1
|
Fiaz M, Elsadek MF, Al-Numair KS, Chaudhry SR, Saleem M, Khan KUR, Yehya AHS, Asif M. Down-regulation of interlinked inflammatory signalling cascades by ethanolic extract of Suaeda fruticosa Forssk. ex J.F. Gmel. attenuated in vivo inflammatory and nociceptive responses. Inflammopharmacology 2024:10.1007/s10787-024-01624-7. [PMID: 39731702 DOI: 10.1007/s10787-024-01624-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 12/02/2024] [Indexed: 12/30/2024]
Abstract
Juice and decoction of leaves of Suaeda fruticosa, a halophytic medicinal plant of Cholistan desert, is traditionally used to treat rheumatism. The current study was carried out to probe into in vivo anti-nociceptive, anti-inflammatory, and anti-arthritic potential of ethanolic extract of the whole plant of S. fruticosa (Et-SF) and its bioactive molecules. GC-MS screening of Et-SF revealed presence of various bioactive compounds including phytol, thymol, n-hexadecanoic acid, farnesol, and 1-heptacosanol. DPPH in vitro radical scavenging assay demonstrated moderate antioxidant potential of Et-SF. Safety evaluation of Et-SF confirmed no lethal effects in female albino rats up to the single oral dose of 5000 mg/kg. In all in vivo models, Et-SF was administered in three doses (125, 250, and 500 mg/kg) and a single dose of flurbiprofen (FP) (10 mg/kg). Et-SF significantly (p < 0.05) attenuated acute inflammation in carrageenan, histamine, and serotonin-induced rat paw oedema models in a time-dependent manner. Et-SF alleviated oedema, restored haematological parameters, and reduced severe pannus formation, inflammatory cell infiltration, and fibrous tissue proliferation in the paws of CFA-induced arthritic rats. Moreover, treatment with thymol, farnesol and n-hexadecanoic acid alone and in combination also attenuated the arthritic progression in the arthritic rats indicating involvement of these compounds towards anti-arthritic potential of Et-SF. Et-SF and FP significantly (p < 0.05) down-regulated IL-1β, TNF-α, IL-6, NF-κB, and COX-2 mRNA expression, and up-regulated IL-4 and IL-10 mRNA expression in arthritic rats. Hot plate and acetic acid-induced writhing models results indicated the analgesic attributes of Et-SF in mice models. This study suggests that S. fruticosa ethanol extract may regulate the expression of inflammatory markers involved in nociceptive, inflammatory, and arthritic disorders. Its phytochemicals could target multiple phases of these conditions at cellular and subcellular levels. Further research is needed to confirm this hypothesis.
Collapse
Affiliation(s)
- Muhammad Fiaz
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
| | - Mohamed Farouk Elsadek
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Khalid S Al-Numair
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Shafqat Rasul Chaudhry
- II-TECH College of Pharmacy, International Institute of Technology, Culture & Health Sciences (II-TECH), Gujranwala, 52250, Punjab, Pakistan
| | - Mohammad Saleem
- Department of Pharmacology, Punjab University College of Pharmacy, University of the Punjab, Lahore, 54000, Punjab, Pakistan
| | - Kashif Ur Rehman Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan
| | - Ashwaq Hamid Salem Yehya
- Center for Inflammatory Bowel Diseases, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Muhammad Asif
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, 63100, Punjab, Pakistan.
| |
Collapse
|
2
|
Abdelgawad FE, Abd El-Rahman GI, Behairy A, Abd-Elhakim YM, Saber TM, Metwally MMM, El-Fatah SSA, Samaha MM, Saber T, Aglan MA. Thymol's modulation of cellular macromolecules, oxidative stress, DNA damage, and NF-kB/caspase-3 signaling in the liver of imidacloprid-exposed rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 109:104492. [PMID: 38838874 DOI: 10.1016/j.etap.2024.104492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 05/29/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
We evaluated whether thymol (THY) (30 mg/kg b.wt) could relieve the adverse effects of the neonicotinoid insecticide imidacloprid (IMD) (22.5 mg/kg b.wt) on the liver in a 56-day oral experiment and the probable underlying mechanisms. THY significantly suppressed the IMD-associated increase in hepatic enzyme leakage. Besides, the IMD-induced dyslipidemia was considerably corrected by THY. Moreover, THY significantly repressed the IMD-induced hepatic oxidative stress, lipid peroxidation, DNA damage, and inflammation. Of note, the Feulgen, mercuric bromophenol blue, and PAS-stained hepatic tissue sections analysis declared that treatment with THY largely rescued the IMD-induced depletion of the DNA, total proteins, and polysaccharides. Moreover, THY treatment did not affect the NF-kB p65 immunoexpression but markedly downregulated the Caspase-3 in the hepatocytes of the THY+IMD-treated group than the IMD-treated group. Conclusively, THY could efficiently protect against IMD-induced hepatotoxicity, probably through protecting cellular macromolecules and antioxidant, antiapoptotic, and anti-inflammatory activities.
Collapse
Affiliation(s)
- Fathy Elsayed Abdelgawad
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia.
| | - Ghada I Abd El-Rahman
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Amany Behairy
- Department of Physiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt.
| | - Taghred M Saber
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Mohamed M M Metwally
- Department of Pathology and Clinical pathology, Faculty of Veterinary Medicine, King Salman international University, Ras sidr Egypt; Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Samaa Salah Abd El-Fatah
- Department of Human Anatomy and Embryology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Mariam M Samaha
- Faculty of Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Taisir Saber
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohamed Abdelrahman Aglan
- Department of Forensic Medicine and Clinical Toxicology, Faculty of medicine, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
3
|
Maleki M, Ghaneialvar H, Abbasi N, Moayeri A, Moulaei N, Kenarkoohi A, Mokaribahar P, Heidari A. Effects of Thymbra spicata extract and Thymol on morphine withdrawal syndrome in mice (insights to the liver function, antioxidant, and behavioral responses). Cell Biochem Funct 2024; 42:e4084. [PMID: 38963282 DOI: 10.1002/cbf.4084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 07/05/2024]
Abstract
Safe chemicals for drug withdrawal can be extracted from natural sources. This study investigates the effects of clonidine and Thymbra spicata extract (TSE) on mice suffering from morphine withdrawal syndrome. Thymol, which is the active constituent in TSE, was also tested. A total of 90 mice were divided into nine groups. Group 1 was the control group, while Group 2 was given only morphine, and Group 3 received morphine and 0.2 mg/kg of clonidine. Groups 4-6 were given morphine along with 100, 200, and 300 mg/kg of TSE, respectively. Groups 7-9 received morphine plus 30, 60, and 90 mg/kg of Thymol, respectively, for 7 days. An oral naloxone challenge of 3 mg/kg was used to induce withdrawal syndrome in all groups. Improvement of liver enzyme levels (aspartate aminotransferase, alkaline phosphatase, and alanine transaminase) (p < .01) and behavioral responses (frequencies of jumping, frequencies of two-legged standing, Straub tail reaction) (p < .01) were significantly observed in the groups receiving TSE and Thymol (Groups 4-9) compared to Group 2. Additionally, antioxidant activity in these groups was improved compared to Group 2. Nitric oxide significantly decreased in Groups 4 and 6 compared to Groups 2 and 3 (p < .01). Superoxide dismutase increased dramatically in Groups 5, 8, and 9 compared to Groups 2 and 3 (p < .01). Groups 5-9 were significantly different from Group 2 in terms of malondialdehyde levels (p < .01). Certain doses of TSE and Thymol were found to alleviate the narcotics withdrawal symptoms. This similar effect to clonidine can pave the way for their administration in humans.
Collapse
Affiliation(s)
- Maryam Maleki
- Department of Physiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Hori Ghaneialvar
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Naser Abbasi
- Biotechnology and Medicinal Plants Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Department of Pharmacology, Medical School, Ilam University of Medical Sciences, Ilam, Iran
| | - Ardeshir Moayeri
- Ramsar Campus, Mazandaran University of Medical Sciences, Ramsar, Iran
| | - Neda Moulaei
- Department of Physiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Azra Kenarkoohi
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Pegah Mokaribahar
- Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Ali Heidari
- Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
4
|
Caetano Filho FF, Paulino LRF, Bezerra VS, Azevedo VAN, Barroso PAA, Costa FC, Amorim GG, Silva JRV. Thymol increases primordial follicle activation, protects stromal cells, collagen fibers and down-regulates expression of mRNA for superoxide dismutase 1, catalase and periredoxin 6 in cultured bovine ovarian tissues. Anim Reprod Sci 2024; 266:107514. [PMID: 38824841 DOI: 10.1016/j.anireprosci.2024.107514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/14/2024] [Accepted: 05/25/2024] [Indexed: 06/04/2024]
Abstract
This study aims to investigate the influence of thymol on primordial follicle growth and survival, as well as on collagen fibers and stromal cells density in bovine ovarian tissues cultured in vitro. The activity of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX), the thiol levels and the expression of mRNAs for SOD1, CAT, periredoxin 6 (PRDX6) and GPX1 were also investigated. Ovarian cortical tissues were cultured in α-MEM+ alone or with thymol (400, 800, 1600 or 3200 μg/mL) for six days. Before and after culture, the tissues were processed for histological analysis to evaluate follicular activation, growth, morphology, ovarian stromal cell density and collagen fibers. The levels of mRNA for SOD1, CAT, GPX1 and PRDX6 were evaluated by real-time PCR. The results show that tissues cultured with thymol (400 and 800 µg/mL) had increased percentages of normal follicles, when compared to tissues cultured in other treatments. At concentrations of 400 and 800 µg/mL, thymol maintained the rate of normal follicles similar to the uncultured control. In addition, 400 µg/mL thymol increased follicle activation, collagen fibers and stromal cell density of when compared to tissues cultured in control medium. The presence of 800 µg/mL thymol in culture medium increased CAT activity, while 400 or 800 µg/mL thymol reduced mRNA levels for SOD1, CAT and PRDX6, but did not alter GPX1 expression. In conclusion, 400 µg/mL thymol increases primordial follicle activation, preserves stromal cells, collagen fibers, and down-regulates expression of mRNA for SOD1, CAT and PRDX6 in cultured bovine ovarian tissues.
Collapse
Affiliation(s)
- Francisco F Caetano Filho
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Sobral, CE, Brazil
| | - Lais R F Paulino
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Sobral, CE, Brazil
| | - Vitória S Bezerra
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Sobral, CE, Brazil
| | - Venância A N Azevedo
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Sobral, CE, Brazil
| | - Pedro A A Barroso
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Sobral, CE, Brazil
| | - Francisco C Costa
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Sobral, CE, Brazil
| | - Geovany G Amorim
- Nucleus of Studies in Bioactive Phytochemicals (NEFB), Vale do Acaraú State University, Sobral, Ceará, Brazil
| | - José R V Silva
- Laboratory of Biotechnology and Physiology of Reproduction (LABIREP), Federal University of Ceará, Sobral, CE, Brazil.
| |
Collapse
|
5
|
Peng X, Zhang X, Sharma G, Dai C. Thymol as a Potential Neuroprotective Agent: Mechanisms, Efficacy, and Future Prospects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6803-6814. [PMID: 38507708 DOI: 10.1021/acs.jafc.3c06461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Neurodegenerative diseases pose a growing global health challenge, with limited effective therapeutic options. Mitochondrial dysfunction, oxidative stress, neuroinflammation, apoptosis, and autophagy are common underlying mechanisms in these diseases. Thymol is a phenolic monoterpene compound that has gained attention for its diverse biological properties, including antioxidant, anti-inflammatory, and immunomodulatory activities. Thymol supplementation could provide potential neuroprotection and improve cognitive deficits, depressant-like effects, learning, and memory impairments in rodents. Mechanistic investigations reveal that the neuroprotective effects of thymol involve the improvement of oxidative stress, mitochondrial dysfunction, and inflammatory response. Several signaling pathways, including mitochondrial apoptotic, NF-κB, AKT, Nrf2, and CREB/BDNF pathways are also involved. In this review, the neuroprotective effects of thymol, the potential molecular mechanisms, safety, applications, and current challenges toward development as a neuroprotective agent were summarized and discussed. We hope that this review provides valuable insights for the further development of this promising natural product as a promising neuroprotective agent.
