1
|
Kokate D, Marathe P. Evaluation of Effect of Montelukast in the Model of Streptozotocin Induced Diabetic Nephropathy in Rats. Indian J Endocrinol Metab 2024; 28:47-54. [PMID: 38533280 PMCID: PMC10962779 DOI: 10.4103/ijem.ijem_414_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/06/2023] [Accepted: 05/16/2023] [Indexed: 03/28/2024] Open
Abstract
Background Diabetic nephropathy is a progressive condition and a leading cause of end-stage renal disease. Oxidative stress and inflammation play an important role in its pathogenesis. In pre-clinical studies, Montelukast had shown renoprotective and anti-oxidant properties, hence the study was planned to evaluate the effect of Montelukast in a Streptozotocin (STZ) induced model of diabetic nephropathy. Methods 40 Wistar rats of either sex were randomly divided into four groups viz. 1. Vehicle control group, 2. Enalapril (5 mg/kg), 3. Montelukast low-dose (10 mg/kg) and 4. High-dose (20 mg/kg) group. On day 1, diabetes was induced using a single dose of STZ (60 mg/kg) intraperitoneally. Diabetes induction was verified based on fasting blood glucose (FBG) levels on day 7 and from day 8 to day 42, rats were given study drugs. FBG, serum creatinine, blood urea nitrogen (BUN) and urine microalbumin levels were assessed pre-study and post-study. Assessments of kidney malondialdehyde (MDA), reduced glutathione (GSH) and renal histopathology were carried out at the end of the study. Results Montelukast 10 mg/kg group showed significantly lower urine microalbumin levels compared to the vehicle control group (p < 0.05). Montelukast 20 mg/kg group showed significantly lower levels of FBG, serum creatinine, BUN and urine microalbumin compared to the vehicle control group (p < 0.05). In addition, Montelukast 20 mg/kg group also showed better effects on kidney MDA and GSH levels (p < 0.05) and histopathological scores compared to the vehicle control group. Conclusion Montelukast showed a protective effect in the model of diabetic nephropathy because of its antioxidant effect.
Collapse
Affiliation(s)
- Dhananjay Kokate
- Department of Pharmacology and Therapeutics, Seth GSMC and KEM Hospital, Acharya Donde Marg, Parel, Mumbai, Maharashtra, India
| | - Padmaja Marathe
- Department of Pharmacology and Therapeutics, Seth GSMC and KEM Hospital, Acharya Donde Marg, Parel, Mumbai, Maharashtra, India
| |
Collapse
|
2
|
Elgarawany GE, Badawy AD, Hazzaa SM. Co Q10 improves vascular reactivity in male diabetic rats by enhancing insulin sensitivity and antioxidant effect. Arch Physiol Biochem 2023; 129:108-115. [PMID: 32718232 DOI: 10.1080/13813455.2020.1798465] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxidative stress is the main player in the development of diabetic vascular complications. Co-Q10 is a natural antioxidant present in the body and in many foods. This study was designed to evaluate the effect of Co-Q10 administration to improve vascular complications and increase insulin sensitivity in diabetic rats. Fifty male rats were divided into five groups: control, diabetic untreated, diabetic insulin-treated, diabetic Co-Q10-treated, and diabetic combined-treated groups. After 8 weeks, blood pressure and vascular reactivity to NE and ACh, fasting glucose, insulin, C-peptide, MDA, TAC, HbA1c, and the HOMA-IR were measured. Diabetes increased fasting glucose, HbA1c, HOMA-IR, MDA, blood pressure, and decreased TAC and vascular reactivity. Ttreatment with insulin or Co-Q10 improved glycemic parameters and increasing antioxidant levels compared to diabetic group. Combined Co-Q10 with insulin was found to increase insulin sensitivity and decrease its resistance, which helps to decrease insulin doses in diabetic patients and reduce its side effects.
Collapse
Affiliation(s)
- Ghada E Elgarawany
- Department of Medical Physiology, Faculty of Medicine, Menoufia University, Shebeen El Kom, Egypt
- Department of Biomedical Science, Faculty of Medicine, Gulf Medical University, UAE
| | - Ahmed Desoky Badawy
- Department of Medical Physiology, Faculty of Medicine, 6 October University, 6 October City, Egypt
| | - Suzan M Hazzaa
- Department of Medical Physiology, Faculty of Medicine, Menoufia University, Shebeen El Kom, Egypt
| |
Collapse
|
3
|
Quercetin Ameliorates Testicular Damage in Zucker Diabetic Fatty Rats through Its Antioxidant, Anti-Inflammatory and Anti-Apoptotic Properties. Int J Mol Sci 2022; 23:ijms232416056. [PMID: 36555696 PMCID: PMC9781092 DOI: 10.3390/ijms232416056] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The aim of this study was to investigate the effects of quercetin (QUE) on the testicular architecture as well as markers of oxidative, inflammatory, and apoptotic profile of male gonads in Zucker diabetic fatty (ZDF) rats suffering from Type 2 diabetes mellitus in the absence or presence of obesity. QUE was administered orally at a dose of 20 mg/kg/day for 6 weeks. Morphometric analysis revealed that QUE treatment led to an improvement in testicular appearance, particularly in the case of Obese ZDF rats. Furthermore, a significant stabilization of the antioxidant capacity (p < 0.05), superoxide dismutase and catalase activity (p < 0.01), with a concomitant decrease in lipid peroxidation (p < 0.05) were observed in Obese ZDF animals exposed to QUE. Our data also indicate a significant decline in the levels of interleukin (IL)-1 (p < 0.05), IL-6 (p < 0.01) and tumor necrosis factor alpha (p < 0.001) following QUE supplementation to Obese ZDF rats in comparison with their respective control. Finally, a significant down-regulation of the pro-apoptotic BAX protein (p < 0.0001) was observed in Obese ZDF rats administered with QUE, while a significant Bcl-2 protein overexpression (p < 0.0001) was recorded in Lean ZDF animals when compared to their untreated control. As such, our results suggest that QUE is a potentially beneficial agent to reduce testicular damage in ZDF rats with Type 2 diabetes mellitus by decreasing oxidative stress, chronic inflammation, and excessive cell loss through apoptosis.
Collapse
|
4
|
Network pharmacology study of Yishen capsules in the treatment of diabetic nephropathy. PLoS One 2022; 17:e0273498. [PMID: 36094934 PMCID: PMC9467320 DOI: 10.1371/journal.pone.0273498] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 08/03/2022] [Indexed: 11/19/2022] Open
Abstract
Objective
In this study, we used network pharmacology to explore the possible therapeutic mechanism underlying the treatment of diabetic nephropathy with Yishen capsules.
Methods
The active chemical constituents of Yishen capsules were acquired using the Traditional Chinese Medicine Systems Pharmacology platform and the Encyclopedia of Traditional Chinese Medicine. Component target proteins were then searched and screened in the BATMAN database. Target proteins were cross-validated using the Comparative Toxicogenomics Database, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses of the target proteins were performed. Then, protein–protein interaction (PPI) analysis was performed using the STRING database. Finally, a pharmacological network was constructed to show the component-target-pathway relationships. Molecular docking was used to analyse the interaction between drug components and target proteins.
Results
In total, 285 active chemical components were found, including 85 intersection targets against DN. In the pharmacological network, 5 key herbs (A. membranaceus, A. sinensis, E. ferox, A. orientale, and R. rosea) and their corresponding 12 key components (beta-sitosterol, beta-carotene, stigmasterol, alisol B, mairin, quercetin, caffeic acid, 1-monolinolein, kaempferol, jaranol, formononetin, and calycosin) were screened. Furthermore, the 12 key components were related to 24 target protein nodes (e.g., AGT, AKT1, AKT2, BCL2, NFKB1, and SIRT1) and enriched in 24 pathway nodes (such as the NF-kappa B, AGE-RAGE, toll-like receptor, and relaxin signaling pathways). Molecular docking revealed that hydrogen bond was formed between drug components and target proteins.
Conclusion
In conclusion, the active constituents of Yishen capsules modulate targets or signaling pathways in DN pathogenesis.
