1
|
Fukuyama Y, Murakami H, Iemitsu M. Single Nucleotide Polymorphisms and Tendon/Ligament Injuries in Athletes: A Systematic Review and Meta-analysis. Int J Sports Med 2024. [PMID: 39437988 DOI: 10.1055/a-2419-4359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
This systematic review and meta-analysis aimed to identify the association between genetic polymorphisms and tendon and ligament injuries in adolescent and adult athletes of multiple competition sports. The PubMed, Web of Science, EBSCO, Cochrane Library, and MEDLINE databases were searched until July 7, 2023. Eligible articles included genetic studies on tendon and ligament injuries and comparisons between injured and non-injured athletes. This review included 31 articles, comprising 1,687 injury cases and 2,227 controls, from a meta-analysis of 12 articles. We identified 144 candidate gene polymorphisms (only single nucleotide polymorphisms were identified). The meta-analyses included vascular endothelial growth factor A (VEGFA) rs699947, collagen type I alpha 1 rs1800012, collagen type V alpha 1 rs12722, and matrix metalloproteinase 3 rs679620. The VEGFA rs699947 polymorphism showed a lower risk of injuries in athletes with the C allele ([C vs. A]: OR=0.80, 95% CI: 0.65-0.98, I 2 =3.82%, p=0.03). The risk of these injuries were not affected by other polymorphisms. In conclusion, the VEGFA rs699947 polymorphism is associated with the risk of tendon and ligament injuries in athletes. This study provides insights into genetic variations that contribute to our understanding of the risk factors for such injuries in athletes.
Collapse
Affiliation(s)
- Yumi Fukuyama
- Department of Physical Therapy, Aino University, Ibaraki, Japan
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Haruka Murakami
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| | - Motoyuki Iemitsu
- Faculty of Sport and Health Science, Ritsumeikan University, Kusatsu, Japan
| |
Collapse
|
2
|
Gregory CA, Ma J, Lomeli S. The coordinated activities of collagen VI and XII in maintenance of tissue structure, function and repair: evidence for a physical interaction. Front Mol Biosci 2024; 11:1376091. [PMID: 38606288 PMCID: PMC11007232 DOI: 10.3389/fmolb.2024.1376091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/14/2024] [Indexed: 04/13/2024] Open
Abstract
Collagen VI and collagen XII are structurally complex collagens of the extracellular matrix (ECM). Like all collagens, type VI and XII both possess triple-helical components that facilitate participation in the ECM network, but collagen VI and XII are distinct from the more abundant fibrillar collagens in that they also possess arrays of structurally globular modules with the capacity to propagate signaling to attached cells. Cell attachment to collagen VI and XII is known to regulate protective, proliferative or developmental processes through a variety of mechanisms, but a growing body of genetic and biochemical evidence suggests that at least some of these phenomena may be potentiated through mechanisms that require coordinated interaction between the two collagens. For example, genetic studies in humans have identified forms of myopathic Ehlers-Danlos syndrome with overlapping phenotypes that result from mutations in either collagen VI or XII, and biochemical and cell-based studies have identified accessory molecules that could form bridging interactions between the two collagens. However, the demonstration of a direct or ternary structural interaction between collagen VI or XII has not yet been reported. This Hypothesis and Theory review article examines the evidence that supports the existence of a functional complex between type VI and XII collagen in the ECM and discusses potential biological implications.
Collapse
Affiliation(s)
- Carl A. Gregory
- Department of Medical Physiology, Texas A&M School of Medicine, Bryan, TX, United States
| | | | | |
Collapse
|
3
|
Rigi M, Son HS, Moon L, Matthaei M, Srikumaran D, Jun AS, Eberhart CG, Soiberman US. Collagen type XII is undetectable in keratoconus Bowman's layer. Br J Ophthalmol 2024; 108:343-348. [PMID: 36746614 PMCID: PMC10466210 DOI: 10.1136/bjo-2022-322180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/21/2023] [Indexed: 02/08/2023]
Abstract
PURPOSE Corneal biomechanical failure is the hallmark of keratoconus (KC); however, the cause of this failure remains elusive. Collagen type XII (COL12A1), which localises to Bowman's layer (BL), is thought to function in stress-bearing areas, such as BL. Given the putative protective role of COL12A1 in biomechanical stability, this study aims to characterise COL12A1 expression in all corneal layers involved in KC. METHODS TaqMan quantitative PCR was performed on 31 corneal epithelium samples of progressive KC and myopic control eyes. Tissue microarrays were constructed using full-thickness corneas from 61 KC cases during keratoplasty and 18 non-KC autopsy eyes and stained with an antibody specific to COL12A1. Additionally, COL12A1 was knocked out in vitro in immortalised HEK293 cells. RESULTS COL12A1 expression was reduced at transcript levels in KC epithelium compared with controls (ratio: 0.58, p<0.03). Immunohistochemical studies demonstrated that COL12A1 protein expression in BL was undetectable, with reduced expression in KC epithelium, basement membrane and stroma. CONCLUSIONS The apparent absence of COL12A1 in KC BL, together with the functional importance that COL12A1 is thought to have in stress bearing areas, suggests that COL12A1 may play a role in the pathogenesis of KC. Further studies are necessary to investigate the mechanisms that lead to COL12A1 dysregulation in KC.
Collapse
Affiliation(s)
- Mohammed Rigi
- Wilmer Eye Institute, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Hyeck-Soo Son
- Wilmer Eye Institute, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
- Department of Ophthalmology, University Hospital Heidelberg, Heidelberg, Germany
| | - Loren Moon
- Wilmer Eye Institute, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Mario Matthaei
- Department of Ophthalmology, University Hospital Cologne, Cologne, Germany
| | - Divya Srikumaran
- Wilmer Eye Institute, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Albert S Jun
- Wilmer Eye Institute, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Charles G Eberhart
- Wilmer Eye Institute, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| | - Uri S Soiberman
- Wilmer Eye Institute, Johns Hopkins Medical Institutions, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Massidda M, Flore L, Scorcu M, Monteleone G, Tiloca A, Salvi M, Tocco F, Calò CM. Collagen Gene Variants and Anterior Cruciate Ligament Rupture in Italian Athletes: A Preliminary Report. Genes (Basel) 2023; 14:1418. [PMID: 37510322 PMCID: PMC10379389 DOI: 10.3390/genes14071418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/30/2023] Open
Abstract
Several studies have investigated the role of genetics in anterior cruciate ligament (ACL) rupture, often returning conflicting results. The present pilot study aimed to analyze the association between six Single Nucleotide Polymorphisms (SNPs) (rs1800012; rs12722; rs13946; rs240736; rs970547; and rs4870723, located on the COL1A1, COL5A1, COL12A1, and COL14A1 genes), and ACL rupture, among Italian athletes. A hypothesis-driven association study was conducted. In total, 181 male and female athletes (n = 86 injured; n = 96 non-injured) were genotyped for the prioritized variants. All polymorphisms were genotyped using PCR RFLP, with the only exception being the rs1800012 on the COL1A1 gene, which was detected using MTPA PCR. The allele frequency distribution fell within the worldwide range. Despite the evident population variability, no selective pressure signals were recorded using PBS analysis. No significant difference was detected between the cases and controls for any of the SNPs (rs1800012; rs13946; rs240736; rs970547, and rs4870723) included in the analyses (p > 0.008, Bonferroni-adjusted for multiple comparisons). Moreover, no significant differences were found when males and females were assessed separately. Further investigations based on a larger sample size are needed, in order to draw solid conclusions for the influence between collagen genes and ACL rupture.
Collapse
Affiliation(s)
- Myosotis Massidda
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy
| | - Laura Flore
- Department of Sciences of Life and Environment, University of Cagliari, 09042 Monserrato, Italy
| | - Marco Scorcu
- Italian Federation of Sports Medicine (FIMS), CR Sardegna, 00196 Rome, Italy
| | - Giovanni Monteleone
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Alessandra Tiloca
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, 00133 Rome, Italy
| | | | - Filippo Tocco
- Department of Medical Sciences and Public Health, University of Cagliari, 09042 Monserrato, Italy
| | - Carla M Calò
- Department of Sciences of Life and Environment, University of Cagliari, 09042 Monserrato, Italy
| |
Collapse
|
5
|
Feldmann D, Bope CD, Patricios J, Chimusa ER, Collins M, September AV. A whole genome sequencing approach to anterior cruciate ligament rupture-a twin study in two unrelated families. PLoS One 2022; 17:e0274354. [PMID: 36201451 PMCID: PMC9536556 DOI: 10.1371/journal.pone.0274354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 08/25/2022] [Indexed: 11/06/2022] Open
Abstract
Predisposition to anterior cruciate ligament (ACL) rupture is multi-factorial, with variation in the genome considered a key intrinsic risk factor. Most implicated loci have been identified from candidate gene-based approach using case-control association settings. Here, we leverage a hypothesis-free whole genome sequencing in two two unrelated families (Family A and B) each with twins with a history of recurrent ACL ruptures acquired playing rugby as their primary sport, aimed to elucidate biologically relevant function-altering variants and genetic modifiers in ACL rupture. Family A monozygotic twin males (Twin 1 and Twin 2) both sustained two unilateral non-contact ACL ruptures of the right limb while playing club level touch rugby. Their male sibling sustained a bilateral non-contact ACL rupture while playing rugby union was also recruited. The father had sustained a unilateral non-contact ACL rupture on the right limb while playing professional amateur level football and mother who had participated in dancing for over 10 years at a social level, with no previous ligament or tendon injuries were both recruited. Family B monozygotic twin males (Twin 3 and Twin 4) were recruited with Twin 3 who had sustained a unilateral non-contact ACL rupture of the right limb and Twin 4 sustained three non-contact ACL ruptures (two in right limb and one in left limb), both while playing provincial level rugby union. Their female sibling participated in karate and swimming activities; and mother in hockey (4 years) horse riding (15 years) and swimming, had both reported no previous history of ligament or tendon injury. Variants with potential deleterious, loss-of-function and pathogenic effects were prioritised. Identity by descent, molecular dynamic simulation and functional partner analyses were conducted. We identified, in all nine affected individuals, including twin sets, non-synonymous SNPs in three genes: COL12A1 and CATSPER2, and KCNJ12 that are commonly enriched for deleterious, loss-of-function mutations, and their dysfunctions are known to be involved in the development of chronic pain, and represent key therapeutic targets. Notably, using Identity By Decent (IBD) analyses a long shared identical sequence interval which included the LINC01250 gene, around the telomeric region of chromosome 2p25.3, was common between affected twins in both families, and an affected brother'. Overall gene sets were enriched in pathways relevant to ACL pathophysiology, including complement/coagulation cascades (p = 3.0e-7), purine metabolism (p = 6.0e-7) and mismatch repair (p = 6.9e-5) pathways. Highlighted, is that this study fills an important gap in knowledge by using a WGS approach, focusing on potential deleterious variants in two unrelated families with a historical record of ACL rupture; and providing new insights into the pathophysiology of ACL, by identifying gene sets that contribute to variability in ACL risk.
Collapse
Affiliation(s)
- Daneil Feldmann
- Division of Physiological Sciences, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Christian D. Bope
- Department of Mathematics and Computer Science, Faculty of Sciences, University of Kinshasa, Kinshasa, Democratic Republic of Congo
- Division of Human Genetics, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Centre for Bioinformatics, Department of Informatics, University of Oslo, Oslo, Norway
| | - Jon Patricios
- Wits Sport and Health (WiSH), School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Emile R. Chimusa
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle, Tyne and Wear, United Kingdom
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Malcolm Collins
- Division of Physiological Sciences, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- UCT Research Centre for Health Through Physical Activity, Lifestyle and Sport (HPALS), Cape Town, South Africa
- International Federation of Sports Medicine (FIMS) Collaborative Centre of Sports Medicine, Cape Town, South Africa
| | - Alison V. September
- Division of Physiological Sciences, Department of Human Biology, University of Cape Town, Cape Town, South Africa
- UCT Research Centre for Health Through Physical Activity, Lifestyle and Sport (HPALS), Cape Town, South Africa
- International Federation of Sports Medicine (FIMS) Collaborative Centre of Sports Medicine, Cape Town, South Africa
- * E-mail:
| |
Collapse
|
6
|
Papanicolaou M, Parker AL, Yam M, Filipe EC, Wu SZ, Chitty JL, Wyllie K, Tran E, Mok E, Nadalini A, Skhinas JN, Lucas MC, Herrmann D, Nobis M, Pereira BA, Law AMK, Castillo L, Murphy KJ, Zaratzian A, Hastings JF, Croucher DR, Lim E, Oliver BG, Mora FV, Parker BL, Gallego-Ortega D, Swarbrick A, O'Toole S, Timpson P, Cox TR. Temporal profiling of the breast tumour microenvironment reveals collagen XII as a driver of metastasis. Nat Commun 2022; 13:4587. [PMID: 35933466 PMCID: PMC9357007 DOI: 10.1038/s41467-022-32255-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/22/2022] [Indexed: 01/21/2023] Open
Abstract
The tumour stroma, and in particular the extracellular matrix (ECM), is a salient feature of solid tumours that plays a crucial role in shaping their progression. Many desmoplastic tumours including breast cancer involve the significant accumulation of type I collagen. However, recently it has become clear that the precise distribution and organisation of matrix molecules such as collagen I is equally as important in the tumour as their abundance. Cancer-associated fibroblasts (CAFs) coexist within breast cancer tissues and play both pro- and anti-tumourigenic roles through remodelling the ECM. Here, using temporal proteomic profiling of decellularized tumours, we interrogate the evolving matrisome during breast cancer progression. We identify 4 key matrisomal clusters, and pinpoint collagen type XII as a critical component that regulates collagen type I organisation. Through combining our proteomics with single-cell transcriptomics, and genetic manipulation models, we show how CAF-secreted collagen XII alters collagen I organisation to create a pro-invasive microenvironment supporting metastatic dissemination. Finally, we show in patient cohorts that collagen XII may represent an indicator of breast cancer patients at high risk of metastatic relapse. The distribution and organisation of matrix molecules in the tumour stroma help shape solid tumour progression. Here they perform temporal proteomic profiling of the matrisome during breast cancer progression and show that collagen XII secreted from CAFs provides a pro-invasive microenvironment.
