1
|
Dehhaghi M, Heydari M, Panahi HKS, Lewin SR, Heng B, Brew BJ, Guillemin GJ. The roles of the kynurenine pathway in COVID-19 neuropathogenesis. Infection 2024; 52:2043-2059. [PMID: 38802702 PMCID: PMC11499433 DOI: 10.1007/s15010-024-02293-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the highly contagious respiratory disease Corona Virus Disease 2019 (COVID-19) that may lead to various neurological and psychological disorders that can be acute, lasting days to weeks or months and possibly longer. The latter is known as long-COVID or more recently post-acute sequelae of COVID (PASC). During acute COVID-19 infection, a strong inflammatory response, known as the cytokine storm, occurs in some patients. The levels of interferon-γ (IFN-γ), interferon-β (IFN-β), interleukin-6 (IL-6) and tumour necrosis factor-alpha (TNF-α) are particularly increased. These cytokines are known to activate the enzyme indoleamine 2,3-dioxygenase 1 (IDO-1), catalysing the first step of tryptophan (Trp) catabolism through the kynurenine pathway (KP) leading to the production of several neurotoxic and immunosuppressive metabolites. There is already data showing elevation in KP metabolites both acutely and in PASC, especially regarding cognitive impairment. Thus, it is likely that KP involvement is significant in SARS-CoV-2 pathogenesis especially neurologically.
Collapse
Affiliation(s)
- Mona Dehhaghi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Mostafa Heydari
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Science, Tehran, Iran
| | - Hamed Kazemi Shariat Panahi
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Department of Infectious Diseases, The Alfred Hospital and Monash University, Melbourne, VIC, Australia
| | - Benjamin Heng
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Bruce J Brew
- Peter Duncan Neurosciences Unit, St. Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia.
- Faculty of Medicine and Health, School of Clinical Medicine, UNSW Sydney, NSW, Australia.
- Departments of Neurology and Immunology, St. Vincent's Hospital, Sydney, NSW, Australia.
- University of Notre Dame, Darlinghurst, Sydney, NSW, Australia.
| | - Gilles J Guillemin
- Peter Duncan Neurosciences Unit, St. Vincent's Centre for Applied Medical Research, Sydney, NSW, Australia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Institut Pertanian Bogor University, Bogor, Indonesia
| |
Collapse
|
2
|
Alves LDF, Moore JB, Kell DB. The Biology and Biochemistry of Kynurenic Acid, a Potential Nutraceutical with Multiple Biological Effects. Int J Mol Sci 2024; 25:9082. [PMID: 39201768 PMCID: PMC11354673 DOI: 10.3390/ijms25169082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Kynurenic acid (KYNA) is an antioxidant degradation product of tryptophan that has been shown to have a variety of cytoprotective, neuroprotective and neuronal signalling properties. However, mammalian transporters and receptors display micromolar binding constants; these are consistent with its typically micromolar tissue concentrations but far above its serum/plasma concentration (normally tens of nanomolar), suggesting large gaps in our knowledge of its transport and mechanisms of action, in that the main influx transporters characterized to date are equilibrative, not concentrative. In addition, it is a substrate of a known anion efflux pump (ABCC4), whose in vivo activity is largely unknown. Exogeneous addition of L-tryptophan or L-kynurenine leads to the production of KYNA but also to that of many other co-metabolites (including some such as 3-hydroxy-L-kynurenine and quinolinic acid that may be toxic). With the exception of chestnut honey, KYNA exists at relatively low levels in natural foodstuffs. However, its bioavailability is reasonable, and as the terminal element of an irreversible reaction of most tryptophan degradation pathways, it might be added exogenously without disturbing upstream metabolism significantly. Many examples, which we review, show that it has valuable bioactivity. Given the above, we review its potential utility as a nutraceutical, finding it significantly worthy of further study and development.
Collapse
Affiliation(s)
- Luana de Fátima Alves
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kongens Lyngby, Denmark
| | - J. Bernadette Moore
- School of Food Science & Nutrition, University of Leeds, Leeds LS2 9JT, UK;
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| | - Douglas B. Kell
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, Søltofts Plads, 2800 Kongens Lyngby, Denmark
- Department of Biochemistry, Cell & Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St., Liverpool L69 7ZB, UK
| |
Collapse
|
3
|
Carter H, Costa RM, Adams TS, Gilchrist T, Emch CE, Bame M, Oldham JM, Linderholm AL, Noth I, Kaminski N, Moore BB, Gurczynski SJ. Dendritic Cell - Fibroblast Crosstalk via TLR9 and AHR Signaling Drives Lung Fibrogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.584457. [PMID: 38559175 PMCID: PMC10980010 DOI: 10.1101/2024.03.15.584457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterized by progressive scarring and loss of lung function. With limited treatment options, patients succumb to the disease within 2-5 years. The molecular pathogenesis of IPF regarding the immunologic changes that occur is poorly understood. We characterize a role for non-canonical aryl-hydrocarbon receptor signaling (ncAHR) in dendritic cells (DCs) that leads to production of IL-6 and IL-17, promoting fibrosis. TLR9 signaling in myofibroblasts is shown to regulate production of TDO2 which converts tryptophan into the endogenous AHR ligand kynurenine. Mice with augmented ncAHR signaling were created by crossing floxed AHR exon-2 deletion mice (AHR Δex2 ) with mice harboring a CD11c-Cre. Bleomycin was used to study fibrotic pathogenesis. Isolated CD11c+ cells and primary fibroblasts were treated ex-vivo with relevant TLR agonists and AHR modulating compounds to study how AHR signaling influenced inflammatory cytokine production. Human datasets were also interrogated. Inhibition of all AHR signaling rescued fibrosis, however, AHR Δex2 mice treated with bleomycin developed more fibrosis and DCs from these mice were hyperinflammatory and profibrotic upon adoptive transfer. Treatment of fibrotic fibroblasts with TLR9 agonist increased expression of TDO2. Study of human samples corroborate the relevance of these findings in IPF patients. We also, for the first time, identify that AHR exon-2 floxed mice retain capacity for ncAHR signaling.
