1
|
Li XX, Wang MT, Wu ZF, Sun Q, Ono N, Nagata M, Zang XL, Ono W. Etiological Mechanisms and Genetic/Biological Modulation Related to PTH1R in Primary Failure of Tooth Eruption. Calcif Tissue Int 2024; 115:101-116. [PMID: 38833001 DOI: 10.1007/s00223-024-01227-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024]
Abstract
Primary failure of eruption (PFE) is a rare disorder that is characterized by the inability of a molar tooth/teeth to erupt to the occlusal plane or to normally react to orthodontic force. This condition is related to hereditary factors and has been extensively researched over many years. However, the etiological mechanisms of pathogenesis are still not fully understood. Evidence from studies on PFE cases has shown that PFE patients may carry parathyroid hormone 1 receptor (PTH1R) gene mutations, and genetic detection can be used to diagnose PFE at an early stage. PTH1R variants can lead to altered protein structure, impaired protein function, and abnormal biological activities of the cells, which may ultimately impact the behavior of teeth, as observed in PFE. Dental follicle cells play a critical role in tooth eruption and root development and are regulated by parathyroid hormone-related peptide (PTHrP)-PTH1R signaling in their differentiation and other activities. PTHrP-PTH1R signaling also regulates the activity of osteoblasts, osteoclasts and odontoclasts during tooth development and eruption. When interference occurs in the PTHrP-PTH1R signaling pathway, the normal function of dental follicles and bone remodeling are impaired. This review provides an overview of PTH1R variants and their correlation with PFE, and highlights that a disruption of PTHrP-PTH1R signaling impairs the normal process of tooth development and eruption, thus providing insight into the underlying mechanisms related to PTH1R and its role in driving PFE.
Collapse
Affiliation(s)
- Xiao-Xia Li
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Man-Ting Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Zhi-Fang Wu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Qiang Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China
| | - Noriaki Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, 77054, USA
| | - Mizuki Nagata
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, 77054, USA
| | - Xiao-Long Zang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, 310000, China.
| | - Wanida Ono
- University of Texas Health Science Center at Houston School of Dentistry, Houston, TX, 77054, USA.
| |
Collapse
|
2
|
Inoue K, Qin Y, Xia Y, Han J, Yuan R, Sun J, Xu R, Jiang JX, Greenblatt MB, Zhao B. Bone marrow Adipoq-lineage progenitors are a major cellular source of M-CSF that dominates bone marrow macrophage development, osteoclastogenesis, and bone mass. eLife 2023; 12:e82118. [PMID: 36779851 PMCID: PMC10005769 DOI: 10.7554/elife.82118] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 02/12/2023] [Indexed: 02/14/2023] Open
Abstract
M-CSF is a critical growth factor for myeloid lineage cells, including monocytes, macrophages, and osteoclasts. Tissue-resident macrophages in most organs rely on local M-CSF. However, it is unclear what specific cells in the bone marrow produce M-CSF to maintain myeloid homeostasis. Here, we found that Adipoq-lineage progenitors but not mature adipocytes in bone marrow or in peripheral adipose tissue, are a major cellular source of M-CSF, with these Adipoq-lineage progenitors producing M-CSF at levels much higher than those produced by osteoblast lineage cells. The Adipoq-lineage progenitors with high CSF1 expression also exist in human bone marrow. Deficiency of M-CSF in bone marrow Adipoq-lineage progenitors drastically reduces the generation of bone marrow macrophages and osteoclasts, leading to severe osteopetrosis in mice. Furthermore, the osteoporosis in ovariectomized mice can be significantly alleviated by the absence of M-CSF in bone marrow Adipoq-lineage progenitors. Our findings identify bone marrow Adipoq-lineage progenitors as a major cellular source of M-CSF in bone marrow and reveal their crucial contribution to bone marrow macrophage development, osteoclastogenesis, bone homeostasis, and pathological bone loss.
Collapse
Affiliation(s)
- Kazuki Inoue
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special SurgeryNew YorkUnited States
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
| | - Yongli Qin
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special SurgeryNew YorkUnited States
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
| | - Yuhan Xia
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special SurgeryNew YorkUnited States
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
| | - Jie Han
- The first Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen UniversityXiamenChina
| | - Ruoxi Yuan
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special SurgeryNew YorkUnited States
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
| | - Jun Sun
- Pathology and Laboratory Medicine, Weill Cornell Medical CollegeNew YorkUnited States
| | - Ren Xu
- The first Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen UniversityXiamenChina
| | - Jean X Jiang
- Department of Biochemistry & Structural Biology, University of Texas Health Science Center at San AntonioSan AntonioUnited States
| | - Matthew B Greenblatt
- Pathology and Laboratory Medicine, Weill Cornell Medical CollegeNew YorkUnited States
- Research Institute, Hospital for Special SurgeryNew YorkUnited States
| | - Baohong Zhao
- Arthritis and Tissue Degeneration Program and David Z. Rosensweig Genomics Research Center, Hospital for Special SurgeryNew YorkUnited States
- Department of Medicine, Weill Cornell Medical CollegeNew YorkUnited States
- Graduate Program in Cell and Development Biology, Weill Cornell Graduate School of Medical SciencesNew YorkUnited States
| |
Collapse
|
3
|
Saez A, Herrero-Fernandez B, Gomez-Bris R, Sánchez-Martinez H, Gonzalez-Granado JM. Pathophysiology of Inflammatory Bowel Disease: Innate Immune System. Int J Mol Sci 2023; 24:ijms24021526. [PMID: 36675038 PMCID: PMC9863490 DOI: 10.3390/ijms24021526] [Citation(s) in RCA: 208] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Inflammatory bowel disease (IBD), comprising Crohn's disease (CD) and ulcerative colitis (UC), is a heterogeneous state of chronic intestinal inflammation with no exact known cause. Intestinal innate immunity is enacted by neutrophils, monocytes, macrophages, and dendritic cells (DCs), and innate lymphoid cells and NK cells, characterized by their capacity to produce a rapid and nonspecific reaction as a first-line response. Innate immune cells (IIC) defend against pathogens and excessive entry of intestinal microorganisms, while preserving immune tolerance to resident intestinal microbiota. Changes to this equilibrium are linked to intestinal inflammation in the gut and IBD. IICs mediate host defense responses, inflammation, and tissue healing by producing cytokines and chemokines, activating the complement cascade and phagocytosis, or presenting antigens to activate the adaptive immune response. IICs exert important functions that promote or ameliorate the cellular and molecular mechanisms that underlie and sustain IBD. A comprehensive understanding of the mechanisms underlying these clinical manifestations will be important for developing therapies targeting the innate immune system in IBD patients. This review examines the complex roles of and interactions among IICs, and their interactions with other immune and non-immune cells in homeostasis and pathological conditions.
Collapse
Affiliation(s)
- Angela Saez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), 28223 Pozuelo de Alarcón, Spain
| | - Beatriz Herrero-Fernandez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Raquel Gomez-Bris
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Hector Sánchez-Martinez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Jose M. Gonzalez-Granado
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-913908766
| |
Collapse
|
4
|
Var SR, Strell P, Johnson ST, Roman A, Vasilakos Z, Low WC. Transplanting Microglia for Treating CNS Injuries and Neurological Diseases and Disorders, and Prospects for Generating Exogenic Microglia. Cell Transplant 2023; 32:9636897231171001. [PMID: 37254858 PMCID: PMC10236244 DOI: 10.1177/09636897231171001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/18/2023] [Accepted: 04/05/2023] [Indexed: 06/01/2023] Open
Abstract
Microglia are associated with a wide range of both neuroprotective and neuroinflammatory functions in the central nervous system (CNS) during development and throughout lifespan. Chronically activated and dysfunctional microglia are found in many diseases and disorders, such as Alzheimer's disease, Parkinson's disease, and CNS-related injuries, and can accelerate or worsen the condition. Transplantation studies designed to replace and supplement dysfunctional microglia with healthy microglia offer a promising strategy for addressing microglia-mediated neuroinflammation and pathologies. This review will cover microglial involvement in neurological diseases and disorders and CNS-related injuries, current microglial transplantation strategies, and different approaches and considerations for generating exogenic microglia.
Collapse
Affiliation(s)
- Susanna R. Var
- Department of Neurosurgery, Medical
School, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
| | - Phoebe Strell
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
- Department of Veterinary and Biomedical
Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Sether T. Johnson
- Department of Neurosurgery, Medical
School, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
| | - Alex Roman
- Department of Neuroscience, University
of Minnesota, Minneapolis, MN, USA
| | - Zoey Vasilakos
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
- Department of Neuroscience, University
of Minnesota, Minneapolis, MN, USA
| | - Walter C. Low
- Department of Neurosurgery, Medical
School, University of Minnesota, Minneapolis, MN, USA
- Stem Cell Institute, Medical School,
University of Minnesota, Minneapolis, MN, USA
- Department of Veterinary and Biomedical
Sciences, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
5
|
Omi M, Mishina Y. Roles of osteoclasts in alveolar bone remodeling. Genesis 2022; 60:e23490. [PMID: 35757898 PMCID: PMC9786271 DOI: 10.1002/dvg.23490] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/25/2022] [Accepted: 06/09/2022] [Indexed: 12/30/2022]
Abstract
Osteoclasts are large multinucleated cells from hematopoietic origin and are responsible for bone resorption. A balance between osteoclastic bone resorption and osteoblastic bone formation is critical to maintain bone homeostasis. The alveolar bone, also called the alveolar process, is the part of the jawbone that holds the teeth and supports oral functions. It differs from other skeletal bones in several aspects: its embryonic cellular origin, the form of ossification, and the presence of teeth and periodontal tissues; hence, understanding the unique characteristic of the alveolar bone remodeling is important to maintain oral homeostasis. Excessive osteoclastic bone resorption is one of the prominent features of bone diseases in the jaw such as periodontitis. Therefore, inhibiting osteoclast formation and bone resorptive process has been the target of therapeutic intervention. Understanding the mechanisms of osteoclastic bone resorption is critical for the effective treatment of bone diseases in the jaw. In this review, we discuss basic principles of alveolar bone remodeling with a specific focus on the osteoclastic bone resorptive process and its unique functions in the alveolar bone. Lastly, we provide perspectives on osteoclast-targeted therapies and regenerative approaches associated with bone diseases in the jaw.
