1
|
Stefanakis K, Upadhyay J, Cisneros AR, Patel N, Sahai A, Mantzoros CS. Leptin physiology and pathophysiology in energy homeostasis, immune function, neuroendocrine regulation and bone health. Metabolism 2024:156056. [PMID: 39481533 DOI: 10.1016/j.metabol.2024.156056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Since its discovery and over the past thirty years, extensive research has significantly expanded our understanding of leptin and its diverse roles in human physiology, pathophysiology and therapeutics. A prototypical adipokine initially identified for its critical function in appetite regulation and energy homeostasis, leptin has been revealed to also exert profound effects on the hypothalamic-pituitary-gonadal, thyroid, adrenal and growth hormone axis, differentially between animals and humans, as well as in regulating immune function. Beyond these roles, leptin plays a pivotal role in significantly affecting bone health by promoting bone formation and regulating bone metabolism both directly and indirectly through its neuroendocrine actions. The diverse actions of leptin are particularly notable in leptin-deficient animal models and in conditions characterized by low circulating leptin levels, such as lipodystrophies and relative energy deficiency. Conversely, the effectiveness of leptin is attenuated in leptin-sufficient states, such as obesity and other high-adiposity conditions associated with hyperleptinemia and leptin tolerance. This review attempts to consolidate 30 years of leptin research with an emphasis on its physiology and pathophysiology in humans, including its promising therapeutic potential. We discuss preclinical and human studies describing the pathophysiology of energy deficiency across organ systems and the significant role of leptin in regulating neuroendocrine, immune, reproductive and bone health. We finally present past proof of concept clinical trials of leptin administration in leptin-deficient subjects that have demonstrated positive neuroendocrine, reproductive, and bone health outcomes, setting the stage for future phase IIb and III randomized clinical trials in these conditions.
Collapse
Affiliation(s)
- Konstantinos Stefanakis
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jagriti Upadhyay
- Department of Medicine, Lahey Hospital and Medical Center, Burlington, MA, USA
| | - Arantxa Ramirez Cisneros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Nihar Patel
- Department of Medicine, Lahey Hospital and Medical Center, Burlington, MA, USA
| | - Akshat Sahai
- Vassar Brothers Medical Center, Poughkeepsie, NY, USA
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Medicine, Boston VA Healthcare System, Boston, MA, USA.
| |
Collapse
|
2
|
Kazeminasab F, Fatemi R, Bagheri R, Santos HO, Dutheil F. Effects of plant-based diets combined with exercise training on leptin and adiponectin levels in adults with or without chronic diseases: a systematic review and meta-analysis of clinical studies. Front Nutr 2024; 11:1465378. [PMID: 39444577 PMCID: PMC11496297 DOI: 10.3389/fnut.2024.1465378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Background The effects of exercise training combined with plant-based diets (PBD) on leptin and adiponectin levels have been studied. However, little is known regarding the impact of exercise training combined with PBD on leptin and adiponectin levels in adults with or without chronic diseases. Methods PubMed, Web of Science, and Scopus were searched to identify original articles, published until May 2024, to assess the effects of exercise training combined with PBD on leptin and adiponectin levels in adults with or without chronic diseases. Standardized mean differences (SMD) and 95% confidence intervals were calculated using random models. Results Nine studies comprising 960 participants with overweight and obesity were included in the current meta-analysis. Exercise training combined with PBD reduced leptin [SMD = -0.33 (95% CI: -0.62 to -0.04); p = 0.025] while increasing adiponectin [SMD = 0.93 (95% CI: 0.12 to 1.74); p = 0.024] levels. Conclusion Exercise training combined with PBD is suggested as a non-invasive intervention for reducing leptin while increasing adiponectin levels to control body mass and other disorders related to obesity in adults.
Collapse
Affiliation(s)
- Fatemeh Kazeminasab
- Department of Physical Education and Sports Science, Faculty of Humanities, University of Kashan, Kashan, Iran
| | - Rouholah Fatemi
- Department of Sport Physiology, Dehdasht Branch, Islamic Azad University, Dehdasht, Iran
| | - Reza Bagheri
- Department of Exercise Physiology, University of Isfahan, Isfahan, Iran
| | - Heitor O. Santos
- School of Medicine, Federal University of Uberlandia (UFU), Uberlandia, Minas Gerais, Brazil
| | - Fred Dutheil
- Université Clermont Auvergne, CNRS, LaPSCo, Physiological and Psychosocial Stress, CHU Clermont-Ferrand, University Hospital of Clermont-Ferrand, Preventive and Occupational Medicine, Witty Fit, Clermont-Ferrand, France
| |
Collapse
|
3
|
Graef F, Wei Y, Garbe A, Seemann R, Zenzes M, Tsitsilonis S, Duda GN, Zaslansky P. Increased cancellous bone mass accompanies decreased cortical bone mineral density and higher axial deformation in femurs of leptin-deficient obese mice. J Mech Behav Biomed Mater 2024; 160:106745. [PMID: 39317095 DOI: 10.1016/j.jmbbm.2024.106745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 09/02/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024]
Abstract
INTRODUCTION Leptin is a pleiotropic hormone that regulates food intake and energy homeostasis with enigmatic effects on bone development. It is unclear if leptin promotes or inhibits bone growth. The aim of this study was to characterize the micro-architecture and mechanical competence of femur bones of leptin-deficient mice. MATERIALS AND METHODS Right femur bones of 15-week old C57BL/6 (n = 9) and leptin-deficient (ob/ob, n = 9) mice were analyzed. Whole bones were scanned using micro-CT and morphometric parameters of the cortex and trabeculae were assessed. Elastic moduli were determined from microindentations in midshaft cross-sections. Mineral densities were determined using quantitative backscatter scanning electron microscopy. 3D models of the distal femur metaphysis, cleared from trabecular bone, were meshed and used for finite element simulations of axial loading to identify straining differences between ob/ob and C57BL/6 controls. RESULTS Compared with C57BL/6 controls, ob/ob mice had significantly shorter bones. ob/ob mice showed significantly increased cancellous bone volume and trabecular thickness. qBEI quantified a ∼7% lower mineral density in ob/ob mice in the distal femur metaphysis. Indentation demonstrated a significantly reduced Young's modulus of 12.14 [9.67, 16.56 IQR] GPa for ob/ob mice compared to 23.12 [20.70, 26.57 IQR] GPa in C57BL/6 mice. FEA revealed greater deformation of cortical bone in ob/ob as compared to C57BL/6 mice. CONCLUSION Leptin deficient ob/ob mice have a softer cortical bone in the distal femur metaphysis but an excessive amount of cancellous bone, possibly as a response to increased deformation of the bones during axial loading. Both FEA and direct X-ray and electron microscopy imaging suggest that the morphology and micro-architecture of ob/ob mice have inferior biomechanical properties suggestive of a reduced mechanical competence.
Collapse
Affiliation(s)
- F Graef
- Charité - Universitätsmedizin Berlin, Center for Musculoskeletal Surgery, Germany; Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany.
| | - Y Wei
- Charité - Universitätsmedizin Berlin, Department of Operative and Preventive Dentistry, Germany; Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany.
| | - A Garbe
- Charité - Universitätsmedizin Berlin, Center for Musculoskeletal Surgery, Germany
| | - R Seemann
- Charité - Universitätsmedizin Berlin, Center for Musculoskeletal Surgery, Germany
| | - M Zenzes
- Charité - Universitätsmedizin Berlin, Department of Operative and Preventive Dentistry, Germany
| | - S Tsitsilonis
- Charité - Universitätsmedizin Berlin, Center for Musculoskeletal Surgery, Germany; Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany
| | - G N Duda
- Julius Wolff Institute, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Germany
| | - P Zaslansky
- Charité - Universitätsmedizin Berlin, Department of Operative and Preventive Dentistry, Germany.
| |
Collapse
|
4
|
Li J, Zhang Z, Tang J, Hou Z, Li L, Li B. Emerging roles of nerve-bone axis in modulating skeletal system. Med Res Rev 2024; 44:1867-1903. [PMID: 38421080 DOI: 10.1002/med.22031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/25/2024] [Accepted: 02/16/2024] [Indexed: 03/02/2024]
Abstract
Over the past decades, emerging evidence in the literature has demonstrated that the innervation of bone is a crucial modulator for skeletal physiology and pathophysiology. The nerve-bone axis sparked extensive preclinical and clinical investigations aimed at elucidating the contribution of nerve-bone crosstalks to skeleton metabolism, homeostasis, and injury repair through the perspective of skeletal neurobiology. To date, peripheral nerves have been widely reported to mediate bone growth and development and fracture healing via the secretion of neurotransmitters, neuropeptides, axon guidance factors, and neurotrophins. Relevant studies have further identified several critical neural pathways that stimulate profound alterations in bone cell biology, revealing a complex interplay between the skeleton and nerve systems. In addition, inspired by nerve-bone crosstalk, novel drug delivery systems and bioactive materials have been developed to emulate and facilitate the process of natural bone repair through neuromodulation, eventually boosting osteogenesis for ideal skeletal tissue regeneration. Overall, this work aims to review the novel research findings that contribute to deepening the current understanding of the nerve-bone axis, bringing forth some schemas that can be translated into the clinical scenario to highlight the critical roles of neuromodulation in the skeletal system.
Collapse
Affiliation(s)
- Jingya Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zhuoyuan Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jinru Tang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Zeyu Hou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Longjiang Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Suárez LJ, Hasturk H, Tubero Euzebio Alves V, Díaz-Baez D, Van Dyke T, Kantarci A. Overexpression of the receptor for resolvin E1 (ERV1) prevents early alveolar bone loss in leptin receptor deficiency-induced diabetes. J Periodontol 2024. [PMID: 39031577 DOI: 10.1002/jper.24-0060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/24/2024] [Accepted: 05/13/2024] [Indexed: 07/22/2024]
Abstract
BACKGROUND This study was designed to test the hypothesis that the leptin receptor (LepR) regulates changes in periodontal tissues and that the overexpression of the receptor for resolvin E1 (ERV1) prevents age- and diabetes-associated alveolar bone loss. METHODS LepR-deficient transgenic (TG) mice were cross-bred with those overexpressing ERV1 (TG) to generate double-TG mice. In total, 95 mice were divided into four experimental groups: wild type (WT), TG, LepR deficient (db/db), and double transgenic (db/db TG). The groups were followed from 4 weeks up to 16 weeks of age. The natural progression of periodontal disease without any additional method of periodontitis induction was assessed by macroscopic and histomorphometric analyses. Osteoclastic activity was measured by tartrate-resistant acid phosphatase (TRAP) staining. RESULTS At 4 weeks, ERV1 overexpression prevented weight gain. From Week 8 onward, there was a significant increase in the weight of db/db mice with or without ERV1 overexpression compared to the WT mice, accompanied by an increase in glucose levels. By 8 weeks of age, the percentage of bone loss in the LepR deficiency groups was significantly greater compared to WT mice. ERV1 overexpression in the db/db TG mice prevented early alveolar bone loss; however, it did not impact the development of diabetic bone loss in aging mice after the onset of weight gain and diabetes. CONCLUSIONS The findings suggest that the overexpression of ERV1 prevents LepR-associated alveolar bone loss during the early phases of periodontal disease by delaying weight gain, diabetes onset, and associated inflammation; however, LepR deficiency increases susceptibility to naturally occurring inflammatory alveolar bone loss as the animal ages, associated with excess weight gain, onset of diabetes, and excess inflammation.
Collapse
Affiliation(s)
- Lina J Suárez
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Universidad Nacional de Colombia, Bogotá, Colombia
| | - Hatice Hasturk
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Harvard University, Boston, Massachusetts, USA
| | | | | | - Thomas Van Dyke
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Harvard University, Boston, Massachusetts, USA
| | - Alpdogan Kantarci
- ADA Forsyth Institute, Cambridge, Massachusetts, USA
- Harvard University, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Turner RT, Branscum AJ, Iwaniec UT. Long-duration leptin transgene expression in dorsal vagal complex does not alter bone parameters in female Sprague Dawley rats. Bone Rep 2024; 21:101769. [PMID: 38706522 PMCID: PMC11067478 DOI: 10.1016/j.bonr.2024.101769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024] Open
Abstract
The hypothalamus and dorsal vagal complex (DVC) are both important for integration of signals that regulate energy balance. Increased leptin transgene expression in either the hypothalamus or DVC of female rats was shown to decrease white adipose tissue and circulating levels of leptin and adiponectin. However, in contrast to hypothalamus, leptin transgene expression in the DVC had no effect on food intake, circulating insulin, ghrelin and glucose, nor on thermogenic energy expenditure. These findings imply different roles for hypothalamus and DVC in leptin signaling. Leptin signaling is required for normal bone accrual and turnover. Leptin transgene expression in the hypothalamus normalized the skeletal phenotype of leptin-deficient ob/ob mice but had no long-duration (≥10 weeks) effects on the skeleton of leptin-replete rats. The goal of this investigation was to determine the long-duration effects of leptin transgene expression in the DVC on the skeleton of leptin-replete rats. To accomplish this goal, we analyzed bone from three-month-old female rats that were microinjected with recombinant adeno-associated virus encoding either rat leptin (rAAV-Leptin, n = 6) or green fluorescent protein (rAAV-GFP, control, n = 5) gene. Representative bones from the appendicular (femur) and axial (3rd lumbar vertebra) skeleton were evaluated following 10 weeks of treatment. Selectively increasing leptin transgene expression in the DVC had no effect on femur cortical or cancellous bone microarchitecture. Additionally, increasing leptin transgene expression had no effect on vertebral osteoblast-lined or osteoclast-lined bone perimeter or marrow adiposity. Taken together, the findings suggest that activation of leptin receptors in the DVC has minimal specific effects on the skeleton of leptin-replete female rats.
