1
|
Zhang B, Wang H, Ma C, Huang H, Fang Z, Qu J. LDAGM: prediction lncRNA-disease asociations by graph convolutional auto-encoder and multilayer perceptron based on multi-view heterogeneous networks. BMC Bioinformatics 2024; 25:332. [PMID: 39407120 PMCID: PMC11481433 DOI: 10.1186/s12859-024-05950-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) can prevent, diagnose, and treat a variety of complex human diseases, and it is crucial to establish a method to efficiently predict lncRNA-disease associations. RESULTS In this paper, we propose a prediction method for the lncRNA-disease association relationship, named LDAGM, which is based on the Graph Convolutional Autoencoder and Multilayer Perceptron model. The method first extracts the functional similarity and Gaussian interaction profile kernel similarity of lncRNAs and miRNAs, as well as the semantic similarity and Gaussian interaction profile kernel similarity of diseases. It then constructs six homogeneous networks and deeply fuses them using a deep topology feature extraction method. The fused networks facilitate feature complementation and deep mining of the original association relationships, capturing the deep connections between nodes. Next, by combining the obtained deep topological features with the similarity network of lncRNA, disease, and miRNA interactions, we construct a multi-view heterogeneous network model. The Graph Convolutional Autoencoder is employed for nonlinear feature extraction. Finally, the extracted nonlinear features are combined with the deep topological features of the multi-view heterogeneous network to obtain the final feature representation of the lncRNA-disease pair. Prediction of the lncRNA-disease association relationship is performed using the Multilayer Perceptron model. To enhance the performance and stability of the Multilayer Perceptron model, we introduce a hidden layer called the aggregation layer in the Multilayer Perceptron model. Through a gate mechanism, it controls the flow of information between each hidden layer in the Multilayer Perceptron model, aiming to achieve optimal feature extraction from each hidden layer. CONCLUSIONS Parameter analysis, ablation studies, and comparison experiments verified the effectiveness of this method, and case studies verified the accuracy of this method in predicting lncRNA-disease association relationships.
Collapse
Grants
- No. 62172123 National Natural Science Foundation, China
- No. 62172123 National Natural Science Foundation, China
- No. 62172123 National Natural Science Foundation, China
- No. 62172123 National Natural Science Foundation, China
- No. 62172123 National Natural Science Foundation, China
- No. 62172123 National Natural Science Foundation, China
- Grant No. 2022ZX01A36 the Key Research and Development Program of Heilongjiang
- Grant No. 2022ZX01A36 the Key Research and Development Program of Heilongjiang
- Grant No. 2022ZX01A36 the Key Research and Development Program of Heilongjiang
- Grant No. 2022ZX01A36 the Key Research and Development Program of Heilongjiang
- Grant No. 2022ZX01A36 the Key Research and Development Program of Heilongjiang
- Grant No. 2022ZX01A36 the Key Research and Development Program of Heilongjiang
- No. ZY20B11 the Special projects for the central government to guide the development of local science and technology, China
- No. ZY20B11 the Special projects for the central government to guide the development of local science and technology, China
- No. ZY20B11 the Special projects for the central government to guide the development of local science and technology, China
- No. ZY20B11 the Special projects for the central government to guide the development of local science and technology, China
- No. ZY20B11 the Special projects for the central government to guide the development of local science and technology, China
- No. ZY20B11 the Special projects for the central government to guide the development of local science and technology, China
- No. CXRC20221104236 the Harbin Manufacturing Technology Innovation Talent Project
- No. CXRC20221104236 the Harbin Manufacturing Technology Innovation Talent Project
- No. CXRC20221104236 the Harbin Manufacturing Technology Innovation Talent Project
- No. CXRC20221104236 the Harbin Manufacturing Technology Innovation Talent Project
- No. CXRC20221104236 the Harbin Manufacturing Technology Innovation Talent Project
- No. CXRC20221104236 the Harbin Manufacturing Technology Innovation Talent Project
Collapse
Affiliation(s)
- Bing Zhang
- Harbin University of Science and Technology, Harbin, 150006, Heilongjiang province, China
| | - Haoyu Wang
- Harbin University of Science and Technology, Harbin, 150006, Heilongjiang province, China.
| | - Chao Ma
- Harbin University of Science and Technology, Harbin, 150006, Heilongjiang province, China
| | - Hai Huang
- Harbin University of Science and Technology, Harbin, 150006, Heilongjiang province, China
| | - Zhou Fang
- Cyberspace Research Center, Harbin, 150001, Heilongjiang province, China
| | - Jiaxing Qu
- Cyberspace Research Center, Harbin, 150001, Heilongjiang province, China
| |
Collapse
|
2
|
Liu Z, Petinrin OO, Chen N, Toseef M, Liu F, Zhu Z, Qi F, Wong KC. Identification and evaluation of candidate COVID-19 critical genes and medicinal drugs related to plasma cells. BMC Infect Dis 2024; 24:1099. [PMID: 39363208 PMCID: PMC11451256 DOI: 10.1186/s12879-024-10000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 09/25/2024] [Indexed: 10/05/2024] Open
Abstract
The ongoing COVID-19 pandemic, caused by the SARS-CoV-2 virus, represents one of the most significant global health crises in recent history. Despite extensive research into the immune mechanisms and therapeutic options for COVID-19, there remains a paucity of studies focusing on plasma cells. In this study, we utilized the DESeq2 package to identify differentially expressed genes (DEGs) between COVID-19 patients and controls using datasets GSE157103 and GSE152641. We employed the xCell algorithm to perform immune infiltration analyses, revealing notably elevated levels of plasma cells in COVID-19 patients compared to healthy individuals. Subsequently, we applied the Weighted Gene Co-expression Network Analysis (WGCNA) algorithm to identify COVID-19 related plasma cell module genes. Further, positive cluster biomarker genes for plasma cells were extracted from single-cell RNA sequencing data (GSE171524), leading to the identification of 122 shared genes implicated in critical biological processes such as cell cycle regulation and viral infection pathways. We constructed a robust protein-protein interaction (PPI) network comprising 89 genes using Cytoscape, and identified 20 hub genes through cytoHubba. These genes were validated in external datasets (GSE152418 and GSE179627). Additionally, we identified three potential small molecules (GSK-1070916, BRD-K89997465, and idarubicin) that target key hub genes in the network, suggesting a novel therapeutic approach. These compounds were characterized by their ability to down-regulate AURKB, KIF11, and TOP2A effectively, as evidenced by their low free binding energies determined through computational analyses using cMAP and AutoDock. This study marks the first comprehensive exploration of plasma cells' role in COVID-19, offering new insights and potential therapeutic targets. It underscores the importance of a systematic approach to understanding and treating COVID-19, expanding the current body of knowledge and providing a foundation for future research.
Collapse
Affiliation(s)
- Zhe Liu
- Institute for Hepatology, The Second Affiliated Hospital, School of Medicine, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518112, China
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | | | - Nanjun Chen
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Muhammad Toseef
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Fang Liu
- Rocgene (Beijing) Technology Co., Ltd, Beijing, Beijing, 102200, China
| | - Zhongxu Zhu
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China.
| | - Furong Qi
- Institute for Hepatology, The Second Affiliated Hospital, School of Medicine, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, Southern University of Science and Technology, Shenzhen, Guangdong Province, 518112, China.
| | - Ka-Chun Wong
- Department of Computer Science, City University of Hong Kong, Hong Kong, Hong Kong SAR, China.