Collapse
|
5
|
Zou H, Ye H, Kamaraj R, Zhang T, Zhang J, Pavek P. A review on pharmacological activities and synergistic effect of quercetin with small molecule agents. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153736. [PMID: 34560520 DOI: 10.1016/j.phymed.2021.153736] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/25/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Quercetin is a natural flavonoid, which widely exists in nature, such as tea, coffee, apples, and onions. Numerous studies have showed that quercetin has multiple biological activities such as anti-oxidation, anti-inflammatory, and anti-aging. Hence, quercetin has a significant therapeutic effect on cancers, obesity, diabetes, and other diseases. In the past decades, a large number of studies have shown that quercetin combined with other agents can significantly improve the overall therapeutic effect, compared to single use. PURPOSE This work reviews the pharmacological activities of quercetin and its derivatives. In addition, this work also summarizes both in vivo and in vitro experimental evidence for the synergistic effect of quercetin against cancers and metabolic diseases. METHODS An extensive systematic search for pharmacological activities and synergistic effect of quercetin was performed considering all the relevant literatures published until August 2021 through the databases including NCBI PubMed, Scopus, Web of Science, and Google Scholar. The relevant literatures were extracted from the databases with following keyword combinations: "pharmacological activities" OR "biological activities" OR "synergistic effect" OR "combined" OR "combination" AND "quercetin" as well as free-text words. RESULTS Quercetin and its derivatives possess multiple pharmacological activities including anti-cancer, anti-oxidant, anti-inflammatory, anti-cardiovascular, anti-aging, and neuroprotective activities. In addition, the synergistic effect of quercetin with small molecule agents against cancers and metabolic diseases has also been confirmed. CONCLUSION Quercetin cooperates with agents to improve the therapeutic effect by regulating signal molecules and blocking cell cycle. Synergistic therapy can reduce the dose of agents and avoid the possible toxic and side effects in the treatment process. Although quercetin treatment has some potential side effects, it is safe under the expected use conditions. Hence, quercetin has application value and potential strength as a clinical drug. Furthermore, quercetin, as the main effective therapeutic ingredient in traditional Chinese medicine, may effectively treat and prevent coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Haoyang Zou
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Haiqing Ye
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Rajamanikkam Kamaraj
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove CZ500 05, Czech Republic
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Charles University, Heyrovskeho 1203, Hradec Kralove CZ500 05, Czech Republic.
| |
Collapse
|
6
|
Ibrahim Fouad G. Synergistic anti-atherosclerotic role of combined treatment of omega-3 and co-enzyme Q10 in hypercholesterolemia-induced obese rats. Heliyon 2020; 6:e03659. [PMID: 32258512 PMCID: PMC7118318 DOI: 10.1016/j.heliyon.2020.e03659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/16/2019] [Accepted: 03/20/2020] [Indexed: 01/13/2023] Open
Abstract
Hypercholesterolemia is a metabolic disorder associated with atherosclerosis. This study aimed to investigate the effects of omega-3 and/or coenzyme Q10 (CoQ10) on hypercholesterolemia-induced atherosclerosis. Rats were divided into five groups; (1): served as the negative control, (2): served as hypercholesterolemic (HC) control, (3): HC-rats administrated omega-3 orally, (4): HC-rats administrated CoQ10 orally, and (5): HC-rats administered the combination treatment of both omega-3 and CoQ10. Lipid profile was assayed and cardiovascular risk indices were calculated. Serum levels of Adiponectin (APN) and creatine kinase (CK-MB) were determined using ELISA. Besides, oxidative stress markers, malondialdehyde (MDA), nitric oxide (NO) and glutathione (GSH) were assayed in the heart homogenate. Histopathological investigation of the aortae and heart tissues were investigated. The results revealed that atherogenic HC-rats demonstrated a significant elevation in lipid profiles, except for HDL-C, along with decreased levels of APN, but increased CK-MB activities. Hypercholesterolemia increased lipid peroxidation, reduced NO production, and decreased GSH content in the cardiac tissue. Treatment of atherogenic HC-rats with omega-3 and/or CoQ10 improved dyslipidemia and ameliorated most of the HC-induced biochemical and histopathological changes. The histological observations of aortae and cardiac tissues validated our biochemical results. We concluded that the combined treatment of nutraceuticals such as omega-3 and CoQ10 demonstrated the best outcome, demonstrating their anti-hyperlipidemic, cardioprotective, and atheroprotective potentials. Together, this study supports a beneficial role of dietary co-administration of omega-3 and CoQ10 in obese patients who are prone to develop cardiovascular disorders.
Collapse
Affiliation(s)
- Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, National Research Centre, 33 El-Bohouth Street, Dokki, Cairo, 12622, Egypt
| |
Collapse
|
7
|
Ibrahim Fouad G. Combination of Omega 3 and Coenzyme Q10 Exerts Neuroprotective Potential Against Hypercholesterolemia-Induced Alzheimer's-Like Disease in Rats. Neurochem Res 2020; 45:1142-1155. [PMID: 32124160 DOI: 10.1007/s11064-020-02996-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/15/2020] [Accepted: 02/20/2020] [Indexed: 12/13/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia that progressively disrupts neurocognitive function, which has neither cure nor effective treatment. Hypercholesterolemia might be involved in brain alterations that could evolve into AD. The present study aims to evaluate the potential of omega-3, Co-enzyme Q10 (Co-Q10), as well as their combination in ameliorating hypercholesterolemia-initiated AD-like disease. We adapted a hypercholesterolemic (HC) rat model, a model of oxidative stress-mediated neurodegeneration, to study AD-like pathology. Hypercholesterolemia resulted in increased lipid peroxidation coupled with declined nitric oxide production, reduced glutathione levels, and decreased antioxidant activities of glutathione-s-transferase (GST) and glutathione peroxidase (GSH-Px) in the brain. Moreover, hypercholesterolemia resulted in decreased acetylcholine (ACh) levels and increased acetylcholine-esterase (AChE) activity, along with an increment of tumor necrosis factor and amyloid-β 42. Behaviorally, HC-rats demonstrated depressive-like behavior and declined memory. Treatment of HC-rats with omega-3 and Co-Q10 (alone or in combination) alleviated the brain oxidative stress and inflammation, regulated cholinergic functioning, and enhanced the functional outcome. These findings were verified by the histopathological investigation of brain tissues. This neuroprotective potential of omega-3 and Co-Q10 was achieved through anti-oxidative, anti-inflammatory, anti-amyloidogenic, pro-cholinergic, and memory-enhancing activities against HC-induced AD-like disease; suggesting that they may be useful as prophylactic and therapeutic agents against the neurotoxic effects of hypercholesterolemia.
Collapse
Affiliation(s)
- Ghadha Ibrahim Fouad
- Department of Therapeutic Chemistry, National Research Centre, 33 El-Bohouth St., Dokki, Cairo, 12622, Egypt.
| |
Collapse
|
8
|
Samimi F, Baazm M, Eftekhar E, Rajabi S, Goodarzi MT, Jalali Mashayekhi F. Possible antioxidant mechanism of coenzyme Q10 in diabetes: impact on Sirt1/Nrf2 signaling pathways. Res Pharm Sci 2019; 14:524-533. [PMID: 32038732 PMCID: PMC6937743 DOI: 10.4103/1735-5362.272561] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress is a major complication in diabetes mellitus. The aim of this study was to investigate potential antioxidant activity of coenzyme Q10 (Co Q10) against hyperglycemia-induced oxidative stress in diabetic rat and unraveling its mechanism of action by focusing on silent information regulator 1 (Sirt1) and nuclear factor E2-related factor 2 (Nrf2) mRNA expression level. Furthermore, the activity of two Nrf2-dependent antioxidant enzymes (superoxide dismutase and catalase) in the liver of diabetic rats was studied. After induction of diabetes in rats using streptozotocin (55 mg/kg), rats were divided into five groups of six each. Groups 1 and 2 (healthy control groups) were injected with isotonic saline or sesame oil; group 3 received Co Q10 (10 mg /Kg /day), group 4, as a diabetic control, received sesame oil; and group 5 was diabetic rats treated with Co Q10. Afterwards, serum and liver samples were collected, and oxidative stress markers, lipid profile, as well as the expression of Sirt1 and Nrf2 genes were measured. Diabetes induction significantly reduced expression level of Sirt1 and Nrf2 mRNAs and also declined catalase, superoxide dismutase activities, and total thiol groups levels in diabetic group in comparison to healthy controls, while a significant increase was found in the levels of malondialdehyde and lipid profile. Co Q10 treatment significantly up-regulated Sirt1 and Nrf2 mRNA levels along with an increase in catalase activity in diabetic group as compared with untreated diabetic rats. Furthermore, Co Q10 caused a marked decrease in malondialdehyde levels and significantly improved lipid profile. Our data demonstrated that Co Q10 may exert its antioxidant activity in diabetes through the induction of Sirt1/Nrf2 gene expression.