Collapse
Affiliation(s)
- Michael Papanicolaou
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Amelia L Parker
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Michelle Yam
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Elysse C Filipe
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Sunny Z Wu
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Jessica L Chitty
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Kaitlin Wyllie
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Emmi Tran
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Ellie Mok
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Audrey Nadalini
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Joanna N Skhinas
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Morghan C Lucas
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia
| | - David Herrmann
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Max Nobis
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Brooke A Pereira
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Andrew M K Law
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia
| | - Lesley Castillo
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia
| | - Kendelle J Murphy
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Anaiis Zaratzian
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia
| | - Jordan F Hastings
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia
| | - David R Croucher
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Elgene Lim
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Brian G Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia.,Woolcock Institute of Medical Research, Respiratory Cellular and Molecular Biology, The University of Sydney, Sydney, NSW, Australia
| | - Fatima Valdes Mora
- Cancer Epigenetic Biology and Therapeutics, Personalised Medicine, Children's Cancer Institute, Sydney, NSW, 2031, Australia.,School of Women's and Children's Health, Faculty of Medicine, UNSW Sydney, Sydney, NSW, Australia
| | - Benjamin L Parker
- Metabolic Systems Biology Laboratory, Charles Perkins Centre, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - David Gallego-Ortega
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia.,School of Biomedical Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney, NSW, Australia
| | - Alexander Swarbrick
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia
| | - Sandra O'Toole
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia.,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia.,Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia
| | - Paul Timpson
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia. .,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia. .,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia.
| | - Thomas R Cox
- The Garvan Institute of Medical Research and The Kinghorn Cancer Centre, Sydney, NSW, Australia. .,Cancer Ecosystems Program, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia. .,School of Clinical Medicine, St Vincent's Healthcare Clinical Campus, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
7
|
Brodsky AS, Khurana J, Guo KS, Wu EY, Yang D, Siddique AS, Wong IY, Gamsiz Uzun ED, Resnick MB. Somatic mutations in collagens are associated with a distinct tumor environment and overall survival in gastric cancer. BMC Cancer 2022; 22:139. [PMID: 35120467 PMCID: PMC8815231 DOI: 10.1186/s12885-021-09136-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 12/22/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Gastric cancer is a heterogeneous disease with poorly understood genetic and microenvironmental factors. Mutations in collagen genes are associated with genetic diseases that compromise tissue integrity, but their role in tumor progression has not been extensively reported. Aberrant collagen expression has been long associated with malignant tumor growth, invasion, chemoresistance, and patient outcomes. We hypothesized that somatic mutations in collagens could functionally alter the tumor extracellular matrix. METHODS We used publicly available datasets including The Tumor Cancer Genome Atlas (TCGA) to interrogate somatic mutations in collagens in stomach adenocarcinomas. To demonstrate that collagens were significantly mutated above background mutation rates, we used a moderated Kolmogorov-Smirnov test along with combination analysis with a bootstrap approach to define the background accounting for mutation rates. Association between mutations and clinicopathological features was evaluated by Fisher or chi-squared tests. Association with overall survival was assessed by Kaplan-Meier and the Cox-Proportional Hazards Model. Gene Set Enrichment Analysis was used to interrogate pathways. Immunohistochemistry and in situ hybridization tested expression of COL7A1 in stomach tumors. RESULTS In stomach adenocarcinomas, we identified individual collagen genes and sets of collagen genes harboring somatic mutations at a high frequency compared to background in both microsatellite stable, and microsatellite instable tumors in TCGA. Many of the missense mutations resemble the same types of loss of function mutations in collagenopathies that disrupt tissue formation and destabilize cells providing guidance to interpret the somatic mutations. We identified combinations of somatic mutations in collagens associated with overall survival, with a distinctive tumor microenvironment marked by lower matrisome expression and immune cell signatures. Truncation mutations were strongly associated with improved outcomes suggesting that loss of expression of secreted collagens impact tumor progression and treatment response. Germline collagenopathy variants guided interpretation of impactful somatic mutations on tumors. CONCLUSIONS These observations highlight that many collagens, expressed in non-physiologically relevant conditions in tumors, harbor impactful somatic mutations in tumors, suggesting new approaches for classification and therapy development in stomach cancer. In sum, these findings demonstrate how classification of tumors by collagen mutations identified strong links between specific genotypes and the tumor environment.
Collapse
Affiliation(s)
- Alexander S Brodsky
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Warren Alpert Medical School at Brown University, Providence, RI, 02903, USA.
- Center for Computational Molecular Biology, Brown University, Providence, RI, 02903, USA.
- Joint Program in Cancer Biology, Brown University and Lifespan Cancer Institute, Providence, RI, 02912, USA.
| | - Jay Khurana
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Warren Alpert Medical School at Brown University, Providence, RI, 02903, USA
| | - Kevin S Guo
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Warren Alpert Medical School at Brown University, Providence, RI, 02903, USA
| | - Elizabeth Y Wu
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Warren Alpert Medical School at Brown University, Providence, RI, 02903, USA
| | - Dongfang Yang
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Warren Alpert Medical School at Brown University, Providence, RI, 02903, USA
| | - Ayesha S Siddique
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Warren Alpert Medical School at Brown University, Providence, RI, 02903, USA
| | - Ian Y Wong
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Warren Alpert Medical School at Brown University, Providence, RI, 02903, USA
- Joint Program in Cancer Biology, Brown University and Lifespan Cancer Institute, Providence, RI, 02912, USA
- School of Engineering, Center for Biomedical Engineering, Brown University, Providence, RI, 02912, USA
| | - Ece D Gamsiz Uzun
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Warren Alpert Medical School at Brown University, Providence, RI, 02903, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI, 02903, USA
| | - Murray B Resnick
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Warren Alpert Medical School at Brown University, Providence, RI, 02903, USA
- Currently at PathAI, 1325 Boylston St, Boston, MA, 02215, USA
| |
Collapse
|
8
|
Sun M, Koudouna E, Cogswell D, Avila MY, Koch M, Espana EM. Collagen XII Regulates Corneal Stromal Structure by Modulating Transforming Growth Factor-β Activity. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:308-319. [PMID: 34774848 PMCID: PMC8908044 DOI: 10.1016/j.ajpath.2021.10.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 02/03/2023]
Abstract
Collagen XII is a regulator of corneal stroma structure and function. The current study examined the role of collagen XII in regulating corneal stromal transforming growth factor (TGF)-β activation and latency. Specifically, with the use of conventional collagen XII null mouse model, the role of collagen XII in the regulation of TGF-β latency and activity in vivo was investigated. Functional quantification of latent TGF-β in stromal matrix was performed by using transformed mink lung reporter cells that produce luciferase as a function of active TGF-β. Col12a1 knockdown with shRNA was used to test the role of collagen XII in TGF-β activation. Col12a1-/- hypertrophic stromata were observed with keratocyte hyperplasia. Increased collagen fibril forward signal was found by second harmonic generation microscopy in the absence of collagen XII. Collagen XII regulated mRNA synthesis of Serpine1, Col1a1, and Col5a1 and deposition of collagens in the extracellular matrix. A functional plasminogen activator inhibitor luciferase assay showed that collagen XII is necessary for latent TGF-β storage in the extracellular matrix and that collagen XII down-regulates active TGF-β. Collagen XII dictates stromal structure and function by regulating TGF-β activity. A hypertrophic phenotype in Col12a1-/- corneal tissue can be explained by abnormal up-regulation of TGF-β activation and decreased latent storage.
Collapse
Affiliation(s)
- Mei Sun
- Cornea and External Disease, Department of Ophthalmology, Department of Molecular Pharmacology and Physiology, Tampa, Florida
| | - Elena Koudouna
- Structural Biophysics, School of Optometry and Vision Sciences, Cardiff University, Cardiff, United Kingdom
| | - Devon Cogswell
- Cornea and External Disease, Department of Ophthalmology, Department of Molecular Pharmacology and Physiology, Tampa, Florida
| | - Marcel Y. Avila
- Department of Ophthalmology, Universidad Nacional de Colombia, Bogota, Colombia
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Biochemistry, University of Cologne, Cologne, Germany
| | - Edgar M. Espana
- Cornea and External Disease, Department of Ophthalmology, Department of Molecular Pharmacology and Physiology, Tampa, Florida,Morsani College of Medicine, University of South Florida, Tampa, Florida,Address correspondence to Edgar M. Espana, M.D., Ophthalmology, University of South Florida, Morsani College of Medicine, 13330 USF Laurel Dr., 4th Floor, MDC11, Tampa, FL 33612.
| |
Collapse
|
9
|
Mienaltowski MJ, Gonzales NL, Beall JM, Pechanec MY. Basic Structure, Physiology, and Biochemistry of Connective Tissues and Extracellular Matrix Collagens. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1348:5-43. [PMID: 34807414 DOI: 10.1007/978-3-030-80614-9_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The physiology of connective tissues like tendons and ligaments is highly dependent upon the collagens and other such extracellular matrix molecules hierarchically organized within the tissues. By dry weight, connective tissues are mostly composed of fibrillar collagens. However, several other forms of collagens play essential roles in the regulation of fibrillar collagen organization and assembly, in the establishment of basement membrane networks that provide support for vasculature for connective tissues, and in the formation of extensive filamentous networks that allow for cell-extracellular matrix interactions as well as maintain connective tissue integrity. The structures and functions of these collagens are discussed in this chapter. Furthermore, collagen synthesis is a multi-step process that includes gene transcription, translation, post-translational modifications within the cell, triple helix formation, extracellular secretion, extracellular modifications, and then fibril assembly, fibril modifications, and fiber formation. Each step of collagen synthesis and fibril assembly is highly dependent upon the biochemical structure of the collagen molecules created and how they are modified in the cases of development and maturation. Likewise, when the biochemical structures of collagens or are compromised or these molecules are deficient in the tissues - in developmental diseases, degenerative conditions, or injuries - then the ultimate form and function of the connective tissues are impaired. In this chapter, we also review how biochemistry plays a role in each of the processes involved in collagen synthesis and assembly, and we describe differences seen by anatomical location and region within tendons. Moreover, we discuss how the structures of the molecules, fibrils, and fibers contribute to connective tissue physiology in health, and in pathology with injury and repair.
Collapse
Affiliation(s)
| | - Nicole L Gonzales
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - Jessica M Beall
- Department of Animal Science, University of California Davis, Davis, CA, USA
| | - Monica Y Pechanec
- Department of Animal Science, University of California Davis, Davis, CA, USA
| |
Collapse
|
10
|
Sun M, Zafrullah N, Adams S, Devaux F, Avila MY, Ziebarth N, Margo CE, Koch M, Espana EM. Collagen XIV Is an Intrinsic Regulator of Corneal Stromal Structure and Function. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:2184-2194. [PMID: 34560063 DOI: 10.1016/j.ajpath.2021.08.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 12/01/2022]
Abstract
Collagen XIV is poorly characterized in the body, and the current knowledge of its function in the cornea is limited. The aim of the current study was to elucidate the role(s) of collagen XIV in regulating corneal stromal structure and function. Analysis of collagen XIV expression, temporal and spatial, was performed at different postnatal days (Ps) in wild-type C57BL/6 mouse corneal stromas and after injury. Conventional collagen XIV null mice were used to inquire the roles that collagen XIV plays in fibrillogenesis, fibril packing, and tissue mechanics. Fibril assembly and packing as well as stromal organization were evaluated using transmission electron microscopy and second harmonic generation microscopy. Atomic force microscopy was used to assess stromal stiffness. Col14a1 mRNA expression was present at P4 to P10 and decreased at P30. No immunoreactivity was noted at P150. Abnormal collagen fibril assembly with a shift toward larger-diameter fibrils and increased interfibrillar spacing in the absence of collagen XIV was found. Second harmonic generation microscopy showed impaired fibrillogenesis in the collagen XIV null stroma. Mechanical testing suggested that collagen XIV confers stiffness to stromal tissue. Expression of collagen XIV is up-regulated following injury. This study indicates that collagen XIV plays a regulatory role in corneal development and in the function of the adult cornea. The expression of collagen XIV is recapitulated during wound healing.
