1
|
Wishart TFL, Lovicu FJ. Heparan sulfate proteoglycans (HSPGs) of the ocular lens. Prog Retin Eye Res 2023; 93:101118. [PMID: 36068128 DOI: 10.1016/j.preteyeres.2022.101118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022]
Abstract
Heparan sulfate proteoglycans (HSPGs) reside in most cells; on their surface, in the pericellular milieu and/or extracellular matrix. In the eye, HSPGs can orchestrate the activity of key signalling molecules found in the ocular environment that promote its development and homeostasis. To date, our understanding of the specific roles played by individual HSPG family members, and the heterogeneity of their associated sulfated HS chains, is in its infancy. The crystalline lens is a relatively simple and well characterised ocular tissue that provides an ideal stage to showcase and model the expression and unique roles of individual HSPGs. Individual HSPG core proteins are differentially localised to eye tissues in a temporal and spatial developmental- and cell-type specific manner, and their loss or functional disruption results in unique phenotypic outcomes for the lens, and other ocular tissues. More recent work has found that different HS sulfation enzymes are also presented in a cell- and tissue-specific manner, and that disruption of these different sulfation patterns affects specific HS-protein interactions. Not surprisingly, these sulfated HS chains have also been reported to be required for lens and eye development, with dysregulation of HS chain structure and function leading to pathogenesis and eye-related phenotypes. In the lens, HSPGs undergo significant and specific changes in expression and function that can drive pathology, or in some cases, promote tissue repair. As master signalling regulators, HSPGs may one day serve as valuable biomarkers, and even as putative targets for the development of novel therapeutics, not only for the eye but for many other systemic pathologies.
Collapse
Affiliation(s)
- Tayler F L Wishart
- Molecular and Cellular Biomedicine, School of Medical Sciences, The University of Sydney, NSW, Australia.
| | - Frank J Lovicu
- Molecular and Cellular Biomedicine, School of Medical Sciences, The University of Sydney, NSW, Australia; Save Sight Institute, The University of Sydney, NSW, Australia.
| |
Collapse
|
2
|
Enzymatic Digestion of Cell-surface Heparan Sulfate Alters the Radiation Response in Triple-negative Breast Cancer Cells. Arch Med Res 2022; 53:826-839. [PMID: 36411172 DOI: 10.1016/j.arcmed.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/27/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND AIM Radiation resistance represents a major challenge in the treatment of breast cancer. As heparan sulfate (HS) chains are known to contribute to tumorigenesis, we aimed to investigate the interplay between HS degradation and radiation response in triple-negative breast cancer (TNBC) cells. METHODS HS chains were degraded in vitro as TNBC cells MDA-MB-231 and HCC1806 were treated with heparinase I and III. Subsequently, radioresistance was determined via colony formation assay after doses of 2, 4 and 6 Gy. Cell cycle profile, stem cell characteristics, expression of HS, activation of beta integrins, and apoptosis were determined by flow cytometry. Additionally, cell motility was analyzed via wound-healing assays, and expression and activation of FAK, CDK-6, Src, and Erk1/2 were quantified by western blot pre- and post-irradiation. Finally, the expression of cytokines was analyzed using a cytokine array. RESULTS Radiation promoted cell cycle changes, while heparinase treatment induced apoptosis in both cell lines. Colony formation assays showed significantly increased radio-resistance for both cell lines after degradation of HS. Cell migration was similarly upregulated after degradation of HS compared to controls. This effect was even more prominent after irradiation. Interestingly, FAK, a marker of radioresistance, was significantly activated in the heparinase-treated group. Additionally, we found Src to be dysregulated in MDA-MB-231 cells. Finally, we observed differential secretion of GRO, CXCL1, IGFBP1, IL8, Angiogenin, and Osteoprotegerin after HS degradation and radiotherapy. CONCLUSION Our results suggest an influence of HS chains on the development of radioresistance in TNBC.
Collapse
|
3
|
Sargison L, Smith RAA, Carnachan SM, Daines AM, Brackovic A, Kidgell JT, Nurcombe V, Cool SM, Sims IM, Hinkley SFR. Variability in the composition of porcine mucosal heparan sulfates. Carbohydr Polym 2022; 282:119081. [PMID: 35123736 DOI: 10.1016/j.carbpol.2021.119081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 11/18/2022]
Abstract
Commercial porcine intestinal mucosal heparan sulfate (HS) is a valuable material for research into its biological functions. As it is usually produced as a side-stream of pharmaceutical heparin manufacture, its chemical composition may vary from batch to batch. We analysed the composition and structure of nine batches of HS from the same manufacturer. Statistical analysis of the disaccharide compositions placed these batches in three categories: group A had high GlcNAc and GlcNS, and low GlcN typical of HS; group B had high GlcN and GlcNS, and low GlcNAc; group C had high di- and trisulfated, and low unsulfated and monosulfated disaccharide repeats. These batches could be placed in the same categories based on their 1H NMR spectra and molecular weights. Anticoagulant and growth factor binding activities of these HS batches did not fit within these same groups but were related to the proportions of more highly sulfated disaccharide repeats.
Collapse
Affiliation(s)
- Liam Sargison
- The Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5040, New Zealand.
| | - Raymond A A Smith
- Institute of Molecular and Cell Biology (IMCB), Glycotherapeutics Group, Agency for Science, Technology and Research (A*STAR), A*STAR, 138673, Singapore.
| | - Susan M Carnachan
- The Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5040, New Zealand.
| | - Alison M Daines
- The Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5040, New Zealand.
| | - Amira Brackovic
- The Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5040, New Zealand.
| | - Joel T Kidgell
- The Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5040, New Zealand.
| | - Victor Nurcombe
- Institute of Molecular and Cell Biology (IMCB), Glycotherapeutics Group, Agency for Science, Technology and Research (A*STAR), A*STAR, 138673, Singapore
| | - Simon M Cool
- Institute of Molecular and Cell Biology (IMCB), Glycotherapeutics Group, Agency for Science, Technology and Research (A*STAR), A*STAR, 138673, Singapore.
| | - Ian M Sims
- The Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5040, New Zealand.
| | - Simon F R Hinkley
- The Ferrier Research Institute, Victoria University of Wellington, 69 Gracefield Road, Lower Hutt 5040, New Zealand.
| |
Collapse
|
4
|
Wishart TFL, Lovicu FJ. An Atlas of Heparan Sulfate Proteoglycans in the Postnatal Rat Lens. Invest Ophthalmol Vis Sci 2021; 62:5. [PMID: 34730792 PMCID: PMC8572486 DOI: 10.1167/iovs.62.14.5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Purpose The arrangement of lens cells is regulated by ocular growth factors. Although the effects of these inductive molecules on lens cell behavior (proliferation, survival, and fiber differentiation) are well-characterized, the precise mechanisms underlying the regulation of growth factor-mediated signaling in lens remains elusive. Increasing evidence highlights the importance of heparan sulfate proteoglycans (HSPGs) for the signaling regulation of growth factors; however, the identity of the different lens HSPGs and the specific roles they play in lens biology are still unknown. Methods Semiquantitative real-time (RT)‐PCR and immunolabeling were used to characterize the spatial distribution of all known HSPG core proteins and their associated glycosaminoglycans (heparan and chondroitin sulfate) in the postnatal rat lens. Fibroblast growth factor (FGF)-2-treated lens epithelial explants, cultured in the presence of Surfen (an inhibitor of heparan sulfate [HS]-growth factor binding interactions) were used to investigate the requirement for HS in FGF-2-induced proliferation, fiber differentiation, and ERK1/2-signaling. Results The lens expresses all HSPGs. These HSPGs are differentially localized to distinct functional regions of the lens. In vitro, inhibition of HS-sulfation with Surfen blocked FGF-2-mediated ERK1/2-signaling associated with lens epithelial cell proliferation and fiber differentiation, highlighting that these cellular processes are dependent on HS. Conclusions These findings support a requirement for HSPGs in FGF-2 driven lens cell proliferation and fiber differentiation. The identification of specific HSPG core proteins in key functional lens regions, and the divergent expression patterns of closely related HSPGs, suggests that different HSPGs may differentially regulate growth factor signaling networks leading to specific biological events involved in lens growth and maintenance.
