1
|
Tewari AB, Saini A, Sharma D. Extirpating the cancer stem cell hydra: Differentiation therapy and Hyperthermia therapy for targeting the cancer stem cell hierarchy. Clin Exp Med 2023; 23:3125-3145. [PMID: 37093450 DOI: 10.1007/s10238-023-01066-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/02/2023] [Indexed: 04/25/2023]
Abstract
Ever since the discovery of cancer stem cells (CSCs), they have progressively attracted more attention as a therapeutic target. Like the mythical hydra, this subpopulation of cells seems to contribute to cancer immortality, spawning more cells each time that some components of the cancer cell hierarchy are destroyed. Traditional modalities focusing on cancer treatment have emphasized apoptosis as a route to eliminate the tumor burden. A major problem is that cancer cells are often in varying degrees of dedifferentiation contributing to what is known as the CSCs hierarchy and cells which are known to be resistant to conventional therapy. Differentiation therapy is an experimental therapeutic modality aimed at the conversion of malignant phenotype to a more benign one. Hyperthermia therapy (HT) is a modality exploiting the changes induced in cells by the application of heat produced to aid in cancer therapy. While differentiation therapy has been successfully employed in the treatment of acute myeloid leukemia, it has not been hugely successful for other cancer types. Mounting evidence suggests that hyperthermia therapy may greatly augment the effects of differentiation therapy while simultaneously overcoming many of the hard-to-treat facets of recurrent tumors. This review summarizes the progress made so far in integrating hyperthermia therapy with existing modules of differentiation therapy. The focus is on studies related to the successful application of both hyperthermia and differentiation therapy when used alone or in conjunction for hard-to-treat cancer cell niche with emphasis on combined approaches to target the CSCs hierarchy.
Collapse
Affiliation(s)
- Amit B Tewari
- Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, Mohali, Punjab, 140306, India
| | - Anamika Saini
- Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, Mohali, Punjab, 140306, India
| | - Deepika Sharma
- Institute of Nano Science and Technology (INST), Knowledge City, Sector 81, Mohali, Punjab, 140306, India.
| |
Collapse
|
2
|
Zhu K, Xia Y, Tian X, He Y, Zhou J, Han R, Guo H, Song T, Chen L, Tian X. Characterization and therapeutic perspectives of differentiation-inducing therapy in malignant tumors. Front Genet 2023; 14:1271381. [PMID: 37745860 PMCID: PMC10514561 DOI: 10.3389/fgene.2023.1271381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/30/2023] [Indexed: 09/26/2023] Open
Abstract
Cancer is a major public health issue globally and is one of the leading causes of death. Although available treatments improve the survival rate of some cases, many advanced tumors are insensitive to these treatments. Cancer cell differentiation reverts the malignant phenotype to its original state and may even induce differentiation into cell types found in other tissues. Leveraging differentiation-inducing therapy in high-grade tumor masses offers a less aggressive strategy to curb tumor progression and heightens chemotherapy sensitivity. Differentiation-inducing therapy has been demonstrated to be effective in a variety of tumor cells. For example, differentiation therapy has become the first choice for acute promyelocytic leukemia, with the cure rate of more than 90%. Although an appealing concept, the mechanism and clinical drugs used in differentiation therapy are still in their nascent stage, warranting further investigation. In this review, we examine the current differentiation-inducing therapeutic approach and discuss the clinical applications as well as the underlying biological basis of differentiation-inducing agents.
Collapse
Affiliation(s)
- Kangwei Zhu
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yuren Xia
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xindi Tian
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yuchao He
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Jun Zhou
- Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda, Japan
| | - Ruyu Han
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Hua Guo
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Tianqiang Song
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Lu Chen
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Xiangdong Tian
- Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin’s Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
3
|
Swain SD, Grifka-Walk HN, Gripentrog J, Lehmann M, Deuling B, Jenkins B, Liss H, Blaseg N, Bimczok D, Kominsky DJ. Slug and Snail have differential effects in directing colonic epithelial wound healing and partially mediate the restitutive effects of butyrate. Am J Physiol Gastrointest Liver Physiol 2019; 317:G531-G544. [PMID: 31393789 PMCID: PMC6842986 DOI: 10.1152/ajpgi.00071.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Restitution of wounds in colonic epithelium is essential in the maintenance of health. Microbial products, such as the short-chain fatty acid butyrate, can have positive effects on wound healing. We used an in vitro model of T84 colonic epithelial cells to determine if the Snail genes Slug (SNAI2) and Snail (SNAI1), implemented in keratinocyte monolayer healing, are involved in butyrate-enhanced colonic epithelial wound healing. Using shRNA-mediated Slug/Snail knockdown, we found that knockdown of Slug (Slug-KD), but not Snail (Snail-KD), impairs wound healing in scratch assays with and without butyrate. Slug and Snail had differential effects on T84 monolayer barrier integrity, measured by transepithelial resistance, as Snail-KD impaired the barrier (with or without butyrate), whereas Slug-KD enhanced the barrier, again with or without butyrate. Targeted transcriptional analysis demonstrated differential expression of several tight junction genes, as well as focal adhesion genes. This included altered regulation of Annexin A2 and ITGB1 in Slug-KD, which was reflected in confocal microscopy, showing increased accumulation of B1-integrin protein in Slug-KD cells, which was previously shown to impair wound healing. Transcriptional analysis also indicated altered expression of genes associated with epithelial terminal differentiation, such that Slug-KD cells skewed toward overexpression of secretory cell pathway-associated genes. This included trefoil factors TFF1 and TFF3, which were expressed at lower than control levels in Snail-KD cells. Since TFFs can enhance the barrier in epithelial cells, this points to a potential mechanism of differential modulation by Snail genes. Although Snail genes are crucial in epithelial wound restitution, butyrate responses are mediated by other pathways as well.NEW & NOTEWORTHY Although butyrate can promote colonic mucosal healing, not all of its downstream pathways are understood. We show that the Snail genes Snail and Slug are mediators of butyrate responses. Furthermore, these genes, and Slug in particular, are necessary for efficient restitution of wounds and barriers in T84 epithelial cells even in the absence of butyrate. These effects are achieved in part through effects on regulation of β1 integrin and cellular differentiation state.
Collapse
Affiliation(s)
- Steve D. Swain
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | | | - Jeannie Gripentrog
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Margaret Lehmann
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Benjamin Deuling
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Brittany Jenkins
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Hailey Liss
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Nathan Blaseg
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Diane Bimczok
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Douglas J. Kominsky
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| |
Collapse
|
4
|
Xiao X, Bai J, Zhang J, Wu J, Dong Y. Inhibitory effect of fermented selected barley extracts with Lactobacillus plantarum dy-1 on the proliferation of human HT-29 Cells. J Food Biochem 2019; 43:e12989. [PMID: 31364183 DOI: 10.1111/jfbc.12989] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 06/02/2019] [Accepted: 07/05/2019] [Indexed: 01/01/2023]
Abstract
The objective of this study was to understand the changes of nutrition constituents in extracts of four varieties of barley fermented with Lactobacillus plantarum dy-1 (LFBEs) and to uncover the potential apoptosis-related mechanism induced by LFBE to inhibit the proliferation of HT-29 cells. The contents of total polysaccharide, polyphenol, and protein in the four LFBEs significantly changed as the fermentation time went by and exerted different inhibitory effects on the proliferation of HT-29 cells. Results indicated that LFBE (YangSi No.3) inhibited proliferation of HT-29 cells in a time- and dose-dependent manners. The scanning electron micrograph illustrated that LFBE caused representative apoptotic trait and flow cytometric analysis suggested that LFBE brought about apoptosis by ceasing cell cycle at S phase. Western-blotting results indicated that LFBE promoted apoptosis was relevant to the regulation of apoptosis-related proteins, such as B-cell lymphoma-2 (Bcl-2), Bcl-2-associated X protein (Bax), and the release of Cytochrome-C from mitochondria. PRACTICAL APPLICATIONS: Abundant studies have reported that extracts of fermented barley held the activities of anti-obesity, antitumor, and so on. However, little information about the comparison in the chemical profile and antiproliferation property among different barley varieties (namely, YangSi barley No.1, YangSi barley No.3, DaZhong 88-91, XiYin No.2) was observed. Results indicated that LFBE (YangSi No.3 barley) exhibited the best inhibitory property by inducing the apoptosis of HT-29 cells. These findings may be beneficial to select a higher nutritional value barley and optimize the fermentation conditions to maximize the bioactive concentration expected in foods for the human.