Collapse
Affiliation(s)
- Maiko Omi
- Department of Biologic and Materials Sciences & ProsthodonticsUniversity of Michigan School of DentistryAnn ArborMichiganUSA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences & ProsthodonticsUniversity of Michigan School of DentistryAnn ArborMichiganUSA
| |
Collapse
|
6
|
Frech M, Schuster G, Andes FT, Schett G, Zaiss MM, Sarter K. RANKL-Induced Btn2a2 - A T Cell Immunomodulatory Molecule - During Osteoclast Differentiation Fine-Tunes Bone Resorption. Front Endocrinol (Lausanne) 2021; 12:685060. [PMID: 34421818 PMCID: PMC8371446 DOI: 10.3389/fendo.2021.685060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/05/2021] [Indexed: 12/11/2022] Open
Abstract
Butyrophilins, which are members of the extended B7 family of immunoregulators structurally related to the B7 family, have diverse functions on immune cells as co-stimulatory and co-inhibitory molecules. Despite recent advances in the understanding on butyrophilins' role on adaptive immune cells during infectious or autoimmune diseases, nothing is known about their role in bone homeostasis. Here, we analyzed the role of one specific butyrophilin, namely Btn2a2, as we have recently shown that Btn2a2 is expressed on the monocyte/macrophage lineage that also gives rise to bone degrading osteoclasts. We found that expression of Btn2a2 on monocytes and pre-osteoclasts is upregulated by the receptor activator of nuclear factor κ-B ligand (RANKL), an essential protein required for osteoclast formation. Interestingly, in Btn2a2-deficient osteoclasts, typical osteoclast marker genes (Nfatc1, cathepsin K, TRAP, and RANK) were downregulated following RANKL stimulation. In vitro osteoclast assays resulted in decreased TRAP positive osteoclast numbers in Btn2a2-deficient cells. However, Btn2a2-deficient osteoclasts revealed abnormal fusion processes shown by their increased size. In vivo steady state µCT and histological analysis of bone architecture in complete Btn2a2-deficient mice showed differences in bone parameters further highlighting the fine-tuning effect of BTN2a2. Moreover, in rheumatoid arthritis patients and experimental arthritis, we detected significantly decreased serum levels of the secreted soluble Btn2a2 protein. Taken together, we identified the involvement of the immunomodulatory molecule Btn2a2 in osteoclast differentiation with potential future implications in basic and translational osteoimmunology.
Collapse
Affiliation(s)
- Michael Frech
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Gregor Schuster
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Fabian T. Andes
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Mario M. Zaiss
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Kerstin Sarter
- Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
7
|
Breedveld AC, van Gool MMJ, van Delft MAM, van der Laken CJ, de Vries TJ, Jansen IDC, van Egmond M. IgA Immune Complexes Induce Osteoclast-Mediated Bone Resorption. Front Immunol 2021; 12:651049. [PMID: 34276648 PMCID: PMC8281931 DOI: 10.3389/fimmu.2021.651049] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Objective Autoantibodies are detected in most patients with rheumatoid arthritis (RA) and can be of the IgM, IgG or IgA subclass. Correlations between IgA autoantibodies and more severe disease activity have been previously reported, but the functional role of IgA autoantibodies in the pathogenesis of RA is ill understood. In this study, we explored the effect of IgA immune complexes on osteoclast mediated bone resorption. Methods Anti-citrullinated peptide antibody (ACPA) and anti-carbamylated protein (anti-CarP) antibody levels of the IgA and IgG isotype and rheumatoid factor (RF) IgA were determined in synovial fluid (SF) of RA patients. Monocytes, neutrophils, and osteoclasts were stimulated with precipitated immune complexes from SF of RA patients or IgA- and IgG-coated beads. Activation was determined by neutrophil extracellular trap (NET) release, cytokine secretion, and bone resorption. Results NET formation by neutrophils was enhanced by SF immune complexes compared to immune complexes from healthy or RA serum. Monocytes stimulated with isolated SF immune complexes released IL-6 and IL-8, which correlated with the levels of ACPA IgA levels in SF. Osteoclasts cultured in the presence of supernatant of IgA-activated monocytes resorbed significantly more bone compared to osteoclasts that were cultured in supernatant of IgG-activated monocytes (p=0.0233). Osteoclasts expressed the Fc receptor for IgA (FcαRI; CD89) and Fc gamma receptors. IgA-activated osteoclasts however produced significantly increased levels of IL-6 (p<0.0001) and IL-8 (p=0.0007) compared to IgG-activated osteoclasts. Both IL-6 (p=0.03) and IL-8 (p=0.0054) significantly enhanced bone resorption by osteoclasts. Conclusion IgA autoantibodies induce release of IL-6 and IL-8 by immune cells as well as osteoclasts, which enhances bone resorption by osteoclasts. We anticipate that this will result in more severe disease activity in RA patients. Targeting IgA-FcαRI interactions therefore represents a promising novel therapeutic strategy for RA patients with IgA autoantibodies.
Collapse
Affiliation(s)
- Annelot C Breedveld
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Amsterdam institute for Infection and Immunity, Amsterdam UMC, Amsterdam, Netherlands
| | - Melissa M J van Gool
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Amsterdam institute for Infection and Immunity, Amsterdam UMC, Amsterdam, Netherlands
| | - Myrthe A M van Delft
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Amsterdam institute for Infection and Immunity, Amsterdam UMC, Amsterdam, Netherlands
| | - Conny J van der Laken
- Amsterdam institute for Infection and Immunity, Amsterdam UMC, Amsterdam, Netherlands.,Department of Rheumatology, Amsterdam UMC, Amsterdam, Netherlands
| | - Teun J de Vries
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, Netherlands
| | - Ineke D C Jansen
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam and University of Amsterdam, Amsterdam, Netherlands
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands.,Amsterdam institute for Infection and Immunity, Amsterdam UMC, Amsterdam, Netherlands.,Department of Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
8
|
Ruder B, Becker C. At the Forefront of the Mucosal Barrier: The Role of Macrophages in the Intestine. Cells 2020; 9:E2162. [PMID: 32987848 PMCID: PMC7601053 DOI: 10.3390/cells9102162] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022] Open
Abstract
Macrophages are part of the innate immunity and are key players for the maintenance of intestinal homeostasis. They belong to the group of mononuclear phagocytes, which exert bactericidal functions and help to clear apoptotic cells. Moreover, they play essential roles for the maintenance of epithelial integrity and tissue remodeling during wound healing processes and might be implicated in intestinal tumor development. Macrophages are antigen-presenting cells and secrete immune-modulatory factors, like chemokines and cytokines, which are necessary to activate other intestinal immune cells and therefore to shape immune responses in the gut. However, overwhelming activation or increased secretion of pro-inflammatory cytokines might also contribute to the pathogenesis of inflammatory bowel disease. Presently, intestinal macrophages are in the center of intense studies, which might help to develop new therapeutic strategies to counteract the development or treat already existing inflammatory diseases in the gut. In this review, we focus on the origin of intestinal macrophages and, based on current knowledge, discuss their role in the gut during homeostasis and inflammation, as well as during intestinal wound healing and tumor development.
Collapse
Affiliation(s)
| | - Christoph Becker
- Department of Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg, Hartmannstr. 14, 91052 Erlangen, Germany;
| |
Collapse
|
9
|
Green KN, Crapser JD, Hohsfield LA. To Kill a Microglia: A Case for CSF1R Inhibitors. Trends Immunol 2020; 41:771-784. [PMID: 32792173 PMCID: PMC7484341 DOI: 10.1016/j.it.2020.07.001] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 12/12/2022]
Abstract
Microglia, the brain's immune sentinels, have garnered much attention in recent years. Researchers have begun to identify the manifold roles that these cells play in the central nervous system (CNS), and this work has been greatly facilitated by microglial depletion paradigms. The varying degrees of spatiotemporal manipulation afforded by such techniques allow microglial ablation before, during, and/or following insult, injury, or disease. We review the major methods of microglial depletion, including toxin-based, genetic, and pharmacological approaches, which differ in key factors including depletion onset, duration, and off-target effects. We conclude that pharmacological CSF1R inhibitors afford the most extensive versatility in manipulating microglia, making them ideal candidates for future studies investigating microglial function in health and disease.
Collapse
Affiliation(s)
- Kim N Green
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA.
| | - Joshua D Crapser
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | - Lindsay A Hohsfield
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| |
Collapse
|
10
|
Abstract
Cytokines and hematopoietic growth factors have traditionally been thought of as regulators of the development and function of immune and blood cells. However, an ever-expanding number of these factors have been discovered to have major effects on bone cells and the development of the skeleton in health and disease (Table 1). In addition, several cytokines have been directly linked to the development of osteoporosis in both animal models and in patients. In order to understand the mechanisms regulating bone cells and how this may be dysregulated in disease states, it is necessary to appreciate the diverse effects that cytokines and inflammation have on osteoblasts, osteoclasts, and bone mass. This chapter provides a broad overview of this topic with extensive references so that, if desired, readers can access specific references to delve into individual topics in greater detail.
Collapse
Affiliation(s)
- Joseph Lorenzo
- Departments of Medicine and Orthopaedic Surgery, UConn Health, Farmington, CT, USA.
| |
Collapse
|
11
|
Omi M, Mishina Y. Role of osteoclasts in oral homeostasis and jawbone diseases. ACTA ACUST UNITED AC 2020; 18:14-27. [PMID: 34220275 DOI: 10.1002/osi2.1078] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The jawbone is a unique structure as it serves multiple functions in mastication. Given the fact that the jawbone is remodeled faster than other skeletal bones, bone cells in the jawbone may respond differently to local and systemic cues to regulate bone remodeling and adaptation. Osteoclasts are bone cells responsible for removing old bone, playing an essential role in bone remodeling. Although bone resorption by osteoclasts is required for dental tissue development, homeostasis and repair, excessive osteoclast activity is associated with oral skeletal diseases such as periodontitis. In addition, antiresorptive medications used to prevent bone homeostasis of tumors can cause osteonecrosis of the jaws that is a major concern to the dentist. Therefore, understanding of the role of osteoclasts in oral homeostasis under physiological and pathological conditions leads to better targeted therapeutic options for skeletal diseases to maintain patients' oral health. Here, we highlight the unique features of the jawbone compared to the long bone and the involvement of osteoclasts in the jawbone-specific diseases.
Collapse
Affiliation(s)
- Maiko Omi
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
12
|
Kumar G, Roger PM. From Crosstalk between Immune and Bone Cells to Bone Erosion in Infection. Int J Mol Sci 2019; 20:E5154. [PMID: 31627424 PMCID: PMC6834200 DOI: 10.3390/ijms20205154] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/05/2019] [Accepted: 10/15/2019] [Indexed: 12/31/2022] Open
Abstract
Bone infection and inflammation leads to the infiltration of immune cells at the site of infection, where they modulate the differentiation and function of osteoclasts and osteoblasts by the secretion of various cytokines and signal mediators. In recent years, there has been a tremendous effort to understand the cells involved in these interactions and the complex pathways of signal transduction and their ultimate effect on bone metabolism. These crosstalk mechanisms between the bone and immune system finally emerged, forming a new field of research called osteoimmunology. Diseases falling into the category of osteoimmunology, such as osteoporosis, periodontitis, and bone infections are considered to have a significant implication in mortality and morbidity of patients, along with affecting their quality of life. There is a much-needed research focus in this new field, as the reported data on the immunomodulation of immune cells and their signaling pathways seems to have promising therapeutic benefits for patients.
Collapse
Affiliation(s)
- Gaurav Kumar
- Unité 576, Institut National de la Santé et de la Recherche Médicale, 06200 Nice, France.
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | - Pierre-Marie Roger
- Unité 576, Institut National de la Santé et de la Recherche Médicale, 06200 Nice, France.
