratory of Process Technology (NeptunLab), Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany
| | - Pascal Tomakidi
- Division of Oral Biotechnology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106, Freiburg, Germany
| | - Bastian E Rapp
- Cluster of Excellence livMatS @ FIT-Freiburg Center of Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
- Laboratory of Process Technology (NeptunLab), Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany
| | - Jürgen Rühe
- Cluster of Excellence livMatS @ FIT-Freiburg Center of Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
- Laboratory of Chemistry & Physics of Interfaces (CPI), Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110, Freiburg, Germany
| |
Collapse
|
17
|
Benli M, Al-Haj Husain N, Ozcan M. Mechanical and chemical characterization of contemporary occlusal splint materials fabricated with different methods: a systematic review. Clin Oral Investig 2023; 27:7115-7141. [PMID: 37910242 DOI: 10.1007/s00784-023-05360-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 10/22/2023] [Indexed: 11/03/2023]
Abstract
OBJECTIVE To systematically review studies on various occlusal splint materials and describe their mechanical and chemical properties. METHODS MEDLINE (PubMed), Scopus, and Web of Science searches were conducted for in vitro studies focusing on occlusal splint materials. Two reviewers performed an assessment of the identified studies and data abstraction independently, and this was complimented by an additional hand search. The articles were limited to those in the English language that were published between January 1st, 2012, and December 1st, 2022. RESULTS The initial search yielded 405 search results of which 274 were selected for full-text review following abstract evaluation. 250 articles that did not meet the inclusion criteria were excluded, and the remaining 25 articles (with 1 article identified from the reference lists of included articles) providing mechanical and chemical values were used in this review. Poly methyl methacrylate (PMMA) -based occlusal splint materials showed the highest values in terms of hardness, wear resistance, flexural strength, flexural modulus, e-modulus, and fracture toughness. The material group with the highest water sorption and water solubility was 3D printed (PR) splint materials. In addition, the lowest degree of double bond conversion was also observed in this group of materials. CONCLUSIONS The outcome of this review suggests that mechanically and chemically acceptable properties can be attained with PMMA-based occlusal splint materials using both conventional and digital production methods. PR splint materials should not be considered as the primary choice for long-term treatments due to their low mechanical and chemical properties. CLINICAL RELEVANCE This review provides clinical recommendations for selecting the appropriate material and fabrication method for occlusal splints while taking the patients' needs and the materials´ mechanical and chemical properties into account.
Collapse
Affiliation(s)
- Merve Benli
- James B. Edwards College of Dental Medicine, Department of Oral Rehabilitation, Division of Removable Prosthodontics, MUSC, Charleston, USA.
- Department of Prosthodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey.
| | - Nadin Al-Haj Husain
- Division of Dental Biomaterials, Clinic for Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, 8032, Zurich, Switzerland
- Department of Reconstructive Dentistry and Gerodontology, School of Dental Medicine, University of Bern, 3010, Bern, Switzerland
- Clinic of Masticatory Disorders, Center of Dental Medicine, University of Zurich, 8032, Zurich, Switzerland
| | - Mutlu Ozcan
- Division of Dental Biomaterials, Center for Dental Medicine, Clinic for Reconstructive Dentistry, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland
- Clinic for Chewing Function Disturbances, Center for Dental Medicine, Clinic for Reconstructive Dentistry, University of Zurich, Plattenstrasse 11, 8032, Zurich, Switzerland
| |
Collapse
|
18
|
Altarazi A, Haider J, Alhotan A, Silikas N, Devlin H. 3D printed denture base material: The effect of incorporating TiO 2 nanoparticles and artificial ageing on the physical and mechanical properties. Dent Mater 2023; 39:1122-1136. [PMID: 37839997 DOI: 10.1016/j.dental.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/16/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
OBJECTIVES To evaluate the physical and mechanical properties of three-dimensional (3D) printed denture base resin incorporating TiO2 nanoparticles (NPs), subjected to a physical ageing process. METHODS Acrylic denture base samples were prepared by a Stereolithography (SLA) 3D printing technique reinforced with different concentrations (0.10, 0.25, 0.50, and 0.75) of silanated TiO2 NPs. The resulting nanocomposite materials were characterized in terms of degree of conversion (DC), and sorption/solubility flexural strength, impact strength, Vickers hardness and Martens hardness and compared with unmodified resin and conventional heat-cured (HC) material. The nanocomposites were reassessed after subjecting them to ageing in artificial saliva. A fractured surface was studied under a scanning electron microscope (SEM). RESULTS The addition of TiO2 NPs into 3D-printed resin significantly improved flexural strength/modulus, impact strength, Vickers hardness, and DC, while also slightly enhancing Martens hardness compared to the unmodified resin. Sorption values did not show any improvements, while solubility was reduced significantly. The addition of 0.10 wt% NPs provided the highest performance amongst the other concentrations, and 0.75 wt% NPs showed the lowest. Although ageing degraded the materials' performance to a certain extent, the trends remained the same. SEM images showed a homogenous distribution of the NPs at lower concentrations (0.10 and 0.25 wt%) but revealed agglomeration of the NPs with the higher concentrations (0.50 and 0.75 wt%). SIGNIFICANCE The outcomes of this study suggested that the incorporation of TiO2 NPs (0.10 wt%) into 3D-printed denture base material showed superior performance compared to the unmodified 3D-printed resin even after ageing in artificial saliva. The nanocomposite has the potential to extend service life of denture bases in future clinical use.
Collapse
Affiliation(s)
- Ahmed Altarazi
- Division of Dentistry, School of Medical Sciences, University of Manchester, Manchester M13 9PL, United Kingdom; Restorative Dental Science, College of Dentistry, Taibah University, Saudi Arabia.
| | - Julfikar Haider
- Division of Dentistry, School of Medical Sciences, University of Manchester, Manchester M13 9PL, United Kingdom; Department of Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Abdulaziz Alhotan
- Dental Health Department, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Nick Silikas
- Division of Dentistry, School of Medical Sciences, University of Manchester, Manchester M13 9PL, United Kingdom.
| | - Hugh Devlin
- Division of Dentistry, School of Medical Sciences, University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
19
|
Dimitrova M, Vlahova A, Kalachev Y, Zlatev S, Kazakova R, Capodiferro S. Recent Advances in 3D Printing of Polymers for Application in Prosthodontics. Polymers (Basel) 2023; 15:4525. [PMID: 38231950 PMCID: PMC10708542 DOI: 10.3390/polym15234525] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
Contemporary mass media frequently depict 3D printing as a technology with widespread utilization in the creation of dental prosthetics. This paper endeavors to provide an evidence-based assessment of the current scope of 3D printing's integration within dental laboratories and practices. Its primary objective is to offer a systematic evaluation of the existing applications of 3D-printing technology within the realm of dental prosthetic restorations. Furthermore, this article delves into potential prospects, while also critically examining the sustained relevance of conventional dental laboratory services and manufacturing procedures. The central focus of this article is to expound upon the extent to which 3D printing is presently harnessed for crafting dental prosthetic appliances. By presenting verifiable data and factual insights, this article aspires to elucidate the actual implementation of 3D printing in prosthetic dentistry and its seamless integration into dental practices. The aim of this narrative review is twofold: firstly, to provide an informed and unbiased evaluation of the role that 3D printing currently plays within dental laboratories and practices; and secondly, to instigate contemplation on the transformative potential of this technology, both in terms of its contemporary impact and its future implications, while maintaining a balanced consideration of traditional dental approaches.
Collapse
Affiliation(s)
- Mariya Dimitrova
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (A.V.); (Y.K.); (S.Z.); (R.K.)
| | - Angelina Vlahova
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (A.V.); (Y.K.); (S.Z.); (R.K.)
- CAD/CAM Center of Dental Medicine, Research Institute, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Yavor Kalachev
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (A.V.); (Y.K.); (S.Z.); (R.K.)
| | - Stefan Zlatev
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (A.V.); (Y.K.); (S.Z.); (R.K.)
- CAD/CAM Center of Dental Medicine, Research Institute, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Rada Kazakova
- Department of Prosthetic Dentistry, Faculty of Dental Medicine, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria; (A.V.); (Y.K.); (S.Z.); (R.K.)
- CAD/CAM Center of Dental Medicine, Research Institute, Medical University of Plovdiv, 4000 Plovdiv, Bulgaria
| | - Saverio Capodiferro
- Department of Interdisciplinary Medicine, Aldo Moro, University of Bari, 70100 Bari, Italy;
| |
Collapse
|
20
|
Ko JW, Sakong J, Kang S. Cytotoxicity of dental self-curing resin for a temporary crown: an in vitro study. JOURNAL OF YEUNGNAM MEDICAL SCIENCE 2023; 40:S1-S8. [PMID: 37098682 DOI: 10.12701/jyms.2023.00080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/31/2023] [Indexed: 04/27/2023]
Abstract
BACKGROUND Residual monomer tests using high-performance liquid chromatography and cytotoxicity tests were performed to analyze the effect on the oral mucosa of a self-curing resin for provisional crown production. METHODS A cytotoxicity test was performed to confirm whether leaked residual monomers directly affected oral mucosal cells. The cytotoxicity of the liquid and solid resin polymers was measured using a water-soluble tetrazolium (WST) test and microplate reader. RESULTS In the WST assay using a microplate reader, 73.4% of the cells survived at a concentration of 0.2% liquid resin polymer. The cytotoxicity of the liquid resin polymer was low at ≤0.2%. For the solid resins, when 100% of the eluate was used from each specimen, the average cell viability was 91.3% for the solid resin polymer and 100% for the hand-mixed self-curing resin, which is higher than the cell viability standard of 70%. The cytotoxicity of the solid resin polymer was low. CONCLUSION Because the polymerization process of the self-curing resin may have harmful effects on the oral mucosa during the second and third stages, the solid resin should be manufactured indirectly using a dental model.