Collapse
Affiliation(s)
- Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jiayan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jing Wu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ying Dong
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
5
|
Mijatović S, Bramanti A, Nicoletti F, Fagone P, Kaluđerović GN, Maksimović-Ivanić D. Naturally occurring compounds in differentiation based therapy of cancer. Biotechnol Adv 2018; 36:1622-1632. [DOI: 10.1016/j.biotechadv.2018.04.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/22/2018] [Accepted: 04/10/2018] [Indexed: 12/22/2022]
|
6
|
Zhang SS, Huang ZW, Li LX, Fu JJ, Xiao B. Identification of CD200+ colorectal cancer stem cells and their gene expression profile. Oncol Rep 2016; 36:2252-60. [DOI: 10.3892/or.2016.5039] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 08/02/2016] [Indexed: 11/06/2022] Open
|
7
|
An Anti-Tumor Peptide from Musca domestica Pupae (MATP) Induces Apoptosis in Human Liver Cancer Cells HepG2 Cells Through a ROS-JNK Pathway. Int J Pept Res Ther 2016. [DOI: 10.1007/s10989-016-9541-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Cheng D, Zhang X, Meng M, Han L, Li C, Hou L, Qi W, Wang C. Inhibitory effect on HT-29 colon cancer cells of a water-soluble polysaccharide obtained from highland barley. Int J Biol Macromol 2016; 92:88-95. [PMID: 27377460 DOI: 10.1016/j.ijbiomac.2016.06.099] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 06/28/2016] [Accepted: 06/30/2016] [Indexed: 01/22/2023]
Abstract
A water-soluble polysaccharide (BP-1) was obtained from highland barley (Hordeum vulgare L.) by hot water extraction and purification of sepharose column chromatography. BP-1 had an average molecular weight of about 6.7×104Da and was composed of glucose (Glc), xylose (Xyl), arabinose (Ara) and rhamnose (Rha) with a relative molar ratio of 8.82:1.92:1.50:1.00. It was found that BP-1 inhibited proliferation of human colon cancer cells (HT-29) in a time- and dose-dependent manner with half maximal inhibitory concentration at 48h of 48.18μg/mL. Western blotting results showed that BP-1 enhanced the phosphorylation of c-Jun N-terminal kinase (JNK), processes associated with the reactive oxygen species (ROS) formation and inhibited nuclear factor-κB (NF-κB) translocation from cytoplasm into nucleus. Meanwhile, the BP-1-induced apoptosis was related to the regulation of apoptosis-associated proteins, such as B-cell lymphoma-2 (Bcl-2), release of cytochrome C from mitochondria to cytoplasm and activation of caspase-8 and caspase-9. These results suggest that BP-1-induced HT-29 apoptosis through ROS-JNK and NF-κB-mediated caspase pathways.
Collapse
Affiliation(s)
- Dai Cheng
- Key Laboratory of Food Safety and Sanitation, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Xinyu Zhang
- Key Laboratory of Food Safety and Sanitation, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Meng Meng
- Key Laboratory of Food Safety and Sanitation, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Lirong Han
- Key Laboratory of Food Safety and Sanitation, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Caijiao Li
- Key Laboratory of Food Safety and Sanitation, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Lihua Hou
- Key Laboratory of Food Safety and Sanitation, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China
| | - Wentao Qi
- Academy of State Administration of Grain, No.11 Baiwanzhuang Avenue, Xicheng District, Beijing, 100037, People's Republic of China
| | - Chunling Wang
- Key Laboratory of Food Safety and Sanitation, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, People's Republic of China.
| |
Collapse
|
9
|
Yao Q, Zhao HY, Xie BZ. Effects of Ezrin and Heat Shock Protein 70 on Apoptosis and Proliferation of Human Osteosarcoma Cells. Orthop Surg 2016; 7:273-80. [PMID: 26311104 DOI: 10.1111/os.12186] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/21/2015] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To investigate the influence of knocking down ezrin expression in combination with heat shock protein (HSP)-induced immune killing on the apoptosis and proliferation of mouse osteosarcoma cells. METHODS The HSP70 and ezrin-shRNA DNA fragments cloned into the expression vector pGFP-V-RS and the expression vectors pGFP-V-RS-shRNA and pGFP-V-RS-shRNA-HSP70 constructed and transfected into MG63 cell line, where their status was observed by fluorescent microscopy. Expression of ezrin and HSP70 was determined by RT-PCR and western blot. Changes in cell apoptosis and proliferation were assessed by flow cytometry and MTS and changes in expression of apoptosis and cell cycle-related proteins by western blot. Specific cytotoxic T lymphocytes (CTLs) were induced by HSP70 and its lethal effect on target MG63 tumor cells analyzed by MTS assay. RESULTS The specific vector simultaneously downregulated ezrin and upregulated HSP70. Compared with ezrin knockdown alone, simultaneous HSP70 overexpression partially recovered the promoted cellular apoptosis and proliferation suppression by induced by ezrin knockdown; however, the apoptosis rate of MG63 cells was significantly greater than that of a negative control. In addition, ezrin-shRNA and ezrin-shRNA/HSP70 promoted expression of Bax. However, expression of these agents reduces Bcl-2 and Cyclin D1. The cytotoxic effects of CTLs on target MG63 tumor cells were significantly greater in the CTL + IL-2 + HSP70 group than the CTL + IL-2 group. CONCLUSIONS Simultaneously knocking down ezrin and overexpressing HSP70 promotes apoptosis and inhibits proliferation of osteosarcoma cells and HSP70 induces CTL, enhancing the lethal effect on tumor cells.