Collapse
Affiliation(s)
- Fatemeh Samimi
- Department of Biochemistry and Genetics, School of Medicine, Arak University of Medical Sciences, Arak, I.R. Iran
| | - Maryam Baazm
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, I.R. Iran
| | - Ebrahim Eftekhar
- Endocrinology and Metabolism Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, I.R. Iran
| | - Sadegh Rajabi
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran
| | - Mohammad Taghi Goodarzi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, I.R. Iran
| | - Farideh Jalali Mashayekhi
- Department of Biochemistry and Genetics, School of Medicine, Arak University of Medical Sciences, Arak, I.R. Iran.,Research Center and Molecular Medicine, Arak University of Medical Sciences, Arak, I.R. Iran
| |
Collapse
|
9
|
Veiga RDSD, Aparecida Da Silva-Buzanello R, Corso MP, Canan C. Essential oils microencapsulated obtained by spray drying: a review. JOURNAL OF ESSENTIAL OIL RESEARCH 2019. [DOI: 10.1080/10412905.2019.1612788] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Ruth Dos Santos Da Veiga
- Post-Graduation Program of Food Technology, Federal University of Technology – Paraná (UTFPR), Medianeira, PR, Brazil
| | | | - Marinês Paula Corso
- Post-Graduation Program of Food Technology, Federal University of Technology – Paraná (UTFPR), Medianeira, PR, Brazil
| | - Cristiane Canan
- Post-Graduation Program of Food Technology, Federal University of Technology – Paraná (UTFPR), Medianeira, PR, Brazil
| |
Collapse
|
10
|
Mahfoz AM. Renal Protective Effects of Coenzyme Q10 Against Chromate Induced Nephrotoxicity in Rats. ACTA ACUST UNITED AC 2019. [DOI: 10.3923/jas.2019.453.458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Pathak S, Regmi S, Nguyen TT, Gupta B, Gautam M, Yong CS, Kim JO, Son Y, Kim JR, Park MH, Bae YK, Park SY, Jeong D, Yook S, Jeong JH. Polymeric microsphere-facilitated site-specific delivery of quercetin prevents senescence of pancreatic islets in vivo and improves transplantation outcomes in mouse model of diabetes. Acta Biomater 2018; 75:287-299. [PMID: 29883808 DOI: 10.1016/j.actbio.2018.06.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/02/2018] [Accepted: 06/03/2018] [Indexed: 01/06/2023]
Abstract
Attenuation of senescence progression may be attractive way to preserve the functionality of pancreatic islets (PI) after transplantation. In this study, we developed a model for in vitro induction of premature senescence in rat PI and showed the effectiveness of quercetin (QU) to prevent the senescence. To provide targeted-delivery of QU to the PI after transplantation, we prepared the hybrid clusters (HC) of islet single cells (ISC) and QU-loaded polymeric microspheres (QU; ∼7.55 ng HC-1). Long-term culture of the HC revealed reduced levels of reactive oxygen species and decreased expression of senescence-associated beta galactosidase, Rb, p53, p16, and p21 compared to that of the control islets. Transplantation of HC into subcutaneous space of the immune-deficient mice produced better glycemic control compared to the control islets or the ICC-transplanted mice. SA-β-Gal staining of the in vivo transplanted HC sample showed lower intensity compared to that of the control islets or the islet cell clusters. Thus, in situ delivery of therapeutic agent may be a promising approach to improve therapeutic outcomes in cell therapy. STATEMENT OF SIGNIFICANCE In this study, we aimed to improve outcomes in islet transplantation using in situ delivery of quercetin to pancreatic islets, using polymeric microspheres. We prepared prolonged release-type microspheres and constructed hybrid clusters of pancreatic islets and the microspheres using hanging drop method. The presence of quercetin in the cellular microenvironment attenuated the progression of senescence in the pancreatic islets in a long-term in vitro culture. Moreover, transplantation of the hybrid clusters in the diabetic mice produced better glycemic control compared to that of the control islets. In addition, quercetin delayed the progression of senescence in the pancreatic islets after in vivo transplantation. Thus, local delivery of antioxidants like quercetin may be an attractive way to improve outcomes in cell therapy.
Collapse
|
12
|
Frontiñán-Rubio J, Santiago-Mora RM, Nieva-Velasco CM, Ferrín G, Martínez-González A, Gómez MV, Moreno M, Ariza J, Lozano E, Arjona-Gutiérrez J, Gil-Agudo A, De la Mata M, Pesic M, Peinado JR, Villalba JM, Pérez-Romasanta L, Pérez-García VM, Alcaín FJ, Durán-Prado M. Regulation of the oxidative balance with coenzyme Q10 sensitizes human glioblastoma cells to radiation and temozolomide. Radiother Oncol 2018; 128:236-244. [PMID: 29784452 DOI: 10.1016/j.radonc.2018.04.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 04/05/2018] [Accepted: 04/29/2018] [Indexed: 10/16/2022]
Abstract
OBJECTIVES To investigate how the modulation of the oxidative balance affects cytotoxic therapies in glioblastoma, in vitro. MATERIAL AND METHODS Human glioblastoma U251 and T98 cells and normal astrocytes C8D1A were loaded with coenzyme Q10 (CoQ). Mitochondrial superoxide ion (O2-) and H2O2 were measured by fluorescence microscopy. OXPHOS performance was assessed in U251 cells with an oxytherm Clark-type electrode. Radio- and chemotherapy cytotoxicity was assessed by immunostaining of γH2AX (24 h), annexin V and nuclei morphology, at short (72 h) and long (15 d) time. Hif-1α, SOD1, SOD2 and NQO1 were determined by immunolabeling. Catalase activity was measured by classic enzymatic assay. Glutathione levels and total antioxidant capacity were quantified using commercial kits. RESULTS CoQ did not affect oxygen consumption but reduced the level of O2- and H2O2 while shifted to a pro-oxidant cell status mainly due to a decrease in catalase activity and SOD2 level. Hif-1α was dampened, echoed by a decrease lactate and several key metabolites involved in glutathione synthesis. CoQ-treated cells were twofold more sensitive than control to radiation-induced DNA damage and apoptosis in short and long-term clonogenic assays, potentiating TMZ-induced cytotoxicity, without affecting non-transformed astrocytes. CONCLUSIONS CoQ acts as sensitizer for cytotoxic therapies, disarming GBM cells, but not normal astrocytes, against further pro-oxidant injuries, being potentially useful in clinical practice for this fatal pathology.
Collapse
Affiliation(s)
- Javier Frontiñán-Rubio
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-la Mancha, Ciudad Real, Spain; Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, Ciudad Real, Spain
| | - Raquel María Santiago-Mora
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-la Mancha, Ciudad Real, Spain; Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, Ciudad Real, Spain
| | - Consuelo María Nieva-Velasco
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-la Mancha, Ciudad Real, Spain; Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, Ciudad Real, Spain
| | - Gustavo Ferrín
- Instituto Maimónides de Investigación Biomédica en Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Córdoba, Spain
| | | | - María Victoria Gómez
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies and Instituto Regional de Investigación Científica Aplicada, University of Castilla-La Mancha, Ciudad Real, Spain
| | - María Moreno
- Department of Organic Chemistry, Faculty of Chemical Sciences and Technologies and Instituto Regional de Investigación Científica Aplicada, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Julia Ariza
- Department of Cell Biology, Physiology and Immunology, Faculty of Sciences, University of Córdoba, Agrifood Campus of International Excellence ceiA3, Córdoba, Spain
| | - Eva Lozano
- Radiotherapy Unit, University Hospital of Ciudad Real, Spain
| | | | | | - Manuel De la Mata
- Instituto Maimónides de Investigación Biomédica en Córdoba (IMIBIC), Hospital Universitario Reina Sofía, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Córdoba, Spain
| | - Milica Pesic
- Institute for Biological Research "Sinisa Stankovic", University of Belgrade, Serbia
| | - Juan Ramón Peinado
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-la Mancha, Ciudad Real, Spain; Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, Ciudad Real, Spain
| | - José M Villalba
- Department of Cell Biology, Physiology and Immunology, Faculty of Sciences, University of Córdoba, Agrifood Campus of International Excellence ceiA3, Córdoba, Spain
| | | | - Víctor M Pérez-García
- Laboratory of Mathematical Oncology, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Francisco J Alcaín
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-la Mancha, Ciudad Real, Spain; Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, Ciudad Real, Spain
| | - Mario Durán-Prado
- Department of Medical Sciences, Faculty of Medicine, University of Castilla-la Mancha, Ciudad Real, Spain; Oxidative Stress and Neurodegeneration Group, Regional Centre for Biomedical Research, Ciudad Real, Spain.
| |
Collapse
|
13
|
Dokumacioglu E, Iskender H, Sen TM, Ince I, Dokumacioglu A, Kanbay Y, Erbas E, Saral S. The Effects of Hesperidin and Quercetin on Serum Tumor Necrosis Factor-Alpha and Interleukin-6 Levels in Streptozotocin-induced Diabetes Model. Pharmacogn Mag 2018; 14:167-173. [PMID: 29720826 PMCID: PMC5909310 DOI: 10.4103/pm.pm_41_17] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Revised: 03/06/2017] [Indexed: 12/12/2022] Open
Abstract
Background: Diabetes mellitus (DM) is a metabolic disorder that occurs as a result of absolute or relative insufficiency of insulin release and/or insulin effect due to impairment of carbohydrate, fat and protein metabolism, and it is characterized by hyperglycemia and leads to various complications. Objective: In this study, it was aimed to investigate the effects of hesperidin (HP) and quercetin, which are natural flavonoids, on serum malondialdehyde (MDA), glutathione (GSH), tumor necrosis factor alpha (TNF-α), and interleukin-6 (IL-6) levels in rats with streptozotocin (STZ)-induced diabetes. Materials and Methods: The experimental animals were divided into four groups, each group comprising ten rats designated as follows: Group 1 served as control rats (C); Group 2 served as diabetic rats (DM); Group 3 served as diabetic rats administered HP (DM + HP) (100 mg/kg b. w.); and Group 4 served as diabetic rats administered quercetin (DM + Q) (100 mg/kg b. w.). Results: Serum MDA and GSH levels were significantly higher in STZ-induced DM group than control group (P < 0.05). In DM + HP and DM + Q groups, MDA levels were significantly decreased compared to DM groups (P < 0.05), but there was no significant difference GSH levels between DM, DM + HP, and DM + Q groups (P > 0.05). TNF-α levels in STZ-induced DM group were significantly decreased compared to control group (P < 0.05), and groups of DM + HP and DM + Q had higher serum TNF-α levels than STZ-induced DM group (P < 0.05). In STZ-induced DM group, serum IL-6 levels were decreased compared to control group (P < 0.05). Conclusion: As a result, in this study, we determined that HP and quercetin may play an effective role in regulating insulin metabolism metabolism in diabetes. However, considering the incompatibility of various results in the literature as well as our own results, we think that the actual role of cytokines in the pathogenesis of diabetes is one of the issues that need to be clarified in further studies. SUMMARY Hesperidin (HP) and quercetin reduced the insulin, total cholesterol, triglyceride, low-density lipoprotein cholesterol, and malondialdehyde (MDA) serum levels and raised the glutathione (GSH) levels compared to diabetes mellitus (DM) group SZT-induced DM increased the MDA serum levels and decreased the GSH levels compared to control group HP and quercetin-treated rats showed higher interleukin-6 and tumor necrosis factor alpha cytokine levels than DM group HP and quercetin may play an effective role in regulating insulin metabolism in diabetes.