Collapse
Affiliation(s)
- Russell T. Turner
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
- Center for Healthy Aging Research, Oregon State University, Corvallis, OR 97331, USA
| | - Adam J. Branscum
- Biostatistics Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Urszula T. Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
- Center for Healthy Aging Research, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
7
|
Arakil N, Akhund SA, Elaasser B, Mohammad KS. Intersecting Paths: Unraveling the Complex Journey of Cancer to Bone Metastasis. Biomedicines 2024; 12:1075. [PMID: 38791037 PMCID: PMC11117796 DOI: 10.3390/biomedicines12051075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/27/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
The phenomenon of bone metastases presents a significant challenge within the context of advanced cancer treatments, particularly pertaining to breast, prostate, and lung cancers. These metastatic occurrences stem from the dissemination of cancerous cells into the bone, thereby interrupting the equilibrium between osteoblasts and osteoclasts. Such disruption results in skeletal complications, adversely affecting patient morbidity and quality of life. This review discusses the intricate interplay between cancer cells and the bone microenvironment, positing the bone not merely as a passive recipient of metastatic cells but as an active contributor to cancer progression through its distinctive biochemical and cellular makeup. A thorough examination of bone structure and the dynamics of bone remodeling is undertaken, elucidating how metastatic cancer cells exploit these processes. This review explores the genetic and molecular pathways that underpin the onset and development of bone metastases. Particular emphasis is placed on the roles of cytokines and growth factors in facilitating osteoclastogenesis and influencing osteoblast activity. Additionally, this paper offers a meticulous critique of current diagnostic methodologies, ranging from conventional radiography to advanced molecular imaging techniques, and discusses the implications of a nuanced understanding of bone metastasis biology for therapeutic intervention. This includes the development of targeted therapies and strategies for managing bone pain and other skeletal-related events. Moreover, this review underscores the imperative of ongoing research efforts aimed at identifying novel therapeutic targets and refining management approaches for bone metastases. It advocates for a multidisciplinary strategy that integrates advancements in medical oncology and radiology with insights derived from molecular biology and genetics, to enhance prognostic outcomes and the quality of life for patients afflicted by this debilitating condition. In summary, bone metastases constitute a complex issue that demands a comprehensive and informed approach to treatment. This article contributes to the ongoing discourse by consolidating existing knowledge and identifying avenues for future investigation, with the overarching objective of ameliorating patient care in the domain of oncology.
Collapse
Affiliation(s)
| | | | | | - Khalid S. Mohammad
- Department of Anatomy, College of Medicine, Alfaisal University, Riyadh 1153, Saudi Arabia; (N.A.); (S.A.A.); (B.E.)
| |
Collapse
|
8
|
Huang T, Lu Z, Wang Z, Cheng L, Gao L, Gao J, Zhang N, Geng CA, Zhao X, Wang H, Wong CW, Yeung KWK, Pan H, Lu WW, Guan M. Targeting adipocyte ESRRA promotes osteogenesis and vascular formation in adipocyte-rich bone marrow. Nat Commun 2024; 15:3769. [PMID: 38704393 PMCID: PMC11069533 DOI: 10.1038/s41467-024-48255-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 04/23/2024] [Indexed: 05/06/2024] Open
Abstract
Excessive bone marrow adipocytes (BMAds) accumulation often occurs under diverse pathophysiological conditions associated with bone deterioration. Estrogen-related receptor α (ESRRA) is a key regulator responding to metabolic stress. Here, we show that adipocyte-specific ESRRA deficiency preserves osteogenesis and vascular formation in adipocyte-rich bone marrow upon estrogen deficiency or obesity. Mechanistically, adipocyte ESRRA interferes with E2/ESR1 signaling resulting in transcriptional repression of secreted phosphoprotein 1 (Spp1); yet positively modulates leptin expression by binding to its promoter. ESRRA abrogation results in enhanced SPP1 and decreased leptin secretion from both visceral adipocytes and BMAds, concertedly dictating bone marrow stromal stem cell fate commitment and restoring type H vessel formation, constituting a feed-forward loop for bone formation. Pharmacological inhibition of ESRRA protects obese mice against bone loss and high marrow adiposity. Thus, our findings highlight a therapeutic approach via targeting adipocyte ESRRA to preserve bone formation especially in detrimental adipocyte-rich bone milieu.
Collapse
Affiliation(s)
- Tongling Huang
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zhaocheng Lu
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Zihui Wang
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lixin Cheng
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, China
| | - Lu Gao
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Gao
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Ning Zhang
- Neuroscience Center, Shantou University Medical College, Shantou, China
| | - Chang-An Geng
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Xiaoli Zhao
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Huaiyu Wang
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | | | - Kelvin W K Yeung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Haobo Pan
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - William Weijia Lu
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Min Guan
- Research Center for Human Tissues and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
9
|
Ali A, Flatt PR, Irwin N. Gut-Derived Peptide Hormone Analogues and Potential Treatment of Bone Disorders in Obesity and Diabetes Mellitus. Clin Med Insights Endocrinol Diabetes 2024; 17:11795514241238059. [PMID: 38486712 PMCID: PMC10938612 DOI: 10.1177/11795514241238059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024] Open
Abstract
Obesity and diabetes mellitus are prevalent metabolic disorders that have a detrimental impact on overall health. In this regard, there is now a clear link between these metabolic disorders and compromised bone health. Interestingly, both obesity and diabetes lead to elevated risk of bone fracture which is independent of effects on bone mineral density (BMD). In this regard, gastrointestinal (GIT)-derived peptide hormones and their related long-acting analogues, some of which are already clinically approved for diabetes and/or obesity, also seem to possess positive effects on bone remodelling and microarchitecture to reduce bone fracture risk. Specifically, the incretin peptides, glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), as well as glucagon-like peptide-2 (GLP-2), exert key direct and/or indirect benefits on bone metabolism. This review aims to provide an initial appraisal of the relationship between obesity, diabetes and bone, with a focus on the positive impact of these GIT-derived peptide hormones for bone health in obesity/diabetes. Brief discussion of related peptides such as parathyroid hormone, leptin, calcitonin and growth hormone is also included. Taken together, drugs engineered to promote GIP, GLP-1 and GLP-2 receptor signalling may have potential to offer therapeutic promise for improving bone health in obesity and diabetes.
Collapse
Affiliation(s)
- Asif Ali
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, UK
| | - Peter R Flatt
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, UK
| | - Nigel Irwin
- Diabetes Research Centre, Biomedical Sciences Research Institute, Ulster University, Coleraine, Northern Ireland, UK
| |
Collapse
|
10
|
李 怀, 韩 凤, 孟 静, 常 文, 冯 立. [Research progress on mechanism of traumatic brain injury promoting fracture healing]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2024; 38:125-132. [PMID: 38225852 PMCID: PMC10796220 DOI: 10.7507/1002-1892.202310045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/17/2023] [Indexed: 01/17/2024]
Abstract
Objective To summarize the research progress on the mechanism related to traumatic brain injury (TBI) to promote fracture healing, and to provide theoretical basis for clinical treatment of fracture non-union. Methods The research literature on TBI to promote fracture healing at home and abroad was reviewed, the role of TBI in fracture healing was summarized from three aspects of nerves, body fluids, and immunity, to explore new ideas for the treatment of fracture non-union. Results Numerous studies have shown that fracture healing is faster in patients with fracture combined with TBI than in patients with simple fracture. It is found that the expression of various cytokines and hormones in the body fluids of patients with fracture and TBI is significantly higher than that of patients with simple fracture, and the neurofactors released by the nervous system reaches the fracture site through the damaged blood-brain barrier, and the chemotaxis and aggregation of inflammatory cells and inflammatory factors at the fracture end of patients with combined TBI also differs significantly from those of patients with simple fracture. A complex network of humoral, neural, and immunomodulatory networks together promote regeneration of blood vessels at the fracture site, osteoblasts differentiation, and inhibition of osteoclasts activity. Conclusion TBI promotes fracture healing through a complex network of neural, humoral, and immunomodulatory, and can treat fracture non-union by intervening in the perifracture microenvironment.
Collapse
Affiliation(s)
- 怀任 李
- 济宁医学院临床医学院(山东济宁 272000)School of Clinical Medicine, Jining Medical University, Jining Shandong, 272000, P. R. China
| | - 凤平 韩
- 济宁医学院临床医学院(山东济宁 272000)School of Clinical Medicine, Jining Medical University, Jining Shandong, 272000, P. R. China
| | - 静 孟
- 济宁医学院临床医学院(山东济宁 272000)School of Clinical Medicine, Jining Medical University, Jining Shandong, 272000, P. R. China
| | - 文利 常
- 济宁医学院临床医学院(山东济宁 272000)School of Clinical Medicine, Jining Medical University, Jining Shandong, 272000, P. R. China
| | - 立 冯
- 济宁医学院临床医学院(山东济宁 272000)School of Clinical Medicine, Jining Medical University, Jining Shandong, 272000, P. R. China
| |
Collapse
|
11
|
Hu H, Luo S, Lai P, Lai M, Mao L, Zhang S, Jiang Y, Wen J, Zhou W, Liu X, Wang L, Huang M, Hu Y, Zhao X, Xia L, Zhou W, Jiang Y, Zou Z, Liu A, Guo B, Bai X. ANGPTL4 binds to the leptin receptor to regulate ectopic bone formation. Proc Natl Acad Sci U S A 2024; 121:e2310685120. [PMID: 38147550 PMCID: PMC10769826 DOI: 10.1073/pnas.2310685120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 11/17/2023] [Indexed: 12/28/2023] Open
Abstract
Leptin protein was thought to be unique to leptin receptor (LepR), but the phenotypes of mice with mutation in LepR [db/db (diabetes)] and leptin [ob/ob (obese)] are not identical, and the cause remains unclear. Here, we show that db/db, but not ob/ob, mice had defect in tenotomy-induced heterotopic ossification (HO), implicating alternative ligand(s) for LepR might be involved. Ligand screening revealed that ANGPTL4 (angiopoietin-like protein 4), a stress and fasting-induced factor, was elicited from brown adipose tissue after tenotomy, bound to LepR on PRRX1+ mesenchymal cells at the HO site, thus promotes chondrogenesis and HO development. Disruption of LepR in PRRX1+ cells, or lineage ablation of LepR+ cells, or deletion of ANGPTL4 impeded chondrogenesis and HO in mice. Together, these findings identify ANGPTL4 as a ligand for LepR to regulate the formation of acquired HO.
Collapse
Affiliation(s)
- Hongling Hu
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong510630, China
- Department of Trauma and Joint Surgery, Shunde Hospital, Southern Medical University, Foshan, Guangdong528300, China
| | - Sheng Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Pinglin Lai
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong510630, China
| | - Mingqiang Lai
- Department of Orthopaedics, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong510900, China
| | - Linlin Mao
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Sheng Zhang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Yuanjun Jiang
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Jiaxin Wen
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Wu Zhou
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Xiaolin Liu
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Liang Wang
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong510630, China
| | - Minjun Huang
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong510630, China
| | - Yanjun Hu
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Xiaoyang Zhao
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Laixin Xia
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Weijie Zhou
- Department of Pathology, Nanfang Hospital, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA15261
| | - Zhipeng Zou
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Anling Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| | - Bin Guo
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
- Department of Orthopaedics, The Tenth Affiliated Hospital, Southern Medical University, Dongguan, Guangdong523018, China
| | - Xiaochun Bai
- Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong510630, China
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong510515, China
| |
Collapse
|
12
|
Ansarin A, Mahdavi AM, Javadivala Z, Shanehbandi D, Zarredar H, Ansarin K. The cross-talk between leptin and circadian rhythm signaling proteins in physiological processes: a systematic review. Mol Biol Rep 2023; 50:10427-10443. [PMID: 37874505 DOI: 10.1007/s11033-023-08887-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/04/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Today, modern lifestyles and disrupted sleep patterns cause circadian clock rhythm impairments that are associated with altered leptin levels, which subsequently affect a wide range of physiological processes and have significant health burdens on societies. Nevertheless, there has been no systematic review of circadian clock genes and proteins, leptin, and related signaling pathways. METHODS Accordingly, we systematically reviewed circadian clock proteins, leptin, and molecular mechanisms between them by searching Pubmed, Scopus, ProQuest, Web of Sciences, and Google Scholar until September 2022. After considering the inclusion and exclusion criteria, 20 animal studies were selected. The risk of bias was assessed in each study. RESULTS The results clarified the reciprocal interconnected relationship between circadian clock genes and leptin. Circadian clock genes regulate leptin expression and signaling via different mechanisms, such as CLOCK-BMAL1 heterodimers, which increase the expression of PPARs. PPARs induce the expression of C/EBPα, a key factor in upregulating leptin expression. CLOCK-BMAL1 also induces the expression of Per1 and Rev-erb genes. PER1 activates mTORC1 and mTORC1 enhances the expression of C/EBPα. In addition, REV-ERBs activate the leptin signaling pathway. Also, leptin controls the expression of circadian clock genes by triggering the AMPK and ERK/MAPK signaling pathways, which regulate the activity of PPARs. Moreover, the roles of these molecular mechanisms are elucidated in different physiological processes and organs. CONCLUSIONS Crosstalk between circadian clock genes and leptin and their affecting elements should be considered in the selection of new therapeutic targets for related disorders, especially obesity and metabolic impairments.