Collapse
Affiliation(s)
- Tayler F L Wishart
- School of Medical Sciences, The University of Sydney, New South Wales, Australia
| | - Frank J Lovicu
- School of Medical Sciences, The University of Sydney, New South Wales, Australia.,Save Sight Institute, The University of Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Snow AD, Cummings JA, Lake T. The Unifying Hypothesis of Alzheimer's Disease: Heparan Sulfate Proteoglycans/Glycosaminoglycans Are Key as First Hypothesized Over 30 Years Ago. Front Aging Neurosci 2021; 13:710683. [PMID: 34671250 PMCID: PMC8521200 DOI: 10.3389/fnagi.2021.710683] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/23/2021] [Indexed: 01/03/2023] Open
Abstract
The updated "Unifying Hypothesis of Alzheimer's disease" (AD) is described that links all the observed neuropathology in AD brain (i.e., plaques, tangles, and cerebrovascular amyloid deposits), as well as inflammation, genetic factors (involving ApoE), "AD-in-a-Dish" studies, beta-amyloid protein (Aβ) as a microbial peptide; and theories that bacteria, gut microflora, gingivitis and viruses all play a role in the cause of AD. The common link is the early accumulation of heparan sulfate proteoglycans (HSPGs) and heparan sulfate glycosaminoglycans (GAGs). HS GAG accumulation and/or decreased HS GAG degradation is postulated to be the key initiating event. HS GAGs and highly sulfated macromolecules induce Aβ 1-40 (but not 1-42) to form spherical congophilic maltese-cross star-like amyloid core deposits identical to those in the AD brain. Heparin/HS also induces tau protein to form paired helical filaments (PHFs). Increased sulfation and/or decreased degradation of HSPGs and HS GAGs that occur due to brain aging leads to the formation of plaques and tangles in AD brain. Knockout of HS genes markedly reduce the accumulation of Aβ fibrils in the brain demonstrating that HS GAGs are key. Bacteria and viruses all use cell surface HS GAGs for entry into cells, including SARS-CoV-2. Bacteria and viruses cause HS GAGs to rapidly increase to cause near-immediate aggregation of Aβ fibrils. "AD-in-a-dish" studies use "Matrigel" as the underlying scaffold that spontaneously causes plaque, and then tangle formation in a dish. Matrigel mostly contains large amounts of perlecan, the same specific HSPG implicated in AD and amyloid disorders. Mucopolysaccharidoses caused by lack of specific HS GAG enzymes lead to massive accumulation of HS in lysosomal compartments in neurons and contribute to cognitive impairment in children. Neurons full of HS demonstrate marked accumulation and fibrillization of Aβ, tau, α-synuclein, and prion protein (PrP) in mucopolysaccharidosis animal models demonstrating that HS GAG accumulation is a precursor to Aβ accumulation in neurons. Brain aging leads to changes in HSPGs, including newly identified splice variants leading to increased HS GAG sulfation in the AD brain. All of these events lead to the new "Unifying Hypothesis of Alzheimer's disease" that further implicates HSPGs /HS GAGs as key (as first hypothesized by Snow and Wight in 1989).
Collapse
|
6
|
What Are the Potential Roles of Nuclear Perlecan and Other Heparan Sulphate Proteoglycans in the Normal and Malignant Phenotype. Int J Mol Sci 2021; 22:ijms22094415. [PMID: 33922532 PMCID: PMC8122901 DOI: 10.3390/ijms22094415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/27/2022] Open
Abstract
The recent discovery of nuclear and perinuclear perlecan in annulus fibrosus and nucleus pulposus cells and its known matrix stabilizing properties in tissues introduces the possibility that perlecan may also have intracellular stabilizing or regulatory roles through interactions with nuclear envelope or cytoskeletal proteins or roles in nucleosomal-chromatin organization that may regulate transcriptional factors and modulate gene expression. The nucleus is a mechano-sensor organelle, and sophisticated dynamic mechanoresponsive cytoskeletal and nuclear envelope components support and protect the nucleus, allowing it to perceive and respond to mechano-stimulation. This review speculates on the potential roles of perlecan in the nucleus based on what is already known about nuclear heparan sulphate proteoglycans. Perlecan is frequently found in the nuclei of tumour cells; however, its specific role in these diseased tissues is largely unknown. The aim of this review is to highlight probable roles for this intriguing interactive regulatory proteoglycan in the nucleus of normal and malignant cell types.
Collapse
|
7
|
Onyeisi JOS, Pernambuco Filho PCDA, Mesquita APDS, Azevedo LCD, Nader HB, Lopes CC. Effects of syndecan-4 gene silencing by micro RNA interference in anoikis resistant endothelial cells: Syndecan-4 silencing and anoikis resistance. Int J Biochem Cell Biol 2020; 128:105848. [PMID: 32927086 DOI: 10.1016/j.biocel.2020.105848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/31/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022]
Abstract
The cell's resistance to cell death by adhesion loss to extracellular matrix (anoikis), contributes to tumor progression and metastasis. Various adhesion molecules are involved in the anoikis resistance, including the syndecan-4 (SDC4), a heparan sulfate proteoglycan (HSPG) present on the cell surface. Changes in the expression of SDC4 have been observed in tumor and transformed cells, indicating its involvement in cancer. In previous works, we demonstrated that acquisition of anoikis resistance resistance by blocking adhesion to the substrate up-regulates syndecan-4 expression in endothelial cells. This study investigates the role of SDC4 in the transformed phenotype of anoikis resistant endothelial cells. Anoikis-resistant endothelial cells (Adh1-EC) were transfected with micro RNA interference (miR RNAi) targeted against syndecan-4. The effect of SDC4 silencing was analyzed by real-time PCR, western blotting and immunofluorescence. Transfection with miRNA-SDC4 resulted in a sequence-specific decrease in syndecan-4 mRNA and protein levels. Furthermore, we observed a reduction in the number of heparan and chondroitin sulfate chains in the cell extract and culture medium. The SDC4 silencing led to downregulation of proliferative and invasive capacity and angiogenic abilities of anoikis-resistant endothelial cells. Compared with the parental cells (Adh1-EC), SDC4 silenced cells (SDC4 miR-Syn-4-1-Adh1-EC e miR-Syn-4-2-Adh1-EC) exhibited an increase in adhesion to collagen and laminin and also in the apoptosis rate. Moreover, transfection with miRNA-SDC4 caused a decrease in the number of cells in the S phase of the cell cycle. This is accompanied by an increase in the heparan sulfate synthesis after 12 h of simulation with fetal calf serum (FCS). SDC4 silencing cells are more dependent of growth factors present in the FCS to synthesize heparan sulfate than parental cells. Similar data were obtained for the wild-type cell line (EC). Our results indicated that downregulation of SDC4 expression reverses the transformed phenotype of anoikis resistant endothelial cells. These and other findings suggest that syndecan-4 is suitable for pharmacological intervention, making it an attractive target for cancer therapy.