Collapse
Affiliation(s)
- Mei Sun
- Cornea and External Disease, Department of Ophthalmology, University of South Florida, Morsani College of Medicine, Tampa, Florida
| | - Nabeel Zafrullah
- Cornea and External Disease, Department of Ophthalmology, University of South Florida, Morsani College of Medicine, Tampa, Florida
| | - Sheila Adams
- Cornea and External Disease, Department of Ophthalmology, University of South Florida, Morsani College of Medicine, Tampa, Florida
| | - Floriane Devaux
- Biomedical Atomic Force Microscopy Laboratory, Department of Biomedical Engineering, College of Engineering, University of Miami, Miami, Florida
| | - Marcel Y Avila
- Department of Ophthalmology, Universidad Nacional de Colombia, Bogota, Colombia
| | - Noel Ziebarth
- Biomedical Atomic Force Microscopy Laboratory, Department of Biomedical Engineering, College of Engineering, University of Miami, Miami, Florida; Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, Florida
| | - Curtis E Margo
- Cornea and External Disease, Department of Ophthalmology, University of South Florida, Morsani College of Medicine, Tampa, Florida
| | - Manuel Koch
- Institute for Dental Research and Oral Musculoskeletal Biology, Center for Biochemistry, University of Cologne, Cologne, Germany
| | - Edgar M Espana
- Cornea and External Disease, Department of Ophthalmology, University of South Florida, Morsani College of Medicine, Tampa, Florida; Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, Tampa, Florida.
| |
Collapse
|
11
|
Lv ZT, Wang W, Zhao DM, Huang JM. COL12A1 rs970547 Polymorphism Does Not Alter Susceptibility to Anterior Cruciate Ligament Rupture: A Meta-Analysis. Front Genet 2021; 12:665861. [PMID: 34447406 PMCID: PMC8383292 DOI: 10.3389/fgene.2021.665861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/05/2021] [Indexed: 12/03/2022] Open
Abstract
Objective: Currently available evidence regarding the association between collagen type XII α1 (COL12A1) polymorphism and risk of anterior cruciate ligament rupture (ACLR) remains elusive. The aim of our present study was to assess the association between COL12A1 rs970547 polymorphism and ACLR risk. Methods: Five online databases, namely, PubMed, EMBASE, ISI Web of Science, CENTRAL, and CNKI, were searched from their inception data up to December 2020 to identify relative observational studies. The methodological quality of each individual study was evaluated using the Newcastle-Ottawa Scale (NOS). The “model-free approach” was employed to estimate the magnitude of effect of COL12A1 rs970547 polymorphism on ACLR, and the association was expressed using odds ratio (OR) and its associated 95% confidence interval (95% CI). Subgroup analysis was performed by ethnicity and sex of included subjects. Results: Eight studies involving 1,477 subjects with ACLR and 100,439 healthy controls were finally included in our study. The methodological quality of included studies was deemed moderate to high based on NOS scores. The “model-free” approach suggested no genotype differences between ACLR and healthy control for the rs970547 polymorphism, but we still used the allele model to present the combined data. Under the random-effect model, there was no significant difference in the frequency of effecting allele between ACLR and control (OR: 0.91, 95% CI 0.77, 1.08; p = 0.28). Stratified analysis by sex and ethnicity also showed no difference in allele frequency. Conclusion: The findings of this current meta-analysis suggested that rs970547 was not associated with ACLR risk in male, female, and the overall population among Asians or Caucasians.
Collapse
Affiliation(s)
- Zheng-Tao Lv
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong-Ming Zhao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun-Ming Huang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Orthopedics, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Song Y, Overmass M, Fan J, Hodge C, Sutton G, Lovicu FJ, You J. Application of Collagen I and IV in Bioengineering Transparent Ocular Tissues. Front Surg 2021; 8:639500. [PMID: 34513910 PMCID: PMC8427501 DOI: 10.3389/fsurg.2021.639500] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Collagens represent a major group of structural proteins expressed in different tissues and display distinct and variable properties. Whilst collagens are non-transparent in the skin, they confer transparency in the cornea and crystalline lens of the eye. There are 28 types of collagen that all share a common triple helix structure yet differ in the composition of their α-chains leading to their different properties. The different organization of collagen fibers also contributes to the variable tissue morphology. The important ability of collagen to form different tissues has led to the exploration and application of collagen as a biomaterial. Collagen type I (Col-I) and collagen type IV (Col-IV) are the two primary collagens found in corneal and lens tissues. Both collagens provide structure and transparency, essential for a clear vision. This review explores the application of these two collagen types as novel biomaterials in bioengineering unique tissue that could be used to treat a variety of ocular diseases leading to blindness.
Collapse
Affiliation(s)
- Yihui Song
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Morgan Overmass
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Jiawen Fan
- Key Laboratory of Myopia of State Health Ministry, Department of Ophthalmology and Vision Sciences, Eye and Ear, Nose, and Throat (ENT) Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chris Hodge
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- New South Wales (NSW) Tissue Bank, Sydney, NSW, Australia
- Vision Eye Institute, Chatswood, NSW, Australia
| | - Gerard Sutton
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- New South Wales (NSW) Tissue Bank, Sydney, NSW, Australia
- Vision Eye Institute, Chatswood, NSW, Australia
| | - Frank J. Lovicu
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Discipline of Anatomy and Histology, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Jingjing You
- Save Sight Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- School of Optometry and Vision Science, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
13
|
Leduc C, Dupont L, Joannes L, Monseur C, Baiwir D, Mazzucchelli G, Deroanne C, Colige A, Bekhouche M. In vivo N-Terminomics Highlights Novel Functions of ADAMTS2 and ADAMTS14 in Skin Collagen Matrix Building. Front Mol Biosci 2021; 8:643178. [PMID: 33816558 PMCID: PMC8017238 DOI: 10.3389/fmolb.2021.643178] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
A disintegrin and metalloproteinase with thrombospondin type I motif (ADAMTS)2 and ADAMTS14 were originally known for their ability to cleave the aminopropeptides of fibrillar collagens. Previous work using N-terminomic approach (N-TAILS) in vitro led to the identification of new substrates, including some molecules involved in TGF-β signaling. Here, N-TAILS was used to investigate the substrates of these two enzymes in vivo, by comparing the N-terminomes of the skin of wild type mice, mice deficient in ADAMTS2, in ADAMTS14 and in both ADAMTS2 and ADAMTS14. This study identified 68 potential extracellular and cell surface proteins, with the majority of them being cleaved by both enzymes. These analyses comfort their role in collagen matrix organization and suggest their implication in inflammatory processes. Regarding fibrillar collagen, this study demonstrates that both ADAMTS2 and ADAMTS14 are involved in the processing of the aminopropeptide of alpha1 and alpha2 type V collagen. It also revealed the existence of several cleavage sites in the Col1 domain and in the C-propeptide of type I collagens. In addition to collagens and other extracellular proteins, two major components of the cell cytoskeleton, actin and vimentin, were also identified as potential substrates. The latter data were confirmed in vitro using purified enzymes and could potentially indicate other functions for ADAMTS2 and 14. This original investigation of mouse skin degradomes by N-terminomic highlights the essential role of ADAMTS2 and ADAMTS14 in collagen matrix synthesis and turnover, and gives clues to better understand their functions in skin pathophysiology. Data are available via ProteomeXchange with identifier PXD022179.
Collapse
Affiliation(s)
- Cédric Leduc
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Laura Dupont
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Loïc Joannes
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Christine Monseur
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Dominique Baiwir
- GIGA Proteomic Facility, GIGA-Interdisciplinary Cluster for Applied Genoproteomics, University of Liège, Liège, Belgium
| | - Gabriel Mazzucchelli
- GIGA Proteomic Facility, GIGA-Interdisciplinary Cluster for Applied Genoproteomics, University of Liège, Liège, Belgium
| | - Christophe Deroanne
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Alain Colige
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, Liège, Belgium
| | - Mourad Bekhouche
- Laboratory of Connective Tissues Biology, GIGA-Cancer, University of Liège, Liège, Belgium.,Tissue Biology and Therapeutic Engineering, Centre National de la Recherche Scientifique/University of Lyon Unité Mixte de Recherche 5305, Lyon, France.,Faculté d'Odontologie de Lyon, Université de Lyon, Université Lyon 1, Lyon, France
| |
Collapse
|
14
|
Calò CM, Onali F, Robledo R, Flore L, Massidda M, Francalacci P. Worldwide variation of the COL14A1 gene is shaped by genetic drift rather than selective pressure. Mol Genet Genomic Med 2021; 9:e1629. [PMID: 33650783 PMCID: PMC8123734 DOI: 10.1002/mgg3.1629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/30/2020] [Accepted: 02/10/2021] [Indexed: 11/17/2022] Open
Abstract
Background The aim of this study is to analyze the worldwide distribution of SNP rs4870723 in COL14A1 gene to check if there are significant genetic differences among different populations and to test if the gene is a trait under selection. Methods Genomic DNA was extracted from 69 unrelated individuals from Sardinia and genotyped for SNP rs4870723. Data were compared with 26 different populations, clustered in 5 super‐populations, from the public 1000 genomes database. Allele frequency and heterozygosity were calculated with Genepop. The Hardy–Weinberg equilibrium and pairwise population differentiation through analysis of molecular variance (AMOVA FST) were determined with Arlequin. Results Allele frequencies of COL14A1 rs4870723 were compared in 27 populations clustered in 5 super‐populations. All populations were in the Hardy–Weinberg equilibrium. In almost all populations, allele C was the most frequent allele, reaching the highest values in East Asia. The 27 populations showed an appreciable structure, with significant differences observed between European, African, and Asian populations. Conclusion Significant differences were observed in the rs4870723 SNP distribution among the populations studied. However, we found no evidence for a selective pressure. Rather, the differentiation among the populations is likely the result of founder effect, genetic drift, and cultural factors, all events known to establish and maintain genetic diversity between populations.
Collapse
Affiliation(s)
- Carla M Calò
- Department of Life and Environment Sciences, University of Cagliari, Cagliari, Italy
| | - Federico Onali
- Department of Life and Environment Sciences, University of Cagliari, Cagliari, Italy
| | - Renato Robledo
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Laura Flore
- Department of Life and Environment Sciences, University of Cagliari, Cagliari, Italy
| | - Myosotis Massidda
- Department of Life and Environment Sciences, University of Cagliari, Cagliari, Italy
| | - Paolo Francalacci
- Department of Life and Environment Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
15
|
Hardcastle AJ, Liskova P, Bykhovskaya Y, McComish BJ, Davidson AE, Inglehearn CF, Li X, Choquet H, Habeeb M, Lucas SEM, Sahebjada S, Pontikos N, Lopez KER, Khawaja AP, Ali M, Dudakova L, Skalicka P, Van Dooren BTH, Geerards AJM, Haudum CW, Faro VL, Tenen A, Simcoe MJ, Patasova K, Yarrand D, Yin J, Siddiqui S, Rice A, Farraj LA, Chen YDI, Rahi JS, Krauss RM, Theusch E, Charlesworth JC, Szczotka-Flynn L, Toomes C, Meester-Smoor MA, Richardson AJ, Mitchell PA, Taylor KD, Melles RB, Aldave AJ, Mills RA, Cao K, Chan E, Daniell MD, Wang JJ, Rotter JI, Hewitt AW, MacGregor S, Klaver CCW, Ramdas WD, Craig JE, Iyengar SK, O'Brart D, Jorgenson E, Baird PN, Rabinowitz YS, Burdon KP, Hammond CJ, Tuft SJ, Hysi PG. A multi-ethnic genome-wide association study implicates collagen matrix integrity and cell differentiation pathways in keratoconus. Commun Biol 2021; 4:266. [PMID: 33649486 PMCID: PMC7921564 DOI: 10.1038/s42003-021-01784-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 02/02/2021] [Indexed: 12/14/2022] Open
Abstract
Keratoconus is characterised by reduced rigidity of the cornea with distortion and focal thinning that causes blurred vision, however, the pathogenetic mechanisms are unknown. It can lead to severe visual morbidity in children and young adults and is a common indication for corneal transplantation worldwide. Here we report the first large scale genome-wide association study of keratoconus including 4,669 cases and 116,547 controls. We have identified significant association with 36 genomic loci that, for the first time, implicate both dysregulation of corneal collagen matrix integrity and cell differentiation pathways as primary disease-causing mechanisms. The results also suggest pleiotropy, with some disease mechanisms shared with other corneal diseases, such as Fuchs endothelial corneal dystrophy. The common variants associated with keratoconus explain 12.5% of the genetic variance, which shows potential for the future development of a diagnostic test to detect susceptibility to disease.