Abbreviations used: DM: Diabetes mellitus, MDA: Malondialdehyde, GSH: Glutathione; IL-6: Interleukin-6, TNF-α: Tumor necrosis factor alpha, HP: Hesperidin, Q; Quercetin, STZ: Streptozotocin, TC: Total cholesterol, TG: Triglyceride, HDL-C: High density lipoprotein cholesterol, LDL-C: Low density lipoprotein cholesterol, VLDL-C: Very-low-density lipoprotein cholesterol.
Collapse
Affiliation(s)
- Eda Dokumacioglu
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Artvin Coruh University, Artvin 08000, Turkey
| | - Hatice Iskender
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Artvin Coruh University, Artvin 08000, Turkey
| | - Tugba Mazlum Sen
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Teknik University, Trabzon 61000, Turkey
| | - Imran Ince
- Department of Medical Biochemistry, Faculty of Medicine, Karadeniz Teknik University, Trabzon 61000, Turkey
| | - Ali Dokumacioglu
- Department of Medical Biochemistry, Hopa Government Hospital, Artvin 08000, Turkey
| | - Yalcin Kanbay
- Department of Nursing, Faculty of Health Sciences, Artvin Coruh University, Artvin 08000, Turkey
| | - Elif Erbas
- Department of Histology and Embryology, Faculty of Veterinary, Ataturk University, Erzurum 25000, Turkey
| | - Sinan Saral
- Department of Physiology, Faculty of Medical School, Recep Tayyip Erdogan University, Rize 53000, Turkey
| |
Collapse
|
14
|
Motawi TK, Darwish HA, Hamed MA, El-Rigal NS, Aboul Naser AF. Coenzyme Q10 and niacin mitigate streptozotocin- induced diabetic encephalopathy in a rat model. Metab Brain Dis 2017; 32:1519-1527. [PMID: 28560538 DOI: 10.1007/s11011-017-0037-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/19/2017] [Indexed: 01/04/2023]
Abstract
Diabetic encephalopathy is an important complication of diabetes characterized by cognitive impairment, neurochemical and structural abnormalities. This study aimed to investigate the effect of coenzyme Q10 (CoQ10) and niacin as well as their combination in the treatment of encephalopathy associated with streptozotocin (STZ)- induced diabetes in rats. Glibenclamide (reference diabetic drug) and donepezil hydrochloride (acetylcholinesterase inhibitor) were also evaluated. Diabetes was induced by a single intraperitoneal injection of STZ (60 mg/kg). One month after STZ injection, diabetic rats were treated with the aforementioned drugs for two weeks. The evaluation was done through measuring glucose level, total antioxidant capacity (TAC), interleukin 6 (IL6), DNA degradation as well as serotonin and noradrenaline as neurotransmitters. The present data illustrated that combining CoQ10 and niacin exhibiting the most potent effect in improving the measured parameters and ameliorating some of diabetes complications.
Collapse
Affiliation(s)
- Tarek K Motawi
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hebatallah A Darwish
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Pharmacology, Toxicology and Biochemistry Department, Faculty of Pharmaceutical Science and Pharmaceutical Industries, Future University, Cairo, Egypt
| | - Manal A Hamed
- Therapeutic Chemistry Department, National Research Centre, 33El-Bohouth St, Giza, Dokki, 60014618, Egypt.
| | - Nagy S El-Rigal
- Therapeutic Chemistry Department, National Research Centre, 33El-Bohouth St, Giza, Dokki, 60014618, Egypt
| | - Asmaa F Aboul Naser
- Therapeutic Chemistry Department, National Research Centre, 33El-Bohouth St, Giza, Dokki, 60014618, Egypt
| |
Collapse
|
15
|
Suhailah SAJ, Soheir NAER. Effect of quercetin nanoparticles on the kidney of the streptozotocin-induced diabetes in male rats: A histological study and serum biochemical alterations. AFRICAN JOURNAL OF BIOTECHNOLOGY 2017; 16:1944-1952. [DOI: 10.5897/ajb2017.15999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
16
|
Dogan Z, Elbe H, Taslidere E, Soysal H, Cetin A, Demirtas S. Effects of ciprofloxacin on fetal rat liver during pregnancy and protective effects of quercetin. Biotech Histochem 2017; 92:481-486. [PMID: 28836867 DOI: 10.1080/10520295.2017.1356469] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Urinary tract infections are common in pregnant women and ciprofloxacin frequently is used as a broad spectrum antibiotic. It has been suggested that ciprofloxacin causes liver damage in fetuses. Quercetin is a flavonoid with antioxidant properties. We investigated the efficacy of quercetin treatment for preventing fetal liver damage caused by ciprofloxacin. Pregnant rats were divided into four groups: untreated control group (C), 20 mg/kg quercetin for 21 days group (Q), 20 mg/kg twice/day ciprofloxacin for 10 days group (CP), and 20 mg/kg, ciprofloxacin + quercetin for 21 days group (CP + Q). Fetal livers were removed on day 21 of gestation to measure antioxidants and for histological observation. Malondialdehyde (MDA) and glutathione (GSH) levels, and superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities were measured in tissue samples. GSH-Px, SOD and CAT activities were significantly lower in the CP group compared to group C. A significant increase in MDA was observed in the CP group compared to group C. There was no significant difference in GSH levels in any group. MDA levels were lower and CAT, SOD and GSH-Px enzyme activities were higher in the CP + Q group compared to group CP. Liver samples of the CP group exhibited central vein dilation, portal vein congestion, pyknotic nuclei and cytoplasmic vacuolization in some hepatocytes. Histological changes were less prominent in the rats treated with quercetin. Use of ciprofloxacin during pregnancy caused oxidative damage in fetal liver tissue. Oxidative stress was ameliorated by quercetin. Quercetin supports the antioxidant defense mechanism and it is beneficial for treating fetal liver damage caused by ciprofloxacin.
Collapse
Affiliation(s)
- Z Dogan
- a Department of Anatomy, Faculty of Medicine , Adiyaman University , Adiyaman
| | - H Elbe
- b Department of Histology and Embryology, Faculty of Medicine , Mugla Sıtkı Kocman University , Mugla
| | - E Taslidere
- c Department of Histology and Embryology, Faculty of Medicine , Bezmialem Vakif University , Istanbul
| | - H Soysal
- d Department of Anatomy, Faculty of Medicine , Baskent University , Ankara
| | | | - S Demirtas
- f Biochemistry , Inonu University, Faculty of Medicine , Malatya , Turkey
| |
Collapse
|
17
|
Ahmadvand H, Shahsavari G, Tavafi M, Bagheri S, Moradkhani MR, Kkorramabadi RM, Khosravi P, Jafari M, Zahabi K, Eftekhar R, Soleimaninejad M, Moghadam S. Protective effects of oleuropein against renal injury oxidative damage in alloxan-induced diabetic rats; a histological and biochemical study. J Nephropathol 2017; 6:204-209. [PMID: 28975102 PMCID: PMC5607984 DOI: 10.15171/jnp.2017.34] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 01/29/2017] [Indexed: 02/02/2023] Open
Abstract
Background:
Oleuropein is a potent antioxidant and free-radical scavenger with antiinflammatory
properties.
Objectives:
In the present study, we evaluated the protective effects of oleuropein on
myeloperoxidase (MPO) activity, nitrite, urea, creatinine and glomerulosclerosis in
alloxan-induced type 1 diabetic rats.
Materials and Methods:
Thirty Sprague-Dawley male rats were randomly divided into 3
groups: group 1 as control; group 2 as untreated diabetic; and group 3 as treated with
oleuropein 15 mg/kg i.p daily. Diabetes was induced in the second and third groups by
subcutaneous alloxan injection. After 48 days, the animals were anaesthetized and then
the livers and kidneys were removed immediately and used fresh or kept frozen until MPO
activity analysis. Blood samples were also collected before sacrificing to measure nitrite,
urea, and creatinine. Kidney paraffin sections were prepared to estimate glomerular
volume, leukocyte infiltration, and glomerulosclerosis.