Collapse
Affiliation(s)
- Jae-Wan Ko
- Department of Dental Technology, Daegu Health College, Daegu, Korea
- Department of Public Health, Graduate School of Environment and Public Health Studies, Yeungnam University, Daegu, Korea
| | - Joon Sakong
- Department of Occupational and Environmental Medicine, Yeungnam University Hospital, Daegu, Korea
- Department of Preventive Medicine and Public Health, Yeungnam University College of Medicine, Daegu, Korea
| | - Sohee Kang
- Department of Dentistry, Yeungnam University College of Medicine, Daegu, Korea
| |
Collapse
|
21
|
Padunglappisit C, Suwanprateep N, Chaiwerawattana H, Naruphontjirakul P, Panpisut P. An in vitro assessment of biaxial flexural strength, degree of monomer conversion, color stability, and ion release in provisional restorations containing Sr-bioactive glass nanoparticles. Biomater Investig Dent 2023; 10:2265393. [PMID: 38204473 PMCID: PMC10763873 DOI: 10.1080/26415275.2023.2265393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/26/2023] [Indexed: 01/12/2024] Open
Abstract
This study examined the mechanical and chemical properties of an experimental provisional restoration containing Sr-bioactive glass nanoparticles (Sr-BGNPs) compared to commercial provisional materials. The experimental material (TempS10) contained dimethacrylate monomers with added 10 wt% Sr-BGNPs. The degree of monomer conversion (DC) of self-curing (n = 5), biaxial flexural strength (BFS)/modulus (BFM) (n = 5), and color changes (ΔE*00) of materials in red wine (n = 5) were determined. Additionally, ion release (Ca, P, and Sr) in water at 2 weeks was examined (n = 3). The commercial materials tested included polymethyl methacrylate-based provisional material (Unifast) and bis-acrylic materials (Protemp4 and Cooltemp). TempS10 exhibited a comparable degree of monomer conversion (49%) to that of Protemp4 (60%) and Cooltemp (54%) (p > 0.05). The DC of Unifast (81%) was significantly higher than that of other materials (p < 0.05). TempS10 showed a BFS (126 MPa) similar to Cooltemp (102 MPa) and Unifast (123 MPa), but lower than Protemp4 (194 MPa). The immersion time for 2 weeks exhibited no detrimental effect on the strength and modulus of all materials. The highest ΔE*00 at 24 h and 2 weeks was observed with TempS10, followed by Cooltemp, Unifast, and Protemp4. Only TempS10 showed a detectable amount of Ca (0.69 ppm), P (0.12 ppm), and Sr (3.01 ppm). The experimental provisional resin restoration containing Sr-BGNPs demonstrated polymerization and strength comparable to those of bis-acryl provisional restorations but with the added benefit of ion-releasing properties. However, the experimental material demonstrated unsatisfactory color stability.
Collapse
Affiliation(s)
| | | | | | - Parichart Naruphontjirakul
- Biological Engineering Program, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok, Thailand
| | - Piyaphong Panpisut
- Faculty of Dentistry, Thammasat University, Pathum Thani, Thailand
- Thammasat University Research Unit in Dental and Bone Substitute Biomaterials, Thammasat University, Pathum Thani, Thailand
| |
Collapse
|
22
|
Casucci A, Verniani G, Barbieri AL, Ricci NM, Ferrari Cagidiaco E, Ferrari M. Flexural Strength Analysis of Different Complete Denture Resin-Based Materials Obtained by Conventional and Digital Manufacturing. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6559. [PMID: 37834696 PMCID: PMC10573664 DOI: 10.3390/ma16196559] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023]
Abstract
PMMA (Polymethylmethacrylate) is the material of choice to fabricate denture bases. Recently, with the introduction of CAD-CAM and 3D printers in dentistry, new materials have been proposed for complete denture manufacturing. AIM This study compared the flexural strength of different resins fabricated using different technologies (conventional, CAD-CAM-milled, and 3D-printed) and polymerization techniques. METHODS A total of 11 different resins were tested: six PMMA conventional (Acrypol R, Acrypol LL, Acrypol HI, Acrypol Fast, Acryself and Acryslef P), two milled obtained from UDMA PMMA disks (Ivotion disk and Aadva disk, control groups), two 3D-printed PMMA resins (NextDent Denture 3D+, and SprintRayEU Denture Base), and one 3D-printed composite resin (GC Temp Print). Flexural strength was measured using a universal testing machine. One-way ANOVA and Bonferroni post hoc tests were performed; the p-value was set at 0.05 to consider statistically significant differences among the groups. Spearman test was used to evaluate the correlation between polymerization technique and the flexural strength of 3D-printed resins. RESULTS CAD-CAM-milled specimens showed the highest flexural strength (107.87 MPa for UDMA) followed by 3D-printed composite resins (102.96 MPa). Furthermore, 3D-printed resins polymerized for 40 min with the BB cure unit showed no statistically significant differences with conventional resin groups. Moreover, in all the 3D-printed specimens, a high correlation between polymerization technique and flexural strength was found. CONCLUSIONS In terms of flexural strength, the polymerization technique is a determinant for both acrylic and composite resins. Temp Print can be a potential alternative to fabricating removable dentures and showed promising results when used in combination with pink color resin powder.
Collapse
Affiliation(s)
| | | | | | | | | | - Marco Ferrari
- Department of Prosthodontics, University of Siena, 53100 Siena, Italy; (A.C.); (G.V.); (A.L.B.); (N.M.R.); (E.F.C.)
| |
Collapse
|
23
|
Alshamrani A, Alhotan A, Kelly E, Ellakwa A. Mechanical and Biocompatibility Properties of 3D-Printed Dental Resin Reinforced with Glass Silica and Zirconia Nanoparticles: In Vitro Study. Polymers (Basel) 2023; 15:polym15112523. [PMID: 37299322 DOI: 10.3390/polym15112523] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/26/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
This study aimed to assess the mechanical and biocompatibility properties of dental resin reinforced with different nanoparticle additives. Temporary crown specimens were 3D-printed and grouped based on nanoparticle type and amount, including zirconia and glass silica. Flexural strength testing evaluated the material's ability to withstand mechanical stress using a three-point bending test. Biocompatibility was tested using MTT and dead/live cell assays to assess effects on cell viability and tissue integration. Fractured specimens were analysed using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) for fracture surface examination and elemental composition determination. Results show that adding 5% glass fillers and 10-20% zirconia nanoparticles significantly improves the flexural strength and biocompatibility of the resin material. Specifically, the addition of 10%, 20% zirconia, and 5% glass silica by weight significantly increases the flexural strength of the 3D-printed resins. Biocompatibility testing reveals cell viabilities greater than 80% in all tested groups. Reinforced 3D-printed resin holds clinical potential for restorative dentistry, as zirconia and glass fillers have been shown to enhance mechanical and biocompatibility properties of dental resin, making it a promising option for dental restorations. The findings of this study may contribute to the development of more effective and durable dental materials.
Collapse
Affiliation(s)
- Abdullah Alshamrani
- Oral Rehabilitation & Dental Biomaterial and Bioengineering, The University of Sydney, Sydney 2006, Australia
- Department of Dental Health, College of Applied Medical Sciences, King Saud University, Riyadh P.O. Box 12372, Saudi Arabia
| | - Abdulaziz Alhotan
- Department of Dental Health, College of Applied Medical Sciences, King Saud University, Riyadh P.O. Box 12372, Saudi Arabia
| | - Elizabeth Kelly
- The Cellular and Molecular Pathology Research Unit, Oral Pathology and Oral Medicine, School of Dentistry, The University of Sydney, Westmead Hospital, Westmead 2145, Australia
| | - Ayman Ellakwa
- Oral Rehabilitation & Dental Biomaterial and Bioengineering, The University of Sydney, Sydney 2006, Australia
| |
Collapse
|
24
|
Mert D, Kamnoedboon P, Al-Haj Husain N, Özcan M, Srinivasan M. CAD-CAM complete denture resins: Effect of relining on the shear bond strength. J Dent 2023; 131:104438. [PMID: 36717051 DOI: 10.1016/j.jdent.2023.104438] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/20/2022] [Accepted: 01/26/2023] [Indexed: 01/30/2023] Open
Abstract
OBJECTIVES The aim of this study was to compare the shear bond strength of relined CAD-CAM complete removable dental prosthesis (CRDP) resins with conventional heat-polymerized polymethylmethacrylate (PMMA) resin. METHODS A total of 96 resin specimens in identical dimensions of 10 mm × 10 mm × 11 mm were fabricated for four study groups [#1- Conventional heat-polymerized group: n=24 (ProBase); #2- Milled#1: n=24 (Ivobase); #3- Milled#2: n=24 (Ivotion); #4- 3D-printed: n=24, (NextDent Denture 3D+)]. Twelve specimens in each group were sectioned in the middle to produce a 3 mm defect and then were relined using a conventional denture relining material. All specimens underwent thermocycling (5-55°C) for 10,000 cycles. The shear bond tests were carried out in a universal testing machine. One-way ANOVA and Tukey's test were used for statistical analysis (p<0.05). The two-parameter Weibull distribution values were calculated. RESULTS Relined 3D-printed specimens had a significantly lower shear bond strength when compared with conventional (p=0.0003) and milled groups (Milled#1: p=0.0004; Milled#2: p<0.0001). There were no differences in the shear bond strengths between the milled and conventional groups. Weibull distribution presented the highest shape value for the non-relined Milled#1 (22.83) group and the lowest values for the 3D-printed relined group (4.001). CONCLUSION The findings of this study conclude that the shear bond strength of the conventionally-relined 3D-printed resins used for fabricating CRDPs was inferior to the shear bond strength of conventionally-relined resins employed for manufacturing CRDPs using CAD-CAM milling and conventional heat-polymerization techniques. CLINICAL SIGNIFICANCE When considering 3D-printing for the fabrication of CRDPs, it is recommended to employ it in clinical situations where a frequent need for denture relining is not expected.