- Service d'Infectiologie, Hôpital Archet 1, Centre Hospitalier Universitaire de Nice, Université de Nice Sophia-Antipolis, 06200 Nice, France.
| |
Collapse
|
13
|
Fischer L, Herkner C, Kitte R, Dohnke S, Riewaldt J, Kretschmer K, Garbe AI. Foxp3 + Regulatory T Cells in Bone and Hematopoietic Homeostasis. Front Endocrinol (Lausanne) 2019; 10:578. [PMID: 31551927 PMCID: PMC6746882 DOI: 10.3389/fendo.2019.00578] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/08/2019] [Indexed: 12/29/2022] Open
Abstract
The bone represents surprisingly dynamic structures that are subject to constant remodeling by the concerted action of bone-forming osteoblasts and bone-resorbing osteoclasts - two cell subsets of distinct developmental origin that are key in maintaining skeletal integrity throughout life. In general, abnormal bone remodeling due to dysregulated bone resorption and formation is an early event in the manifestation of various human bone diseases, such as osteopetrosis/osteoporosis and arthritis. But bone remodeling is also closely interrelated with lympho-hematopoietic homeostasis, as the bone marrow niche is formed by solid and trabecular bone structures that provide a framework for the long-term maintenance and differentiation of HSCs (>blood lineage cells and osteoclasts) and MSCs (>osteoblasts). Numerous studies in mice and humans have implicated innate and adaptive immune cells in the dynamic regulation of bone homeostasis, but despite considerable clinical relevance, the exact mechanisms of such immuno-bone interplay have remained incompletely understood. This holds particularly true for CD4+ regulatory T (Treg) cells expressing the lineage specification factor Foxp3: Foxp3+ Treg cells have been shown to play an indispensable role in maintaining immune homeostasis, but may also exert critical non-immune functions, which includes the control of metabolic and regenerative processes, as well as the differentiation of HSCs and function of osteoclasts. Here, we summarize our current knowledge on the T cell/bone interplay, with a particular emphasis on our own efforts to dissect the role of Foxp3+ Treg cells in bone and hematopoietic homeostasis, employing experimental settings of gain- and loss-of-Treg cell function. These data make a strong case that Foxp3+ Treg cells impinge on lympho-hematopoiesis through indirect mechanisms, i.e., by acting on osteoclast development and function, which translates into changes in niche size. Furthermore, we propose that, besides disorders that involve inflammatory bone loss, the modulation of Foxp3+ Treg cell function in vivo may represent a suitable approach to reinstate bone homeostasis in non-autoimmune settings of aberrant bone remodeling.
Collapse
Affiliation(s)
- Luise Fischer
- Osteoimmunology, DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- Molecular and Cellular Immunology/Immune Regulation, DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Caroline Herkner
- Osteoimmunology, DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Reni Kitte
- Osteoimmunology, DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Sebastian Dohnke
- Osteoimmunology, DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- Molecular and Cellular Immunology/Immune Regulation, DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Julia Riewaldt
- Molecular and Cellular Immunology/Immune Regulation, DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Karsten Kretschmer
- Molecular and Cellular Immunology/Immune Regulation, DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Annette I. Garbe
- Osteoimmunology, DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- *Correspondence: Annette I. Garbe
| |
Collapse
|
14
|
Zarin P, In TS, Chen EL, Singh J, Wong GW, Mohtashami M, Wiest DL, Anderson MK, Zúñiga-Pflücker JC. Integration of T-cell receptor, Notch and cytokine signals programs mouse γδ T-cell effector differentiation. Immunol Cell Biol 2018; 96:994-1007. [PMID: 29754419 PMCID: PMC6197911 DOI: 10.1111/imcb.12164] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 05/05/2018] [Accepted: 05/06/2018] [Indexed: 01/08/2023]
Abstract
γδ T‐cells perform a wide range of tissue‐ and disease‐specific functions that are dependent on the effector cytokines produced by these cells. However, the aggregate signals required for the development of interferon‐γ (IFNγ) and interleukin‐17 (IL‐17) producing γδ T‐cells remain unknown. Here, we define the cues involved in the functional programming of γδ T‐cells, by examining the roles of T‐cell receptor (TCR), Notch, and cytokine‐receptor signaling. KN6 γδTCR‐transduced Rag2−/− T‐cell progenitors were cultured on stromal cells variably expressing TCR and Notch ligands, supplemented with different cytokines. We found that distinct combinations of these signals are required to program IFNγ versus IL‐17 producing γδ T‐cell subsets, with Notch and weak TCR ligands optimally enabling development of γδ17 cells in the presence of IL‐1β, IL‐21 and IL‐23. Notably, these cytokines were also shown to be required for the intrathymic development of γδ17 cells. Together, this work provides a framework of how signals downstream of TCR, Notch and cytokine receptors integrate to program the effector function of IFNγ and IL‐17 producing γδ T‐cell subsets.
Collapse
Affiliation(s)
- Payam Zarin
- Department of Immunology, University of Toronto, and Sunnybrook Research Institute, 2075 Bayview Ave., Toronto, ON, M4N 3M5, Canada
| | - Tracy Sh In
- Department of Immunology, University of Toronto, and Sunnybrook Research Institute, 2075 Bayview Ave., Toronto, ON, M4N 3M5, Canada
| | - Edward Ly Chen
- Department of Immunology, University of Toronto, and Sunnybrook Research Institute, 2075 Bayview Ave., Toronto, ON, M4N 3M5, Canada
| | - Jastaranpreet Singh
- Department of Immunology, University of Toronto, and Sunnybrook Research Institute, 2075 Bayview Ave., Toronto, ON, M4N 3M5, Canada
| | - Gladys W Wong
- Department of Immunology, University of Toronto, and Sunnybrook Research Institute, 2075 Bayview Ave., Toronto, ON, M4N 3M5, Canada
| | - Mahmood Mohtashami
- Department of Immunology, University of Toronto, and Sunnybrook Research Institute, 2075 Bayview Ave., Toronto, ON, M4N 3M5, Canada
| | - David L Wiest
- Blood Cell Development and Cancer Keystone, Immune Cell Development and Host Defense Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111-2497, USA
| | - Michele K Anderson
- Department of Immunology, University of Toronto, and Sunnybrook Research Institute, 2075 Bayview Ave., Toronto, ON, M4N 3M5, Canada
| | - Juan Carlos Zúñiga-Pflücker
- Department of Immunology, University of Toronto, and Sunnybrook Research Institute, 2075 Bayview Ave., Toronto, ON, M4N 3M5, Canada
| |
Collapse
|
15
|
Han Y, You X, Xing W, Zhang Z, Zou W. Paracrine and endocrine actions of bone-the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts. Bone Res 2018; 6:16. [PMID: 29844945 PMCID: PMC5967329 DOI: 10.1038/s41413-018-0019-6] [Citation(s) in RCA: 364] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/21/2018] [Accepted: 04/16/2018] [Indexed: 12/17/2022] Open
Abstract
The skeleton is a dynamic organ that is constantly remodeled. Proteins secreted from bone cells, namely osteoblasts, osteocytes, and osteoclasts exert regulation on osteoblastogenesis, osteclastogenesis, and angiogenesis in a paracrine manner. Osteoblasts secrete a range of different molecules including RANKL/OPG, M-CSF, SEMA3A, WNT5A, and WNT16 that regulate osteoclastogenesis. Osteoblasts also produce VEGFA that stimulates osteoblastogenesis and angiogenesis. Osteocytes produce sclerostin (SOST) that inhibits osteoblast differentiation and promotes osteoclast differentiation. Osteoclasts secrete factors including BMP6, CTHRC1, EFNB2, S1P, WNT10B, SEMA4D, and CT-1 that act on osteoblasts and osteocytes, and thereby influenceaA osteogenesis. Osteoclast precursors produce the angiogenic factor PDGF-BB to promote the formation of Type H vessels, which then stimulate osteoblastogenesis. Besides, the evidences over the past decades show that at least three hormones or "osteokines" from bone cells have endocrine functions. FGF23 is produced by osteoblasts and osteocytes and can regulate phosphate metabolism. Osteocalcin (OCN) secreted by osteoblasts regulates systemic glucose and energy metabolism, reproduction, and cognition. Lipocalin-2 (LCN2) is secreted by osteoblasts and can influence energy metabolism by suppressing appetite in the brain. We review the recent progresses in the paracrine and endocrine functions of the secretory proteins of osteoblasts, osteocytes, and osteoclasts, revealing connections of the skeleton with other tissues and providing added insights into the pathogenesis of degenerative diseases affecting multiple organs and the drug discovery process.
Collapse
Affiliation(s)
- Yujiao Han
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031 China
| | - Xiuling You
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031 China
| | - Wenhui Xing
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031 China
| | - Zhong Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031 China
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031 China
| |
Collapse
|
16
|
Kurotaki D, Sasaki H, Tamura T. Transcriptional control of monocyte and macrophage development. Int Immunol 2018; 29:97-107. [PMID: 28379391 DOI: 10.1093/intimm/dxx016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 03/19/2017] [Indexed: 12/12/2022] Open
Abstract
Monocytes and macrophages play critical roles in immune responses, tissue homeostasis and disease progression. There are a number of functionally and phenotypically distinct subpopulations throughout the body. However, the mechanisms by which macrophage and monocyte heterogeneity is established remain unclear. Recent studies have suggested that most tissue-resident macrophages originate from fetal progenitors but not from hematopoietic stem cells, whereas some subpopulations are derived from adult monocytes. In addition, transcription factors specifically required for the development of each subpopulation have been identified. Interestingly, local environmental factors such as heme, retinoic acid and RANKL induce the expression and/or activation of tissue-specific transcription factors, thereby controlling transcriptional programs specific for the subpopulations. Thus, distinct differentiation pathways and local microenvironments appear to contribute to the determination of macrophage transcriptional identities. In this review, we highlight recent advances in our knowledge of the transcriptional control of macrophage and monocyte development.
Collapse
Affiliation(s)
- Daisuke Kurotaki
- Department of Immunology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Haruka Sasaki
- Department of Immunology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Tomohiko Tamura
- Department of Immunology, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| |
Collapse
|
17
|
Cafforio P, D'Oronzo S, Felici C, Sigala S, Fragni M, Silvestris F. 1,25(OH)2 vitamin D(3) contributes to osteoclast-like trans-differentiation of malignant plasma cells. Exp Cell Res 2017; 358:260-268. [PMID: 28669663 DOI: 10.1016/j.yexcr.2017.06.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/23/2017] [Accepted: 06/28/2017] [Indexed: 10/19/2022]
Abstract
1,25-dihydroxyvitamin D (1,25(OH)2D) exerts pleiotropic effects including bone turnover and immune system regulation. It inhibits both T and B cell proliferation while decreasing the secretion of inflammatory cytokines and immunoglobulins. 1,25(OH)2D also modulates monocyte-macrophage and osteoclast (OC) maturation. Since we have previously described that malignant plasma cells may trans-differentiate towards the myeloid lineage participating to skeletal devastation in multiple myeloma (MM), we here evaluated in vitro the role of 1,25(OH)2D in this lineage switch. We investigated the gene and protein expression of vitamin D receptor (VDR) in MM cell lines. Thus, after cell treatment with 1,25(OH)2D, we analyzed their morphology and the expression of myeloid and OC markers. Finally, we assessed their bone resorption property on calcium phosphate slices. All MM cells expressed VDR in nuclear and perinuclear sites. Treatment with 1,25(OH)2D altered their morphology from round to fusiform, while inducing paxillin focalization. 1,25(OH)2D administration also up-regulated myeloid and OC genes, including C/EBPα, RANK, M-CSFR and V-ATPase, whose promoters contain potential 1,25(OH)2D responsive elements. Finally, 1,25(OH)2D increased MM cell capability to generate pits of erosion on calcium phosphate discs. This data suggest that myeloma cells may undergo a functional trans-differentiation into OCs and, under appropriate experimental conditions, 1,25(OH)2D triggers this lineage switch.