Collapse
|
4
|
Apaza Ticona L, Sánchez Sánchez-Corral J, Díaz-Guerra Martín C, Calderón Jiménez S, López González A, Thiebaut Estrada C. Rubus urticifolius Compounds with Antioxidant Activity, and Inhibition Potential against Tyrosinase, Melanin, Hyaluronidase, Elastase, and Collagenase. Pharmaceuticals (Basel) 2024; 17:937. [PMID: 39065787 PMCID: PMC11280343 DOI: 10.3390/ph17070937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
In our study, using chromatographic techniques, we isolated three bioactive compounds, which were structurally elucidated as (E)-2-(3-(3,4-dimethoxyphenyl)acrylamido)-N-methylbenzamide (1), 4-Hydroxyquinoline-2-carboxylic acid (2), and (E)-2-Cyano-3-(4-hydroxyphenyl)acrylic acid (3), using spectroscopic methods. The anti-melanogenic, anti-inflammatory, antioxidant, and anti-aging properties were evaluated in vitro by measuring the activity of pharmacological targets including tyrosinase, melanin, NF-κB, hyaluronidase, elastase, collagenase, and Nrf2. Our results show that compound 1 is the most active with IC50 values of 14.19 μM (tyrosinase inhibition), 22.24 μM (melanin inhibition), 9.82-12.72 μM (NF-κB inhibition), 79.71 μM (hyaluronidase inhibition), 80.13 μM (elastase inhibition), 76.59 μM (collagenase inhibition), and 116-385 nM (Nrf2 activation) in the THP-1, HEK001, WS1, and HMCB cells. These findings underscore the promising profiles of the aqueous extract of R. urticifolius at safe cytotoxic concentrations. Additionally, we report, for the first time, the isolation and characterisation of these nitrogenous compounds in the R. urticifolius species. Finally, compound 1, isolated from R. urticifolius, is a promising candidate for the development of more effective and safer compounds for diseases related to skin pigmentation, protection against inflammation, and oxidative stress.
Collapse
Affiliation(s)
- Luis Apaza Ticona
- Organic Chemistry Unit, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, University Complutense of Madrid, Plza. Ramón y Cajal s/n, 28040 Madrid, Spain
- Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Javier Sánchez Sánchez-Corral
- Department of Organic Chemistry, Faculty of Sciences, University Autónoma of Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Carolina Díaz-Guerra Martín
- Organic Chemistry Unit, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, University Complutense of Madrid, Plza. Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Sara Calderón Jiménez
- Organic Chemistry Unit, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, University Complutense of Madrid, Plza. Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Alejandra López González
- Organic Chemistry Unit, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, University Complutense of Madrid, Plza. Ramón y Cajal s/n, 28040 Madrid, Spain
| | | |
Collapse
|
5
|
Agamah FE, Ederveen THA, Skelton M, Martin DP, Chimusa ER, ’t Hoen PAC. Network-based integrative multi-omics approach reveals biosignatures specific to COVID-19 disease phases. Front Mol Biosci 2024; 11:1393240. [PMID: 39040605 PMCID: PMC11260748 DOI: 10.3389/fmolb.2024.1393240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/22/2024] [Indexed: 07/24/2024] Open
Abstract
Background COVID-19 disease is characterized by a spectrum of disease phases (mild, moderate, and severe). Each disease phase is marked by changes in omics profiles with corresponding changes in the expression of features (biosignatures). However, integrative analysis of multiple omics data from different experiments across studies to investigate biosignatures at various disease phases is limited. Exploring an integrative multi-omics profile analysis through a network approach could be used to determine biosignatures associated with specific disease phases and enable the examination of the relationships between the biosignatures. Aim To identify and characterize biosignatures underlying various COVID-19 disease phases in an integrative multi-omics data analysis. Method We leveraged a multi-omics network-based approach to integrate transcriptomics, metabolomics, proteomics, and lipidomics data. The World Health Organization Ordinal Scale WHO Ordinal Scale was used as a disease severity reference to harmonize COVID-19 patient metadata across two studies with independent data. A unified COVID-19 knowledge graph was constructed by assembling a disease-specific interactome from the literature and databases. Disease-state specific omics-graphs were constructed by integrating multi-omics data with the unified COVID-19 knowledge graph. We expanded on the network layers of multiXrank, a random walk with restart on multilayer network algorithm, to explore disease state omics-specific graphs and perform enrichment analysis. Results Network analysis revealed the biosignatures involved in inducing chemokines and inflammatory responses as hubs in the severe and moderate disease phases. We observed distinct biosignatures between severe and moderate disease phases as compared to mild-moderate and mild-severe disease phases. Mild COVID-19 cases were characterized by a unique biosignature comprising C-C Motif Chemokine Ligand 4 (CCL4), and Interferon Regulatory Factor 1 (IRF1). Hepatocyte Growth Factor (HGF), Matrix Metallopeptidase 12 (MMP12), Interleukin 10 (IL10), Nuclear Factor Kappa B Subunit 1 (NFKB1), and suberoylcarnitine form hubs in the omics network that characterizes the moderate disease state. The severe cases were marked by biosignatures such as Signal Transducer and Activator of Transcription 1 (STAT1), Superoxide Dismutase 2 (SOD2), HGF, taurine, lysophosphatidylcholine, diacylglycerol, triglycerides, and sphingomyelin that characterize the disease state. Conclusion This study identified both biosignatures of different omics types enriched in disease-related pathways and their associated interactions (such as protein-protein, protein-transcript, protein-metabolite, transcript-metabolite, and lipid-lipid interactions) that are unique to mild, moderate, and severe COVID-19 disease states. These biosignatures include molecular features that underlie the observed clinical heterogeneity of COVID-19 and emphasize the need for disease-phase-specific treatment strategies. The approach implemented here can be used to find associations between transcripts, proteins, lipids, and metabolites in other diseases.
Collapse
Affiliation(s)
- Francis E. Agamah
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Thomas H. A. Ederveen
- Department of Medical BioSciences, Radboud University Medical Center Nijmegen, Nijmegen, Netherlands
| | - Michelle Skelton
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Darren P. Martin
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Emile R. Chimusa
- Department of Applied Science, Faculty of Health and Life Sciences, Northumbria University, Newcastle, United Kingdom
| | - Peter A. C. ’t Hoen
- Department of Medical BioSciences, Radboud University Medical Center Nijmegen, Nijmegen, Netherlands
| |
Collapse
|
6
|
Saito S, Bozorgmehr N, Sligl W, Osman M, Elahi S. The Role of Coinhibitory Receptors in B Cell Dysregulation in SARS-CoV-2-Infected Individuals with Severe Disease. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1540-1552. [PMID: 38517295 DOI: 10.4049/jimmunol.2300783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/01/2024] [Indexed: 03/23/2024]
Abstract
Severe SARS-CoV-2 infection is associated with significant immune dysregulation involving different immune cell subsets. In this study, when analyzing critically ill COVID-19 patients versus those with mild disease, we observed a significant reduction in total and memory B cell subsets but an increase in naive B cells. Moreover, B cells from COVID-19 patients displayed impaired effector functions, evidenced by diminished proliferative capacity, reduced cytokine, and Ab production. This functional impairment was accompanied by an increased apoptotic potential upon stimulation in B cells from severely ill COVID-19 patients. Our further studies revealed the expansion of B cells expressing coinhibitory molecules (PD-1, PD-L1, TIM-1, VISTA, CTLA-4, and Gal-9) in intensive care unit (ICU)-admitted patients but not in those with mild disease. The coinhibitory receptor expression was linked to altered IgA and IgG expression and increased the apoptotic capacity of B cells. Also, we found a reduced frequency of CD24hiCD38hi regulatory B cells with impaired IL-10 production. Our mechanistic studies revealed that the upregulation of PD-L1 was linked to elevated plasma IL-6 levels in COVID-19 patients. This implies a connection between the cytokine storm and altered B cell phenotype and function. Finally, our metabolomic analysis showed a significant reduction in tryptophan but elevation of kynurenine in ICU-admitted COVID-19 patients. We found that kynurenine promotes PD-L1 expression in B cells, correlating with increased IL-6R expression and STAT1/STAT3 activation. Our observations provide novel insights into the complex interplay of B cell dysregulation, implicating coinhibitory receptors, IL-6, and kynurenine in impaired B cell effector functions, potentially contributing to the pathogenesis of COVID-19.