Collapse
Affiliation(s)
- Xinyan Peng
- College of Life Sciences, Yantai University, Yantai 264000, P. R. China
| | - Xiaowen Zhang
- College of Life Sciences, Yantai University, Yantai 264000, P. R. China
| | - Gaurav Sharma
- Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Chongshan Dai
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
6
|
Eskandarpour E, Ahadi A, Jazani AM, Azgomi RND, Molatefi R. Thymus vulgaris ameliorates cough in children with asthma exacerbation: a randomized, triple-blind, placebo-controlled clinical trial. Allergol Immunopathol (Madr) 2024; 52:9-15. [PMID: 38186189 DOI: 10.15586/aei.v52i1.964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/02/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND Asthma is one of the most common chronic respiratory diseases with inflammatory involvement and has a high burden worldwide. This study aimed to determine the effect of Thymus vulgaris (TV) on cough in children between 5 and 12 years old with mild to moderate asthma exacerbation. METHODS In this randomized, triple-blind clinical trial, 60 children between the ages of 5 and 12 with asthma exacerbations were randomly divided into two groups. The intervention group (n = 30) was given TV powder at a dose of 20 mg/kg every 8 hours, prepared as syrup, along with routine medical treatment for a week, and the control group (n = 30) received only routine medical treatment with placebo syrup. At the end of the week, clinical and laboratory symptoms, and spirometry data were re-recorded for both groups. Finally, the recorded factors were compared and statistically analyzed. RESULTS The results showed that after the intervention, activity-induced cough reduced, and difference was statistically significant between the two groups (p = 0.042), but the reduction in wheezing and breathlessness had no statistically significant difference. Spirometry data showed a significant difference in forced expiratory volume in 1 second (FEV1) between the two groups after intervention (p = 0.048), but this difference was not significant in FEV1/FVC (forced vital capacity), peak expiratory flow (PEF), and forced expiratory flow at 25-75% of the vital capacity (FEF25-75%). CONCLUSION The results show that TV syrup may be useful as an adjuvant treatment in children with asthma exacerbations.
Collapse
Affiliation(s)
- Elnaz Eskandarpour
- Student Research Committee, Faculty of Medicine, Ardabil University of Medical Sciences
| | - Adel Ahadi
- Pediatric Department of BO-Ali Hospital, Ardabil University of medical sciences, Ardebil, Iran
| | - Arezoo Moini Jazani
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ramin Nasimi Doost Azgomi
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Rasol Molatefi
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Pediatric Department of BO-Ali Hospital, Ardabil University of medical sciences, Ardebil, Iran
- Traditional Medicine and Hydrotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran;
| |
Collapse
|
7
|
Hafsan H, Saleh MM, Zabibah RS, Obaid RF, Jabbar HS, Mustafa YF, Sultan MQ, Gabr GA, Ramírez-Coronel AA, Khodadadi M, Dadras M. Dietary Thymol Improved Growth, Body Composition, Digestive Enzyme Activities, Hematology, Immunity, Antioxidant Defense, and Resistance to Streptococcus iniae in the Rainbow Trout ( Oncorhynchus mykiss). AQUACULTURE NUTRITION 2022; 2022:3288139. [PMID: 36860433 PMCID: PMC9973134 DOI: 10.1155/2022/3288139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 05/24/2023]
Abstract
In this study, thymol (TYM) at dietary levels of 0, 1, 1.5, 2, and 2.5 g/kg diet was used to evaluate its effects on growth, digestive performance, immunity, and resistances to the infection induced by Streptococcus iniae in the rainbow trout, Oncorhynchus mykiss. A number of 450 fish (35.8 ± 4.4 g; Mean ± SD) were distributed to 15 tanks (30 fish/tank) in three replicates and fed TYM for 60 days. After feeding period, Fish fed 1.5-2.5 g TYM showed better growth, higher digestive enzyme activity, and body protein content compared to other diets (P < 0.05). Regression analysis indicated a polynomial relationship between growth parameters and dietary TYM levels. Based upon the varied growth parameters, the optimum dietary TYM level was 1.89% for FCR. TYM at dietary levels of 1.5-2.5 g significantly enhanced liver antioxidant enzyme activity [superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT)], immune components in blood [alternative complement activity (C3), total immunoglobulin (Ig), lysozyme activity, bactericidal activity, and total protein], and in mucus [alkaline phosphatase (ALP), protease activity, lysozyme activity, bactericidal activity, and total protein] compared to other diets (P < 0.05). TYM at dietary levels of 2-2.5 g significantly decreased malondialdehyde (MDA) levels compared to other experimental groups (P < 0.05). In addition, use of TYM at dietary levels of 1.5-2.5 g upregulated the expression of the immune-related genes (C3, Lyz, and Ig) (P < 0.05). In contrast, the expression of inflammatory genes, tumor necrosis factor (TNF-α) and Interleukin-8 (IL-8) significantly were downregulated in response to 2-2.5 g TYM (P < 0.05). The hematology of the fish also altered in response to dietary TYM, where the values of corpuscular hemoglobin concentration (MCHC), hemoglobin (Hb), red blood cell (RBC), hematocrit (Hct), and white blood cell (WBC) significantly increased in fish fed 2-2.5 g TYM compared to other diets (P < 0.05). In addition, MCV significantly decreased in response to 2-2.5 g TYM (P < 0.05). After challenge with Streptococcus iniae, the survival rate was significantly higher in fish fed 2-2.5 g TYM compared to other diets (P < 0.05). The results of the present study concluded that TYM in the diet of rainbow trout can improve the fish growth and immunity and increase the resistance of the fish to Streptococcus iniae infection. The results of this study recommend an optimized dietary level of 2-2.5 g TYM for the fish.
Collapse
Affiliation(s)
- Hafsan Hafsan
- Biology Department, Faculty of Science and Technology, Universitas Islam Negeri Alauddin Makassar, Sultan Alauddin Street, Gowa, 92118, Indonesia
| | | | - Rahman S. Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Rasha Fadhel Obaid
- Department of Biomedical Engineering, Al-Mustaqbal University College, Babylon, Iraq
| | - Hijran Sanaan Jabbar
- Department of Chemistry, College of Science, Salahaddin University, Erbil, Iraq
- Department of Medical Laboratory Science, College of Health Sciences, Lebanese French University, Erbil, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul-41001, Iraq
| | | | - Gamal A. Gabr
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center, Giza, Egypt
| | | | - Mohammad Khodadadi
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Mahnaz Dadras
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
8
|
Fraternale D, Dufat H, Albertini MC, Bouzidi C, D’Adderio R, Coppari S, Di Giacomo B, Melandri D, Ramakrishna S, Colomba M. Chemical composition, antioxidant and anti-inflammatory properties of Monarda didyma L. essential oil. PeerJ 2022; 10:e14433. [PMID: 36438580 PMCID: PMC9686412 DOI: 10.7717/peerj.14433] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
In the present study, Monarda didyma L. essential oil (isolated from the flowering aerial parts of the plant) was examined to characterize its chemotype and to evaluate, in addition to the quali-quantitative chemical analysis, the associated antioxidant and anti-inflammatory activities. The plants were grown in central Italy, Urbino (PU), Marche region. Different analyses (TLC, GC-FID, GC-MS and 1H-NMR) allowed the identification of twenty compounds among which carvacrol, p-cymene and thymol were the most abundant. On this basis, the chemotype examined in the present study was indicated as Monarda didyma ct. carvacrol. The antioxidant effect was assessed by DPPH assay. Moreover, this chemotype was investigated for the anti-inflammatory effect in an in vitro setting (i.e., LPS-stimulated U937 cells). The decreased expression of pro-inflammatory cytokine IL-6 and the increased expression of miR-146a are suggestive of the involvement of the Toll-like receptor-4 signaling pathway. Although further studies are needed to better investigate the action mechanism/s underlying the results observed in the experimental setting, our findings show that M. didyma essential oil is rich in bioactive compounds (mainly aromatic monoterpenes and phenolic monoterpenes) which are most likely responsible for its beneficial effect.
Collapse
Affiliation(s)
- Daniele Fraternale
- Department of Biomolecular Sciences, University of Urbino, Urbino, PU, Italy
| | - Hanh Dufat
- Produits Naturels, Analyse et Synthèse, CITCOM-UMR CNRS 8038—Faculté de Santé, Pharmacie, Université Paris Cité, Université de Paris, Paris, France
| | | | - Chouaha Bouzidi
- Produits Naturels, Analyse et Synthèse, CITCOM-UMR CNRS 8038—Faculté de Santé, Pharmacie, Université Paris Cité, Université de Paris, Paris, France
| | - Rossella D’Adderio
- Department of Biomolecular Sciences, University of Urbino, Urbino, PU, Italy
| | - Sofia Coppari
- Department of Biomolecular Sciences, University of Urbino, Urbino, PU, Italy
| | - Barbara Di Giacomo
- Department of Biomolecular Sciences, University of Urbino, Urbino, PU, Italy
| | - Davide Melandri
- U. Burns Center, Dermatology and Emilia Romagna Regional Skin Bank, M. Bufalini Hospital, Cesena, FC, Italy
| | - Seeram Ramakrishna
- Center for Nanofibers and Nanotechnology, National University of Singapore, Singapore
| | - Mariastella Colomba
- Department of Biomolecular Sciences, University of Urbino, Urbino, PU, Italy
| |
Collapse
|
9
|
Abu-Elfotuh K, Abdel-Sattar SA, Abbas AN, Mahran YF, Alshanwani AR, Hamdan AME, Atwa AM, Reda E, Ahmed YM, Zaghlool SS, El-Din MN. The protective effect of thymoquinone or/and thymol against monosodium glutamate-induced attention-deficit/hyperactivity disorder (ADHD)-like behavior in rats: Modulation of Nrf2/HO-1, TLR4/NF-κB/NLRP3/caspase-1 and Wnt/β-Catenin signaling pathways in rat model. Biomed Pharmacother 2022; 155:113799. [PMID: 36271575 DOI: 10.1016/j.biopha.2022.113799] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/28/2022] [Accepted: 10/02/2022] [Indexed: 11/26/2022] Open
Abstract
Both thymoquinone (TQ) and thymol (T) have been proved to possess a positive impact on human health. In this research, we aimed to investigate the effect of these compounds separately and together on the Attention-deficit/hyperactivity disorder (ADHD)-like behavior induced by monosodium glutamate (MSG) in rats. Forty male, Spargue Dawley rat pups (postnatal day 21), were randomly allocated into five groups: Normal saline (NS), MSG, MSG+TQ, MSG+T, and MSG+TQ+T. MSG (0.4 mg/kg/day), TQ (10 mg/kg/day) and T (30 mg/kg/day) were orally administered for 8 weeks. The behavioral tests proved that rats treated with TQ and/or T showed improved locomotor, attention and cognitive functions compared to the MSG group with more pronounced effect displayed with their combination. All treated groups showed improvement in MSG-induced aberrations in brain levels of GSH, IL-1β, TNF-α, GFAP, glutamate, calcium, dopamine, norepinephrine, Wnt3a, β-Catenin and BDNF. TQ and/or T treatment also enhanced the mRNA expression of Nrf2, HO-1 and Bcl2 while reducing the protein expression of TLR4, NFκB, NLRP3, caspase 1, Bax, AIF and GSK3β as compared to the MSG group. However, the combined therapy showed more significant effects in all measured parameters. All of these findings were further confirmed by the histopathological examinations. Current results concluded that the combined therapy of TQ and T had higher protective effects than their individual supplementations against MSG-induced ADHD-like behavior in rats.