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China.
| |
Collapse
|
3
|
Harsij A, Gharebaghi A, Ghiasian M, Eslami S, Ghafouri-Fard S, Taheri M, Sayad A. Expression analysis of Treg-related lncRNAs in neuromyelitis optica spectrum disorder. Mult Scler Relat Disord 2024; 81:105350. [PMID: 38091807 DOI: 10.1016/j.msard.2023.105350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/06/2023] [Accepted: 11/26/2023] [Indexed: 01/23/2024]
Abstract
Neuromyelitis Optica Spectrum Disorder (NMOSD) is an autoimmune condition affecting the central nervous system, in which various kinds of immune cells, including T and B cells, and numerous cytokines and chemokines are implicated. LncRNAs modulating the function or differentiation of regulatory T cells (Tregs) may be involved in the pathoetiology of NMO. To assess the involvement of these lncRNAs in this disease, we studied the expression levels of TH2-LCR, MAFTRR, NEST, RMRP, and FLICR in NMO patients and healthy subjects. All of the lncRNAs listed were up-regulated in NMO patients compared with healthy controls. Although the interaction of group and gender factors significantly affected the expression of NEST, RMRP, and TH2-LCR genes, we detected no effect of gender factor on the expression of the examined genes. The highest expression correlation was found between RMRP and TH2-LCR among cases with correlation coefficient 0.73. ROC curve analysis indicated that TH2-LCR, MAFTRR, RMRP, and FLICR had significant prospective diagnostic power (AUC ± SD = 0.99 ± 0.002, 0.97 ± 0.01, 0.91 ± 0.01 and 0.84 ± 0.04, respectively). Best of these genes was TH2-LCR with AUC ± SD = 0.99 ± 0.002, sensitivity= 0.97, specificity= 1, P-value= <0.0001. RMRP and TH2-LCR had a positive correlation with age and age at onset and a negative correlation with EDSS. Cumulatively, TH2-LCR, MAFTRR, RMRP, and FLICR lncRNAs, particularly TH2-LCR, could be considered as potential contributors to the pathogenesis of NMO disease.
Collapse
Affiliation(s)
- Atefeh Harsij
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Gharebaghi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Masoud Ghiasian
- Department of Neurology, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Solat Eslami
- Department of Medical Biotechnology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany; Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Arezou Sayad
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Deng J, Song Z, Li X, Shi H, Huang S, Tang L. Role of lncRNAs in acute pancreatitis: pathogenesis, diagnosis, and therapy. Front Genet 2023; 14:1257552. [PMID: 37842644 PMCID: PMC10569178 DOI: 10.3389/fgene.2023.1257552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Acute pancreatitis (AP) is one of the most common acute abdominal diseases characterized by an injury and inflammatory disorder of the pancreas with complicated pathological mechanisms. Long non-coding RNAs (lncRNAs) have been shown to play an important role in various physiological and pathological processes in humans, and they have emerged as potential biomarkers of diagnosis and therapeutic targets in various diseases. Recently, accumulating evidence has shown significant alterations in the expression of lncRNAs, which are involved in the pathogenesis of AP, such as premature trypsinogen activation, impaired autophagy, inflammatory response, and acinar cell death. Moreover, lncRNAs can be the direct target of AP treatment and show potential as biomarkers for the diagnosis. Thus, in this review, we focus on the role of lncRNAs in the pathogenesis, diagnosis, and therapy of AP and emphasize the future directions to study lncRNAs in AP, providing new insight into understanding the cellular and molecular mechanisms of AP and seeking novel biomarkers for the diagnosis and therapeutic targets to improve clinical management in the future.
Collapse
Affiliation(s)
- Jie Deng
- Department of Clinical Pharmacy, The General Hospital of Western Theater Command, Chengdu, China
| | - Ziying Song
- Department of Emergency Medicine, The General Hospital of Western Theater Command, Chengdu, China
| | - Xiaolan Li
- Department of Pain Medicine, The General Hospital of Western Theater Command, Chengdu, China
| | - Huiqing Shi
- Department of Clinical Pharmacy, The General Hospital of Western Theater Command, Chengdu, China
| | - Shangqing Huang
- Department of General Surgery, Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, China
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Lijun Tang
- Department of General Surgery, Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu, China
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
5
|
Jiang Y, Zhao Y, Li ZY, Chen S, Fang F, Cai JH. Potential roles of microRNAs and long noncoding RNAs as diagnostic, prognostic and therapeutic biomarkers in coronary artery disease. Int J Cardiol 2023:S0167-5273(23)00478-3. [PMID: 37019219 DOI: 10.1016/j.ijcard.2023.03.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/27/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023]
Abstract
Coronary artery disease (CAD), which is mainly caused by atherosclerotic processes in coronary arteries, became a significant health issue. MicroRNAs (miRNAs), and long noncoding RNAs (lncRNAs), have been shown to be stable in plasma and could thereby be adopted as biomarkers for CAD diagnosis and treatment. MiRNAs can regulate CAD development through different pathways and mechanisms, including modulation of vascular smooth muscle cell (VSMC) activity, inflammatory responses, myocardial injury, angiogenesis, and leukocyte adhesion. Similarly, previously studies have indicated that the causal effects of lncRNAs in CAD pathogenesis and their utility in CAD diagnosis and treatment, has been found to lead to cell cycle transition, proliferation dysregulation, and migration in favour of CAD development. Differential expression of miRNAs and lncRNAs in CAD patients has been identified and served as diagnostic, prognostic and therapeutic biomarkers for the assessment of CAD patients. Thus, in the current review, we summarize the functions of miRNAs and lncRNAs, which aimed to identify novel targets for the CAD diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Yong Jiang
- Department of Laboratory Medicine, Jilin Medical University, No. 5 Jilin Street, Jilin 132013, China.
| | - Ying Zhao
- Department of Cardiology, Jilin Central Hospital, Jilin 132011, China
| | - Zheng-Yi Li
- Department of Laboratory Medicine, Jilin Medical University, No. 5 Jilin Street, Jilin 132013, China
| | - Shuang Chen
- Department of Laboratory Medicine, Jilin Medical University, No. 5 Jilin Street, Jilin 132013, China
| | - Fang Fang
- Department of Laboratory Medicine, Jilin Medical University, No. 5 Jilin Street, Jilin 132013, China.
| | - Jian-Hui Cai
- Department of Clinical Medicine, Jilin Medical University, Jilin 132013, China; Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin 132013, China.