Collapse
Affiliation(s)
- Suguru Saito
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, AB, Canada
| | - Najmeh Bozorgmehr
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, AB, Canada
| | - Wendy Sligl
- Department of Critical Care Medicine, University of Alberta, Edmonton, AB, Canada
- Department of Medicine, Division of Infectious Diseases, University of Alberta, Edmonton, AB, Canada
| | - Mohammed Osman
- Department of Medicine, Division of Rheumatology, University of Alberta, Edmonton, AB, Canada
| | - Shokrollah Elahi
- School of Dentistry, Division of Foundational Sciences, University of Alberta, Edmonton, AB, Canada
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB, Canada
- Women and Children Health Research Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
7
|
Wolszczak-Biedrzycka B, Dorf J, Matowicka-Karna J, Wojewódzka-Żeleźniakowicz M, Żukowski P, Zalewska A, Maciejczyk M. Significance of nitrosative stress and glycoxidation products in the diagnosis of COVID-19. Sci Rep 2024; 14:9198. [PMID: 38649417 PMCID: PMC11035544 DOI: 10.1038/s41598-024-59876-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
Nitrosative stress promotes protein glycoxidation, and both processes can occur during an infection with the SARS-CoV-2 virus. Therefore, the aim of this study was to assess selected nitrosative stress parameters and protein glycoxidation products in COVID-19 patients and convalescents relative to healthy subjects, including in reference to the severity of COVID-19 symptoms. The diagnostic utility of nitrosative stress and protein glycoxidation biomarkers was also evaluated in COVID-19 patients. The study involved 218 patients with COVID-19, 69 convalescents, and 48 healthy subjects. Nitrosative stress parameters (NO, S-nitrosothiols, nitrotyrosine) and protein glycoxidation products (tryptophan, kynurenine, N-formylkynurenine, dityrosine, AGEs) were measured in the blood plasma or serum with the use of colorimetric/fluorometric methods. The levels of NO (p = 0.0480), S-nitrosothiols (p = 0.0004), nitrotyrosine (p = 0.0175), kynurenine (p < 0.0001), N-formylkynurenine (p < 0.0001), dityrosine (p < 0.0001), and AGEs (p < 0.0001) were significantly higher, whereas tryptophan fluorescence was significantly (p < 0.0001) lower in COVID-19 patients than in the control group. Significant differences in the analyzed parameters were observed in different stages of COVID-19. In turn, the concentrations of kynurenine (p < 0.0001), N-formylkynurenine (p < 0.0001), dityrosine (p < 0.0001), and AGEs (p < 0.0001) were significantly higher, whereas tryptophan levels were significantly (p < 0.0001) lower in convalescents than in healthy controls. The ROC analysis revealed that protein glycoxidation products can be useful for diagnosing infections with the SARS-CoV-2 virus because they differentiate COVID-19 patients (KN: sensitivity-91.20%, specificity-92.00%; NFK: sensitivity-92.37%, specificity-92.00%; AGEs: sensitivity-99,02%, specificity-100%) and convalescents (KN: sensitivity-82.22%, specificity-84.00%; NFK: sensitivity-82,86%, specificity-86,00%; DT: sensitivity-100%, specificity-100%; AGE: sensitivity-100%, specificity-100%) from healthy subjects with high sensitivity and specificity. Nitrosative stress and protein glycoxidation are intensified both during and after an infection with the SARS-CoV-2 virus. The levels of redox biomarkers fluctuate in different stages of the disease. Circulating biomarkers of nitrosative stress/protein glycoxidation have potential diagnostic utility in both COVID-19 patients and convalescents.
Collapse
Affiliation(s)
- Blanka Wolszczak-Biedrzycka
- Department of Psychology and Sociology of Health and Public Health, University of Warmia and Mazury in Olsztyn, 10-900, Olsztyn, Poland.
| | - Justyna Dorf
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, 15-089, Białystok, Poland
| | - Joanna Matowicka-Karna
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, 15-089, Białystok, Poland
| | | | - Piotr Żukowski
- Department of Restorative Dentistry, Croydon University Hospital, 530 London Road, Croydon, Surrey, CR7 7YE, UK
| | - Anna Zalewska
- Independent Laboratory of Experimental Dentistry, Medical University of Bialystok, 15-089, Białystok, Poland
| | - Mateusz Maciejczyk
- Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, 15-089, Białystok, Poland
| |
Collapse
|
8
|
Patel VD, Shamsi SA, Miller A, Liu A, Powell M. Simultaneous separation and detection of nine kynurenine pathway metabolites by reversed-phase liquid chromatography-mass spectrometry: Quantitation of inflammation in human cerebrospinal fluid and plasma. Anal Chim Acta 2023; 1278:341659. [PMID: 37709424 PMCID: PMC10813655 DOI: 10.1016/j.aca.2023.341659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND The kynurenine pathway (KP) generates eight tryptophan (TRP) metabolites collectively called kynurenines, which have gained enormous interest in clinical research. The importance of KP for different disease states calls for developing a low-cost and high-throughput chromatography-mass spectrometry method to evaluate the potential of different kynurenines. Simultaneous separation of TRP and its eight metabolites is challenging because they have substantial polarity differences (log P = -2.5 to +1.3). RESULTS A low-cost, reversed-phase LC-MS/MS method based on polarity partitioning was established to simultaneously separate and quantitate all nine kynurenine pathway metabolites (KPMs) in a single run for the first time in the open literature. Based on stationary phase screening and ternary mobile phase optimization strategy, high polarity KPMs were retained while medium and low polarity KPMs were eluted in a shorter time. After method validation, we demonstrated the applicability of this LC/MS/MS method by quantitative measurement of all nine KPM in cerebrospinal fluid (CSF) and plasma among two groups of human subjects diagnosed with depression. Furthermore, we measured the differential KPMs in these two groups of low and high inflammation and correlated the results with CRP or TNF-α markers for depression. SIGNIFICANCE Our proposed LC-MS/MS provides a new metabolite assay that can be easily applied in various clinical applications to simultaneously quantify multiple biomarkers in KP dysfunction.