Collapse
Affiliation(s)
- Jessica Oyie Sousa Onyeisi
- Disciplina de Biologia Molecular, Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | - Ana Paula de Sousa Mesquita
- Disciplina de Biologia Molecular, Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Luis Cesar de Azevedo
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Santo André, SP, Brazil
| | - Helena Bonciani Nader
- Disciplina de Biologia Molecular, Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Carla Cristina Lopes
- Disciplina de Biologia Molecular, Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, SP, Brazil; Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil.
| |
Collapse
|
8
|
Teixeira FCOB, Götte M. Involvement of Syndecan-1 and Heparanase in Cancer and Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:97-135. [PMID: 32274708 DOI: 10.1007/978-3-030-34521-1_4] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cell surface heparan sulfate proteoglycan Syndecan-1 acts as an important co-receptor for receptor tyrosine kinases and chemokine receptors, and as an adhesion receptor for structural glycoproteins of the extracellular matrix. It serves as a substrate for heparanase, an endo-β-glucuronidase that degrades specific domains of heparan sulfate carbohydrate chains and thereby alters the functional status of the proteoglycan and of Syndecan-1-bound ligands. Syndecan-1 and heparanase show multiple levels of functional interactions, resulting in mutual regulation of their expression, processing, and activity. These interactions are of particular relevance in the context of inflammation and malignant disease. Studies in animal models have revealed a mechanistic role of Syndecan-1 and heparanase in the regulation of contact allergies, kidney inflammation, multiple sclerosis, inflammatory bowel disease, and inflammation-associated tumorigenesis. Moreover, functional interactions between Syndecan-1 and heparanase modulate virtually all steps of tumor progression as defined in the Hallmarks of Cancer. Due to their prognostic value in cancer, and their mechanistic involvement in tumor progression, Syndecan-1 and heparanase have emerged as important drug targets. Data in preclinical models and preclinical phase I/II studies have already yielded promising results that provide a translational perspective.
Collapse
Affiliation(s)
- Felipe C O B Teixeira
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.
| |
Collapse
|
9
|
Kumar-Singh A, Shrinet J, Parniewska MM, Fuxe J, Dobra K, Hjerpe A. Mapping the Interactome of the Nuclear Heparan Sulfate Proteoglycan Syndecan-1 in Mesothelioma Cells. Biomolecules 2020; 10:biom10071034. [PMID: 32664515 PMCID: PMC7408266 DOI: 10.3390/biom10071034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/04/2020] [Accepted: 07/08/2020] [Indexed: 01/27/2023] Open
Abstract
Syndecan-1 (SDC1) is a cell surface heparan sulfate proteoglycan (HSPG), which regulates various signaling pathways controlling the proliferation and migration of malignant mesothelioma and other types of cancer. We have previously shown that SDC1 can translocate to the nucleus in mesothelioma cells through a tubulin-dependent transport mechanism. However, the role of nuclear SDC1 is largely unknown. Here, we performed co-immunoprecipitation (Co-IP) of SDC1 in a mesothelioma cell line to identify SDC1 interacting proteins. The precipitates contained a large number of proteins, indicating the recovery of protein networks. Proteomic analysis with a focus on nuclear proteins revealed an association with pathways related to cell proliferation and RNA synthesis, splicing and transport. In support of this, the top RNA splicing candidates were verified to interact with SDC1 by Co-IP and subsequent Western blot analysis. Further loss- and gain-of-function experiments showed that SDC1 influences RNA levels in mesothelioma cells. The results identify a proteomic map of SDC1 nuclear interactors in a mesothelioma cell line and suggest a previously unknown role for SDC1 in RNA biogenesis. The results should serve as a fundament for further studies to discover the role of nuclear SDC1 in normal and cancer cells of different origin.
Collapse
Affiliation(s)
- Ashish Kumar-Singh
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, SE-14186 Stockholm, Sweden; (A.K.-S.); (J.F.); (M.M.P.); (A.H.)
| | - Jatin Shrinet
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA;
| | - Malgorzata Maria Parniewska
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, SE-14186 Stockholm, Sweden; (A.K.-S.); (J.F.); (M.M.P.); (A.H.)
| | - Jonas Fuxe
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, SE-14186 Stockholm, Sweden; (A.K.-S.); (J.F.); (M.M.P.); (A.H.)
| | - Katalin Dobra
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, SE-14186 Stockholm, Sweden; (A.K.-S.); (J.F.); (M.M.P.); (A.H.)
- Division of Clinical Pathology/Cytology, Karolinska University Laboratory, Karolinska University Hospital, SE-14186 Stockholm, Sweden
- Correspondence: ; Tel.:+46-8-484-1093
| | - Anders Hjerpe
- Division of Pathology, Department of Laboratory Medicine, Karolinska Institutet, SE-14186 Stockholm, Sweden; (A.K.-S.); (J.F.); (M.M.P.); (A.H.)
- Division of Clinical Pathology/Cytology, Karolinska University Laboratory, Karolinska University Hospital, SE-14186 Stockholm, Sweden
| |
Collapse
|
10
|
Zhang YL, Ding C, Sun L. High Expression B3GAT3 Is Related with Poor Prognosis of Liver Cancer. Open Med (Wars) 2019; 14:251-258. [PMID: 30847403 PMCID: PMC6401394 DOI: 10.1515/med-2019-0020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 01/28/2019] [Indexed: 11/15/2022] Open
Abstract
Liver cancer is one of the most malignant tumors with poor prognosis. Finding molecular markers that can predict prognosis is very important for the treatment of liver cancer. The present research is trying to find a new biomarker for human liver cancer. The analysis of abnormal expression genes and prognosis value on liver cancer by Gene Expression Profiling Interactive Analysis (GEPIA) database, the Pathology Atlas of the Human Protein Atlas (HPA), and Kaplan Meier-plotter (KM plotter), proved that B3GAT3 might be one of the important candidates. Furthermore, we investigated the specific role of B3GAT3 on liver cancer through the transfection of B3GAT3 siRNA in HepG2 cells. The proliferation was detected using CCK8, and migration and invasion were determined using Transwell assay. Our results proved that knockdown of B3GAT3 inhibited the proliferation, migration, and invasion. Moreover, B3GAT3 knockdown inhibited the expression of EMT related proteins, N-cad, Snail, and Twist, while promoting the expression of E-cad, suggesting that B3GAT3 knockdown reversed the EMT process of liver cancer cells. In conclusion, overexpressed B3GAT3 promotes the process of tumor EMT, which is an independent prognostic marker to predict the prognosis of liver cancer and might be a potential new target for liver cancer therapy.