Collapse
|
10
|
Hammoudi Halat D, Krayem M, Khaled S, Younes S. A Focused Insight into Thyme: Biological, Chemical, and Therapeutic Properties of an Indigenous Mediterranean Herb. Nutrients 2022; 14:2104. [PMID: 35631245 PMCID: PMC9147557 DOI: 10.3390/nu14102104] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/08/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023] Open
Abstract
A perennial wild shrub from the Lamiaceae family and native to the Mediterranean region, thyme is considered an important wild edible plant studied for centuries for its unique importance in the food, pharmaceutical, and cosmetic industry. Thyme is loaded with phytonutrients, minerals and vitamins. It is pungent in taste, yet rich in moisture, proteins, crude fiber, minerals and vitamins. Its chemical composition may vary with geographical location but is mainly composed of flavonoids and antioxidants. Previous studies have illustrated the therapeutic effects of thyme and its essential oils, especially thymol and carvacrol, against various diseases. This is attributed to its multi-pharmacological properties that include, but are not limited to, antioxidant, anti-inflammatory, and antineoplastic actions. Moreover, thyme has long been known for its antiviral, antibacterial, antifungal, and antiseptic activities, in addition to remarkable disruption of microbial biofilms. In the COVID-19 era, some thyme constituents were investigated for their potential in viral binding. As such, thyme presents a wide range of functional possibilities in food, drugs, and other fields and prominent interest as a nutraceutical. The aims of the current review are to present botanical and nutritive values of this herb, elaborate its major constituents, and review available literature on its dietetic and biological activities.
Collapse
Affiliation(s)
- Dalal Hammoudi Halat
- Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese International University, Bekaa Campus, Bekaa P.O. Box 146404, Lebanon
| | - Maha Krayem
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Bekaa Campus, Bekaa P.O. Box 146404, Lebanon; (M.K.); (S.K.)
| | - Sanaa Khaled
- Department of Biological and Chemical Sciences, School of Arts and Sciences, Lebanese International University, Bekaa Campus, Bekaa P.O. Box 146404, Lebanon; (M.K.); (S.K.)
| | - Samar Younes
- Department of Biomedical Sciences, School of Pharmacy, Lebanese International University, Bekaa Campus, Bekaa P.O. Box 146404, Lebanon;
| |
Collapse
|
11
|
Ahmed OM, Galaly SR, Mostafa MAMA, Eed EM, Ali TM, Fahmy AM, Zaky MY. Thyme Oil and Thymol Counter Doxorubicin-Induced Hepatotoxicity via Modulation of Inflammation, Apoptosis, and Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6702773. [PMID: 35178158 PMCID: PMC8844103 DOI: 10.1155/2022/6702773] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/26/2021] [Accepted: 01/02/2022] [Indexed: 12/14/2022]
Abstract
Doxorubicin (DOX) is an effective anticancer agent with a wide spectrum of activities. However, it has many adverse effects on various organs especially on the liver. Thymol, one of the major components of thyme oil, has biological properties that include anti-inflammatory and antioxidant activities. Thus, this study was designed to examine thyme oil and thymol for their ability to prevent doxorubicin-induced hepatotoxicity in Wistar rats. Hepatotoxicity was induced by an intraperitoneal injection of doxorubicin, at a dose of 2 mg/kg bw/week, for seven weeks. Doxorubicin-injected rats were supplemented with thyme oil and thymol at doses 250 and 100 mg/kg bw, respectively, four times/week by oral gavage for the same period. Treatment of rats with thyme oil and thymol reversed the high serum activities of AST, ALT, and ALP and total bilirubin, AFP, and CA19.9 levels, caused by doxorubicin. Thyme oil and thymol also reduced the high levels of TNF-α and the decreased levels of both albumin and IL-4. These agents ameliorated doxorubicin-induced elevation in hepatic lipid peroxidation and associated reduction in GSH content and GST and GPx activities. Further, the supplementation with thyme oil and thymol significantly augmented mRNA expression of the level of antiapoptotic protein Bcl-2 and significantly downregulated nuclear and cytoplasmic levels of the hepatic apoptotic mediator p53. Thus, thyme oil and thymol successfully counteracted doxorubicin-induced experimental hepatotoxicity via their anti-inflammatory, antioxidant, and antiapoptotic properties.
Collapse
Affiliation(s)
- Osama M. Ahmed
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Sanaa R. Galaly
- Cell Biology and Histology Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Mennah-Allah M. A. Mostafa
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
| | - Emad M. Eed
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Tarek M. Ali
- Department of Physiology, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Alzhraa M. Fahmy
- Tropical Medicine and Infectious Diseases Department, Beni-Suef University Faculty of Medicine, Beni-Suef, Egypt
| | - Mohamed Y. Zaky
- Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, P.O. Box 62521, Beni-Suef, Egypt
- Department of Medical Oncology Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China
| |
Collapse
|
12
|
Cinar I, Yayla M, Tavaci T, Toktay E, Ugan RA, Bayram P, Halici H. In Vivo and In Vitro Cardioprotective Effect of Gossypin Against Isoproterenol-Induced Myocardial Infarction Injury. Cardiovasc Toxicol 2022; 22:52-62. [PMID: 34599475 DOI: 10.1007/s12012-021-09698-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/08/2021] [Indexed: 10/20/2022]
Abstract
The aim of the study was to examine the protective effects and possible mechanism of gossypin against isoproterenol (ISO)-mediated myocardial damage in vivo and H9c2 cell damage in vitro. H9c2 cells were categorized into five groups. Viability was evaluated with MTT and LDH release in H9c2 cells. Apoptotic parameter analysis was performed with cytochrome c (Cyt-c), caspase-3 (CASP-3), and BCL2/Bax mRNA expression levels. In vivo, gossypin was administered orally to mice at doses of 5, 10, and 20 mg/kg for 7 days. ISO groups were injected with isoproterenol (150 mg/kg) subcutaneously (on 8th and 9th) for 2 days. Afterward, lactate dehydrogenase (LDH), creatine kinase-MB (CK-MB) levels and Troponin-I (Tn-I) amount from their serum, oxidative stress parameters superoxide dismutase (SOD) activity, glutathione (GSH) and malondialdehyde (MDA) levels, and tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1 β), and NF-kB mRNA expression levels with inflammatory markers from heart tissue were evaluated. In addition, IL-1B, BCL-2, and cas-3 immunohistochemical staining was performed from heart tissue and TNF-a level was measured by ELISA method. Administration of Gossypin protected the cells by dose-dependent, eliminating the reduced cell viability and increased LDH release of ISO in H9c2 cells. In mice serum analyses, increased LDH, CK-MB levels, and Tn-I levels were normalized by gossypin. ISO administration in heart tissue is regulated by gossypin with increased SOD activity, GSH amount, TNF-α, IL-6, IL-1β, and NF-kB mRNA expression levels and decreased MDA amount. Overall, the present results demonstrated that gossypin has a potential cardioprotective treatment for ischemic heart disease on in vivo and in vitro.
Collapse
Affiliation(s)
- Irfan Cinar
- Department of Pharmacology, Faculty of Medicine, Kastamonu University, 3700, Kastamonu, Turkey.
| | - Muhammed Yayla
- Faculty of Medicine, Department of Pharmacology, Kafkas University, Kars, Turkey
| | - Taha Tavaci
- Faculty of Medicine, Department of Pharmacology, Atatürk University, Erzurum, Turkey
| | - Erdem Toktay
- Faculty of Medicine, Department of Histology and Embriology, Kafkas University, Kars, Turkey
| | - Rustem Anil Ugan
- Faculty of Pharmacy, Department of Pharmacology, Atatürk University, Erzurum, Turkey
| | - Pınar Bayram
- Faculty of Medicine, Department of Histology and Embriology, Kafkas University, Kars, Turkey
| | - Hamza Halici
- Faculty of Medicine, Department of Pharmacology, Atatürk University, Erzurum, Turkey
| |
Collapse
|
13
|
El Ouahdani K, Es-safi I, Mechchate H, Al-zahrani M, Qurtam AA, Aleissa M, Bari A, Bousta D. Thymus algeriensis and Artemisia herba-alba Essential Oils: Chemical Analysis, Antioxidant Potential and In Vivo Anti-Inflammatory, Analgesic Activities, and Acute Toxicity. Molecules 2021; 26:molecules26226780. [PMID: 34833872 PMCID: PMC8625911 DOI: 10.3390/molecules26226780] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/28/2021] [Accepted: 11/05/2021] [Indexed: 11/29/2022] Open
Abstract
The study of bioactive molecules of natural origin is a focus of current research. Thymus algeriensis and Artemisia herba-alba are two medicinal plants widely used by the Moroccan population in the traditional treatment of several pathologies linked to inflammation. This study aimed to evaluate the single and combined antioxidant, anti-inflammatory and analgesic effects of the essential oils extracted from these two medicinal plants, and also their potential toxicity. Essential oils were extracted using hydro-distillation in a Clevenger-type apparatus. The antioxidant activity was evaluated by two methods: the scavenging of the free radical DPPH, and the reduction in iron. Anti-inflammatory activity was evaluated by evaluating the edema development induced by carrageenan injecting, while the analgesic power was evaluated according to the number of abdominal contortions induced by the intraperitoneal injection of acetic acid (0.7%). The acute oral toxicity was performed to assess the potential toxicity of the studied EOs, followed by an analysis of the blood biochemical parameters. The results of the two antioxidant tests indicated that our extract mixture exhibits good iron reduction capacity and very interesting DPPH free radical scavenging power, with an IC50 of around 4.38 ± 0.98 μg/mL higher than that of the benchmark antioxidant, BHT. The anti-inflammatory test demonstrated that the mixture administered orally at a dose of 150 mg/kg has a better activity, exceeding that of 1% Diclofenac, with a percentage of maximum inhibition of the edema of 89.99 ± 4.08. The number of cramps in the mice treated with the mixture at a dose of 150 mg/kg is significantly lower (29.80 ± 1.92) than those of the group treated with Tramadol (42.00 ± 2.70), respectively. The toxicity results show no signs of toxicity with an LD50 greater than 150 mg/Kg. These interesting results show that the two plants’ EOs had an important anti-inflammatory, analgesic, and antioxidant activity, and also a powerful synergistic effect, which encourages further in-depth investigations on their pharmacological proprieties.
Collapse
Affiliation(s)
- Khadija El Ouahdani
- Laboratory of Biotechnology, Environment, Agri-Food and Health (LBEAS), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University (USMBA), Fez B.P. 1796, Morocco; (K.E.O.); (H.M.); (A.B.); (D.B.)
| | - Imane Es-safi
- Laboratory of Biotechnology, Environment, Agri-Food and Health (LBEAS), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University (USMBA), Fez B.P. 1796, Morocco; (K.E.O.); (H.M.); (A.B.); (D.B.)
- Correspondence:
| | - Hamza Mechchate
- Laboratory of Biotechnology, Environment, Agri-Food and Health (LBEAS), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University (USMBA), Fez B.P. 1796, Morocco; (K.E.O.); (H.M.); (A.B.); (D.B.)
| | - Mohammed Al-zahrani
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (M.A.-z.); (A.A.Q.); (M.A.)
| | - Ashraf Ahmed Qurtam
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (M.A.-z.); (A.A.Q.); (M.A.)
| | - Mohammed Aleissa
- Biology Department, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (M.A.-z.); (A.A.Q.); (M.A.)
| | - Amina Bari
- Laboratory of Biotechnology, Environment, Agri-Food and Health (LBEAS), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University (USMBA), Fez B.P. 1796, Morocco; (K.E.O.); (H.M.); (A.B.); (D.B.)
| | - Dalila Bousta
- Laboratory of Biotechnology, Environment, Agri-Food and Health (LBEAS), Faculty of Sciences Dhar El Mahraz, Sidi Mohamed Ben Abdellah University (USMBA), Fez B.P. 1796, Morocco; (K.E.O.); (H.M.); (A.B.); (D.B.)
| |
Collapse
|
14
|
Nieto G. A Review on Applications and Uses of Thymus in the Food Industry. PLANTS (BASEL, SWITZERLAND) 2020; 9:E961. [PMID: 32751488 PMCID: PMC7464319 DOI: 10.3390/plants9080961] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 02/07/2023]
Abstract
Thyme is one of the most important medicinal plants because of its ethnopharmacological relevance and high content of bioactive compounds. This review focuses particularly on thyme as an alternative natural antioxidant and antimicrobial with potential use in the food industry. This is in line with the preferences of the current consumer, who demands healthier and more natural products. Different studies have concluded that the use of thyme increases stability and reduces lipid oxidation during the shelf-life period of foods (meat, meat products, milk, fish or fish products), which makes thyme a promising source of natural additives. Despite these findings, the use of Thymus extracts or essential oils as natural additives in foods is reduced in comparison with other natural preservative extracts. This review provides an overview of the most important information on the positive effect of the bioactive compounds of thyme and its uses as a preservative in foods, taking into account its origin (from plants, plant extracts or essential oils).