Collapse
Affiliation(s)
- Qin Yao
- Central Laboratory, Xiamen, China
| | - Hui-yi Zhao
- Department of Spine Surgery, Zhongshan Hospital, Xiamen University, Xiamen, China
| | - Bo-zhen Xie
- Department of Spine Surgery, Zhongshan Hospital, Xiamen University, Xiamen, China
| |
Collapse
|
10
|
Liu XD, Zhang FB, Zhou B, Shan H, Chen PY. Effect of sonication on different quality parameters of Pinus massoniana pollen. ULTRASONICS SONOCHEMISTRY 2015; 22:174-181. [PMID: 25103252 DOI: 10.1016/j.ultsonch.2014.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/08/2014] [Accepted: 07/08/2014] [Indexed: 06/03/2023]
Abstract
A study was initiated with the objective of evaluating the effects of sonication treatment on important quality parameters of extract of Pinus massoniana pollen. Sonication of extract was done (frequency 20kHz and various amplitude levels) for 10, 30, 50min, respectively. As results, total polysaccharide, phenolics and flavonoids significantly increased (P<0.05). And sonicated P.massoniana pollen displays strong immuno-stimulating activity by increasing proliferations of splenic lymphocytes and subsets of CD4+ T cells (CD3+CD4+), CD8 T cells (CD3+CD8+), and increased Ig secretion. Sonicated P. massoniana pollen also showed anti-tumor function by inhibition of tumor cell proliferation, inhibition of ROS production, up-regulation of GSH/GSSG ration, up-regulating the gene expression of P53, Bax and down-regulating the gene expression of Bcl-2. Findings of the present study suggested the sonication treatment of P. massoniana pollen could improve the quality and bioactivity of P. massoniana pollen, indicating that sonication is effective in processing of pollen and could be a potential process in tumor prevention and treatment.
Collapse
Affiliation(s)
- Xiao-dong Liu
- Division of Key Lab of Animal Disease Diagnosis and Immunology of China's Department of Agriculture, Nanjing Agricultural University, Nanjing 210095, China; College of Animal Science and Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Fu-bo Zhang
- College of Animal Science and Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Bin Zhou
- Division of Key Lab of Animal Disease Diagnosis and Immunology of China's Department of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Hu Shan
- College of Animal Science and Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China.
| | - Pu-Yan Chen
- Division of Key Lab of Animal Disease Diagnosis and Immunology of China's Department of Agriculture, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
11
|
Qasim M, Rahman H, Ahmed R, Oellerich M, Asif AR. Mycophenolic acid mediated disruption of the intestinal epithelial tight junctions. Exp Cell Res 2014; 322:277-89. [PMID: 24509232 DOI: 10.1016/j.yexcr.2014.01.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 12/21/2013] [Accepted: 01/21/2014] [Indexed: 12/12/2022]
Abstract
Gastrointestinal toxicity is a common adverse effect of mycophenolic acid (MPA) treatment in organ transplant patients, through poorly understood mechanisms. Phosphorylation of myosin light chain 2 (MLC2) is associated with epithelial tight junction (TJ) modulation which leads to defective epithelial barrier function, and has been implicated in GI diseases. The aim of this study was to investigate whether MPA could induce epithelial barrier permeability via MLC2 regulation. Caco-2 monolayers were exposed to therapeutic concentrations of MPA, and MLC2 and myosin light chain kinase (MLCK) expression were analyzed using PCR and immunoblotting. Epithelial cell permeability was assessed by measuring transepithelial resistance (TER) and the flux of paracellular permeability marker FITC-dextran across the epithelial monolayers. MPA increased the expression of MLC2 and MLCK at both the transcriptional and translational levels. In addition, the amount of phosphorylated MLC2 was increased after MPA treatment. Confocal immunofluorescence analysis showed redistribution of TJ proteins (ZO-1 and occludin) after MPA treatment. This MPA mediated TJ disruption was not due to apoptosis or cell death. Additionally ML-7, a specific inhibitor of MLCK was able to reverse both the MPA mediated decrease in TER and the increase in FITC-dextran influx, suggesting a modulating role of MPA on epithelial barrier permeability via MLCK activity. These results suggest that MPA induced alterations in MLC2 phosphorylation and may have a role in the patho-physiology of intestinal epithelial barrier disruption and may be responsible for the adverse effects (GI toxicity) of MPA on the intestine.
Collapse
Affiliation(s)
- Muhammad Qasim
- Institute of Clinical Chemistry/UMG-Laboratories, University Medical Centre, Robert Koch Strasse 40, 37075 Goettingen, Germany; Department of Microbiology, Kohat University of Science and Technology, 26000 Kohat, Pakistan
| | - Hazir Rahman
- Institute of Clinical Chemistry/UMG-Laboratories, University Medical Centre, Robert Koch Strasse 40, 37075 Goettingen, Germany; Department of Microbiology, Kohat University of Science and Technology, 26000 Kohat, Pakistan
| | - Raees Ahmed
- Institute for Applied Science and Clinical Trials GmbH - IFS, Georg-August University, 37075 Goettingen, Germany
| | - Michael Oellerich
- Institute of Clinical Chemistry/UMG-Laboratories, University Medical Centre, Robert Koch Strasse 40, 37075 Goettingen, Germany
| | - Abdul R Asif
- Institute of Clinical Chemistry/UMG-Laboratories, University Medical Centre, Robert Koch Strasse 40, 37075 Goettingen, Germany.
| |
Collapse
|
12
|
Preparation, preliminary characterization and inhibitory effect on human colon cancer HT-29 cells of an acidic polysaccharide fraction from Stachys floridana Schuttl. ex Benth. Food Chem Toxicol 2013; 60:269-76. [DOI: 10.1016/j.fct.2013.07.060] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/20/2013] [Accepted: 07/22/2013] [Indexed: 01/13/2023]
|
13
|
Deng X, Zhang G, Shen C, Yin J, Meng Q. Hollow fiber culture accelerates differentiation of Caco-2 cells. Appl Microbiol Biotechnol 2013; 97:6943-55. [PMID: 23689647 DOI: 10.1007/s00253-013-4975-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/29/2013] [Accepted: 05/01/2013] [Indexed: 10/26/2022]
Abstract
Caco-2 cells usually require 21 days of culture for developing sufficient differentiation in traditional two-dimensional Transwell culture, deviating far away from the quick differentiation of enterocytes in vivo. The recently proposed three-dimensional cultures of Caco-2 cells, though imitating the villi/crypt-like microstructure of intestinal epithelium, showed no effect on accelerating the differentiation of Caco-2 cells. In this study, a novel culture of Caco-2 cells on hollow fiber bioreactor was applied to morphologically mimic the human small intestine lumen for accelerating the expression of intestine functions. The porous hollow fibers of polyethersulfone (PES), a suitable membrane material for Caco-2 cell culture, successfully promoted cells to form confluent monolayer on the inner surface. The differentiated functions of Caco-2 cells, represented by alkaline phosphatase, γ-glutamyltransferase, and P-glycoprotein activity, were greatly higher in a 10-day hollow fiber culture than in a 21-day Transwell culture. Moreover, the Caco-2 cells on PES hollow fibers expressed higher F-actin and zonula occludens-1 protein than those on Transwell culture, indicative of an increased mechanical stress in Caco-2 cells on PES hollow fibers. The accelerated differentiation of Caco-2 cells on PES hollow fibers was unassociated with membrane chemical composition and surface roughness, but could be stimulated by hollow fiber configuration, since PES flat membranes with either rough or smooth surface failed to enhance the differentiation of Caco-2. Therefore, the accelerated expression of Caco-2 cell function on hollow fiber culture might show great values in simulation of the tissue microenvironment in vivo and guide the construction of intestinal tissue engineering apparatus.