Collapse
Affiliation(s)
- Atefeh Ansarin
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Pashmineh Research Complex, Daneshgah Street, P.O. Box: 5448151429, Tabriz, Iran
| | - Aida Malek Mahdavi
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Pashmineh Research Complex, Daneshgah Street, P.O. Box: 5448151429, Tabriz, Iran
- Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Javadivala
- Department of Health Education & Promotion, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Dariush Shanehbandi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Habib Zarredar
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Pashmineh Research Complex, Daneshgah Street, P.O. Box: 5448151429, Tabriz, Iran
| | - Khalil Ansarin
- Tuberculosis and Lung Disease Research Center, Tabriz University of Medical Sciences, Pashmineh Research Complex, Daneshgah Street, P.O. Box: 5448151429, Tabriz, Iran.
| |
Collapse
|
13
|
Jaber M, Hofbauer LC, Hofbauer C, Duda GN, Checa S. Reduced Bone Regeneration in Rats With Type 2 Diabetes Mellitus as a Result of Impaired Stromal Cell and Osteoblast Function-A Computer Modeling Study. JBMR Plus 2023; 7:e10809. [PMID: 38025037 PMCID: PMC10652174 DOI: 10.1002/jbm4.10809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/18/2023] [Accepted: 08/02/2023] [Indexed: 12/01/2023] Open
Abstract
Bone has the fascinating ability to self-regenerate. However, under certain conditions, such as type 2 diabetes mellitus (T2DM), this ability is impaired. T2DM is a chronic metabolic disease known by the presence of elevated blood glucose levels that is associated with reduced bone regeneration capability, high fracture risk, and eventual non-union risk after a fracture. Several mechanical and biological factors relevant to bone regeneration have been shown to be affected in a diabetic environment. However, whether impaired bone regeneration in T2DM can be explained due to mechanical or biological alterations remains unknown. To elucidate the relevance of either one, the aim of this study was to investigate the relative contribution of T2DM-related alterations on either cellular activity or mechanical stimuli driving bone regeneration. A previously validated in silico computer modeling approach that was capable of explaining bone regeneration in uneventful conditions of healing was further developed to investigate bone regeneration in T2DM. Aspects analyzed included the presence of mesenchymal stromal cells (MSCs), cellular migration, proliferation, differentiation, apoptosis, and cellular mechanosensitivity. To further verify the computer model findings against in vivo data, an experimental setup was replicated, in which regeneration was compared in healthy and diabetic after a rat femur bone osteotomy stabilized with plate fixation. We found that mechanical alterations had little effect on the reduced bone regeneration in T2DM and that alterations in MSC proliferation, MSC migration, and osteoblast differentiation had the highest effect. In silico predictions of regenerated bone in T2DM matched qualitatively and quantitatively those from ex vivo μCT at 12 weeks post-surgery when reduced cellular activities reported in previous in vitro and in vivo studies were included in the model. The presented findings here could have clinical implications in the treatment of bone fractures in patients with T2DM. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Mahdi Jaber
- Julius Wolff Institute at Berlin Institute of Health, Charité—Universitätsmedizin BerlinBerlinGermany
| | - Lorenz C Hofbauer
- Department of Medicine III and Center for Healthy AgingTechnische Universität DresdenDresdenGermany
| | - Christine Hofbauer
- Department of Medicine III and Center for Healthy AgingTechnische Universität DresdenDresdenGermany
| | - Georg N Duda
- Julius Wolff Institute at Berlin Institute of Health, Charité—Universitätsmedizin BerlinBerlinGermany
- BIH Center for Regenerative TherapiesBIH at Charité ‐ Universitätsmedizin BerlinBerlinGermany
| | - Sara Checa
- Julius Wolff Institute at Berlin Institute of Health, Charité—Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
14
|
Williamson A, da Silva A, do Carmo JM, Le Maitre C, Hall JE, Aberdein N. Impact of leptin deficiency on male tibia and vertebral body 3D bone architecture independent of changes in body weight. Physiol Rep 2023; 11:10.14814/phy2.15832. [PMID: 37786973 PMCID: PMC10546263 DOI: 10.14814/phy2.15832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 10/04/2023] Open
Abstract
Leptin an adipokine with potent effects on energy balance and body weight plays an important role in defining bone architecture in growing mammals. However, major changes in body weight can also influence morphology of trabecular and cortical bone. Therefore, we examined the impact of leptin deficiency on tibia and vertebral body 3D bone architecture independent of changes in body weight. Furthermore, advances in computational 3D image analysis suggest that average morphological values may mask regional specific differences in trabecular bone thickness. The study utilized leptin-deficient Ob/Ob mice (n = 8) weight-paired to C57BL/6 (C57) control mice (n = 8) which were split into either lean or obese groups for 24 ± 2 weeks. Whole tibias and L3 vertebrae were fixed before high resolution microcomputed tomography (μCT) scanning was performed. Leptin deficiency independent of body weight reduced tibia cortical bone volume, trabecular bone volume/tissue volume, number, and mineral density. Mean tibia trabecular thickness showed no significant differences between all groups; however, significant changes in trabecular thickness were found when analyzed by region. This study demonstrates that leptin deficiency significantly impacts tibia and vertebral body trabecular and cortical bone 3D architecture independent of changes in body weight.
Collapse
Affiliation(s)
- Alexander Williamson
- Biomolecular Science Research Centre, Department of Bioscience and ChemistrySheffield Hallam UniversitySheffieldUK
| | - Alexandre da Silva
- Mississippi Center for Obesity Research, Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Jussara M. do Carmo
- Mississippi Center for Obesity Research, Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Christine L. Le Maitre
- Biomolecular Science Research Centre, Department of Bioscience and ChemistrySheffield Hallam UniversitySheffieldUK
| | - John E. Hall
- Mississippi Center for Obesity Research, Department of Physiology and BiophysicsUniversity of Mississippi Medical CenterJacksonMississippiUSA
| | - Nicola Aberdein
- Biomolecular Science Research Centre, Department of Bioscience and ChemistrySheffield Hallam UniversitySheffieldUK
| |
Collapse
|
15
|
Xiao Y, Han C, Wang Y, Zhang X, Bao R, Li Y, Chen H, Hu B, Liu S. Interoceptive regulation of skeletal tissue homeostasis and repair. Bone Res 2023; 11:48. [PMID: 37669953 PMCID: PMC10480189 DOI: 10.1038/s41413-023-00285-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/08/2023] [Accepted: 06/22/2023] [Indexed: 09/07/2023] Open
Abstract
Recent studies have determined that the nervous system can sense and respond to signals from skeletal tissue, a process known as skeletal interoception, which is crucial for maintaining bone homeostasis. The hypothalamus, located in the central nervous system (CNS), plays a key role in processing interoceptive signals and regulating bone homeostasis through the autonomic nervous system, neuropeptide release, and neuroendocrine mechanisms. These mechanisms control the differentiation of mesenchymal stem cells into osteoblasts (OBs), the activation of osteoclasts (OCs), and the functional activities of bone cells. Sensory nerves extensively innervate skeletal tissues, facilitating the transmission of interoceptive signals to the CNS. This review provides a comprehensive overview of current research on the generation and coordination of skeletal interoceptive signals by the CNS to maintain bone homeostasis and their potential role in pathological conditions. The findings expand our understanding of intersystem communication in bone biology and may have implications for developing novel therapeutic strategies for bone diseases.
Collapse
Affiliation(s)
- Yao Xiao
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Changhao Han
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Yunhao Wang
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China
| | - Xinshu Zhang
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Rong Bao
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Yuange Li
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, PR China
| | - Huajiang Chen
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China
| | - Bo Hu
- Spine Center, Department of Orthopedics, Changzheng Hospital, Naval Medical University, Shanghai, 200003, PR China.
| | - Shen Liu
- Department of Orthopaedics, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, 600 Yishan Rd, Shanghai, 200233, PR China.
| |
Collapse
|
16
|
Markevich GN, Pavlova NS, Kapitanova DV, Esin EV. Bone calcification rate as a factor of craniofacial transformations in salmonid fish: Insights from an experiment with hormonal treatment of calcium metabolism. Evol Dev 2023; 25:274-288. [PMID: 37540043 DOI: 10.1111/ede.12453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/05/2023]
Abstract
Adaptation to different environments can be achieved by physiological shifts throughout development. Hormonal regulators shape the physiological and morphological traits of the evolving animals making them fit for the particular ecological surroundings. We hypothesized that the artificially induced hypersynthesis of calcitonin and parathyroid hormone mutually influencing calcium metabolism could affect bone formation during early ontogeny in fish imitating the heterochrony in craniofacial ossification in natural adaptive morphs. Conducting an experiment, we found that the long-standing treatment of salmonid juveniles with high doses of both hormones irreversibly shifts the corresponding hormone status for a period well beyond the time scale for total degradation of the injected hormone. The hormones program the ossification of the jaw suspension bones and neurocranial elements in a specific manner affecting the jaws position and pharingo-branchial area stretching. These morphological shifts resemble the adaptive variants found in sympatric pelagic and demersal morphs of salmonids. We conclude that solitary deviations in the regulators of calcium metabolism could determine functional morphological traits via transformations in skeletal development.
Collapse
Affiliation(s)
- Grigorii N Markevich
- Lab of Lower Vertabrate Ecology, Lab of Evolutionary Morphology, A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Moscow, Russia
- Scientific Department, Kronotsky Nature Reserve, Yelizovo, Kamchatka Region, Russia
| | - Nadezhda S Pavlova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Faculty of Biology, Moscow, Russia
| | - Daria V Kapitanova
- Lab of Lower Vertabrate Ecology, Lab of Evolutionary Morphology, A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Moscow, Russia
- Lab of Postnatal Ontogenesis, N.K. Koltsov Institute of Developmental Biology of the Russian Academy of Sciences, Moscow, Russia
| | - Evgeny V Esin
- Lab of Lower Vertabrate Ecology, Lab of Evolutionary Morphology, A.N. Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
17
|
Niwczyk O, Grymowicz M, Szczęsnowicz A, Hajbos M, Kostrzak A, Budzik M, Maciejewska-Jeske M, Bala G, Smolarczyk R, Męczekalski B. Bones and Hormones: Interaction between Hormones of the Hypothalamus, Pituitary, Adipose Tissue and Bone. Int J Mol Sci 2023; 24:ijms24076840. [PMID: 37047811 PMCID: PMC10094866 DOI: 10.3390/ijms24076840] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/30/2023] [Accepted: 04/01/2023] [Indexed: 04/14/2023] Open
Abstract
The bony skeleton, as a structural foundation for the human body, is essential in providing mechanical function and movement. The human skeleton is a highly specialized and dynamic organ that undergoes continuous remodeling as it adapts to the demands of its environment. Advances in research over the last decade have shone light on the various hormones that influence this process, modulating the metabolism and structural integrity of bone. More recently, novel and non-traditional functions of hypothalamic, pituitary, and adipose hormones and their effects on bone homeostasis have been proposed. This review highlights recent work on physiological bone remodeling and discusses our knowledge, as it currently stands, on the systemic interplay of factors regulating this interaction. In this review, we provide a summary of the literature on the relationship between bone physiology and hormones including kisspeptin, neuropeptide Y, follicle-stimulating hormone (FSH), prolactin (PRL), adrenocorticotropic hormone (ACTH), thyroid-stimulating hormone (TSH), growth hormone (GH), leptin, and adiponectin. The discovery and understanding of this new functionality unveils an entirely new layer of physiologic circuitry.
Collapse
Affiliation(s)
- Olga Niwczyk
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Monika Grymowicz
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
| | - Aleksandra Szczęsnowicz
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Marta Hajbos
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
| | - Anna Kostrzak
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Michał Budzik
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
- Department of Cancer Prevention, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Marzena Maciejewska-Jeske
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| | - Gregory Bala
- UCD School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Roman Smolarczyk
- Department of Gynecological Endocrinology, Medical University of Warsaw, 00-315 Warsaw, Poland
| | - Błażej Męczekalski
- Department of Gynecological Endocrinology, Poznan University of Medical Sciences, 60-535 Poznan, Poland
| |
Collapse
|
18
|
Micheletti C, Jolic M, Grandfield K, Shah FA, Palmquist A. Bone structure and composition in a hyperglycemic, obese, and leptin receptor-deficient rat: Microscale characterization of femur and calvarium. Bone 2023; 172:116747. [PMID: 37028238 DOI: 10.1016/j.bone.2023.116747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/03/2023] [Accepted: 03/21/2023] [Indexed: 04/09/2023]
Abstract
Metabolic abnormalities, such as diabetes mellitus and obesity, can impact bone quantity and/or bone quality. In this work, we characterize bone material properties, in terms of structure and composition, in a novel rat model with congenic leptin receptor (LepR) deficiency, severe obesity, and hyperglycemia (type 2 diabetes-like condition). Femurs and calvaria (parietal region) from 20-week-old male rats are examined to probe bones formed both by endochondral and intramembranous ossification. Compared to the healthy controls, the LepR-deficient animals display significant alterations in femur microarchitecture and in calvarium morphology when analyzed by micro-computed X-ray tomography (micro-CT). In particular, shorter femurs with reduced bone volume, combined with thinner parietal bones and shorter sagittal suture, point towards a delay in the skeletal development of the LepR-deficient rodents. On the other hand, LepR-deficient animals and healthy controls display analogous bone matrix composition, which is assessed in terms of tissue mineral density by micro-CT, degree of mineralization by quantitative backscattered electron imaging, and various metrics extrapolated from Raman hyperspectral images. Some specific microstructural features, i.e., mineralized cartilage islands in the femurs and hyper-mineralized areas in the parietal bones, also show comparable distribution and characteristics in both groups. Overall, the altered bone microarchitecture in the LepR-deficient animals indicates compromised bone quality, despite the normal bone matrix composition. The delayed development is also consistent with observations in humans with congenic Lep/LepR deficiency, making this animal model a suitable candidate for translational research.
Collapse
Affiliation(s)
- Chiara Micheletti
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON, Canada; Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Martina Jolic
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kathryn Grandfield
- Department of Materials Science and Engineering, McMaster University, Hamilton, ON, Canada; School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada; Brockhouse Institute for Materials Research, McMaster University, Hamilton, ON, Canada
| | - Furqan A Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Palmquist
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
19
|
Review of Basic Research about Ossification of the Spinal Ligaments Focusing on Animal Models. J Clin Med 2023; 12:jcm12051958. [PMID: 36902744 PMCID: PMC10003841 DOI: 10.3390/jcm12051958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Ossification of the posterior longitudinal ligament (OPLL) is a heterotopic ossification that may cause spinal cord compression. With the recent development of computed tomography (CT) imaging, it is known that patients with OPLL often have complications related to ossification of other spinal ligaments, and OPLL is now considered part of ossification of the spinal ligaments (OSL). OSL is known to be a multifactorial disease with associated genetic and environmental factors, but its pathophysiology has not been clearly elucidated. To elucidate the pathophysiology of OSL and develop novel therapeutic strategies, clinically relevant and validated animal models are needed. In this review, we focus on animal models that have been reported to date and discuss their pathophysiology and clinical relevance. The purpose of this review is to summarize the usefulness and problems of existing animal models and to help further the development of basic research on OSL.