Results:
Oleuropein significantly decreased leukocyte infiltration and glomerulosclerosis in
the treated group compared with the diabetic untreated group. Oleuropein significantly
decreased the levels of urea, nitrite, and creatinine in the treated group compared with the
diabetic untreated group. Moreover, oleuropein significantly decreased MPO activity in
the treated group compared with the diabetic untreated group.
Conclusions:
Oleuropein has antioxidative and antiatherogenic activities and exerts beneficial
effects on inflammation and kidney function test and decreases diabetic complication in
diabetic rats.
Collapse
Affiliation(s)
- Hassan Ahmadvand
- Razi Herbal Researches Center, Lorestan University of Medical Sciences, Khorramabad, Iran.,Department of Biochemistry, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Gholamreza Shahsavari
- Department of Biochemistry, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Majid Tavafi
- Department of Anatomy, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Shahrokh Bagheri
- Razi Herbal Researches Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Mohamad Reza Moradkhani
- Department of Anesthesia, Madani Heart Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | - Peyman Khosravi
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Maryam Jafari
- Razi Herbal Researches Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Khadije Zahabi
- Department of Animal Biology, Payam Noor University, Isfahan, Iran
| | - Reza Eftekhar
- Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Maryam Soleimaninejad
- Department of Biochemistry, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Sanaz Moghadam
- Razi Herbal Researches Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
18
|
Sadighara M, Joktaji JP, Hajhashemi V, Minaiyan M. Protective effects of coenzyme Q 10 and L-carnitine against statin-induced pancreatic mitochondrial toxicity in rats. Res Pharm Sci 2017; 12:434-443. [PMID: 29204172 PMCID: PMC5691570 DOI: 10.4103/1735-5362.217424] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Statins are widely used in patients with hyperlipidemia and whom with high risk of cardiovascular diseases. Unfortunately, statins also exert some adverse effects on the liver and pancreas and enhance the risk of type 2 diabetes mellitus. The objective of the present research was to investigate the protective effects of coenzyme Q10 (Co-Q10) and L-carnitine (LC) on statins induced toxicity on pancreatic mitochondria in vivo. Seven groups of male Wistar rats received atorvastatin (20 mg/kg, p.o.), atorvastatin + Co-Q10 (10 mg/kg, i.p.), atorvastatin + LC (500 mg/kg, i.p.), lovastatin (80 mg/kg, p.o), lovastatin + Co-Q10 (10 mg/kg, i.p.), and lovastatin + LC (500 mg/kg, i.p.). Serum glucose and insulin levels were measured before and after two weeks of treatment, while the pancreas was removed and toxic effects of statins, as well as the protective effects of Co-Q10 and LC were assessed. The results showed that atorvastatin and lovastatin significantly increased glucose level and decreased insulin secretion. The glucose level in Co-Q10 and LC groups was significantly lower than statins alone groups. The findings also showed that statin groups had higher rate of pancreatic toxicity including higher level of reactive oxygen species production, decreased cytochrome c oxidase activity, collapse of mitochondrial membrane potential and swelling in comparison to controls. These factors were significantly diminished by co-administration of Co-Q10 or LC compared to statin groups alone. Additionally, supplements caused a significant increase in serum insulin and succinate dehydrogenase activity. Our study provided new evidence supporting beneficial effects of Co-Q10 and LC on statin-induced pancreatic toxicity.
Collapse
Affiliation(s)
- Melina Sadighara
- Department of Pharmacology and Toxicology, School of Pharmacy and pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Jalal Pourahamad Joktaji
- Department of Pharmacology and Toxicology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, I.R. Iran
| | - Valiollah Hajhashemi
- Department of Pharmacology and Toxicology, School of Pharmacy and pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| | - Mohsen Minaiyan
- Department of Pharmacology & Toxicology and Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
19
|
Singh DP, Borse SP, Nivsarkar M. Co-administration of quercetin with pantoprazole sodium prevents NSAID-induced severe gastroenteropathic damage efficiently: Evidence from a preclinical study in rats. ACTA ACUST UNITED AC 2017; 69:17-26. [DOI: 10.1016/j.etp.2016.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 10/13/2016] [Accepted: 10/19/2016] [Indexed: 01/09/2023]
|
20
|
Elbe H, Esrefoglu M, Vardi N, Taslidere E, Ozerol E, Tanbek K. Melatonin, quercetin and resveratrol attenuates oxidative hepatocellular injury in streptozotocin-induced diabetic rats. Hum Exp Toxicol 2016; 34:859-68. [PMID: 26286521 DOI: 10.1177/0960327114559993] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In this study, effects of melatonin, quercetin and resveratrol on hepatocellular injury in streptozotocin (STZ)-induced experimental diabetes were aimed to be investigated by histological and biochemical methods. Thirty-five male Wistar albino rats were divided into five groups, namely, control, diabetes (STZ 45 mg/kg/single dose/intraperitoneally (ip)), diabetes + melatonin (10 mg/kg/30 days/ip), diabetes + quercetin (25 mg/kg/30 days/ip) and diabetes + resveratrol (10 mg/kg/30 days/ip). Initial and final blood glucose levels and body weights (BWs) were measured. At the end of the experimentation, following routine tissue processing procedure, sections were stained with haematoxylin-eosin (H-E), periodic acid Schiff and Masson's trichrome. Tissue malondialdehyde (MDA) and glutathione (GSH) levels and superoxide dismutase (SOD) and catalase (CAT) activities were examined. The diabetic rats had significantly higher blood glucose levels than those of control rats (p = 0.0001). Mean BWs of diabetic rats were significantly decreased when compared with the control rats (p = 0.0013). Histopathological alterations including cellular glycogen depletion, congestion, sinusoidal dilatation, inflammation and fibrosis were detected in diabetes group. On the other hand, histopathological changes markedly reduced in all of the treatment groups (p = 0.001). Mean tissue MDA level was increased but mean tissue CAT and SOD activities and GSH levels were decreased in the diabetes group. Melatonin, quercetin and resveratrol administered diabetic rats showed an increase in CAT activities and GSH levels and a decrease in MDA levels (p < 0.05, for all). Melatonin, quercetin and resveratrol administrations markedly reduced hepatocellular injury in STZ-induced experimental diabetes.
Collapse
Affiliation(s)
- H Elbe
- Department of Histology and Embryology, Faculty of Medicine, MUGLA SITKI KOÇMAN UNIVERSITY, MUGLA, TURKEY
| | - M Esrefoglu
- Department of Histology and Embryology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - N Vardi
- Department of Histology and Embryology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - E Taslidere
- Department of Histology and Embryology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - E Ozerol
- Department of Biochemistry, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - K Tanbek
- Department of Biochemistry, Faculty of Medicine, Inonu University, Malatya, Turkey
| |
Collapse
|
21
|
A Therapeutic Insight of Niacin and Coenzyme Q10 Against Diabetic Encephalopathy in Rats. Mol Neurobiol 2016; 54:1601-1611. [DOI: 10.1007/s12035-016-9765-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 02/01/2016] [Indexed: 11/25/2022]
|
22
|
Granata S, Dalla Gassa A, Tomei P, Lupo A, Zaza G. Mitochondria: a new therapeutic target in chronic kidney disease. Nutr Metab (Lond) 2015; 12:49. [PMID: 26612997 PMCID: PMC4660721 DOI: 10.1186/s12986-015-0044-z] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 11/18/2015] [Indexed: 12/24/2022] Open
Abstract
Cellular metabolic changes during chronic kidney disease (CKD) may induce higher production of oxygen radicals that play a significant role in the progression of renal damage and in the onset of important comorbidities. This condition seems to be in part related to dysfunctional mitochondria that cause an increased electron "leakage" from the respiratory chain during oxidative phosphorylation with a consequent generation of reactive oxygen species (ROS). ROS are highly active molecules that may oxidize proteins, lipids and nucleic acids with a consequent damage of cells and tissues. To mitigate this mitochondria-related functional impairment, a variety of agents (including endogenous and food derived antioxidants, natural plants extracts, mitochondria-targeted molecules) combined with conventional therapies could be employed. However, although the anti-oxidant properties of these substances are well known, their use in clinical practice has been only partially investigated. Additionally, for their correct utilization is extremely important to understand their effects, to identify the correct target of intervention and to minimize adverse effects. Therefore, in this manuscript, we reviewed the characteristics of the available mitochondria-targeted anti-oxidant compounds that could be employed routinely in our nephrology, internal medicine and renal transplant centers. Nevertheless, large clinical trials are needed to provide more definitive information about their use and to assess their overall efficacy or toxicity.