Collapse
Affiliation(s)
- Vijay D Patel
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA
| | - Shahab A Shamsi
- Department of Chemistry, Georgia State University, Atlanta, GA, 30303, USA.
| | - Andrew Miller
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, 30322, USA
| | - Aimin Liu
- Department of Chemistry, The University of Texas at San Antonio, San Antonio, TX, 78249, USA
| | - Mark Powell
- Agilent Technologies, Wilmington, DE, 19808, USA
| |
Collapse
|
9
|
Michaelis S, Zelzer S, Schneider C, Schnedl WJ, Baranyi A, Meinitzer A, Herrmann M, Enko D. The possible role of quinolinic acid as a predictive marker in patients with SARS-CoV-2. Clin Chim Acta 2023; 550:117583. [PMID: 37802207 DOI: 10.1016/j.cca.2023.117583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
BACKGROUND AND AIMS Quinolinic acid (QA) is a metabolite of the kynurenine pathway, which is activated by inflammatory stimuli during viral infection. We investigated the role of QA in patients infected with SARS-CoV-2, particularly its prognostic value for survival. METHODS Overall, 104 unvaccinated inpatients were included, divided into a survival (N = 80) and a deceased group (N = 24). Plasma levels of tryptophan, kynurenine, QA, C-reactive protein (CRP) and procalcitonin (PCT) were measured on admission and after seven days. The QA/TRP ratio and the relative differences between the measurements for QA (QA-Diff) and QA/TRP (Diff-QA/TRP) were calculated. RESULTS Among the kynurenine pathway markers, QA-Diff showed the highest discriminatory power for the survival prognosis (Youden index 0.467, cut-off -1.3 %, AUC 0.733, p < 0.001, sensitivity 0.79, specificity 0.675). Among the inflammatory markers, CRP showed the highest discriminatory power (Youden index 0.533, cut-off 25.0 mg/L, AUC 0.794, p < 0.001, sensitivity 0.958, specificity 0.575). A significant correlation between QA and PCT was found on admission and after one week (Spearman's rho 0.455 and 0.539, all p-values < 0.001). CONCLUSIONS QA may serve as prognostic marker for survival in patients with SARS-CoV-2. The repeated measurements during the first week of the disease may enhance the prognostic power.
Collapse
Affiliation(s)
- Simon Michaelis
- Institute of Clinical Chemistry and Laboratory Medicine, General Hospital Hochsteiermark, Vordernberger Straße 42, 8700 Leoben, Austria.
| | - Sieglinde Zelzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Christopher Schneider
- Institute of Clinical Chemistry and Laboratory Medicine, General Hospital Hochsteiermark, Vordernberger Straße 42, 8700 Leoben, Austria
| | - Wolfgang J Schnedl
- Practice for General Internal Medicine, Dr.-Theodor-Körner-Straße 19b, 8600 Bruck/Mur, Austria
| | - Andreas Baranyi
- Department of Psychiatry and Psychotherapeutic Medicine, Medical, University of Graz, Auenbruggerplatz 31, 8036 Graz, Austria
| | - Andreas Meinitzer
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Markus Herrmann
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| | - Dietmar Enko
- Institute of Clinical Chemistry and Laboratory Medicine, General Hospital Hochsteiermark, Vordernberger Straße 42, 8700 Leoben, Austria; Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Auenbruggerplatz 15, 8036 Graz, Austria
| |
Collapse
|
10
|
Badawy AB. The kynurenine pathway of tryptophan metabolism: a neglected therapeutic target of COVID-19 pathophysiology and immunotherapy. Biosci Rep 2023; 43:BSR20230595. [PMID: 37486805 PMCID: PMC10407158 DOI: 10.1042/bsr20230595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/29/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023] Open
Abstract
SARS-CoV-2 (COVID-19) exerts profound changes in the kynurenine (Kyn) pathway (KP) of tryptophan (Trp) metabolism that may underpin its pathophysiology. The KP is the main source of the vital cellular effector NAD+ and intermediate metabolites that modulate immune and neuronal functions. Trp metabolism is the top pathway influenced by COVID-19. Sixteen studies established virus-induced activation of the KP mediated mainly by induction of indoleamine 2,3-dioxygenase (IDO1) in most affected tissues and of IDO2 in lung by the increased release of proinflammatory cytokines but could additionally involve increased flux of plasma free Trp and induction of Trp 2,3-dioxygenase (TDO) by cortisol. The major Kyn metabolite targeted by COVID-19 is kynurenic acid (KA), the Kyn metabolite with the greatest affinity for the aryl hydrocarbon receptor (AhR), which is also activated by COVID-19. AhR activation initiates two important series of events: a vicious circle involving IDO1 induction, KA accumulation and further AhR activation, and activation of poly (ADP-ribose) polymerase (PARP) leading to NAD+ depletion and cell death. The virus further deprives the host of NAD+ by inhibiting its main biosynthetic pathway from quinolinic acid, while simultaneously acquiring NAD+ by promoting its synthesis from nicotinamide in the salvage pathway. Additionally, the protective effects of sirtuin 1 are minimised by the PARP activation. KP dysfunction may also underpin the mood and neurological disorders acutely and during 'long COVID'. More studies of potential effects of vaccination therapy on the KP are required and exploration of therapeutic strategies involving modulation of the KP changes are proposed.