Collapse
Affiliation(s)
- Alison J Hardcastle
- UCL Institute of Ophthalmology, London, UK.
- Moorfields Eye Hospital, NHS Foundation Trust, London, UK.
| | - Petra Liskova
- UCL Institute of Ophthalmology, London, UK
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Yelena Bykhovskaya
- The Cornea Eye Institute, Beverly Hills, CA, USA
- Department of Surgery and Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Bennet J McComish
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | | | - Chris F Inglehearn
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Xiaohui Li
- Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center; Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Hélène Choquet
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Mahmoud Habeeb
- Department of Ophthalmology, Erasmus Medical Center GD, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center GD, Rotterdam, The Netherlands
| | - Sionne E M Lucas
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Srujana Sahebjada
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
- Department of Surgery, Ophthalmology, University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
| | | | | | - Anthony P Khawaja
- UCL Institute of Ophthalmology, London, UK
- Moorfields Eye Hospital, NHS Foundation Trust, London, UK
- NIHR Biomedical Research Centre, Moorfields Eye Hospital, London, UK
| | - Manir Ali
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Lubica Dudakova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Pavlina Skalicka
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Bart T H Van Dooren
- Department of Ophthalmology, Erasmus Medical Center GD, Rotterdam, The Netherlands
- Amphia Hospital, Breda, The Netherlands
| | | | - Christoph W Haudum
- Division of Endocrinology and Diabetology, Endocrinology Lab Platform, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Valeria Lo Faro
- Department of Ophthalmology, University Medical Center Groningen (UMCG), Groningen, the Netherlands
- Department of Ophthalmology, Academic Medical Center, Amsterdam, The Netherlands
| | - Abi Tenen
- Vision Eye Institute, Melbourne, VIC, Australia
- School of Primary and Allied Health Care, Monash University, Melbourne, VIC, Australia
- Melbourne Stem Cell Centre, Melbourne, VIC, 3800, Australia
| | - Mark J Simcoe
- Section of Ophthalmology, School of Life Course Sciences, King's College London, London, UK
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Karina Patasova
- Section of Ophthalmology, School of Life Course Sciences, King's College London, London, UK
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Darioush Yarrand
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
| | - Jie Yin
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Salina Siddiqui
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
- Department of Ophthalmology, St James's University Hospital, Leeds, UK
| | - Aine Rice
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Layal Abi Farraj
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Yii-Der Ida Chen
- Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center; Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Jugnoo S Rahi
- UCL Great Ormond Street Hospital Institute of Child Health, London, UK
| | | | | | - Jac C Charlesworth
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | | | - Carmel Toomes
- Division of Molecular Medicine, Leeds Institute of Medical Research, University of Leeds, Leeds, UK
| | - Magda A Meester-Smoor
- Department of Ophthalmology, Erasmus Medical Center GD, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center GD, Rotterdam, The Netherlands
| | - Andrea J Richardson
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
| | - Paul A Mitchell
- Centre for Vision Research, Department of Ophthalmology, Westmead Institute for Medical Research, University of Sydney, Westmead, NSW, Australia
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center; Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Ronald B Melles
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Anthony J Aldave
- The Jules Stein Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Richard A Mills
- Department of Ophthalmology, Flinders University, Adelaide, SA, Australia
| | - Ke Cao
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
- Department of Surgery, Ophthalmology, University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
| | - Elsie Chan
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
- Department of Surgery, Ophthalmology, University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
| | - Mark D Daniell
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
- Department of Surgery, Ophthalmology, University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
| | - Jie Jin Wang
- Health Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, The Lundquist Institute for Biomedical Innovation (formerly Los Angeles Biomedical Research Institute) at Harbor-UCLA Medical Center; Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Alex W Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- Vision Eye Institute, Melbourne, VIC, Australia
- School of Primary and Allied Health Care, Monash University, Melbourne, VIC, Australia
- Melbourne Stem Cell Centre, Melbourne, VIC, 3800, Australia
| | - Stuart MacGregor
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus Medical Center GD, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Center GD, Rotterdam, The Netherlands
| | - Wishal D Ramdas
- Department of Ophthalmology, Erasmus Medical Center GD, Rotterdam, The Netherlands
| | - Jamie E Craig
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- Department of Ophthalmology, Flinders University, Adelaide, SA, Australia
| | - Sudha K Iyengar
- Department of Ophthalmology, Case Western Reserve University, Cleveland, OH, USA
| | - David O'Brart
- Section of Ophthalmology, School of Life Course Sciences, King's College London, London, UK
- St Thomas Hospital, Guy's and St. Thomas NHS Trust, London, London, UK
| | - Eric Jorgenson
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Paul N Baird
- Department of Surgery, Ophthalmology, University of Melbourne, Royal Victorian Eye and Ear Hospital, East Melbourne, VIC, Australia
| | - Yaron S Rabinowitz
- The Cornea Eye Institute, Beverly Hills, CA, USA
- Department of Surgery and Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kathryn P Burdon
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
- Department of Ophthalmology, Flinders University, Adelaide, SA, Australia
| | - Chris J Hammond
- Section of Ophthalmology, School of Life Course Sciences, King's College London, London, UK
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK
- St Thomas Hospital, Guy's and St. Thomas NHS Trust, London, London, UK
| | - Stephen J Tuft
- UCL Institute of Ophthalmology, London, UK.
- Moorfields Eye Hospital, NHS Foundation Trust, London, UK.
| | - Pirro G Hysi
- Section of Ophthalmology, School of Life Course Sciences, King's College London, London, UK.
- Department of Twin Research and Genetic Epidemiology, King's College London, London, UK.
- UCL Great Ormond Street Hospital Institute of Child Health, London, UK.
| |
Collapse
|
16
|
Sun M, Zafrullah N, Devaux F, Hemmavanh C, Adams S, Ziebarth NM, Koch M, Birk DE, Espana EM. Collagen XII Is a Regulator of Corneal Stroma Structure and Function. Invest Ophthalmol Vis Sci 2020; 61:61. [PMID: 32462201 PMCID: PMC7405808 DOI: 10.1167/iovs.61.5.61] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Purpose The aim of this study was to determine the roles of collagen XII in the regulation of stromal hierarchical organization, keratocyte organization, and corneal mechanics. Methods The temporal and spatial expression of collagen XII at postnatal days 4, 10, 30, 90, and 150 were evaluated in wild-type (WT) mice. The role of collagen XII in hierarchical organization was analyzed by measuring fibril diameter and density, as well as stromal lamellar structure, within ultrastructural micrographs obtained from WT and collagen XII-deficient mice (Col12a1–/–). Keratocyte morphology and networks were assessed using actin staining with phalloidin and in vivo confocal microscopy. The effects of collagen XII on corneal biomechanics were evaluated with atomic force microscopy. Results Collagen XII was localized homogeneously in the stroma from postnatal day 4 to day 150, and protein accumulation was shown to increase during this period using semiquantitative immunoblots. Higher fibril density (P < 0.001) and disruption of lamellar organization were found in the collagen XII null mice stroma when compared to WT mice. Keratocyte networks and organization were altered in the absence of collagen XII, as demonstrated using fluorescent microscopy after phalloidin staining and in vivo confocal microscopy. Corneal stiffness was increased in the absence of collagen XII. Young's modulus was 16.2 ± 5.6 kPa in WT and 32.8 ± 6.4 kPa in Col12a1–/– corneas. The difference between these two groups was significant (P < 0.001, t-test). Conclusions Collagen XII plays a major role in establishing and maintaining stromal structure and function. In the absence of collagen XII, the corneal stroma showed significant abnormalities, including decreased interfibrillar space, disrupted lamellar organization, abnormal keratocyte organization, and increased corneal stiffness.
Collapse
|
17
|
Espana EM, Birk DE. Composition, structure and function of the corneal stroma. Exp Eye Res 2020; 198:108137. [PMID: 32663498 PMCID: PMC7508887 DOI: 10.1016/j.exer.2020.108137] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022]
Abstract
No other tissue in the body depends more on the composition and organization of the extracellular matrix (ECM) for normal structure and function than the corneal stroma. The precise arrangement and orientation of collagen fibrils, lamellae and keratocytes that occurs during development and is needed in adults to maintain stromal function is dependent on the regulated interaction of multiple ECM components that contribute to attain the unique properties of the cornea: transparency, shape, mechanical strength, and avascularity. This review summarizes the contribution of different ECM components, their structure, regulation and function in modulating the properties of the corneal stroma. Fibril forming collagens (I, III, V), fibril associated collagens with interrupted triple helices (XII and XIV), network forming collagens (IV, VI and VIII) as well as small leucine-rich proteoglycans (SLRP) expressed in the stroma: decorin, biglycan, lumican, keratocan, and fibromodulin are some of the ECM components reviewed in this manuscript. There are spatial and temporal differences in the expression of these ECM components, as well as interactions among them that contribute to stromal function. Unique regions within the stroma like Bowman's layer and Descemet's layer are discussed. To define the complexity of corneal stroma composition and structure as well as the relationship to function is a daunting task. Our knowledge is expanding, and we expect that this review provides a comprehensive overview of current knowledge, definition of gaps and suggests future research directions.
Collapse
Affiliation(s)
- Edgar M Espana
- Department of Molecular Pharmacology and Physiology, USA; Cornea, External Disease and Refractive Surgery, Department of Ophthalmology, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - David E Birk
- Department of Molecular Pharmacology and Physiology, USA.
| |
Collapse
|
18
|
Taye N, Karoulias SZ, Hubmacher D. The "other" 15-40%: The Role of Non-Collagenous Extracellular Matrix Proteins and Minor Collagens in Tendon. J Orthop Res 2020; 38:23-35. [PMID: 31410892 PMCID: PMC6917864 DOI: 10.1002/jor.24440] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/02/2019] [Indexed: 02/04/2023]
Abstract
Extracellular matrix (ECM) determines the physiological function of all tissues, including musculoskeletal tissues. In tendon, ECM provides overall tissue architecture, which is tailored to match the biomechanical requirements of their physiological function, that is, force transmission from muscle to bone. Tendon ECM also constitutes the microenvironment that allows tendon-resident cells to maintain their phenotype and that transmits biomechanical forces from the macro-level to the micro-level. The structure and function of adult tendons is largely determined by the hierarchical organization of collagen type I fibrils. However, non-collagenous ECM proteins such as small leucine-rich proteoglycans (SLRPs), ADAMTS proteases, and cross-linking enzymes play critical roles in collagen fibrillogenesis and guide the hierarchical bundling of collagen fibrils into tendon fascicles. Other non-collagenous ECM proteins such as the less abundant collagens, fibrillins, or elastin, contribute to tendon formation or determine some of their biomechanical properties. The interfascicular matrix or endotenon and the outer layer of tendons, the epi- and paratenon, includes collagens and non-collagenous ECM proteins, but their function is less well understood. The ECM proteins in the epi- and paratenon may provide the appropriate microenvironment to maintain the identity of distinct tendon cell populations that are thought to play a role during repair processes after injury. The aim of this review is to provide an overview of the role of non-collagenous ECM proteins and less abundant collagens in tendon development and homeostasis. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:23-35, 2020.
Collapse
Affiliation(s)
- Nandaraj Taye
- Leni & Peter W. May Department of Orthopaedics, Orthopaedic Research LaboratoriesIcahn School of Medicine at Mt. SinaiNew York New York 10029
| | - Stylianos Z. Karoulias
- Leni & Peter W. May Department of Orthopaedics, Orthopaedic Research LaboratoriesIcahn School of Medicine at Mt. SinaiNew York New York 10029
| | - Dirk Hubmacher
- Leni & Peter W. May Department of Orthopaedics, Orthopaedic Research LaboratoriesIcahn School of Medicine at Mt. SinaiNew York New York 10029
| |
Collapse
|
19
|
Cell-independent matrix configuration in early corneal development. Exp Eye Res 2019; 187:107772. [PMID: 31445001 PMCID: PMC6892249 DOI: 10.1016/j.exer.2019.107772] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/01/2019] [Accepted: 08/20/2019] [Indexed: 01/01/2023]
Abstract
Mechanisms controlling the spatial configuration of the remarkably ordered collagen-rich extracellular matrix of the transparent cornea remain incompletely understood. We previously described the assembly of the emerging corneal matrix in the mid and late stages of embryogenesis and concluded that collagen fibril organisation was driven by cell-directed mechanisms. Here, the early stages of corneal morphogenesis were examined by serial block face scanning electron microscopy of embryonic chick corneas starting at embryonic day three (E3), followed by a Fourier transform analysis of three-dimensional datasets and theoretical considerations of factors that influence matrix formation. Eyes developing normally and eyes that had the lens surgically removed at E3 were studied. Uniformly thin collagen fibrils are deposited by surface ectoderm-derived corneal epithelium in the primary stroma of the developing chick cornea and form an acellular matrix with a striking micro-lamellar orthogonal arrangement. Fourier transform analysis supported this observation and indicated that adjacent micro-lamellae display a clockwise rotation of fibril orientation, depth-wise below the epithelium. We present a model which attempts to explain how, in the absence of cells in the primary stroma, collagen organisation might be influenced by cell-independent, intrinsic mechanisms, such as fibril axial charge derived from associated proteoglycans. On a supra-lamellar scale, fine cords of non-collagenous filamentous matrix were detected over large tissue volumes. These extend into the developing cornea from the epithelial basal lamina and appear to associate with the neural crest cells that migrate inwardly to form, first the corneal endothelium and then keratocytes which synthesise the mature, secondary corneal stroma. In a small number of experimental specimens, matrix cords were present even when periocular neural crest cell migration and corneal morphogenesis had been perturbed following removal of the lens at E3. Highly-ordered connective tissue appears early in development of the avian cornea. Cell-independent mechanisms may contribute to the organisation of collagen fibrils into an orthogonal array. Matrix cords from epithelium into stroma contact invading neural crest cells.