Collapse
Affiliation(s)
- Yan-Li Zhang
- Medical Department, Maternity and Child Care centers, Zaozhuang 277100, Shandong Province, China
| | - Chao Ding
- Zaozhuang Hospital of Zaozhuang Mining Group, Zaozhuang 277100, Shandong Province, China
| | - Lei Sun
- Department of General Surgery, Zaozhuang Municipal Hospital, Zaozhuang 277100, Shandong Province, China
| |
Collapse
|
11
|
Syndecan-1 promotes Wnt/β-catenin signaling in multiple myeloma by presenting Wnts and R-spondins. Blood 2018; 131:982-994. [DOI: 10.1182/blood-2017-07-797050] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 12/01/2017] [Indexed: 02/07/2023] Open
Abstract
Key Points
HS chains decorating syndecan-1 promote autocrine and paracrine Wnt signaling in MM. Loss of HS inhibits MM cell growth by attenuating Wnt signaling.
Collapse
|
12
|
Szatmári T, Mundt F, Kumar-Singh A, Möbus L, Ötvös R, Hjerpe A, Dobra K. Molecular targets and signaling pathways regulated by nuclear translocation of syndecan-1. BMC Cell Biol 2017; 18:34. [PMID: 29216821 PMCID: PMC5721467 DOI: 10.1186/s12860-017-0150-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 11/14/2017] [Indexed: 12/15/2022] Open
Abstract
Background The cell-surface heparan sulfate proteoglycan syndecan-1 is important for tumor cell proliferation, migration, and cell cycle regulation in a broad spectrum of malignancies. Syndecan-1, however, also translocates to the cell nucleus, where it might regulate various molecular functions. Results We used a fibrosarcoma model to dissect the functions of syndecan-1 related to the nucleus and separate them from functions related to the cell-surface. Nuclear translocation of syndecan-1 hampered the proliferation of fibrosarcoma cells compared to the mutant lacking nuclear localization signal. The growth inhibitory effect of nuclear syndecan-1 was accompanied by significant accumulation of cells in the G0/G1 phase, which indicated a possible G1/S phase arrest. We implemented multiple, unsupervised global transcriptome and proteome profiling approaches and combined them with functional assays to disclose the molecular mechanisms that governed nuclear translocation and its related functions. We identified genes and pathways related to the nuclear compartment with network enrichment analysis of the transcriptome and proteome. The TGF-β pathway was activated by nuclear syndecan-1, and three genes were significantly altered with the deletion of nuclear localization signal: EGR-1 (early growth response 1), NEK11 (never-in-mitosis gene a-related kinase 11), and DOCK8 (dedicator of cytokinesis 8). These candidate genes were coupled to growth and cell-cycle regulation. Nuclear translocation of syndecan-1 influenced the activity of several other transcription factors, including E2F, NFκβ, and OCT-1. The transcripts and proteins affected by syndecan-1 showed a striking overlap in their corresponding biological processes. These processes were dominated by protein phosphorylation and post-translation modifications, indicative of alterations in intracellular signaling. In addition, we identified molecules involved in the known functions of syndecan-1, including extracellular matrix organization and transmembrane transport. Conclusion Collectively, abrogation of nuclear translocation of syndecan-1 resulted in a set of changes clustering in distinct patterns, which highlighted the functional importance of nuclear syndecan-1 in hampering cell proliferation and the cell cycle. This study emphasizes the importance of the localization of syndecan-1 when considering its effects on tumor cell fate. Electronic supplementary material The online version of this article (10.1186/s12860-017-0150-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tünde Szatmári
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, SE-14186, Stockholm, Sweden.
| | - Filip Mundt
- Division of Clinical Pathology/Cytology, Karolinska University Laboratory, Karolinska University Hospital, SE-14186, Stockholm, Sweden
| | - Ashish Kumar-Singh
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, SE-14186, Stockholm, Sweden
| | - Lena Möbus
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, SE-14186, Stockholm, Sweden
| | - Rita Ötvös
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, SE-14186, Stockholm, Sweden
| | - Anders Hjerpe
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, SE-14186, Stockholm, Sweden.,Division of Clinical Pathology/Cytology, Karolinska University Laboratory, Karolinska University Hospital, SE-14186, Stockholm, Sweden
| | - Katalin Dobra
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, SE-14186, Stockholm, Sweden.,Division of Clinical Pathology/Cytology, Karolinska University Laboratory, Karolinska University Hospital, SE-14186, Stockholm, Sweden
| |
Collapse
|
13
|
Lee S, Kim MG, Kim N, Heo WD, Lee GM. Heparan sulfate proteoglycan synthesis in CHO DG44 and HEK293 cells. BIOTECHNOL BIOPROC E 2016. [DOI: 10.1007/s12257-015-0688-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Xu D, Xie R, Xu T, Guo X, Liu Q, Liu J, Lv W, Jing X, Zhang H, Wang J. Combination therapeutics of doxorubicin with Fe3O4@chitosan@phytic acid nanoparticles for multi-responsive drug delivery. RSC Adv 2016. [DOI: 10.1039/c6ra21431b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Fe3O4@CS nanoparticles as the precursors were encapsulated by PA, developing Fe3O4@CS@PA nanocarriers with high drug loading efficiency, outstanding magnetic saturation, remarkable pH-response and obvious inhibition to tumor cells.
Collapse
Affiliation(s)
- Dandan Xu
- Centre for Biomedical Materials and Engineering
- Harbin Engineering University
- Harbin 150001
- China
- Key Laboratory of Superlight Material and Surface Technology
| | - Rui Xie
- Department of Cardiology
- Centre of Vascular Diseases
- Fourth Affiliated Hospital of Harbin Medical University
- Harbin 150001
- China
| | - Tongying Xu
- Department of Cardiology
- Centre of Vascular Diseases
- Fourth Affiliated Hospital of Harbin Medical University
- Harbin 150001
- China
| | - Xuejie Guo
- Centre for Biomedical Materials and Engineering
- Harbin Engineering University
- Harbin 150001
- China
| | - Qi Liu
- Centre for Biomedical Materials and Engineering
- Harbin Engineering University
- Harbin 150001
- China
| | - Jingyuan Liu
- Centre for Biomedical Materials and Engineering
- Harbin Engineering University
- Harbin 150001
- China
| | - Weizhong Lv
- Key Laboratory of Superlight Material and Surface Technology
- Ministry of Education
- Harbin Engineering University
- Harbin 150001
- China
| | - Xiaoyan Jing
- Centre for Biomedical Materials and Engineering
- Harbin Engineering University
- Harbin 150001
- China
| | - Hongsen Zhang
- Centre for Biomedical Materials and Engineering
- Harbin Engineering University
- Harbin 150001
- China
| | - Jun Wang
- Centre for Biomedical Materials and Engineering
- Harbin Engineering University
- Harbin 150001
- China
- Key Laboratory of Superlight Material and Surface Technology
| |
Collapse
|
15
|
Syndecan-1 in Cancer: Implications for Cell Signaling, Differentiation, and Prognostication. DISEASE MARKERS 2015; 2015:796052. [PMID: 26420915 PMCID: PMC4569789 DOI: 10.1155/2015/796052] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 08/16/2015] [Indexed: 11/17/2022]
Abstract
Syndecan-1, a cell surface heparan sulfate proteoglycan, is critically involved in the differentiation and prognosis of various tumors. In this review, we highlight the synthesis, cellular interactions, and the signalling pathways regulated by syndecan-1. The basal syndecan-1 level is also crucial for understanding the sequential changes involving malignant transformation, tumor progression, and advanced or disseminated cancer stages. Moreover, we focus on the cellular localization of this proteoglycan as cell membrane anchored and/or shed, soluble syndecan-1 with stromal or nuclear accumulation and how this may carry different, highly tissue specific prognostic information for individual tumor types.