Collapse
Affiliation(s)
- Simona Granata
- Renal Unit, Department of Medicine, University-Hospital of Verona, Piazzale A. Stefani 1, 37126 Verona, VR Italy
| | - Alessandra Dalla Gassa
- Renal Unit, Department of Medicine, University-Hospital of Verona, Piazzale A. Stefani 1, 37126 Verona, VR Italy
| | - Paola Tomei
- Renal Unit, Department of Medicine, University-Hospital of Verona, Piazzale A. Stefani 1, 37126 Verona, VR Italy
| | - Antonio Lupo
- Renal Unit, Department of Medicine, University-Hospital of Verona, Piazzale A. Stefani 1, 37126 Verona, VR Italy
| | - Gianluigi Zaza
- Renal Unit, Department of Medicine, University-Hospital of Verona, Piazzale A. Stefani 1, 37126 Verona, VR Italy
| |
Collapse
|
23
|
Elbe H, Dogan Z, Taslidere E, Cetin A, Turkoz Y. Beneficial effects of quercetin on renal injury and oxidative stress caused by ciprofloxacin in rats: A histological and biochemical study. Hum Exp Toxicol 2015; 35:276-81. [PMID: 25929518 DOI: 10.1177/0960327115584686] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Ciprofloxacin is a broad-spectrum quinolone antibiotic commonly used in clinical practice. Quercetin is an antioxidant belongs to flavonoid group. It inhibits the production of superoxide anion. In this study, we aimed to evaluate the effects of quercetin on renal injury and oxidative stress caused by ciprofloxacin. Twenty-eight female Wistar albino rats were divided into four groups: control, quercetin (20 mg kg(-1) day(-1) gavage for 21 days), ciprofloxacin (20 mg kg(-1) twice a day intraperitoneally for 10 days), and ciprofloxacin + quercetin. Samples were processed for histological and biochemical evaluations. Malondialdehyde (MDA) and glutathione (GSH) levels, superoxide dismutase (SOD), and catalase (CAT) activities were measured in kidney tissue. The ciprofloxacin group showed histopathological changes such as infiltration, dilatation in tubules, tubular atrophy, reduction of Bowman's space, congestion, hemorrhage, and necrosis. In the ciprofloxacin + quercetin group, these histopathological changes markedly reduced. MDA levels increased in the ciprofloxacin group and decreased in the ciptofloxacin + quercetin group. SOD and CAT activities and GSH levels significantly decreased in the ciprofloxacin group. On the other hand, in the ciprofloxacin + quercetin group, SOD and CAT activities and GSH levels significantly increased with regard to the ciprofloxacin group. We concluded that quercetin has antioxidative and therapeutic effects on renal injury and oxidative stress caused by ciprofloxacin in rats.
Collapse
Affiliation(s)
- H Elbe
- Department of Histology and Embryology, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - Z Dogan
- Department of Anatomy, Faculty of Medicine, Adiyaman University, Adiyaman, Turkey
| | - E Taslidere
- Department of Histology and Embryology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - A Cetin
- Department of Anatomy, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - Y Turkoz
- Department of Biochemistry, Faculty of Medicine, Inonu University, Malatya, Turkey
| |
Collapse
|
24
|
Zahedi H, Eghtesadi S, Seifirad S, Rezaee N, Shidfar F, Heydari I, Golestan B, Jazayeri S. Effects of CoQ10 Supplementation on Lipid Profiles and Glycemic Control in Patients with Type 2 Diabetes: a randomized, double blind, placebo-controlled trial. J Diabetes Metab Disord 2014; 13:81. [PMID: 26413493 PMCID: PMC4583053 DOI: 10.1186/s40200-014-0081-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 07/13/2014] [Indexed: 01/06/2023]
Abstract
Background Low grade inflammation and oxidative stress are the key factors in the pathogenesis and development of diabetes and its complications. Coenzyme Q10 (CoQ10) is known as an antioxidant and has a vital role in generation of cellular energy providing. This study was undertaken to evaluate the effects of CoQ10 supplementation on lipid profiles and glycemic controls in patients with diabetes. Methods Fifty patients with diabetes were randomly allocated into two groups to receive either 150 mg CoQ10 or placebo daily for 12 weeks. Before and after supplementation, fasting venous blood samples were collected and lipid profiles containing triglyceride, total cholesterol, low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) and glycemic indices comprising of fasting plasma glucose (FPG), insulin and hemoglobin A1C (HbA1C) were measured. Insulin resistance was calculated using HOMA-IR index. Results Forty patients completed the study. After intervention FPG and HbA1C were significantly lower in the CoQ10 group compared to the placebo group, but there were no significant differences in serum insulin and HOMA-IR between the two groups. Although total cholesterol did not change in the Q10 group after supplementation, triglyceride and HDL-C significantly decreased and LDL-C significantly increased in the CoQ10 group. Conclusion The present study showed that treatment with Q10 may improve glycemic control with no favorable effects on lipid profiles in type 2 patients with diabetes. Trial registration IRCT registry number: IRCT138806102394N1
Collapse
Affiliation(s)
- Hoda Zahedi
- Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular -Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahryar Eghtesadi
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Soroush Seifirad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Neshat Rezaee
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Shidfar
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Iraj Heydari
- Institute of Endocrinology and Metabolism, Firouzgar Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Banafsheh Golestan
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Jazayeri
- Department of Nutrition, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Elbe H, Vardi N, Esrefoglu M, Ates B, Yologlu S, Taskapan C. Amelioration of streptozotocin-induced diabetic nephropathy by melatonin, quercetin, and resveratrol in rats. Hum Exp Toxicol 2014; 34:100-13. [DOI: 10.1177/0960327114531995] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The role of oxygen radicals are known for the pathogenesis of kidney damage. The aim of the present study was to investigate the antioxidative effects of melatonin, quercetin, and resveratrol on streptozotocin (STZ)-induced diabetic nephropathy in rats. A total of 35 male Wistar rats were divided into 5 groups as follows: control, diabetes mellitus (DM), DM + melatonin, DM + quercetin, and DM + resveratrol. All the injections started on the same day of single-dose STZ injection and continued for 30 days. At the end of this period, kidneys were removed and processed for routine histological procedures. Biochemical parameters and morphological changes were examined. In DM group, blood glucose levels were significantly increased, whereas body weights were decreased compared with the control group. Significant increases in blood urea nitrogen and tissue malondialdehyde (MDA) levels and decreases in superoxide dismutase and catalase activities were detected in DM group. Administration of melatonin, quercetin, and resveratrol significantly reduced these values. Melatonin was more efficient in reducing MDA levels than other antioxidants ( p < 0.05). STZ-induced histopathological alterations including epithelial desquamation, swelling, intracytoplasmic vacuolization, brush border loss and peritubular infiltration. Additionally, basement membrane thickening and sclerotic changes were observed in glomerulus. Transforming growth factor-β1 positive cells were also increased. Melatonin, quercetin, and resveratrol significantly reduced these histopathological changes. Our results indicate that melatonin, quercetin, and resveratrol might be helpful in reducing diabetes-induced renal damage
Collapse
Affiliation(s)
- H Elbe
- Department of Histology and Embryology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - N Vardi
- Department of Histology and Embryology, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - M Esrefoglu
- Department of Histology and Embryology, Faculty of Medicine, Bezmialem Vakif University, Istanbul, Turkey
| | - B Ates
- Department of Chemistry, Faculty of Science and Art, Inonu University, Malatya, Turkey
| | - S Yologlu
- Department of Biostatistics, Faculty of Medicine, Inonu University, Malatya, Turkey
| | - C Taskapan
- Department of Biochemistry, Faculty of Medicine, Inonu University, Malatya, Turkey
| |
Collapse
|
26
|
Mosawy S, Jackson DE, Woodman OL, Linden MD. The flavonols quercetin and 3',4'-dihydroxyflavonol reduce platelet function and delay thrombus formation in a model of type 1 diabetes. Diab Vasc Dis Res 2014; 11:174-81. [PMID: 24623318 DOI: 10.1177/1479164114524234] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Diabetes is associated with increased cardiovascular risk. We have recently shown that the naturally occurring flavonol quercetin (Que) or the synthetic flavonol 3',4'-dihydroxyflavonol (DiOHF) inhibits platelet function and delays thrombus formation in healthy mice. Therefore, the aim of this study was to investigate the effect of Que or DiOHF treatment on platelet function and ferric chloride-induced carotid artery thrombosis in a mouse model of type 1 diabetes. Diabetic mice treated with Que or DiOHF maintained blood flow at a significantly higher level than untreated diabetic mice at the end of the recording period. In addition, treatment with Que or DiOHF significantly reduced diabetes-induced platelet hyper-aggregability in response to platelet agonist stimulation. Furthermore, treatment with Que or DiOHF significantly inhibited dense, but not alpha, granule exocytosis in diabetic and control mice. Our demonstration that flavonols delay thrombus formation in diabetes suggests a potential clinical role for these compounds in anti-platelet therapy.
Collapse
Affiliation(s)
- Sapha Mosawy
- School of Medical Sciences, RMIT University, Melbourne, VIC, Australia
| | | | | | | |
Collapse
|
27
|
Dey A, Lakshmanan J. The role of antioxidants and other agents in alleviating hyperglycemia mediated oxidative stress and injury in liver. Food Funct 2014; 4:1148-84. [PMID: 23760593 DOI: 10.1039/c3fo30317a] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Several antioxidants and agents having similar antioxidant effects are known to exert beneficial effects in ameliorating the injurious effects of hyperglycemia on liver in different diabetic in vitro and in vivo models. The review deals with some of the agents which have been shown to exert protective effects on liver against hyperglycemic insult and the various mechanisms involved. The different classes of agents which protect the diabetic liver or decrease the severity of hyperglycemia mediated injury include flavonoids, catechins, and other polyphenolic compounds, curcumin and its derivatives, certain vitamins, hormones and drugs, trace elements, prototypical antioxidants and amino acids. Some of the pronounced changes mediated by the antioxidants in liver exposed to hyperglycemia include decreased oxidative stress, and alterations in carbohydrate and lipid metabolism. Other mechanisms through which the agents ameliorate hyperglycemia mediated liver injury include decrease in oxidative DNA and protein damage, restoration of mitochondrial structural and functional integrity, decrease in inflammation and improved insulin signaling. Thus, antioxidants may prove to be an important mode of defense in maintaining normal hepatic functions in diabetes.