Collapse
Affiliation(s)
- Abdulla Abu-Bakr Badawy
- Formerly School of Health Sciences, Cardiff Metropolitan University, Western Avenue, Cardiff CF5 2YB, Wales, U.K
| |
Collapse
|
11
|
Charkoftaki G, Aalizadeh R, Santos-Neto A, Tan WY, Davidson EA, Nikolopoulou V, Wang Y, Thompson B, Furnary T, Chen Y, Wunder EA, Coppi A, Schulz W, Iwasaki A, Pierce RW, Cruz CSD, Desir GV, Kaminski N, Farhadian S, Veselkov K, Datta R, Campbell M, Thomaidis NS, Ko AI, Thompson DC, Vasiliou V. An AI-powered patient triage platform for future viral outbreaks using COVID-19 as a disease model. Hum Genomics 2023; 17:80. [PMID: 37641126 PMCID: PMC10463861 DOI: 10.1186/s40246-023-00521-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/30/2023] [Indexed: 08/31/2023] Open
Abstract
Over the last century, outbreaks and pandemics have occurred with disturbing regularity, necessitating advance preparation and large-scale, coordinated response. Here, we developed a machine learning predictive model of disease severity and length of hospitalization for COVID-19, which can be utilized as a platform for future unknown viral outbreaks. We combined untargeted metabolomics on plasma data obtained from COVID-19 patients (n = 111) during hospitalization and healthy controls (n = 342), clinical and comorbidity data (n = 508) to build this patient triage platform, which consists of three parts: (i) the clinical decision tree, which amongst other biomarkers showed that patients with increased eosinophils have worse disease prognosis and can serve as a new potential biomarker with high accuracy (AUC = 0.974), (ii) the estimation of patient hospitalization length with ± 5 days error (R2 = 0.9765) and (iii) the prediction of the disease severity and the need of patient transfer to the intensive care unit. We report a significant decrease in serotonin levels in patients who needed positive airway pressure oxygen and/or were intubated. Furthermore, 5-hydroxy tryptophan, allantoin, and glucuronic acid metabolites were increased in COVID-19 patients and collectively they can serve as biomarkers to predict disease progression. The ability to quickly identify which patients will develop life-threatening illness would allow the efficient allocation of medical resources and implementation of the most effective medical interventions. We would advocate that the same approach could be utilized in future viral outbreaks to help hospitals triage patients more effectively and improve patient outcomes while optimizing healthcare resources.
Collapse
Affiliation(s)
- Georgia Charkoftaki
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Reza Aalizadeh
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Zografou, 15771, Greece
| | - Alvaro Santos-Neto
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, SP, 13566-590, Brazil
| | - Wan Ying Tan
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
- Internal Medicine Residency Program, Department of Internal Medicine, Norwalk Hospital, Norwalk, CT, USA
| | - Emily A Davidson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Varvara Nikolopoulou
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Zografou, 15771, Greece
| | - Yewei Wang
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Brian Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Tristan Furnary
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Ying Chen
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Elsio A Wunder
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT, USA
- Institute Gonçalo Moniz, Fundação Oswaldo Cruz, Brazilian Ministry of Health, Salvador, Brazil
| | - Andreas Coppi
- Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, New Haven, CT, USA
| | - Wade Schulz
- Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, New Haven, CT, USA
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, MD, Chevy Chase, USA
| | - Richard W Pierce
- Department of Pediatrics , Yale School of Medicine, New Haven, CT, USA
| | - Charles S Dela Cruz
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Gary V Desir
- Department of Internal Medicine, Section of Nephrology, Yale University School of Medicine, New Haven, CT, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Shelli Farhadian
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, USA
| | - Kirill Veselkov
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
- Department of Surgery and Cancer, Imperial College London, South Kensington Campus, London, UK
| | - Rupak Datta
- Veterans Affairs Connecticut Healthcare System, CT, West Haven, USA
- Department of Internal Medicine, Yale School of Medicine, CT, New Haven, USA
| | - Melissa Campbell
- Department of Pediatrics, Division of Pediatric Infectious Diseases, School of Medicine, Duke University, NC, Durham, USA
| | - Nikolaos S Thomaidis
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
- Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Zografou, 15771, Greece
| | - Albert I Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, CT, USA
- Institute Gonçalo Moniz, Fundação Oswaldo Cruz, Brazilian Ministry of Health, Salvador, Brazil
- Department of Internal Medicine, Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - David C Thompson
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven, CT, USA.
| |
Collapse
|
12
|
Soares NC, Hussein A, Muhammad JS, Semreen MH, ElGhazali G, Hamad M. Plasma metabolomics profiling identifies new predictive biomarkers for disease severity in COVID-19 patients. PLoS One 2023; 18:e0289738. [PMID: 37561777 PMCID: PMC10414581 DOI: 10.1371/journal.pone.0289738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 07/25/2023] [Indexed: 08/12/2023] Open
Abstract
Recently, numerous studies have reported on different predictive models of disease severity in COVID-19 patients. Herein, we propose a highly predictive model of disease severity by integrating routine laboratory findings and plasma metabolites including cytosine as a potential biomarker of COVID-19 disease severity. One model was developed and internally validated on the basis of ROC-AUC values. The predictive accuracy of the model was 0.996 (95% CI: 0.989 to 1.000) with an optimal cut-off risk score of 3 from among 6 biomarkers including five lab findings (D-dimer, ferritin, neutrophil counts, Hp, and sTfR) and one metabolite (cytosine). The model is of high predictive power, needs a small number of variables that can be acquired at minimal cost and effort, and can be applied independent of non-empirical clinical data. The metabolomics profiling data and the modeling work stemming from it, as presented here, could further explain the cause of COVID-19 disease prognosis and patient management.
Collapse
Affiliation(s)
- Nelson C. Soares
- University of Sharjah, Research Institute of Medical and Health Sciences, Sharjah, United Arab Emirates
- Department of Medicinal Chemistry University of Sharjah, Department of Medicinal Chemistry, College of Pharmacy, Sharjah, United Arab Emirates
| | - Amal Hussein
- Department of Family and Community Medicine & Behavioral Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Jibran Sualeh Muhammad
- University of Sharjah, Research Institute of Medical and Health Sciences, Sharjah, United Arab Emirates
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| | - Mohammad H. Semreen
- University of Sharjah, Research Institute of Medical and Health Sciences, Sharjah, United Arab Emirates
- Department of Medicinal Chemistry University of Sharjah, Department of Medicinal Chemistry, College of Pharmacy, Sharjah, United Arab Emirates
| | - Gehad ElGhazali
- Department of Immunology, Sheikh Khalifa Medical City- Union71- Purelab, Abu Dhabi and College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mawieh Hamad
- University of Sharjah, Research Institute of Medical and Health Sciences, Sharjah, United Arab Emirates
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
13
|
Lodge S, Lawler NG, Gray N, Masuda R, Nitschke P, Whiley L, Bong SH, Yeap BB, Dwivedi G, Spraul M, Schaefer H, Gil-Redondo R, Embade N, Millet O, Holmes E, Wist J, Nicholson JK. Integrative Plasma Metabolic and Lipidomic Modelling of SARS-CoV-2 Infection in Relation to Clinical Severity and Early Mortality Prediction. Int J Mol Sci 2023; 24:11614. [PMID: 37511373 PMCID: PMC10380980 DOI: 10.3390/ijms241411614] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/10/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
An integrative multi-modal metabolic phenotyping model was developed to assess the systemic plasma sequelae of SARS-CoV-2 (rRT-PCR positive) induced COVID-19 disease in patients with different respiratory severity levels. Plasma samples from 306 unvaccinated COVID-19 patients were collected in 2020 and classified into four levels of severity ranging from mild symptoms to severe ventilated cases. These samples were investigated using a combination of quantitative Nuclear Magnetic Resonance (NMR) spectroscopy and Mass Spectrometry (MS) platforms to give broad lipoprotein, lipidomic and amino acid, tryptophan-kynurenine pathway, and biogenic amine pathway coverage. All platforms revealed highly significant differences in metabolite patterns between patients and controls (n = 89) that had been collected prior to the COVID-19 pandemic. The total number of significant metabolites increased with severity with 344 out of the 1034 quantitative variables being common to all severity classes. Metabolic signatures showed a continuum of changes across the respiratory severity levels with the most significant and extensive changes being in the most severely affected patients. Even mildly affected respiratory patients showed multiple highly significant abnormal biochemical signatures reflecting serious metabolic deficiencies of the type observed in Post-acute COVID-19 syndrome patients. The most severe respiratory patients had a high mortality (56.1%) and we found that we could predict mortality in this patient sub-group with high accuracy in some cases up to 61 days prior to death, based on a separate metabolic model, which highlighted a different set of metabolites to those defining the basic disease. Specifically, hexosylceramides (HCER 16:0, HCER 20:0, HCER 24:1, HCER 26:0, HCER 26:1) were markedly elevated in the non-surviving patient group (Cliff's delta 0.91-0.95) and two phosphoethanolamines (PE.O 18:0/18:1, Cliff's delta = -0.98 and PE.P 16:0/18:1, Cliff's delta = -0.93) were markedly lower in the non-survivors. These results indicate that patient morbidity to mortality trajectories is determined relatively soon after infection, opening the opportunity to select more intensive therapeutic interventions to these "high risk" patients in the early disease stages.