Collapse
Affiliation(s)
- Paola Cafforio
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro, P.za G. Cesare, 11, 70124 Bari, Italy.
| | - Stella D'Oronzo
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro, P.za G. Cesare, 11, 70124 Bari, Italy.
| | - Claudia Felici
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro, P.za G. Cesare, 11, 70124 Bari, Italy.
| | - Sandra Sigala
- Department of Molecular and Translational Sciences, Section of Pharmacology, University of Brescia "Health and Wealth", V.le Europa, 11, 25123 Brescia, Italy.
| | - Martina Fragni
- Department of Molecular and Translational Sciences, Section of Pharmacology, University of Brescia "Health and Wealth", V.le Europa, 11, 25123 Brescia, Italy.
| | - Francesco Silvestris
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Aldo Moro, P.za G. Cesare, 11, 70124 Bari, Italy.
| |
Collapse
|
18
|
Digesting the role of bone marrow macrophages on hematopoiesis. Immunobiology 2016; 222:814-822. [PMID: 27890297 DOI: 10.1016/j.imbio.2016.11.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/27/2016] [Accepted: 11/12/2016] [Indexed: 01/07/2023]
Abstract
Tissue resident macrophages are found in various tissues like Langerhans cells in the skin or alveolar macrophages in the lung, and their main function is to regulate organ homeostasis. They have also been observed in the bone marrow and these cells in particular have been gaining importance in recent years as they are key players in hematopoiesis. However, as the characterization and classification of these putatively different bone marrow resident macrophages is far from established there is a need to generate an overview of tissue resident macrophages of the bone marrow. Here, we will review the current knowledge of bone marrow resident macrophages both in mouse and human. We will discuss the state of the art on the origin of bone marrow macrophages, specialized microenvironments where they reside and their unique characteristics. We will emphasize the two best studied examples of macrophage homeostatic function in the bone marrow, specifically within erythroblastic islands and the hematopoietic stem cell niche. Although increasing evidence shows that bone marrow resident macrophages are indispensable for hematopoietic stem cell function and bone marrow erythroid output, the field of bone marrow macrophages is in its infancy. This field is in dire need for a unified nomenclature to support functional experiments, model systems, and the identification of niches.
Collapse
|
19
|
Masuhara M, Tsukahara T, Tomita K, Furukawa M, Miyawaki S, Sato T. A relation between osteoclastogenesis inhibition and membrane-type estrogen receptor GPR30. Biochem Biophys Rep 2016; 8:389-394. [PMID: 28955981 PMCID: PMC5614543 DOI: 10.1016/j.bbrep.2016.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/05/2016] [Accepted: 10/24/2016] [Indexed: 12/13/2022] Open
Abstract
Disruption of the cooperative balance between osteoblasts and osteoclasts causes various bone disorders, some of which are because of abnormal osteoclast recruitment. Osteoporosis, one of the bone disorders, is not effectively treated by currently available medicines. In addition to the development of novel drugs for palliative treatment, the exploitation of novel compounds for preventive treatment is important in an aging society. Quercetin, a major flavonoid found in many fruits and vegetables, has been expected to inhibit cancer and prevent several diseases because of its anti-inflammatory and estrogenic functions. It has been reported that quercetin has the potential to reduce bone resorption, but the mechanism by which this compound affects the differentiation of osteoclasts remains unknown. Here, using a bone marrow cell-based in vitro osteoclast differentiation system from bone marrow cells, we found that the ability of quercetin to inhibit osteoclastogenesis was related to its estrogenic activity. The inhibition was partially blocked by a specific antagonist for the nuclear receptor estrogen receptor α, but a specific antagonist of the membrane-type receptor GPR30 completely ablated this inhibition. Furthermore, quercetin suppressed the transient increase of Akt phosphorylation induced by the stimulation of macrophage colony-stimulating factor and receptor activator of NF-κB ligand with no effect on MAPK phosphorylation, suggesting exquisite crosstalk between cytokine receptor and G-protein coupled receptor signaling. These results indicate the important role of GPR30 in osteoclast differentiation and provide new insights to the development of new treatments for osteoporosis. Flavonoids can prevent osteoporosis, but the precise mechanism remains unknown. The major flavonoid quercetin inhibited osteoclastogenesis. The inhibition was entirely rescued by GPR30 antagonism. GPR30 has a key role in mechanism of osteoclastogenesis prevention by quercetin.
Collapse
Affiliation(s)
- Masaaki Masuhara
- Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Sakuragaoka, Kagoshima 890-8544, Japan
| | - Takao Tsukahara
- Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Sakuragaoka, Kagoshima 890-8544, Japan
| | - Kazuo Tomita
- Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Sakuragaoka, Kagoshima 890-8544, Japan
| | - Minami Furukawa
- Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Sakuragaoka, Kagoshima 890-8544, Japan
- Department of Orthodontics, Kagoshima University Graduate School of Medical and Dental Sciences, Sakuragaoka, Kagoshima 890-8544, Japan
| | - Shouichi Miyawaki
- Department of Orthodontics, Kagoshima University Graduate School of Medical and Dental Sciences, Sakuragaoka, Kagoshima 890-8544, Japan
| | - Tomoaki Sato
- Department of Applied Pharmacology, Kagoshima University Graduate School of Medical and Dental Sciences, Sakuragaoka, Kagoshima 890-8544, Japan
- Corresponding author.
| |
Collapse
|
20
|
Osteoimmunology: memorandum for rheumatologists. SCIENCE CHINA-LIFE SCIENCES 2016; 59:1241-1258. [DOI: 10.1007/s11427-016-5105-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 05/17/2016] [Indexed: 12/30/2022]
|
21
|
Novack DV, Mbalaviele G. Osteoclasts-Key Players in Skeletal Health and Disease. Microbiol Spectr 2016; 4:10.1128/microbiolspec.MCHD-0011-2015. [PMID: 27337470 PMCID: PMC4920143 DOI: 10.1128/microbiolspec.mchd-0011-2015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Indexed: 12/12/2022] Open
Abstract
The differentiation of osteoclasts (OCs) from early myeloid progenitors is a tightly regulated process that is modulated by a variety of mediators present in the bone microenvironment. Once generated, the function of mature OCs depends on cytoskeletal features controlled by an αvβ3-containing complex at the bone-apposed membrane and the secretion of protons and acid-protease cathepsin K. OCs also have important interactions with other cells in the bone microenvironment, including osteoblasts and immune cells. Dysregulation of OC differentiation and/or function can cause bone pathology. In fact, many components of OC differentiation and activation have been targeted therapeutically with great success. However, questions remain about the identity and plasticity of OC precursors and the interplay between essential networks that control OC fate. In this review, we summarize the key principles of OC biology and highlight recently uncovered mechanisms regulating OC development and function in homeostatic and disease states.
Collapse
Affiliation(s)
- Deborah Veis Novack
- Musculoskeletal Research Center, Division of Bone and Mineral Diseases, Department of Medicine
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Gabriel Mbalaviele
- Musculoskeletal Research Center, Division of Bone and Mineral Diseases, Department of Medicine
| |
Collapse
|
22
|
Xie W, Lorenz S, Dolder S, Hofstetter W. Extracellular Iron is a Modulator of the Differentiation of Osteoclast Lineage Cells. Calcif Tissue Int 2016; 98:275-83. [PMID: 26615413 DOI: 10.1007/s00223-015-0087-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 11/13/2015] [Indexed: 01/28/2023]
Abstract
Osteoclasts originate from the hematopoietic stem cell and share a differentiation pathway with the cells of the monocyte/macrophage lineages. Development and activation of osteoclasts, and as a consequence regulation of bone resorption, depend on two growth factors: macrophage colony-stimulating factor and receptor activator of NF-κB ligand. Furthermore, cell development and activity are modulated by a microenvironment composed of cytokines and growth factors and of the extracellular matrix. Membrane transporters are a means for cells to interact with their environment. Within this study, the expression of proteins regulating cellular iron homeostasis in osteoclast-like cells grown from bone marrow-derived progenitors was compared to the expression of this set of proteins by monocyte/macrophage lineage cells. In differentiating osteoclasts, levels of transcripts encoding transferrin receptor 1 and divalent metal transporter 1 (Slc11A2) were increased, while levels of transcripts encoding ferroportin (Slc40A1) and natural resistance-associated macrophage protein 1 (Slc11A1) were decreased. Supplementation of the culture media with exogenous iron led to an increase in the proliferation of osteoclast progenitor cells and to the expression of a macrophage-like phenotype, while the development of osteoclasts was reduced. Upon transfer of mature OC onto a CaP substrate, iron depletion of the medium with the Fe(3+)-chelator Deferoxamine Mesylate decreased CaP dissolution by ~30 %, which could be restored by addition of exogenous iron. During the 24 h of the assay, no effects were observed on total TRAP activity. The data demonstrate transcriptional regulation of the components of cellular iron transporters during OC development and suggests that iron homeostasis may contribute to fine-tuning of the RANKL-induced OC development.
Collapse
Affiliation(s)
- Wenjie Xie
- Bone Biology & Orthopaedic Research, Department Clinical Research, University of Bern, Murtenstrasse 35, 3010, Bern, Switzerland
- Swiss National Centre of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Sebastian Lorenz
- City Hospital Triemli Zurich, Institute for Laboratory Medicine, Zurich, Switzerland
| | - Silvia Dolder
- Bone Biology & Orthopaedic Research, Department Clinical Research, University of Bern, Murtenstrasse 35, 3010, Bern, Switzerland
| | - Willy Hofstetter
- Bone Biology & Orthopaedic Research, Department Clinical Research, University of Bern, Murtenstrasse 35, 3010, Bern, Switzerland.