Collapse
Affiliation(s)
- Gema Nieto
- Department of Food Technology, Food Science and Nutrition, Faculty of Veterinary Sciences, Regional Campus of International Excellence "Campus Mare Nostrum", Espinardo, 30071 Murcia, Spain
| |
Collapse
|
15
|
Cardioprotective effect of thymol against adrenaline-induced myocardial injury in rats. Heliyon 2020; 6:e04431. [PMID: 32715125 PMCID: PMC7378581 DOI: 10.1016/j.heliyon.2020.e04431] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/12/2020] [Accepted: 07/08/2020] [Indexed: 02/08/2023] Open
Abstract
Cardiovascular disease represents a vital global disease burden. This study aims to assess the possible cardioprotective effect of thymol against adrenaline-induced myocardial injury (MI) in rats. Furthermore the effect of thymol on cardiac function biomarkers, electrocardiogram (ECG) alterations, oxidative stress, inflammation, apoptosis and histopathological changes was assessed. MI was induced by adrenaline (2 mg/kg, s.c.) injected as a single dose for 2 consecutive days (24 h apart). Normal and control groups received the vehicle for 21 consecutive days. The other 3 groups were orally administered thymol (15, 30, 60 mg/kg) for 21 consecutive days and on day 22, adrenaline was injected as a single dose for 2 consecutive days. Then ECG examination, biochemical, histopathological, immunohistochemical analyses were carried out. Thymol reversed adrenaline-induced reduction of heart rate, prolongation of RR interval and elevation of ST interval. Thymol pretreatment significantly reduced serum aspartate dehydrogenase (AST), lactate dehydrogenase (LDH), and creatine kinase (CK) levels in MI rats. Oral pretreatment with thymol increased reduced glutathione (GSH), reduced malondialdehyde (MDA), nuclear factor-kappa B (NF-κB), and interleukin-1β (IL-1β) cardiac contents in MI rats. Additionally, thymol administration significantly decreased protein expression of caspase-3, increased Bcl-2 protein expression in cardiac tissue and ameliorated histopathological changes. This study reveals that thymol exerted cardioprotective effect against adrenaline-induced MI in rats evidenced by improving cardiac function, attenuating ECG and histopathological changes which may be partly mediated through its anti-oxidant, anti-inflammatory and anti-apoptotic effect.
Collapse
|
16
|
Sun L, Hu Y, Mishra A, Sreeharsha N, Moktan JB, Kumar P, Wang L. Protective role of poly(lactic-co-glycolic) acid nanoparticle loaded with resveratrol against isoproterenol-induced myocardial infarction. Biofactors 2020; 46:421-431. [PMID: 31926035 DOI: 10.1002/biof.1611] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 11/28/2019] [Indexed: 02/06/2023]
Abstract
Our study is aimed at evaluating the effects of pretreatment with Poly(lactic-co-glycolic) acid nanoparticle loaded with resveratrol (RSV PLGA NPs) compared to conventional resveratrol (RSV) on isoproterenol (ISO) induced myocardial infarction (MI) in rats. Sixty rats were randomly divided into six groups of 10 rats each. RSV and RSV PLGA NPs were given by gavage in two different doses (50 mg/kg body weight [BW] and 100 mg/kg BW) for 3 weeks. RSV and RSV PLGA NPs were given for 2 weeks starting 1 week before ISO administration. The blood samples were taken 24 hr after the last dose of ISO. The antioxidant, anti-inflammatory, and cardioprotective effects were evaluated in all groups. Only 100 mg/kg dose of RSV and both doses of RSV PLGA NPs offered a cardioprotective effect by preventing cardiac troponin T (cTnT) levels, lactate dehydrogenase (LDH), and aspartate aminotransferase (AST) activities leakage from cardiomyocytes, with the best result for RSV PLGA NPs. All the oxidative stress parameters were significantly improved after RSV PLGA NPs compared to RSV pretreatment. RSV PLGA NPs were more efficient than RSV in limiting the increase in inflammatory cytokine expressions such as tumor necrosis factor-alpha (TNF-α), interleukin 1 beta (IL-1β), and NF-kappaB (NF-kB) expression. In addition, RSV PLGA NPs significantly upregulated eNOS expression and downregulated iNOS expression. RSV PLGA NPs better prevented myocardial necrosis and reduced interstitial edema and neutrophil infiltration than RSV, on histopathological examination. Therefore, improving the bioactivity of RSV by nanotechnology may help limit cardiac injury after myocardial infarction.
Collapse
Affiliation(s)
- Liqiang Sun
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan Province, China
| | - Yucai Hu
- Department of Cardiology, The First Affiliated Hospital of Henan University of CM, Zhengzhou City, Henan Province, China
| | - Anurag Mishra
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
| | - Nagaraja Sreeharsha
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Jeet B Moktan
- Department of Pharmacy Practice, Sri Adichunchanagiri College of Pharmacy, BG Nagara, Mandya, Karnataka, India
| | - Piyush Kumar
- Shikhar Institute of Pharmacy, Shekhupur, Budaun, Uttar Pradesh, India
| | - Lei Wang
- Department of Cardiology, Jinan Central Hospital Affiliated to Shandong University, Jinan City, Shandong Province, China
| |
Collapse
|
17
|
Cinar I, Halici Z, Dincer B, Sirin B, Cadirci E. The role of 5-HT7 receptors on isoproterenol-induced myocardial infarction in rats with high-fat diet exacerbated coronary endothelial dysfunction. Hum Exp Toxicol 2020; 39:1005-1018. [PMID: 32329363 DOI: 10.1177/0960327120916821] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The presence of 5-HT7r's in both human and rat cardiovascular and immune tissues and their contribution to inflammatory conditions prompted us to hypothesize that these receptors contribute in acute myocardial infarction (MI) with underlying chronic endothelial dysfunction. We investigated the role of 5-HT7 receptors on heart tissue that damaged by isoproterenol (ISO)-induced MI in rats with high-fat diet (HFD). In vitro and in vivo effects of 5-HT7r agonist (LP44) and antagonist (SB269970) have been investigated on the H9C2 cell line and rats, respectively. For in vivo analyses, rats were fed with HFD for 8 weeks and after this period ISO-induced MI model has been applied to rat. To investigate the role of 5-HT7r's, two different doses of LP44 and SB269970 were evaluated and compared with standard hypolipidemic agent, atorvastatin. In vitro studies showed that LP44 has protective and proliferative effects on rat cardiomyocytes. Also in in vivo studies stimulating 5-HT7r's by LP44 improved blood lipid profile (decreased total cholesterol, low-density lipoprotein-C, and triglyceride, increased high-density lipoprotein), decreased cardiac damage markers (creatine kinase and troponin-I), and corrected inflammatory status (tumor necrosis factor-α, interleukin-6). Our results showed significant improvement in LP44 administered rats in terms of histopathologic analyses. In damaged tissues, 5-HT7 mRNA expression increased and agonist administration decreased this elevation significantly. We determined for the first time that 5-HT7r's are overexpressed in ISO-induced MI of rats with underlying HFD-induced endothelial dysfunction. Restoration of this overexpression by LP44, a 5-HT7r agonist, ameliorated heart tissue in physiopathologic, enzymatic, and molecular level, showing the cardiac role of these receptors and suggesting them as future potential therapeutic targets.
Collapse
Affiliation(s)
- I Cinar
- Department of Pharmacology, Faculty of Medicine, Kafkas University, Kars, Turkey
| | - Z Halici
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - B Dincer
- Department of Pharmacology, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan, Turkey
| | - B Sirin
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| | - E Cadirci
- Department of Pharmacology, Faculty of Medicine, Ataturk University, Erzurum, Turkey
| |
Collapse
|
18
|
Arafa WM, Abolhadid SM, Moawad A, Abdelaty AS, Moawad UK, Shokier KAM, Shehata O, Gadelhaq SM. Thymol efficacy against coccidiosis in pigeon (Columba livia domestica). Prev Vet Med 2020; 176:104914. [PMID: 32066028 DOI: 10.1016/j.prevetmed.2020.104914] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 01/23/2020] [Accepted: 02/04/2020] [Indexed: 12/27/2022]
Abstract
Investigation of thymol efficacy to control pigeon coccidiosis was performed using in-vitro and in-vivo studies. The in-vitro experiment was conducted by treatment of unsporulated oocysts of Eimeria species of pigeon by five concentrations (0.625-10%) from either thymol, eucalyptus essential oil or amprolium anticoccidial drug and incubation for 72 h. The in-vitro study revealed that thymol concentrations ≥1.25 % caused significant deformity on sporulated and unsporulated oocysts compared to the other two products. Eucalyptus oil was active at both 5 and 10 % concentrations on unsporulated oocysts but showed non-significant changes on sporulated ones at all tested concentration. Meanwhile, in-vivo testing of thymol was conducted using 45 squabs which were equally divided into three groups; untreated uninfected (UU) negative control, untreated infected (UI) positive control and thymol treated (TT). TT group received 40 mg/kg BWt thymol in feed for 15 days. At day five post thymol supplementation, the UI and TT groups were orally infected by 25 × 103sporulated oocysts of pigeon Eimeria labbeana. The in-vivo study showed that thymol minimized the adverse effect of Eimeria infection in pigeon as observed by less severity of clinical signs, low oocysts count and improvement of body weight when compared with untreated infected birds. In addition, the biochemical parameters including liver and kidney functions tests proved thymol safety in pigeon. Moreover, thymol showed excellent antioxidant activity that was estimated by significantly lower value of malondialdehyde in TT than UI groups. The histopathological findings of TT group showed intact intestinal villi with mild sloughed epithelium, degenerated coccidian developmental stages and massive infiltrations of mononuclear cells in lamina propria. In conclusion, thymol can be safely used to control pigeon coccidiosis as a natural effective compound.
Collapse
Affiliation(s)
- Waleed M Arafa
- Department of Parasitology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Shawky M Abolhadid
- Department of Parasitology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt.
| | - Abeer Moawad
- Department of Pharmacognosy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62511, Egypt
| | | | - Usama K Moawad
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | | | - Olfat Shehata
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef 62511, Egypt
| | - Sahar M Gadelhaq
- Department of Parasitology, Faculty of Veterinary Medicine, Minia University, El-Minia, Egypt
| |
Collapse
|
19
|
Nagoor Meeran MF, Azimullah S, Laham F, Tariq S, Goyal SN, Adeghate E, Ojha S. α-Bisabolol protects against β-adrenergic agonist-induced myocardial infarction in rats by attenuating inflammation, lysosomal dysfunction, NLRP3 inflammasome activation and modulating autophagic flux. Food Funct 2020; 11:965-976. [DOI: 10.1039/c9fo00530g] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Emerging evidence demonstrates that NLRP3 inflammasome activation, lysosomal dysfunction, and impaired autophagic flux play a crucial role in the pathophysiology of myocardial infarction (MI).