Collapse
|
20
|
Deepika F, Bathina S, Armamento-Villareal R. Novel Adipokines and Their Role in Bone Metabolism: A Narrative Review. Biomedicines 2023; 11:biomedicines11020644. [PMID: 36831180 PMCID: PMC9953715 DOI: 10.3390/biomedicines11020644] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 02/23/2023] Open
Abstract
The growing burden of obesity and osteoporosis is a major public health concern. Emerging evidence of the role of adipokines on bone metabolism has led to the discovery of novel adipokines over the last decade. Obesity is recognized as a state of adipose tissue inflammation that adversely affects bone health. Adipokines secreted from white adipose tissue (WAT) and bone marrow adipose tissue (BMAT) exerts endocrine and paracrine effects on the survival and function of osteoblasts and osteoclasts. An increase in marrow fat is implicated in osteoporosis and, hence, it is crucial to understand the complex interplay between adipocytes and bone. The objective of this review is to summarize recent advances in our understanding of the role of different adipokines on bone metabolism. METHODS This is a comprehensive review of the literature available in PubMED and Cochrane databases, with an emphasis on the last five years using the keywords. RESULTS Leptin has shown some positive effects on bone metabolism; in contrast, both adiponectin and chemerin have consistently shown a negative association with BMD. No significant association was found between resistin and BMD. Novel adipokines such as visfatin, LCN-2, Nesfatin-1, RBP-4, apelin, and vaspin have shown bone-protective and osteoanabolic properties that could be translated into therapeutic targets. CONCLUSION New evidence suggests the potential role of novel adipokines as biomarkers to predict osteoporosis risk, and as therapeutic targets for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Fnu Deepika
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey Veterans Affairs (VA) Medical Center, Houston, TX 77030, USA
- Correspondence: (F.D.); (R.A.-V.); Tel.: +1-713-794-1414 (R.A.-V.)
| | - Siresha Bathina
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey Veterans Affairs (VA) Medical Center, Houston, TX 77030, USA
| | - Reina Armamento-Villareal
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Translational Research on Inflammatory Disease, Michael E DeBakey Veterans Affairs (VA) Medical Center, Houston, TX 77030, USA
- Correspondence: (F.D.); (R.A.-V.); Tel.: +1-713-794-1414 (R.A.-V.)
| |
Collapse
|
21
|
Tang Z, Chen T, Tan J, Zhang H. Impact of the K-line in patients with ossification of the posterior longitudinal ligament: Analysis of sagittal cervical curvature changes and surgical outcomes. Front Surg 2023; 10:1095391. [PMID: 36874452 PMCID: PMC9975339 DOI: 10.3389/fsurg.2023.1095391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/18/2023] [Indexed: 02/17/2023] Open
Abstract
Objective This study aimed to investigate the relationship of the K-line with sagittal cervical curvature changes and surgical outcomes in patients with cervical ossification of the posterior longitudinal ligament (OPLL). Methods We retrospectively reviewed 84 patients with OPLL who underwent posterior cervical single-door laminoplasty. The patients were divided into a K-line-positive (+) group and a K-line-negative (-) group. Perioperative data, radiographic parameters, and clinical outcomes were compared between the two groups. Results Of 84 total patients, 50 patients were in the K (+) group and 29 patients were in the K (-) group. Neurological function improved in both groups after laminoplasty. The C2-7 Cobb angle, T1 slope, and C2-7 sagittal vertical axis were significantly changed in the K(-) group compared with those in the K (+) group before the operation and at the 3-month and final follow-ups. Conclusion Neurological function was recovered in both groups, and the clinical effect on the K (+) group was better than that on the K (-) group. The cervical curvature in patients with OPLL tends to be anteverted and kyphotic after laminoplasty and is an important factor in reducing the clinical effect.
Collapse
Affiliation(s)
- Zhongxin Tang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tailong Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun Tan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huafeng Zhang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
22
|
Abend Bardagi A, Dos Santos Paschoal C, Favero GG, Riccetto L, Alexandrino Dias ML, Guerra Junior G, Degasperi G. Leptin's Immune Action: A Review Beyond Satiety. Immunol Invest 2023; 52:117-133. [PMID: 36278927 DOI: 10.1080/08820139.2022.2129381] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The adipose tissue is an endocrine organ that secretes adipokines such as leptin, which is one of the most important hormones for controlling satiety, metabolism, and energy homeostasis. This hormone acts in the regulation of innate and adaptive immune responses since immune cells have leptin receptors from which this hormone initiates its biological action. These receptors have been identified in hematopoietic stem cells in the bone marrow and mature immune cells, inducing signaling pathways mediated by JAK/STAT, PI3K, and ERK 1/2. It is known that the bone marrow also contains leptin-producing adipocytes, which are crucial for regulating hematopoiesis through largely unknown mechanisms. Therefore, we have reviewed the roles of leptin inside and outside the bone marrow, going beyond its action in the control of satiety.
Collapse
Affiliation(s)
- Alice Abend Bardagi
- Center for Health Sciences, School of Medical Sciences, Pontifícia Universidade Católica de Campinas (PUC-Campinas), Campinas, Brazil
| | - Clarissa Dos Santos Paschoal
- Center for Health Sciences, School of Medical Sciences, Pontifícia Universidade Católica de Campinas (PUC-Campinas), Campinas, Brazil
| | - Giovanna Ganem Favero
- Center for Health Sciences, School of Medical Sciences, Pontifícia Universidade Católica de Campinas (PUC-Campinas), Campinas, Brazil
| | - Luisa Riccetto
- Center for Health Sciences, School of Medical Sciences, Pontifícia Universidade Católica de Campinas (PUC-Campinas), Campinas, Brazil
| | - Maria Luisa Alexandrino Dias
- Center for Health Sciences, School of Medical Sciences, Pontifícia Universidade Católica de Campinas (PUC-Campinas), Campinas, Brazil
| | - Gil Guerra Junior
- Center for Investigation in Pediatrics (CIPED), School of Medical Sciences, Universidade Estadual de Campinas (Unicamp), Campinas, Brazil
| | - Giovanna Degasperi
- Center for Health Sciences, School of Medical Sciences, Pontifícia Universidade Católica de Campinas (PUC-Campinas), Campinas, Brazil
| |
Collapse
|
23
|
Ofori EK, Adekena CN, Boima V, Asare‐Anane H, Yorke E, Nyarko ENY, Mohammed BN, Quansah E, Jayasinghe SU, Amanquah SD. Serum leptin levels in patients with chronic kidney disease and hypertensive heart disease: An observational cross-sectional study. Health Sci Rep 2023; 6:e1053. [PMID: 36698704 PMCID: PMC9851162 DOI: 10.1002/hsr2.1053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/19/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023] Open
Abstract
Background and Aim Adipocytes secrete a peptide hormone called leptin, which plays a crucial role in controlling appetite and energy expenditure. Alterations in leptin concentrations are associated with CKD-related cardiovascular problems such as hypertensive heart disease (HHD). Despite the link, data on the precise function of leptin in people with CKD and HHD is scant. Methods An observational cross-sectional study involving a total of 108 participants (72 CKD patients with HHD and 36 healthy controls). Their demographic and anthropometric information was collected using a standardized questionnaire. Certain clinical measures such as blood pressure and body mass index (BMI) were assessed. Fasting blood samples were analyzed for levels of plasma glucose (FPG), lipids, creatinine, and leptin. Data were analyzed with SPSS v23. Results Leptin, FPG, creatinine and triglyceride levels were all significantly higher in CKD patients with HHD compared to controls (p < 0.01 for all). Furthermore, advanced CKD status (being in stage 5), having a 6-year diagnosis of HHD, being female, having a higher BMI, and elevation in levels of HDL and FPG contributed significantly to the variance in serum leptin levels in the case group (β = 0.37, 0.22, 0.19, 0.18, 0.27, 0.28; p < 0.05 for all). In the control group, the female gender had the biggest unique effect on circulating leptin levels, followed by BMI and eGFR (β = 0.71, 0.34, -0.22; p < 0.01 for all). Conclusion Patients with CKD who also had HHD reported considerably higher circulating leptin levels. Significantly higher blood leptin levels were shown to be associated with CKD stage 5 in the case group. These results are consistent with the role of leptin in the metabolic complexity seen in CKD patients. There needs to be more research into treatments that aim to lower leptin levels in CKD patients with HHD.
Collapse
Affiliation(s)
- Emmanuel K. Ofori
- Department of Chemical PathologyUniversity of Ghana Medical SchoolAccraGhana
| | - Christian N. Adekena
- Department of Chemical PathologyUniversity of Ghana Medical SchoolAccraGhana
- University of Ghana Medical CenterAccraGhana
| | - Vincent Boima
- Department of Medicine and TherapeuticsUniversity of Ghana Medical SchoolAccraGhana
| | - Henry Asare‐Anane
- Department of Chemical PathologyUniversity of Ghana Medical SchoolAccraGhana
| | - Ernest Yorke
- Department of Medicine and TherapeuticsUniversity of Ghana Medical SchoolAccraGhana
| | - Eric N. Y. Nyarko
- Department of Chemical PathologyUniversity of Ghana Medical SchoolAccraGhana
| | - Bismark N. Mohammed
- Department of Chemical PathologyUniversity of Ghana Medical SchoolAccraGhana
| | | | | | - Seth D. Amanquah
- Department of Chemical PathologyUniversity of Ghana Medical SchoolAccraGhana
| |
Collapse
|
24
|
Neural regulation of alveolar bone remodeling and periodontal ligament metabolism during orthodontic tooth movement in response to therapeutic loading. J World Fed Orthod 2022; 11:139-145. [DOI: 10.1016/j.ejwf.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/24/2022]
|
25
|
Wee NKY, de Lima TFC, McGregor NE, Walker EC, Poulton IJ, Blank M, Sims NA. Leptin receptor in osteocytes promotes cortical bone consolidation in female mice. J Endocrinol 2022; 255:25-37. [PMID: 35938692 DOI: 10.1530/joe-22-0084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/01/2022] [Indexed: 11/08/2022]
Abstract
Bone strength is partially determined during cortical bone consolidation, a process comprising coalescence of peripheral trabecular bone and its progressive mineralisation. Mice with genetic deletion of suppressor of cytokine signalling 3 (Socs3), an inhibitor of STAT3 signalling, exhibit delayed cortical bone consolidation, indicated by high cortical porosity, low mineral content, and low bone strength. Since leptin receptor (LepR) is expressed in the osteoblast lineage and is suppressed by SOCS3, we evaluated whether LepR deletion in osteocytes would rectify the Dmp1cre.Socs3fl/fl bone defect. First, we tested LepR deletion in osteocytes by generating Dmp1cre.LepRfl/fl mice and detected no significant bone phenotype. We then generated Dmp1cre.Socs3fl/fl.LepRfl/fl mice and compared them to Dmp1cre.Socs3fl/fl controls. Between 6 and 12 weeks of age, both Dmp1cre.Socs3fl/fl.LepRfl/fl and control (Dmp1cre.Socs3fl/fl) mice showed an increasing proportion of more heavily mineralised bone, indicating some cortical consolidation with time. However, at 12 weeks of age, rather than resolving the phenotype, delayed consolidation was extended in female Dmp1cre.Socs3fl/fl.LepRfl/fl mice. This was indicated in both metaphysis and diaphysis by greater proportions of low-density bone, lower proportions of high-density bone, and greater cortical porosity than Dmp1cre.Socs3fl/fl controls. There was also no change in the proportion of osteocytes staining positive for phospho-STAT3, suggesting the effect of LepR deletion in Dmp1cre.Socs3fl/fl mice is STAT3-independent. This identifies a new role for leptin signalling in bone which opposes our original hypothesis. Although LepR in osteocytes has no irreplaceable physiological role in normal bone maturation, when STAT3 is hyperactive, LepR in Dmp1Cre-expressing cells supports cortical consolidation.
Collapse
Affiliation(s)
- Natalie K Y Wee
- Bone Cell Biology and Disease Unit, St Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Thaísa F C de Lima
- Bone Cell Biology and Disease Unit, St Vincent's Institute of Medical Research, Fitzroy, Australia
- Department of Genetics and Molecular Biology, University of Campinas, São Paulo, Brazil
| | - Narelle E McGregor
- Bone Cell Biology and Disease Unit, St Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Emma C Walker
- Bone Cell Biology and Disease Unit, St Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Ingrid J Poulton
- Bone Cell Biology and Disease Unit, St Vincent's Institute of Medical Research, Fitzroy, Australia
| | - Martha Blank
- Bone Cell Biology and Disease Unit, St Vincent's Institute of Medical Research, Fitzroy, Australia
- Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Melbourne, Australia
| | - Natalie A Sims
- Bone Cell Biology and Disease Unit, St Vincent's Institute of Medical Research, Fitzroy, Australia
- Department of Medicine, The University of Melbourne, St. Vincent's Hospital, Melbourne, Australia
| |
Collapse
|
26
|
Ciaffi J, Borlandelli E, Visani G, Facchini G, Miceli M, Ruscitti P, Cipriani P, Giacomelli R, Ursini F. Prevalence and characteristics of diffuse idiopathic skeletal hyperostosis (DISH) in Italy. Radiol Med 2022; 127:1159-1169. [PMID: 36057932 PMCID: PMC9512867 DOI: 10.1007/s11547-022-01545-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/17/2022] [Indexed: 11/30/2022]
Abstract
Purpose Diffuse idiopathic skeletal hyperostosis (DISH) is a benign condition characterized by ossification of the spine and prominent enthesopathies. Highly heterogeneous epidemiological figures have been reported in the literature, while in Italy the largest study has been conducted in 1992. The aim of our research is to contribute updated information about prevalence of DISH in Italy and to describe the clinical and radiographic characteristics associated with the disorder. Material and methods A retrospective review of lumbosacral spine, thoracic spine and pelvis radiographs was performed. Consecutive patients visiting the emergency department of our Institution over 3 years were enrolled. Presence of DISH was evaluated applying the Resnick and Niwayama criteria. Clinical and radiological features were also assessed. Results We included 1012 individuals (60.6% women), and DISH was present in 130 cases. The overall prevalence of DISH was 12.8% (95% CI 10.8–15.1), with higher figures in the male sample (16.8%) than in females (10.3%). In binary logistic regression adjusted for age, BMI (OR 1.50, p < 0.001) diabetes (OR 1.85, p = 0.003), hypertension (OR 2.04, p = 0.007) ischiopubic enthesopathy (OR 7.08, p < 0.001), iliac crest enthesopathy (OR 4.63, p < 0.001) and greater trochanter enthesopathy (OR 3.51, p < 0.001), were significantly associated with the condition. Conclusion The prevalence of DISH observed in our study is consistent with previous literature, and we confirm that the disorder is more frequently retrieved in men and that it is associated with the presence of metabolic disorders and pelvic enthesopathy. Knowledge about the epidemiology and characteristics of DISH is needed to properly identify the condition.