Collapse
Affiliation(s)
- Dilvin Mert
- Clinic of General, Special Care and Geriatric Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland.
| | - Porawit Kamnoedboon
- Clinic of General, Special Care and Geriatric Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Nadin Al-Haj Husain
- Division of Dental Biomaterials, Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Mutlu Özcan
- Division of Dental Biomaterials, Clinic of Reconstructive Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Murali Srinivasan
- Clinic of General, Special Care and Geriatric Dentistry, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
25
|
Kaji T, Kuroishi T, Bando K, Takahashi M, Sugawara S. N-acetyl cysteine inhibits IL-1α release from murine keratinocytes induced by 2-hydroxyethyl methacrylate. J Toxicol Sci 2023; 48:557-569. [PMID: 37778984 DOI: 10.2131/jts.48.557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
The hydrophilic compound 2-hydroxyethyl methacrylate (HEMA) is a major component of dental bonding materials, and it enhances the binding of resin-composites to biomolecules. However, HEMA is a well-known contact sensitizer. We reported previously that intradermal injection of HEMA induces the production of IL-1 locally in the skin. Keratinocytes are the first barrier against chemical insults and constitutively express IL-1α. In this study, we analyzed whether HEMA induces the production of inflammatory cytokines from murine keratinocyte cell line Pam212 cells. We demonstrated that HEMA induced the release of 17-kDa mature IL-1α and caused cytotoxicity. The activity of calpain, an IL-1α processing enzyme, was significantly higher in HEMA-treated cells. The thiol-containing antioxidant N-acetyl cysteine (NAC) inhibited HEMA-induced IL-1α release but not cytotoxicity. NAC inhibited intracellular calpain activity and reactive oxygen species (ROS) production induced by HEMA. NAC post-treatment also inhibited IL-1α release and intracellular ROS production induced by HEMA. Furthermore, HEMA-induced in vivo inflammation also inhibited by NAC. NAC inhibited polymerization of HEMA through adduct formation via sulfide bonds between the thiol group of NAC and the reactive double bond of HEMA. HEMA-induced IL-1α release and cytotoxicity were also inhibited if HEMA and NAC were pre-incubated before adding to the cells. These results suggested that NAC inhibited IL-1α release through decreases in intracellular ROS and the adduct formation with HEMA. We concluded that HEMA induces IL-1α release from skin keratinocytes, and NAC may be a promising candidate as a therapeutic agent against inflammation induced by HEMA.
Collapse
Affiliation(s)
- Takahiro Kaji
- Division of Oral Immunology, Tohoku University Graduate School of Dentistry
| | - Toshinobu Kuroishi
- Division of Oral Immunology, Tohoku University Graduate School of Dentistry
| | - Kanan Bando
- Division of Oral Immunology, Tohoku University Graduate School of Dentistry
- Division of Orthodontics and Dentofacial Orthopedics, Tohoku University Graduate School of Dentistry
| | - Masatoshi Takahashi
- Division of Dental Biomaterials, Tohoku University Graduate School of Dentistry
| | - Shunji Sugawara
- Division of Oral Immunology, Tohoku University Graduate School of Dentistry
| |
Collapse
|
26
|
Riester O, Laufer S, Deigner HP. Direct 3D printed biocompatible microfluidics: assessment of human mesenchymal stem cell differentiation and cytotoxic drug screening in a dynamic culture system. J Nanobiotechnology 2022; 20:540. [PMID: 36575530 PMCID: PMC9793564 DOI: 10.1186/s12951-022-01737-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 12/02/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND In vivo-mimicking conditions are critical in in vitro cell analysis to obtain clinically relevant results. The required conditions, comparable to those prevalent in nature, can be provided by microfluidic dynamic cell cultures. Microfluidics can be used to fabricate and test the functionality and biocompatibility of newly developed nanosystems or to apply micro- and nanoelectromechanical systems embedded in a microfluidic system. However, the use of microfluidic systems is often hampered by their accessibility, acquisition cost, or customization, especially for scientists whose primary research focus is not microfluidics. RESULTS Here we present a method for 3D printing that can be applied without special prior knowledge and sophisticated equipment to produce various ready-to-use microfluidic components with a size of 100 µm. Compared to other available methods, 3D printing using fused deposition modeling (FDM) offers several advantages, such as time-reduction and avoidance of sophisticated equipment (e.g., photolithography), as well as excellent biocompatibility and avoidance of toxic, leaching chemicals or post-processing (e.g., stereolithography). We further demonstrate the ease of use of the method for two relevant applications: a cytotoxicity screening system and an osteoblastic differentiation assay. To our knowledge, this is the first time an application including treatment, long-term cell culture and analysis on one chip has been demonstrated in a directly 3D-printed microfluidic chip. CONCLUSION The direct 3D printing method is tested and validated for various microfluidic components that can be combined on a chip depending on the specific requirements of the experiment. The ease of use and production opens up the potential of microfluidics to a wide range of users, especially in biomedical research. Our demonstration of its use as a cytotoxicity screening system and as an assay for osteoblastic differentiation shows the methods potential in the development of novel biomedical applications. With the presented method, we aim to disseminate microfluidics as a standard method in biomedical research, thus improving the reproducibility and transferability of results to clinical applications.
Collapse
Affiliation(s)
- Oliver Riester
- grid.21051.370000 0001 0601 6589Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany ,grid.10392.390000 0001 2190 1447Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard-Karls-University Tuebingen, Auf Der Morgenstelle 8, 72076 Tübingen, Germany
| | - Stefan Laufer
- grid.10392.390000 0001 2190 1447Institute of Pharmaceutical Sciences, Department of Pharmacy and Biochemistry, Eberhard-Karls-University Tuebingen, Auf Der Morgenstelle 8, 72076 Tübingen, Germany ,Tuebingen Center for Academic Drug Discovery & Development (TüCAD2), 72076 Tübingen, Germany
| | - Hans-Peter Deigner
- grid.21051.370000 0001 0601 6589Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle-Strasse 17, 78054 Villingen-Schwenningen, Germany ,grid.10392.390000 0001 2190 1447Faculty of Science, Eberhard-Karls-University Tuebingen, Auf Der Morgenstelle 8, 72076 Tübingen, Germany ,grid.418008.50000 0004 0494 3022EXIM Department, Fraunhofer Institute IZI (Leipzig), Schillingallee 68, 18057 Rostock, Germany
| |
Collapse
|
27
|
Obturator Manufacturing for Oronasal Fistula after Cleft Palate Repair: A Review from Handicraft to the Application of Digital Techniques. J Funct Biomater 2022; 13:jfb13040251. [PMID: 36412892 PMCID: PMC9680338 DOI: 10.3390/jfb13040251] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/09/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
An oronasal fistula (ONF) is an abnormal structure between the oral and nasal cavities, which is a common complication of cleft palate repair due to the failure of wound healing. When some patients with ONF are unsuitable for secondary surgical repair, the obturator treatment becomes a potential method. The objectives of the obturator treatment should be summarized as filling the ONF comfortably and cosmetically restoring the dentition with partial function. The anatomy of patients with cleft palate is complex, which may lead to a more complex structure of the ONF. Thus, the manufacturing process of the obturator for these patients is more difficult. For performing the design and fabrication process rapidly and precisely, digital techniques can help, but limitations still exist. In this review, literature searches were conducted through Medline via PubMed, Wiley Online Library, Science Direct, and Web of Science, and 122 articles were selected. The purpose of this review was to introduce the development of the obturator for treating patients with ONF after cleft palate repair, from the initial achievement of the obstruction of the ONF to later problems such as fixation, velopharyngeal insufficiency, and infection, as well as the application of digital technologies in obturator manufacturing.
Collapse
|
28
|
Naeemullah, Hazer B, Tuzen M. Development of a new solid phase microextraction method using novel imino diacetate functionalized poly (methyl methacrylate) in a Portable Syringe System for the removal of malachite green from different water system using multivariate optimization approach. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Song D, Kotz-Helmer F, Rapp B, Rühe J. Substrate-Independent Maskless Writing of Functionalized Microstructures Using CHic Chemistry and Digital Light Processing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50288-50295. [PMID: 36288785 PMCID: PMC9650689 DOI: 10.1021/acsami.2c12000] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Maskless photolithography based on digital light processing (DLP) is an attractive technique for the rapid, flexible, and cost-effective fabrication of complex structures with arbitrary surface profiles on the microscale. In this work, we introduce a new material system for structure formation by DLP that is based on photoreactive polymers for the local and light-induced C,H-insertion cross-linking (CHic). This approach allows a simple and versatile generation of microstructures with a broad spectrum of geometries and chemistries irrespective of the nature of the chosen substrates and thus allows direct writing of surface functionalization patterns with high spatial control. The CHicable prepolymer is first coated on a substrate to form a solvent-free (glassy) film, and then the DLP system patterns the light with arbitrary shape to induce local cross-linking of the prepolymer. Using this method, the desired structures with complex features with a lateral resolution of several microns and a topography of tens of nanometers could be fabricated within 30 s. Furthermore, the universal applicability of the CHic reaction enables the printing on a wide variety of substrates, which greatly broadens the using scenarios of this printing approach.