- Swiss National Centre of Competence in Research, NCCR TransCure, University of Bern, Bern, Switzerland.
| |
Collapse
|
23
|
Kierdorf K, Prinz M, Geissmann F, Gomez Perdiguero E. Development and function of tissue resident macrophages in mice. Semin Immunol 2015; 27:369-78. [PMID: 27036090 PMCID: PMC4948121 DOI: 10.1016/j.smim.2016.03.017] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 12/24/2022]
Abstract
Macrophages are important for tissue development, homeostasis as well as immune response upon injury or infection. For a long time they were only seen as one uniform group of phagocytes with a common origin and similar functions. However, this view has been challenged in the last decade and revealed a complex diversity of tissue resident macrophages. Here, we want to present the current view on macrophage development and tissue specification and we will discuss differences as well as common patterns between heterogeneous macrophage subpopulations.
Collapse
Affiliation(s)
- Katrin Kierdorf
- Centre for Molecular and Cellular Biology of Inflammation (CMCBI), King's College London, London, UK
| | - Marco Prinz
- Institute of Neuropathology, University Freiburg, Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Frederic Geissmann
- Centre for Molecular and Cellular Biology of Inflammation (CMCBI), King's College London, London, UK; Immunology Program, Memorial Sloan Kettering Cancer Center, NY, NY, USA
| | - Elisa Gomez Perdiguero
- Macrophages and Endothelial Cells group, Department of Developmental and Stem Cell Biology, CNRS UMR 3738, Institut Pasteur, Paris, France.
| |
Collapse
|
24
|
Liu T, Qin AP, Liao B, Shao HG, Guo LJ, Xie GQ, Yang L, Jiang TJ. A novel microRNA regulates osteoclast differentiation via targeting protein inhibitor of activated STAT3 (PIAS3). Bone 2014; 67:156-65. [PMID: 25019593 DOI: 10.1016/j.bone.2014.07.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 06/24/2014] [Accepted: 07/02/2014] [Indexed: 01/08/2023]
Abstract
MicroRNAs (miRNAs) involve in the regulation of a wide range of physiological processes. Recent studies suggested that miRNAs might play a role in osteoclast differentiation. Here, we identify a new miRNA (miR-9718) in primary mouse osteoclasts that promotes osteoclast differentiation by repressing protein inhibitor of activated STAT3 (PIAS3) at the post-transcriptional level. MiR-9718 was found to be transcribed during osteoclastogenesis, which was induced by macrophage colony stimulating factor (M-CSF) and receptor activator of nuclear factor-κB ligand (RANKL). Overexpression of miR-9718 in RAW 264.7 cells promoted M-CSF and RANKL-induced osteoclastogenesis, whereas inhibition of miR-9718 attenuated it. PIAS3 was predicted to be a target of miR-9718. Luciferase reporter gene validated the prediction. Transfection of pre-miR-9718 in RAW 264.7 cells induced by both M-CSF and RANKL inhibited expression of PIAS3 protein, while the mRNA levels of PIAS3 were not attenuated. In vivo, our study showed that silencing of miR-9718 using a specific antagomir inhibited bone resorption and increased bone mass in mice receiving ovariectomy (OVX) and in sham-operated control mice. Thus, our study showed that miR-9718 played an important role in osteoclast differentiation via targeting PIAS3 both in vitro and in vivo.
Collapse
Affiliation(s)
- Ting Liu
- Institute of Endocrinology and Metabolism, Second Xiangya Hospital of Central South University, 139# Middle Renmin Road, Changsha, Hunan 410011, PR China
| | - Ai-Ping Qin
- Department of Endocrinology, Hunan Province Geriatric Hospital, 89# Guhan Road, Changsha, Hunan 410001, PR China
| | - Bin Liao
- Department of Endocrinology, Hunan Province Geriatric Hospital, 89# Guhan Road, Changsha, Hunan 410001, PR China
| | - Hui-Ge Shao
- Department of Endocrinology, Changsha Central Hospital, 161# Shaoshan Road, Changsha, Hunan 410004, PR China
| | - Li-Juan Guo
- Department of Endocrinology, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, Hunan 410008, PR China
| | - Gen-Qing Xie
- Department of Endocrinology, Changsha Central Hospital, 161# Shaoshan Road, Changsha, Hunan 410004, PR China.
| | - Li Yang
- Department of Endocrinology, Hunan Province Geriatric Hospital, 89# Guhan Road, Changsha, Hunan 410001, PR China; Department of Endocrinology, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, Hunan 410008, PR China.
| | - Tie-Jian Jiang
- Department of Endocrinology, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, Hunan 410008, PR China.
| |
Collapse
|
25
|
Osteoblast and osteocyte: games without frontiers. Arch Biochem Biophys 2014; 561:3-12. [PMID: 24832390 DOI: 10.1016/j.abb.2014.05.003] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 04/30/2014] [Accepted: 05/03/2014] [Indexed: 01/23/2023]
Abstract
The portrait of osteoblasts and osteocytes has been subjected to a revision, since a large body of evidence is attributing these cells amazing roles both inside and outside the bone. The osteoblast, long confined to its bone building function, is actually a very eclectic cell, actively regulating osteoclast formation and function as well as hematopoietic stem cells homeostasis. It is also an endocrine cell, affecting energy metabolism, male fertility and cognition through the release of osteocalcin, a perfect definition-fitting hormone in its uncarboxylated state. As for the osteocytes, many evidence shows that they do not merely represent the final destination of the osteoblasts, but they are instead very active cells that, besides a mechanosensorial function, actively contribute to the bone remodelling by regulating bone formation and resorption. The regulation is exerted by the production of sclerostin (SOST), which in turn inhibits osteoblast differentiation by blocking Wnt/beta-catenin pathway. At the same time, osteocytes influence bone resorption both indirectly, by producing RANKL, which stimulates osteoclastogenesis, and directly by means of a local osteolysis, which is observed especially under pathological conditions. The great versatility of both these cells reflects the complexity of the bone tissue, which has not only a structural role, but influences and is influenced by different organs, taking part in homeostatic and adaptive responses affecting the whole organism.
Collapse
|
26
|
Odkhuu E, Koide N, Tsolmongyn B, Jambalganiin U, Naiki Y, Komatsu T, Yoshida T, Yokochi T. Involvement of redox balance in in vitro osteoclast formation of RAW 264.7 macrophage cells in response to LPS. Innate Immun 2014; 21:194-202. [PMID: 24595208 DOI: 10.1177/1753425914524242] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Here we report that LPS induces osteoclast (OC) formation in murine RAW 264.7 macrophage cells in RPMI-1640 medium but not in α-minimum essential medium (α-MEM) as the original culture medium. LPS-induced OC formation in both media was examined to clarify the differential response. Receptor activator of NF-κB ligand induced OC formation in either α-MEM or RPMI-1640 medium. However, LPS-induced OC formation in RAW 264.7 cells maintained in RPMI-1640 medium, but not α-MEM, which was also supported by mouse bone marrow-derived macrophages, although they were less sensitive to LPS than RAW 264.7 cells. LPS augmented the expression of nuclear factor of activated T-cells (NFATc1) as a key transcription factor of osteoclastogenesis in cells maintained in RPMI-1640 medium, but reduced it in cells maintained in α-MEM. A high concentration of LPS was cytotoxic against cells maintained in α-MEM. Glutathione exclusively present in RPMI-1640 medium prevented LPS-induced cell death in α-MEM and augmented LPS-induced NFATc1 expression, followed by enhanced LPS-induced OC formation. LPS induced higher generation of reactive oxygen species in α-MEM than RPMI-1640 medium. An antioxidant enhanced LPS-induced OC formation, whereas a pro-oxidant reduced it. Taken together, redox balance in the culture condition was suggested to regulate in vitro LPS-induced OC formation.
Collapse
Affiliation(s)
- Erdenezaya Odkhuu
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan Department of Anatomy, Health Sciences University of Mongolia, Ulaanbaatar, Mongolia
| | - Naoki Koide
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Bilegtsaikhan Tsolmongyn
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Ulziisaikhan Jambalganiin
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Yoshikazu Naiki
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Takayuki Komatsu
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Tomoaki Yoshida
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Takashi Yokochi
- Department of Microbiology and Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| |
Collapse
|
27
|
|
28
|
Abstract
Proper development and function of the mammalian central nervous system (CNS) depend critically on the activity of parenchymal sentinels referred to as microglia. Although microglia were first described as ramified brain-resident phagocytes, research conducted over the past century has expanded considerably upon this narrow view and ascribed many functions to these dynamic CNS inhabitants. Microglia are now considered among the most versatile cells in the body, possessing the capacity to morphologically and functionally adapt to their ever-changing surroundings. Even in a resting state, the processes of microglia are highly dynamic and perpetually scan the CNS. Microglia are in fact vital participants in CNS homeostasis, and dysregulation of these sentinels can give rise to neurological disease. In this review, we discuss the exciting developments in our understanding of microglial biology, from their developmental origin to their participation in CNS homeostasis and pathophysiological states such as neuropsychiatric disorders, neurodegeneration, sterile injury responses, and infectious diseases. We also delve into the world of microglial dynamics recently uncovered using real-time imaging techniques.
Collapse
Affiliation(s)
- Debasis Nayak
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892;
| | | | | |
Collapse
|
29
|
Thompson MR, Xu D, Williams BR. Activating Transcription Factor 3 Contributes to Toll-Like Receptor-Mediated Macrophage Survival via Repression ofBaxandBak. J Interferon Cytokine Res 2013; 33:682-93. [DOI: 10.1089/jir.2013.0007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Matthew R. Thompson
- Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Dakang Xu
- Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| | - Bryan R.G. Williams
- Monash Institute of Medical Research, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
30
|
Li Y, Chen Q, Zheng D, Yin L, Chionh YH, Wong LH, Tan SQ, Tan TC, Chan JKY, Alonso S, Dedon PC, Lim B, Chen J. Induction of functional human macrophages from bone marrow promonocytes by M-CSF in humanized mice. THE JOURNAL OF IMMUNOLOGY 2013; 191:3192-9. [PMID: 23935193 DOI: 10.4049/jimmunol.1300742] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Engraftment of human CD34⁺ hematopoietic stem/progenitor cells into immunodeficient mice leads to robust reconstitution of human T and B cells but not monocytes and macrophages. To identify the cause underlying the poor monocyte and macrophage reconstitution, we analyzed human myeloid cell development in humanized mice and found that it was blocked at the promonocyte stage in the bone marrow. Expression of human M-CSF or GM-CSF by hydrodynamic injection of cytokine-encoding plasmid completely abolished the accumulation of promonocytes in the bone marrow. M-CSF promoted the development of mature monocytes and tissue-resident macrophages whereas GM-CSF did not. Moreover, correlating with an increased human macrophages at the sites of infection, M-CSF-treated humanized mice exhibited an enhanced protection against influenza virus and Mycobacterium infection. Our study identifies the precise stage at which human monocyte/macrophage development is blocked in humanized mice and reveals overlapping and distinct functions of M-CSF and GM-CSF in human monocyte and macrophage development. The improved reconstitution and functionality of monocytes/macrophages in the humanized mice following M-CSF expression provide a superior in vivo system to investigate the role of macrophages in physiological and pathological processes.