Collapse
Affiliation(s)
- Jacopo Ciaffi
- Medicine & Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli (IOR), 40136, Bologna, Italy
| | - Elena Borlandelli
- Diagnostic and Interventional Radiology Unit, IRCCS Istituto Ortopedico Rizzoli (IOR), 40136, Bologna, Italy
| | - Gaia Visani
- Medicine & Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli (IOR), 40136, Bologna, Italy
| | - Giancarlo Facchini
- Diagnostic and Interventional Radiology Unit, IRCCS Istituto Ortopedico Rizzoli (IOR), 40136, Bologna, Italy
| | - Marco Miceli
- Diagnostic and Interventional Radiology Unit, IRCCS Istituto Ortopedico Rizzoli (IOR), 40136, Bologna, Italy
| | - Piero Ruscitti
- Rheumatology Section, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Paola Cipriani
- Rheumatology Section, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Roberto Giacomelli
- Rheumatology and Immunology Unit, Department of Medicine, University of Rome Campus Biomedico, Rome, Italy
| | - Francesco Ursini
- Medicine & Rheumatology Unit, IRCCS Istituto Ortopedico Rizzoli (IOR), 40136, Bologna, Italy.
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, 40125, Bologna, Italy.
| |
Collapse
|
27
|
Harnett MM, Doonan J, Lumb FE, Crowe J, Damink RO, Buitrago G, Duncombe-Moore J, Wilkinson DI, Suckling CJ, Selman C, Harnett W. The parasitic worm product ES-62 protects the osteoimmunology axis in a mouse model of obesity-accelerated ageing. Front Immunol 2022; 13:953053. [PMID: 36105811 PMCID: PMC9465317 DOI: 10.3389/fimmu.2022.953053] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Despite significant increases in human lifespan over the last century, adoption of high calorie diets (HCD) has driven global increases in type-2 diabetes, obesity and cardiovascular disease, disorders precluding corresponding improvements in healthspan. Reflecting that such conditions are associated with chronic systemic inflammation, evidence is emerging that infection with parasitic helminths might protect against obesity-accelerated ageing, by virtue of their evolution of survival-promoting anti-inflammatory molecules. Indeed, ES-62, an anti-inflammatory secreted product of the filarial nematode Acanthocheilonema viteae, improves the healthspan of both male and female C57BL/6J mice undergoing obesity-accelerated ageing and also extends median lifespan in male animals, by positively impacting on inflammatory, adipose metabolic and gut microbiome parameters of ageing. We therefore explored whether ES-62 affects the osteoimmunology axis that integrates environmental signals, such as diet and the gut microbiome to homeostatically regulate haematopoiesis and training of immune responses, which become dysregulated during (obesity-accelerated) ageing. Of note, we find sexual dimorphisms in the decline in bone health, and associated dysregulation of haematopoiesis and consequent peripheral immune responses, during obesity-accelerated ageing, highlighting the importance of developing sex-specific anti-ageing strategies. Related to this, ES-62 protects trabecular bone structure, maintaining bone marrow (BM) niches that counter the ageing-associated decline in haematopoietic stem cell (HSC) functionality highlighted by a bias towards myeloid lineages, in male but not female, HCD-fed mice. This is evidenced by the ability of ES-62 to suppress the adipocyte and megakaryocyte bias and correspondingly promote increases in B lymphocytes in the BM. Furthermore, the consequent prevention of ageing-associated myeloid/lymphoid skewing is associated with reduced accumulation of inflammatory CD11c+ macrophages and IL-1β in adipose tissue, disrupting the perpetuation of inflammation-driven dysregulation of haematopoiesis during obesity-accelerated ageing in male HCD-fed mice. Finally, we report the ability of small drug-like molecule analogues of ES-62 to mimic some of its key actions, particularly in strongly protecting trabecular bone structure, highlighting the translational potential of these studies.
Collapse
Affiliation(s)
- Margaret M. Harnett
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - James Doonan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Felicity E. Lumb
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Jenny Crowe
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Roel Olde Damink
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Geraldine Buitrago
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Josephine Duncombe-Moore
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Debbie I. Wilkinson
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Colin J. Suckling
- Department of Pure and Applied Chemistry, University of Strathclyde, Glasgow, United Kingdom
| | - Colin Selman
- Glasgow Ageing Research Network (GARNER), Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
28
|
Shalitin S, Gat-Yablonski G. Associations of Obesity with Linear Growth and Puberty. Horm Res Paediatr 2022; 95:120-136. [PMID: 34130293 DOI: 10.1159/000516171] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/27/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The prevalence of obesity in childhood has increased dramatically in recent decades with increased risk of developing cardiometabolic and other comorbidities. Childhood adiposity may also influence processes of growth and puberty. SUMMARY Growth patterns of obesity during childhood have been shown to be associated with increased linear growth in early childhood, leading to accelerated epiphyseal growth plate (EGP) maturation. Several hormones secreted by the adipose tissue may affect linear growth in the context of obesity, both via the growth hormone IGF-1 axis and via a direct effect on the EGP. The observation that children with obesity tend to mature earlier than lean children has led to the assumption that the degree of body fatness may trigger the neuroendocrine events that lead to pubertal onset. The most probable link between obesity and puberty is leptin and its interaction with the kisspeptin system, which is an important regulator of puberty. However, peripheral action of adipose tissue could also be involved in changes in the onset of puberty. In addition, nutritional factors, epigenetics, and endocrine-disrupting chemicals are potential mediators linking pubertal onset to obesity. In this review, we focused on interactions of obesity with linear growth and pubertal processes, based on basic research and clinical data in humans. KEY MESSAGE Children with obesity are subject to accelerated linear growth with risk of impaired adult height and early puberty, with its psychological consequences. The data highlight another important objective in combatting childhood obesity, for the prevention of abnormal growth and pubertal patterns.
Collapse
Affiliation(s)
- Shlomit Shalitin
- National Center for Childhood Diabetes, Schneider Children's Medical Center of Israel, The Jesse Z and Sara Lea Shafer Institute for Endocrinology and Diabetes, Petach Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Galia Gat-Yablonski
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Felsenstein Medical Research Center, Petach Tikva, Israel
| |
Collapse
|
29
|
Wang T. Searching for the link between inflammaging and sarcopenia. Ageing Res Rev 2022; 77:101611. [PMID: 35307560 DOI: 10.1016/j.arr.2022.101611] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/14/2022] [Accepted: 03/15/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Tiantian Wang
- Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Rehabilitation Medicine, Key Laboratory of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
30
|
Figeac F, Tencerova M, Ali D, Andersen TL, Appadoo DRC, Kerckhofs G, Ditzel N, Kowal JM, Rauch A, Kassem M. Impaired bone fracture healing in type 2 diabetes is caused by defective functions of skeletal progenitor cells. Stem Cells 2022; 40:149-164. [DOI: 10.1093/stmcls/sxab011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 09/17/2021] [Indexed: 11/12/2022]
Abstract
Abstract
The mechanisms of obesity and type 2 diabetes (T2D)-associated impaired fracture healing are poorly studied. In a murine model of T2D reflecting both hyperinsulinemia induced by high fat diet (HFD) and insulinopenia induced by treatment with streptozotocin (STZ), we examined bone healing in a tibia cortical bone defect. A delayed bone healing was observed during hyperinsulinemia as newly formed bone was reduced by – 28.4±7.7% and was associated with accumulation of marrow adipocytes at the defect site +124.06±38.71%, and increased density of SCA1+ (+74.99± 29.19%) but not Runx2 +osteoprogenitor cells. We also observed increased in reactive oxygen species production (+101.82± 33.05%), senescence gene signature (≈106.66± 34.03%) and LAMIN B1 - senescent cell density (+225.18± 43.15%), suggesting accelerated senescence phenotype. During insulinopenia, a more pronounced delayed bone healing was observed with decreased newly formed bone to -34.9± 6.2% which was inversely correlated with glucose levels (R 2=0.48, p<0.004) and callus adipose tissue area (R 2=0.3711, p<0.01). Finally, to investigate the relevance to human physiology, we observed that sera from obese and T2D subjects had disease state-specific inhibitory effects on osteoblast related gene signatures in human bone marrow stromal cells which resulted in inhibition of osteoblast and enhanced adipocyte differentiation. Our data demonstrate that T2D exerts negative effects on bone healing through inhibition of osteoblast differentiation of skeletal stem cells and induction of accelerated bone senescence and that the hyperglycaemia per se and not just insulin levels is detrimental for bone healing.
Collapse
Affiliation(s)
- Florence Figeac
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Denmark
| | - Michaela Tencerova
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Denmark
- Current Molecular Physiology of Bone, Institute of Physiology, the Czech Academy of Sciences, Prague, Czech Republic
| | - Dalia Ali
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Denmark
| | - Thomas L Andersen
- Department of Pathology, Odense University Hospital, Odense
- Clinical Cell Biology, Research Unit of Pathology, Department of Clinical Research, University of Southern Denmark, Denmark
- Department of Molecular Medicine, University of Southern Denmark, Denmark
| | | | - Greet Kerckhofs
- Biomechanics lab, Institute of Mechanics, Materials, and Civil Engineering, UCLouvain, Louvain-la-Neuve, Belgium
- Institute for Experimental and Clinical Research, UCLouvain, Woluwe, Belgium
- Department of Material Science and Engineering, KU Leuven, Leuven, Belgium
| | - Nicholas Ditzel
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Denmark
| | - Justyna M Kowal
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Denmark
| | - Alexander Rauch
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Denmark
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
| | - Moustapha Kassem
- Department of Molecular Endocrinology, KMEB, University of Southern Denmark and Odense University Hospital, Denmark
- Department of Cellular and Molecular Medicine, Danish Stem Cell Center (DanStem), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
31
|
Londraville RL, Tuttle M, Liu Q, Andronowski JM. Endospanin Is a Candidate for Regulating Leptin Sensitivity. Front Physiol 2022; 12:786299. [PMID: 35069248 PMCID: PMC8777038 DOI: 10.3389/fphys.2021.786299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
The hypothesis advanced is that endospanin, a highly conserved vesicle traffic protein in vertebrates, regulates leptin sensitivity in bone signaling. The effects of leptin on bones are well-studied but without consensus on whether the increases in leptin signaling stimulate bone gain or loss. The bone response may depend on leptin sensitivity, and endospanin is an established modulator of leptin sensitivity. An argument is advanced to develop zebrafish models for specific leptin signaling pathways. Zebrafish have well-developed molecular tools (e.g., CRISPR) and the advantage of non-destructive sampling of bones in the form of scales. Using these tools, experiments are described to substantiate the role of endospanin in zebrafish bone dynamics.
Collapse
Affiliation(s)
- Richard L. Londraville
- Program in Integrated Bioscience, Department of Biology, University of Akron, Akron, OH, United States
| | - Matthew Tuttle
- Program in Integrated Bioscience, Department of Biology, University of Akron, Akron, OH, United States
| | - Qin Liu
- Program in Integrated Bioscience, Department of Biology, University of Akron, Akron, OH, United States
| | - Janna M. Andronowski
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. Johns, NL, Canada
| |
Collapse
|
32
|
Avilkina V, Chauveau C, Ghali Mhenni O. Sirtuin function and metabolism: Role in pancreas, liver, and adipose tissue and their crosstalk impacting bone homeostasis. Bone 2022; 154:116232. [PMID: 34678494 DOI: 10.1016/j.bone.2021.116232] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022]
Abstract
Mammalian sirtuins (SIRT1-7) are members of the nicotine adenine dinucleotide (NAD+)-dependent family of enzymes critical for histone deacetylation and posttranslational modification of proteins. Sirtuin family members regulate a wide spectrum of biological processes and are best known for maintaining longevity. Sirtuins are well characterized in metabolic tissues such as the pancreas, liver and adipose tissue (AT). They are regulated by a diverse range of stimuli, including nutrients and metabolic changes within the organism. Indeed, nutrient-associated conditions, such as obesity and anorexia nervosa (AN), were found to be associated with bone fragility development in osteoporosis. Interestingly, it has also been demonstrated that sirtuins, more specifically SIRT1, can regulate bone activity. Various studies have demonstrated the importance of sirtuins in bone in the regulation of bone homeostasis and maintenance of the balance between bone resorption and bone formation. However, to understand the molecular mechanisms involved in the negative regulation of bone homeostasis during overnutrition (obesity) or undernutrition, it is crucial to examine a wider picture and to determine the pancreatic, liver and adipose tissue pathway crosstalk responsible for bone loss. Particularly, under AN conditions, sirtuin family members are highly expressed in metabolic tissue, but this phenomenon is reversed in bone, and severe bone loss has been observed in human subjects. AN-associated bone loss may be connected to SIRT1 deficiency; however, additional factors may interfere with bone homeostasis. Thus, in this review, we focus on sirtuin activity in the pancreas, liver and AT in cases of over- and undernutrition, especially the regulation of their secretome by sirtuins. Furthermore, we examine how the secretome of the pancreas, liver and AT affects bone homeostasis, focusing on undernutrition. This review aims to lead to a better understanding of the crosstalk between sirtuins, metabolic organs and bone. In long term prospective it should contribute to promote improvement of therapeutic strategies for the prevention of metabolic diseases and the development of osteoporosis.