| |
Collapse
|
6
|
Samra M, Srivastava K. Non-coding RNA and their potential role in cardiovascular diseases. Gene 2023; 851:147011. [DOI: 10.1016/j.gene.2022.147011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/27/2022] [Accepted: 10/21/2022] [Indexed: 11/27/2022]
|
7
|
The correlation of long non-coding RNAs IFNG-AS1 and ZEB2-AS1 with IFN-γ and ZEB-2 expression in PBMCs and clinical features of patients with coronary artery disease. Mol Biol Rep 2022; 49:3389-3399. [PMID: 35389131 DOI: 10.1007/s11033-022-07168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/19/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Aberrant expression of long non-coding RNAs (lncRNAs) can contribute to the pathogenesis of coronary artery disease (CAD). In this study, we aimed to evaluate the expression of lncRNA interferon γ-antisense 1 (IFNG-AS1), zinc finger E-box binding homeobox 2 antisense RNA 1 (ZEB2-AS1), and their direct target genes (IFN-γ and ZEB2, respectively) in peripheral blood mononuclear cell (PBMC) from CAD and healthy individuals. METHODS AND RESULTS We recruited 40 CAD patients and 40 healthy individuals. After doing some bioinformatics analyses, the expressions of IFNG-AS1/ ZEB2-AS1 lncRNAs and IFN-γ/ ZEB2 in PBMCs were measured using quantitative real-time PCR. The possible correlation between the putative lncRNAs and disease severity was also assessed. Receiver operating characteristic (ROC) curve analysis was used to evaluate the predictive role of lncRNAs as diagnostic biomarkers in CAD patients. The expressions of IFNG-AS1 lncRNA as well as IFN-γ and ZEB2 genes were significantly reduced in CAD patients compared to healthy subjects. In contrast, the expression of ZEB2-AS1 was up-regulated in these patients. Linear regression analysis unveiled that there is a positive correlation between the expression of IFNG-AS1 and IFN-γ, also similarly, ZEB2-AS1 and ZEB2 in PBMCs of subjects. Moreover, the expression of IFNG-AS1 and ZEB2-AS1 correlated with the Gensini score. The area under the ROC curves ranged from 0.633-0.742 for ZEB2-AS1/ZEB2 and IFNG-AS1/IFN-γ, respectively. CONCLUSIONS Our results indicated that the dysregulation of IFNG-AS1/IFN-γ and ZEB2-AS1/ZEB2 in PBMCs of CAD patients may be involved in CAD pathogenesis.
Collapse
|
8
|
Risk Prediction of Coronary Artery Stenosis in Patients with Coronary Heart Disease Based on Logistic Regression and Artificial Neural Network. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:3684700. [PMID: 35345521 PMCID: PMC8957440 DOI: 10.1155/2022/3684700] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/16/2022] [Accepted: 02/28/2022] [Indexed: 12/05/2022]
Abstract
Objective Coronary heart disease (CHD) is considered an inflammatory relative disease. This study is aimed at analyzing the health information of serum interferon in CHD based on logistic regression and artificial neural network (ANN) model. Method A total of 155 CHD patients diagnosed by coronary angiography in our department from January 2017 to March 2020 were included. All patients were randomly divided into a training set (n = 108) and a test set (n = 47). Logistic regression and ANN models were constructed using the training set data. The predictive factors of coronary artery stenosis were screened, and the predictive effect of the model was evaluated by using the test set data. All the health information of participants was collected. Expressions of serum IFN-γ, MIG, and IP-10 were detected by double antibody sandwich ELISA. Spearman linear correlation analysis determined the relationship between the interferon and degree of stenosis. The logistic regression model was used to evaluate independent risk factors of CHD. Result The Spearman correlation analysis showed that the degree of stenosis was positively correlated with serum IFN-γ, MIG, and IP-10 levels. The logistic regression analysis and ANN model showed that the MIG and IP-10 were independent predictors of Gensini score: MIG (95% CI: 0.876~0.934, P < 0.001) and IP-10 (95% CI: 1.009~1.039, P < 0.001). There was no statistically significant difference between the logistic regression and the ANN model (P > 0.05). Conclusion The logistic regression model and ANN model have similar predictive performance for coronary artery stenosis risk factors in patients with CHD. In patients with CHD, the expression levels of IFN-γ, IP-10, and MIG are positively correlated with the degree of stenosis. The IP-10 and MIG are independent risk factors for coronary artery stenosis.
Collapse
|
9
|
Petković A, Erceg S, Munjas J, Ninić A, Sopić M. Circulating non-coding RNAs as biomarkers in coronary artery disease. ARHIV ZA FARMACIJU 2022. [DOI: 10.5937/arhfarm72-36166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Coronary artery disease (CAD) is a leading cause of mortality worldwide. Atherosclerosis involves an interplay of different pathological mechanisms, such as progressive inflammation, abnormal lipid metabolism, and oxidative stress, and as such represents the basic pathological phenomenon underlying CAD. Atherosclerotic plaque narrows the lumen of coronary arteries, creating an ischemic environment for the heart muscle, which finally leads to clinical complications, such as acute myocardial infarction. Currently, there are no biomarkers that could predict plaque stability or major adverse cardiovascular events (MACE). Numerous functional non-coding RNA (ncRNA) species influence basic cellular functions, and as such play a role in the development and progression of CAD. Of these ncRNAs, micro RNAs (miRNAs) and long non-coding RNAs (lncRNAs) are the most investigated. Considering that ncRNAs detected in extracellular fluids can originate from different cells, circulating ncRNAs are being intensively investigated as potential biomarkers in the diagnosis and prognosis of CAD. In the following paper, we provide current insights into potential molecular mechanisms by which miRNAs and lncRNAs contribute to the pathology of CAD and discuss their potential role as biomarkers in diagnosis and prognosis of disease.
Collapse
|
10
|
Wang Z, Cao Z, Wang Z. Significance of long non-coding RNA IFNG-AS1 in the progression and clinical prognosis in colon adenocarcinoma. Bioengineered 2021; 12:11342-11350. [PMID: 34872454 PMCID: PMC8810008 DOI: 10.1080/21655979.2021.2003944] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Colon adenocarcinoma originates from adenoma and triggers serious healthy burdensome. lncRNAs develop a crucial role in the progression of colorectal carcinoma. In this study, we aimed to investigate the clinical value and potential role of lncRNA interferon (IFN) gamma antisense RNA 1 (IFNG-AS1) in colon adenocarcinoma. This study enrolled 95 colorectal adenoma patients, 128 colorectal adenocarcinoma patients, and 88 healthy individuals. The serum, tissue IFNG-AS1 expression levels were explored by real-time quantitative reverse transcription-PCR (RT-qPCR) assay. The receiver operator characteristic curve and Kaplan-Meier method were used to assess the clinical significance of IFNG-AS1. The chi-square test was used to analyze the association between tissue IFNG-AS1 and clinical characteristics. Functional experiments were conducted to delve into the effects of IFNG-AS1 on cellular activities (cell viability/migration/invasion). The target miRNA of IFNG-AS1 was also explored. IFNG-AS1 expression in both serum and tissue samples was elevated in patients. Serum IFNG-AS1 could diagnose colon adenoma and adenocarcinoma patients from the healthy control. High tissue IFNG-AS1 was correlated with several clinical characteristics and a shorter overall survival time. Silence of IFNG-AS1 could be available for repressing cellular capacities via the sponge to miR-627-3p. IFNG-AS1 was rised in colon adenocarcinoma and it was relevant to tumor size, TNM stage, and poor prognosis of patients. Beyond that, downregulated expression of IFNG-AS1 may repress malignant progression of colon adenocarcinoma by regulating miR-627-3p. IFNG-AS1 might be a potential diagnosis or prognosis predictor for colon adenocarcinoma patients.