Collapse
Affiliation(s)
- Yan Li
- Interdisciplinary Research Group in Infectious Diseases, Singapore-Massachusetts Institute of Technology Alliance for Research and Technology, Singapore 138602
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Dan XM, Zhong ZP, Li YW, Luo XC, Li AX. Cloning and expression analysis of grouper (Epinephelus coioides) M-CSFR gene post Cryptocaryon irritans infection and distribution of M-CSFR(+) cells. FISH & SHELLFISH IMMUNOLOGY 2013; 35:240-248. [PMID: 23643873 DOI: 10.1016/j.fsi.2013.04.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 03/25/2013] [Accepted: 04/15/2013] [Indexed: 06/02/2023]
Abstract
The M-CSF/M-CSFR system plays a central role in the cell survival, proliferation, differentiation and maturation of the monocyte/macrophage lineage. In present study, we cloned the sequence of the M-CSFR cDNA from the orange-spotted grouper (Epinephelus coioides). Sequence analysis reveals that ten cysteines in the extracellular immunoglobulin-like (Ig-like) domains of EcM-CSFR are conserved in fish and mammals, its nine possible N-glycosylation sites are conserved in fish but not mammals, 7 of 8 identified mammal M-CSFR intracellular autophosphorylation tyrosine sites was found in EcM-CSFR. Real-time PCR showed that the constitutive expression level of EcM-CSFR was the highest in the spleen, less in the gill, kidney, head kidney and liver, least in the blood, skin, gut and thymus. A rabbit anti-EcM-CSFR polyclonal antibody against the recombinant EcM-CSFR extracellular domain was developed and it was efficient in labeling the monocytes and macrophages isolated from the head kidney. Immunochemistry analysis showed that M-CSFR(+) cells located in all tested paraffin-embedded tissues and M-CSFR(+) cell centres with the characteristic of melano-macrophage centres(MMCs) was found in the spleen, head kidney, kidney, gut and liver. All these results indicate the widespread distribution of macrophages in grouper tissues and its importance in fish immune system. In Crytocaryon irritans infected grouper, EcM-CSFR was transient up-regulated and rapidly down-regulated in skin, gill, head kidney and spleen. The possible activation mechanism of macrophage via EcM-CSFR signal transduction in the fish anti-C. irritans infection was discussed.
Collapse
Affiliation(s)
- Xue-Ming Dan
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | | | | | | | | |
Collapse
|
32
|
Tajima Y, Murase H, Satake K, Mitani Y, Regasini LO, da Silva Bolzani V, Efferth T, Nakagawa H. Nitensidine A, a guanidine alkaloid from Pterogyne nitens, induces osteoclastic cell death. Cytotechnology 2013; 67:585-92. [PMID: 23892478 DOI: 10.1007/s10616-013-9590-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 05/21/2013] [Indexed: 11/26/2022] Open
Abstract
Nitensidine A is a guanidine alkaloid isolated from Pterogyne nitens, a common plant in South America. To gain insight into the biological activity of P. nitens-produced compounds, we examined herein their biological effects on osteoclasts, multinucleated giant cells that regulate bone metabolism by resorbing bone. Among four guanidine alkaloids (i.e., galegine, nitensidine A, pterogynidine, and pterogynine), nitensidine A and pterogynine exhibited anti-osteoclastic effects at 10 μM by reducing the number of osteoclasts on the culture plate whereas galegine and pterogynidine did not. The anti-osteoclastic activities of nitensidine A and pterogynine were exerted in a concentration-dependent manner, whereas nitensidine A exhibited an approximate threefold stronger effect than pterogynine (IC50 values: nitensidine A, 0.93 ± 0.024 μM; pterogynine, 2.7 ± 0.40 μM). In the present study, the anti-osteoclastic effects of two synthetic nitensidine A derivatives (nitensidine AT and AU) were also examined to gain insight into the structural features of nitensidine A that exert an anti-osteoclastic effect. The anti-osteoclastic effect of nitensidine A was greatly reduced by substituting the imino nitrogen atom in nitensidine A with sulfur or oxygen. According to the differences in chemical structures and anti-osteoclastic effects of the four guanidine alkaloids and the two synthetic nitensidine A derivatives, it is suggested that the number, binding site, and polymerization degree of isoprenyl moiety in the guanidine alkaloids and the imino nitrogen atom cooperatively contribute to their anti-osteoclastic effects.
Collapse
Affiliation(s)
- Yasuhiro Tajima
- Department of Applied Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, 487-8501, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Lin NY, Beyer C, Giessl A, Kireva T, Scholtysek C, Uderhardt S, Munoz LE, Dees C, Distler A, Wirtz S, Krönke G, Spencer B, Distler O, Schett G, Distler JHW. Autophagy regulates TNFα-mediated joint destruction in experimental arthritis. Ann Rheum Dis 2013; 72:761-8. [PMID: 22975756 DOI: 10.1136/annrheumdis-2012-201671] [Citation(s) in RCA: 213] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Autophagy is a homeostatic process to recycle dispensable and damaged cell organelles. Dysregulation of autophagic pathways has recently been implicated in the pathogenesis of various diseases. Here, we investigated the role of autophagy during joint destruction in arthritis. METHODS Autophagy in osteoclasts was analysed in vitro and ex vivo by transmission electron microscopy, Western blotting and immunohistochemistry for Beclin1 and Atg7. Small molecule inhibitors, LysMCre-mediated knockout of Atg7 and lentiviral overexpression of Beclin1 were used to modulate autophagy in vitro and in vivo. Osteoclast differentiation markers were quantified by real-time PCR. The extent of bone and cartilage destruction was analysed in human tumour necrosis factor α transgenic (hTNFα tg) mice after adoptive transfer with myeloid specific Atg7-deficient bone marrow. RESULTS Autophagy was activated in osteoclasts of human rheumatoid arthritis (RA) showing increased expression of Beclin1 and Atg7. TNFα potently induced the expression of autophagy-related genes and activated autophagy in vitro and in vivo. Activation of autophagy by overexpression of Beclin1-induced osteoclastogenesis and enhanced the resorptive capacity of cultured osteoclasts, whereas pharmacologic or genetic inactivation of autophagy prevented osteoclast differentiation. Arthritic hTNFα tg mice transplanted with Atg7(fl/fl)×LysMCre(+) bone marrow cells (BMC) showed reduced numbers of osteoclasts and were protected from TNFα-induced bone erosion, proteoglycan loss and chondrocyte death. CONCLUSIONS These findings demonstrate that autophagy is activated in RA in a TNFα-dependent manner and regulates osteoclast differentiation and bone resorption. We thus provide evidence for a central role of autophagy in joint destruction in RA.
Collapse
Affiliation(s)
- Neng-Yu Lin
- Department of Internal Medicine III and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Yu SS, Lau CM, Barham WJ, Onishko HM, Nelson CE, Li H, Smith CA, Yull FE, Duvall CL, Giorgio TD. Macrophage-specific RNA interference targeting via "click", mannosylated polymeric micelles. Mol Pharm 2013; 10:975-87. [PMID: 23331322 DOI: 10.1021/mp300434e] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Macrophages represent an important therapeutic target, because their activity has been implicated in the progression of debilitating diseases such as cancer and atherosclerosis. In this work, we designed and characterized pH-responsive polymeric micelles that were mannosylated using "click" chemistry to achieve CD206 (mannose receptor)-targeted siRNA delivery. CD206 is primarily expressed on macrophages and dendritic cells and upregulated in tumor-associated macrophages, a potentially useful target for cancer therapy. The mannosylated nanoparticles improved the delivery of siRNA into primary macrophages by 4-fold relative to the delivery of a nontargeted version of the same carrier (p < 0.01). Further, treatment for 24 h with the mannose-targeted siRNA carriers achieved 87 ± 10% knockdown of a model gene in primary macrophages, a cell type that is typically difficult to transfect. Finally, these nanoparticles were also avidly recognized and internalized by human macrophages and facilitated the delivery of 13-fold more siRNA into these cells than into model breast cancer cell lines. We anticipate that these mannose receptor-targeted, endosomolytic siRNA delivery nanoparticles will become an enabling technology for targeting macrophage activity in various diseases, especially those in which CD206 is upregulated in macrophages present within the pathologic site. This work also establishes a generalizable platform that could be applied for "click" functionalization with other targeting ligands to direct siRNA delivery.
Collapse
Affiliation(s)
- Shann S Yu
- Department of Biomedical Engineering, Vanderbilt University , Nashville, Tennessee 37235, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Pasold J, Engelmann R, Keller J, Joost S, Marshall RP, Frerich B, Müller-Hilke B. High bone mass in the STR/ort mouse results from increased bone formation and impaired bone resorption and is associated with extramedullary hematopoiesis. J Bone Miner Metab 2013. [PMID: 23192248 DOI: 10.1007/s00774-012-0394-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
We here describe the novel high bone mass phenotype in STR/ort mice that leads to increased bone masses of cortical and trabecular bone and is associated with elevated osteoblast activity and impaired osteoclast function alike. Comparison of STR/ort and C57BL/6 mice reveals an increase in trabecular bone volumes of the vertebrae and at femoral metaphysis. In the females, this difference is significant as early as 2 months of age and at 9 months the females by far exceed their age matched males in all parameters measured. The increase in cortical bone mass at femoral diaphysis results from an apposition to the endosteal surface, it is significant for both sexes as early as 1 month of age and leads to bone marrow compression and extramedullary hematopoiesis. Altered activities of both, the osteoblast and the osteoclast contribute to the high bone mass and collectively this phenotype supports a multifactorial pathogenesis. Moreover, the spontaneous development of osteoarthritis in male STR/ort mice is suggestive of a tight correlation between trabecular bone mass and the development of degenerative changes of the articular cartilage.
Collapse
Affiliation(s)
- Juliane Pasold
- Institute of Immunology, University of Rostock, Schillingallee 68, 18057, Rostock, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Taylor RM, Kashima TG, Knowles HJ, Athanasou NA. VEGF, FLT3 ligand, PlGF and HGF can substitute for M-CSF to induce human osteoclast formation: implications for giant cell tumour pathobiology. J Transl Med 2012; 92:1398-406. [PMID: 22906984 DOI: 10.1038/labinvest.2012.108] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Giant cell tumour of bone (GCTB) is a primary bone tumour that contains numerous very large, hyper-nucleated osteoclastic giant cells. Osteoclasts form from CD14+ monocytes and macrophages in the presence of receptor activator of nuclear factor kappa B ligand (RANKL) and macrophage-colony stimulating factor (M-CSF). GCTB contains numerous growth factors, some of which have been reported to influence osteoclastogenesis and resorption. We investigated whether these growth factors are capable of substituting for M-CSF to support osteoclast formation from cultured human monocytes and whether they influence osteoclast cytomorphology and resorption. Vascular endothelial growth factor-A (VEGF-A), VEGF-D, FLT3 ligand (FL), placental growth factor (PlGF) and hepatocyte growth factor (HGF) supported RANKL-induced osteoclastogenesis in the absence of M-CSF, resulting in the formation of numerous TRAP+ multinucleated cells capable of lacunar resorption. Monocytes cultured in the presence of M-CSF, HGF, VEGF-A and RANKL together resulted in the formation of very large, hyper-nucleated (GCTB-like) osteoclasts that were hyper-resorptive. M-CSF and M-CSF substitute growth factors were identified immunohistochemically in GCTB tissue sections and these factors stimulated the resorption of osteoclasts derived from a subset of GCTBs. Our findings indicate that there are growth factors that are capable of substituting for M-CSF to induce human osteoclast formation and that these factors are present in GCTB where they influence osteoclast cytomorphology and have a role in osteoclast formation and resorption activity.