Collapse
Affiliation(s)
- M. F. Nagoor Meeran
- Department of Pharmacology and Therapeutics
- College of Medicine and Health Sciences
- UAE University
- Al Ain
- United Arab Emirates
| | - Sheikh Azimullah
- Department of Pharmacology and Therapeutics
- College of Medicine and Health Sciences
- UAE University
- Al Ain
- United Arab Emirates
| | - Farah Laham
- Department of Pharmacology and Therapeutics
- College of Medicine and Health Sciences
- UAE University
- Al Ain
- United Arab Emirates
| | - Saeed Tariq
- Department of Anatomy
- College of Medicine and Health Sciences
- UAE University
- Al Ain
- United Arab Emirates
| | | | - Ernest Adeghate
- Department of Anatomy
- College of Medicine and Health Sciences
- UAE University
- Al Ain
- United Arab Emirates
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics
- College of Medicine and Health Sciences
- UAE University
- Al Ain
- United Arab Emirates
| |
Collapse
|
20
|
da Fonsêca DV, da Silva Maia Bezerra Filho C, Lima TC, de Almeida RN, de Sousa DP. Anticonvulsant Essential Oils and Their Relationship with Oxidative Stress in Epilepsy. Biomolecules 2019; 9:E835. [PMID: 31817682 PMCID: PMC6995584 DOI: 10.3390/biom9120835] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 11/23/2019] [Accepted: 11/26/2019] [Indexed: 12/16/2022] Open
Abstract
Epilepsy is a most disabling neurological disorder affecting all age groups. Among the various mechanisms that may result in epilepsy, neuronal hyperexcitability and oxidative injury produced by an excessive formation of free radicals may play a role in the development of this pathology. Therefore, new treatment approaches are needed to address resistant conditions that do not respond fully to current antiepileptic drugs. This paper reviews studies on the anticonvulsant activities of essential oils and their chemical constituents. Data from studies published from January 2011 to December 2018 was selected from the PubMed database for examination. The bioactivity of 19 essential oils and 16 constituents is described. Apiaceae and Lamiaceae were the most promising botanical families due to the largest number of reports about plant species from these families that produce anticonvulsant essential oils. Among the evaluated compounds, β-caryophyllene, borneol, eugenol and nerolidol were the constituents that presented antioxidant properties related to anticonvulsant action. These data show the potential of these natural products as health promoting agents and use against various types of seizure disorders. Their properties on oxidative stress may contribute to the control of this neurological condition. However, further studies on the toxicological profile and mechanism of action of essential oils are needed.
Collapse
Affiliation(s)
- Diogo Vilar da Fonsêca
- College of Medicine, Federal University of the Vale do São Francisco, Paulo Afonso, BA, CEP 48607-190, Brazil;
| | | | - Tamires Cardoso Lima
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, CEP 49100-000, Brazil;
| | - Reinaldo Nóbrega de Almeida
- Department of Physiology and Pathology, Universidade Federal da Paraíba, João Pessoa, PB, CEP 58051-970, Brazil;
| | - Damião Pergentino de Sousa
- Department of Pharmaceutical Sciences, Universidade Federal da Paraíba, João Pessoa, PB, CEP 58051-970, Brazil;
| |
Collapse
|
21
|
Tian QY, Piao XS. Essential Oil Blend Could Decrease Diarrhea Prevalence by Improving Antioxidative Capability for Weaned Pigs. Animals (Basel) 2019; 9:ani9100847. [PMID: 31640257 PMCID: PMC6826739 DOI: 10.3390/ani9100847] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Antibiotics have been applied as growth promoters in swine production for many years. Due to increased concern about drug resistance, there is an urgent need to find alternatives to antibiotics for animal production. Present research indicates that essential oils have a beneficial influence on animal nutrition and production due to the antimicrobial and antioxidant properties. Dietary essential oil supplementation could be an alternative to antibiotics for improving swine production and decreasing diarrhea prevalence during the weaning period. Abstract Finding an alternative to in-feed antibiotics is important because of increasing contemporary concern regarding drug residues and the development of drug-resistant bacteria. The purpose of this study was to test the hypothesis that essential oils added to the feed would decrease diarrhea prevalence in post-weaned pigs. Ninety weaned piglets (initial body weight (BW): 8.1 ± 1.4 kg) were randomly assigned to one of three dietary diets: (1) a control diet (CON, the basal diet without antibiotics), (2) an antibiotic diet (AB, CON supplemented with colistin sulfate, 20 mg/kg and bacitracin zinc, 40 mg/kg), or (3) an essential oil diet (EO, CON supplemented with an essential oil blend 100 mg/kg) in a completely randomized block design for a 28-day period. The results revealed that AB and EO improved the average daily gain of the piglets from day (d) 15 to 28 (p < 0.05). The diarrhea prevalence in piglets fed AB and EO was lower than that of piglets fed CON (p < 0.05). There was no significant difference in the growth performance or diarrhea prevalence between the AB and EO treatments. Nutrient digestibility was measured at d 28. Compared with CON, EO increased the apparent total tract digestibility of gross energy and crude protein (p < 0.05). Villus height in the duodenum and the ratio of villus height to crypt depth in the jejunum for piglets fed AB and EO was greater than those for piglets fed CON (p < 0.05). The essential oil blend improved the superoxide dismutase (SOD) and catalase (CAT) activities and total antioxidant capacity (T-AOC), but decreased the 8-hydroxy deoxyguanosine content in serum on d 14 (p < 0.05). Decreased malondialdehyde (MDA) and protein carbonyl content were observed on d 28 in comparison with CON (p < 0.05). The mucosa in the jejunum of pigs fed EO had greater T-AOC, SOD levels, and glutathione peroxidase (GSH-Px) activities than that of pigs fed CON (p < 0.05). Pigs fed EO and AB had greater GSH-Px activity in the liver tissue than pigs fed CON (p < 0.05). Not only did jejunal and ileal mucosa have EO upregulated SOD1 mRNA expression (p < 0.05), this was also the case in liver tissue. GPx1 expression in the ileal mucosa and GPx4 expression in the liver tissue were higher for pigs fed EO when compared to those fed CON (p < 0.05). Collectively, a dietary essential oil blend supplementation, which has natural antimicrobial properties, could enhance growth performance and decrease diarrhea prevalence in weaned pigs through increases in antioxidative capacity.
Collapse
Affiliation(s)
- Qi Yu Tian
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| | - Xiang Shu Piao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
22
|
Fernandez ME, Kembro JM, Ballesteros ML, Caliva JM, Marin RH, Labaque MC. Dynamics of thymol dietary supplementation in quail (Coturnix japonica): Linking bioavailability, effects on egg yolk total fatty acids and performance traits. PLoS One 2019; 14:e0216623. [PMID: 31071185 PMCID: PMC6508865 DOI: 10.1371/journal.pone.0216623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/24/2019] [Indexed: 01/16/2023] Open
Abstract
Phytogenic additives such as thymol are encountering growing interest in the poultry industry. However, there are still questions concerning dynamics of their bioavailability, biological action, optimal dosage and duration of supplementation needed to achieve meaningful effects, as well as persistence of induced changes after supplement withdrawal. We studied the link between the dynamics of free thymol concentration and the changes in fatty acids composition in quail egg yolk, both during a month-long chronic dietary supplementation and after 3 weeks of supplement withdrawal (post-supplementation). Fifty, 85 days-old, female quail of homogeneous body weights (251±1g) in egg-laying peak were used. To evaluate potential dose-dependent effects, three increasing doses 2, 4, and 6.25 g of thymol/kg of feed (THY2, THY4 and THY6, respectively) and two controls were evaluated (n = 10). In parallel, we assessed the concomitant changes in free thymol excretion, potential liver histopathological changes, and birds´ performance traits. Egg yolk and droppings show a dose-dependent increase in THY concentration after 9 days of supplementation and a decrease after post-supplementation. In egg yolk, these changes were accompanied by reduced saturated fatty acid concentrations achieved by 28 days of supplementation in THY2 and 14 days of supplementation in THY4 and THY6. However, after post-supplementation the aforementioned effect disappeared in THY2 but not in THY4 and THY6. While THY2 failed to increase polyunsaturated fatty acids, THY4 and THY6 increased polyunsaturated fatty acids by day 14 of supplementation and remained increased after post-supplementation. Fatty acids changes induced by thymol are consistent with improved nutritional quality of eggs. No treatment effects were observed in liver histopathology and female performance. Findings suggest that both dose of thymol and duration of supplementation modulate thymol and fatty acids concentrations in egg yolk and thymol concentration in droppings. Furthermore, the persistence of those effects after post-supplementation period is also a dose-dependent phenomenon.
Collapse
Affiliation(s)
- Maria E. Fernandez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Córdoba, Argentina
| | - Jackelyn M. Kembro
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Cátedra de Química Biológica, Córdoba, Argentina
- * E-mail: (MCL); (JMK)
| | - Maria L. Ballesteros
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecología Animal (IDEA), Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Cátedra de Diversidad Animal II, Córdoba, Argentina
| | - Jorge M. Caliva
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Córdoba, Argentina
| | - Raul H. Marin
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Cátedra de Química Biológica, Córdoba, Argentina
| | - Maria C. Labaque
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Biológicas y Tecnológicas (IIByT), Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Instituto de Ciencia y Tecnología de los Alimentos (ICTA), Córdoba, Argentina
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Cátedra de Ecología, Córdoba, Argentina
- * E-mail: (MCL); (JMK)
| |
Collapse
|
23
|
Guesmi F, Khantouche L, Mehrez A, Bellamine H, Landoulsi A. Histopathological and Biochemical Effects of Thyme Essential Oil on H 2O 2 Stress in Heart Tissues. Heart Lung Circ 2019; 29:308-314. [PMID: 30718156 DOI: 10.1016/j.hlc.2018.12.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 12/04/2018] [Accepted: 12/14/2018] [Indexed: 01/04/2023]
Abstract
BACKGROUND Thymus algeriensis (T. algeriensis) is traditionally used in Tunisia to treat many human diseases. The aim of the present study was to investigate whether terpenes extracted from the aerial parts of T. algeriensis are potent cardioprotective agents for hydrogen peroxide (H2O2)-induced cardiotoxicity in rats. METHOD Thirty (30) rats were divided into six groups as per the experimental design: control (n = 6); 0.1 mmol/L H2O2 (LD H2O2) (n = 6); 1 mmol/L H2O2 (HD H2O2) (n = 6); oily fraction of T. algeriensis (OFTS) (180 mg/kg b.wt) (n = 6); OFTS + 0.1 mmol/L H2O2 (n = 6); and OFTS + 1 mmol/L H2O2 (n = 6). RESULTS The H2O2 demonstrated concentration-dependent cardiotoxic effects in vitro. While, exposure of rats to OFTS significantly depleted H2O2-induced protein oxidation and lipid peroxidation, it raised antioxidant defence enzymes, and protected against H2O2-induced histopathological alterations. The antioxidant potential of the thyme essence was assessed by both enzymatic and non-enzymatic antioxidants. CONCLUSION In conclusion, OFTS may be a potential compound for the therapy of oxidative stress-induced heart disease.