Collapse
Affiliation(s)
- Zhaoshun Wang
- Department of Anorectal Surgery, Weifang People's Hospital, Shandong, China
| | - Zhongzheng Cao
- Department of Anorectal Surgery, Weifang People's Hospital, Shandong, China
| | - Zhen Wang
- Department of Anorectal Surgery, Zibo First Hospital, Shandong, China
| |
Collapse
|
11
|
Alipoor B, Nikouei S, Rezaeinejad F, Malakooti-Dehkordi SN, Sabati Z, Ghasemi H. Long non-coding RNAs in metabolic disorders: pathogenetic relevance and potential biomarkers and therapeutic targets. J Endocrinol Invest 2021; 44:2015-2041. [PMID: 33792864 DOI: 10.1007/s40618-021-01559-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/22/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND It has been suggested that dysregulation of long non-coding RNAs (lncRNAs) could be associated with the incidence and development of metabolic disorders. AIM Accordingly, this narrative review described the molecular mechanisms of lncRNAs in the development of metabolic diseases including insulin resistance, diabetes, obesity, non-alcoholic fatty liver disease (NAFLD), cirrhosis, and coronary artery diseases (CAD). Furthermore, we investigated the up-to-date findings on the association of deregulated lncRNAs in the metabolic disorders, and potential use of lncRNAs as biomarkers and therapeutic targets. CONCLUSION LncRNAs/miRNA/regulatory proteins axis plays a crucial role in progression of metabolic disorders and may be used in development of therapeutic and diagnostic approaches.
Collapse
Affiliation(s)
- B Alipoor
- Department of Laboratory Sciences, Faculty of Paramedicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | - S Nikouei
- Student Research Committee, Yasuj University of Medical Sciences, Yasuj, Iran
| | - F Rezaeinejad
- Department of Biochemistry, Faculty of Medicine, Yasuj University of Medical Sciences, Yasuj, Iran
| | | | - Z Sabati
- MSc student of Hematology, Student Research Committee, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - H Ghasemi
- Abadan Faculty of Medical Sciences, Abadan, Iran.
| |
Collapse
|
12
|
Medina-Leyte DJ, Zepeda-García O, Domínguez-Pérez M, González-Garrido A, Villarreal-Molina T, Jacobo-Albavera L. Endothelial Dysfunction, Inflammation and Coronary Artery Disease: Potential Biomarkers and Promising Therapeutical Approaches. Int J Mol Sci 2021; 22:3850. [PMID: 33917744 PMCID: PMC8068178 DOI: 10.3390/ijms22083850] [Citation(s) in RCA: 222] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/24/2021] [Accepted: 03/25/2021] [Indexed: 12/14/2022] Open
Abstract
Coronary artery disease (CAD) and its complications are the leading cause of death worldwide. Inflammatory activation and dysfunction of the endothelium are key events in the development and pathophysiology of atherosclerosis and are associated with an elevated risk of cardiovascular events. There is great interest to further understand the pathophysiologic mechanisms underlying endothelial dysfunction and atherosclerosis progression, and to identify novel biomarkers and therapeutic strategies to prevent endothelial dysfunction, atherosclerosis and to reduce the risk of developing CAD and its complications. The use of liquid biopsies and new molecular biology techniques have allowed the identification of a growing list of molecular and cellular markers of endothelial dysfunction, which have provided insight on the molecular basis of atherosclerosis and are potential biomarkers and therapeutic targets for the prevention and or treatment of atherosclerosis and CAD. This review describes recent information on normal vascular endothelium function, as well as traditional and novel potential biomarkers of endothelial dysfunction and inflammation, and pharmacological and non-pharmacological therapeutic strategies aimed to protect the endothelium or reverse endothelial damage, as a preventive treatment for CAD and related complications.
Collapse
Affiliation(s)
- Diana Jhoseline Medina-Leyte
- Genomics of Cardiovascular Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico; (D.J.M.-L.); (O.Z.-G.); (M.D.-P.); (A.G.-G.); (T.V.-M.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Coyoacán, Mexico City 04510, Mexico
| | - Oscar Zepeda-García
- Genomics of Cardiovascular Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico; (D.J.M.-L.); (O.Z.-G.); (M.D.-P.); (A.G.-G.); (T.V.-M.)
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México (UNAM), Coyoacán, Mexico City 04510, Mexico
| | - Mayra Domínguez-Pérez
- Genomics of Cardiovascular Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico; (D.J.M.-L.); (O.Z.-G.); (M.D.-P.); (A.G.-G.); (T.V.-M.)
| | - Antonia González-Garrido
- Genomics of Cardiovascular Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico; (D.J.M.-L.); (O.Z.-G.); (M.D.-P.); (A.G.-G.); (T.V.-M.)
| | - Teresa Villarreal-Molina
- Genomics of Cardiovascular Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico; (D.J.M.-L.); (O.Z.-G.); (M.D.-P.); (A.G.-G.); (T.V.-M.)
| | - Leonor Jacobo-Albavera
- Genomics of Cardiovascular Diseases Laboratory, National Institute of Genomic Medicine (INMEGEN), Mexico City 14610, Mexico; (D.J.M.-L.); (O.Z.-G.); (M.D.-P.); (A.G.-G.); (T.V.-M.)
| |
Collapse
|
13
|
Wang B, Su Z, Wan L, He T. Relationship between long non-coding RNA polymorphism and the risk of coronary artery disease: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e25146. [PMID: 33761682 PMCID: PMC9282133 DOI: 10.1097/md.0000000000025146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Previous epidemiological studies displayed that long non-coding RNA (LncRNA) polymorphisms are associated with an increased risk of coronary artery disease, while the results are inconsistent. Therefore, we conducted a meta-analysis to more accurately determine the association between LncRNA polymorphism and the risk of coronary artery disease. METHODS PubMed, EmBase and Web of Science databases were searched, and the time to build the database was set until December 2020. The association between LncRNA polymorphism and the risk of coronary artery disease was collected and evaluated. Meta-analysis was performed by STATA 14.0 software, and the odds ratio and its 95% confidence interval (95%CI) were applied to estimate the association between LncRNA polymorphism and the risk of coronary artery disease. RESULTS The results of this meta-analysis will be submitted to a peer-reviewed journal for publication. CONCLUSION This meta-analysis will summarize the relationship between LncRNA polymorphism and coronary disease risk. ETHICS AND DISSEMINATION Ethical approval was not required for this study. The systematic review will be published in a peer-reviewed journal, presented at conferences, and shared on social media platforms. This review would be disseminated in a peer-reviewed journal or conference presentations. OSF REGISTRATION NUMBER DOI 10.17605/OSF.IO/9XPHS.
Collapse
Affiliation(s)
| | - Zhihui Su
- Department of orthopedics, People's Hospital of Wuhan University Hanchuan Hospital, Hanchuan People's Hospital, Hanchuan, Hubei Province, China
| | - Lijun Wan
- Department of orthopedics, People's Hospital of Wuhan University Hanchuan Hospital, Hanchuan People's Hospital, Hanchuan, Hubei Province, China
| | - Tao He
- Department of interventional medicine
| |
Collapse
|
14
|
Ghafouri-Fard S, Gholipour M, Taheri M. The Emerging Role of Long Non-coding RNAs and Circular RNAs in Coronary Artery Disease. Front Cardiovasc Med 2021; 8:632393. [PMID: 33708807 PMCID: PMC7940190 DOI: 10.3389/fcvm.2021.632393] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/15/2021] [Indexed: 12/21/2022] Open
Abstract
Coronary artery disease (CAD) is a common disorder caused by atherosclerotic processes in the coronary arteries. This condition results from abnormal interactions between numerous cell types in the artery walls. The main participating factors in this process are accumulation of lipid deposits, endothelial cell dysfunction, macrophage induction, and changes in smooth muscle cells. Several lines of evidence underscore participation of long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in the pathogenesis of CAD. Several lncRNAs such as H19, ANRIL, MIAT, lnc-DC, IFNG-AS1, and LEF1-AS1 have been shown to be up-regulated in the biological materials obtained from CAD patients. On the other hand, Gas5, Chast, HULC, DICER1-AS1, and MEG3 have been down-regulated in CAD patients. Meanwhile, a number of circRNAs have been demonstrated to influence function of endothelial cells or vascular smooth muscle cells, thus contributing to the pathogenesis of CAD. In the current review, we summarize the function of lncRNAs and circRNAs in the development and progression of CAD.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholipour
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Aznaourova M, Schmerer N, Schmeck B, Schulte LN. Disease-Causing Mutations and Rearrangements in Long Non-coding RNA Gene Loci. Front Genet 2020; 11:527484. [PMID: 33329688 PMCID: PMC7735109 DOI: 10.3389/fgene.2020.527484] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022] Open
Abstract
The classic understanding of molecular disease-mechanisms is largely based on protein-centric models. During the past decade however, genetic studies have identified numerous disease-loci in the human genome that do not encode proteins. Such non-coding DNA variants increasingly gain attention in diagnostics and personalized medicine. Of particular interest are long non-coding RNA (lncRNA) genes, which generate transcripts longer than 200 nucleotides that are not translated into proteins. While most of the estimated ~20,000 lncRNAs currently remain of unknown function, a growing number of genetic studies link lncRNA gene aberrations with the development of human diseases, including diabetes, AIDS, inflammatory bowel disease, or cancer. This suggests that the protein-centric view of human diseases does not capture the full complexity of molecular patho-mechanisms, with important consequences for molecular diagnostics and therapy. This review illustrates well-documented lncRNA gene aberrations causatively linked to human diseases and discusses potential lessons for molecular disease models, diagnostics, and therapy.