Collapse
Affiliation(s)
- Xudong Deng
- Department of Chemical and Biological Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, Zhejiang, 310027, People's Republic of China
| | | | | | | | | |
Collapse
|
14
|
|
15
|
Sivagami G, Vinothkumar R, Bernini R, Preethy CP, Riyasdeen A, Akbarsha MA, Menon VP, Nalini N. Role of hesperetin (a natural flavonoid) and its analogue on apoptosis in HT-29 human colon adenocarcinoma cell line--a comparative study. Food Chem Toxicol 2011; 50:660-71. [PMID: 22142698 DOI: 10.1016/j.fct.2011.11.038] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 11/17/2011] [Accepted: 11/21/2011] [Indexed: 12/12/2022]
Abstract
Colon cancer is one of the serious health problems in most developed countries and its incidence rate is increasing in India. Hesperetin (HN) (3',5,7-trihydroxy-4'-methoxyflavonone) and hesperetin analogue (HA) were tested for their apoptosis inducing ability. Methyl thiazolyl tetrazolium assay revealed a dose as well as duration-dependent reduction of HT-29 (colon adenocarcinoma) cellular growth in response to HN and HA treatment. At 24 h 70 μM of HN and 32 μM of HA showed 50% reduction of HT-29 cellular growth. Acridine orange/ethidium bromide staining showed apoptotic features of cell death induced by HN and HA. Rhodamine 123 staining showed significant reduction in mitochondrial membrane potential induced by HN and HA. HN and HA induced DNA damage was confirmed by comet tail formation. Lipid peroxidation markers (TBARS) and protein oxidation marker (PCC) were significantly elevated in HN and HA treated groups. Enzymic antioxidants such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) were slightly decreased in their activities compared to control (untreated HT-29 cells). Results of Western blot analysis of apoptosis associated genes revealed an increase in cytochrome C, Bax, cleaved caspase-3 expression and a decrease in Bcl-2 expression. These findings indicate that HN and HA induce apoptosis on HT-29 via Bax dependent mitochondrial pathway involving oxidant/antioxidant imbalance.
Collapse
Affiliation(s)
- Gunasekaran Sivagami
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Annamalainagar 608 002, Tamilnadu, India
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Ji Z, Tang Q, Hao R, Zhang J, Pan Y. Induction of apoptosis in the SW620 colon carcinoma cell line by triterpene-enriched extracts from Ganoderma lucidum through activation of caspase-3. Oncol Lett 2011; 2:565-570. [PMID: 22866120 DOI: 10.3892/ol.2011.275] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 03/14/2011] [Indexed: 11/05/2022] Open
Abstract
The medicinal mushroom Ganoderma lucidum (G. lucidum) has been used for the treatment of various diseases, and is known for the immune-enhancing activity of its polysaccharide. However, little is known about another of its major constituents, triterpene. This study investigated the anticancer mechanism of a triterpene-enriched extract from G. lucidum. The triterpene-enriched extract, GLAI, was prepared from fruiting bodies of G. lucidum by sequential hot water extraction, removal of ethanol-insoluble polysaccharides and gel-filtration chromatography. The mechanisms of GLAI-induced apoptosis on SW620 human colorectal adenocarcinoma cells were investigated. Tumor cell lines in vitro were treated with different concentrations of GLAI. Cell proliferation was measured by the Alamar blue assay, morphology of cell apoptosis was observed, cell apoptosis was detected by flow cytometry (FCM) and caspase-3 activity was detected by Caspase-3 cellular activity assay. The results showed that GLAI inhibited the growth of different tumor cells and caused significant apoptosis in a dose-dependent manner. Marked morphological changes of cell apoptosis were observed after the cells had been exposed to GLAI for 24 h. The Caspase-3 assay results showed that the activity of the caspase-3 enzyme increased in both a time- and dose-dependent manner, whereas GLAI resulted in the down-regulation of Bcl-2 gene expression at the mRNA level and XIAP protein production at the protein level. Conversely, GLAI up-regulates the expression of the apoptosis enhancer Bax gene and p53 protein. These findings suggest that the triterpenes contained in G. lucidum are potential anticancer agents.
Collapse
Affiliation(s)
- Zhe Ji
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201106
| | | | | | | | | |
Collapse
|
17
|
Bajka BH, Clarke JM, Topping DL, Cobiac L, Abeywardena MY, Patten GS. Butyrylated starch increases large bowel butyrate levels and lowers colonic smooth muscle contractility in rats. Nutr Res 2010; 30:427-34. [PMID: 20650351 DOI: 10.1016/j.nutres.2010.06.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 06/06/2010] [Accepted: 06/07/2010] [Indexed: 11/28/2022]
Abstract
The short-chain fatty acids acetate, propionate, and butyrate are produced by colonic bacterial fermentation of carbohydrates. Butyrate is important in the regulation of the colonocyte cell cycle and gut motility and may also reduce the risk of large bowel cancer. We have shown that dietary butyrylated starch can deliver butyrate to the large bowel in a sustained manner. We hypothesized that ingestion of butyrylated starch increases large bowel butyrate levels and decreases colonic contractility. Groups of male Sprague-Dawley rats (n = 8) were fed AIN-93G-based diet containing a highly digestible low-amylose maize starch (LAMS) control or 5% or 10% butyrylated LAMS (LAMSB) for 10 days. We found that cecal but not colonic tissue weight as well as cecal and distal colonic digesta weights and fecal output were higher in LAMSB fed rats. Butyrylated LAMS lowered digesta pH throughout the large bowel. Cecal, proximal, and distal colonic butyrate pools and portal venous butyrate concentrations were higher in rats fed LAMSB. Electrically stimulated and receptor-dependent carbachol and prostaglandin E(2)-induced isotonic contractions were lower in isolated intact sections of proximal colon (P < .05) but not the terminal ileum after 10% LAMSB ingestion. These results demonstrated that elevation of butyrate levels in the large bowel of the rat correlated with reduction of contractile activity of the colonic musculature, which may assist in the reabsorption of water and minerals.
Collapse
Affiliation(s)
- Balazs H Bajka
- CSIRO Preventative Health National Research Flagship, Food and Nutritional Sciences, Adelaide, South Australia 5000, Australia
| | | | | | | | | | | |
Collapse
|
18
|
Ruan W, Zhu S, Wang H, Xu F, Deng H, Ma Y, Lai M. IGFBP-rP1, a potential molecule associated with colon cancer differentiation. Mol Cancer 2010; 9:281. [PMID: 20977730 PMCID: PMC2987981 DOI: 10.1186/1476-4598-9-281] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 10/26/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In our previous studies, we have demonstrated that insulin-like growth factor binding protein-related protein1 (IGFBP-rP1) played its potential tumor suppressor role in colon cancer cells through apoptosis and senescence induction. In this study, we will further uncover the role of IGFBP-rP1 in colon cancer differentiation and a possible mechanism by revealing responsible genes. RESULTS In normal colon epithelium, immunohistochemistry staining detected a gradient IGFBP-rP1 expression along the axis of the crypt. IGFBP-rP1 strongly expressed in the differentiated cells at the surface of the colon epithelium, while weakly expressed at the crypt base. In colon cancer tissues, the expression of IGFBP-rP1 correlated positively with the differentiation status. IGFBP-rP1 strongly expressed in low grade colorectal carcinoma and weakly expressed in high grade colorectal carcinoma. In vitro, transfection of PcDNA3.1(IGFBP-rP1) into RKO, SW620 and CW2 cells induced a more pronounced anterior-posterior polarity morphology, accompanied by upregulation with alkaline phosphatase (AKP) activity. Upregulation of carcino-embryonic antigen (CEA) was also observed in SW620 and CW2 transfectants. The addition of IGFBP-rP1 protein into the medium could mimic most but not all effects of IGFBP-rP1 cDNA transfection. Seventy-eight reproducibly differentially expressed genes were detected in PcDNA3.1(IGFBP-rP1)-RKO transfectants, using Affymetrix 133 plus 2.0 expression chip platform. Directed Acyclic Graph (DAG) of the enriched GO categories demonstrated that differential expression of the enzyme regulator activity genes together with cytoskeleton and actin binding genes were significant. IGFBP-rP1 could upreguate Transgelin (TAGLN), downregulate SRY (sex determining region Y)-box 9(campomelic dysplasia, autosomal sex-reversal) (SOX9), insulin receptor substrate 1(IRS1), cyclin-dependent kinase inhibitor 2B (p15, inhibits CDK4) (CDKN2B), amphiregulin(schwannoma-derived growth factor) (AREG) and immediate early response 5-like(IER5L) in RKO, SW620 and CW2 colon cancer cells, verified by Real time Reverse Transcription Polymerase Chain Reaction (rtRT-PCR). During sodium butyrate-induced Caco2 cell differentiation, IGFBP-rP1 was upregulated and the expression showed significant correlation with the AKP activity. The downregulation of IRS1 and SOX9 were also induced by sodium butyrate. CONCLUSION IGFBP-rP1 was a potential key molecule associated with colon cancer differentiation. Downregulation of IRS1 and SOX9 may the possible key downstream genes involved in the process.