Collapse
|
16
|
Stewart MD, Ramani VC, Sanderson RD. Shed syndecan-1 translocates to the nucleus of cells delivering growth factors and inhibiting histone acetylation: a novel mechanism of tumor-host cross-talk. J Biol Chem 2014; 290:941-9. [PMID: 25404732 DOI: 10.1074/jbc.m114.608455] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The heparan sulfate proteoglycan syndecan-1 is proteolytically shed from the surface of multiple myeloma cells and is abundant in the bone marrow microenvironment where it promotes tumor growth, angiogenesis, and metastasis. In this study, we demonstrate for the first time that shed syndecan-1 present in the medium conditioned by tumor cells is taken up by bone marrow-derived stromal cells and transported to the nucleus. Translocation of shed syndecan-1 (sSDC1) to the nucleus was blocked by addition of exogenous heparin or heparan sulfate, pretreatment of conditioned medium with heparinase III, or growth of cells in sodium chlorate, indicating that sulfated heparan sulfate chains are required for nuclear translocation. Interestingly, cargo bound to sSDC1 heparan sulfate chains (i.e. hepatocyte growth factor) was transported to the nucleus along with sSDC1, and removal of heparan sulfate-bound cargo from sSDC1 abolished its translocation to the nucleus. Once in the nucleus, sSDC1 binds to the histone acetyltransferase enzyme p300, and histone acetyltransferase activity and histone acetylation are diminished. These findings reveal a novel function for shed syndecan-1 in mediating tumor-host cross-talk by shuttling growth factors to the nucleus and by altering histone acetylation in host cells. In addition, this work has broad implications beyond myeloma because shed syndecan-1 is present in high levels in many tumor types as well as in other disease states.
Collapse
Affiliation(s)
| | | | - Ralph D Sanderson
- From the Department of Pathology, UAB Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
17
|
Kovalszky I, Hjerpe A, Dobra K. Nuclear translocation of heparan sulfate proteoglycans and their functional significance. Biochim Biophys Acta Gen Subj 2014; 1840:2491-7. [PMID: 24780644 DOI: 10.1016/j.bbagen.2014.04.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 04/17/2014] [Accepted: 04/18/2014] [Indexed: 12/25/2022]
Abstract
BACKGROUND Heparan sulfate proteoglycans (HSPGs) are important constituents of the cell membrane and they act as co-receptors for cellular signaling. Syndecan-1, glypican and perlecan also translocate to the nucleus in a regulated manner. Similar nuclear transport of growth factors and heparanase indicate a possible co-regulation and functional significance. SCOPE OF REVIEW In this review we dissect the structural requirement for the nuclear translocation of HSPGs and their functional implications.s MAJOR CONCLUSIONS The functions of the nuclear HSPGs are still incompletely understood. Evidence point to possible functions in hampering cell proliferation, inhibition of DNA topoisomerase I activity and inhibition of gene transcription. GENERAL SIGNIFICANCE HSPGs influence the behavior of malignant tumors in many different ways. Modulating their functions may offer powerful tools to control fundamental biological processes and provide the basis for subsequent targeted therapies in cancer. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.
Collapse
Affiliation(s)
- Ilona Kovalszky
- First Department of Pathology & Experimental Cancer Research Semmelweis University, Üllői street 26, Budapest 1085, Hungary
| | - Anders Hjerpe
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital F46, SE-141 86 Stockholm Sweden
| | - Katalin Dobra
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital F46, SE-141 86 Stockholm Sweden.
| |
Collapse
|
18
|
Fernandes dos Santos TC, Gomes AM, Paschoal MEM, Stelling MP, Rumjanek VMBD, Junior ADR, Valiante PM, Madi K, Pereira de Souza HS, Pavão MSG, Castelo-Branco MTL. Heparanase expression and localization in different types of human lung cancer. Biochim Biophys Acta Gen Subj 2014; 1840:2599-608. [PMID: 24747732 DOI: 10.1016/j.bbagen.2014.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 04/06/2014] [Accepted: 04/08/2014] [Indexed: 12/26/2022]
Abstract
BACKGROUND Heparanase is the only known mammalian glycosidase capable of cleaving heparan sulfate chains. The expression of this enzyme has been associated with tumor development because of its ability to degrade extracellular matrix and promote cell invasion. METHODS We analyzed heparanase expression in lung cancer samples to understand lung tumor progression and malignancy. Of the samples from 37 patients, there were 14 adenocarcinomas, 13 squamous cell carcinomas, 5 large cell carcinomas, and 5 small cell carcinomas. Immunohistochemistry was performed to ascertain the expression and localization of heparanase. RESULTS All of the tumor types expressed heparanase, which was predominantly localized within the cytoplasm and nucleus. Significant enzyme expression was also observed in cells within the tumor microenvironment, such as fibroblasts, epithelial cells, and inflammatory cells. Adenocarcinomas exhibited the strongest heparanase staining intensity and the most widespread heparanase distribution. Squamous cell carcinomas, large cell carcinomas, and small cell carcinomas had a similar subcellular distribution of heparanase to adenocarcinomas but the distribution was less widespread. Heparanase expression tended to correlate with tumor node metastasis (TNM) staging in non-small cell lung carcinoma. CONCLUSION In this study, we showed that heparanase was localized to the cytoplasm and nucleus of tumor cells and to cells within the microenvironment in different types of lung cancer. This enzyme exhibited a differential distribution based on the type of lung tumor. General significance Elucidating the heparanase expression patterns in different types of lung cancer increased our understanding of the crucial role of heparanase in lung cancer biology. This article is part of a Special Issue entitled Matrix-mediated cell behaviour and properties.