Collapse
Affiliation(s)
- Richard M Taylor
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Science, University of Oxford, Nuffield Orthopaedic Centre, Oxford, UK
| | | | | | | |
Collapse
|
37
|
El-Gamal MI, Anbar HS, Yoo KH, Oh CH. FMS Kinase Inhibitors: Current Status and Future Prospects. Med Res Rev 2012; 33:599-636. [PMID: 22434539 DOI: 10.1002/med.21258] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
FMS, first discovered as the oncogene responsible for Feline McDonough Sarcoma, is a type III receptor tyrosine kinase that binds to the macrophage or monocyte colony-stimulating factor (M-CSF or CSF-1). Signal transduction through that binding results in survival, proliferation, and differentiation of monocyte/macrophage lineage. Overexpression of CSF-1 and/or FMS has been implicated in a number of disease states such as the growth of metastasis of certain types of cancer, in promoting osteoclast proliferation in bone osteolysis, and many inflammatory disorders. Inhibition of CSF-1 and/or FMS may help treat these pathological conditions. This article reviews FMS gene, FMS kinase, CSF-1, IL-34, and their roles in bone osteolysis, cancer biology, and inflammation. Monoclonal antibodies, FMS crystal structure, and small molecule FMS kinase inhibitors of different chemical scaffolds are also reviewed.
Collapse
Affiliation(s)
- Mohammed I El-Gamal
- Biomedical Research Institute, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, Seoul 130-650, Republic of Korea
| | | | | | | |
Collapse
|
38
|
Yu SS, Lau CM, Thomas SN, Jerome WG, Maron DJ, Dickerson JH, Hubbell JA, Giorgio TD. Size- and charge-dependent non-specific uptake of PEGylated nanoparticles by macrophages. Int J Nanomedicine 2012; 7:799-813. [PMID: 22359457 PMCID: PMC3284223 DOI: 10.2147/ijn.s28531] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The assessment of macrophage response to nanoparticles is a central component in the evaluation of new nanoparticle designs for future in vivo application. This work investigates which feature, nanoparticle size or charge, is more predictive of non-specific uptake of nanoparticles by macrophages. This was investigated by synthesizing a library of polymer-coated iron oxide micelles, spanning a range of 30-100 nm in diameter and -23 mV to +9 mV, and measuring internalization into macrophages in vitro. Nanoparticle size and charge both contributed towards non-specific uptake, but within the ranges investigated, size appears to be a more dominant predictor of uptake. Based on these results, a protease-responsive nanoparticle was synthesized, displaying a matrix metalloproteinase-9 (MMP-9)-cleavable polymeric corona. These nanoparticles are able to respond to MMP-9 activity through the shedding of 10-20 nm of hydrodynamic diameter. This MMP-9-triggered decrease in nanoparticle size also led to up to a six-fold decrease in nanoparticle internalization by macrophages and is observable by T(2)-weighted magnetic resonance imaging. These findings guide the design of imaging or therapeutic nanoparticles for in vivo targeting of macrophage activity in pathologic states.
Collapse
Affiliation(s)
- Shann S Yu
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Hada N, Okayasu M, Ito J, Nakayachi M, Hayashida C, Kaneda T, Uchida N, Muramatsu T, Koike C, Masuhara M, Sato T, Hakeda Y. Receptor activator of NF-κB ligand-dependent expression of caveolin-1 in osteoclast precursors, and high dependency of osteoclastogenesis on exogenous lipoprotein. Bone 2012; 50:226-36. [PMID: 22075210 DOI: 10.1016/j.bone.2011.10.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 10/22/2011] [Accepted: 10/25/2011] [Indexed: 02/07/2023]
Abstract
Although extensive studies have done much to clarify the molecular mechanisms of osteoclastogenesis during the last ten years, there may still be unknown molecules associated with osteoclast differentiation. Thus, we used fluorescent differential display to screen for genes whose expression is induced by receptor activator of NF-κB ligand (RANKL), a crucial molecule for osteoclast formation. We identified caveolin-1 (Cav-1) as a RANKL-induced gene. Cav-1 is a major structural protein of caveolae and lipid rafts, cholesterol-enriched microdomains in the plasma membrane (PM). The RANKL-induced Cav-1 was immediately conveyed to lipid rafts. Conversely, expression of flotillin-1 (Flot-1), another scaffolding protein of lipid rafts, was reduced during osteoclastogenesis, indicating conversion of Flot-1-predominant rafts into Cav-1-enriched rafts. However, in vitro osteoclastogenesis of precursor cells from Cav-1-null mice was comparable to that of wild-type mice, while Cav-2 expression in the knockout osteoclasts was maintained. Conversely, Cav-2 gene silencing in Cav-1-null osteoclast precursors using siRNA for Cav-2 increased osteoclast formation, suggesting that the Cav-1/Cav-2 complex may act as a negative regulator for osteoclastogenesis. On the other hand, destruction of lipid rafts by removal of cholesterol from the PM by methyl-ß-cyclodextrin (MCD) treatment caused disordered signal transductions for osteoclastogenesis, such as hyperactivation of Erk1/2 and insensitivity of Akt to RANKL stimulus. The abnormal signaling was reproduced by deleting exogenous lipoproteins from the culture medium, which also resulted in reduced osteoclast formation. In addition, the deletion caused delayed expression of nuclear factor of activated T cells c1 (NFATc1), and depressed its activation in the cytosol and inhibited its translocation into nuclei. Simultaneously, the deletion reduced the level of FcRγ, a trigger protein for initiating the calcium signaling needed to activate NFATc1, and decreased Cav-1 in lipid rafts. These findings indicate that the molecular mechanisms of osteoclastogenesis are highly dependent on extracellular lipoprotein and the integrity of lipid rafts, and suggest possible involvement of cholesterol.
Collapse
Affiliation(s)
- Naoto Hada
- Division of Oral Anatomy, Department of Human Development and Fostering, Meikai University School of Dentistry, Sakado, Saitama 350-0283, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Mellis DJ, Itzstein C, Helfrich MH, Crockett JC. The skeleton: a multi-functional complex organ: the role of key signalling pathways in osteoclast differentiation and in bone resorption. J Endocrinol 2011; 211:131-43. [PMID: 21903860 DOI: 10.1530/joe-11-0212] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Osteoclasts are the specialised cells that resorb bone matrix and are important both for the growth and shaping of bones throughout development as well as during the process of bone remodelling that occurs throughout life to maintain a healthy skeleton. Osteoclast formation, function and survival are tightly regulated by a network of signalling pathways, many of which have been identified through the study of rare monogenic diseases, knockout mouse models and animal strains carrying naturally occurring mutations in key molecules. In this review, we describe the processes of osteoclast formation, activation and function and discuss the major transcription factors and signalling pathways (including those that control the cytoskeletal rearrangements) that are important at each stage.
Collapse
Affiliation(s)
- David J Mellis
- Musculoskeletal Research Programme, University of Aberdeen, Institute of Medical Sciences, Foresterhill, UK
| | | | | | | |
Collapse
|
41
|
Bloemen V, Schoenmaker T, de Vries TJ, Everts V. IL-1β favors osteoclastogenesis via supporting human periodontal ligament fibroblasts. J Cell Biochem 2011; 112:1890-7. [DOI: 10.1002/jcb.23109] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
42
|
Cejka D, Hayer S, Niederreiter B, Sieghart W, Fuereder T, Zwerina J, Schett G. Mammalian target of rapamycin signaling is crucial for joint destruction in experimental arthritis and is activated in osteoclasts from patients with rheumatoid arthritis. ACTA ACUST UNITED AC 2010; 62:2294-302. [PMID: 20506288 DOI: 10.1002/art.27504] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE Activation of the mammalian target of rapamycin (mTOR) pathway is important for immune cell activation and bone metabolism. To date, the contribution of mTOR signaling to joint inflammation and structural bone and cartilage damage is unknown. The aim of this study was to investigate the potential of inhibiting mTOR as a treatment of inflammatory arthritis. METHODS Human tumor necrosis factor-transgenic mice in which inflammatory arthritis was developing were treated with 2 different mTOR inhibitors, sirolimus or everolimus. The effects of treatment on clinical disease activity, inflammation, and localized joint and cartilage destruction were studied. In addition, the effects of mTOR inhibition on osteoclast survival and expression of key molecules of osteoclast function were analyzed in vitro. Moreover, synovial tissue from patients with rheumatoid arthritis (RA) was assessed for activation of the mTOR pathway. RESULTS Inhibition of mTOR by sirolimus or everolimus reduced synovial osteoclast formation and protected against local bone erosions and cartilage loss. Clinical signs of arthritis improved after mTOR inhibition, and histologic evaluation showed a decrease in synovitis. In vitro, mTOR inhibition down-regulated the expression of digestive enzymes and led to osteoclast apoptosis. Moreover, mTOR signaling was shown to be active in the synovial membrane of patients with RA, particularly in synovial osteoclasts. CONCLUSION Signaling through mTOR is an important link between synovitis and structural damage in inflammatory arthritis. Current pharmacologic inhibitors of mTOR could be effective in protecting joints against structural damage.
Collapse
|
43
|
Jensen ED, Pham L, Billington CJ, Espe K, Carlson AE, Westendorf JJ, Petryk A, Gopalakrishnan R, Mansky K. Bone morphogenic protein 2 directly enhances differentiation of murine osteoclast precursors. J Cell Biochem 2010; 109:672-82. [PMID: 20039313 DOI: 10.1002/jcb.22462] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Previous studies found that bone morphogenic proteins (BMPs) support osteoclast formation, but it is not clear whether this is a direct effect on osteoclasts or mediated indirectly through osteoblasts. We have shown that a mouse deficient for the BMP antagonist Twisted gastrulation suggested a direct positive role for BMPs on osteoclastogenesis. In this report, we further determine the significance of BMP signaling on osteoclast formation in vitro. We find that BMP2 synergizes with suboptimal levels of receptor activator of NF-kappaB ligand (RANKL) to enhance in vitro differentiation of osteoclast-like cells. The enhancement by BMP2 is not a result of changes in the rate of proliferation or survival of the bone marrow-derived cultures, but is accompanied by an increase in expression of genes involved in osteoclast differentiation and fusion. Treatment with BMP2 did not significantly alter expression of RANKL or OPG in our osteoclast cultures, suggesting that the enhancement of osteoclastogenesis is not mediated indirectly through osteoblasts or stromal cells. Consistent with this, we detected phosphorylated SMAD1,5,8 (p-SMAD) in the nuclei of mononuclear and multinucleated cells in osteoclast cultures. Levels of p-SMAD, BMP2, and BMP receptors increased during differentiation. RNAi suppression of Type II BMP receptor inhibited RANKL-stimulated formation of multinuclear TRAP-positive cells. The BMP antagonist noggin inhibited RANKL-mediated osteoclast differentiation when added prior to day 3, while addition of noggin on day 3 or later failed to inhibit their differentiation. Taken together, these data indicate that osteoclasts express BMP2 and BMP receptors, and that autocrine BMP signaling directly promotes the differentiation of osteoclasts-like cells.