Collapse
Affiliation(s)
- Wenjing Ruan
- Department of Pathology, School of Medicine, Zhejiang University, 388 Yuhangtang Road, Hangzhou 310058, Zhejiang Province, China.
| | | | | | | | | | | | | |
Collapse
|
19
|
Brierley GV, Macaulay SL, Forbes BE, Wallace JC, Cosgrove LJ, Macaulay VM. Silencing of the insulin receptor isoform A favors formation of type 1 insulin-like growth factor receptor (IGF-IR) homodimers and enhances ligand-induced IGF-IR activation and viability of human colon carcinoma cells. Endocrinology 2010; 151:1418-27. [PMID: 20179263 DOI: 10.1210/en.2009-1006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Insulin receptor (IR) overexpression is common in cancers, with expression of the A isoform (IR-A, exon 11-) predominating over the B isoform. The IR-A signals a proliferative, antiapoptotic response to IGF-II, which itself can be secreted by tumors to establish an autocrine proliferative loop. Therefore, IGF-II signaling via the IR-A could mediate resistance to type 1 IGF receptor (IGF-IR) inhibitory drugs that are currently in development. This study addressed the role of the IR-A, using a small interfering RNA-based approach in SW480 human colon adenocarcinoma cells that coexpress the IGF-IR. Clonogenic survival was inhibited by depletion of the IGF-IR but not the IR-A, and dual receptor depletion had no greater effect than IGF-IR knockdown alone, suggesting that the IR-A could not compensate for IGF-IR loss. IGF-IR knockdown also resulted in a decrease in viability, whereas IR-A depletion resulted in increased viability. Consistent with this, upon IR-A depletion, we found a concomitant enhancement of IGF-IR activation by IGF-I and IGF-II, reduced formation of IGF-IR:IR-A hybrid receptors and increased IGF-IR homodimer formation. Together, these results suggest that IGF bioactivity is mediated more effectively by the IGF-IR than by the IR-A or receptor hybrids and that signaling via the IGF-IR is dominant to the IR-A in colon cancer cells that express both receptors.
Collapse
Affiliation(s)
- G V Brierley
- CSIRO Molecular and Health Technologies, P.O. Box 10041, Adelaide Business Centre, Adelaide, South Australia 5000, Australia
| | | | | | | | | | | |
Collapse
|
20
|
Takayama C, Mukaizawa F, Fujita T, Ogawara KI, Higaki K, Kimura T. Amino acids suppress apoptosis induced by sodium laurate, an absorption enhancer. J Pharm Sci 2010; 98:4629-38. [PMID: 19630065 DOI: 10.1002/jps.21757] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The formulation containing sodium laurate (C12), an absorption enhancer, and several amino acids such as taurine (Tau) and L-glutamine (L-Gln) is a promising preparation that can safely improve the intestinal absorption of poorly absorbable drugs. The safety for intestinal mucosa is achieved because the amino acids prevent C12 from causing mucosal damages via several mechanisms. In the present study, the possible involvement of apoptosis, programmed cell death, in mucosal damages caused by C12 and cytoprotection by amino acids was examined. C12 induced DNA fragmentation, a typical phenomenon of apoptosis, in rat large-intestinal epithelial cells while the addition of amino acids significantly attenuated it. C12 alone significantly increased the release of cytochrome C, an apoptosis-inducing factor, from mitochondria, which could be via the decrease in the level of Bcl-2, an inhibiting factor of cytochrome C release. The enhancement of cytochrome C release by C12 led to the activation of caspase 9, an initiator enzyme, and the subsequent activation of caspase 3, an effector enzyme. On the other hand, Tau or L-Gln significantly suppressed the release of cytochrome C from mitochondria and attenuated the activities of both caspases, which could be attributed to the maintenance of Bcl-2 expression.
Collapse
Affiliation(s)
- Chie Takayama
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Okayama University, 1-1-1 Tsushima-naka, Okayama 700-8530, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Hao HF, Naomoto Y, Bao XH, Watanabe N, Sakurama K, Noma K, Tomono Y, Fukazawa T, Shirakawa Y, Yamatsuji T, Matsuoka J, Takaoka M. Progress in researches about focal adhesion kinase in gastrointestinal tract. World J Gastroenterol 2009; 15:5916-23. [PMID: 20014455 PMCID: PMC2795178 DOI: 10.3748/wjg.15.5916] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Focal adhesion kinase (FAK) is a 125-kDa non-receptor protein tyrosine. Growth factors or the clustering of integrins facilitate the rapid phosphorylation of FAK at Tyr-397 and this in turn recruits Src-family protein tyrosine kinases, resulting in the phosphorylation of Tyr-576 and Tyr-577 in the FAK activation loop and full catalytic FAK activation. FAK plays a critical role in the biological processes of normal and cancer cells including the gastrointestinal tract. FAK also plays an important role in the restitution, cell survival and apoptosis and carcinogenesis of the gastrointestinal tract. FAK is over-expressed in cancer cells and its over-expression and elevated activities are associated with motility and invasion of cancer cells. FAK has been proposed as a potential target in cancer therapy. Small molecule inhibitors effectively inhibit the kinase activity of FAK and show a potent inhibitory effect for the proliferation and migration of tumor cells, indicating a high potential for application in cancer therapy.
Collapse
|
22
|
Preliminary characterization of jejunocyte and colonocyte cell lines isolated by enzymatic digestion from adult and young cattle. Res Vet Sci 2009; 87:123-32. [DOI: 10.1016/j.rvsc.2008.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 12/02/2008] [Accepted: 12/03/2008] [Indexed: 11/18/2022]
|
23
|
Tan HT, Zubaidah RM, Tan S, Hooi SC, Chung MCM. 2-D DIGE analysis of butyrate-treated HCT-116 cells after enrichment with heparin affinity chromatography. J Proteome Res 2006; 5:1098-106. [PMID: 16674099 DOI: 10.1021/pr050435r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Butyrate, a 4-carbon short chain fatty acid, is responsible for the protective effects of fiber in colorectal cancer prevention. To better understand the 'blueprint' of butyrate's chemopreventive role in this disease, we performed 2-dimensional difference gel electrophoresis (2-D DIGE) of butyrate-treated HCT-116 colorectal cancer cells after pre-fractionation using heparin affinity chromatography. A combination of this enrichment step with overlapping narrow range IPGs (pH 4-7 and pH 6-11) in 2-D DIGE resulted in the detection of 46 differentially expressed spots. Twenty-four of these were identified by MS analyses, and 5 spots were found to be heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1). Three isoforms of 38 kDa were down-regulated while two with Mr approximately 26 kDa were up-regulated. These represent phosphorylated isoforms of hnRNP A1 as verified by immunoblotting with anti-phosphotyrosine and anti-phosphoserine antibodies. Using 2-DE, subcellular fractionation and western blot analysis, we further showed that full-length hnRNP A1 underwent down-regulation, cleavage and cytoplasmic retention upon butyrate treatment. These indicate that modulations of hnRNP A1 may play a significant role in the mediation of growth arrest and apoptosis by butyrate.