Collapse
Affiliation(s)
- Marina Aznaourova
- Institute for Lung Research, Philipps University Marburg, Marburg, Germany
| | - Nils Schmerer
- Institute for Lung Research, Philipps University Marburg, Marburg, Germany
| | - Bernd Schmeck
- Institute for Lung Research, Philipps University Marburg, Marburg, Germany.,Systems Biology Platform, German Center for Lung Research (DZL), Philipps University Marburg, Marburg, Germany.,Center for Synthetic Microbiology (SYNMIKRO), Philipps University Marburg, Marburg, Germany
| | - Leon N Schulte
- Institute for Lung Research, Philipps University Marburg, Marburg, Germany.,Systems Biology Platform, German Center for Lung Research (DZL), Philipps University Marburg, Marburg, Germany
| |
Collapse
|
16
|
Nie J, Zhao Q. Lnc-ITSN1-2, Derived From RNA Sequencing, Correlates With Increased Disease Risk, Activity and Promotes CD4 + T Cell Activation, Proliferation and Th1/Th17 Cell Differentiation by Serving as a ceRNA for IL-23R via Sponging miR-125a in Inflammatory Bowel Disease. Front Immunol 2020; 11:852. [PMID: 32547537 PMCID: PMC7271921 DOI: 10.3389/fimmu.2020.00852] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
Background: This study aimed to investigate long-non-coding RNA (lncRNA) expression profiles and the correlation of lnc-ITSN1-2 expression with disease risk, activity and inflammation, and its influence on CD4+ T cell activation, proliferation, and differentiation of inflammatory bowel disease (IBD). Methods: LncRNA expression profiles were detected in intestinal mucosa samples from six IBD patients and six healthy controls (HCs). Intestinal mucosa and PBMC lnc-ITSN1-2, IL-23R, and inflammatory cytokines were measured in 120 IBD patients [60 Crohn's disease (CD) and 60 ulcerative colitis (UC)] and 30 HCs. Effect of lnc-ITSN1-2 on IBD CD4+ T cell activation, proliferation, and differentiation was determined and its regulatory interaction with miR-125a and IL-23R was detected. Results: Three-hundred-and-nine upregulated and 310 downregulated lncRNAs were identified in IBD patients by RNA-Sequencing, which were enriched in regulating immune and inflammation related pathways. Large-sample qPCR validation disclosed that both intestinal mucosa and PBMC lnc-ITSN1-2 expressions were increased in IBD patients compared to HCs, and presented with good predictive values for IBD risk, especially for active disease conditions, and they positively correlated with disease activity, inflammation cytokines, and IL-23R in IBD patients. Lnc-ITSN1-2 was decreased after infliximab treatment in active-CD patients. Furthermore, lnc-ITSN1-2 promoted IBD CD4+ T cell activation and proliferation, and stimulated Th1/Th17 cell differentiation. Multiple rescue experiments disclosed that lnc-ITSN1-2 functioned in IBD CD4+ T cells via targeting miR-125a, then positively regulating IL-23R. Luciferase Reporter assay observed that lnc-ITSN1-2 bound miR-125a, and miR-125a bound IL-23R. Conclusion: Lnc-ITSN1-2 correlates with increased disease risk, activity, and inflammatory cytokines of IBD, and promotes IBD CD4+ T cell activation, proliferation, and Th1/Th17 cell differentiation by serving as a competing endogenous RNA for IL-23R via sponging miR-125a.
Collapse
Affiliation(s)
- Jiayan Nie
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,The Hubei Clinical Center & Key Laboratory of Intestinal & Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.,The Hubei Clinical Center & Key Laboratory of Intestinal & Colorectal Diseases, Wuhan, China
| |
Collapse
|
17
|
Fallah H, Sayad A, Ranjbaran F, Talebian F, Ghafouri-Fard S, Taheri M. IFNG/IFNG-AS1 expression level balance: implications for autism spectrum disorder. Metab Brain Dis 2020; 35:327-333. [PMID: 31728886 DOI: 10.1007/s11011-019-00510-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 10/17/2019] [Indexed: 12/23/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder associated with different epidemiological, genetic, epigenetic, and environmental factors. Although its etiology is not fully understood, immune dysfunction is implicated in this disease. Recently, a large number of genes encoding long noncoding RNAs (lncRNAs) were discovered which act as positive or negative regulators of neighboring target genes. The lncRNA, Interferon gamma-antisense RNA (IFNG-AS1), regulates expression levels of the Interferon gamma (IFNG) gene. In the present study, we investigated expression of IFNG and IFNG-AS1 in 50 children with ASD (15 females and 35 males, mean age: 6 ± 1.4 years) and 50 healthy controls (14 females and 36 males, mean age: 6 ± 1.74 years) by real time PCR technique. The results showed significant up-regulation of IFNG and down-regulation of IFNG-AS1 expression in children with ASD compared to controls (Fold change = 1.5, P < 0.0001; Fold change = -0.143, P = 0.013, respectively). The IFNG expression level increase was more pronounced in male ASD children (Fold change = 1.621; p < 0.0001). Our data reveal a functional disruption in the interactive network of IFNG/IFNG-AS1 regulation, which could be a contributing factor in the chronic inflammatory aspect of ASD. Our findings can help understanding the underlying contributors to ASD pathogenesis and find novel treatment options for children with ASD.
Collapse
Affiliation(s)
- Hamid Fallah
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arezou Sayad
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | | | | | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Cardona-Monzonís A, García-Giménez JL, Mena-Mollá S, Pareja-Galeano H, de la Guía-Galipienso F, Lippi G, Pallardó FV, Sanchis-Gomar F. Non-coding RNAs and Coronary Artery Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:273-285. [PMID: 32285418 DOI: 10.1007/978-981-15-1671-9_16] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Coronary artery disease (CAD) is the leading death cause worldwide. Non-coding RNA (ncRNA) are key regulators of genetic expression and thus can affect directly or indirectly the development and progression of different diseases. ncRNA can be classified in several types depending on the length or structure, as long non-coding RNA (lncRNA), microRNA (miRNA) and circularRNA (circRNA), among others. These types of RNA are present within cells or in circulation, and for this reason they have been used as biomarkers of different diseases, therefore revolutionizing precision medicine. Recent research studied the capability of circulating ncRNA to inform about CAD presence and predict the outcome of the disease. In this chapter we present a list of the miRNA, lncRNA and circRNA which are potential biomarkers of CAD.