Collapse
Affiliation(s)
- Fatma Guesmi
- Faculty of Sciences of Bizerte, Bizerte, Tunisia.
| | - Linda Khantouche
- Preparatory Institute for Scientific and Technical Studies, La Marsa, 2075, Tunisia
| | - Amel Mehrez
- Faculty of Sciences of Bizerte, Bizerte, Tunisia
| | - Houda Bellamine
- Service of Anatomo-Pathology of Menzel Bourguiba, Bizerte, Tunisia
| | | |
Collapse
|
24
|
Khajavi Rad A, Mohebbati R. Zataria multiflora extract and carvacrol affect cardiotoxicity induced by Adriamycin in rat. J Basic Clin Physiol Pharmacol 2018; 30:73-79. [PMID: 30110251 DOI: 10.1515/jbcpp-2018-0008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
Background Because of the antioxidant effects of Zataria multiflora (ZM) and carvacrol (CAR) and also the role of oxidative stress in the induction of cardiotoxicity induced by Adriamycin (ADR), the aim of this study was to investigate the improvement effects of ZM extract and CAR on cardiotoxicity induced by ADR in rats. Methods Twenty-eight male rats were randomly assigned to four groups including (1) the control group; (2) the ADR group, which received ADR intravenously at the beginning of the study and the (3) ZM+ADR and (4) CAR+ADR groups, which received ZM and CAR by gavage for 28 consecutive days and ADR as single dose. Blood samples were collected on days 0 and 28 to determine serum glutamic oxaloacetic transaminase (SGOT), serum glutamic pyruvic transaminase (SGPT) and lactate dehydrogenase (LDH). Also, cardiac tissue was removed for redox marker evaluation. Results In the ADR group, malondialdehyde (MDA) significantly increased and superoxide dismutase (SOD) activity and total thiol contents significantly reduced, as compared with the control group, while CAR administration significantly improved this condition. Treatment with ZM significantly increased the SOD activity and total thiol content, as compared with the ADR group. The level of LDH significantly increased on day 28 in the ADR group compared to the control group, and administration of ZM and CAR significantly decreased it. The SGPT and SGOT levels in the ADR group significantly increased, and CAR administration significantly reduced them. Conclusion The results indicate that the administration of ZM hydroalcoholic extracts and its active ingredient, CAR, could reduce the oxidative stress damage through promotion of the cardiac and systemic antioxidant system. Also, CAR administration demonstrated better improvement in cardiotoxicity with ADR in rats.
Collapse
Affiliation(s)
- Abolfazl Khajavi Rad
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reza Mohebbati
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran, Phone: +985138828565, Fax: +985138828564, E-mail:
| |
Collapse
|
25
|
Geyikoglu F, Yilmaz EG, Erol HS, Koc K, Cerig S, Ozek NS, Aysin F. Hepatoprotective Role of Thymol in Drug-Induced Gastric Ulcer Model. Ann Hepatol 2018; 17:980-991. [PMID: 30600301 DOI: 10.5604/01.3001.0012.7198] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION AND AIM Indo is widely one of the non-steroidal anti-inflammatory drugs and one of the common toxic effects of this drug is hepatic failure. Thymol is a monoterpene phenol with many different pharmacological activities. However, up to now its hepatoprotective effects on Indo-induced gastric ulcer model in rats have not been explored yet. MATERIAL AND METHODS Thirty five Sprague-Dawley rats were divided into seven groups: control, ulcer control (30 mg/kg Indo), Indo + reference standard (50 mg/kg Rantidine), Indo + Thymol (75, 100, 250 and 500 mg/kg) groups. 10 minutes after the induction of ulcer with Indo; Thymol was orally administered to the rats. Liver function enzymes (AST, ALT and LDH) were measured from serum samples. TOS/TAC, TNF-α and PGE2 levels, eNOS and Caspase-3 activity were assessed from tissue homogenate samples. In addition, histopathologic analysis on liver sections was performed. RESULTS Indo significantly increased the levels of hepatic enzymes, TNF-α and eNOS, and caspase-3 activation, while decreased PGE2 levels. Furthermore, it induced oxidative stress as evidenced by elevated TOS and decreased TAC levels. However, Thymol treatment induced a significant improvement in these parameters, especially in 250 mg/kg dose. On the other hand, treatment with Thymol 500 mg/kg dramatically affected the parameters much worse than the Indo treated group. CONCLUSION The findings of the current study demonstrated that Thymol administration significantly ameliorated liver injury due to Indo toxicity. This effect of Thymol (250 mg/kg) may be mediated by its anti-oxidative or anti-inflammatory effect, and up-regulation the synthesis of PGE2.
Collapse
Affiliation(s)
- Fatime Geyikoglu
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, TURKEY
| | - Elif Gülcan Yilmaz
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, TURKEY
| | - Huseyin Serkan Erol
- Department of Biochemistry, Faculty of Veterinary, Ataturk University, Erzurum, TURKEY
| | - Kubra Koc
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, TURKEY
| | - Salim Cerig
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, TURKEY
| | - Nihal Simsek Ozek
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, TURKEY
| | - Ferhunde Aysin
- Department of Biology, Faculty of Science, Ataturk University, Erzurum, TURKEY
| |
Collapse
|
26
|
Meeran MFN, Laham F, Al-Taee H, Azimullah S, Ojha S. Protective effects of α-bisabolol on altered hemodynamics, lipid peroxidation, and nonenzymatic antioxidants in isoproterenol-induced myocardial infarction: In vivo and in vitro evidences. J Biochem Mol Toxicol 2018; 32:e22200. [DOI: 10.1002/jbt.22200] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/26/2018] [Accepted: 07/06/2018] [Indexed: 01/31/2023]
Affiliation(s)
- Mohamed Fizur Nagoor Meeran
- Department of Pharmacology and Therapeutics; College of Medicine and Health Sciences, UAE University; Al Ain Abu Dhabi UAE
| | - Farah Laham
- Department of Pharmacology and Therapeutics; College of Medicine and Health Sciences, UAE University; Al Ain Abu Dhabi UAE
| | - Hasan Al-Taee
- Department of Pharmacology and Therapeutics; College of Medicine and Health Sciences, UAE University; Al Ain Abu Dhabi UAE
| | - Sheikh Azimullah
- Department of Pharmacology and Therapeutics; College of Medicine and Health Sciences, UAE University; Al Ain Abu Dhabi UAE
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics; College of Medicine and Health Sciences, UAE University; Al Ain Abu Dhabi UAE
| |
Collapse
|
27
|
Salehi B, Mishra AP, Shukla I, Sharifi-Rad M, Contreras MDM, Segura-Carretero A, Fathi H, Nasrabadi NN, Kobarfard F, Sharifi-Rad J. Thymol, thyme, and other plant sources: Health and potential uses. Phytother Res 2018; 32:1688-1706. [DOI: 10.1002/ptr.6109] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center; Shahid Beheshti University of Medical Sciences; Tehran Iran
- Student Research Committee; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Abhay Prakash Mishra
- Faculty of Pharmaceutical Chemistry; H. N. B. Garhwal University; Srinagar Garhwal 246174 India
| | - Ila Shukla
- Pharmacognosy and Ethnopharmacology Division; CSIR-National Botanical Research Institute; Lucknow 226001 India
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology; Zabol University of Medical Sciences; Zabol 61663-335 Iran
| | - María del Mar Contreras
- Departamento de Ingeniería Química, Ambiental y de los Materiales; Universidad de Jaén; Jaén Spain
| | - Antonio Segura-Carretero
- Department of Analytical Chemistry, Faculty of Sciences; University of Granada; Avda. Fuentenueva s/n Granada 18071 Spain
- Research and Development Functional Food Centre (CIDAF); Bioregión Building, Health Science Technological Park; Avenida del Conocimiento s /n Granada Spain
| | - Hannane Fathi
- Department of Medicinal Chemistry, School of Pharmacy; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Nafiseh Nasri Nasrabadi
- Pharmaceutical Sciences Research Centre, School of Pharmacy; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Farzad Kobarfard
- Department of Medicinal Chemistry, School of Pharmacy; Shahid Beheshti University of Medical Sciences; Tehran Iran
- Phytochemistry Research Center; Shahid Beheshti University of Medical Sciences; Tehran Iran
| | - Javad Sharifi-Rad
- Phytochemistry Research Center; Shahid Beheshti University of Medical Sciences; Tehran Iran
- Department of Chemistry, Richardson College for the Environmental Science Complex; The University of Winnipeg; 599 Portage Avenue Winnipeg MB R3B 2G3 Canada
| |
Collapse
|
28
|
Jafari A, Rasmi Y, Hajaghazadeh M, Karimipour M. Hepatoprotective effect of thymol against subchronic toxicity of titanium dioxide nanoparticles: Biochemical and histological evidences. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 58:29-36. [PMID: 29289817 DOI: 10.1016/j.etap.2017.12.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/16/2017] [Accepted: 12/16/2017] [Indexed: 05/28/2023]
Abstract
The study was aimed to investigate the protective action of thymol against nano titanium dioxide (nano-TiO2) induced hepatotoxicity in rats. To achieve this purpose, the rats were divided into four groups (n = 6) including control, nano-TiO2 (100 mg/kg), nano-TiO2 + thymol (10 mg/kg) and nano-TiO2 + thymol (30 mg/kg). Intragastric (IG) administration of nano-TiO2 for 60 consecutive days caused widespread histological changes and significantly induced oxidative stress in the liver tissues as manifested by the rise in serum transaminase activities accompanied by marked decline of enzymatic (catalase, superoxide dismutase and glutathione peroxidase) and non-enzymatic (ferric reducing antioxidant power and glutathione) antioxidant levels, and rise of malondialdehyde levels in liver tissue. Pretreatment with thymol (IG) prior to nano-TiO2 administration significantly ameliorated all of biochemical and histopathological alterations in a dose-dependent manner. In conclusion, thymol effectively protects against nano-TiO2-induced hepatotoxicity in rats by its antioxidant properties.
Collapse
Affiliation(s)
- Abbas Jafari
- Department of Occupational Health, Faculty of Health, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Rasmi
- Department of Biochemistry, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Hajaghazadeh
- Department of Occupational Health, Faculty of Health, Urmia University of Medical Sciences, Urmia, Iran
| | - Mojtaba Karimipour
- Department of Anatomy and Histology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
29
|
Ashokkumar R, Jamuna S, Sakeena Sadullah M, Niranjali Devaraj S. Vitexin protects isoproterenol induced post myocardial injury by modulating hipposignaling and ER stress responses. Biochem Biophys Res Commun 2018; 496:731-737. [DOI: 10.1016/j.bbrc.2018.01.104] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 01/16/2018] [Indexed: 12/20/2022]
|
30
|
Nagoor Meeran MF, Javed H, Al Taee H, Azimullah S, Ojha SK. Pharmacological Properties and Molecular Mechanisms of Thymol: Prospects for Its Therapeutic Potential and Pharmaceutical Development. Front Pharmacol 2017; 8:380. [PMID: 28694777 PMCID: PMC5483461 DOI: 10.3389/fphar.2017.00380] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Accepted: 05/31/2017] [Indexed: 12/22/2022] Open
Abstract
Thymol, chemically known as 2-isopropyl-5-methylphenol is a colorless crystalline monoterpene phenol. It is one of the most important dietary constituents in thyme species. For centuries, it has been used in traditional medicine and has been shown to possess various pharmacological properties including antioxidant, free radical scavenging, anti-inflammatory, analgesic, antispasmodic, antibacterial, antifungal, antiseptic and antitumor activities. The present article presents a detailed review of the scientific literature which reveals the pharmacological properties of thymol and its multiple therapeutic actions against various cardiovascular, neurological, rheumatological, gastrointestinal, metabolic and malignant diseases at both biochemical and molecular levels. The noteworthy effects of thymol are largely attributed to its anti-inflammatory (via inhibiting recruitment of cytokines and chemokines), antioxidant (via scavenging of free radicals, enhancing the endogenous enzymatic and non-enzymatic antioxidants and chelation of metal ions), antihyperlipidemic (via increasing the levels of high density lipoprotein cholesterol and decreasing the levels of low density lipoprotein cholesterol and low density lipoprotein cholesterol in the circulation and membrane stabilization) (via maintaining ionic homeostasis) effects. This review presents an overview of the current in vitro and in vivo data supporting thymol's therapeutic activity and the challenges concerning its use for prevention and its therapeutic value as a dietary supplement or as a pharmacological agent or as an adjuvant along with current therapeutic agents for the treatment of various diseases. It is one of the potential candidates of natural origin that has shown promising therapeutic potential, pharmacological properties and molecular mechanisms as well as pharmacokinetic properties for the pharmaceutical development of thymol.