Collapse
Affiliation(s)
- Viktorija Avilkina
- Marrow Adiposity and Bone Lab (MABLab) ULR4490, Univ. Littoral Côte d'Opale, F-62200, Boulogne-sur-Mer, Univ. Lille F-59000 Lille, CHU Lille, F-59000 Lille, France
| | - Christophe Chauveau
- Marrow Adiposity and Bone Lab (MABLab) ULR4490, Univ. Littoral Côte d'Opale, F-62200, Boulogne-sur-Mer, Univ. Lille F-59000 Lille, CHU Lille, F-59000 Lille, France
| | - Olfa Ghali Mhenni
- Marrow Adiposity and Bone Lab (MABLab) ULR4490, Univ. Littoral Côte d'Opale, F-62200, Boulogne-sur-Mer, Univ. Lille F-59000 Lille, CHU Lille, F-59000 Lille, France.
| |
Collapse
|
33
|
Álvarez-Vásquez JL, Bravo-Guapisaca MI, Gavidia-Pazmiño JF, Intriago-Morales RV. Adipokines in dental pulp: physiological, pathological, and potential therapeutic roles. J Oral Biosci 2021; 64:59-70. [PMID: 34808362 DOI: 10.1016/j.job.2021.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hundreds of adipokines have been identified, and their extensive range of endocrine functions-regulating distant organs such as oral tissues-and local autocrine/paracrine roles have been studied. In dentistry, however, adipokines are poorly known proteins in the dental pulp; few of them have been studied despite their large number. This study reviews recent advances in the investigation of dental-pulp adipokines, with an emphasis on their roles in inflammatory processes and their potential therapeutic applications. HIGHLIGHTS The most recently identified adipokines in dental pulp include leptin, adiponectin, resistin, ghrelin, oncostatin, chemerin, and visfatin. They have numerous physiological and pathological functions in the pulp tissue: they are closely related to pulp inflammatory mechanisms and actively participate in cell differentiation, mineralization, angiogenesis, and immune-system modulation. CONCLUSION Adipokines have potential clinical applications in regenerative endodontics and as biomarkers or targets for the pharmacological management of inflammatory and degenerative processes in dental pulp. A promising direction for the development of new therapies may be the use of agonists/antagonists to modulate the expression of the most studied adipokines.
Collapse
|
34
|
Freire EBL, d’Alva CB, Madeira MP, Lima GEDCP, Montenegro APDR, Fernandes VO, Montenegro Junior RM. Bone Mineral Density in Congenital Generalized Lipodystrophy: The Role of Bone Marrow Tissue, Adipokines, and Insulin Resistance. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:9724. [PMID: 34574647 PMCID: PMC8465110 DOI: 10.3390/ijerph18189724] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/05/2021] [Accepted: 07/16/2021] [Indexed: 12/31/2022]
Abstract
Congenital Generalized Lipodystrophy (CGL) is a rare syndrome characterized by the almost total absence of subcutaneous adipose tissue due to the inability of storing lipid in adipocytes. Patients present generalized lack of subcutaneous fat and normal to low weight. They evolve with severe metabolic disorders, non-alcoholic fatty liver disease, early cardiac abnormalities, and infectious complications. Although low body weight is a known risk factor for osteoporosis, it has been reported that type 1 and 2 CGL have a tendency of high bone mineral density (BMD). In this review, we discuss the role of bone marrow tissue, adipokines, and insulin resistance in the setting of the normal to high BMD of CGL patients. Data bases from Pubmed and LILACS were searched, and 113 articles published until 10 April 2021 were obtained. Of these, 76 were excluded for not covering the review topic. A manual search for additional literature was performed using the bibliographies of the studies located. The elucidation of the mechanisms responsible for the increase in BMD in this unique model of insulin resistance may contribute to the understanding of the interrelationships between bone, muscle, and adipose tissue in a pathophysiological and therapeutic perspective.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Renan Magalhães Montenegro Junior
- Clinical Research Unit, Walter Cantídio University Hospital, Federal University of Ceará, Fortaleza 60416200, CE, Brazil; (E.B.L.F.); (C.B.d.); (M.P.M.); (G.E.d.C.P.L.); (A.P.D.R.M.); (V.O.F.)
| | | |
Collapse
|
35
|
Broz K, Walk RE, Tang SY. Complications in the spine associated with type 2 diabetes: The role of advanced glycation end-products. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2021; 11. [PMID: 35992525 PMCID: PMC9390092 DOI: 10.1016/j.medntd.2021.100065] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Type 2 diabetes mellitus (T2D) is an increasingly prevalent disease with numerous comorbidities including many in the spine. T2D is strongly linked with vertebral fractures, intervertebral disc (IVD) degeneration, and severe chronic spinal pain. Yet the causative mechanism for these musculoskeletal impairments remains unclear. The chronic hyperglycemic state in T2D promotes the formation of advanced glycation end-products (AGEs) in tissues, and the accumulation of AGEs may play a role in musculoskeletal complications by modifying the extracellular matrix, impairing cellular homeostasis, and perpetuating an inflammatory cascade via its receptor (RAGE). The AGE and RAGE associated alterations in extracellular matrix composition and morphological features of the vertebral bodies and IVDs are likely contributors to the incidence and severity of spinal pathologies in T2D. This review will broadly examine the effects of AGEs on tissues in the spine in the context of T2D, with an emphasis on the changes in the vertebrae and the IVD. Along with the clinical and epidemiological findings, we will provide an overview of preclinical rodent models of T2D that exhibit deficits in the IVD and vertebral bone. Elucidating the role of AGEs and RAGE will be crucial for understanding the disease mechanisms and translation therapies of musculoskeletal pathologies in T2D.
Collapse
Affiliation(s)
- Kaitlyn Broz
- Institute of Material Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Remy E. Walk
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
| | - Simon Y. Tang
- Institute of Material Science and Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA
- Department of Orthopaedic Surgery, Washington University in St. Louis, St. Louis, MO, USA
- Corresponding author. Department of Orthopaedic Surgery, Washington University in St. Louis, School of Medicine, 660 S. Euclid Avenue, Campus Box 8233, St. Louis, MO, 63110, USA. (S.Y. Tang)
| |
Collapse
|
36
|
Liang ZT, Guo CF, Li J, Zhang HQ. The role of endocrine hormones in the pathogenesis of adolescent idiopathic scoliosis. FASEB J 2021; 35:e21839. [PMID: 34387890 DOI: 10.1096/fj.202100759r] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/21/2021] [Accepted: 07/21/2021] [Indexed: 11/11/2022]
Abstract
Adolescent idiopathic scoliosis (AIS) is a common spinal deformity characterized by changes in the three-dimensional structure of the spine. It usually initiates during puberty, the peak period of human growth when the secretion of numerous hormones is changing, and it is more common in females than in males. Accumulating evidence shows that the abnormal levels of many hormones including estrogen, melatonin, growth hormone, leptin, adiponectin and ghrelin, may be related to the occurrence and development of AIS. The purpose of this review is to provide a summary and critique of the research published on each hormone over the past 20 years, and to highlight areas for future study. It is hoped that the presentation will help provide a better understanding of the role of endocrine hormones in the pathogenesis of AIS.
Collapse
Affiliation(s)
- Zhuo-Tao Liang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Chao-Feng Guo
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jiong Li
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Hong-Qi Zhang
- Department of Spine Surgery and Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
37
|
Mello JB, Pedretti A, García-Hermoso A, Martins CML, Gaya AR, Duncan MJ, Gaya ACA. Exercise in school Physical Education increase bone mineral content and density: Systematic review and meta-analysis. Eur J Sport Sci 2021; 22:1618-1629. [PMID: 34328066 DOI: 10.1080/17461391.2021.1960426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
ABSTRACTThis systematic review and meta-analysis aimed to evaluate the effectiveness of interventions through Physical Education (PE) exercises on bone mineral content (BMC) and density (BMD) of children and adolescents. The research was conducted using the online electronic databases PubMed, Science Direct, Web of Science and Scopus (March 2021). The analysis was restricted to school-based studies that examined the effect of PE interventions on BMC and BMD in schoolchildren (<18 years old). Standardised mean differences (SMD) with 95% confidence interval (CI) and random-effects models were calculated. The heterogeneity and inconsistency of the studies were estimated using Cochran's Q-statistic and I2, respectively. Twenty-two studies with 2,556 participants were selected. PE interventions were associated with a significant increase in BMC (SMD = 1.348; 95% CI, 1.053-1.643) and BMD (SMD = 0.640; 95% CI, 0.417-0.862). Femoral neck subgroup analysis indicate an increase in BMC for boys (SMD = 1.527; 95% CI, 0.990-2.065) and girls (SMD = 1.27; 95% CI, 0.782-1.767), and in BMD for boys (SMD = 0.518; 95% CI, 0.064-0.972) and girls (SMD = 0.817; 95% CI, 0.349-1.284). Finally, increases are reported in the lumbar spine BMC for boys (SMD = 1.860; 95% CI, 1.018-2.700) and girls (SMD = 1.275; 95% CI, 0.782-1.767). This meta-analysis provides insights into the effectiveness of interventions aimed at including physical exercise in PE on bone mass, suggesting that increasing the proportion of curriculum time allocated to PE may improve students' BMD and BMC, especially in the femoral neck and lumbar spine.
Collapse
Affiliation(s)
- Júlio B Mello
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Antonio García-Hermoso
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Publica de Navarra, Pamplona, Spain.,Escuela de Ciencias de la Actividad Física, el Deporte y la Salud, Universidad de Santiago de Chile, Santiago de Chile, Chile
| | | | - Anelise R Gaya
- Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | |
Collapse
|
38
|
Martin SA, Riordan RT, Wang R, Yu Z, Aguirre-Burk AM, Wong CP, Olson DA, Branscum AJ, Turner RT, Iwaniec UT, Perez VI. Rapamycin impairs bone accrual in young adult mice independent of Nrf2. Exp Gerontol 2021; 154:111516. [PMID: 34389472 DOI: 10.1016/j.exger.2021.111516] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/15/2021] [Accepted: 08/08/2021] [Indexed: 11/17/2022]
Abstract
Advanced age is the strongest risk factor for osteoporosis. The immunomodulator drug rapamycin extends lifespan in numerous experimental model organisms and is being investigated as a potential therapeutic to slow human aging, but little is known about the effects of rapamycin on bone. We evaluated the impact of rapamycin treatment on bone mass, architecture, and indices of bone turnover in healthy adult (16-20 weeks old at treatment initiation) female wild-type (ICR) and Nrf2-/- mice, a mouse model of oxidative damage and aging-related disease vulnerability. Rapamycin (4 mg/kg bodyweight) was administered by intraperitoneal injection every other day for 12 weeks. Mice treated with rapamycin exhibited lower femur bone mineral content, bone mineral density, and bone volume compared to vehicle-treated mice. In midshaft femur diaphysis (cortical bone), rapamycin-treated mice had lower cortical volume and thickness, and in the distal femur metaphysis (cancellous bone), rapamycin-treated mice had higher trabecular spacing and lower connectivity density. Mice treated with rapamycin exhibited lower bone volume, bone volume fraction, and trabecular thickness in the 5th lumbar vertebra. Rapamycin-treated mice had lower levels of bone formation in the distal femur metaphysis compared to vehicle-treated mice which occurred co-incidentally with increased serum CTX-1, a marker of global bone resorption. Rapamycin had no impact on tibia inflammatory cytokine gene expression, and we found no independent effects of Nrf2 knockout on bone, nor did we find any interactions between genotype and treatment. These data show that rapamycin may have a negative impact on the skeleton of adult mice that should not be overlooked in the clinical context of its usage as a therapy to retard aging and reduce the incidence of age-related pathologies.
Collapse
Affiliation(s)
- Stephen A Martin
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA; Biology of Aging Laboratory, Center for American Indian and Rural Health Equity, Montana State University, Bozeman, MT 59718, USA.
| | - Ruben T Riordan
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Department Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | - Rong Wang
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Zhen Yu
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA
| | - Allan M Aguirre-Burk
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Carmen P Wong
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Dawn A Olson
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Adam J Branscum
- Biostatistics Program, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Russell T Turner
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Urszula T Iwaniec
- Skeletal Biology Laboratory, School of Biological and Population Health Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Viviana I Perez
- Linus Pauling Institute, Oregon State University, Corvallis, OR 97331, USA; Department Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
39
|
Li J, Zhang T, Huang C, Xu M, Xie W, Pei Q, Xie X, Wang B, Li X. Chemerin located in bone marrow promotes osteogenic differentiation and bone formation via Akt/Gsk3β/β-catenin axis in mice. J Cell Physiol 2021; 236:6042-6054. [PMID: 33492671 DOI: 10.1002/jcp.30290] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/06/2021] [Accepted: 01/09/2021] [Indexed: 12/11/2022]
Abstract
Chemerin, a secreted protein mainly produced by adipocytes and hepatocytes, plays a variety of roles in endocrine or paracrine signaling. As reported in human epidemiology, chemerin was correlated with osteoporosis. And the previous in vitro study found that chemerin knockdown promoted osteogenesis and inhibited adipogenesis. However, the function of chemerin in bone metabolism and the underlying mechanism remains unclear. In this study, we uncovered the in vivo function of chemerin in bone homeostasis. We discovered that in obese mice, chemerin was increased in serum, while decreased in the bone marrow; and the chemerin expression in bone tissue was positively correlated with osteogenic genes. To further investigate the function of chemerin in bone metabolism, we generated chemerin deficiency and overexpression mice. We found bone mass and osteogenesis were decreased in chemerin deficiency mice, while were increased in chemerin overexpression mice. Furthermore, we observed that the chemerin expression increased during osteogenic differentiation of MSCs. Besides, we verified that chemerin promoted osteogenic differentiation in C3H10T1/2 cells and BMSCs through Akt/Gsk3β/β-catenin axis. Treatment with Akt inhibitor (MK2206) abolished the promoting effect of chemerin on osteogenic differentiation and active β-catenin. Together, our results suggest chemerin in bone marrow, not in serum, promotes osteogenic differentiation and bone formation via Akt/Gsk3β/β-catenin axis. Chemerin may serve as a therapeutic strategy for osteoporosis.