Collapse
Affiliation(s)
- Alejandro Cardona-Monzonís
- Center for Biomedical Network Research-Instituto de Salud Carlos III. Department of Physiology, School of Medicine, University of Valencia and INCLIVA Biomedical Research Institute, Valencia, Spain
| | - José Luis García-Giménez
- Center for Biomedical Network Research-Instituto de Salud Carlos III. Department of Physiology, School of Medicine, University of Valencia and INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Salvador Mena-Mollá
- Department of Physiology, School of Medicine, University of Valencia, Valencia, Spain
| | | | | | - Giuseppe Lippi
- Section of Clinical Biochemistry, University of Verona, Verona, Italy
| | - Federico V Pallardó
- Center for Biomedical Network Research-Instituto de Salud Carlos III. Department of Physiology, School of Medicine, University of Valencia and INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Fabian Sanchis-Gomar
- Department of Physiology, Faculty of Medicine, University of Valencia and INCLIVA Biomedical Research Institute, Valencia, Spain.
| |
Collapse
|
19
|
Li J, Bu X, Chen X, Xiong P, Chen Z, Yu L. Predictive value of long non-coding RNA intersectin 1-2 for occurrence and in-hospital mortality of severe acute pancreatitis. J Clin Lab Anal 2019; 34:e23170. [PMID: 31880027 PMCID: PMC7246381 DOI: 10.1002/jcla.23170] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/21/2019] [Accepted: 12/01/2019] [Indexed: 12/13/2022] Open
Abstract
Background This study aimed to investigate the predictive value of long non‐coding RNA intersectin 1‐2 (lnc‐ITSN1‐2) for severe acute pancreatitis (SAP) risk, and its correlation with disease severity and in‐hospital mortality in SAP patients. Methods Plasma samples from 60 SAP, 60 moderate‐severe acute pancreatitis (MSAP) and 60 mild acute pancreatitis (MAP) patients were collected within 24 hours, and plasma samples from 60 age and gender‐matched healthy controls (HCs) were collected when enrollment. Lnc‐ITSN1‐2 was detected by reverse transcription‐quantitative polymerase chain reaction. In AP patients, disease severity was evaluated and in‐hospital deaths were recorded. Results Lnc‐ITSN1‐2 was increased in SAP patients compared with MSAP, MAP patients, and HCs, and it is well‐discriminated SAP patients from MSAP patients (area under curve (AUC): 0.699, 95% confidence interval (CI): 0.605‐0.792), MAP patients (AUC: 0.862, 95% CI: 0.798‐0.926), and HCs (AUC: 0.958, 95% CI: 0.925‐0.990). For disease severity, lnc‐ITSN1‐2 was positively correlated with Ranson's score, acute pathologic and chronic health evaluation (APACHE) II score, sequential organ failure assessment (SOFA) score, and C‐reactive protein (CRP) in SAP patients, MSAP patients, and MAP patients; meanwhile, the correlation coefficients were highest in SAP patients. Furthermore, lnc‐ITSN1‐2 displayed a good predictive value for increased in‐hospital mortality in SAP (AUC: 0.803, 95% CI: 0.673‐0.933) and MSAP (AUC: 0.854, 95% CI: 0.752‐0.956) patients, which was similar with several common prognostic factors (including Ranson's score, APACHE II score, SOFA score, and CRP). Conclusion Lnc‐ITSN1‐2 might be a potential biomarker for discrimination of SAP to improve the prognosis of SAP patients.
Collapse
Affiliation(s)
- Jun Li
- Department of Intensive Care Unit, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofen Bu
- Department of General Practice, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuanlan Chen
- Department of Intensive Care Unit, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Xiong
- Department of Intensive Care Unit, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Chen
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Evidence-based medicine, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Yu
- Department of Intensive Care Unit, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Zhang Y, Niu C. The correlation of long non-coding RNA intersectin 1-2 with disease risk, disease severity, inflammation, and prognosis of acute ischemic stroke. J Clin Lab Anal 2019; 34:e23053. [PMID: 31647141 PMCID: PMC7031635 DOI: 10.1002/jcla.23053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/10/2019] [Accepted: 09/14/2019] [Indexed: 01/12/2023] Open
Abstract
Background This study aimed to evaluate the predictive value of long non‐coding RNA intersectin 1‐2 (lnc‐ITSN1‐2) for acute ischemic stroke (AIS) risk, and investigate its correlation with disease severity, inflammation, and recurrence‐free survival (RFS) in AIS patients. Methods Three hundred and twenty AIS patients were recruited, and plasma samples were collected within 24 hours after admission. lnc‐ITSN1‐2 expression form plasma was detected by reverse transcription‐quantitative polymerase chain reaction (RT‐qPCR). The National Institute of Health Stroke Scale (NIHSS) score was assessed, and RFS was calculated. Meanwhile, 320 controls were enrolled and plasma samples were collected on the enrollment, and lnc‐ITSN1‐2 expression was detected by RT‐qPCR. Results lnc‐ITSN1‐2 expression was increased in AIS patients compared to controls (P < .001), and receiver operating characteristic curve revealed its predictive value for AIS risk (area under the curve: 0.804, 95% confidence interval, 0.763‐0.845). In AIS patients, lnc‐ITSN1‐2 expression was positively correlated with NIHSS score (r = 0.464, P < .001). For inflammation, lnc‐ITSN1‐2 expression was positively correlated with CRP (r = 0.398, P < .001), TNF‐α (r = 0.502, P < .001), IL‐1β (r = 0.313, P < .001), IL‐6 (r = 0.207, P < .001), IL‐8 (r = 0.400, P < .001), IL‐17 (r = 0.272, P < .001), and IL‐22 (r = 0.222, P < .001). In terms of predicted target microRNAs, lnc‐ITSN1‐2 expression was negatively correlated with microRNA (miR)‐107 (r = −0.467, P < .001), miR‐125a (r = −0.494, P < .001), and miR‐146a (r = −0.126, P = .025). For prognosis, high lnc‐ITSN1‐2 expression was correlated with worse RFS in AIS patients. Conclusion lnc‐ITSN1‐2 exerts a good predictive value for AIS risk; meanwhile, its increased expression is correlated with enhanced disease severity, elevated inflammation, and worse RFS in AIS patients.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Neurology, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Chenglin Niu
- Department of ICU, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
21
|
Cell-Free Nucleic Acids and their Emerging Role in the Pathogenesis and Clinical Management of Inflammatory Bowel Disease. Int J Mol Sci 2019; 20:ijms20153662. [PMID: 31357438 PMCID: PMC6696129 DOI: 10.3390/ijms20153662] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/24/2019] [Accepted: 07/24/2019] [Indexed: 12/12/2022] Open
Abstract
Cell-free nucleic acids (cfNAs) are defined as any nucleic acids that are present outside the cell. They represent valuable biomarkers in various diagnostic protocols such as prenatal diagnostics, the detection of cancer, and cardiovascular or autoimmune diseases. However, in the current literature, little is known about their implication in inflammatory bowel disease (IBD). IBD is a group of multifactorial, autoimmune, and debilitating diseases with increasing incidence worldwide. Despite extensive research, their etiology and exact pathogenesis is still unclear. Since cfNAs were observed in other autoimmune diseases and appear to be relevant in inflammatory processes, their role in the pathogenesis of IBD has also been suggested. This review provides a summary of knowledge from the available literature about cfDNA and cfRNA and the structures involving them such as exosomes and neutrophil extracellular traps and their association with IBD. Current studies showed the promise of cfNAs in the management of IBD not only as biomarkers distinguishing patients from healthy people and differentiating active from inactive disease state, but also as a potential therapeutic target. However, the detailed biological characteristics of cfNAs need to be fully elucidated in future experimental and clinical studies.