Collapse
Affiliation(s)
| | - Angélica Maciel Gomes
- Laboratório de Bioquímica e Biologia Celular de Glicoconjugados, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Eduardo Machado Paschoal
- Instituto de Doenças do Tórax, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Paranhos Stelling
- Laboratório de Bioquímica e Biologia Celular de Glicoconjugados, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vivian Mary Barral Dodd Rumjanek
- Laboratório de Imunologia Tumoral, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alyson do Rosário Junior
- Laboratório Multidisciplinar de Pesquisa, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo Marcos Valiante
- Serviço de Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kalil Madi
- Serviço de Anatomia Patológica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Heitor Siffert Pereira de Souza
- Laboratório Multidisciplinar de Pesquisa, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mauro Sergio Gonçalves Pavão
- Laboratório de Bioquímica e Biologia Celular de Glicoconjugados, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | |
Collapse
|
19
|
Szatmári T, Dobra K. The role of syndecan-1 in cellular signaling and its effects on heparan sulfate biosynthesis in mesenchymal tumors. Front Oncol 2013; 3:310. [PMID: 24392351 PMCID: PMC3867677 DOI: 10.3389/fonc.2013.00310] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 12/04/2013] [Indexed: 12/23/2022] Open
Abstract
Proteoglycans (PGs) and in particular the syndecans are involved in the differentiation process across the epithelial-mesenchymal axis, principally through their ability to bind growth factors and modulate their downstream signaling. Malignant tumors have individual proteoglycan profiles, which are closely associated with their differentiation and biological behavior, mesenchymal tumors showing a different profile from that of epithelial tumors. Syndecan-1 is the main syndecan of epithelial malignancies, whereas in sarcomas its expression level is generally low, in accordance with their mesenchymal phenotype and highly malignant behavior. This proteoglycan is often overexpressed in adenocarcinoma cells, whereas mesothelioma and fibrosarcoma cells express syndecan-2 and syndecan-4 more abundantly. Increased expression of syndecan-1 in mesenchymal tumors changes the tumor cell morphology to an epithelioid direction whereas downregulation results in a change in shape from polygonal to spindle-like morphology. Although syndecan-1 plays major roles on the cell-surface, there are also intracellular functions, which are not very well studied. On the functional level, syndecan-1 affects mesenchymal tumor cell proliferation, adhesion, migration and motility, and the effect varies with the different domains of the core protein. Syndecan-1 may exert stimulatory or inhibitory effects, depending on the concentration of various mitogens, enzymes, and signaling molecules, the ratio between the shed and membrane-associated syndecan-1 and histological grade of the tumour. Growth factor signaling seems to be delicately controlled by regulatory loops involving the syndecan expression levels and their sulfation patterns. Overexpression of syndecan-1 modulates the biosynthesis and sulfation of heparan sulfate and it also affects the expression of other PGs. On transcriptomic level, syndecan-1 modulation results in profound effects on genes involved in regulation of cell growth.
Collapse
Affiliation(s)
- Tünde Szatmári
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital , Stockholm , Sweden
| | - Katalin Dobra
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital , Stockholm , Sweden
| |
Collapse
|
20
|
Stewart MD, Sanderson RD. Heparan sulfate in the nucleus and its control of cellular functions. Matrix Biol 2013; 35:56-9. [PMID: 24309018 DOI: 10.1016/j.matbio.2013.10.009] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/15/2013] [Accepted: 10/15/2013] [Indexed: 12/17/2022]
Abstract
Heparan sulfate proteoglycans (HSPG) are present on the cell surface, within the extracellular matrix, and as soluble molecules in tissues and blood. HSPGs are known to regulate a wide range of cellular functions predominantly by serving as co-receptors for growth factors, chemokines, and other regulatory proteins that control inflammation, wound healing and tumorigenesis. Several studies have demonstrated the presence of heparan sulfate (HS) or HSPGs in the cell nucleus, but little attention has been focused on their role there. However, evidence is mounting that nuclear HS and HSPGs have important regulatory functions that impact the cell cycle, proliferation, transcription and transport of cargo to the nucleus. The discovery of proteoglycans in the nucleus extends the list of "non-traditional nuclear proteins" that includes, for example, cytoskeletal proteins such as actin and tubulin, and growth factors and their receptors. In this review we discuss the discovery and fascinating roles of HS and HSPGs in the nucleus and propose a number of key questions that remain to be addressed.
Collapse
Affiliation(s)
- Mark D Stewart
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ralph D Sanderson
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
21
|
Afratis N, Gialeli C, Nikitovic D, Tsegenidis T, Karousou E, Theocharis AD, Pavão MS, Tzanakakis GN, Karamanos NK. Glycosaminoglycans: key players in cancer cell biology and treatment. FEBS J 2012; 279:1177-97. [DOI: 10.1111/j.1742-4658.2012.08529.x] [Citation(s) in RCA: 380] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
22
|
|
23
|
Zong F, Fthenou E, Wolmer N, Hollósi P, Kovalszky I, Szilák L, Mogler C, Nilsonne G, Tzanakakis G, Dobra K. Syndecan-1 and FGF-2, but not FGF receptor-1, share a common transport route and co-localize with heparanase in the nuclei of mesenchymal tumor cells. PLoS One 2009; 4:e7346. [PMID: 19802384 PMCID: PMC2750749 DOI: 10.1371/journal.pone.0007346] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 09/07/2009] [Indexed: 11/18/2022] Open
Abstract
Syndecan-1 forms complexes with growth factors and their cognate receptors in the cell membrane. We have previously reported a tubulin-mediated translocation of syndecan-1 to the nucleus. The transport route and functional significance of nuclear syndecan-1 is still incompletely understood. Here we investigate the sub-cellular distribution of syndecan-1, FGF-2, FGFR-1 and heparanase in malignant mesenchymal tumor cells, and explore the possibility of their coordinated translocation to the nucleus. To elucidate a structural requirement for this nuclear transport, we have transfected cells with a syndecan-1/EGFP construct or with a short truncated version containing only the tubulin binding RMKKK sequence. The sub-cellular distribution of the EGFP fusion proteins was monitored by fluorescence microscopy. Our data indicate that syndecan-1, FGF-2 and heparanase co-localize in the nucleus, whereas FGFR-1 is enriched mainly in the perinuclear area. Overexpression of syndecan-1 results in increased nuclear accumulation of FGF-2, demonstrating the functional importance of syndecan-1 for this nuclear transport. Interestingly, exogenously added FGF-2 does not follow the route taken by endogenous FGF-2. Furthermore, we prove that the RMKKK sequence of syndecan-1 is necessary and sufficient for nuclear translocation, acting as a nuclear localization signal, and the Arginine residue is vital for this localization. We conclude that syndecan-1 and FGF-2, but not FGFR-1 share a common transport route and co-localize with heparanase in the nucleus, and this transport is mediated by the RMKKK motif in syndecan-1. Our study opens a new perspective in the proteoglycan field and provides more evidence of nuclear interactions of syndecan-1.
Collapse
Affiliation(s)
- Fang Zong
- Department of Laboratory Medicine, Division of Pathology, Huddinge University Hospital, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| | - Eleni Fthenou
- Department of Histology, Division of Morphology, School of Medicine, University of Crete, Heraklion, Greece
| | - Nina Wolmer
- Department of Laboratory Medicine, Division of Pathology, Huddinge University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Péter Hollósi
- 1st Institute of Pathology and Experimental Cancer Research, Semmelweis University Budapest, Hungary
| | - Ilona Kovalszky
- 1st Institute of Pathology and Experimental Cancer Research, Semmelweis University Budapest, Hungary
| | - László Szilák
- 1st Institute of Pathology and Experimental Cancer Research, Semmelweis University Budapest, Hungary
| | - Carolin Mogler
- Department of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Gustav Nilsonne
- Department of Laboratory Medicine, Division of Pathology, Huddinge University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Georgios Tzanakakis
- Department of Histology, Division of Morphology, School of Medicine, University of Crete, Heraklion, Greece
| | - Katalin Dobra
- Department of Laboratory Medicine, Division of Pathology, Huddinge University Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
24
|
Chovanec M, Smetana K, Purkrábková T, Holíková Z, Dvoránková B, André S, Pytlík R, Hozák P, Plzák J, Sedo A, Vacík J, Gabius H. Detection of cell type and marker specificity of nuclear binding sites for anionic carbohydrate ligands. Biotech Histochem 2009; 79:139-50. [PMID: 15621886 DOI: 10.1080/10520290400011554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The emerging functionality of glycosaminoglycan chains engenders interest in localizing specific binding sites using cytochemical tools. We investigated nuclear binding of labeled heparin, heparan sulfate, a sulfated fucan, chondroitin sulfate, and hyaluronic acid in epidermal keratinocytes, bone marrow stromal cells, 3T3 fibroblasts and glioma cells using chemically prepared biotinylated probes. Binding of the markers was cell-type specific and influenced by extraction of histones, but was not markedly affected by degree of proliferation, differentiation or malignancy. Cell uptake of labeled heparin and other selected probes and their transport into the nucleus also was monitored. Differences between keratinocytes and bone marrow stromal cells were found. Preincubation of permeabilized bone marrow stromal cells with label-free heparin reduced the binding of carrier-immobilized hydrocortisone to its nuclear receptors. Thus, these tools enabled binding sites for glycosaminoglycans to be monitored in routine assays.