Collapse
Affiliation(s)
- Eric D Jensen
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Quinn JMW, Saleh H. Modulation of osteoclast function in bone by the immune system. Mol Cell Endocrinol 2009; 310:40-51. [PMID: 19056462 DOI: 10.1016/j.mce.2008.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 09/29/2008] [Accepted: 11/06/2008] [Indexed: 12/27/2022]
Abstract
Osteoclast differentiation and function is regulated by cellular signals and cytokines that also play significant roles in the immune system. There is much scope, therefore, for immune cell influence on osteoclasts and bone metabolism. Many examples of this have been identified and T cells in particular are a source of factors affecting osteoclast formation and activity, a number which have either pro-osteolytic or anti-osteolytic actions depending on the cellular and microenvironmental context. For example, IL-12 and IL-18 participate in inflammatory processes that can lead to highly destructive osteolysis, yet these cytokines potently block osteoclast formation through mediation of T cells. IL-23 participates in chronic inflammatory processes, but lack of this cytokine results in reduced bone mass in mice, pointing to an influence on physiological regulation of bone mass. Such insights suggest that therapies that target immune responses may significantly influence osteolysis. Investigations into links between the immune system and bone metabolism are thus uncovering important information about the functioning of both systems.
Collapse
|
45
|
Frazier-Bowers SA, Simmons D, Koehler K, Zhou J. Genetic analysis of familial non-syndromic primary failure of eruption. Orthod Craniofac Res 2009; 12:74-81. [PMID: 19419450 PMCID: PMC2779027 DOI: 10.1111/j.1601-6343.2009.01440.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES While some eruption disorders occur as part of a medical syndrome, primary failure of eruption (PFE) - defined as a localized failure of secondary tooth eruption - exists without systemic involvement. Recent studies support that heredity may play an important role in the pathogenesis of PFE. The objective of our human genetic study is to investigate the genetic contribution to PFE. MATERIALS AND METHODS Four candidate genes POSTN, RUNX2, AMELX, and AMBN) were investigated because of their relationship to tooth eruption or putative relationship to each other. Families and individuals were ascertained based on the clinical diagnosis of PFE. Pedigrees were constructed and analyzed by inspection to determine the mode of inheritance in four families. The candidate genes were directly sequenced for both unrelated affected individuals and unaffected individuals. A genome wide scan using 500 microsatellite markers followed by linkage analysis was carried out for one family. RESULTS Pedigree analysis of families suggests an autosomal dominant inheritance pattern with complete penetrance and variable expressivity. Sequence analysis revealed two non-functional polymorphisms in the POSTN gene and no other sequence variations in the remaining candidate genes. Genotyping and linkage analysis of one family yielded a LOD score of 1.51 for markers D13S272; D15S118 and D17S831 on chromosomes 13, 15 and 17 respectively. CONCLUSIONS While LOD scores were not significant evidence of linkage, extension of current pedigrees and novel SNP chip technology holds great promise for identification of a causative locus for PFE.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Amelogenin/genetics
- Cell Adhesion Molecules/genetics
- Child
- Child, Preschool
- Chromosomes, Human, Pair 13/genetics
- Chromosomes, Human, Pair 15/genetics
- Chromosomes, Human, Pair 17/genetics
- Core Binding Factor Alpha 1 Subunit/genetics
- Dental Enamel Proteins/genetics
- Female
- Genes, Dominant/genetics
- Genetic Linkage/genetics
- Genetic Markers/genetics
- Genotype
- Humans
- Introns/genetics
- Lod Score
- Male
- Microsatellite Repeats/genetics
- Middle Aged
- Pedigree
- Penetrance
- Phenotype
- Polymorphism, Genetic/genetics
- Polymorphism, Single Nucleotide/genetics
- Tooth Diseases/genetics
- Tooth Eruption/genetics
- Young Adult
Collapse
Affiliation(s)
- S A Frazier-Bowers
- Department of Orthodontics, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | |
Collapse
|
46
|
Bone Marrow: Orchestrated Cells, Cytokines, and Growth Factors for Bone Regeneration. IMPLANT DENT 2009; 18:132-41. [DOI: 10.1097/id.0b013e3181990e75] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
47
|
Lipopolysaccharide-induced osteoclastogenesis from mononuclear precursors: a mechanism for osteolysis in chronic otitis. J Assoc Res Otolaryngol 2009; 10:151-60. [PMID: 19145462 DOI: 10.1007/s10162-008-0153-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Accepted: 12/03/2008] [Indexed: 12/31/2022] Open
Abstract
Osteoclasts are the only cells capable of carrying out bone resorption and therefore are responsible for the osteolysis seen in infectious diseases such as chronic otitis media and infected cholesteatoma. Pseudomonas aeruginosa is the most common organism isolated from these infectious middle ear diseases. In this study, we examined the mechanisms by which P. aeruginosa lipopolysaccharide (LPS) stimulates osteoclastogenesis directly from mononuclear osteoclast precursor cells. Osteoclast precursors demonstrated robust, bone-resorbing osteoclast formation when stimulated by P. aeruginosa LPS only if previously primed with permissive, sub-osteoclastogenic doses of receptor activator of NF-kappaB ligand (RANKL), suggesting that LPS is osteoclastogenic only during a specific developmental window. Numerous LPS-elicited cytokines were found to be released by osteoclast precursors undergoing P. aeruginosa LPS-mediated osteoclast formation. Two lines of evidence suggest that several cytokines promote Oc formation in an autocrine/paracrine manner. First, inhibition of several cytokine pathways including TNF-alpha, IL-1, and IL-6 block the osteoclastogenesis induced by LPS. Secondly, increased expression of the receptors for TNF-alpha and IL-1 was demonstrated by real-time quantitative polymerase chain reaction. Such a mechanism has not previously been established and demonstrates the ability of osteoclast precursors to autonomously facilitate bone destruction.
Collapse
|
48
|
Tristano AG. Tyrosine kinases as targets in rheumatoid arthritis. Int Immunopharmacol 2009; 9:1-9. [PMID: 18848912 DOI: 10.1016/j.intimp.2008.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 09/12/2008] [Accepted: 09/15/2008] [Indexed: 11/29/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by the accumulation and proliferation of inflammatory cells in the synovial (joint) lining, resulting in the formation of pannus tissue, which invades and destroys adjacent cartilage and bone. In RA macrophages, B cells, mast cells, fibroblast-like synoviocytes (FLSs) and CD4+ T lymphocytes become activated and contribute to synovial inflammation and joint destruction. It has been showed that different tyrosine kinases participate in the activation of those cells having important participation in the physiopathology of RA. Therefore, the tyrosine kinases inhibitors could be the next step in the treatment of patients with RA. This review focuses on recent advances on the role of tyrosine kinases and their inhibitors in the physiopathology of RA.
Collapse
|
49
|
Masuhara M, Sato T, Hada N, Hakeda Y. Protective protein/cathepsin A down-regulates osteoclastogenesis by associating with and degrading NF-kappaB p50/p65. J Bone Miner Metab 2009; 27:46-56. [PMID: 19066718 DOI: 10.1007/s00774-008-0017-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 04/25/2008] [Indexed: 01/03/2023]
Abstract
Disruption of the cooperative function balance between osteoblasts and osteoclasts causes various bone disorders, some of which are attributed to abnormal osteoclast recruitment. Osteoclast differentiation is dependent on the receptor activator of nuclear factor (NF)-kappaB ligand (RANKL) as well as the macrophage colony-stimulating factor. The osteoclast formation induced by cytokines requires activation of NF-kappaB, AP-1 and nuclear factor of activated T cells c1. However, osteoclasts are not the only cell types that express these transcription factors, suggesting that some unknown molecules specific for osteoclasts may associate with the transcription factors. Here, we explored the possibility of molecules binding directly to NF-kappaB and cloned protective protein/cathepsin A (PPCA) by yeast two-hybrid screening using a cDNA library of osteoclast precursors. Forced expression of PPCA with p50/p65 in HEK293 cells decreased both the level of p50/p65 proteins and the transcriptional activity. Abundant PPCA was detected in the lysosomes of the transfected HEK293 cells, but a small amount of this enzyme was also present in the cytosolic fraction. In addition, over-expression of PPCA caused the disappearance of p50/p65 in both the lysosomal and cytosolic fractions. PPCA was expressed throughout osteoclastogenesis, and the expression was slightly up-regulated by RANKL signaling. Knockdown of PPCA in osteoclast precursors with PPCA siRNA stimulated binding of nuclear proteins to oligonucleotides containing an NF-kappaB binding motif and increased osteoclastogenesis. Our present results indicate a novel role for PPCA in osteoclastogenesis via down-regulation of NF-kappaB activity and suggest a new function for PPCA as an NF-kappaB-degrading enzyme in addition to its known multifunctional properties.
Collapse
Affiliation(s)
- Masaaki Masuhara
- Division of Oral Anatomy, Department of Human Development and Fostering, Meikai University School of Dentistry, Sakado, Saitama 350-0283, Japan
| | | | | | | |
Collapse
|
50
|
Takarada T, Yoneda Y. Pharmacological topics of bone metabolism: glutamate as a signal mediator in bone. J Pharmacol Sci 2008; 106:536-41. [PMID: 18431036 DOI: 10.1254/jphs.fm0070243] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
The view that L-glutamate (Glu) is an excitatory amino acid neurotransmitter in the mammalian central nervous system is prevailing on the basis of successful cloning of a number of genes encoding different signaling molecules, such as Glu receptors for the signal input, Glu transporters for the signal termination and vesicular Glu transporters for the signal output through exocytotic release. Little attention has been paid to an extracellular transmitter role of Glu in peripheral neuronal and non-neuronal tissues, by contrast, whereas recent molecular biological and pharmacological analyses including ours give rise to a novel function for Glu as an autocrine and/or paracrine signal mediator in bone comprised of osteoblasts, osteoclasts and osteocytes, in addition to other peripheral tissues including pancreas, adrenal and pituitary glands. Emerging evidence suggests that Glu could play a dual role in mechanisms underlying the maintenance of cellular homeostasis as an excitatory neurotransmitter in the central nervous system and as an extracellular signal mediator in peripheral autocrine and/or paracrine tissues. In this review, therefore, we would outline the possible signaling system for Glu to play a role as an extracellular signal mediator in mechanisms underlying maintenance of the cellular homeostasis in bone.
Collapse
Affiliation(s)
- Takeshi Takarada
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School of Natural Science and Technology, Kanazawa, Ishikawa, Japan
| | | |
Collapse
|