Collapse
Affiliation(s)
- Hwee Tong Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 10 Kent Ridge Crescent, Singapore 117597
| | | | | | | | | |
Collapse
|
24
|
Martín-Venegas R, Roig-Pérez S, Ferrer R, Moreno JJ. Arachidonic acid cascade and epithelial barrier function during Caco-2 cell differentiation. J Lipid Res 2006; 47:1416-23. [PMID: 16585783 DOI: 10.1194/jlr.m500564-jlr200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The small intestinal epithelium is a highly dynamic system continuously renewed by a process involving cell proliferation and differentiation. The intestinal epithelium constitutes a permeability barrier regulating the vectorial transport of ions, water, and solutes. Morphological changes during cell differentiation, as well as changes in the activity of brush-border enzymes and the expression of transport proteins, are well established. However, little is known about the arachidonic acid (AA) cascade underlying epithelial cell differentiation or its role in the development of epithelial barrier function. The main purpose of this study was to examine the activity of the high-molecular-weight phospholipases A(2) (PLA(2)) and cyclooxygenase (COX) pathway during differentiation, with particular emphasis on paracellular permeability. PLA(2) activity, AA release, COX-2 expression, prostaglandin E(2) (PGE(2)) production, and paracellular permeability were studied in preconfluent, confluent, and differentiated Caco-2 cell cultures. Our results show that Caco-2 differentiation induces a decrease in both calcium-independent PLA(2) activity and COX-2 expression and, consequently, a decrease in AA release and PGE(2) synthesis in parallel with a reduction in paracellular permeability. Moreover, the addition of PGE(2) to differentiated cells, at concentrations similar to those detected in nondifferentiated cultures, induces the disruption of epithelial barrier function. These results suggest that AA release by calcium-independent PLA(2), COX-2 expression, and subsequent PGE(2) release are important for the maintenance of paracellular permeability in differentiated Caco-2 cells.
Collapse
Affiliation(s)
- Raquel Martín-Venegas
- Departament de Fisiologia, Facultat de Farmàcia, Universitat de Barcelona, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
25
|
Apoptosis induced by short hairpin RNA-mediated STAT6 gene silencing in human colon cancer cells. Chin Med J (Engl) 2006. [DOI: 10.1097/00029330-200605020-00002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
26
|
Mäkivuokko H, Nurmi J, Nurminen P, Stowell J, Rautonen N. In vitro effects on polydextrose by colonic bacteria and caco-2 cell cyclooxygenase gene expression. Nutr Cancer 2006; 52:94-104. [PMID: 16091009 DOI: 10.1207/s15327914nc5201_12] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A 4-stage colon simulator and a cell culture-based human intestinal epithelial function model were combined to study the effects of a soluble fiber, polydextrose (PDX), on intestinal microbes and mucosal functions relevant to the risk of colon cancer. We observed sustained degradation of PDX throughout the different stages of the model. The fermentation was characterized by gradual degradation of PDX, production of short-chain fatty acids, and no increasing in putrefactive markers. We observed less marked effects in the microbial densities. When we applied colon fermentation metabolites obtained from the simulators with PDX to Caco-2 colon cancer cell line, a significant dose-dependent decreasing effect on cyclooxygenase-2 (COX-2) and an increasing effect on COX-3 expression levels were observed. PDX concentration appeared not to have effect on the expression levels of COX-1. Overexpression of COX-2 and decreased expression of COX-1 have been suggested to be characteristics of colon cancer. The exact physiological role of COX-3, an intron-retaining splice variant of COX-1, is not known, but it is suspected to play a role in transcriptional regulation of COX-1 and COX-2. In vitro modulation of COX expression by colon microbial fermentation products of polydextrose offers an interesting starting point for further studies on possible risk-decreasing effect of PDX on the development of colon cancer.
Collapse
|
27
|
Yu Z, Li W. Induction of apoptosis by puerarin in colon cancer HT-29 cells. Cancer Lett 2005; 238:53-60. [PMID: 16055262 DOI: 10.1016/j.canlet.2005.06.022] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2004] [Revised: 06/06/2005] [Accepted: 06/13/2005] [Indexed: 10/25/2022]
Abstract
Puerarin was isolated from Pueraria radix and has beneficial effects on cardiovascular, neurological, and hyperglycemic disorders. The current study showed that puerarin also possessed anti-cancer properties. Methyl thiazolyl tetrazolium assay (MTT) assay revealed a dose-dependent reduction of HT-29 cellular growth in response to puerarin treatment. Apoptosis was observed following treatments ;with >or=25 microM puerarin, as reflected by the appearance of the subdiploid fraction and NDA fragmentations. We then investigated effects of puerarin on expression of apoptosis-associated genes and the results revealed an increase of bax and decreases of c-myc and bcl-2. Finally, puerarin treatment significantly increased the activation of caspase-3, a key executioner of apoptosis. These findings indicate that puerarin may act as a chemopreventive and/or chemotherapeutic agent in colon cancer cells by reducing cell viability and inducing apoptosis.
Collapse
Affiliation(s)
- Zengli Yu
- School of Public Health, Zhengzhou University, Zhengzhou 450052, China.
| | | |
Collapse
|
28
|
Ouyang M, Zhang GY, Xu MH. Expression of PGE2, Bcl-2 and Bax in carcinogenesis of colorectal mucosa. Shijie Huaren Xiaohua Zazhi 2005; 13:1305-1309. [DOI: 10.11569/wcjd.v13.i11.1305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the expression of PGE2, Bcl-2 and Bax in the carcinogenesis of colorectal mucosa and the relationship between them.
METHODS: The expression of PGE2, Bcl-2 and Bax were detected in 15 normal colorectal mucous membrane (NCM), 20 chronic colonitis (CHC), 30 colorectal adenoma (CAA), 50 colorectal cancer (CC)and 50 cancer adjacent (CAT) tissues by DAB immunohistochemical staining. The correlations among PGE2, Bcl-2 and Bax expression as well as the clinical and pathological characteristics were analyzed.
RESULTS: The rates of PGE2 expression in NCM, CHC, CAT, CAA and CC tissues were 6.67%, 10%, 40%, 56.7% and 90% respectively and manifested an ascending trend. The rates of Bcl-2 expression in the five groups were 6.67%, 10%, 38%, 46.7%, and 76% respectively and also showed an ascending trend. The rates of Bax expression in the five groups was 86.67%, 75%, 78%, 76.7% and 82% respectively and there was no significant difference among the five groups (P>0.05). However, the positive degree in NCM, CA and CC group exhibited a descending trend (P<0.05). The expressions of PGE2, Bcl-2 and Bax in human CC were not associated with sex, age and the size of tumor (P>0.05). A positive correlation was noted between expression of PGE2 and Bcl-2 in CC tissue (r = 0.532, P<0.05). The same correlation also existed between Bax and Bcl-2 (r = 0.653, P<0.05). The rates of PGE2, Bcl-2 and Bax expression in highly and moderately differentiated CC were significantly higher than those in lowly differentiated one (100%, 88.9%, 85.2% vs 79.3%, 60.9%, 78.3%; P<0.05). The expression of Bcl-2 was significantly higher in Duke's A, B stage than that in Duke's C, D (90%, 77.8% vs 60%, 57.2%; P<0.05).