Collapse
Affiliation(s)
- M Chovanec
- Institute of Anatomy, Charles University, 1st Faculty of Medicine, U nemocnice 3, 128 000 Prague 2, Czech Republic
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Chen L, Sanderson RD. Heparanase regulates levels of syndecan-1 in the nucleus. PLoS One 2009; 4:e4947. [PMID: 19305494 PMCID: PMC2654539 DOI: 10.1371/journal.pone.0004947] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 02/26/2009] [Indexed: 11/24/2022] Open
Abstract
Syndecan-1 is a transmembrane heparan sulfate-bearing proteoglycan known to regulate multiple biological functions at the cell surface and within the extracellular matrix. Its functional activity can be modulated by heparanase, an enzyme that cleaves heparan sulfate chains and whose expression has been associated with an aggressive phenotype in many cancers. In addition to remodeling syndecan-1 by cleaving its heparan sulfate chains, heparanase influences syndecan-1 location by upregulating expression of enzymes that accelerate its shedding from the cell surface. In the present study we discovered that heparanase also alters the level of nuclear syndecan-1. Upon upregulation of heparanase expression or following addition of recombinant heparanase to myeloma cells, the nuclear localization of syndecan-1 drops dramatically as revealed by confocal microscopy, western blotting and quantification by ELISA. This effect requires enzymatically active heparanase because cells expressing high levels of mutated, enzymatically inactive heparanase, failed to diminish syndecan-1 levels in the nucleus. Although heparan sulfate function within the nucleus is not well understood, there is emerging evidence that it may act to repress transcriptional activity. The resulting changes in gene expression facilitated by the loss of nuclear syndecan-1 could explain how heparanase enhances expression of MMP-9, VEGF, tissue factor and perhaps other effectors that condition the tumor microenvironment to promote an aggressive cancer phenotype.
Collapse
Affiliation(s)
- Ligong Chen
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Ralph D. Sanderson
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Center for Metabolic Bone Disease and Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
26
|
Buczek-Thomas JA, Hsia E, Rich CB, Foster JA, Nugent MA. Inhibition of histone acetyltransferase by glycosaminoglycans. J Cell Biochem 2008; 105:108-20. [PMID: 18459114 PMCID: PMC2596351 DOI: 10.1002/jcb.21803] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Histone acetyltransferases (HATs) are a class of enzymes that participate in modulating chromatin structure and gene expression. Altered HAT activity has been implicated in a number of diseases, yet little is known about the regulation of HATs. In this study, we report that glycosaminoglycans (GAGs) are potent inhibitors of p300 and pCAF HAT activities in vitro, with heparin and heparan sulfate proteoglycans (HSPGs) being the most potent inhibitors. The mechanism of inhibition by heparin was investigated. The ability of heparin to inhibit HAT activity was in part dependent upon its size and structure, as small heparin-derived oligosaccharides (>8 sugars) and N-desulfated or O-desulfated heparin showed reduced inhibitory activity. Heparin was shown to bind to pCAF; and enzyme assays indicated that heparin shows the characteristics of a competitive-like inhibitor causing an approximately 50-fold increase in the apparent Km of pCAF for histone H4. HSPGs isolated from corneal and pulmonary fibroblasts inhibited HAT activity with similar effectiveness as heparin. As evidence that endogenous GAGs might be involved in modulating histone acetylation, the direct addition of heparin to pulmonary fibroblasts resulted in an approximately 50% reduction of histone H3 acetylation after 6 h of treatment. In addition, Chinese hamster ovary cells deficient in GAG synthesis showed increased levels of acetylated histone H3 compared to wild-type parent cells. GAGs represent a new class of HAT inhibitors that might participate in modulating cell function by regulating histone acetylation.
Collapse
Affiliation(s)
- Jo Ann Buczek-Thomas
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118
| | - Edward Hsia
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118
| | - Celeste B. Rich
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118
| | - Judith A. Foster
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118
| | - Matthew A. Nugent
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, 02118
- Department of Ophthalmology, Boston University School of Medicine, Boston, MA, 02118
- Department of Biomedical Engineering, Boston University, Boston, MA 02118
| |
Collapse
|
27
|
Hjerpe A, Dobra K. Malignant mesothelioma--a connective tissue tumor with proteoglycan-dependent differentiation. Connect Tissue Res 2008; 49:249-51. [PMID: 18661353 DOI: 10.1080/03008200802147761] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Malignant mesothelioma (MM) is a connective tissue tumor with partial epithelioid differentiation. The pattern of proteoglycan (PG) expression by epithelioid and fibroblast-like (sarcomatoid) MM cells differ; cell surface PGs being more abundant in the former phenotype and matrix PGs in the latter. The differentiation as well as much of the malignant nature of these tumors is dependent on the expression of surface PGs. The syndecans, however, also translocate to the nucleus for an as yet unknown function.
Collapse
Affiliation(s)
- Anders Hjerpe
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
28
|
Park K, Lee GY, Park RW, Kim IS, Kim SY, Byun Y. Combination Therapy of Heparin–Deoxycholic Acid Conjugate and Doxorubicin against Squamous Cell Carcinoma and B16F10 Melanoma. Pharm Res 2007; 25:268-76. [PMID: 17619999 DOI: 10.1007/s11095-007-9366-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2007] [Accepted: 05/31/2007] [Indexed: 10/23/2022]
Abstract
PURPOSE Our previous study confirmed that heparin-deoxycholic acid conjugate (HD) had a potent antiangiogenic effect and safety to use for long-term treatment. Herein, the combined therapeutic effect of HD and doxorubicin (DOX) was evaluated against squamous cell carcinoma (SCC7) and B16F10 melanoma. METHODS The inhibitory effect of cell proliferation and cellular uptake of HD was studied in SCC7 and B16F10. The combination effects of HD and DOX were evaluated by measuring cytotoxicity and apoptosis as well as tumor growth and apoptosis in vivo against SCC7 and B16F10 tumor-bearing mice. RESULTS HD displayed potent inhibitory effect on SCC7 and B16F10 cell proliferation, but it showed a low cytotoxic effect. Concurrent treatment of HD and DOX displayed enhanced cytotoxic effects and apoptosis on SCC7 and B16F10. The cellular uptake of HD and DOX was affected by the collective cytotoxic effects of these two drugs: each drug suppressed the tumor growth, and their combined treatment enhanced apoptosis and collectively inhibited the tumor growth of SCC7 and B16F10 in vivo. CONCLUSION These results demonstrated that HD with cytostatic and antiangiogenetic activities, enhanced the antitumor activity of DOX against SCC7 and B16F10, and the combined treatment of these two drugs might have enhanced therapeutic efficacy.