Collapse
Affiliation(s)
- Aparajita Dey
- Life Science Division, AU-KBC Research Centre, MIT Campus of Anna University, Chromepet, Chennai 600044, India.
| | | |
Collapse
|
28
|
Elucidation of ameliorative effect of Co-enzyme Q10 in streptozotocin-induced diabetic neuropathic perturbation by modulation of electrophysiological, biochemical and behavioral markers. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.biomag.2012.10.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
29
|
Huynh K, Kiriazis H, Du XJ, Love JE, Jandeleit-Dahm KA, Forbes JM, McMullen JR, Ritchie RH. Coenzyme Q10 attenuates diastolic dysfunction, cardiomyocyte hypertrophy and cardiac fibrosis in the db/db mouse model of type 2 diabetes. Diabetologia 2012; 55:1544-53. [PMID: 22374176 DOI: 10.1007/s00125-012-2495-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 01/16/2012] [Indexed: 01/02/2023]
Abstract
AIMS/HYPOTHESIS An increase in the production of reactive oxygen species is commonly thought to contribute to the development of diabetic cardiomyopathy. This study aimed to assess whether administration of the antioxidant coenzyme Q(10) would protect the diabetic heart against dysfunction and remodelling, using the db/db mouse model of type 2 diabetes. Furthermore, we aimed to compare the efficacy of coenzyme Q(10) to that of the ACE inhibitor ramipril. METHODS Six-week-old non-diabetic db/+ mice and diabetic db/db mice received either normal drinking water or water supplemented with coenzyme Q(10) for 10 weeks. Endpoint cardiac function was assessed by echocardiography and catheterisation. Ventricular tissue was collected for histology, gene expression and protein analysis. RESULTS Untreated db/db diabetic mice exhibited hyperglycaemia, accompanied by diastolic dysfunction and adverse structural remodelling, including cardiomyocyte hypertrophy, myocardial fibrosis and increased apoptosis. Systemic lipid peroxidation and myocardial superoxide generation were also elevated in db/db mice. Coenzyme Q(10) and ramipril treatment reduced superoxide generation, ameliorated diastolic dysfunction and reduced cardiomyocyte hypertrophy and fibrosis in db/db mice. Phosphorylation of Akt, although depressed in untreated db/db mice, was restored with coenzyme Q(10) administration. We postulate that preservation of cardioprotective Akt signalling may be a mechanism by which coenzyme Q(10)-treated db/db mice are protected from pathological cardiac hypertrophy. CONCLUSIONS/INTERPRETATION These data demonstrate that coenzyme Q(10) attenuates oxidative stress and left ventricular diastolic dysfunction and remodelling in the diabetic heart. Addition of coenzyme Q(10) to the current therapy used in diabetic patients with diastolic dysfunction warrants further investigation.
Collapse
Affiliation(s)
- K Huynh
- Baker IDI Heart and Diabetes Institute, PO Box 6492, St Kilda Road Central, Melbourne, Victoria 8008, Australia
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Hahm SW, Park J, Son YS. Opuntia humifusa stems lower blood glucose and cholesterol levels in streptozotocin-induced diabetic rats. Nutr Res 2011; 31:479-87. [DOI: 10.1016/j.nutres.2011.05.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Revised: 04/29/2011] [Accepted: 05/02/2011] [Indexed: 11/25/2022]
|
31
|
Ahmad A, Khan MM, Hoda MN, Raza SS, Khan MB, Javed H, Ishrat T, Ashafaq M, Ahmad ME, Safhi MM, Islam F. Quercetin protects against oxidative stress associated damages in a rat model of transient focal cerebral ischemia and reperfusion. Neurochem Res 2011; 36:1360-71. [PMID: 21472457 DOI: 10.1007/s11064-011-0458-6] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2011] [Indexed: 12/17/2022]
Abstract
Experimental studies have demonstrated that oxidative stress and apoptosis play an important role in cerebral ischemic pathogenesis and may represent a target for treatment. The purpose of this study was to determine whether the quercetin dihydrate (Q) protects against cerebral ischemia neuronal damage. Male Wistar rats were subjected to transient middle cerebral artery occlusion (MCAO) for 2 h and reperfused for 72 h. Quercetin (30 mg/kg, i.p) was administrated 30 min before the onset of ischemia and after the ischemia at interval of 0, 24, 48, and 72 h. The administration of Q showed marked reduction in infarct size, reduced the neurological deficits in terms of behaviors, suppressed neuronal loss and diminished the p53 expression in MCAO rats. Q was found to be successful in upregulating the antioxidant status and lowering the TBARS level. Conversely, the elevated activity of poly (ADP-ribose) polymerase (PARP), and activity of caspase-3 in MCAO group was attenuated significantly in Q treated group when compared with MCAO group. Our study reveals that Q, as a powerful antioxidant, could prevent free radicals associated oxidative damage and morphological changes in the MCAO rats. Thus, it may have a therapeutic value for the treatment of stroke.
Collapse
Affiliation(s)
- Ajmal Ahmad
- Neurotoxicology Laboratory, Department of Medical Elementology & Toxicology, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi, 110062, India
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Karaağaç N, Salman F, Doğru-Abbasoğlu S, Uysal M. Changes in prooxidant-antioxidant balance in tissues of rats following long-term hyperglycemic status. Endocr Res 2011; 36:124-33. [PMID: 21736495 DOI: 10.3109/07435800.2011.566237] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Reactive oxygen species play an important role in the pathogenesis of organ damage in diabetes mellitus. Streptozotosin (STZ) is a commonly employed compound to produce diabetes mellitus and these animals exhibit most of diabetic complications. METHODS In our study, diabetes was induced by a single intraperitoneal injection of STZ at a dose of 50 mg/kg in rats and they were killed 12 weeks after STZ. Endogenous lipid peroxide levels, enzymatic and non-enzymatic antioxidants were measured in liver, heart, kidney, brain, and testis tissues to investigate the effect of long-term hyperglycemic state. The susceptibility of diabetic tissues to oxidative stress was also examined in in vitro oxidizing system containing ascorbic acid and iron. RESULTS We found that prooxidant and antioxidant balance has changed in favor of prooxidation in the tissues of diabetic rats. The susceptibility of liver to oxidative stress increased; however, this susceptibility did not change in heart, kidney, brain, and testis of diabetic rats. CONCLUSION Our results indicate that long-term hyperglycemic state disturbs hepatic prooxidant-antioxidant balance at an earlier period and more pronouncedly than other tissues.
Collapse
Affiliation(s)
- Neslihan Karaağaç
- Department of Biochemistry, Istanbul Medical Faculty, Istanbul University, Çapa, Istanbul, Turkey
| | | | | | | |
Collapse
|
33
|
Geng P, Yang Y, Gao Z, Yu Y, Shi Q, Bai G. Combined effect of total alkaloids from Feculae Bombycis and natural flavonoids on diabetes. J Pharm Pharmacol 2010; 59:1145-50. [PMID: 17725858 DOI: 10.1211/jpp.59.8.0013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Both total alkaloids from Feculae Bombycis (TAFB) and natural flavonoids can inhibit α-glucosidase activity to depress the glucose level in blood. To investigate the cooperative effect of TAFB and flavonoids on blood glucose, we have studied their combined function compared with individual ingredients on enzymology, in-vitro and in-vivo. In the enzymological assay, the combination of TAFB and flavonoids showed more effective inhibition, compared with either TAFB or flavonoids alone, to α-glucosidase activity. In the everted intestine model in-vitro, the combined inhibition of starch hydrolysation and glucose transference to blood was much stronger than with separate components. In short-term studies with normal and experimentally-induced diabetic mice in-vivo, the combination of TAFB and flavonoids also had a stronger suppressive effect on the postprandial elevation in blood glucose after oral administration. In long-term treatment to diabetic mice in-vivo, the compound prescription could depress not only the fasting blood glucose, but also the fasting blood total cholesterol. These results demonstrated that TAFB and flavonoids could inhibit α-glucosidase activity cooperatively, which would successfully depress blood glucose level in the therapy of diabetes.