Collapse
Affiliation(s)
- Jun Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ting Zhang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China
| | - Chenglong Huang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China
| | - Min Xu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China
| | - Wenhua Xie
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China
| | - Qilin Pei
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xinxin Xie
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China
| | - Bin Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xi Li
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
40
|
Vantucci CE, Krishan L, Cheng A, Prather A, Roy K, Guldberg RE. BMP-2 delivery strategy modulates local bone regeneration and systemic immune responses to complex extremity trauma. Biomater Sci 2021; 9:1668-1682. [PMID: 33409509 PMCID: PMC8256799 DOI: 10.1039/d0bm01728k] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Bone nonunions arising from large bone defects and composite injuries remain compelling challenges for orthopedic surgeons. Biological changes associated with nonunions, such as systemic immune dysregulation, can contribute to an adverse healing environment. Bone morphogenetic protein 2 (BMP-2), an osteoinductive and potentially immunomodulatory growth factor, is a promising strategy; however, burst release from the clinical standard collagen sponge delivery vehicle can result in adverse side effects such as heterotopic ossification (HO) and irregular bone structure, especially when using supraphysiological BMP-2 doses for complex injuries at high risk for nonunion. To address this challenge, biomaterials that strongly bind BMP-2, such as heparin methacrylamide microparticles (HMPs), may be used to limit exposure and spatially constrain proteins within the injury site. Here, we investigate moderately high dose BMP-2 delivered in HMPs within an injectable hydrogel system in two challenging nonunion models exhibiting characteristics of systemic immune dysregulation. The HMP delivery system increased total bone volume and decreased peak HO compared to collagen sponge delivery of the same BMP-2 dose. Multivariate analyses of systemic immune markers showed the collagen sponge group correlated with markers that are hallmarks of systemic immune dysregulation, including immunosuppressive myeloid-derived suppressor cells, whereas the HMP groups were associated with immune effector cells, including T cells, and cytokines linked to robust bone regeneration. Overall, our results demonstrate that HMP delivery of moderately high doses of BMP-2 promotes repair of complex bone nonunion injuries and that local delivery strategies for potent growth factors like BMP-2 may positively affect the systemic immune response to traumatic injury.
Collapse
Affiliation(s)
- Casey E Vantucci
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Laxminarayanan Krishan
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Albert Cheng
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA and George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ayanna Prather
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Krishnendu Roy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Robert E Guldberg
- Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA.
| |
Collapse
|
41
|
Aaron N, Kraakman MJ, Zhou Q, Liu Q, Costa S, Yang J, Liu L, Yu L, Wang L, He Y, Fan L, Hirakawa H, Ding L, Lo J, Wang W, Zhao B, Guo E, Sun L, Rosen CJ, Qiang L. Adipsin promotes bone marrow adiposity by priming mesenchymal stem cells. eLife 2021; 10:69209. [PMID: 34155972 PMCID: PMC8219379 DOI: 10.7554/elife.69209] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/07/2021] [Indexed: 01/12/2023] Open
Abstract
Background Marrow adipose tissue (MAT) has been shown to be vital for regulating metabolism and maintaining skeletal homeostasis in the bone marrow (BM) niche. As a reflection of BM remodeling, MAT is highly responsive to nutrient fluctuations, hormonal changes, and metabolic disturbances such as obesity and diabetes mellitus. Expansion of MAT has also been strongly associated with bone loss in mice and humans. However, the regulation of BM plasticity remains poorly understood, as does the mechanism that links changes in marrow adiposity with bone remodeling. Methods We studied deletion of Adipsin, and its downstream effector, C3, in C57BL/6 mice as well as the bone-protected PPARγ constitutive deacetylation 2KR mice to assess BM plasticity. The mice were challenged with thiazolidinedione treatment, calorie restriction, or aging to induce bone loss and MAT expansion. Analysis of bone mineral density and marrow adiposity was performed using a μCT scanner and by RNA analysis to assess adipocyte and osteoblast markers. For in vitro studies, primary bone marrow stromal cells were isolated and subjected to osteoblastogenic or adipogenic differentiation or chemical treatment followed by morphological and molecular analyses. Clinical data was obtained from samples of a previous clinical trial of fasting and high-calorie diet in healthy human volunteers. Results We show that Adipsin is the most upregulated adipokine during MAT expansion in mice and humans in a PPARγ acetylation-dependent manner. Genetic ablation of Adipsin in mice specifically inhibited MAT expansion but not peripheral adipose depots, and improved bone mass during calorie restriction, thiazolidinedione treatment, and aging. These effects were mediated through its downstream effector, complement component C3, to prime common progenitor cells toward adipogenesis rather than osteoblastogenesis through inhibiting Wnt/β-catenin signaling. Conclusions Adipsin promotes new adipocyte formation and affects skeletal remodeling in the BM niche. Our study reveals a novel mechanism whereby the BM sustains its own plasticity through paracrine and endocrine actions of a unique adipokine. Funding This work was supported by the National Institutes of Health T32DK007328 (NA), F31DK124926 (NA), R01DK121140 (JCL), R01AR068970 (BZ), R01AR071463 (BZ), R01DK112943 (LQ), R24DK092759 (CJR), and P01HL087123 (LQ).
Collapse
Affiliation(s)
- Nicole Aaron
- Naomi Berrie Diabetes Cente, Columbia UniversityNew YorkUnited States,Department of Pharmacology, Columbia UniversityNew YorkUnited States
| | - Michael J Kraakman
- Naomi Berrie Diabetes Cente, Columbia UniversityNew YorkUnited States,Department of Medicine, Columbia UniversityNew YorkUnited States
| | - Qiuzhong Zhou
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical SchoolSingaporeSingapore
| | - Qiongming Liu
- Naomi Berrie Diabetes Cente, Columbia UniversityNew YorkUnited States,Department of Pathology and Cellular Biology, Columbia UniversityNew YorkUnited States
| | - Samantha Costa
- Center for Molecular Medicine, Maine Medical Center Research InstituteScarboroughUnited States,School of Medicine, Tufts UniversityBostonUnited States,Graduate School of Biomedical Science and Engineering, University of MaineOronoUnited States
| | - Jing Yang
- Naomi Berrie Diabetes Cente, Columbia UniversityNew YorkUnited States,Department of Pathology and Cellular Biology, Columbia UniversityNew YorkUnited States
| | - Longhua Liu
- Naomi Berrie Diabetes Cente, Columbia UniversityNew YorkUnited States,Department of Pathology and Cellular Biology, Columbia UniversityNew YorkUnited States
| | - Lexiang Yu
- Naomi Berrie Diabetes Cente, Columbia UniversityNew YorkUnited States,Department of Pathology and Cellular Biology, Columbia UniversityNew YorkUnited States
| | - Liheng Wang
- Naomi Berrie Diabetes Cente, Columbia UniversityNew YorkUnited States,Department of Medicine, Columbia UniversityNew YorkUnited States
| | - Ying He
- Naomi Berrie Diabetes Cente, Columbia UniversityNew YorkUnited States,Department of Pathology and Cellular Biology, Columbia UniversityNew YorkUnited States
| | - Lihong Fan
- Naomi Berrie Diabetes Cente, Columbia UniversityNew YorkUnited States,Department of Pathology and Cellular Biology, Columbia UniversityNew YorkUnited States
| | - Hiroyuki Hirakawa
- Department of Microbiology and Immunology, Columbia UniversityNew YorkUnited States,Department of Rehabilitation and Regenerative Medicine, Vagelos College of Physicians and SurgeonsNew YorkUnited States
| | - Lei Ding
- Department of Microbiology and Immunology, Columbia UniversityNew YorkUnited States,Department of Rehabilitation and Regenerative Medicine, Vagelos College of Physicians and SurgeonsNew YorkUnited States
| | - James Lo
- Weill Center for Metabolic Health, Cardiovascular Research Institute, and Division of Cardiology, Weill Cornell Medical CollegeNew YorkUnited States
| | - Weidong Wang
- Department of Medicine, Division of Endocrinology, Harold Hamm Diabetes Center, The University of Oklahoma Health Science CenterOklahoma CityUnited States
| | - Baohong Zhao
- Arthritis and Tissue Degeneration Program and The David Z. Rosensweig Genomics Research Center, Hospital for Special Surgery, Department of Medicine, Weill Cornell Medical College; Graduate Program in Cell & Developmental Biology, Weill Cornell Graduate School of Medical SciencesNew YorkUnited States
| | - Edward Guo
- Department of Biomedical Engineering, Columbia UniversityNew YorkUnited States
| | - Lei Sun
- Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical SchoolSingaporeSingapore
| | - Cliff J Rosen
- Center for Molecular Medicine, Maine Medical Center Research InstituteScarboroughUnited States
| | - Li Qiang
- Naomi Berrie Diabetes Cente, Columbia UniversityNew YorkUnited States,Department of Pathology and Cellular Biology, Columbia UniversityNew YorkUnited States
| |
Collapse
|
42
|
Jin LY, Guo C, Xu S, Liu HY, Li XF. The Role of Estrogen Receptor α in Response to Longitudinal Bone Growth in ob/ob Mice. Front Endocrinol (Lausanne) 2021; 12:749449. [PMID: 34925230 PMCID: PMC8671758 DOI: 10.3389/fendo.2021.749449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/06/2021] [Indexed: 12/18/2022] Open
Abstract
The absence of leptin results in contrasting growth pattern of appendicular and axial bone growth in ob/ob mice. Endochondral bone formation is an important procedure of growth plate determining the bone growth, where this procedure is also regulated by estrogen and its receptor (ER) signaling pathway. The present study is undertaken to explore the roles of ERs in regulating the different growth patterns in ob/ob mice. In this study, C57BL/6 female mice were used as wild-type (WT) mice; ob/ob mice and WT mice were age-matched fed, and bone length is analyzed by X-ray plain film at the 12 weeks old. We confirm that ob/ob mice have shorter femoral length and longer spine length than WT mice (p < 0.05). The contrasting expression patterns of chondrocyte proliferation proteins and hypertrophic marker proteins are also observed from the femur and spinal growth plate of ob/ob mice compared with WT mice (p < 0.01). Spearman's analysis showed that body length (axial and appendicular length) is positively related to the expression level of ERα in growth plate. Three-week-old female ob/ob mice are randomized divided into three groups: 1) ob/ob + ctrl, 2) ob/ob + ERα antagonist (MPP), and 3) ob/ob + ERβ antagonist (PHTPP). Age-matched C57BL/6 mice were also divided into three groups, same as the groups of ob/ob mice. MPP and PHTPP were administered by intraperitoneal injection for 6 weeks. However, the results of X-ray and H&E staining demonstrate that leptin deficiency seems to disturb the regulating effects of ER antagonists on longitudinal bone growth. These findings suggested that region-specific expression of ERα might be associated with contrasting phenotypes of axial and appendicular bone growth in ob/ob mice. However, ER signaling on longitudinal bone growth was blunted by leptin deficiency in ob/ob mice, and the underlying association between ERs and leptin needs to be explored in future work.
Collapse
Affiliation(s)
- Lin-Yu Jin
- Department of Spinal Surgery, Peking University People's Hospital, Peking University, Beijing, China
| | - Chen Guo
- Department of Spinal Surgery, Peking University People's Hospital, Peking University, Beijing, China
| | - Shuai Xu
- Department of Spinal Surgery, Peking University People's Hospital, Peking University, Beijing, China
| | - Hai-Ying Liu
- Department of Spinal Surgery, Peking University People's Hospital, Peking University, Beijing, China
| | - Xin-Feng Li
- Department of Spinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
43
|
Garbe A, Graef F, Appelt J, Schmidt-Bleek K, Jahn D, Lünnemann T, Tsitsilonis S, Seemann R. Leptin Mediated Pathways Stabilize Posttraumatic Insulin and Osteocalcin Patterns after Long Bone Fracture and Concomitant Traumatic Brain Injury and Thus Influence Fracture Healing in a Combined Murine Trauma Model. Int J Mol Sci 2020; 21:E9144. [PMID: 33266324 PMCID: PMC7729898 DOI: 10.3390/ijms21239144] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/19/2020] [Accepted: 11/28/2020] [Indexed: 12/23/2022] Open
Abstract
Recent studies on insulin, leptin, osteocalcin (OCN), and bone remodeling have evoked interest in the interdependence of bone formation and energy household. Accordingly, this study attempts to investigate trauma specific hormone changes in a murine trauma model and its influence on fracture healing. Thereunto 120 female wild type (WT) and leptin-deficient mice underwent either long bone fracture (Fx), traumatic brain injury (TBI), combined trauma (Combined), or neither of it and therefore served as controls (C). Blood samples were taken weekly after trauma and analyzed for insulin and OCN concentrations. Here, WT-mice with Fx and, moreover, with combined trauma showed a greater change in posttraumatic insulin and OCN levels than mice with TBI alone. In the case of leptin-deficiency, insulin changes were still increased after bony lesion, but the posttraumatic OCN was no longer trauma specific. Four weeks after trauma, hormone levels recovered to normal/basal line level in both mouse strains. Thus, WT- and leptin-deficient mice show a trauma specific hyperinsulinaemic stress reaction leading to a reduction in OCN synthesis and release. In WT-mice, this causes a disinhibition and acceleration of fracture healing after combined trauma. In leptin-deficiency, posttraumatic OCN changes are no longer specific and fracture healing is impaired regardless of the preceding trauma.
Collapse
Affiliation(s)
- Anja Garbe
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 13353 Berlin, Germany; (F.G.); (J.A.); (D.J.); (T.L.); (S.T.); (R.S.)
| | - Frank Graef
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 13353 Berlin, Germany; (F.G.); (J.A.); (D.J.); (T.L.); (S.T.); (R.S.)
| | - Jessika Appelt
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 13353 Berlin, Germany; (F.G.); (J.A.); (D.J.); (T.L.); (S.T.); (R.S.)
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 13353 Berlin, Germany;
| | - Katharina Schmidt-Bleek
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 13353 Berlin, Germany;
| | - Denise Jahn
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 13353 Berlin, Germany; (F.G.); (J.A.); (D.J.); (T.L.); (S.T.); (R.S.)