Collapse
Affiliation(s)
- Samantha Lodge
- Australian National Phenome Center, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia; (S.L.); (N.G.L.); (N.G.); (R.M.); (P.N.); (L.W.); (S.-H.B.); (E.H.)
- Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
| | - Nathan G. Lawler
- Australian National Phenome Center, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia; (S.L.); (N.G.L.); (N.G.); (R.M.); (P.N.); (L.W.); (S.-H.B.); (E.H.)
- Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
| | - Nicola Gray
- Australian National Phenome Center, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia; (S.L.); (N.G.L.); (N.G.); (R.M.); (P.N.); (L.W.); (S.-H.B.); (E.H.)
- Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
| | - Reika Masuda
- Australian National Phenome Center, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia; (S.L.); (N.G.L.); (N.G.); (R.M.); (P.N.); (L.W.); (S.-H.B.); (E.H.)
| | - Philipp Nitschke
- Australian National Phenome Center, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia; (S.L.); (N.G.L.); (N.G.); (R.M.); (P.N.); (L.W.); (S.-H.B.); (E.H.)
| | - Luke Whiley
- Australian National Phenome Center, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia; (S.L.); (N.G.L.); (N.G.); (R.M.); (P.N.); (L.W.); (S.-H.B.); (E.H.)
- Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
| | - Sze-How Bong
- Australian National Phenome Center, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia; (S.L.); (N.G.L.); (N.G.); (R.M.); (P.N.); (L.W.); (S.-H.B.); (E.H.)
| | - Bu B. Yeap
- Medical School, University of Western Australia, Perth, WA 6150, Australia; (B.B.Y.); (G.D.)
- Department of Endocrinology and Diabetes, Fiona Stanley Hospital, Perth, WA 6150, Australia
| | - Girish Dwivedi
- Medical School, University of Western Australia, Perth, WA 6150, Australia; (B.B.Y.); (G.D.)
- Department of Cardiology, Fiona Stanley Hospital, Perth, WA 6150, Australia
| | | | | | - Rubén Gil-Redondo
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Parque Tecnológico de Bizkaia, Bld. 800, 48160 Derio, Spain; (R.G.-R.); (N.E.); (O.M.)
| | - Nieves Embade
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Parque Tecnológico de Bizkaia, Bld. 800, 48160 Derio, Spain; (R.G.-R.); (N.E.); (O.M.)
| | - Oscar Millet
- Precision Medicine and Metabolism Laboratory, CIC bioGUNE, Parque Tecnológico de Bizkaia, Bld. 800, 48160 Derio, Spain; (R.G.-R.); (N.E.); (O.M.)
| | - Elaine Holmes
- Australian National Phenome Center, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia; (S.L.); (N.G.L.); (N.G.); (R.M.); (P.N.); (L.W.); (S.-H.B.); (E.H.)
- Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, UK
| | - Julien Wist
- Australian National Phenome Center, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia; (S.L.); (N.G.L.); (N.G.); (R.M.); (P.N.); (L.W.); (S.-H.B.); (E.H.)
- Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
- Chemistry Department, Universidad del Valle, Cali 76001, Colombia
| | - Jeremy K. Nicholson
- Australian National Phenome Center, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia; (S.L.); (N.G.L.); (N.G.); (R.M.); (P.N.); (L.W.); (S.-H.B.); (E.H.)
- Center for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, WA 6150, Australia
- Institute of Global Health Innovation, Faculty of Medicine, Imperial College London, Faculty Building, South Kensington Campus, London SW7 2NA, UK
| |
Collapse
|
14
|
Guntur VP, Nemkov T, de Boer E, Mohning MP, Baraghoshi D, Cendali FI, San-Millán I, Petrache I, D’Alessandro A. Signatures of Mitochondrial Dysfunction and Impaired Fatty Acid Metabolism in Plasma of Patients with Post-Acute Sequelae of COVID-19 (PASC). Metabolites 2022; 12:1026. [PMID: 36355108 PMCID: PMC9699059 DOI: 10.3390/metabo12111026] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 07/30/2023] Open
Abstract
Exercise intolerance is a major manifestation of post-acute sequelae of severe acute respiratory syndrome coronavirus infection (PASC, or "long-COVID"). Exercise intolerance in PASC is associated with higher arterial blood lactate accumulation and lower fatty acid oxidation rates during graded exercise tests to volitional exertion, suggesting altered metabolism and mitochondrial dysfunction. It remains unclear whether the profound disturbances in metabolism that have been identified in plasma from patients suffering from acute coronavirus disease 2019 (COVID-19) are also present in PASC. To bridge this gap, individuals with a history of previous acute COVID-19 infection that did not require hospitalization were enrolled at National Jewish Health (Denver, CO, USA) and were grouped into those that developed PASC (n = 29) and those that fully recovered (n = 16). Plasma samples from the two groups were analyzed via mass spectrometry-based untargeted metabolomics and compared against plasma metabolic profiles of healthy control individuals (n = 30). Observational demographic and clinical data were retrospectively abstracted from the medical record. Compared to plasma of healthy controls or individuals who recovered from COVID-19, PASC plasma exhibited significantly higher free- and carnitine-conjugated mono-, poly-, and highly unsaturated fatty acids, accompanied by markedly lower levels of mono-, di- and tricarboxylates (pyruvate, lactate, citrate, succinate, and malate), polyamines (spermine) and taurine. Plasma from individuals who fully recovered from COVID-19 exhibited an intermediary metabolic phenotype, with milder disturbances in fatty acid metabolism and higher levels of spermine and taurine. Of note, depletion of tryptophan-a hallmark of disease severity in COVID-19-is not normalized in PASC patients, despite normalization of kynurenine levels-a tryptophan metabolite that predicts mortality in hospitalized COVID-19 patients. In conclusion, PASC plasma metabolites are indicative of altered fatty acid metabolism and dysfunctional mitochondria-dependent lipid catabolism. These metabolic profiles obtained at rest are consistent with previously reported mitochondrial dysfunction during exercise, and may pave the way for therapeutic intervention focused on restoring mitochondrial fat-burning capacity.