Collapse
Affiliation(s)
- Dan Song
- livMatS
@ Freiburg Center for Interactive Materials and Bioinspired Technologies
(FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Department
of Microsystems Engineering (IMTEK), University
of Freiburg, Georges-Köhler-Allee
103, 79110 Freiburg, Germany
| | - Frederik Kotz-Helmer
- Department
of Microsystems Engineering (IMTEK), University
of Freiburg, Georges-Köhler-Allee
103, 79110 Freiburg, Germany
| | - Bastian Rapp
- livMatS
@ Freiburg Center for Interactive Materials and Bioinspired Technologies
(FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Department
of Microsystems Engineering (IMTEK), University
of Freiburg, Georges-Köhler-Allee
103, 79110 Freiburg, Germany
| | - Jürgen Rühe
- livMatS
@ Freiburg Center for Interactive Materials and Bioinspired Technologies
(FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
- Department
of Microsystems Engineering (IMTEK), University
of Freiburg, Georges-Köhler-Allee
103, 79110 Freiburg, Germany
| |
Collapse
|
30
|
Al-Dulaijan YA, Alsulaimi L, Alotaibi R, Alboainain A, Alalawi H, Alshehri S, Khan SQ, Alsaloum M, AlRumaih HS, Alhumaidan AA, Gad MM. Comparative Evaluation of Surface Roughness and Hardness of 3D Printed Resins. MATERIALS (BASEL, SWITZERLAND) 2022; 15:ma15196822. [PMID: 36234163 PMCID: PMC9571863 DOI: 10.3390/ma15196822] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 05/31/2023]
Abstract
The effect of printing parameters on the surface characteristics of three-dimensional (3D)-printed denture base resins (DBRs) is neglected. Therefore, this study investigated the effect of printing orientation and post-curing time on the surface roughness and hardness. One conventional heat-polymerized (HP) resin and two 3D-printing resins (NextDent (ND) and ASIGA (AS)) were used to fabricate a total of 250-disc (10 × 2.5 mm) specimens. ND and AS specimens were printed with different orientations (0-, 45-, and 90-degree) and each orientation group was subjected to four post-curing times (30, 60, 90, 120 min). Printed specimens were thermo-cycled (10,000 cycles) followed by the measuring of surface roughness (Profilometer (Ra)) and hardness (a Vickers hardness (VH)). ANOVA and post hoc tests were used for data analysis (α = 0.05) at significant levels. AS and ND showed no significant changes in Ra when compared with HP (p ˃ 0.05), except the 45-degree orientation (AS/90 min and AS/120 min) significantly increased surface roughness (p ˂ 0.001). There was no significant difference in Ra with different orientations and post-curing time for both materials AS and ND (p ˃ 0.05). Compared with HP, 3D-printed DBRs showed low VH values (p ˂ 0.001). For AS, 90-degree orientation showed a significant decrease in VH at 60, 90, and 120 min when compared with 0- and 45-degree orientation (p ˂ 0.001), while ND showed no significant difference in VH with different printing orientations (p ˃ 0.05). The VH of AS and ND improved when increasing post-curing time to 120 min (p ˂ 0.001), and the printing orientations and post-curing time did not affect the Ra of 3D-printed DBRs.
Collapse
Affiliation(s)
- Yousif A. Al-Dulaijan
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Leenah Alsulaimi
- Fellowship of Pediatric Dentistry Program, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Reema Alotaibi
- College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Areej Alboainain
- College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Haidar Alalawi
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Sami Alshehri
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Soban Q. Khan
- Department of Dental Education, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohammed Alsaloum
- Restorative and Prosthetic Dental Sciences Department, College of Dentistry, King Saud bin Abdulaziz University of Health Sciences, P.O. Box 3183, Riyadh 11426, Saudi Arabia
- King Abdullah International Medical Research Centre, Ministry of National Guard Health Affairs, P.O. Box 3183, Riyadh 11481, Saudi Arabia
| | - Hamad S. AlRumaih
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Abdulkareem A. Alhumaidan
- Department of Preventive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Mohammed M. Gad
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
31
|
Elkhouly HI, Ali EM, El-Sheikh MN, Hassan AESM. An investigated organic and inorganic reinforcement as an effective economical filler of poly (methyl methacrylate) nanocomposites. Sci Rep 2022; 12:16416. [PMID: 36180521 PMCID: PMC9525612 DOI: 10.1038/s41598-022-20393-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
Polymer matrix composites have garnered the interest of the dentistry sector. Nano-fillers are frequently used as reinforcements in these composites to enhance their characteristics. Poly (methyl methacrylate) was filled with date seed nanoparticles (DSNP) and titanium oxide nanoparticles (TiO2NP). In this work, two nanofillers (DSNP and TiO2NP) were analyzed using Fourier-transform infrared spectroscopy (FTIR). In addition, the features of the PMMA-nanofiller composite were experimentally evaluated via compression, micro-hardness, wear rate (WR), and coefficients of friction (µ) testing. Utilizing a scanning electron microscope (SEM), the microstructure of the PMMA-DSNP composite was examined. The results of the experiments on the nanocomposites demonstrated that the elastic modulus, microhardness, wear resistance, and friction resistance increased with an increase in DSNP content to 1.2 wt, in comparison to TiO2NP at the same concentration. Finally, according to the guidelines, the ideal weight was determined to be 1.2 wt%, filler in the form of DSNP, at a normal load of 10 N.
Collapse
Affiliation(s)
- Heba I Elkhouly
- Department of Mechanical Engineering, Faculty of Engineering, Beni-Suef University, Beni-Suef, Egypt.
| | - Eman M Ali
- Production Technology Department, Faculty of Technology and Education, Beni-Suef University, Beni-Suef, Egypt
| | - M N El-Sheikh
- Production Technology Department, Faculty of Technology and Education, Beni-Suef University, Beni-Suef, Egypt
| | - A El-Sayed M Hassan
- Production Technology Department, Faculty of Technology and Education, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
32
|
Hassan SA, Beleidy M, El-din YA. Biocompatibility and Surface Roughness of Different Sustainable Dental Composite Blocks: Comprehensive In Vitro Study. ACS OMEGA 2022; 7:34258-34267. [PMID: 36188235 PMCID: PMC9520711 DOI: 10.1021/acsomega.2c03745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
The study purposed to investigate the biocompatibility and sustainability of two computer-aided design/computer-aided manufacturing (CAD/CAM) resin-based composites compared to a resin-modified ceramic in terms of surface roughness, biofilm formation, cytotoxicity, genotoxicity, and cellular changes observed under transmission electron microscopy (TEM). Three CAD/CAM blocks were used, two resin-based composites [Brilliant Crios (BC) and Cerasmart, (CS) and one hybrid ceramic (Vita Enamic (EN)]. Each block was sectioned into 10 × 12 × 2 mm specimens, followed by finishing and polishing. Each specimen was evaluated for surface roughness using 3D optical profilometry and scanned by scanning electron microscopy. Biofilm formation and its relation to surface roughness have been investigated for all tested materials. A Hep-2 cell line was used to investigate the viability through MTT assay. The cytotoxicity of the materials was measured at 24, 48, and 168 h. The activity of P53, caspase 3, and cytochrome C was evaluated to detect the genotoxicity of different groups, followed by TEM tracking of the cellular changes. Statistical analysis was implemented by utilizing a one-way analysis of variance test. The significance was set at P ≤ 0.05. With regard to the surface roughness, no statistically significant differences were shown between groups. BC possessed the highest biofilm formation value, followed by EN and CS, with no significance between them. No correlation between surface roughness of tested materials and biofilm formation was shown. Considering viability, the highest values were recorded for EN, whereas BC showed the lowest values. P53-fold changes in EN were significantly the lowest, indicating less genotoxicity. Within the current study's limitations, BC showed the highest biofilm formation. However, no significant surface roughness difference or correlation with biofilm formation was observed in tested materials. EN showed the lowest cytotoxicity and the highest viability. EN revealed the best compatibility performance among tested materials. On the contrary, the BC exhibited fewer preferences.
Collapse
Affiliation(s)
- Soha A. Hassan
- Associate
Professor of Cell Biology and Genetics Faculty of Dentistry-October
6 University, Giza 12511, Egypt
| | - Marwa Beleidy
- Lecturer
of Fixed Prosthodontics, Faculty of Dentistry, October 6 University, Giza 12511, Egypt
| | - Yasmine Alaa El-din
- Lecturer
of Oral & Maxillofacial Pathology, Faculty of Dentistry, October 6 University, Giza 12511, Egypt
| |
Collapse
|
33
|
Surgical planning and finite element analysis for the neurocraneal protection in cranioplasty with PMMA: A case study. Heliyon 2022; 8:e10706. [PMID: 36185133 PMCID: PMC9519503 DOI: 10.1016/j.heliyon.2022.e10706] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/03/2022] [Accepted: 09/15/2022] [Indexed: 11/21/2022] Open
Abstract
New developments in terms of additive manufacturing, computational tools and mathematical simulation techniques have favored the development of successful methodologies for the restoration or restitution of bone structures in the human body. Likewise, achievements in Materials Science have allowed the development of biocompatible composites capable of achieving mechanical characteristics and biological similarities comparable to those of natural bone. Without considering the advantages and disadvantages of some biomaterials with respect to others, this research aims to evaluate the surgical planning, the design process, the impact resistance and the critical deflection of a customized cranial implant manufactured from polymethylmethacrylate (PMMA). With the support of finite element methods (FEM), the level of neurocranial protection offered by the implant is assessed.