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 13353 Berlin, Germany;
| | - Tim Lünnemann
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 13353 Berlin, Germany; (F.G.); (J.A.); (D.J.); (T.L.); (S.T.); (R.S.)
| | - Serafeim Tsitsilonis
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 13353 Berlin, Germany; (F.G.); (J.A.); (D.J.); (T.L.); (S.T.); (R.S.)
| | - Ricarda Seemann
- Center for Musculoskeletal Surgery, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, 13353 Berlin, Germany; (F.G.); (J.A.); (D.J.); (T.L.); (S.T.); (R.S.)
| |
Collapse
|
44
|
Wang X, Xu J, Kang Q. Neuromodulation of bone: Role of different peptides and their interactions (Review). Mol Med Rep 2020; 23:32. [PMID: 33179112 PMCID: PMC7684869 DOI: 10.3892/mmr.2020.11670] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
Our understanding of the skeletal system has been expanded upon the recognition of several neural pathways that serve important roles in bone metabolism and skeletal homeostasis, as bone tissue is richly innervated. Considerable evidence provided by in vitro, animal and human studies have further elucidated the importance of a host of hormones and local factors, including neurotransmitters, in modulating bone metabolism and osteo-chondrogenic differentiation, both peripherally and centrally. Various cells of the musculoskeletal system not only express receptors for these neurotransmitters, but also influence their endogenous levels in the skeleton. As with a number of physiological systems in nature, a neuronal pathway regulating bone turnover will be neutralized by another pathway exerting an opposite effect. These neuropeptides are also critically involved in articular cartilage homeostasis and pathogenesis of degenerative joint disorders, such as osteoarthritis. In the present Review, data on the role of several neuronal populations in nerve-dependent skeletal metabolism is examined, and the molecular events involved are explored, which may reveal broader relationships between two apparently unrelated organs.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Jia Xu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| | - Qinglin Kang
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, P.R. China
| |
Collapse
|
45
|
Agrawal S, Verma V, Gehlot S. Explication on tissue nutrition in prenatal and postnatal life: An Ayurveda perspective. J Ayurveda Integr Med 2020; 12:198-205. [PMID: 32855015 PMCID: PMC8039343 DOI: 10.1016/j.jaim.2020.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 03/14/2020] [Accepted: 05/07/2020] [Indexed: 11/30/2022] Open
Abstract
Tissue nutrition is the continuous process which is established just after the conception and persists throughout the life. Ayurveda scholars have mentioned that the manner of tissue nutrition is not same in all phases of life. In prenatal life embryo gets nutrition by Upasneha (filtration) and Upasweda (percolation/secretion) and fetus by Garbhanabhinadi (umbilical cord) which is attached with the heart of mother via Rasavahanadi (blood vessels). Thus in intrauterine life the nutrition of embryo is histotrophic, whereas just after the formation of placenta nutrition becomes haemotrophic. In post-natal life nutrition is enteral means nutrients are taken in the form of food via mouth called Aahar. Ayurveda scholars have postulated theories to understand the mechanism of tissue nutrition are Ksheera Dadhi Nyaya (transformation of nutrients), Khale Kapota Nyaya (selective uptake of nutrients), KedariKulya Nyaya (transportation of nutrients via channels), Ek Kala Dhatu Poshan Nyaya (simultaneous supply of nutrients to whole body). The theories of tissue nutrition discussed in Ayurveda suggest that although tissues are nourished and replenished continuously at different rate as per the functional state of Agni by circulating nutrients obtained from Ahara, but tissues are also dependent on each other for their proper nourishment and metabolism. This concept has great implication in management of malnourishment and various other disorders. This manuscript is an attempt to explore the Ayurveda's view on tissue nutrition along with physiological and clinical significance of theories of tissue nutrition in a scientific manner.
Collapse
Affiliation(s)
- Sonam Agrawal
- Department of Kriya Sharir, Faculty of Ayurveda, IMS, BHU, India
| | - Vandana Verma
- Department of Kriya Sharir Faculty of Ayurveda, Institute of Medical Sciences Banaras Hindu University, Varanasi, India.
| | - Sangeeta Gehlot
- Department of Kriya Sharir Faculty of Ayurveda, Institute of Medical Sciences Banaras Hindu University, Varanasi, India
| |
Collapse
|
46
|
Li C, Zhou H, Yang S, Zhu X, Zha G, Yang Z, Yuan F, Jiang W. Effect of K-line on posterior cervical surgery in patients with posterior longitudinal ligament ossification. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2020; 29:2368-2377. [PMID: 32564230 DOI: 10.1007/s00586-020-06507-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 05/14/2020] [Accepted: 06/13/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE To evaluate the effect of K-line on posterior single-door decompression with fusion fixation (PFF) and posterior single-door decompression with non-fusion fixation (PNF) for patients with ossification of posterior longitudinal ligament (OPLL). METHODS A total of 65 patients with OPLL were analyzed retrospectively. They consisted of 44 patients with positive K-line, designated as the K ( +) group, and 21 patients with negative K-line, designated as K (-). The patients were also divided into a PFF group (38 patients) and a PNF group (27 patients). The Japanese Orthopaedic Association (JOA) score, C2-C7 Cobb angle, improvement rate of JOA score, and complications were calculated and statistically analyzed between the groups. RESULTS In the K ( +) group, there were no significant differences in the incidence of C5 nerve root palsy and C2-C7 Cobb angle between the two groups of surgical patients, but there were significant differences in the improvement rate of JOA score and the incidence of axial pain. In the K (-) group, there were no significant differences in the incidence of axial pain, the incidence of C5 nerve root palsy, and preoperative C2-C7 Cobb angle between the two groups, but significant differences were observed in the improvement rate of JOA score and C2-C7 Cobb angle at the last follow-up. CONCLUSION In the K ( +) group, the improvement rate of JOA score was higher and the incidence of axial pain was lesser in the PNF group than in the PFF group. In the K (-) group, the improvement rate of JOA score was higher in the PFF group than in the PNF group, and there was significant loss of C2-C7 Cobb angle in the PNF group.
Collapse
Affiliation(s)
- Cheng Li
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899, pinghai road, Suzhou, 215006, Jiangsu Province, China
| | - Hong Zhou
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899, pinghai road, Suzhou, 215006, Jiangsu Province, China
| | - Sen Yang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899, pinghai road, Suzhou, 215006, Jiangsu Province, China
| | - Xuanchen Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899, pinghai road, Suzhou, 215006, Jiangsu Province, China
| | - Guochun Zha
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu Province, China
| | - Zhi Yang
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu Province, China
| | - Feng Yuan
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, Jiangsu Province, China
| | - Weimin Jiang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, 899, pinghai road, Suzhou, 215006, Jiangsu Province, China.
| |
Collapse
|
47
|
Costa D, Brugnara Mello J, Filipe Lemos L, Aires Í, Sena E, Reis Gaya A, Mota J, Martins C. Bone mark changes after an eight-month intervention in an osteogenic sport and in physical education in low-income children. Sci Sports 2020. [DOI: 10.1016/j.scispo.2019.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Yan B, Wang L, Li J, Yang R, Liu Y, Yu T, He D, Zhou Y, Liu D. Effects of the multifunctional hormone leptin on orthodontic tooth movement in rats. Am J Transl Res 2020; 12:1976-1984. [PMID: 32509192 PMCID: PMC7269982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 04/10/2020] [Indexed: 06/11/2023]
Abstract
This study aims to investigate the effects of leptin, which is a multifunctional hormone, on orthodontic tooth movement (OTM) and the underlying mechanism. Sprague-Dawley rat OTM models were established and divided into two groups with the administration of vehicle or leptin respectively. Stereomicroscope and microcomputed tomography were used to evaluate the amount of OTM. TRAP staining, immunohistochemical and immunofluorescence staining were used to detect osteoclasts and relative protein expressions. After treated with compression force, human periodontal ligament cells (hPDLCs) were co-cultured with human peripheral blood mononuclear cells (hPBMCs) with the presence or absence of leptin. Small interfering RNA (siRNA) was transfected to knock down the leptin receptor (LepR). The mRNA expressions of the targeted genes were evaluated by quantitative real-time polymerase chain reaction. We found that leptin receptors were expressed on both rat periodontal ligament cells and hPDLCs. OTM was significantly attenuated in the leptin-treated group comparing to the control group. The number of osteoclasts was reduced in the periodontal ligament tissues in vivo and in vitro co-cultured system when treated with leptin. The expression of RANKL was inhibited by leptin administration either in vivo and in vitro. Leptin administration also inhibited the force-induced up-regulation of RANKL expression in hPDLCs, which was rescued by LepR siRNA transfection. The osteoclastogenesis was attenuated by leptin administration which was reversed by the LepR siRNA transfection. Taken together, leptin was able to attenuate OTM by inhibiting osteoclastogenesis which can be attributed to the reduced expression of RANKL in the periodontal ligament. Leptin may possess the potential for reinforcing anchorage clinically.
Collapse
Affiliation(s)
- Boxi Yan
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital StomatologyBeijing, PR China
- Second Clinical Division, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital StomatologyBeijing, PR China
| | - Linchuan Wang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital StomatologyBeijing, PR China
- Eastman Institute for Oral Health, University of RochesterRochester, New York, United States
| | - Jing Li
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital StomatologyBeijing, PR China
| | - Ruili Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital StomatologyBeijing, PR China
| | - Yan Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital StomatologyBeijing, PR China
| | - Tingting Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital StomatologyBeijing, PR China
| | - Danqing He
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital StomatologyBeijing, PR China
| | - Yanheng Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital StomatologyBeijing, PR China
| | - Dawei Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital StomatologyBeijing, PR China
| |
Collapse
|
49
|
Li J, Gao Y, Yu T, Lange JK, LeBoff MS, Gorska A, Luu S, Zhou S, Glowacki J. Obesity and leptin influence vitamin D metabolism and action in human marrow stromal cells. J Steroid Biochem Mol Biol 2020; 198:105564. [PMID: 31809868 DOI: 10.1016/j.jsbmb.2019.105564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/18/2019] [Accepted: 12/02/2019] [Indexed: 02/05/2023]
Abstract
Obesity is associated with low serum 25-hydroxyvitamin D [s25(OH)D], high serum leptin, and generally high bone mineral density (BMD). Human Marrow Stromal Cells (hMSCs) differentiate to osteoblasts and are both a target and source of vitamin D metabolites in bone marrow. There is no information about the influence of obesity on vitamin D metabolism and osteoblastogenesis in hMSCs and little about direct effects of leptin on hMSCs. In this study, we tested the hypotheses that 1) obesity has an influence on the ex vivo constitutive expression of vitamin D-hydroxylase genes in hMSCs, and 2) recombinant human (rh) Leptin regulates the D-hydroxylases and promotes osteoblastogenesis in hMSCs. In a cohort of female subjects undergoing joint replacement surgery, the effects of Body Mass Index (BMI) and Fat Mass Index (FMI) on BMD T-scores and s25(OH)D were evaluated. hMSCs were isolated from bone tissues discarded during surgery. The direct effects of rh-Leptin on osteoblast differentiation and D-related genes in hMSCs were examined in vitro. There were positive correlations for BMD T-score of femoral neck and spine with BMI and FMI. Serum 25(OH)D levels in obese subjects were 71% of that in non-obese counterparts (p = 0.001). hMSCs from obese women had higher constitutive expression of CYP27A1/25-hydroxylase and vitamin D receptor. Those findings raised the mechanistic question of how obesity could influence vitamin D metabolism and osteoblast differentiation in hMSCs. Treating hMSCs with rh-Leptin in vitro significantly stimulated osteoblastogenesis. In addition, leptin downregulated CYP24A1 and upregulated CYP27B1, CYP27A1 and VDR, which play vital roles in vitamin D metabolism. Furthermore, co-treatment with leptin and vitamin D3 metabolites promoted ALP activity compared with either alone. This research demonstrates links between obesity, vitamin D metabolism, and osteoblastogenesis by which leptin's direct effects on D-metabolism and osteoblast differentiation in hMSCs may protect bone from low s25(OH)D in obese subjects.
Collapse
Affiliation(s)
- Jing Li
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Endocrinology, West China Hospital, Sichuan University West China School of Medicine, Chengdu, Sichuan, China
| | - Yuan Gao
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, China
| | - Tao Yu
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Orthopedic Surgery, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
| | - Jeffrey K Lange
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Meryl S LeBoff
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Anna Gorska
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Simon Luu
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shuanhu Zhou
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| | - Julie Glowacki
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Oral & Maxillofacial Surgery, Harvard School of Dental Medicine, Boston, MA, USA.
| |
Collapse
|
50
|
Maroni P. Leptin, Adiponectin, and Sam68 in Bone Metastasis from Breast Cancer. Int J Mol Sci 2020; 21:ijms21031051. [PMID: 32033341 PMCID: PMC7037668 DOI: 10.3390/ijms21031051] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022] Open
Abstract
The most serious aspect of neoplastic disease is the spread of cancer cells to secondary sites. Skeletal metastases can escape detection long after treatment of the primary tumour and follow-up. Bone tissue is a breeding ground for many types of cancer cells, especially those derived from the breast, prostate, and lung. Despite advances in diagnosis and therapeutic strategies, bone metastases still have a profound impact on quality of life and survival and are often responsible for the fatal outcome of the disease. Bone and the bone marrow environment contain a wide variety of cells. No longer considered a passive filler, bone marrow adipocytes have emerged as critical contributors to cancer progression. Released by adipocytes, adipokines are soluble factors with hormone-like functions and are currently believed to affect tumour development. Src-associated in mitosis of 68 kDa (Sam68), originally discovered as a protein physically associated with and phosphorylated by c-Src during mitosis, is now recognised as an important RNA-binding protein linked to tumour onset and progression of disease. Sam68 also regulates splicing events and recent evidence reports that dysregulation of these events is a key step in neoplastic transformation and tumour progression. The present review reports recent findings on adipokines and Sam68 and their role in breast cancer progression and metastasis.
Collapse
Affiliation(s)
- Paola Maroni
- IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, 20161 Milano, Italy
| |
Collapse
|