Collapse
|
20
|
Tidu A, Ghoubay-Benallaoua D, Teulon C, Asnacios S, Grieve K, Portier F, Schanne-Klein MC, Borderie V, Mosser G. Highly concentrated collagen solutions leading to transparent scaffolds of controlled three-dimensional organizations for corneal epithelial cell colonization. Biomater Sci 2018; 6:1492-1502. [DOI: 10.1039/c7bm01163f] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Controlling both organizations and transparency of dense collagen scaffolds.
Collapse
Affiliation(s)
- Aurélien Tidu
- Sorbonne Université
- CNRS
- Collège de France
- Laboratoire Chimie de la Matière Condensée de Paris
- LCMCP
| | - Djida Ghoubay-Benallaoua
- Sorbonne Université
- Institut de la Vision
- INSERM
- CNRS
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts
| | - Claire Teulon
- Laboratory for Optics and Biosciences
- LOB
- Ecole Polytechnique
- CNRS
- Inserm
| | - Sophie Asnacios
- Sorbonne Université
- CNRS
- Univ Paris Diderot
- Laboratoire Matière et Systèmes Complexes
- MSC
| | - Kate Grieve
- Sorbonne Université
- Institut de la Vision
- INSERM
- CNRS
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts
| | - François Portier
- Sorbonne Université
- CNRS
- Collège de France
- Laboratoire Chimie de la Matière Condensée de Paris
- LCMCP
| | | | - Vincent Borderie
- Sorbonne Université
- Institut de la Vision
- INSERM
- CNRS
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts
| | - Gervaise Mosser
- Sorbonne Université
- CNRS
- Collège de France
- Laboratoire Chimie de la Matière Condensée de Paris
- LCMCP
| |
Collapse
|
21
|
Holmes DF, Lu Y, Starborg T, Kadler KE. Collagen Fibril Assembly and Function. Curr Top Dev Biol 2018; 130:107-142. [DOI: 10.1016/bs.ctdb.2018.02.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
22
|
Matrisome Profiling During Intervertebral Disc Development And Ageing. Sci Rep 2017; 7:11629. [PMID: 28912585 PMCID: PMC5599645 DOI: 10.1038/s41598-017-11960-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 09/01/2017] [Indexed: 12/19/2022] Open
Abstract
Intervertebral disc (IVD) degeneration is often the cause of low back pain. Degeneration occurs with age and is accompanied by extracellular matrix (ECM) depletion, culminating in nucleus pulpous (NP) extrusion and IVD destruction. The changes that occur in the disc with age have been under investigation. However, a thorough study of ECM profiling is needed, to better understand IVD development and age-associated degeneration. As so, iTRAQ LC-MS/MS analysis of foetus, young and old bovine NPs, was performed to define the NP matrisome. The enrichment of Collagen XII and XIV in foetus, Fibronectin and Prolargin in elder NPs and Collagen XI in young ones was independently validated. This study provides the first matrisome database of healthy discs during development and ageing, which is key to determine the pathways and processes that maintain disc homeostasis. The factors identified may help to explain age-associated IVD degeneration or constitute putative effectors for disc regeneration.
Collapse
|
23
|
Kadler KE. Fell Muir Lecture: Collagen fibril formation in vitro and in vivo. Int J Exp Pathol 2017; 98:4-16. [PMID: 28508516 PMCID: PMC5447863 DOI: 10.1111/iep.12224] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 01/21/2017] [Indexed: 12/29/2022] Open
Abstract
It is a great honour to be awarded the Fell Muir Prize for 2016 by the British Society of Matrix Biology. As recipient of the prize, I am taking the opportunity to write a minireview on collagen fibrillogenesis, which has been the focus of my research for 33 years. This is the process by which triple helical collagen molecules assemble into centimetre-long fibrils in the extracellular matrix of animals. The fibrils appeared a billion years ago at the dawn of multicellular animal life as the primary scaffold for tissue morphogenesis. The fibrils occur in exquisite three-dimensional architectures that match the physical demands of tissues, for example orthogonal lattices in cornea, basket weaves in skin and blood vessels, and parallel bundles in tendon, ligament and nerves. The question of how collagen fibrils are formed was posed at the end of the nineteenth century. Since then, we have learned about the structure of DNA and the peptide bond, understood how plants capture the sun's energy, cloned animals, discovered antibiotics and found ways of editing our genome in the pursuit of new cures for diseases. However, how cells generate tissues from collagen fibrils remains one of the big unsolved mysteries in biology. In this review, I will give a personal account of the topic and highlight some of the approaches that my research group are taking to find new insights.
Collapse
Affiliation(s)
- Karl E. Kadler
- Faculty of Biology, Medicine and HealthWellcome Trust Centre for Cell‐Matrix ResearchManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| |
Collapse
|
24
|
John R, Prabhakar S, Dhillon MS, Anand A, Minhas G. Association of ACL tears and single nucleotide polymorphisms in the collagen 12 A1 gene in the Indian population - a preliminary case-control study. Muscles Ligaments Tendons J 2016; 6:253-257. [PMID: 27900301 DOI: 10.11138/mltj/2016.6.2.253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Genetic predisposition to ACL tears has received tremendous interest in the past few years with many SNPs of different genes being linked to ACL tear. STUDY OBJECTIVES To examine if specific sequence variants in COL12A1 gene are associated with ACL tears in Indian population. STUDY DESIGN Case-control study. MATERIALS AND METHODS 50 patients with surgically diagnosed ACL tear and 52 healthy, age-matched controls without any ligament/tendon injuries were genotyped for rs970547 and rs240736 SNPs using real time PCR method. RESULTS The AG and GG genotypes were significantly under-represented in study group patients in rs970547 region (p=0.0361). However, there was no significant difference in genotype/allele frequencies in the rs240736 region. CONCLUSIONS The COL12A1 rs970547 SNP is associated with ACL tears in the Indian population. However, these results need to be validated further so that predisposed individuals can be screened in the future for counselling and intervention. LEVEL OF EVIDENCE III.
Collapse
Affiliation(s)
- Rakesh John
- Department of Orthopaedics, PGIMER, Chandigarh, India
| | | | | | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, PGIMER, Chandigarh, India
| | - Gillipsie Minhas
- Neuroscience Research Lab, Department of Neurology, PGIMER, Chandigarh, India
| |
Collapse
|
25
|
Marro J, Pfefferli C, de Preux Charles AS, Bise T, Jaźwińska A. Collagen XII Contributes to Epicardial and Connective Tissues in the Zebrafish Heart during Ontogenesis and Regeneration. PLoS One 2016; 11:e0165497. [PMID: 27783651 PMCID: PMC5081208 DOI: 10.1371/journal.pone.0165497] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/12/2016] [Indexed: 12/25/2022] Open
Abstract
Zebrafish heart regeneration depends on cardiac cell proliferation, epicardium activation and transient reparative tissue deposition. The contribution and the regulation of specific collagen types during the regenerative process, however, remain poorly characterized. Here, we identified that the non-fibrillar type XII collagen, which serves as a matrix-bridging component, is expressed in the epicardium of the zebrafish heart, and is boosted after cryoinjury-induced ventricular damage. During heart regeneration, an intense deposition of Collagen XII covers the outer epicardial cap and the interstitial reparative tissue. Analysis of the activated epicardium and fibroblast markers revealed a heterogeneous cellular origin of Collagen XII. Interestingly, this matrix-bridging collagen co-localized with fibrillar type I collagen and several glycoproteins in the post-injury zone, suggesting its role in tissue cohesion. Using SB431542, a selective inhibitor of the TGF-β receptor, we showed that while the inhibitor treatment did not affect the expression of collagen 12 and collagen 1a2 in the epicardium, it completely suppressed the induction of both genes in the fibrotic tissue. This suggests that distinct mechanisms might regulate collagen expression in the outer heart layer and the inner injury zone. On the basis of this study, we postulate that the TGF-β signaling pathway induces and coordinates formation of a transient collagenous network that comprises fibril-forming Collagen I and fiber-associated Collagen XII, both of which contribute to the reparative matrix of the regenerating zebrafish heart.
Collapse
Affiliation(s)
- Jan Marro
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Catherine Pfefferli
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | | | - Thomas Bise
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
| | - Anna Jaźwińska
- Department of Biology, University of Fribourg, Chemin du Musée 10, 1700 Fribourg, Switzerland
- * E-mail:
| |
Collapse
|
26
|
Amenta PS, Scivoletti NA, Newman MD, Sciancalepore JP, Li D, Myers JC. Proteoglycan-Collagen XV in Human Tissues Is Seen Linking Banded Collagen Fibers Subjacent to the Basement Membrane. J Histochem Cytochem 2016; 53:165-76. [PMID: 15684329 DOI: 10.1369/jhc.4a6376.2005] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Type XV is a large collagen-proteoglycan found in all human tissues examined. By light microscopy it was localized to most epithelial and all nerve, muscle, fat and endothelial basement membrane zones except for the glomerular capillaries or hepatic/splenic sinusoids. This widespread distribution suggested that type XV may be a discrete structural component that acts to adhere basement membrane to the underlying connective tissue. To address these issues, immunogold ultrastructural analysis of type XV collagen in human kidney, placenta, and colon was conducted. Surprisingly, type XV was found almost exclusively associated with the fibrillar collagen network in very close proximity to the basement membrane. Type XV exhibited a focal appearance directly on the surface of, or extending from, the fibers in a linear or clustered array. The most common single arrangement was a bridge of type XV gold particles linking thick-banded fibers. The function of type XV in this restricted microenvironment is expected to have an intrinsic dependence upon its modification with glycosaminoglycan chains. Present biochemical characterization showed that the type XV core protein in vivo carries chains of chondroitin/dermatan sulfate alone, or chondroitin/dermatan sulfate together with heparan sulfate in a differential ratio. Thus, type XV collagen may serve as a structural organizer to maintain a porous meshwork subjacent to the basement membrane, and in this domain may play a key role in signal transduction pathways.
Collapse
Affiliation(s)
- Peter S Amenta
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School-UMDNJ, New Burnswick, New Jersey, USA
| | | | | | | | | | | |
Collapse
|
27
|
Sardone F, Traina F, Bondi A, Merlini L, Santi S, Maraldi NM, Faldini C, Sabatelli P. Tendon Extracellular Matrix Alterations in Ullrich Congenital Muscular Dystrophy. Front Aging Neurosci 2016; 8:131. [PMID: 27375477 PMCID: PMC4896961 DOI: 10.3389/fnagi.2016.00131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/25/2016] [Indexed: 11/13/2022] Open
Abstract
Collagen VI (COLVI) is a non-fibrillar collagen expressed in skeletal muscle and most connective tissues. Mutations in COLVI genes cause two major clinical forms, Bethlem myopathy and Ullrich congenital muscular dystrophy (UCMD). In addition to congenital muscle weakness, patients affected by COLVI myopathies show axial and proximal joint contractures and distal joint hypermobility, which suggest the involvement of the tendon function. We examined a peroneal tendon biopsy and tenocyte culture of a 15-year-old patient affected by UCMD with compound heterozygous COL6A2 mutations. In patient’s tendon biopsy, we found striking morphological alterations of tendon fibrils, consisting in irregular profiles and reduced mean diameter. The organization of the pericellular matrix of tenocytes, the primary site of collagen fibril assembly, was severely affected, as determined by immunoelectron microscopy, which showed an abnormal accumulation of COLVI and altered distribution of collagen I (COLI) and fibronectin (FBN). In patient’s tenocyte culture, COLVI web formation and cell surface association were severely impaired; large aggregates of COLVI, which matched with COLI labeling, were frequently detected in the extracellular matrix. In addition, metalloproteinase MMP-2, an extracellular matrix-regulating enzyme, was increased in the conditioned medium of patient’s tenocytes, as determined by gelatin zymography and western blot. Altogether, these data indicate that COLVI deficiency may influence the organization of UCMD tendon matrix, resulting in dysfunctional fibrillogenesis. The alterations of tendon matrix may contribute to the complex pathogenesis of COLVI related myopathies.