CONCLUSION: The expression of PGE2 and Bcl-2 increases while that of Bax decreases with the occurrence and development of CC, which indicates that PGE2 and Bcl-2 play important roles in the carcinogenesis and development of CC. At the same time, there is a positive relationship between PGE2 and Bcl-2.
Collapse
|
29
|
Chen Q, Qin HL. Influence of ischemia and anoxia on distribution and polarity of integrin in intestine epithelial cells. Shijie Huaren Xiaohua Zazhi 2005; 13:456-459. [DOI: 10.11569/wcjd.v13.i4.456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the influence of ischemia and anoxia injury on the distribution and polarity of integrin in intestine epithelial cells (IEC).
METHODS: IEC ischemia and anoxia injury model was established. The cells were divided into four groups, namely, group A (control group), group B (anoxia group), group C (ischemia group), and group D (ischemia and anoxia group). Cell apoptosis and the polarity and distribution of integrins a3, a5, b1, b2, b5 were determined by flow cytometry (FCM) and laser scanning confocal microscope (LSCM), respectively.
RESULTS: Integrins a3, a5, b1, b5 were expressed exclusively on the basal and lateral surfaces of IECs in group A. After ischemia and anoxia injury, integrins a3, a5, b1, b5 distribution moved from the basolateral to the apical membrane. Cell apoptosis was increased in group B, C and D. Integrin a3 was not observed in the middle and apical membrane in group C. Integrin b2 distribution was not markedly changed in any group.
CONCLUSION: The change in the distribution of integrin is induced by ischemia and anoxia, which is correlated with IEC apoptosis. IEC apoptosis is more sensitive to the anoxia.
Collapse
|
30
|
Yu Z, Li W, Liu F. Inhibition of proliferation and induction of apoptosis by genistein in colon cancer HT-29 cells. Cancer Lett 2004; 215:159-66. [PMID: 15488634 DOI: 10.1016/j.canlet.2004.06.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Revised: 05/28/2004] [Accepted: 06/01/2004] [Indexed: 10/26/2022]
Abstract
Genistein has multiple anticancer properties. However, its mechanisms of action and its molecular targets on human colon cells remain to be further elucidated. Here, we demonstrated that genistein reduced proliferation and induced G2/M phase arrest and apoptotic death in colon cancer HT-29 cells. We then investigated the effects of genistein on molecules that regulate apoptosis and cell cycle progress. Genistein increased expression of Bax and p21WAF1 and slightly decreased Bcl-2 level. Our results demonstrated that genistein inhibited the viability of human colon cancer HT-29 cell via induction of apoptosis mainly through regulation of p21WAF1 and Bax/Bcl-2 expression. These data suggested a role of genistein in prevention of colon tumor and might reduce colon tumor growth.
Collapse
Affiliation(s)
- Zengli Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Zhengzhou University Medical Science Center, Daxue Road 40#, Zhengzhou 450052, China.
| | | | | |
Collapse
|
31
|
Li X, Mikkelsen IM, Mortensen B, Winberg JO, Huseby NE. Butyrate reduces liver metastasis of rat colon carcinoma cells in vivo and resistance to oxidative stress in vitro. Clin Exp Metastasis 2004; 21:331-8. [PMID: 15554389 DOI: 10.1023/b:clin.0000046134.80393.34] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Injection of the rat colon carcinoma cell line CC531 into spleen of syngeneic rats results in considerable amounts of liver metastases within 14 days. We investigated whether preincubation of the cells with butyrate reduced their metastatic ability in vivo and whether this was accompanied by reduction in related properties such as secretion of metalloproteinases and their ability to withstand oxidative stress. Butyrate incubation reduced cell growth rate and initiated apoptosis in a dose- and time-related manner, but proliferation was retrieved when cultivation was continued in medium without butyrate. Splenic injection of butyrate treated, proliferating cells resulted in significantly reduced amounts of tumor mass compared to untreated cells. The butyrate treated cells were more susceptible to oxidative stress than control cells, as demonstrated by increased number of apoptotic cells and reduced cell growth after exposure to menadione. A reduction in cellular glutathione was found after prolonged incubation with butyrate. Butyrate appeared not to alter the secretion of active metalloproteinases from the cells although an apparent increase in proforms was demonstrated. Neither did butyrate alter the synthesis of metalloproteinase inhibitors. Lastly, a reduced adhesion of the tumor cells to collagen coated matrix was found after butyrate treatment. Thus, the inhibitory effects of butyrate on tumor malignancy are caused by a diversity of mechanisms.
Collapse
Affiliation(s)
- Xiaotong Li
- Institute of Medical Biology, University of Tromsø, Norway
| | | | | | | | | |
Collapse
|
32
|
Hosokawa M, Kudo M, Maeda H, Kohno H, Tanaka T, Miyashita K. Fucoxanthin induces apoptosis and enhances the antiproliferative effect of the PPARγ ligand, troglitazone, on colon cancer cells. Biochim Biophys Acta Gen Subj 2004; 1675:113-9. [PMID: 15535974 DOI: 10.1016/j.bbagen.2004.08.012] [Citation(s) in RCA: 189] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Revised: 08/10/2004] [Accepted: 08/26/2004] [Indexed: 11/25/2022]
Abstract
The effect of fucoxanthin, from the edible seaweed Undaria pinnatifida on viability of colon cancer cells and induction of apoptosis was investigated. Fucoxanthin remarkably reduced the viability of human colon cancer cell lines, Caco-2, HT-29 and DLD-1. Furthermore, treatment with fucoxanthin induced DNA fragmentation, indicating apoptosis. The DNA fragmentation in Caco-2 cells treated with 22.6 microM fucoxanthin for 24 h was 10-fold higher than in the control. Fucoxanthin suppressed the level of Bcl-2 protein. Also, DNA fragmentation induced by fucoxanthin was partially inhibited by a caspase inhibitor Z-VAD-fmk. Moreover, combined treatment with 3.8 microM fucoxanthin and 10 microM troglitazone, which is a specific ligand for peroxisome proliferator-activated receptor (PPAR) gamma, effectively decreased the viability of Caco-2 cells. However, separate treatments with these same concentrations of fucoxanthin nor troglitazone did not affect cell viability. These findings indicate that fucoxanthin may act as a chemopreventive and/or chemotherapeutic carotenoid in colon cancer cells by modulating cell viability in combination with troglitazone.