Collapse
|
34
|
Farid M, Mohamed F, Mehanna R, Abd-ellah M, Abdelrahman H. Cytotoxic assessment of 3D printed photoinitiated prosthodontic resins versus heat polymerized acrylic resin (In-Vitro Study).. [DOI: 10.21203/rs.3.rs-1948364/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abstract
Background: Although 3D printed photoinitiated resins are among the many materials utilized in prosthetic appliances today, biocompatibility for photocuring 3D printing materials for direct and long-term contacting with living body remain scarce. The purpose of this in vitro study was to evaluate the cell viability of human gingival fibroblasts after the exposure to two different 3D printed photoinitiated resins and compare it to the traditionally used heat polymerized acrylic resin for up to 7 days.Methods: This comparative in vitro study of sample size (n= 96), where the 3D printed resin disc samples (n= 64), were divided into two test groups, test group 1 (TG1) for NextDent Base resin (n= 32) and test group 2 (TG2) for Dental LT clear resin (n= 32), to be compared to Heat polymerized acrylic resin samples (Reference group (RG)) (n= 32). Human gingival fibroblasts were extracted from attached keratinized gingival tissues collected from healthy patient undergoing clinical crown lengthening procedure, cellular viability using MTT assay in response to TG1, TG2 and RG samples was assessed throughout four-time intervals (24, 48, 72 and 168 hours). The One-Way ANOVA test followed by Tukey’s post hoc test and Repeated Measures ANOVA test were used for statistical analyses, statistically significant different at P value ≤ 0.05Results: Throughout time intervals, there was a decrease in cell viability of all groups but with favorable cell viability which was more that 90% denoting non cytotoxicity. It was found to be significant among RG (P< 0.0001). The highest cell viability was found after 24 hours among all groups; however, the least viability was found after 48 hours among TG1 and RG, and among TG2 after 72 hours. After 168 hours, there was a non-statistical significant change in cell viability between groups (P= 0.526). there was significant increase in optical density for all groups throughout time intervals (P< 0.0001).Conclusion: Photoinitiated resins are comparable to traditionally used heat polymerized acrylic resin with equivalent cytotoxic effect for long term use. 3D printed photoinitiated resins are biocompatible and suggested for long term intraoral use.
Collapse
Affiliation(s)
- Maisa Farid
- Prosthodontic Department, Faculty of Dentistry, Alexandria University
| | - Faten Mohamed
- Prosthodontic Department, Faculty of Dentistry, Alexandria University
| | - Radwa Mehanna
- Medical physiology Department, Faculty of Medicine, Alexandria University
| | - Mervat Abd-ELLAH
- Prosthodontic Department, Faculty of Dentistry, Alexandria University
| | - Hams Abdelrahman
- Dental Public Health Department, Faculty of Dentistry, Alexandria University
| |
Collapse
|
35
|
Polychronakis N, Dimitriadi M, Polyzois G, Eliades G. The effect of cooling procedures on monomer elution from heat-cured polymethyl methacrylate denture base materials. J Appl Oral Sci 2022; 30:e20220161. [PMID: 35894388 PMCID: PMC9311270 DOI: 10.1590/1678-7757-2022-0161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/16/2022] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE To evaluate the amount of methyl methacrylate (MMA) released in water from heat-cured polymethyl methacrylate (PMMA) denture base materials subjected to different cooling procedures. METHODOLOGY Disk-shaped specimens (Ø:17 mm, h:2 mm) were fabricated from Paladon 65 (PA), ProBase Hot (PB), Stellon QC-20 (QC) and Vertex Rapid Simplified (VE) denture materials using five different cooling procedures (n=3/procedure): A) Bench-cooling for 10 min and then under running water for 15 min; B) Cooling in water-bath until room temperature; C) Cooling under running water for 15 min; D) Bench-cooling, and E) Bench-cooling for 30 min and under running water for 15 min. A, B, D, E procedures were proposed by the manufacturers, while the C was selected as the fastest one. Control specimens (n=3/material) were fabricated using a long polymerization cycle and bench-cooling. After deflasking, the specimens were ground, polished and stored in individual containers with 10 ml of distilled water for seven days (37oC). The amount of water-eluted MMA was measured per container using isocratic ultra-fast liquid chromatography (UFLC). Data were analyzed using Student's and Welch's t-test (α=0.05). RESULTS MMA values below the lower quantification limit (LoQ=5.9 ppm) were registered in B, C, E (PA); E (PB) and B, D, E (QC) procedures, whereas values below the detection limit (LoD=1.96 ppm) were registered in A, D (PA); A, B, C, D (PB); C, D, E (VE) and in all specimens of the control group. A, B (VE) and A, C (QC) procedures yielded values ranging from 6.4 to 13.2 ppm with insignificant differences in material and procedure factors (p>0.05). CONCLUSIONS The cooling procedures may affect the monomer elution from denture base materials. The Ε procedure may be considered a universal cooling procedure compared to the ones proposed by the manufacturers, with the lowest residual monomer elution in water.
Collapse
Affiliation(s)
- Nick Polychronakis
- National and Kapodistrian University of Athens, School of Dentistry, Department of Prosthodontics, Athens, Greece
| | - Maria Dimitriadi
- National and Kapodistrian University of Athens, School of Dentistry, Department of Biomaterials, Greece
| | - Gregory Polyzois
- National and Kapodistrian University of Athens, School of Dentistry, Department of Prosthodontics, Athens, Greece
| | - George Eliades
- National and Kapodistrian University of Athens, School of Dentistry, Department of Biomaterials, Greece
| |
Collapse
|
36
|
Alshaikh AA, Khattar A, Almindil IA, Alsaif MH, Akhtar S, Khan SQ, Gad MM. 3D-Printed Nanocomposite Denture-Base Resins: Effect of ZrO 2 Nanoparticles on the Mechanical and Surface Properties In Vitro. NANOMATERIALS 2022; 12:nano12142451. [PMID: 35889675 PMCID: PMC9315924 DOI: 10.3390/nano12142451] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023]
Abstract
Due to the low mechanical performances of 3D-printed denture base resins, ZrO2 nanoparticles (ZrO2NPs) were incorporated into different 3D-printed resins and their effects on the flexure strength, elastic modulus, impact strength, hardness, and surface roughness were evaluated. A total of 286 specimens were fabricated in dimensions per respective test and divided according to materials into three groups: heat-polymerized as a control group and two 3D-printed resins (NextDent and ASIGA) which were modified with 0.5 wt.%, 1 wt.%, 3 wt.%, and 5 wt.% ZrO2NPs. The flexure strength and elastic modulus, impact strength, hardness, and surface roughness (µm) were measured using the three-point bending test, Charpy’s impact test, Vickers hardness test, and a profilometer, respectively. The data were analyzed by ANOVA and Tukey’s post hoc test (α = 0.05). The results showed that, in comparison to heat-polymerized resin, the unmodified 3D-printed resins showed a significant decrease in all tested properties (p < 0.001) except surface roughness (p = 0.11). In between 3D-printed resins, the addition of ZrO2NPs to 3D-printed resins showed a significant increase in flexure strength, impact strength, and hardness (p < 0.05) while showing no significant differences in surface roughness and elastic modulus (p > 0.05). Our study demonstrated that the unmodified 3D-printed resins showed inferior mechanical behavior when compared with heat-polymerized acrylic resin while the addition of ZrO2NPs improved the properties of 3D-printed resins. Therefore, the introduced 3D-printable nanocomposite denture-base resins are suitable for clinical use.
Collapse
Affiliation(s)
- Ali A. Alshaikh
- College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (A.A.A.); (A.K.); (I.A.A.); (M.H.A.)
| | - Abdulrahman Khattar
- College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (A.A.A.); (A.K.); (I.A.A.); (M.H.A.)
| | - Ibrahim A. Almindil
- College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (A.A.A.); (A.K.); (I.A.A.); (M.H.A.)
| | - Majed H. Alsaif
- College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia; (A.A.A.); (A.K.); (I.A.A.); (M.H.A.)
| | - Sultan Akhtar
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Correspondence: (S.A.); (M.M.G.); Tel.: +966-592502080 (M.M.G.)
| | - Soban Q. Khan
- Department of Dental Education, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31411, Saudi Arabia;
| | - Mohammed M. Gad
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Correspondence: (S.A.); (M.M.G.); Tel.: +966-592502080 (M.M.G.)
| |
Collapse
|
37
|
Cytotoxicity and antimicrobial efficiency of ZrO2 nanoparticles reinforced 3D printed resins. Dent Mater 2022; 38:1432-1442. [DOI: 10.1016/j.dental.2022.06.030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 11/18/2022]
|
38
|
Polymer-solvent interaction and conformational changes at a molecular level: Implication to solvent-assisted deformation and aggregation at the polymer surface. J Colloid Interface Sci 2022; 616:221-233. [DOI: 10.1016/j.jcis.2022.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/17/2022]
|
39
|
Bürgers R, Schubert A, Müller J, Krohn S, Rödiger M, Leha A, Wassmann T. Cytotoxicity of 3D‐printed, milled, and conventional oral splint resins to L929 cells and human gingival fibroblasts. Clin Exp Dent Res 2022; 8:650-657. [PMID: 35570327 PMCID: PMC9209804 DOI: 10.1002/cre2.592] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/01/2022] [Indexed: 11/22/2022] Open
Abstract
Objectives Evidence on the biocompatibility of three‐dimensional (3D)‐printed and milled resins for oral splints is limited. This in vitro study assessed the influence of the manufacturing method on the cytotoxicity of oral splint resins on L929 cells and human gingival fibroblasts (GF1). Materials and Methods Standardized specimens of four 3D‐printed, two‐milled, one‐thermoformed, and one‐pressed splint resin were incubated with L929 and GF1 cells for 24 h. Immunofluorescence and WST‐8 assay were performed to evaluate cytotoxic effects. One‐way analysis of variance and Tukey's multiple comparison test were applied with the variables “splint resin” and “manufacturing method” (p < .05). Results Immunofluorescence showed attachment of L929 and GF1 cells to the splint resins. Irrespective of the manufacturing method, the WST‐8 assay revealed significant differences between splint resins for the viability of L929 and GF1 cells. L929 cells generally showed lower viability rates than GF1 cells. The evaluation of cell viability by the manufacturing method showed no significant differences between 3D printing, milling, and conventional methods. Conclusions The cytotoxic effects of 3D‐printed, milled, and conventional oral splint resins were similar, indicating minor influence of the manufacturing method on biocompatibility. Cytotoxicity of the resins was below a critical threshold in GF1 cells. The chemical composition might be more crucial than the manufacturing method for the biocompatibility of splint resins.