Collapse
Affiliation(s)
- Peng Geng
- Department of Microbiology, College of Life Science, Nankai University, Tianjin 300071, China
| | | | | | | | | | | |
Collapse
|
34
|
Sena CM, Nunes E, Gomes A, Santos MS, Proença T, Martins MI, Seiça RM. Supplementation of coenzyme Q10 and alpha-tocopherol lowers glycated hemoglobin level and lipid peroxidation in pancreas of diabetic rats. Nutr Res 2009; 28:113-21. [PMID: 19083397 DOI: 10.1016/j.nutres.2007.12.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 11/27/2007] [Accepted: 12/02/2007] [Indexed: 02/02/2023]
Abstract
The importance of nutritional supplementation in diabetes remains an unresolved issue. The present study was undertaken to examine the effects of alpha-tocopherol and CoQ(10), powerful antioxidants, on metabolic control and on the pancreatic mitochondria of GK rats, a model of type 2 diabetes. We also evaluated the efficacy of these nutrients in preventing the diabetic pancreatic lesions observed in GK rats. Rats were divided into 4 groups, a control group of diabetic GK rats and 3 groups of GK rats administered with alpha-tocopherol and CoQ(10) alone or both in association, during 8 weeks. Fasting blood glucose levels were not significantly different between the groups, nor were blood glucose levels at 2 hours after a glucose load. HbA1c level was significantly reduced in the group supplemented with both antioxidants. Diabetes induced a decrease in coenzyme Q plasma levels that prevailed after treatment with antioxidants. In addition, the plasma alpha-tocopherol levels were higher after treatment with the antioxidants. An increment in some components of the antioxidant defense system was observed in pancreatic mitochondria of treated GK rats. Moreover, the antioxidants tested either alone or in association failed to prevent the pancreatic lesions in this animal model of type 2 diabetes. In conclusion, our results indicate that CoQ(10) and alpha-tocopherol decrease glycated HbA1c and pancreatic lipid peroxidation. These antioxidants increase some components of the antioxidant defense system but do not prevent pancreatic lesions. Thus, we cannot rule out the potential benefit of antioxidant treatments in type 2 diabetes in the prevention of their complications.
Collapse
Affiliation(s)
- Cristina M Sena
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-354 Coimbra, Portugal.
| | | | | | | | | | | | | |
Collapse
|
35
|
Pinent M, Castell A, Baiges I, Montagut G, Arola L, Ardévol A. Bioactivity of Flavonoids on Insulin-Secreting Cells. Compr Rev Food Sci Food Saf 2008; 7:299-308. [DOI: 10.1111/j.1541-4337.2008.00048.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
36
|
Montilla P, Barcos M, Munoz MC, Bujalance I, Munoz-Castaneda JR, Tunez I. Red Wine Prevents Brain Oxidative Stress and Nephropathy in Streptozotocin-induced Diabetic Rats. BMB Rep 2005; 38:539-44. [PMID: 16202232 DOI: 10.5483/bmbrep.2005.38.5.539] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We have studied the effects of red wine on brain oxidative stress and nephropathy in streptozotocin (STZ)-induced diabetic rats. Diabetes was induced in Wistar rats with a single intraperitonally injection of STZ (50 mg/kg). Two weeks before and four weeks after injection, red wine was given orally in both normal and diabetic rats. Blood samples were taken from the neck vascular trunk in order to determine the glucose, triglycerides, total cholesterol, HDL-cholesterol (HDL-c), atherogenic index (AI), total protein, blood urea nitrogen (BUN), creatinine, insulin, lipid peroxidation products, reduced glutathione (GSH) and superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities. As well, we estimated the lipid peroxidtion, GSH and SOD, GSH-Px and catalase activities in brain and renal homogenates, and the excretion of albumin, proteins and glucose in urine over 24 h period. The administration of STZ caused significant increases in levels of glycosuria, proteinuria, albuminuria, glycemia, total cholesterol and AI, as well as in lipid peroxidation products in the brain, plasma and kidney, whereas it decreased the GSH content and SOD, GSH-Px and catalase activities. Treatment with red wine significantly prevented the changes induced by STZ. These data suggested that red wine has a protective effect against brain oxidative stress, diabetic nephropathy and diabetes induced by STZ, as well as it protects against hypercholesterolemia and atherogenic risk.
Collapse
Affiliation(s)
- Pedro Montilla
- Departamento de Bioquimica y Biologia Molecular, Facultad de Medicina, Universidad de Cordoba, Spain.
| | | | | | | | | | | |
Collapse
|
37
|
Uriu-Adams JY, Rucker RB, Commisso JF, Keen CL. Diabetes and dietary copper alter 67Cu metabolism and oxidant defense in the rat. J Nutr Biochem 2005; 16:312-20. [PMID: 15866232 DOI: 10.1016/j.jnutbio.2005.01.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2004] [Revised: 01/12/2005] [Accepted: 01/14/2005] [Indexed: 11/19/2022]
Abstract
Perturbations in copper (Cu) metabolism are a characteristic of diabetes, for example, elevated plasma Cu and compromised oxidant defense related to diabetes-induced effects on Cu-containing enzymes. Herein, the redistribution of Cu in selected tissues is described in response to diabetic and nondiabetic states in rats that were fed diets adequate in (12 mg Cu/kg of diet) or deficient in (no added Cu) Cu. Diabetes was induced by intravenous administration of streptozotocin (40 mg/kg body weight). After 5 weeks, rats were gavaged with (67)Cu (0.74 MBq per rat) using the Cu-deficient diet as a vehicle (suspended 1:3 in water) and killed at various time points. The use of (67)Cu allowed for the assessment of short-term Cu distribution and its comparison to the steady-state Cu distribution, as determined by direct Cu analysis. In contrast to control rats, the adaptive mechanisms for Cu homeostasis in diabetic rats were impaired. In general, measures of Cu retention were reduced in diabetic rats compared to corresponding values for control rats. Moreover, diabetic rats had low copper, zinc superoxide dismutase activity that was reduced even further when diabetic rats were fed with low-Cu diets. However, liver and kidney metallothionein and plasma ceruloplasmin levels were elevated in diabetic rats compared to control rats. Such diabetes-related metabolic alterations were taken as measures of increased oxidative stress and inflammation, which may have implications in the progression of diabetes-related pathologies.
Collapse
Affiliation(s)
- Janet Y Uriu-Adams
- Department of Nutrition, University of California at Davis, Davis, CA 95616-8669, USA.
| | | | | | | |
Collapse
|
38
|
Abstract
Green tea (Camellia sinensis), and CoQ(9 )when given to Wistar rats produced a partial reversal on reserpine induced oxidative stress and liver damage. Green tea, with its abundant polyphenol (-)Epigallocatechin 3-gallate (ECGC) and other catechins, is known for its antioxidative characteristics influencing lipid metabolism. Ubiquinone, abundant in heart muscle, is also a potent antioxidant with known effects in numerous pathologies. However the combined effect of ECGC and ubiquninone has not been reported. In the present study we found that green tea extract, when given in combination with CoQ(9) to Wistar rats subjected to oxidative stress, showed a statistically significant antioxidative effect. Liver cholesterol level in rats receiving combination treatment was also significantly lower than control or rats receiving green tea extract alone. Reserpine induced liver damage in Wistar rats was also partially reversed by a treatment of green tea extract when combined with CoQ(9). These results may have important clinical implications and may be extrapolated for the treatment of patients suffering from liver damage due to hepatitis B/C or liver cirrhosis.
Collapse
Affiliation(s)
- M Afzal
- Biochemistry program, Kuwait University.
| | | | | |
Collapse
|
39
|
Anjaneyulu M, Chopra K. Quercetin, an anti-oxidant bioflavonoid, attenuates diabetic nephropathy in rats. Clin Exp Pharmacol Physiol 2004; 31:244-8. [PMID: 15053821 DOI: 10.1111/j.1440-1681.2004.03982.x] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
1. Diabetic nephropathy is an important microvascular complication and one of the main causes of end-stage renal disease. Many in vivo and in vitro studies have indicated that oxidative stress is one of the major pathophysiological mechanisms involved in the development of diabetic nephropathy. In the present study, we examined the effect of an anti-oxidant bioflavonoid quercetin on renal function and oxidative stress in streptozotocin (STZ)-induced diabetic rats. 2. Diabetes was induced in Sprague-Dawley rats with a single intravenous injection of STZ (45 mg/kg). Four weeks after STZ injection, quercetin (10 mg/kg per day) was given orally for 4 weeks in both control and diabetic rats. Plasma glucose levels and bodyweights were measured at 4 and 8 weeks after the STZ injection. At the termination of the experiments, urine albumin excretion, urine output, serum creatinine, blood urea nitrogen, creatinine and urea clearance were measured. The renal oxidative stress marker malonaldehyde, glutathione levels and the anti-oxidant enzymes superoxide dismutase and catalase were measured in kidney homogenate. 3. Streptozotocin-injected rats showed significant increases in blood glucose, polyuria, proteinuria and a decrease in bodyweight compared with age-matched control rats. After 8 weeks, diabetic rats exhibited renal dysfunction, as evidenced by reduced creatinine and urea clearance, and proteinuria along with a marked increase in oxidative stress, as determined by lipid peroxidation and activities of key anti-oxidant enzymes. Treatment with quercetin significantly attenuated renal dysfunction and oxidative stress in diabetic rats. 4. These results confirm the role of oxidative stress in the development of diabetic nephropathy and point to the possible anti-oxidative mechanism being responsible for the nephroprotective action of quercetin.
Collapse
Affiliation(s)
- Muragundla Anjaneyulu
- Pharmacology Division, University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| | | |
Collapse
|