Collapse
|
22
|
Andreadou I, Cabrera-Fuentes HA, Devaux Y, Frangogiannis NG, Frantz S, Guzik T, Liehn EA, Gomes CPC, Schulz R, Hausenloy DJ. Immune cells as targets for cardioprotection: new players and novel therapeutic opportunities. Cardiovasc Res 2019; 115:1117-1130. [PMID: 30825305 PMCID: PMC6529904 DOI: 10.1093/cvr/cvz050] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/18/2018] [Accepted: 02/24/2019] [Indexed: 12/22/2022] Open
Abstract
New therapies are required to reduce myocardial infarct (MI) size and prevent the onset of heart failure in patients presenting with acute myocardial infarction (AMI), one of the leading causes of death and disability globally. In this regard, the immune cell response to AMI, which comprises an initial pro-inflammatory reaction followed by an anti-inflammatory phase, contributes to final MI size and post-AMI remodelling [changes in left ventricular (LV) size and function]. The transition between these two phases is critical in this regard, with a persistent and severe pro-inflammatory reaction leading to adverse LV remodelling and increased propensity for developing heart failure. In this review article, we provide an overview of the immune cells involved in orchestrating the complex and dynamic inflammatory response to AMI-these include neutrophils, monocytes/macrophages, and emerging players such as dendritic cells, lymphocytes, pericardial lymphoid cells, endothelial cells, and cardiac fibroblasts. We discuss potential reasons for past failures of anti-inflammatory cardioprotective therapies, and highlight new treatment targets for modulating the immune cell response to AMI, as a potential therapeutic strategy to improve clinical outcomes in AMI patients. This article is part of a Cardiovascular Research Spotlight Issue entitled 'Cardioprotection Beyond the Cardiomyocyte', and emerged as part of the discussions of the European Union (EU)-CARDIOPROTECTION Cooperation in Science and Technology (COST) Action, CA16225.
Collapse
Affiliation(s)
- Ioanna Andreadou
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis, Zografou, Athens, Greece
| | - Hector A Cabrera-Fuentes
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, 8 College Road, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore
- Institute of Biochemistry, Medical School, Justus-Liebig University, Ludwigstrasse 23, Giessen, Germany
- Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Av. Eugenio Garza Sada 2501 Sur, Nuevo Leon, Mexico
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Kremlyovskaya St, 18, Kazan, Respublika Tatarstan, Russia
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, 1A-B rue Thomas Edison, Strassen, Luxembourg
| | - Nikolaos G Frangogiannis
- Wilf Family Cardiovascular Research Institute Department of Medicine (Cardiology) Albert Einstein College of Medicine, 1300 Morris Park Avenue, Forchheimer G46B Bronx NY USA
| | - Stefan Frantz
- Department of Internal Medicine I, University Hospital Würzburg, Oberdürrbacher Str. 6, Würzburg, Germany
| | - Tomasz Guzik
- Department of Internal and Agricultural Medicine, Jagiellonian University Medical College, Świętej Anny 12, Kraków, Poland
- Institute of Cardiovascular and Medical Sciences, University ofGlasgow, University Avenue, Glasgow, UK
| | - Elisa A Liehn
- Institute for Molecular Cardiovascular Research, Rheinisch Westfälische Technische Hochschule Aachen University,Templergraben 55, Aachen, Germany
- Human Genomics Laboratory, University of Medicine and Pharmacy Craiova, Strada Petru Rareș 2, Craiova, Romania
- Department of Cardiology, Pulmonology, Angiology and Intensive Care, University Hospital, Rheinisch Westfälische Technische Hochschule,Templergraben 55, Aachen, Germany
| | - Clarissa P C Gomes
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, 1A-B rue Thomas Edison, Strassen, Luxembourg
| | - Rainer Schulz
- Physiologisches Institut Fachbereich Medizin der Justus-Liebig-Universität, Aulweg 129, Giessen, Germany
| | - Derek J Hausenloy
- Cardiovascular & Metabolic Disorders Program, Duke-National University of Singapore Medical School, 8 College Road, Singapore
- National Heart Research Institute Singapore, National Heart Centre Singapore, 5 Hospital Drive, Singapore
- Tecnologico de Monterrey, Centro de Biotecnologia-FEMSA, Av. Eugenio Garza Sada 2501 Sur, Nuevo Leon, Mexico
- Yong Loo Lin School of Medicine, National University Singapore, 1E Kent Ridge Road, Singapore
- The Hatter Cardiovascular Institute, University College London, 67 Chenies Mews, London, UK
- The National Institute of Health Research University College London Hospitals Biomedical Research Centre, Research & Development, Maple House 1st floor, 149 Tottenham Court Road, London, UK
| |
Collapse
|
23
|
Gui F, Peng H, Liu Y. Elevated circulating lnc-ANRIL/miR-125a axis level predicts higher risk, more severe disease condition, and worse prognosis of sepsis. J Clin Lab Anal 2019; 33:e22917. [PMID: 31115097 DOI: 10.1002/jcla.22917] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/23/2019] [Accepted: 04/26/2019] [Indexed: 12/24/2022] Open
Abstract
AIM This study aimed to investigate the correlation of lnc-ANRIL/miR-125a axis with risk, severity, inflammation, and prognosis of sepsis. METHODS A hundred and twenty-six sepsis patients and 125 healthy controls were recruited, and then, blood samples were collected, and plasma was separated for lnc-ANRIL, miR-125a, lnc-ANRIL/miR-125a axis, and inflammatory cytokine level detections. In addition, basic characteristics, 28-day mortality, and accumulating survival of sepsis patients were recorded. RESULTS Plasma lnc-ANRIL expression was increased, miR-125a expression was decreased, and lnc-ANRIL/miR-125a axis level was elevated in sepsis patients compared with healthy controls, and all of them had good value for predicting sepsis risk with AUCs of 0.800, 0.817, and 0.843, respectively. Lnc-ANRIL and lnc-ANRIL/miR-125a axis were positively correlated with biochemical index levels including CRP and PCT levels, disease severity scale scores, and pro-inflammatory cytokine levels in sepsis patients, while miR-125a displayed the opposite trend. Lnc-ANRIL and lnc-ANRIL/miR-125a axis expressions were elevated, while miR-125a expression was declined in deaths compared with survivors, and all of them predicted 28-day mortality in sepsis patients with AUCs of 0.765, 0.745, and 0.785, respectively. Subsequently, the Kaplan-Meier analysis revealed that patients with high lnc-ANRIL, low miR-125a, and high lnc-ANRIL/miR-125a axis levels presented with worse accumulating survival. In addition, multivariate regression model analyses revealed that high plasma lnc-ANRIL/miR-125a axis was an independent predictive factor for both increased 28-day mortality and worse accumulating survival. CONCLUSION Circulating lnc-ANRIL/miR-125a axis was upregulated and could serve as a biomarker for severity, inflammation, and prognosis in sepsis patients.