Collapse
Affiliation(s)
- Francesca Sardone
- Department of Biomedical Sciences, University of PadovaPadova, Italy; National Research Council of Italy, Institute of Molecular GeneticsBologna, Italy
| | - Francesco Traina
- Rizzoli Orthopaedic Institute, University of Bologna Bologna, Italy
| | - Alice Bondi
- Rizzoli Orthopaedic Institute, University of Bologna Bologna, Italy
| | - Luciano Merlini
- Muscle Clinic, Villa Erbosa Hospital, Gruppo San Donato Bologna, Italy
| | - Spartaco Santi
- National Research Council of Italy, Institute of Molecular GeneticsBologna, Italy; SC Laboratory of Musculoskeletal Cell Biology, IOR-IRCCSBologna, Italy
| | - Nadir Mario Maraldi
- National Research Council of Italy, Institute of Molecular GeneticsBologna, Italy; SC Laboratory of Musculoskeletal Cell Biology, IOR-IRCCSBologna, Italy
| | - Cesare Faldini
- Rizzoli Orthopaedic Institute, University of Bologna Bologna, Italy
| | - Patrizia Sabatelli
- National Research Council of Italy, Institute of Molecular GeneticsBologna, Italy; SC Laboratory of Musculoskeletal Cell Biology, IOR-IRCCSBologna, Italy
| |
Collapse
|
28
|
Carpal tunnel syndrome: The role of collagen gene variants. Gene 2016; 587:53-8. [PMID: 27090000 DOI: 10.1016/j.gene.2016.04.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 04/13/2016] [Indexed: 11/22/2022]
Abstract
INTRODUCTION The direct causes of idiopathic carpal tunnel syndrome (CTS) are still unknown. It is suggested that pathology of the tendons and other connective tissue structures within the carpal tunnel may play a role in its aetiology. Variants in genes encoding connective tissue proteins, such as type V collagen, have previously been associated with CTS. Since variants within other collagen genes, such as type I, XI and XII collagen, have previously been associated with modulating the risk of musculoskeletal soft tissue injuries, the aim of this study was to determine whether variants within COL1A1, COL11A1, COL11A2 and COL12A1 were associated with CTS. METHODS Self-reported Coloured South African participants, with a history of carpal tunnel release surgery (CTS, n=103) and matched control (CON, n=150) participants without any reported history of CTS symptoms were genotyped for COL1A1 rs1800012 (G/T), COL11A1 rs3753841 (T/C), COL11A1 rs1676486 (C/T), COL11A2 rs1799907 (T/A) and COL12A1 rs970547 (A/G). RESULTS The TT genotype of COL11A1 rs3753841 was significantly over-represented in the CTS group (21.4%) compared to CON group (7.9%, p=0.004). Furthermore, a trend for the T minor allele to be over-represented in the CTS group (p=0.055) with a significant association when only female participants (p=0.036) were investigated was observed. Constructed inferred pseudo-haplotypes including a previously investigated COL5A1 variant, rs71746744 (-/AGGG), suggest gene-gene interactions between COL5A1 and COL11A1 modulate the risk of CTS. DISCUSSION These findings provide further information of the role of the genetic risk factors and the possible role of variations in collagen fibril composition in the aetiology of CTS. Genetic factors could potential be included in models developed to identify indivisuals at risk of CTS. Strategies that target modifiable risk factors to mitigate the effect of non-modifiable risk factors, such as the genetic risk, could be also developed to reduce incidence and morbidity of CTS.
Collapse
|
29
|
Tidu A, Ghoubay-Benallaoua D, Lynch B, Haye B, Illoul C, Allain JM, Borderie VM, Mosser G. Development of human corneal epithelium on organized fibrillated transparent collagen matrices synthesized at high concentration. Acta Biomater 2015; 22:50-8. [PMID: 25931016 DOI: 10.1016/j.actbio.2015.04.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 03/06/2015] [Accepted: 04/14/2015] [Indexed: 12/13/2022]
Abstract
Several diseases can lead to opacification of cornea requiring transplantation of donor tissue to restore vision. In this context, transparent collagen I fibrillated matrices have been synthesized at 15, 30, 60 and 90 mg/mL. The matrices were evaluated for fibril organizations, transparency, mechanical properties and ability to support corneal epithelial cell culture. The best results were obtained with 90 mg/mL scaffolds. At this concentration, the fibril organization presented some similarities to that found in corneal stroma. Matrices had a mean Young's modulus of 570 kPa and acellular scaffolds had a transparency of 87% in the 380-780 nm wavelength range. Human corneal epithelial cells successfully colonized the surface of the scaffolds and generated an epithelium with characteristics of corneal epithelial cells (i.e. expression of cytokeratin 3 and presence of desmosomes) and maintenance of stemness during culture (i.e. expression of ΔNp63α and formation of holoclones in colony formation assay). Presence of cultured epithelium on the matrices was associated with increased transparency (89%).
Collapse
Affiliation(s)
- Aurélien Tidu
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Collège de France, UMR 7574, Chimie de la Matière Condensée de Paris, F-75005 Paris, France
| | - Djida Ghoubay-Benallaoua
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris F75012, France; INSERM, U968, Paris F75012, France; CNRS, UMR_7210, Paris F75012, France; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, DHU View Maintain, INSERM-DHOS CIC 1423, Paris F-75012, France
| | - Barbara Lynch
- Solids Mechanics Laboratory, Ecole Polytechnique, Centre National de la Recherche Scientifique, Palaiseau, France
| | - Bernard Haye
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Collège de France, UMR 7574, Chimie de la Matière Condensée de Paris, F-75005 Paris, France
| | - Corinne Illoul
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Collège de France, UMR 7574, Chimie de la Matière Condensée de Paris, F-75005 Paris, France
| | - Jean-Marc Allain
- Solids Mechanics Laboratory, Ecole Polytechnique, Centre National de la Recherche Scientifique, Palaiseau, France
| | - Vincent M Borderie
- Sorbonne Universités, UPMC Univ Paris 06, UMR_S 968, Institut de la Vision, Paris F75012, France; INSERM, U968, Paris F75012, France; CNRS, UMR_7210, Paris F75012, France; Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, DHU View Maintain, INSERM-DHOS CIC 1423, Paris F-75012, France
| | - Gervaise Mosser
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Collège de France, UMR 7574, Chimie de la Matière Condensée de Paris, F-75005 Paris, France.
| |
Collapse
|
30
|
Massoudi D, Malecaze F, Galiacy SD. Collagens and proteoglycans of the cornea: importance in transparency and visual disorders. Cell Tissue Res 2015. [PMID: 26205093 DOI: 10.1007/s00441-015-2233-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The cornea represents the external part of the eye and consists of an epithelium, a stroma and an endothelium. Due to its curvature and transparency this structure makes up approximately 70% of the total refractive power of the eye. This function is partly made possible by the particular organization of the collagen extracellular matrix contained in the corneal stroma that allows a constant refractive power. The maintenance of such an organization involves other molecules such as type V collagen, FACITs (fibril-associated collagens with interrupted triple helices) and SLRPs (small leucine-rich proteoglycans). These components play crucial roles in the preservation of the correct organization and function of the cornea since their absence or modification leads to abnormalities such as corneal opacities. Thus, the aim of this review is to describe the different corneal collagens and proteoglycans by highlighting their importance in corneal transparency as well as their implication in corneal visual disorders.
Collapse
Affiliation(s)
| | - Francois Malecaze
- EA4555, Université Toulouse III Paul Sabatier, Toulouse, France
- CHU Toulouse, Hôpital Purpan, Service d'Ophtalmologie, Toulouse, France
| | - Stephane D Galiacy
- EA4555, Université Toulouse III Paul Sabatier, Toulouse, France.
- CHU Toulouse, Hôpital Purpan, Service d'Ophtalmologie, Toulouse, France.
| |
Collapse
|
31
|
Corneal Development: Different Cells from a Common Progenitor. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 134:43-59. [PMID: 26310148 DOI: 10.1016/bs.pmbts.2015.04.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Development of the vertebrate cornea is a multistep process that involves cellular interactions between various ectodermal-derived tissues. Bilateral interactions between the neural ectoderm-derived optic vesicles and the cranial ectoderm give rise to the presumptive corneal epithelium and other epithelia of the ocular surface. Interactions between the neural tube and the adjacent ectoderm give rise to the neural crest cells, a highly migratory and multipotent cell population. Neural crest cells migrate between the lens and presumptive corneal epithelium to form the corneal endothelium and the stromal keratocytes. The sensory nerves that abundantly innervate the corneal stroma and epithelium originate from the neural crest- and ectodermal placode-derived trigeminal ganglion. Concomitant with corneal innervation is the formation of the limbal vascular plexus and the establishment of corneal avascularity. This review summarizes historical and current research to provide an overview of the genesis of the cellular layers of the cornea, corneal innervation, and avascularity.
Collapse
|
32
|
Regulation of corneal stroma extracellular matrix assembly. Exp Eye Res 2015; 133:69-80. [PMID: 25819456 DOI: 10.1016/j.exer.2014.08.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 07/30/2014] [Accepted: 08/02/2014] [Indexed: 01/16/2023]
Abstract
The transparent cornea is the major refractive element of the eye. A finely controlled assembly of the stromal extracellular matrix is critical to corneal function, as well as in establishing the appropriate mechanical stability required to maintain corneal shape and curvature. In the stroma, homogeneous, small diameter collagen fibrils, regularly packed with a highly ordered hierarchical organization, are essential for function. This review focuses on corneal stroma assembly and the regulation of collagen fibrillogenesis. Corneal collagen fibrillogenesis involves multiple molecules interacting in sequential steps, as well as interactions between keratocytes and stroma matrix components. The stroma has the highest collagen V:I ratio in the body. Collagen V regulates the nucleation of protofibril assembly, thus controlling the number of fibrils and assembly of smaller diameter fibrils in the stroma. The corneal stroma is also enriched in small leucine-rich proteoglycans (SLRPs) that cooperate in a temporal and spatial manner to regulate linear and lateral collagen fibril growth. In addition, the fibril-associated collagens (FACITs) such as collagen XII and collagen XIV have roles in the regulation of fibril packing and inter-lamellar interactions. A communicating keratocyte network contributes to the overall and long-range regulation of stromal extracellular matrix assembly, by creating micro-domains where the sequential steps in stromal matrix assembly are controlled. Keratocytes control the synthesis of extracellular matrix components, which interact with the keratocytes dynamically to coordinate the regulatory steps into a cohesive process. Mutations or deficiencies in stromal regulatory molecules result in altered interactions and deficiencies in both transparency and refraction, leading to corneal stroma pathobiology such as stromal dystrophies, cornea plana and keratoconus.
Collapse
|
33
|
|
34
|
Does the A9285G Polymorphism in Collagen Type XII α1 Gene Associate with the Risk of Anterior Cruciate Ligament Ruptures? Balkan J Med Genet 2014; 17:41-6. [PMID: 25741214 PMCID: PMC4347476 DOI: 10.2478/bjmg-2014-0022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
One of the most severe injuries sustained by athletes is rupture of the anterior cruciate ligament (ACL). Recent investigations suggest that a predisposition for ACL rupture may be the result of specific genetic sequence variants. In light of this, we decided to investigate whether the COL12A1 A9285G polymorphism was associated with ACL ruptures in Polish football players. We compared genotypic and allelic frequencies of the COL12A1 A9285G polymorphism in two groups of athletes: 91 male football players (23 ± 3 years) with surgically diagnosed primary ACL ruptures who qualified for ligament reconstruction (cases) and 143 apparently healthy, male football players of the same ethnicity, a similar age category, and a comparable level of exposure to ACL injury, who were without any self-reported history of ligament or tendon injury (controls). DNA samples extracted from the oral epithelial cells were genotyped by using a real-time polymerase chain reaction (Ri-Ti-PCR) method. The genotype distribution in the cases were not different from those in controls (p = 0.70). The frequency of the G allele was lower in the cases (18.1%) but not statistically significant (p = 0.40) when compared with controls (21.3%). Our results are in contradiction to the hypothesis that the COL12A1 A9285G polymorphism is associated with a predisposition for ACL injury. However, these conclusions should be supported with more experimental studies on COL12A1 polymorphisms.