Collapse
Affiliation(s)
- Masashi Hosokawa
- Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hakodate, Hokkaido 041-8611, Japan.
| | | | | | | | | | | |
Collapse
|
33
|
Abstract
Nutrients may be involved in the modulation of the immune response through at least three different mechanisms. First, the intestinal ecosystem plays a pivotal role in the pathogenesis of inflammatory bowel disease, triggering the uncontrolled inflammatory response in genetically predisposed individuals. Nutrients, together with bacteria, are major components of, and can therefore influence, the intestinal environment. Second, as components of cell membranes, nutrients can mediate the expression of proteins involved in the immune response, such as cytokines, adhesion molecules and nitric oxide synthase. The composition of lipids in the cell membrane is modified by dietary changes and can influence cellular responses. Indeed, various epidemiological, experimental and clinical data suggest that the immune response may be sensitive to changes in dietary composition. Finally, suboptimal levels of micronutrients are often found in both children and adults with inflammatory bowel disease, although, with the exception of iron and folate, it is unusual to discover symptoms attributable to these deficits. However, subclinical deficits may have a pathophysiological significance, as they may favour the self-perpetuation of the disease (due to defects in the mechanisms of tissue repair), cause defective defence against damage produced by oxygen free radicals and facilitate lipid peroxidation. These events can occur even in clinically inactive or mildly active disease, as well as in the development of dysplasia in the intestinal mucosa. Some dietary manipulations have been attempted as primary treatment for rheumatoid arthritis, and specially formulated diets for enteral nutrition have proved to be an effective treatment for Crohn's disease. Most trials, although lacking sufficient patient numbers, have demonstrated a role for dietary manipulation as primary therapy for inflammatory disease. Dietary lipids are one of the most active nutritional substrates modulating the immune response. Recently, it has been demonstrated that lipids may be a key factor explaining the therapeutic effect of clinical nutrition in Crohn's disease.
Collapse
Affiliation(s)
- M A Gassull
- Department of Gastroenterology and Hepatology, Hospital Universitari Germans, Trias i Pujol, Catalonia, Spain.
| |
Collapse
|
34
|
Dufour G, Demers MJ, Gagné D, Dydensborg AB, Teller IC, Bouchard V, Degongre I, Beaulieu JF, Cheng JQ, Fujita N, Tsuruo T, Vallée K, Vachon PH. Human intestinal epithelial cell survival and anoikis. Differentiation state-distinct regulation and roles of protein kinase B/Akt isoforms. J Biol Chem 2004; 279:44113-22. [PMID: 15299029 DOI: 10.1074/jbc.m405323200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have shown previously that human intestinal epithelial cell survival and anoikis are distinctively regulated according to the state of differentiation. Here we analyzed the roles of protein kinase B/Akt isoforms in such differentiation state distinctions. Anoikis was induced in undifferentiated and differentiated enterocytes by inhibition of focal adhesion kinase (Fak; pharmacologic inhibition or overexpression of dominant-negative mutants) or beta1 integrins (antibody blocking) or by maintaining cells in suspension. Expression/activation parameters of Akt isoforms (Akt-1, Akt-2, and Akt-3) and Fak were analyzed. Activity of Akt isoforms was also blocked by inhibition of phosphatidylinositol 3-kinase or by overexpression of dominant-negative mutants. Here we report the following. 1) The expression/activation levels of Akt-1 increase overall during enterocytic differentiation, and those of Akt-2 decrease, whereas Akt-3 is not expressed. 2) Akt-1 activation is dependent on beta1 integrins/Fak signaling, regardless of the differentiation state. 3) Akt-2 activation is dependent on beta1 integrins/Fak signaling in undifferentiated cells only. 4) Activation of Akt-1 is phosphatidylinositol 3-kinase-dependent, whereas that of Akt-2 is not. 5) Akt-2 does not promote survival or apoptosis/anoikis. 6) Akt-1 is essential for survival. 7) Akt-2 cannot substitute for Akt-1 in the suppression of anoikis. Hence, the expression and regulation of Akt isoforms show differentiation state-specific distinctions that ultimately reflect upon their selective implication in the mediation of human intestinal epithelial cell survival. These data provide new insights into the synchronized regulation of cell survival/death that is required in the dynamic renewal process of tissues such as the intestinal epithelium.
Collapse
Affiliation(s)
- Geneviève Dufour
- Canadian Institutes of Health Research Group on the Functional Development and Physiopathology of the Digestive Tract, Département d'Anatomie et de Biologie Cellulaire, Faculté de Médecine, Université de Sherbrooke, Québec J1H 5N4
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Raju J, Patlolla JM, Swamy MV, Rao CV. Diosgenin, a Steroid Saponin of Trigonella foenum graecum (Fenugreek), Inhibits Azoxymethane-Induced Aberrant Crypt Foci Formation in F344 Rats and Induces Apoptosis in HT-29 Human Colon Cancer Cells. Cancer Epidemiol Biomarkers Prev 2004. [DOI: 10.1158/1055-9965.1392.13.8] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Abstract
Trigonella foenum graecum (fenugreek) is traditionally used to treat disorders such as diabetes, high cholesterol, wounds, inflammation, and gastrointestinal ailments. Recent studies suggest that fenugreek and its active constituents may possess anticarcinogenic potential. We evaluated the preventive efficacy of dietary fenugreek seed and its major steroidal saponin constituent, diosgenin, on azoxymethane-induced rat colon carcinogenesis during initiation and promotion stages. Preneoplastic colonic lesions or aberrant crypt foci (ACF) were chosen as end points. In addition, we assessed the mechanism of tumor growth inhibition of diosgenin in HT-29 human colon cancer cells. To evaluate the effect of the test agent during the initiation and postinitiation stages, 7-week-old male F344 rats were fed experimental diets containing 0% or 1% fenugreek seed powder (FSP) or 0.05% or 0.1% diosgenin for 1 week and were injected with azoxymethane (15 mg/kg body weight). Effects during the promotional stage were studied by feeding 1% FSP or 0.1% diosgenin 4 weeks after the azoxymethane injections. Rats were sacrificed 8 weeks after azoxymethane injection, and their colons were evaluated for ACF. We found that, by comparison with control, continuous feeding of 1% FSP and 0.05% and 0.1% diosgenin suppressed total colonic ACF up to 32%, 24%, and 42%, respectively (P ≤ 0.001 to 0.0001). Dietary FSP at 1% and diosgenin at 0.1% fed only during the promotional stage also inhibited total ACF up to 33% (P ≤ 0.001) and 39% (P ≤ 0.0001), respectively. Importantly, continuous feeding of 1% FSP or 0.05% or 0.1% diosgenin reduced the number of multicrypt foci by 38%, 20%, and 36% by comparison with the control assay (P ≤ 0.001). In addition, 1% FSP or 0.1% diosgenin fed during the promotional stage caused a significant reduction (P ≤ 0.001) of multicrypt foci compared with control. Dietary diosgenin at 0.1% and 0.05% inhibited total colonic ACF and multicrypt foci formation in a dose-dependent manner. Results from the in vitro experiments indicated that diosgenin inhibits cell growth and induces apoptosis in the HT-29 human colon cancer cell line in a dose-dependent manner. Furthermore, diosgenin induced apoptosis in HT-29 cells at least in part by inhibition of bcl-2 and by induction of caspase-3 protein expression. On the basis of these findings, the fenugreek constituent diosgenin seems to have potential as a novel colon cancer preventive agent.
Collapse
Affiliation(s)
- Jayadev Raju
- Division of Nutritional Carcinogenesis, Institute for Cancer Prevention, American Health Foundation Cancer Center, Valhalla, New York
| | - Jagan M.R. Patlolla
- Division of Nutritional Carcinogenesis, Institute for Cancer Prevention, American Health Foundation Cancer Center, Valhalla, New York
| | - Malisetty V. Swamy
- Division of Nutritional Carcinogenesis, Institute for Cancer Prevention, American Health Foundation Cancer Center, Valhalla, New York
| | - Chinthalapally V. Rao
- Division of Nutritional Carcinogenesis, Institute for Cancer Prevention, American Health Foundation Cancer Center, Valhalla, New York
| |
Collapse
|