Collapse
Affiliation(s)
- Vamsi P. Guntur
- Division of Pulmonary and Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, CO 80206, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Travis Nemkov
- Department of Biochemical and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Esther de Boer
- Division of Pulmonary and Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, CO 80206, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Michael P. Mohning
- Division of Pulmonary and Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, CO 80206, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - David Baraghoshi
- Department of Biostatistics, National Jewish Health, Denver, CO 80206, USA
| | - Francesca I. Cendali
- Department of Biochemical and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Inigo San-Millán
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
- Department of Human Physiology and Nutrition, University of Colorado, Colorado Springs, CO 80918, USA
| | - Irina Petrache
- Division of Pulmonary and Critical Care and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, CO 80206, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Angelo D’Alessandro
- Department of Biochemical and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
15
|
Lorkiewicz P, Waszkiewicz N. Is SARS-CoV-2 a Risk Factor of Bipolar Disorder?-A Narrative Review. J Clin Med 2022; 11:6060. [PMID: 36294388 PMCID: PMC9604904 DOI: 10.3390/jcm11206060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/07/2022] Open
Abstract
For 2.5 years we have been facing the coronavirus disease (COVID-19) and its health, social and economic effects. One of its known consequences is the development of neuropsychiatric diseases such as anxiety and depression. However, reports of manic episodes related to COVID-19 have emerged. Mania is an integral part of the debilitating illness-bipolar disorder (BD). Due to its devastating effects, it is therefore important to establish whether SARS-CoV-2 infection is a causative agent of this severe mental disorder. In this narrative review, we discuss the similarities between the disorders caused by SARS-CoV-2 and those found in patients with BD, and we also try to answer the question of whether SARS-CoV-2 infection may be a risk factor for the development of this affective disorder. Our observation shows that disorders in COVID-19 showing the greatest similarity to those in BD are cytokine disorders, tryptophan metabolism, sleep disorders and structural changes in the central nervous system (CNS). These changes, especially intensified in severe infections, may be a trigger for the development of BD in particularly vulnerable people, e.g., with family history, or cause an acute episode in patients with a pre-existing BD.
Collapse
Affiliation(s)
- Piotr Lorkiewicz
- Department of Psychiatry, Medical University of Bialystok, Wołodyjowskiego 2, 15-272 Białystok, Poland
| | | |
Collapse
|
16
|
Wang T, Cao Y, Zhang H, Wang Z, Man CH, Yang Y, Chen L, Xu S, Yan X, Zheng Q, Wang Y. COVID-19 metabolism: Mechanisms and therapeutic targets. MedComm (Beijing) 2022; 3:e157. [PMID: 35958432 PMCID: PMC9363584 DOI: 10.1002/mco2.157] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 01/18/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) dysregulates antiviral signaling, immune response, and cell metabolism in human body. Viral genome and proteins hijack host metabolic network to support viral biogenesis and propagation. However, the regulatory mechanism of SARS-CoV-2-induced metabolic dysfunction has not been elucidated until recently. Multiomic studies of coronavirus disease 2019 (COVID-19) revealed an intensive interaction between host metabolic regulators and viral proteins. SARS-CoV-2 deregulated cellular metabolism in blood, intestine, liver, pancreas, fat, and immune cells. Host metabolism supported almost every stage of viral lifecycle. Strikingly, viral proteins were found to interact with metabolic enzymes in different cellular compartments. Biochemical and genetic assays also identified key regulatory nodes and metabolic dependencies of viral replication. Of note, cholesterol metabolism, lipid metabolism, and glucose metabolism are broadly involved in viral lifecycle. Here, we summarized the current understanding of the hallmarks of COVID-19 metabolism. SARS-CoV-2 infection remodels host cell metabolism, which in turn modulates viral biogenesis and replication. Remodeling of host metabolism creates metabolic vulnerability of SARS-CoV-2 replication, which could be explored to uncover new therapeutic targets. The efficacy of metabolic inhibitors against COVID-19 is under investigation in several clinical trials. Ultimately, the knowledge of SARS-CoV-2-induced metabolic reprogramming would accelerate drug repurposing or screening to combat the COVID-19 pandemic.