Collapse
Affiliation(s)
- Feng Gui
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huan Peng
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yijue Liu
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
24
|
Diagnostic potential of circulating LncRNAs in human cardiovascular disease: a meta-analysis. Biosci Rep 2018; 38:BSR20181610. [PMID: 30361292 PMCID: PMC6435511 DOI: 10.1042/bsr20181610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 09/30/2018] [Accepted: 10/08/2018] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular disease (CVD) is a major killer of the human population around the world. Identifying effective diagnostic biomarkers for CVDs is particularly important in order to guide optimizing treatment. Accumulating evidence on aberrantly regulated circulating long non-coding RNAs (LncRNAs) promise to serve as a diagnostic or prognostic biomarker for various types of CVDs. We summarized studies to identify the potential diagnostic values of LncRNAs in CVD patients. We included articles reporting on the association between LncRNAs and diagnosis in CVDs. We calculated sensitivities, specificities, and area under the curves of LncRNAs. The pooled overall sensitivity and specificity for LncRNAs expression profile in differentiating CVD patients from controls (non-CVDs or healthy subjects) were 0.74 (95%CI 0.68–0.80) and 0.81 (95%CI 0.76–0.85), respectively; the overall positive likelihood ratio, 3.9 (95%CI 3.1–4.9); the negative likelihood ratio, 0.32 (95%CI 0.25–0.40); corresponding to an area under curve of 0.85 (95%CI 0.82–0.88) and overall diagnostic odds ratio 12 (95%CI 9–18). Subgroup analysis showed that the detection of LncRNAs expression in plasma substantially improved the diagnostic accuracy. Likewise, meta-regression analysis indicated that the detection method and sample size were the main source of heterogeneity. All these results suggested a relatively good reference value of LncRNAs as auxiliary biomarkers for CVDs, and should be considered in cases where the diagnosis is uncertain. Population-based prospective cohort studies are warranted to confirm our findings.
Collapse
|
25
|
Mo X, Wu Y, Chen L, Zhai M, Gao Z, Hu K, Guo J. Global expression profiling of metabolic pathway-related lncRNAs in human gastric cancer and the identification of RP11-555H23.1 as a new diagnostic biomarker. J Clin Lab Anal 2018; 33:e22692. [PMID: 30320481 DOI: 10.1002/jcla.22692] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) have roles in regulating metabolism; however, the global expression profile of metabolic pathway-associated lncRNAs in gastric cancer is unknown. The purpose of our study was to examine metabolic pathway-related lncRNAs in gastric cancer and their possible diagnostic values. METHODS Differential expression patterns of metabolic pathway-related lncRNAs between gastric cancer and paired nontumor tissues were detected using metabolic pathway-associated lncRNA microarrays. The expression of RP11-555H23.1, one representative metabolic pathway-associated lncRNA, was validated using quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR). The associations between RP11-55H23.1 expression and the clinicopathological features of gastric cancer patients were analyzed. A receiver operating characteristic (ROC) curve was further established. RESULTS A total of 114 differentially expressed metabolic pathway-associated lncRNAs (fold change >2, P < 0.05) between cancer and nontumor tissues were found (GEO No. GSE96856). Among them, TUG1, RP11-555H23.1, RP1-257I20.13, UGP2, GCSHP3, and XLOC_000889 lncRNAs were downregulated more than sixfold in gastric cancer tissues. In contrast, RP11-605F14.2, TBC1D3P5, BC130595, LINC00475, RP11-19P22.6, BC080653, XLOC_004923, AFAP1-AS1, EPB49, and RP11-296I10.3 lncRNAs were upregulated more than sixfold in gastric cancer tissues. We further demonstrated that RP11-555H23.1 expression was significantly correlated with TNM stage (P = 0.038). The area under the ROC curve (AUC) was 0.65, and the specificity and sensitivity were 62% and 81%, respectively. CONCLUSIONS Metabolic pathway-associated lncRNAs play an important role in the occurrence of gastric cancer, and metabolic pathway-associated lncRNAs, such as RP11-555H23.1, may represent novel biomarkers of gastric cancer.
Collapse
Affiliation(s)
- Xiaoyan Mo
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, China
| | - Yuanyuan Wu
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, China
| | - Li Chen
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, China
| | - Ming Zhai
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, China
| | - Zhengdong Gao
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, China
| | - Kainan Hu
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, China
| | - Junming Guo
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Medical School of Ningbo University, Ningbo, China
| |
Collapse
|
26
|
Xu Y, Shao B. Circulating lncRNA IFNG-AS1 expression correlates with increased disease risk, higher disease severity and elevated inflammation in patients with coronary artery disease. J Clin Lab Anal 2018; 32:e22452. [PMID: 29744951 PMCID: PMC6817098 DOI: 10.1002/jcla.22452] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 03/23/2018] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND This study aimed to investigate the associations of circulating long, non-coding (lncRNA) IFNG-AS1, lncRNA ANRIL and lncRNA ITSN1 relative expressions with disease risk, severity and inflammatory cytokines levels in coronary artery disease (CAD) patients. METHODS One hundred and ninety-one patients suspected of CAD who underwent coronary angiography were consecutively enrolled in this casecontrol study, and divided into CAD patients (N = 102) and controls (N = 89) according to coronary angiographic results. Blood samples of all participants were collected. Plasma lncRNA IFNG-AS1, lncRNA ANRIL and lncRNA ITSN1 expressions were detected using quantitative polymerase chain reaction (qPCR). Serum tumor necrosis factor-α (TNF-α), interleukin (IL)-1β (IL-1β), IL-6, IL-8, IL-10, and IL-17 were assessed using enzyme-linked immunosorbent assay (ELISA). Gensini Score was used to evaluate the disease severity of CAD patients. RESULTS LncRNA IFNG-AS1 relative expression in CAD patients was upregulated compared with that in controls (P < .001), and the receiver operating characteristic (ROC) curve showed that the area under curve (AUC) of lncRNA-IFNG-AS1 for predicting the risk of CAD was 0.755 (95% CI: 0.688-0.821). lncRNA IFNG-AS1 relative expression was remarkably associated with Gensini Score (r = .259, P = .009). Additionally, lncRNA IFNG-AS1 relative expression was positively associated with high-sensitivity C-reactive protein (hs-CRP) (r = .283, P = .004), TNF-α (r = .269, P = .006), and IL-6 levels (r = .425, P < .001), while it was negatively correlated with IL-10 level (r = -.263, P = .008). lncRNA ANRIL or lncRNA ITSN1 was not correlated with CA D risk, Gensini Score, hs-CRP, ESR, TNF-α, IL-1β, IL-6, IL-8, IL-10, or IL-17 levels (all P > .05). CONCLUSION Circulating lncRNA IFNG-AS1 expression correlates with increased disease risk, higher disease severity and elevated inflammation in CAD patients.
Collapse
Affiliation(s)
- Yahuan Xu
- Department of Cardiothoracic SurgeryHuangshi Central HospitalEdong Healthcare GroupAffiliated Hospital of Hubei Polytechnic UniversityHuangshiChina
| | - Bibo Shao
- Department of Intensive Care UnitHuangshi Central HospitalEdong Healthcare GroupAffiliated Hospital of Hubei Polytechnic UniversityHuangshiChina
| |
Collapse
|