Collapse
Affiliation(s)
- Ralf Bürgers
- Department of ProsthodonticsUniversity Medical Center GöttingenGöttingenGermany
| | - Andrea Schubert
- Department of ProsthodonticsUniversity Medical Center GöttingenGöttingenGermany
| | - Jonas Müller
- Department of ProsthodonticsUniversity Medical Center GöttingenGöttingenGermany
| | - Sebastian Krohn
- Department of ProsthodonticsUniversity Medical Center GöttingenGöttingenGermany
| | - Matthias Rödiger
- Department of ProsthodonticsUniversity Medical Center GöttingenGöttingenGermany
| | - Andreas Leha
- Department of Medical StatisticsUniversity Medical Center GöttingenGöttingenGermany
| | - Torsten Wassmann
- Department of ProsthodonticsUniversity Medical Center GöttingenGöttingenGermany
| |
Collapse
|
40
|
Integration of Biofunctional Molecules into 3D-Printed Polymeric Micro-/Nanostructures. Polymers (Basel) 2022; 14:polym14071327. [PMID: 35406201 PMCID: PMC9002480 DOI: 10.3390/polym14071327] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023] Open
Abstract
Three-dimensional printing at the micro-/nanoscale represents a new challenge in research and development to achieve direct printing down to nanometre-sized objects. Here, FluidFM, a combination of microfluidics with atomic force microscopy, offers attractive options to fabricate hierarchical polymer structures at different scales. However, little is known about the effect of the substrate on the printed structures and the integration of (bio)functional groups into the polymer inks. In this study, we printed micro-/nanostructures on surfaces with different wetting properties, and integrated molecules with different functional groups (rhodamine as a fluorescent label and biotin as a binding tag for proteins) into the base polymer ink. The substrate wetting properties strongly affected the printing results, in that the lateral feature sizes increased with increasing substrate hydrophilicity. Overall, ink modification only caused minor changes in the stiffness of the printed structures. This shows the generality of the approach, as significant changes in the mechanical properties on chemical functionalization could be confounders in bioapplications. The retained functionality of the obtained structures after UV curing was demonstrated by selective binding of streptavidin to the printed structures. The ability to incorporate binding tags to achieve specific interactions between relevant proteins and the fabricated micro-/nanostructures, without compromising the mechanical properties, paves a way for numerous bio and sensing applications. Additional flexibility is obtained by tuning the substrate properties for feature size control, and the option to obtain functionalized printed structures without post-processing procedures will contribute to the development of 3D printing for biological applications, using FluidFM and similar dispensing techniques.
Collapse
|
41
|
Dental Poly(methyl methacrylate)-Based Resin Containing a Nanoporous Silica Filler. J Funct Biomater 2022; 13:jfb13010032. [PMID: 35323232 PMCID: PMC8948615 DOI: 10.3390/jfb13010032] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/11/2022] [Accepted: 03/11/2022] [Indexed: 02/04/2023] Open
Abstract
Poly(methyl methacrylate) (PMMA)-based resins have been conventionally used in dental prostheses owing to their good biocompatibility. However, PMMA-based resins have relatively poor mechanical properties. In the present study, a novel nanoporous silica filler was developed and introduced into PMMA-based resins to improve their mechanical properties. The filler was prepared by sintering a green body composed of silica and an organic binder, followed by grinding to a fine powder and subsequent silanization. The filler was added to photocurable PMMA-based resin, which was prepared from MMA, PMMA, ethylene glycol dimethacrylate, and a photo-initiator. The filler was characterized by scanning electron microscopy (SEM), X-ray diffraction analysis, nitrogen sorption porosimetry, and Fourier transform infrared (FT-IR) spectroscopy. The PMMA-based resins were characterized by SEM and FT-IR, and the mechanical properties (Vickers hardness, flexural modulus, and flexural strength) and physicochemical properties (water sorption and solubility) were evaluated. The results suggested that the filler consisted of microparticles with nanopores. The filler at 23 wt % was well dispersed in the PMMA-based resin matrix. The mechanical and physicochemical properties of the PMMA-based resin improved significantly with the addition of the developed filler. Therefore, such filler-loaded PMMA-based resins are potential candidates for improving the strength and durability of polymer-based crown and denture base.
Collapse
|
42
|
Analysis of the residual monomer content in milled and 3D-printed removable CAD-CAM Murali complete dentures: an in vitro study. J Dent 2022; 120:104094. [PMID: 35301079 DOI: 10.1016/j.jdent.2022.104094] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/10/2022] [Accepted: 03/13/2022] [Indexed: 11/23/2022] Open
Abstract
OBJECTIVE The study aimed to quantitatively evaluate the elution of methylmethacrylate from CAD-CAM manufactured removable complete dentures (RCDs) using high performance liquid chromatography (HPLC). METHODS Thirty-two RCDs were manufactured following either the CNC-milling (Milled: n=8) or the 3D-printing (n=24) protocols. The 3D-printed dentures were further categorized into three groups based on their post-production rinsing cycles [Extended wash cycle (EWC), Standard wash cycle (SWC), and SWC and additional Durécon coating (SWC2)]. HPLC was used to evaluate the methylmethacrylate concentrations (MMCs) eluted from the dentures in each group for different time periods (1, 2, 4, 8, and 24 hours). Mean and standard deviations were calculated for the MMCs; data was verified for normal distribution, ANOVA and post hoc tests were applied for statistical analyses (⍺=0.05). RESULTS The HPLC revealed that all the denture groups recorded some amounts of MMCs, with significant differences [F (3, 31) = 23.646, p<0.0001]. The milled denture group had the highest MMCs at 24 hours when compared to the EWC (p<0.0001), SWC (p=0.001), and SWC2 (p<0.0001) denture groups. SWC had a higher MMC than EWC (p=0.032) and SWC2 (p=0.015). No differences were found in MMCs when comparing EWC and SWC2 (p=0.989). CONCLUSION Methylmethacrylate concentrations were significantly lower in 3D-printed RCDs than in milled RCDs when using the resins employed in this study. Furthermore, the MMCs can be further decreased in the 3D-printed RCDs when coated with an additional thin protective layer (Durécon) by following the manufacturer-recommended rinsing protocol or when an extended isopropanol wash cycle is adopted.
Collapse
|
43
|
Ji HB, Hong JY, Kim CR, Min CH, Han JH, Kim MJ, Kim SN, Lee C, Choy YB. Microchannel-embedded implantable device with fibrosis suppression for prolonged controlled drug delivery. Drug Deliv 2022; 29:489-498. [PMID: 35147052 PMCID: PMC8843219 DOI: 10.1080/10717544.2022.2032873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
For the prolonged, controlled delivery of systemic drugs, we propose an implantable drug-delivery chip (DDC) embedded with pairs of a microchannel and drug-reservoir serving as a drug diffusion barrier and depot, respectively. We pursued a DDC for dual drugs: a main-purpose drug, diclofenac (DF), for systemic exposure, and an antifibrotic drug, tranilast (TR), for local delivery. Thus, the problematic fibrotic tissue formation around the implanted device could be diminished, thereby less hindrance in systemic exposure of DF released from the DDC. First, we separately prepared DDCs for DF or TR delivery, and sought to find a proper microchannel length for a rapid onset and sustained pattern of drug release, as well as the required drug dose. Then, two distinct DDCs for DF and TR delivery, respectively, were assembled to produce a Dual_DDC for the concurrent delivery of DF and TR. When the Dual_DDC was implanted in living rats, the DF concentration in blood plasma did not drop significantly in the later periods after implantation relative to that in the early periods before fibrotic tissue formation. When the Dual_DDC was implanted without TR, there was a significant decrease in the blood plasma DF concentration as the time elapsed after implantation. Biopsied tissues around the Dual_DDC exhibited a significant decrease in the fibrotic capsule thickness and collagen density relative to the Dual_DDC without TR, owing to the effect of the local, sustained release of the TR.