Collapse
Affiliation(s)
- Tianshi Wang
- Shanghai Key Laboratory for Tumor Microenvironment and InflammationDepartment of Biochemistry and Molecular Cell BiologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ying Cao
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Haiyan Zhang
- Bai Jia Obstetrics and Gynecology HospitalShanghaiChina
| | - Zihao Wang
- Fudan University Shanghai Cancer CenterKey Laboratory of Breast Cancer in ShanghaiShanghai Key Laboratory of Radiation OncologyCancer Instituteand The Shanghai Key Laboratory of Medical EpigeneticsInstitutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- The International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghaiChina
| | - Cheuk Him Man
- Division of HematologyDepartment of MedicineUniversity of Hong KongPokfulamHong Kong, China
| | - Yunfan Yang
- Department of Cell BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanChina
| | - Lingchao Chen
- Department of NeurosurgeryHuashan HospitalShanghai Medical CollegeFudan UniversityNational Center for Neurological DisordersShanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationNeurosurgical Institute of Fudan UniversityShanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Shuangnian Xu
- Department of HematologySouthwest HospitalArmy Medical UniversityChongqingChina
| | - Xiaojing Yan
- Department of HematologyThe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Quan Zheng
- Center for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yi‐Ping Wang
- Fudan University Shanghai Cancer CenterKey Laboratory of Breast Cancer in ShanghaiShanghai Key Laboratory of Radiation OncologyCancer Instituteand The Shanghai Key Laboratory of Medical EpigeneticsInstitutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- The International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghaiChina
| |
Collapse
|
17
|
Ceballos FC, Virseda-Berdices A, Resino S, Ryan P, Martínez-González O, Peréz-García F, Martin-Vicente M, Brochado-Kith O, Blancas R, Bartolome-Sánchez S, Vidal-Alcántara EJ, Albóniga-Díez OE, Cuadros-González J, Blanca-López N, Martínez I, Martinez-Acitores IR, Barbas C, Fernández-Rodríguez A, Jiménez-Sousa MÁ. Metabolic Profiling at COVID-19 Onset Shows Disease Severity and Sex-Specific Dysregulation. Front Immunol 2022; 13:925558. [PMID: 35844615 PMCID: PMC9280146 DOI: 10.3389/fimmu.2022.925558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/27/2022] [Indexed: 11/13/2022] Open
Abstract
Backgroundmetabolic changes through SARS-CoV-2 infection has been reported but not fully comprehended. This metabolic dysregulation affects multiple organs during COVID-19 and its early detection can be used as a prognosis marker of severity. Therefore, we aimed to characterize metabolic and cytokine profile at COVID-19 onset and its relationship with disease severity to identify metabolic profiles predicting disease progression.Material and Methodswe performed a retrospective cross-sectional study in 123 COVID-19 patients which were stratified as asymptomatic/mild, moderate and severe according to the highest COVID-19 severity status, and a group of healthy controls. We performed an untargeted plasma metabolic profiling (gas chromatography and capillary electrophoresis-mass spectrometry (GC and CE-MS)) and cytokine evaluation.ResultsAfter data filtering and identification we observed 105 metabolites dysregulated (66 GC-MS and 40 CE-MS) which shown different expression patterns for each COVID-19 severity status. These metabolites belonged to different metabolic pathways including amino acid, energy, and nitrogen metabolism among others. Severity-specific metabolic dysregulation was observed, as an increased transformation of L-tryptophan into L-kynurenine. Thus, metabolic profiling at hospital admission differentiate between severe and moderate patients in the later phase of worse evolution. Several plasma pro-inflammatory biomarkers showed significant correlation with deregulated metabolites, specially with L-kynurenine and L-tryptophan. Finally, we describe a strong sex-related dysregulation of metabolites, cytokines and chemokines between severe and moderate patients. In conclusion, metabolic profiling of COVID-19 patients at disease onset is a powerful tool to unravel the SARS-CoV-2 molecular pathogenesis.ConclusionsThis technique makes it possible to identify metabolic phenoconversion that predicts disease progression and explains the pronounced pathogenesis differences between sexes.
Collapse
Affiliation(s)
- Francisco C. Ceballos
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
| | - Ana Virseda-Berdices
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
| | - Salvador Resino
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Pablo Ryan
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Infectious Diseases, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - Oscar Martínez-González
- Critical Care Department, Hospital Universitario del Tajo, Aranjuez, Spain
- Universidad Alfonso X el Sabio, Villanueva de la Cañada, Madrid, Spain
| | - Felipe Peréz-García
- Clinical Microbiology Department, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Spain
- Department of Biomedicine and Biotecnology, Faculty of Medicine, University of Alcalá de Henares, Alcalá de Henares, Spain
| | - María Martin-Vicente
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Oscar Brochado-Kith
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Blancas
- Critical Care Department, Hospital Universitario del Tajo, Aranjuez, Spain
- Universidad Alfonso X el Sabio, Villanueva de la Cañada, Madrid, Spain
| | - Sofía Bartolome-Sánchez
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
| | - Erick Joan Vidal-Alcántara
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
| | - Oihane Elena Albóniga-Díez
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Juan Cuadros-González
- Clinical Microbiology Department, Hospital Universitario Príncipe de Asturias, Alcalá de Henares, Spain
- Department of Biomedicine and Biotecnology, Faculty of Medicine, University of Alcalá de Henares, Alcalá de Henares, Spain
| | | | - Isidoro Martínez
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Coral Barbas
- Centre for Metabolomics and Bioanalysis (CEMBIO), Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, Madrid, Spain
| | - Amanda Fernández-Rodríguez
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Amanda Fernández-Rodríguez, ; María Ángeles Jiménez-Sousa,
| | - María Ángeles Jiménez-Sousa
- Unit of Viral Infection and Immunity, National Center for Microbiology (CNM), Health Institute Carlos III (ISCIII), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- *Correspondence: Amanda Fernández-Rodríguez, ; María Ángeles Jiménez-Sousa,
| |
Collapse
|
18
|
Influence of periodontal inflammation on tryptophan-kynurenine metabolism: a cross-sectional study. Clin Oral Investig 2022; 26:5721-5732. [PMID: 35588020 DOI: 10.1007/s00784-022-04528-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/04/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVES Kynurenine pathway (KP) is the primary way of degrading tryptophan (TRP) and generates several bioactive metabolites (such as kynurenine (KYN), kynurenic acid (KYNA), 3-hydroxykynurenine (3OHKYN)) to regulate biological processes that include host-microbiome signaling and immune cell response. This study is aimed to determine the relationship between periodontal inflammation and tryptophan-kynurenine metabolism and identify their association with periodontal clinical parameters. MATERIALS AND METHODS Saliva and serum samples were collected from 20 stage III, grade B generalized periodontitis patients, and 20 periodontally healthy control individuals. Samples were analyzed for IL-6, KYN, TRP, KYN/TRP ratio, KYNA, 3OHKYN, picolinic acid (PA), and quinolinic acid (QA) by liquid chromatography-mass spectrometry. Clinical periodontal parameters (plaque index (PI), probing pocket depth (PPD), gingival recession (GR), clinical attachment loss (CAL), and bleeding on probing (BOP)) were recorded. RESULTS Clinical parameters were significantly higher in the periodontitis group (p < 0.001). Salivary IL-6, TRP, KYN, KYNA, PA, and QA levels were significantly higher and KYN/TRP ratio was significantly lower in periodontitis group than control group (p < 0.05). Serum KYN, KYN/TRP ratio and PA levels were significantly higher in periodontitis group than control group (p < 0.05). PPD, BOP, PI, and CAL had significantly positive correlations with salivary IL-6, TRP, PA, QA, and serum KYN and significantly negative correlations with salivary KYN/TRP ratio. CONCLUSIONS Our results suggest that periodontal inflammation plays a role in local and systemic tryptophan-kynurenine metabolism. CLINICAL RELEVANCE Due to their effects on the immune and inflammatory systems, kynurenines may be potential agents for diagnosis and treatment of periodontal diseases.
Collapse
|