Collapse
|
35
|
Ivanova VP, Krivchenko AI. Current viewpoint on structure and on evolution of collagens. II. Fibril-associated collagens. J EVOL BIOCHEM PHYS+ 2014. [DOI: 10.1134/s0022093014040012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
36
|
O'Connell K, Knight H, Ficek K, Leonska-Duniec A, Maciejewska-Karlowska A, Sawczuk M, Stepien-Slodkowska M, O'Cuinneagain D, van der Merwe W, Posthumus M, Cieszczyk P, Collins M. Interactions between collagen gene variants and risk of anterior cruciate ligament rupture. Eur J Sport Sci 2014; 15:341-50. [PMID: 25073002 DOI: 10.1080/17461391.2014.936324] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The COL5A1 and COL12A1 variants are independently associated with modulating the risk of anterior cruciate ligament (ACL) rupture in females. The objective of this study was to further investigate if COL3A1 and COL6A1 variants independently, as well as, collagen gene-gene interactions, modulate ACL rupture risk. Three hundred and thirty-three South African (SA, n = 242) and Polish (PL, n = 91) participants with diagnosed ACL ruptures and 378 controls (235 SA and 143 PL) were recruited. Participants were genotyped for COL3A1 rs1800255 G/A, COL5A1 rs12722 (T/C), COL6A1 rs35796750 (T/C) and COL12A1 rs970547 (A/G). No significant associations were identified between COL6A1 rs35796750 and COL3A1 rs1800255 genotypes and risk of ACL rupture in the SA cohort. The COL3A1 AA genotype was, however, significantly (p = 0.036) over-represented in the PL ACL group (9.9%, n = 9) when compared to the PL control (CON) group (2.8%, n = 4). Although there were genotype distribution differences between the SA and PL cohorts, the T+A-inferred pseudo-haplotype constructed from COL5A1 and COL12A1 was significantly over-represented in the female ACL group when compared to the female CON group within the SA (T+A ACL 50.5%, T+A CON 38.1%, p = 0.022), PL (T+A ACL 56.3%, T+A CON 36.3%, p = 0.029) and combined (T+A ACL 51.8%, T+A CON 37.5%, p = 0.004) cohorts. In conclusion, the novel main finding of this study was a significant interaction between the COL5A1 rs12722 T/C and COL12A1 rs970547 A/G variants and risk of ACL injury. These results highlight the importance of investigating gene-gene interactions in the aetiology of ACL ruptures in multiple independent cohorts.
Collapse
Affiliation(s)
- Kevin O'Connell
- a MRC/UCT Research Unit for Exercise Science & Sports Medicine , University of Cape Town , Cape Town , South Africa
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Parapuram SK, Hodge W. The integrin needle in the stromal haystack: emerging role in corneal physiology and pathology. J Cell Commun Signal 2014; 8:113-24. [PMID: 24604397 DOI: 10.1007/s12079-014-0230-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 02/14/2014] [Indexed: 01/22/2023] Open
Abstract
Several studies have established the role of activated corneal keratocytes in the fibrosis of the cornea. However, the role of keratocytes in maintaining the structural integrity of a normal cornea is less appreciated. We focus on the probable functions of integrins in the eye and of the importance of integrin-mediated keratocyte interactions with stromal matrix in the maintenance of corneal integrity. We point out that further understanding of how keratocytes interact with their matrix could establish a novel direction in preventing corneal pathology including loss of structural integrity as in keratoconus or as in fibrosis of the corneal stroma.
Collapse
Affiliation(s)
- Sunil K Parapuram
- Department of Ophthalmology, University of Western Ontario, London, Ontario, N6A 4V2, Canada,
| | | |
Collapse
|
38
|
Abdulnour-Nakhoul SM, Al-Tawil Y, Gyftopoulos AA, Brown KL, Hansen M, Butcher KF, Eidelwein AP, Noel RA, Rabon E, Posta A, Nakhoul NL. Alterations in junctional proteins, inflammatory mediators and extracellular matrix molecules in eosinophilic esophagitis. Clin Immunol 2013; 148:265-78. [PMID: 23792687 DOI: 10.1016/j.clim.2013.05.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 04/08/2013] [Accepted: 05/09/2013] [Indexed: 12/13/2022]
Abstract
Eosinophilic esophagitis (EoE), an inflammatory atopic disease of the esophagus, causes massive eosinophil infiltration, basal cell hyperplasia, and sub-epithelial fibrosis. To elucidate cellular and molecular factors involved in esophageal tissue damage and remodeling, we examined pinch biopsies from EoE and normal pediatric patients. An inflammation gene array confirmed that eotaxin-3, its receptor CCR3 and interleukins IL-13 and IL-5 were upregulated. An extracellular matrix (ECM) gene array revealed upregulation of CD44 & CD54, and of ECM proteases (ADAMTS1 & MMP14). A cytokine antibody array showed a marked decrease in IL-1α and IL-1 receptor antagonist and an increase in eotaxin-2 and epidermal growth factor. Western analysis indicated reduced expression of intercellular junction proteins, E-cadherin and claudin-1 and increased expression of occludin and vimentin. We have identified a number of novel genes and proteins whose expression is altered in EoE. These findings provide new insights into the molecular mechanisms of the disease.
Collapse
|
39
|
Hemmavanh C, Koch M, Birk DE, Espana EM. Abnormal corneal endothelial maturation in collagen XII and XIV null mice. Invest Ophthalmol Vis Sci 2013; 54:3297-308. [PMID: 23599329 DOI: 10.1167/iovs.12-11456] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
PURPOSE Maturation of the endothelium and the adjacent matrix was characterized in wild-type (WT) mice. The influence of FACIT collagen XII and XIV deficiency on the morphology, maturation, and function of the corneal endothelium was examined. METHODS Analysis of the endothelium and Descemet's membrane (DM) was performed using transmission electron microscopy at postnatal day (P)4, P14, and P30 in WT, Col12a1(-/-), Col14a1(-/-), and Col12a1(-/-)/Col14a1(-/-) mice. Endothelial junctions were analyzed using ZO-1. The presence of endothelial-stromal communications was evaluated with phalloidin staining as well as electron microscopy. Finally, corneal thickness was assessed. RESULTS A thin DM, clefts between endothelial cells and DM, and large "vacuole-like" structures were present in the endothelial cells of WT mice at P4 but not noted at P30. The endothelia of Col12a1(-/-), Col14a1(-/-), and compound Col12a1(-/-)/Col14a1(-/-) in the P30 cornea maintained the vacuole-like structures seen at P4. A mature endothelial junction pattern was delayed in the null corneas. Expression of ZO-1 in WT endothelia at P14 was diffuse and localized to the basolateral and apical cell membrane. At P30, staining was localized to intercellular junctions. ZO-1 reactivity was patchy in Col12a1(-/-), Col14a1(-/-), and compound Col12a1(-/-)/Col14a1(-/-) corneas at P14 and P30. Stromal thickness was increased in P30 null corneas. Endothelial cell processes were demonstrated penetrating the DM and into the underlying stroma, throughout the entire endothelial layer in the P4 cornea. CONCLUSIONS Collagen XII and XIV null mice demonstrate delayed endothelial maturation. The structural alterations suggest functional changes in endothelial function resulting in increased corneal thickness. Endothelial-stromal interactions suggest a pathway for signal transduction.
Collapse
Affiliation(s)
- Chinda Hemmavanh
- Department of Molecular Pharmacology and Physiology, University of South Florida, Tampa, FL, USA
| | | | | | | |
Collapse
|
40
|
Runager K, Klintworth GK, Karring H, Enghild JJ. The insoluble TGFBIp fraction of the cornea is covalently linked via a disulfide bond to type XII collagen. Biochemistry 2013; 52:2821-7. [PMID: 23556985 DOI: 10.1021/bi400212m] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
TGFBIp, also known as keratoepithelin and βig-h3, is among the most abundant proteins in the human cornea, and approximately 60% is associated with the insoluble fraction following extraction in sodium dodecyl sulfate (SDS) sample buffer. TGFBIp is of particular interest because a wide range of mutations causes amyloid or fuchsinophilic crystalloid deposits in the cornea leading to visual impairment. We show that the SDS-insoluble fraction of TGFBIp from porcine and human corneas is covalently linked via a reducible bond to the NC3 domain of type XII collagen in a TGFBIp:type XII collagen stoichiometric ratio of 2:1. Because type XII collagen is anchored to striated collagen fibers of the extracellular matrix, its interaction with TGFBIp is likely to provide anchoring for cells to the extracellular matrix through the integrin binding capability of TGFBIp. Furthermore, the TGFBIp-type XII collagen molecule will affect our understanding of the molecular pathogenesis of the TGFBI-linked corneal dystrophies.
Collapse
Affiliation(s)
- Kasper Runager
- Center for Insoluble Protein Structures and Interdisciplinary Nanoscience Center at the Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | | | | | | |
Collapse
|
41
|
Mikesh LM, Aramadhaka LR, Moskaluk C, Zigrino P, Mauch C, Fox JW. Proteomic anatomy of human skin. J Proteomics 2013; 84:190-200. [PMID: 23563204 DOI: 10.1016/j.jprot.2013.03.019] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 03/15/2013] [Accepted: 03/22/2013] [Indexed: 11/26/2022]
Abstract
UNLABELLED The extracellular matrix is composed of a variety of proteins which are essential for growth, wound healing, and fibrosis. It provides both structural support as well as contributing to the regulation of the local microenvironment. To further characterize the molecular composition of human skin we have undertaken a proteomic approach to identify proteins in three skin regions from two locations. Using laser microdissection, extracellular matrix was obtained from three distinct regions (basement membrane, papillary dermis, and reticular dermis) of formalin-fixed, paraffin embedded tissue from normal human leg and breast skin. The proteome of these regions was determined by mass spectrometric analysis. This study provides a relative quantitative assessment, including protein composition and relative abundance, of the proteins found in different skin regions giving rise to a "proteomic anatomy" of skin. Our findings indicate that there was little difference detected in the subproteomes of the dermal and papillary regions and little difference between the proteomes of leg skin compared to breast skin. One finding of interest is the identification of tenascin-X only in the breast dermis and serum amyloid P-component in the leg dermis. The results of this proteomic analysis corroborate much of the information on the protein composition identified by other methodologies found in the literature but provide additional insight as to localization of skin proteins in the various regions of skin. One potential outcome of this study is that identification of a more global proteomic composition in normal skin may serve as the basis for characterizing and comparing the skin proteomes from a variety of disease states, which may lead to a more complete understanding of the pathology of the disease as well as new therapeutic treatments. BIOLOGICAL SIGNIFICANCE This investigation underscores the power of proteomics to bring semiquantitative, non-presumptive molecular characterization to the field of histological anatomy. Traditionally, anatomy relied on visual or histochemical structural characterization which generally involved some level of understanding of the area of interest. With the advent of laser microdissection or laser capture microscopy localization of anatomical structures of interest can be correlated to molecular composition by virtue of mass spectrometric determination of the proteome of that structure. One potential outcome of this study is that identification of a more global proteomic composition in normal skin may serve as the basis for characterizing and comparing the skin proteomes from a variety of disease states, which may lead to a more complete understanding of the pathology of the disease as well as new therapeutic treatments.
Collapse
Affiliation(s)
- Leann M Mikesh
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | | | | | | | | | | |
Collapse
|
42
|
Bell RD, Shultz SJ, Wideman L, Henrich VC. Collagen gene variants previously associated with anterior cruciate ligament injury risk are also associated with joint laxity. Sports Health 2012; 4:312-8. [PMID: 23016102 PMCID: PMC3435918 DOI: 10.1177/1941738112446684] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Background: Genetic association studies demonstrate a relationship between several collagen gene variants and anterior cruciate ligament (ACL) injury, yet the mechanism of these relationships is still unclear. Joint laxity is a heritable trait; increased magnitudes of anterior knee laxity (AKL), genu recurvatum (GR), and general joint laxity (GJL) have been consistently associated with a greater risk of ACL injury. Joint laxity may constitute an important intermediate phenotype for the genetic association with ACL injury that can be measured clinically. Hypothesis: To determine if genetic variants within the COL1A1, COL5A1, and COL12A1 genes, previously associated with ACL injury, were also associated with greater magnitudes of AKL, GR, and GJL. Study Design: Descriptive laboratory study. Methods: Blood samples and measures of AKL, GR, and GJL were obtained from 124 (50 male, 74 female) healthy, recreationally active subjects. Genomic DNA was extracted from the blood samples and genotyped for single-nucleotide polymorphisms previously examined relative to ACL injury. Univariate analyses of variance compared the magnitude of each laxity variable across the 3 genotypes for each single-nucleotide polymorphism in both sex-combined and sex-specific models. Results: Specific genotypes were associated with greater GR in all subjects. Some genotypes were associated with greater magnitudes of GR, AKL, and GJL in females only. Conclusions: Gene variants previously associated with ACL injury risk were in large part also associated with joint laxity. Sex-specific genetic associations with joint laxity were consistent with those previously reported for ACL injury. Clinical Relevance: These data provide insight into potential pathways through which genotypic variants in collagen genes have the potential to alter ligament structure and behavior and, thus, ACL injury risk.