Collapse
Affiliation(s)
- Mohamed Fizur Nagoor Meeran
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Hayate Javed
- Department of Biochemistry, College of Medicine and Health Science, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Hasan Al Taee
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Sheikh Azimullah
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates UniversityAl Ain, United Arab Emirates
| | - Shreesh K. Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Science, United Arab Emirates UniversityAl Ain, United Arab Emirates
| |
Collapse
|
31
|
Ahmed SM, Abdelrahman SA, Salama AE. Efficacy of gold nanoparticles against isoproterenol induced acute myocardial infarction in adult male albino rats. Ultrastruct Pathol 2017; 41:168-185. [PMID: 28277146 DOI: 10.1080/01913123.2017.1281367] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
This study was undertaken to investigate the role of gold nanoparticles (GNPs) of 50 nm diameter on isoproterenol (ISO) induced acute myocardial infarction in adult male albino rats. Forty five adult Wistar male albino rats were equally divided into three groups. Control (group I) was further subdivided into three subgroups. In group II, the rats received ISO subcutaneously at a dose of 100 mg/kg for three days. In group III, rats received ISO as group II and then GNPs (400 μg/kg/day) intravenously for 14 consecutive days. Echocardiography was performed. Left ventricular specimens were prepared for H&E, van Gieson staining, immunohistochemical analysis for (eNOs and Bcl-2), and Electron microscope examination. Energy dispersive X-ray microanalysis was also performed. Cardiac markers such as creatine Kinase-MB (CK-MB), alanine aminotransferase (ALT), aspartate aminotransferase (AST), and cardiac troponin T (cTnT) were measured. Group II revealed cardiomyocytes with deeply stained acidophilic cytoplasm, small dark nuclei, intracellular vacuolations, wide intercellular spaces, and extravasated red blood cells. Increased collagen fibers were observed. Electron microscope examination showed cardiomyocyte with small and irregular outlined nuclei, mitochondria with irregular cristae and others with ruptured mitochondrial membrane, abnormal alignment of myofibrils, dilated cisternae of smooth endoplasmic reticulum, and disorganized intercalated discs. Group III showed that most cardiomyocytes preserved the normal architecture. Increased expression of eNOs immunoreaction and decreased Bcl-2 immunoreaction were detected in group II as compared to the control and GNP-treated groups. These findings suggested that GNPs of 50 nm diameter improved myocardial injury after ISO-induced myocardial infarction in rats. ABBREVIATIONS Myocardial infarction (MI), Isoproterenol (ISO), Nitric oxide (NO), Neuronal NOS (nNOs), Endothelial NOs (eNOs), Gold nanoparticle (GNPs), Diamiobenzidine (DAB), Serum Creatine Kinase-MB (CK-MB), Alanine aminotransferase (ALT), Cardiac troponin T (cTnT), Electrochemiluminiscence (ECLIA), Cardiomyocytes (CMC), Peroxisomal proliferator activated receptor (PPARs), Reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Samah M Ahmed
- a Histology and Cell Biology Department, Faculty of Human Medicine , Zagazig University , Zagazig , Egypt
| | - Shaimaa Ali Abdelrahman
- a Histology and Cell Biology Department, Faculty of Human Medicine , Zagazig University , Zagazig , Egypt
| | | |
Collapse
|
32
|
Antioxidation Role of Different Lateral Stellate Ganglion Block in Isoproterenol-Induced Acute Myocardial Ischemia in Rats. Reg Anesth Pain Med 2017; 42:588-599. [DOI: 10.1097/aap.0000000000000647] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
33
|
Bai Y, Chang J, Xu Y, Cheng D, Liu H, Zhao Y, Yu Z. Antioxidant and Myocardial Preservation Activities of Natural Phytochemicals from Mung Bean (Vigna radiata L.) Seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:4648-4655. [PMID: 27184346 DOI: 10.1021/acs.jafc.6b01538] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Mung bean (Vigna radiata L.) seeds (MBS) contain abundant nutrients with biological activities. This study was aimed to isolate key bioactive components from MBS with antioxidant and myocardial preservation activities. A new flavonoid C-glycoside, isovitexin-6″-O-α-l-glucoside, and 14 known compounds were obtained. Their structures were identified by extensive 1D and 2D NMR and FT-ICR-MS spectroscopic analyses. The antioxidant activities of these compounds were evaluated. Compounds 1-5 and 7-10 displayed 2,2'-azinobis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS(•+)) scavenging activity, but only 5 and 7 exhibited 2,2-diphenyl-1-picrylhydrazyl (DPPH(•)) scavenging activity. The myocardial preservation effect of 2, 3, and MBS were investigated by measuring the serum levels of LDH, CK, and AST as well as the tissue level of MDA and SOD. The results demonstrated that 2, 3, and MBS had a significant protective effect against ISO-induced myocardial ischemia. MBS can be regarded as a potential new source of antioxidants and myocardial preservation agents.
Collapse
Affiliation(s)
- Yan Bai
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University , Shenyang 110016, China.
| | - Jiawei Chang
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University , Shenyang 110016, China.
| | - Yan Xu
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University , Shenyang 110016, China.
| | - Dan Cheng
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University , Shenyang 110016, China.
| | - Hongxin Liu
- Dalian Weida Pharmacy Co., Limited , 12-7 Zhuhai Street, Xigang District, Dalian 116011, China
| | - Yunli Zhao
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University , Shenyang 110016, China.
| | - Zhiguo Yu
- Department of Pharmaceutical Analysis, School of Pharmacy, Shenyang Pharmaceutical University , Shenyang 110016, China.
| |
Collapse
|
34
|
Meeran MN, Jagadeesh G, Selvaraj P. Synthetic catecholamine triggers β1-adrenergic receptor activation and stimulates cardiotoxicity via oxidative stress mediated apoptotic cell death in rats: Abrogating action of thymol. Chem Biol Interact 2016; 251:17-25. [DOI: 10.1016/j.cbi.2016.03.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/01/2016] [Accepted: 03/15/2016] [Indexed: 01/30/2023]
|
35
|
Cornaghi L, Arnaboldi F, Calò R, Landoni F, Baruffaldi Preis WF, Marabini L, Donetti E. Effects of UV Rays and Thymol/Thymus vulgaris L. Extract in an ex vivo Human Skin Model: Morphological and Genotoxicological Assessment. Cells Tissues Organs 2016; 201:180-92. [PMID: 27023828 DOI: 10.1159/000444361] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2016] [Indexed: 11/19/2022] Open
Abstract
Ultraviolet (UV) radiation is the major environmental factor affecting functions of the skin. Compounds rich in polyphenols, such as Thymus vulgaris leaf extract and thymol, have been proposed for the prevention of UV-induced skin damage. We compared the acute effects induced by UVA and UVB rays on epidermal morphology and proliferation, cytotoxicity, and genotoxicity. Normal human skin explants were obtained from young healthy women (n = 7) after informed consent and cultured at the air-liquid interface overnight. After 24 h, the samples were divided in 2 groups: the former exposed to UVA (16 or 24 J/cm2) and the latter irradiated with UVB (0.24 or 0.72 J/cm2). One hour after the end of irradiation, supernatants were collected for evaluation of the lactate dehydrogenase activity. Twenty-four hours after UVB exposure, biopsies were processed for light and transmission electron microscopy analysis, proliferation, cytotoxicity, and genotoxicity. UVB and UVA rays induced early inhibition of cell proliferation and DNA damage compared to controls. In particular, UVB rays were always more cytotoxic and genotoxic than UVA ones. For this reason, we evaluated the effect of either T. vulgaris L. extract (1.82 µg/ml) or thymol (1 µg/ml) on all samples treated for 1 h before UVB irradiation. While Thymus had a protective action for all of the endpoints evaluated, the action of the extract was less pronounced on epidermal proliferation and morphological features. The results presented in this study could be the basis for investigating the mechanism of thymol and T. vulgaris L. extract against the damage induced by UV radiation.
Collapse
|
36
|
Jagadeesh GS, Nagoor Meeran MF, Selvaraj P. Activation of β1-adrenoceptor triggers oxidative stress mediated myocardial membrane destabilization in isoproterenol induced myocardial infarcted rats: 7-hydroxycoumarin and its counter action. Eur J Pharmacol 2016; 777:70-7. [PMID: 26930228 DOI: 10.1016/j.ejphar.2016.02.063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 12/25/2022]
Abstract
Activation of β1-adrenoceptor stimulates myocardial membrane destabilization in isoproterenol induced rats. Male albino Wistar rats were pre and co-treated with 7-hydroxycoumarin (16mg/kg body weight) daily for 8 days. Myocardial infarction was induced into rats by the subcutaneous administration of isoproterenol (100mg/kg body weight) at an interval of 24h daily for a period of two days (7th and 8th day). The levels/activities of serum cardiac troponin-T, lactate dehydrogenase and the concentrations of heart lipid peroxidation products were significantly increased and the antioxidant status was significantly decreased in isoproterenol induced rats. Furthermore, the activity of sodium/potassium-dependent adenosine triphosphatase was significantly decreased and the activities of calcium and magnesium-dependent adenosine triphosphatases were significantly increased in the heart of isoproterenol induced myocardial infarcted rats. Isoproterenol induced rats also revealed increased concentrations of sodium and calcium and decreased concentrations of potassium in the heart. 7-hydroxycoumarin pre- and co-treatment showed considerable impact on all biochemical parameters assessed. Also, 7-HC greatly reduced the infarct size of the myocardium. The in vitro study confirmed its potent free radical scavenging activity. Thus, the present study revealed that 7-HC attenuates myocardial membrane destabilization by reinstating the activities/levels of adenosine triphosphatases and minerals in isoproterenol induced rats by inhibiting oxidative stress. These effects are attributed to the membrane stabilizing and free radical scavenging properties of 7-hydroxycoumarin.
Collapse
Affiliation(s)
- Govindan Sangaran Jagadeesh
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India
| | - Mohamed Fizur Nagoor Meeran
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India
| | - Palanisamy Selvaraj
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar 608 002, Tamil Nadu, India.
| |
Collapse
|
37
|
Thymol, a dietary monoterpene phenol abrogates mitochondrial dysfunction in β-adrenergic agonist induced myocardial infarcted rats by inhibiting oxidative stress. Chem Biol Interact 2016; 244:159-68. [DOI: 10.1016/j.cbi.2015.12.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/04/2015] [Accepted: 12/14/2015] [Indexed: 12/22/2022]
|
38
|
Saravanan S, Pari L. Protective effect of thymol on high fat diet induced diabetic nephropathy in C57BL/6J mice. Chem Biol Interact 2015; 245:1-11. [PMID: 26680107 DOI: 10.1016/j.cbi.2015.11.033] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 11/23/2015] [Accepted: 11/30/2015] [Indexed: 12/15/2022]
Abstract
Obesity is one of several factors implicated in chronic kidney disease (CKD). Thymol, a monoterpene phenolic compound found in the oils of thyme with multiple biological properties especially antidiabetic activity. The present study was undertaken to evaluate the thymol against diabetic nephropathy by high fat diet (HFD)-induced diabetic C57BL/6J mice. After 10 weeks of continuous dietary intervention, HFD (fat- 35.2%) to mice presented characteristic features of progressive nephropathy by significant increased in kidney weight, blood, and urinary parameters, glomerulosclerosis, oxidative stress, hyperlipidemia and subsequent renal injuries. After intragastric administration of thymol (40 mg/kg BW) daily for the subsequent 5 weeks significantly decreased the blood, urinary parameters and kidney weight. Thymol inhibited the activation of transforming growth factor-β1 (TGF-β1) and vascular endothelial growth factor (VEGF). Also, significantly increased the antioxidants and suppresses the lipid peroxidation markers in erythrocytes and kidney tissue compared to the diabetic mice. Thymol downregulated the expression level of sterol regulatory element binding protein-1c (SREBP-1c) and reduced the lipid accumulation in renal. Histopathological study of kidney tissues showed that extracellular mesangial matrix expansion, glomerulosclerosis in diabetic mice were suppressed by thymol. Further, our results indicate that administration of thymol afforded remarkable protection against HFD-induced diabetic nephropathy.