Collapse
Affiliation(s)
- Han Bi Ji
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jae Young Hong
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul, Republic of Korea
| | - Cho Rim Kim
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul, Republic of Korea
| | - Chang Hee Min
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul, Republic of Korea
| | - Jae Hoon Han
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul, Republic of Korea
| | - Min Ji Kim
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul, Republic of Korea
| | - Se-Na Kim
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Cheol Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Bin Choy
- Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul, Republic of Korea.,Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul, Republic of Korea.,Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
44
|
Scarano A, Rapone B, Amuso D, Inchingolo F, Lorusso F. Hyaluronic Acid Fillers Enriched with Glycine and Proline in Eyebrow Augmentation Procedure. Aesthetic Plast Surg 2022; 46:419-428. [PMID: 34231022 PMCID: PMC8831293 DOI: 10.1007/s00266-021-02412-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/05/2021] [Indexed: 12/21/2022]
Abstract
Background The eyebrow area is a clinically critical district due to the anatomical complexity and the propensity to aging-related atrophy. Hyaluronic acid fillers have been proposed to recover the dermal volume of the facial and lips regions. Aim The aim of the present investigation was to evaluate hyaluronic acid fillers enriched with glycine and proline for the treatment of eyebrow augmentation. Methods A total of 15 healthy patients were treated with eyebrow augmentation procedure. The distance between mid-bipupil to lateral eyebrow and mid-eyebrow to the medial eyebrow was measured before, immediately after treatment and at follow-up of 6 months. Results The healing period was uneventful, and no evidence of inflammation or swelling associated with the treatment was reported. No macroscopical alteration was reported in the surrounding tissues with no evidences of visible wheals or lumps in the treated sites at the follow-up. Before treatment, the angle was equal to 9.32 ± 0.2°, while after treatment it was 11.21 ± 0.4° (p < 0.01); after three and 6 weeks, it was, respectively, 10.66 ± 0.2° (p<0.05) and 10.02 ± 0.3°(p > 0.05). Conclusions The study results suggest that the hyaluronic acid fillers enriched with glycine and proline treatment resulted as being a useful procedure for augmentation, contour and volume definition and elevation of the eyebrow region with a high-level aesthetic result. Level of Evidence IV This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266.
Collapse
|
45
|
Prosthetic Materials Used for Implant-Supported Restorations and Their Biochemical Oral Interactions: A Narrative Review. MATERIALS 2022; 15:ma15031016. [PMID: 35160962 PMCID: PMC8839238 DOI: 10.3390/ma15031016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022]
Abstract
The purpose of this study is to outline relevant elements regarding the biochemical interactions between prosthetic materials used for obtaining implant-supported restorations and the oral environment. Implant-supported prostheses have seen unprecedented development in recent years, benefiting from the emergence of both new prosthetic materials (with increased biocompatibility and very good mechanical behavior), and computerized manufacturing technologies, which offer predictability, accuracy, and reproducibility. On the other hand, the quality of conventional materials for obtaining implant-supported prostheses is acknowledged, as they have already proven their clinical performance. The properties of PMMA (poly (methyl methacrylate))-which is a representative interim material frequently used in prosthodontics-and of PEEK (polyether ether ketone)-a biomaterial which is placed on the border between interim and final prosthetic use-are highlighted in order to illustrate the complex way these materials interact with the oral environment. In regard to definitive prosthetic materials used for obtaining implant-supported prostheses, emphasis is placed on zirconia-based ceramics. Zirconia exhibits several distinctive advantages (excellent aesthetics, good mechanical behavior, biocompatibility), through which its clinical applicability has become increasingly wide. Zirconia's interaction with the oral environment (fibroblasts, osteoblasts, dental pulp cells, macrophages) is presented in a relevant synthesis, thus revealing its good biocompatibility.
Collapse
|
46
|
Wei X, Pan Y, Wang M, Wang Y, Lin H, Jiang L, Lin D, Cheng H. Comparative analysis of leaching residual monomer and biological effects of four types of conventional and CAD/CAM dental polymers: an in vitro study. Clin Oral Investig 2022; 26:2887-2898. [PMID: 35083585 DOI: 10.1007/s00784-021-04271-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 11/02/2021] [Indexed: 01/25/2023]
Abstract
OBJECTIVES The objective of this study is to investigate leaching residual monomer and biological effects of four types of conventional and computer-aided design/computer-aided manufacturing (CAD/CAM) dental polymers on human gingival fibroblasts (HGFs). MATERIALS AND METHODS A total of 540 disk-shaped specimens were fabricated from four different materials (n=135 per group): compression-molding polymethylmethacrylate (PMMA) (conventional denture polymer), CAD/CAM PMMA (CAD/CAM denture polymer), bis-acrylic composite resin (conventional temporary polymer), and CAD/CAM PMMA (CAD/CAM temporary polymer). Specimens were eluted in cell culture medium for 72 h at 37°C, and the residual monomer in eluates subsequently was measured by high-performance liquid chromatography (HPLC). The biological effects of material eluates on HGFs were analyzed by CCK-8 assay, flow cytometry, real-time quantitative PCR, Western blotting, and enzyme-linked immunosorbent assay (ELISA) to identify cell death patterns and its biological mechanism. RESULTS Methyl methacrylate (MMA) was detected only in compression-molding PMMA, and by-products were detected in bis-acrylic composite resin. The cell proliferation of CAD/CAM denture polymer or CAD/CAM temporary polymer was greater than that of compression-molding PMMA or bis-acrylic composite resin at 72 h in culture. No apoptosis and necrosis were detected in CAD/CAM dental polymers. Apoptosis was detected only in bis-acrylic composite resin and further confirmed by the upregulation of Bax and cleaved Caspase-3, as well as the downregulation of Bcl-2 gene. And no significant variation in inflammatory cytokines secretion was observed in all materials. CONCLUSIONS CAD/CAM dental polymers (including temporary and denture polymers) have favorable biocompatibility due to lower residual monomer, which provides scientific evidence to the controversy of biocompatibility of conventional and CAD/CAM dental polymers. CLINICAL RELEVANCE The use of CAD/CAM dental polymers is recommended in the fabrication of temporary restorations and dentures due to their favorable biocompatibility.
Collapse
Affiliation(s)
- Xia Wei
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350004, Fujian, China
| | - Yu Pan
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350004, Fujian, China
| | - Mingjun Wang
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350004, Fujian, China
| | - Yinghui Wang
- Institute of Stomatology and Research Center of Dental Esthetics and Biomechanics, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, 350002, Fujian, China
| | - Honglei Lin
- Institute of Stomatology and Research Center of Dental Esthetics and Biomechanics, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, 350002, Fujian, China
| | - Lei Jiang
- Institute of Stomatology and Research Center of Dental Esthetics and Biomechanics, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, 350002, Fujian, China
| | - Donghong Lin
- Department of Clinical Laboratory, School of Medical Technology and Engineering, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350004, Fujian, China.
| | - Hui Cheng
- Fujian Key Laboratory of Oral Diseases and Fujian Provincial Engineering Research Center of Oral Biomaterial and Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 88 Jiaotong Road, Fuzhou, 350004, Fujian, China.
| |
Collapse
|
47
|
Tieh MT, Waddell JN, Choi JJE. Optical and mechanical properties of conventional, milled and 3D-printed denture teeth. J Mech Behav Biomed Mater 2021; 126:105061. [PMID: 34963102 DOI: 10.1016/j.jmbbm.2021.105061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Investigate the effect of various liquids on the optical properties and Vickers hardness of conventional, milled and 3D-printed denture teeth. METHODS Six different types of denture teeth (Maxillary anteriors of three different conventional teeth, Vivodent DCL, SR Phonares II, Vita Physiodens; milled teeth, IvotionDent; and two different 3D-printed teeth, Asiga DentaTooth and NextDent C&B MFH) were investigated (total n = 336). The labial surface of each specimen was prepared to a dimension of 10 × 5 × 3mm. Specimens were immersed in artificial saliva, coffee, red wine and denture cleaner with artificial aging to simulate denture use of 12 and 24 months in vivo. Measurements of translucency parameter (TP), shade change (ΔE), surface roughness (Ra) and Vickers hardness (VHN) were conducted at baseline and after artificial aging while immersed in the liquids at each timeframe. Data were statistically analysed by ANOVA and post-hoc test (SPSS Ver 27). Surfaces of specimens were analysed under scanning electron microscopy (SEM). RESULTS Milled teeth had the highest overall translucency parameter (5.33 ± 0.76-7.3 ± 0.99). All materials had statistically significant change in translucency parameter and shade after 24 months simulated aging (p < 0.05), especially the milled and 3D-printed teeth (p < 0.01). Surface roughness of all materials were under plaque accumulation threshold Ra = 0.2 μm. At baseline, Vita Physiodens teeth (PMMA with microfillers) demonstrated the highest hardness (33.99 kgf/mm2±3.7), whereas both 3D-printed materials exhibited the lowest hardness (13.27 kgf/mm2±0.36-18.13 kgf/mm2±0.93). Artificial saliva, red wine and denture cleaner had a statistically significant impact (p < 0.05) on hardness of all materials (12.1 kgf/mm2±1.17-30.77 kgf/mm2±2.98). CONCLUSIONS Milled teeth exhibited the best optical properties (highest overall translucency parameter and lowest shade change). Milled teeth were also the only material that showed colour change (ΔE values) within clinically acceptable limits. Denture cleaner had the most impact on optical and mechanical properties of all materials. Surface roughness and hardness of 3D-printed teeth had the most change after artificial aging.