Collapse
Affiliation(s)
- Richard D Bell
- Department of Kinesiology, University of North Carolina at Greensboro, Greensboro, North Carolina
| | | | | | | |
Collapse
|
43
|
O'connell K, Posthumus M, Collins M. No association between COL3A1, COL6A1 or COL12A1 gene variants and range of motion. J Sports Sci 2012; 31:181-7. [PMID: 23013106 DOI: 10.1080/02640414.2012.723133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Approximately 64-70% of the variability in joint range of motion (ROM) is heritable. A common variant within a type V collagen (COL5A1) gene is associated with joint range of motion. Like type V collagen, types III, VI and XII collagen are also involved in fibril assembly and/or diameter regulation. Mutations within the genes that encode these proteins, COL3A1, COL6A1 and COL12A1, also cause connective tissue hypermobility disorders and phenotypes. The aim of this study was to determine if variants within these genes are associated with measures of joint range of motion. Three hundred and fifty apparently healthy and physically active Caucasian participants were recruited. Anthropometric measurements were taken. Sit-and-reach (SR), straight leg raise (SLR) and total shoulder rotation (ShTR) range of motion were measured. All participants were genotyped for COL3A1 rs1800255, COL6A1 rs35796750 and COL12A1 rs970547. COL3A1 rs1800255, COL6A1 rs35796750 and COL12A1 rs970547 were not significantly associated with sit-and-reach, straight leg raise or total shoulder rotation range of motion. Furthermore, no significant age-genotype interaction effects were identified between the variants and range of motion measurements. None of the variants investigated in this study were significantly associated with any of the measures of range of motion used. Further studies are required to identify additional intrinsic and extrinsic factors that may determine range of motion, including the genetic component.
Collapse
Affiliation(s)
- Kevin O'connell
- MRC/UCT Research Unit for Exercise Science & Sports Medicine, University of Cape Town, Human Biology, Cape Town, South Africa
| | | | | |
Collapse
|
44
|
Wang L, Bresee CS, Jiang H, He W, Ren T, Schweitzer R, Brigande JV. Scleraxis is required for differentiation of the stapedius and tensor tympani tendons of the middle ear. J Assoc Res Otolaryngol 2011; 12:407-21. [PMID: 21399989 DOI: 10.1007/s10162-011-0264-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 02/22/2011] [Indexed: 12/20/2022] Open
Abstract
Scleraxis (Scx) is a basic helix-loop-helix transcription factor expressed in tendon and ligament progenitor cells and the differentiated cells within these connective tissues in the axial and appendicular skeleton. Unexpectedly, we found expression of the Scx transgenic reporter mouse, Scx-GFP, in interdental cells, sensory hair cells, and cochlear supporting cells at embryonic day 18.5 (E18.5). We evaluated Scx-null mice to gain insight into the function of Scx in the inner ear. Paradoxical hearing loss was detected in Scx-nulls, with ~50% of the mutants presenting elevated auditory thresholds. However, Scx-null mice have no obvious, gross alterations in cochlear morphology or cellular patterning. Moreover, we show that the elevated auditory thresholds correlate with middle ear infection. Laser interferometric measurement of sound-induced malleal movements in the infected Scx-nulls demonstrates increased impedance of the middle ear that accounts for the hearing loss observed. The vertebrate middle ear transmits vibrations of the tympanic membrane to the cochlea. The tensor tympani and stapedius muscles insert into the malleus and stapes via distinct tendons and mediate the middle ear muscle reflex that in part protects the inner ear from noise-induced damage. Nothing, however, is known about the development and function of these tendons. Scx is expressed in tendon progenitors at E14.5 and differentiated tenocytes of the stapedius and tensor tympani tendons at E16.5-18.5. Scx-nulls have dramatically shorter stapedius and tensor tympani tendons with altered extracellular matrix consistent with abnormal differentiation in which condensed tendon progenitors are inefficiently incorporated into the elongating tendons. Scx-GFP is the first transgenic reporter that identifies middle ear tendon lineages from the time of their formation through complete tendon maturation. Scx-null is the first genetically defined mouse model for abnormal middle ear tendon differentiation. Scx mouse models will facilitate studies of tendon and muscle formation and function in the middle ear.
Collapse
Affiliation(s)
- Lingyan Wang
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Knupp C, Pinali C, Lewis PN, Parfitt GJ, Young RD, Meek KM, Quantock AJ. The architecture of the cornea and structural basis of its transparency. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2009; 78:25-49. [PMID: 20663483 DOI: 10.1016/s1876-1623(08)78002-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The cornea is the transparent connective tissue window at the front of the eye. In the extracellular matrix of the corneal stroma, hybrid type I/V collagen fibrils are remarkably uniform in diameter at approximately 30 nm and are regularly arranged into a pseudolattice. Fibrils are believed to be kept at defined distances by the influence of proteoglycans. Light entering the cornea is scattered by the collagen fibrils, but their spatial distribution is such that the scattered light interferes destructively in all directions except from the forward direction. In this way, light travels forward through the cornea to reach the retina. In this chapter, we will review the macromolecular components of the corneal stroma, the way they are organized into a stacked lamellar array, and how this organization guarantees corneal transparency.
Collapse
Affiliation(s)
- Carlo Knupp
- Structural Biophysics Group, School of Optometry & Vision Sciences, Cardiff University, Cardiff CF24 4LU, UK
| | | | | | | | | | | | | |
Collapse
|
46
|
Ansorge HL, Meng X, Zhang G, Veit G, Sun M, Klement JF, Beason DP, Soslowsky LJ, Koch M, Birk DE. Type XIV Collagen Regulates Fibrillogenesis: PREMATURE COLLAGEN FIBRIL GROWTH AND TISSUE DYSFUNCTION IN NULL MICE. J Biol Chem 2009; 284:8427-38. [PMID: 19136672 DOI: 10.1074/jbc.m805582200] [Citation(s) in RCA: 126] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Type XIV collagen is a fibril-associated collagen with an interrupted triple helix. This collagen interacts with the fibril surface and has been implicated as a regulator of fibrillogenesis; however, a specific role has not been elucidated. Functional roles for type XIV collagen were defined utilizing a new type XIV collagen-deficient mouse line. This line was produced using a conventional targeted knock-out approach. Col14a1(-/-) mice were devoid of type XIV collagen, whereas heterozygous mice had reduced synthesis. Both mutant Col14a1 genotypes were viable with a grossly normal phenotype; however, mature skin exhibited altered mechanical properties. Prior to evaluating tendon fibrillogenesis in type XIV collagen-deficient mice, the developmental expression patterns were analyzed in wild-type flexor digitorum longus (FDL) tendons. Analyses of mRNA and protein expression indicated tissue-specific temporal expression that was associated with the early stages in fibrillogenesis. Ultrastructural analyses of wild-type and null tendons demonstrated premature fibril growth and larger fibril diameters in tendons from null mice at postnatal day 4 (P4). However, fibril structure in mature tendons was normal. Biomechanical studies established a direct structure/function relationship with reduced strength in P7-null tendons. However, the biomechanical properties in P60 tendons were comparable in null and wild-type mice. Our results indicate a regulatory function for type XIV collagen in early stages of collagen fibrillogenesis with tissue differences.
Collapse
Affiliation(s)
- Heather L Ansorge
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Peacock JD, Lu Y, Koch M, Kadler KE, Lincoln J. Temporal and spatial expression of collagens during murine atrioventricular heart valve development and maintenance. Dev Dyn 2008; 237:3051-8. [PMID: 18816857 DOI: 10.1002/dvdy.21719] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Heart valve function is achieved by organization of matrix components including collagens, yet the distribution of collagens in valvular structures is not well defined. Therefore, we examined the temporal and spatial expression of select fibril-, network-, beaded filament-forming, and FACIT collagens in endocardial cushions, remodeling, maturing, and adult murine atrioventricular heart valves. Of the genes examined, col1a1, col2a1, and col3a1 transcripts are most highly expressed in endocardial cushions. Expression of col1a1, col1a2, col2a1, and col3a1 remain high, along with col12a1 in remodeling valves. Maturing neonate valves predominantly express col1a1, col1a2, col3a1, col5a2, col11a1, and col12a1 within defined proximal and distal regions. In adult valves, collagen protein distribution is highly compartmentalized, with ColI and ColXII observed on the ventricular surface and ColIII and ColVa1 detected throughout the leaflets. Together, these expression data identify patterning of collagen types in developing and maintained heart valves, which likely relate to valve structure and function.
Collapse
Affiliation(s)
- Jacqueline D Peacock
- Department of Molecular and Cellular Pharmacology, Leonard M. Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | | | | | | | | |
Collapse
|
48
|
Quantock AJ, Young RD. Development of the corneal stroma, and the collagen-proteoglycan associations that help define its structure and function. Dev Dyn 2008; 237:2607-21. [PMID: 18521942 DOI: 10.1002/dvdy.21579] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The cornea of the eye is a unique, transparent connective tissue. It is comprised predominantly of collagen fibrils, remarkably uniform in diameter and regularly spaced, organized into an intricate lamellar array. Its establishment involves a precisely controlled sequence of developmental events in which the embryonic cornea undergoes major structural transformations that ultimately determine tissue form and function. In this article, we will review corneal developmental dynamics from a structural perspective, consider the roles and interrelationships of collagens and proteoglycans, and comment on contemporary concepts and current challenges pertinent to developmental processes that result in an optically clear, mature cornea.
Collapse
Affiliation(s)
- Andrew J Quantock
- Structural Biophysics Group, School of Optometry and Vision Sciences, Cardiff University, Wales, United Kingdom.
| | | |
Collapse
|
49
|
Bader HL, Keene DR, Charvet B, Veit G, Driever W, Koch M, Ruggiero F. Zebrafish collagen XII is present in embryonic connective tissue sheaths (fascia) and basement membranes. Matrix Biol 2008; 28:32-43. [PMID: 18983916 DOI: 10.1016/j.matbio.2008.09.580] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2008] [Revised: 09/17/2008] [Accepted: 09/17/2008] [Indexed: 01/28/2023]
Abstract
Connective tissues ensure the cohesion of the tissues of the body, but also form specialized structures such as tendon and bone. Collagen XII may enhance the stability of connective tissues by bridging collagen fibrils, but its function is still unclear. Here, we used the zebrafish model to visualize its expression pattern in the whole organism. The zebrafish col12a1 gene is homologous to the small isoform of the tetrapod col12a1 gene. In agreement with the biochemical data reported for the small isoform, the zebrafish collagen XII alpha1 chain was characterized as a collagenase sensitive band migrating at approximately 200 kDa. Using newly generated polyclonal antibodies and anti-sense probes, we performed a comprehensive analysis of its expression in developing zebrafish. Collagen XII exhibited a much broader expression pattern than previously thought: it was ubiquitously expressed in the connective tissue sheaths (fascia) that encase the tissues and organs of the body. For example, it was found in sclera, meninges, epimysia and horizontal and vertical myosepta. Collagen XII was also detected in head mesenchyme, pharyngeal arches and within the spinal cord, where it was first expressed within and then at the lateral borders of the floor plate and at the dorsal midline. Furthermore, double immunofluorescence staining with laminin and immunogold electron microscopy revealed that collagen XII is associated with basement membranes. These data suggest that collagen XII is implicated in tissue cohesion by stabilizing fascia and by linking fascia to basement membranes.
Collapse
|
50
|
Levay AK, Peacock JD, Lu Y, Koch M, Hinton RB, Kadler KE, Lincoln J. Scleraxis is required for cell lineage differentiation and extracellular matrix remodeling during murine heart valve formation in vivo. Circ Res 2008; 103:948-56. [PMID: 18802027 DOI: 10.1161/circresaha.108.177238] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Heart valve structures, derived from mesenchyme precursor cells, are composed of differentiated cell types and extracellular matrix arranged to facilitate valve function. Scleraxis (scx) is a transcription factor required for tendon cell differentiation and matrix organization. This study identified high levels of scx expression in remodeling heart valve structures at embryonic day 15.5 through postnatal stages using scx-GFP reporter mice and determined the in vivo function using mice null for scx. Scx(-/-) mice display significantly thickened heart valve structures from embryonic day 17.5, and valves from mutant mice show alterations in valve precursor cell differentiation and matrix organization. This is indicated by decreased expression of the tendon-related collagen type XIV, increased expression of cartilage-associated genes including sox9, as well as persistent expression of mesenchyme cell markers including msx1 and snai1. In addition, ultrastructure analysis reveals disarray of extracellular matrix and collagen fiber organization within the valve leaflet. Thickened valve structures and increased expression of matrix remodeling genes characteristic of human heart valve disease are observed in juvenile scx(-/-) mice. In addition, excessive collagen deposition in annular structures within the atrioventricular junction is observed. Collectively, our studies have identified an in vivo requirement for scx during valvulogenesis and demonstrate its role in cell lineage differentiation and matrix distribution in remodeling valve structures.
Collapse
Affiliation(s)
- Agata K Levay
- Department of Molecular and Cellular Pharmacology, Leonard M Miller School of Medicine, University of Miami, Miami, FL 33101, USA
| | | | | | | | | | | | | |
Collapse
|