Collapse
Affiliation(s)
- Settu Saravanan
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India
| | - Leelevinothan Pari
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, 608 002, Tamil Nadu, India.
| |
Collapse
|
39
|
Jagadeesh GS, Nagoor Meeran MF, Selvaraj P. Protective Effects of 7-Hydroxycoumarin on Dyslipidemia and Cardiac Hypertrophy in Isoproterenol-Induced Myocardial Infarction in Rats. J Biochem Mol Toxicol 2015; 30:120-7. [DOI: 10.1002/jbt.21770] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 08/31/2015] [Accepted: 09/10/2015] [Indexed: 11/12/2022]
Affiliation(s)
| | - M. F. Nagoor Meeran
- Department of Biochemistry and Biotechnology; Annamalai University; Annamalai Nagar- 608 002 India
| | - Palanisamy Selvaraj
- Department of Biochemistry and Biotechnology; Annamalai University; Annamalai Nagar- 608 002 India
| |
Collapse
|
40
|
Mishra RK, Baker MT. Seizure prevention by the naturally occurring phenols, carvacrol and thymol in a partial seizure-psychomotor model. Bioorg Med Chem Lett 2015; 24:5446-9. [PMID: 25454269 DOI: 10.1016/j.bmcl.2014.10.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/03/2014] [Accepted: 10/08/2014] [Indexed: 11/25/2022]
Abstract
The natural compounds carvacrol and thymol completely prevented seizures in the 6 Hz, 32 mA partial seizure model. Carvacrol and thymol, both exhibited an ED₅₀ = 35.8 mg/kg, ip and yielded protective indices of 5.3 and 3.4, respectively. At 44 mA current intensity, carvacrol and thymol exhibited ED₅₀s of 88.82 mg/kg (PI = 2.15) and 73.0 mg/kg (PI = 1.65), respectively. Thymol, but not carvacrol showed partial inhibitory activity in the maximal electroshock (MES), sc Metrazol (scMET) and Corneal-kindled models. These results suggest that carvacrol and thymol are more efficacious anticonvulsants than suggested by their lower efficacies in the conventional MES and scMET tests.
Collapse
|
41
|
Calò R, Visone CM, Marabini L. Thymol and Thymus Vulgaris L. activity against UVA- and UVB-induced damage in NCTC 2544 cell line. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 791:30-7. [DOI: 10.1016/j.mrgentox.2015.07.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/09/2015] [Accepted: 07/21/2015] [Indexed: 12/31/2022]
|
42
|
Role of thymol on hyperglycemia and hyperlipidemia in high fat diet-induced type 2 diabetic C57BL/6J mice. Eur J Pharmacol 2015; 761:279-87. [PMID: 26007642 DOI: 10.1016/j.ejphar.2015.05.034] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 04/06/2015] [Accepted: 05/11/2015] [Indexed: 11/20/2022]
Abstract
Thymol is a monoterpene phenol with many pharmacological activities, but their anti- hyperglycemic and anti-hyperlipidemic activities are not yet explored. This study evaluates the beneficial effects of thymol on plasma, hepatic lipids and hyperglycaemic effects in high-fat diet (HFD) induced type 2 diabetes in C57BL/6J mice. These mice were fed continuously with high fat diet (fat- 35.8%) for 10 weeks and subjected to intragastric administration of various doses (10mg, 20mg and 40mg/kg body weight (BW)) of thymol daily for the subsequent 5 weeks. Body weight (BW), food intake, plasma glucose, insulin, insulin resistance, HbA1c, leptin and adiponectin were significantly decreased and there was an increase in food efficacy ratio. Thymol supplementation were significantly lowered the concentration of plasma triglyceride (TG), total cholesterol (TC), free fatty acids (FFAs), low density lipoprotein (LDL) and increased high density lipoprotein (HDL) cholesterol as compared to the HFD induced diabetic group due to lipid enzymatic activity. Also, the hepatic lipid contents such as triglycerides, total cholesterol, free fatty acid and phospholipids (PL) were significantly lowered in the thymol supplemented groups. As compared to other two tested doses of 10mg and 20mg, thymol (40mg/kg BW) were showed significant protective effect on the parameters studied. Thus, indicate thymol protects C57BL/6J mice against HFD due to its anti-hyperglycaemic and anti-hyperlipidemic activity. The above outcome concludes that thymol may exhibit promising anti-diabetic activity.
Collapse
|
43
|
Kim DY, Won KJ, Yoon MS, Yu HJ, Park JH, Kim B, Lee HM. Chrysanthemum boreale flower floral water inhibits platelet-derived growth factor-stimulated migration and proliferation in vascular smooth muscle cells. PHARMACEUTICAL BIOLOGY 2015; 53:725-734. [PMID: 25330930 DOI: 10.3109/13880209.2014.941882] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
CONTEXT Chrysanthemum boreale Makino (Compositae) (CBM) is a traditional medicine that has been used for the prevention or treatment of various disorders; it has various properties including antioxidation, anti-inflammation, and antitumor. OBJECTIVE The present study was designed to explore the in vitro effect of CBM flower floral water (CBMFF) on atherosclerosis-related responses in rat aortic smooth muscle cells (RASMCs). MATERIALS AND METHODS CBMFF was extracted from CBM flower by steam distillation and analyzed using gas chromatography-mass spectrometry. The anti-atherosclerosis activity of CBMFF was tested by estimating platelet-derived growth factor (PDGF)-BB (10 ng/mL)-induced proliferation and migration levels and intracellular kinase pathways in RASMCs at CBMFF concentrations of 0.01-100 μM and analyzing ex vivo aortic ring assay. RESULTS Gas chromatography-mass spectrometry showed that the CBMFF contained a total of seven components. The CBMFF inhibits PDGF-BB-stimulated RASMC migration and proliferation (IC50: 0.010 μg/mL). Treatment of RASMCs with PDGF-BB induced PDGFR-β phosphorylation and increased the phosphorylations of MAPK p38 and ERK1/2. CBMFF addition prevented PDGF-BB-induced phosphorylation of these kinases (IC50: 008 and 0.018 μg/mL, for p38 MAPK and ERK1/2, respectively), as well as PDGFR-β (IC50: 0.046 μg/mL). Treatment with inhibitors of PDGFR, P38 MAPK, and ERK1/2 decreased PDGF-BB-increased migration and proliferation in RASMCs. Moreover, the CBMFF suppressed PDGF-BB-increased sprout outgrowth of aortic rings (IC50: 0.047 μg/mL). DISCUSSION AND CONCLUSION These results demonstrate that CBMFF may inhibit PDGF-BB-induced vascular migration and proliferation, most likely through inhibition of the PDGFR-β-mediated MAPK pathway; therefore, the CBMFF may be promising candidate for the development of herbal remedies for vascular disorders.
Collapse
MESH Headings
- Animals
- Cell Movement/drug effects
- Cell Movement/physiology
- Cell Proliferation/drug effects
- Cell Proliferation/physiology
- Cells, Cultured
- Chrysanthemum
- Dose-Response Relationship, Drug
- Flowers
- Male
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Plant Extracts/isolation & purification
- Plant Extracts/pharmacology
- Platelet-Derived Growth Factor/antagonists & inhibitors
- Platelet-Derived Growth Factor/pharmacology
- Rats
- Rats, Sprague-Dawley
- Water/pharmacology
Collapse
Affiliation(s)
- Do-Yoon Kim
- Department of Cosmetic Science, College of Natural Science, Hoseo University , Asan, Chungnam Prefecture , Republic of Korea and
| | | | | | | | | | | | | |
Collapse
|
44
|
EM ES, AR AA, AM M, AA ELA. Thymol and Carvacrol Prevent Cisplatin-Induced Nephrotoxicity by Abrogation of Oxidative Stress, Inflammation, and Apoptosis in Rats. J Biochem Mol Toxicol 2015; 29:165-172. [PMID: 25487789 DOI: 10.1002/jbt.21681] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Affiliation(s)
- El-Sayed EM
- Pharmacology and Toxicology Department; Faculty of Pharmacy; Al-Azhar University; Nasr-City Cairo Egypt
| | - Abd-Allah AR
- Pharmacology and Toxicology Department; Faculty of Pharmacy; Al-Azhar University; Nasr-City Cairo Egypt
| | - Mansour AM
- Pharmacology and Toxicology Department; Faculty of Pharmacy; Al-Azhar University; Nasr-City Cairo Egypt
| | - EL-Arabey AA
- Pharmacology and Toxicology Department; Faculty of Pharmacy; Al-Azhar University; Nasr-City Cairo Egypt
| |
Collapse
|
45
|
Nagoor Meeran MF, Jagadeesh GS, Selvaraj P. Thymol attenuates altered lipid metabolism in β-adrenergic agonist induced myocardial infarcted rats by inhibiting tachycardia, altered electrocardiogram, apoptosis and cardiac hypertrophy. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.01.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
46
|
Thymol attenuates inflammation in isoproterenol induced myocardial infarcted rats by inhibiting the release of lysosomal enzymes and downregulating the expressions of proinflammatory cytokines. Eur J Pharmacol 2015; 754:153-61. [PMID: 25724787 DOI: 10.1016/j.ejphar.2015.02.028] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 02/11/2015] [Accepted: 02/17/2015] [Indexed: 11/20/2022]
Abstract
Inflammation plays an important role in the development of myocardial infarction (MI). The current study dealt with the protective effects of thymol on inflammation in isoproterenol (ISO) induced myocardial infarcted rats. Male albino Wistar rats were pre and co-treated with thymol (7.5mg/kg body weight) daily for 7 days. ISO (100mg/kg body weight) was injected subcutaneously into rats at an interval of 24h for two days (6th and 7th day) to induce MI. ISO induced myocardial infarcted rats showed increased levels of serum cardiac troponin-T, high sensitive C-reactive protein (hsCRP), lysosomal thiobarbituric acid reactive substances (TBARS) and elevated ST-segments. Also, the activities of lysosomal enzymes such as β-glucuronidase, β-galactosidase, cathepsin-B and D, the stimulators of inflammatory mediators were increased in the serum and heart of ISO induced myocardial infarcted rats. Furthermore, ISO up regulates the expressions of pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-1β (IL-1β) genes in the myocardium of rats analyzed by reverse transcription polymerase chain reaction (RT-PCR). Pre and co-treatment with thymol (7.5mg/kg body weight) near normalized the levels of lysosomal TBARS, activities of serum and heart lysosomal enzymes and downregulates the expressions of pro-inflammatory cytokines in the myocardium of ISO induced myocardial infarcted rats. Histopathological and transmission electron microscopic findings were also found in line with biochemical findings. Thus, the results of our study revealed that thymol attenuates inflammation by inhibiting the release of lysosomal enzymes and downregulates the expressions of pro-inflammatory cytokines by its potent anti-inflammatory effect.
Collapse
|
47
|
Nagoor Meeran MF, Jagadeesh GS, Selvaraj P. Catecholamine toxicity triggers myocardial membrane destabilization in rats: thymol and its counter action. RSC Adv 2015. [DOI: 10.1039/c5ra00903k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The present manuscript deals with the protective action of thymol against isoproterenol induced cardiotoxicity by reinstating ATPases and minerals as evidenced by decreased myocardial infarct size.
Collapse
|
48
|
Evran B, Karpuzoğlu H, Develi S, Kalaz EB, Soluk-Tekkeşin M, Olgaç V, Doğru-Abbasoğlu S, Uysal M. Effects of carnosine on prooxidant–antioxidant status in heart tissue, plasma and erythrocytes of rats with isoproterenol-induced myocardial infarction. Pharmacol Rep 2014; 66:81-6. [DOI: 10.1016/j.pharep.2013.08.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 07/22/2013] [Accepted: 08/13/2013] [Indexed: 10/25/2022]
|
49
|
Aydın E, Türkez H. In vitrocytotoxicity, genotoxicity and antioxidant potentials of thymol on human blood cells. JOURNAL OF ESSENTIAL OIL RESEARCH 2013. [DOI: 10.1080/10412905.2013.860411] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
50
|
Current world literature. Curr Opin Lipidol 2013; 24:178-81. [PMID: 23481230 DOI: 10.1097/mol.0b013e32835f8a8c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|