Collapse
Affiliation(s)
- Mei Ting Tieh
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin, 9016, New Zealand
| | - John Neil Waddell
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin, 9016, New Zealand
| | - Joanne Jung Eun Choi
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, 310 Great King Street, Dunedin, 9016, New Zealand.
| |
Collapse
|
48
|
Hata K, Ikeda H, Nagamatsu Y, Masaki C, Hosokawa R, Shimizu H. Development of Dental Poly(methyl methacrylate)-Based Resin for Stereolithography Additive Manufacturing. Polymers (Basel) 2021; 13:polym13244435. [PMID: 34960985 PMCID: PMC8706392 DOI: 10.3390/polym13244435] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Poly(methyl methacrylate) (PMMA) is widely used in dental applications. However, PMMA specialized for stereolithography (SLA) additive manufacturing (3D-printing) has not been developed yet. This study aims to develop a novel PMMA-based resin for SLA 3D-printing by mixing methyl methacrylate (MMA), ethylene glycol dimethacrylate (EGDMA), and PMMA powder in various mixing ratios. The printability and the viscosity of the PMMA-based resins were examined to determine their suitability for 3D-printing. The mechanical properties (flexural strength and Vickers hardness), shear bond strength, degree of conversion, physicochemical properties (water sorption and solubility), and cytotoxicity for L929 cells of the resulting resins were compared with those of three commercial resins: one self-cured resin and two 3D-print resins. EGDMA and PMMA were found to be essential components for SLA 3D-printing. The viscosity increased with PMMA content, while the mechanical properties improved as EGDMA content increased. The shear bond strength tended to decrease as EGDMA increased. Based on these characteristics, the optimal composition was determined to be 30% PMMA, 56% EGDMA, 14% MMA with flexural strength (84.6 ± 7.1 MPa), Vickers hardness (21.6 ± 1.9), and shear bond strength (10.5 ± 1.8 MPa) which were comparable to or higher than those of commercial resins. The resin’s degree of conversion (71.5 ± 0.7%), water sorption (19.7 ± 0.6 μg/mm3), solubility (below detection limit), and cell viability (80.7 ± 6.2% at day 10) were all acceptable for use in an oral environment. The printable PMMA-based resin is a potential candidate material for dental applications.
Collapse
Affiliation(s)
- Kentaro Hata
- Division of Oral Reconstruction and Rehabilitation, Department of Oral Functions, Kyushu Dental University, Fukuoka 803-8580, Japan; (K.H.); (C.M.); (R.H.)
- Division of Biomaterials, Department of Oral Functions, Kyushu Dental University, Fukuoka 803-8580, Japan; (Y.N.); (H.S.)
| | - Hiroshi Ikeda
- Division of Biomaterials, Department of Oral Functions, Kyushu Dental University, Fukuoka 803-8580, Japan; (Y.N.); (H.S.)
- Correspondence: ; Tel.: +81-93-582-1131; Fax: +81-93-592-1699
| | - Yuki Nagamatsu
- Division of Biomaterials, Department of Oral Functions, Kyushu Dental University, Fukuoka 803-8580, Japan; (Y.N.); (H.S.)
| | - Chihiro Masaki
- Division of Oral Reconstruction and Rehabilitation, Department of Oral Functions, Kyushu Dental University, Fukuoka 803-8580, Japan; (K.H.); (C.M.); (R.H.)
| | - Ryuji Hosokawa
- Division of Oral Reconstruction and Rehabilitation, Department of Oral Functions, Kyushu Dental University, Fukuoka 803-8580, Japan; (K.H.); (C.M.); (R.H.)
| | - Hiroshi Shimizu
- Division of Biomaterials, Department of Oral Functions, Kyushu Dental University, Fukuoka 803-8580, Japan; (Y.N.); (H.S.)
| |
Collapse
|
49
|
Hurtuková K, Juřicová V, Fajstavrová K, Fajstavr D, Slepičková Kasálková N, Rimpelová S, Švorčík V, Slepička P. Cytocompatibility of Polymethyl Methacrylate Honeycomb-like Pattern on Perfluorinated Polymer. Polymers (Basel) 2021; 13:polym13213663. [PMID: 34771220 PMCID: PMC8587905 DOI: 10.3390/polym13213663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022] Open
Abstract
In this study, we present a simple approach for developing a biocompatible polymer scaffold with a honeycomb-like micropattern. We aimed to combine a plasma treatment of fluorinated ethylene propylene (FEP) substrate with an improved phase separation technique. The plasma exposure served for modification of the polymer surface properties, such as roughness, surface chemistry, and wettability. The treated FEP substrate was applied for the growth of a honeycomb-like pattern from a solution of polymethyl methacrylate (PMMA). The properties of the pattern were strongly dependent on the conditions of plasma exposure of the FEP substrate. The physico-chemical properties of the prepared pattern, such as changes in wettability, aging, morphology, and surface chemistry, were determined. Further, we have examined the cellular response of human osteoblasts (U-2 OS) on the modified substrates. The micropattern prepared with a selected combination of surface activation and amount of PMMA for honeycomb construction showed a positive effect on U-2 OS cell adhesion and proliferation. Samples with higher PMMA content (3 and 4 g) formed more periodic hexagonal structures on the surface compared to its lower amount (1 and 2 g), which led to a significant increase in the pattern cytocompatibility compared to pristine or plasma-treated FEP.
Collapse
Affiliation(s)
- Klaudia Hurtuková
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (K.H.); (V.J.); (K.F.); (D.F.); (N.S.K.); (V.Š.)
| | - Veronika Juřicová
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (K.H.); (V.J.); (K.F.); (D.F.); (N.S.K.); (V.Š.)
| | - Klára Fajstavrová
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (K.H.); (V.J.); (K.F.); (D.F.); (N.S.K.); (V.Š.)
| | - Dominik Fajstavr
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (K.H.); (V.J.); (K.F.); (D.F.); (N.S.K.); (V.Š.)
| | - Nikola Slepičková Kasálková
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (K.H.); (V.J.); (K.F.); (D.F.); (N.S.K.); (V.Š.)
| | - Silvie Rimpelová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic;
| | - Václav Švorčík
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (K.H.); (V.J.); (K.F.); (D.F.); (N.S.K.); (V.Š.)
| | - Petr Slepička
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 3, 166 28 Prague, Czech Republic; (K.H.); (V.J.); (K.F.); (D.F.); (N.S.K.); (V.Š.)
- Correspondence: ; Tel.: +420-220-445-162
| |
Collapse
|
50
|
Hodásová Ľ, Alemán C, del Valle LJ, Llanes L, Fargas G, Armelin E. 3D-Printed Polymer-Infiltrated Ceramic Network with Biocompatible Adhesive to Potentiate Dental Implant Applications. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5513. [PMID: 34639905 PMCID: PMC8509517 DOI: 10.3390/ma14195513] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/14/2021] [Accepted: 09/18/2021] [Indexed: 11/16/2022]
Abstract
The aim of this work was to prepare and characterize polymer-ceramic composite material for dental applications, which must resist fracture and wear under extreme forces. It must also be compatible with the hostile environment of the oral cavity. The most common restorative and biocompatible copolymer, 2,2-bis(p-(2'-2-hydroxy-3'-methacryloxypropoxy)phenyl)propane and triethyleneglycol dimethacrylate, was combined with 3D-printed yttria-stabilized tetragonal zirconia scaffolds with a 50% infill. The proper scaffold deposition and morphology of samples with 50% zirconia infill were studied by means of X-ray computed microtomography and scanning electron microscopy. Samples that were infiltrated with copolymer were observed under compression stress, and the structure's failure was recorded using an Infrared Vic 2DTM camera, in comparison with empty scaffolds. The biocompatibility of the composite material was ascertained with an MG-63 cell viability assay. The microtomography proves the homogeneous distribution of pores throughout the whole sample, whereas the presence of the biocompatible copolymer among the ceramic filaments, referred to as a polymer-infiltrated ceramic network (PICN), results in a safety "damper", preventing crack propagation and securing the desired material flexibility, as observed by an infrared camera in real time. The study represents a challenge for future dental implant applications, demonstrating that it is possible to combine the fast robocasting of ceramic paste and covalent bonding of polymer adhesive for hybrid material stabilization.
Collapse
Affiliation(s)
- Ľudmila Hodásová
- Departament d’Enginyeria Química, IMEM Group, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Building I, 2nd Floor, 08019 Barcelona, Spain; (Ľ.H.); (C.A.); (L.J.d.V.)
- Departament de Ciència i Enginyeria de Materials, CIEFMA Group, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Building I, 1st Floor, 08019 Barcelona, Spain;
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Building I, Basement Floor, 08019 Barcelona, Spain
| | - Carlos Alemán
- Departament d’Enginyeria Química, IMEM Group, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Building I, 2nd Floor, 08019 Barcelona, Spain; (Ľ.H.); (C.A.); (L.J.d.V.)
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Building I, Basement Floor, 08019 Barcelona, Spain
| | - Luís J. del Valle
- Departament d’Enginyeria Química, IMEM Group, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Building I, 2nd Floor, 08019 Barcelona, Spain; (Ľ.H.); (C.A.); (L.J.d.V.)
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Building I, Basement Floor, 08019 Barcelona, Spain
| | - Luis Llanes
- Departament de Ciència i Enginyeria de Materials, CIEFMA Group, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Building I, 1st Floor, 08019 Barcelona, Spain;
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Building I, Basement Floor, 08019 Barcelona, Spain
| | - Gemma Fargas
- Departament de Ciència i Enginyeria de Materials, CIEFMA Group, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Building I, 1st Floor, 08019 Barcelona, Spain;
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Building I, Basement Floor, 08019 Barcelona, Spain
| | - Elaine Armelin
- Departament d’Enginyeria Química, IMEM Group, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Building I, 2nd Floor, 08019 Barcelona, Spain; (Ľ.H.); (C.A.); (L.J.d.V.)
- Barcelona Research Center for Multiscale Science and Engineering, Campus Diagonal Besòs (EEBE), Universitat Politècnica de Catalunya, C/ Eduard Maristany, 10-14, Building I, Basement Floor, 08019 Barcelona, Spain
| |
Collapse
|