Collapse
Affiliation(s)
- Kyeongsoon Park
- Biomedical Research Center, Korea Institute of Science and Technology, 39-1 Hawolgok-dong, Seongbuk-gu, Seoul, 136-791, South Korea
| | | | | | | | | | | |
Collapse
|
29
|
Pazos MDC, Ricci R, Simioni AR, Lopes CC, Tedesco AC, Nader HB. Putative role of heparan sulfate proteoglycan expression and shedding on the proliferation and survival of cells after photodynamic therapy. Int J Biochem Cell Biol 2007; 39:1130-41. [PMID: 17416540 DOI: 10.1016/j.biocel.2007.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 01/22/2007] [Accepted: 02/08/2007] [Indexed: 01/09/2023]
Abstract
INTRODUCTION Photodynamic therapy is based on the selective retention of a photosensitizer by highly proliferating cells and its activation with light at the appropriate wavelength. This combination generates reactive oxygen species that ultimately kill the cells. Some cells, however, may survive photodynamic therapy and the interaction of these cells with the extracellular matrix has profound effect in tumor biology. The knowledge of photodynamic therapy action on the extracellular matrix has not been fully explored. It has been focused mainly on integrins, matrix metalloproteinases and on growth factors and immunological mediators. Other important molecules involved in the regulation of many cell processes are the glycosaminoglycans, polymers of disaccharide units, present on the cell surface and in the extracellular matrix. In most cases, the glycosaminoglycans occur as proteoglycans. AIMS The purpose of the present investigation is to evaluate heparan sulfate proteoglycan expression and shedding, and its relation to the survival of the remaining cells, after a liposomal-AlClPc based photodynamic treatment. MATERIALS A wild-type endothelial cell derived from rabbit aorta and its counterpart transfected with EJ-ras oncogene were used. RESULTS Both cell lines presented augmented heparan sulfate proteoglycan syndecan-4 mRNA expression, augmented synthesis of heparan sulfate chains and increased shedding. Also, the formation of stress fibers on the border of the cells and the arrest in G(1) phase of the cell cycle was observed. CONCLUSIONS These results show that surviving cells after photodynamic therapy exhibit changes in their morphology and cell processes that differ from that of non-treated cells, and these changes are probably hindering the cells from resuming normal proliferation.
Collapse
|
30
|
Park K, Lee GY, Kim YS, Yu M, Park RW, Kim IS, Kim SY, Byun Y. Heparin–deoxycholic acid chemical conjugate as an anticancer drug carrier and its antitumor activity. J Control Release 2006; 114:300-6. [PMID: 16884806 DOI: 10.1016/j.jconrel.2006.05.017] [Citation(s) in RCA: 121] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 05/15/2006] [Accepted: 05/19/2006] [Indexed: 10/24/2022]
Abstract
A chemically modified heparin-DOCA (HD) conjugate was developed as a drug carrier for cancer therapy. HD conjugate was found to have markedly low anticoagulant activity and to form self-assembled nanoparticles in aqueous condition. We observed that HD conjugate prevented squamous cell carcinoma (SCC) and human umbilical vascular endothelial cell (HUVEC) proliferation during BrdU incorporation assays. Here, we prepared doxorubicin-loaded heparin nanoparticles by entrapping doxorubicin into the amphiphilic HD conjugate by physical interaction and characterized the properties of these nanoparticles using Dynamic Light Scattering (DLS) and Atomic Force Microscope (AFM). In this study, doxorubicin-loaded heparin nanoparticles were designed to improve the antitumor effects of nano-sized particles (range of 180 to 210 nm) at high drug-loading efficiencies in the range 64% to 96%. These doxorubicin-loaded heparin nanoparticles displayed sustained drug release patterns. It was confirmed in vivo toxicity studies that HD conjugate did not induce unexpected side effects and that DHN 20 was safer than free DOX. An in vivo study showed that HD conjugate, doxorubicin and DHN 20 (one of doxorubicin-loaded heparin nanoparticles) induced tumor volume reductions of 43%, 56% and 74%, respectively, relative to the saline treated control. These results suggest that the drug-entrapped with heparin nanoparticles might provide a novel therapy for SCC.
Collapse
Affiliation(s)
- Kyeongsoon Park
- Gwangju Institute of Science and Technology, 1 Oryong-dong, Puk-gu, Gwangju 500-712, Korea
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Kobayashi M, Naomoto Y, Nobuhisa T, Okawa T, Takaoka M, Shirakawa Y, Yamatsuji T, Matsuoka J, Mizushima T, Matsuura H, Nakajima M, Nakagawa H, Rustgi A, Tanaka N. Heparanase regulates esophageal keratinocyte differentiation through nuclear translocation and heparan sulfate cleavage. Differentiation 2006; 74:235-43. [PMID: 16759289 DOI: 10.1111/j.1432-0436.2006.00072.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Heparanase is an endo-beta-glucuronidase that specifically cleaves heparan sulfate (HS) chains. Heparanase is involved in the process of metastasis and angiogenesis through the degradation of HS chains of the extracellular matrix and cell surface. Recently, we demonstrated that heparanase was localized in the cell nucleus of normal esophageal epithelium and esophageal cancer, and that its expression was correlated with cell differentiation. However, the nuclear function of heparanase remains unknown. To elucidate the role of heparanase in esophageal epithelial differentiation, primary human esophageal cells were grown in monolayer as well as organotypic cultures, and cell differentiation was induced. Expression of heparanase, HS, involucrin, and p27 was determined by immunostaining and Western blotting. SF4, a novel pharmacological inhibitor, was used to specifically inhibit heparanase activity. Upon esophageal cell differentiation, heparanase was translocated from the cytoplasm to the nucleus. Such translocation of heparanase appeared to be associated with the degradation of HS chains in the nucleus and changes in the expression of keratinocyte differentiation markers such as p27 and involucrin, whose induction was inhibited by SF4. Furthermore, these in vitro observations agreed with the expression pattern of heparanase, HS, involucrin, cytokeratin 13, and p27 in normal esophageal epithelium. Nuclear translocation of heparanase and its catalytic cleavage of HS may play a critical role in the differentiation of esophageal epithelial cells. Our study provides a novel insight into the role of heparanase in an essential differentiation process.
Collapse
Affiliation(s)
- Masahiko Kobayashi
- Department of Gastroenterological Surgery Transplant, and Surgical Oncology, Graduate School of Medicine and Dentistry, Okayama University, 2-5-1 Shikatacho, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ziegler A, Nervi P, Dürrenberger M, Seelig J. The cationic cell-penetrating peptide CPP(TAT) derived from the HIV-1 protein TAT is rapidly transported into living fibroblasts: optical, biophysical, and metabolic evidence. Biochemistry 2005; 44:138-48. [PMID: 15628854 DOI: 10.1021/bi0491604] [Citation(s) in RCA: 194] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cell-penetrating peptides (CPPs) are cationic peptides which, when linked to genes, proteins, or nanoparticles, facilitate the transport of these entities across the cell membrane. Despite their potential use for gene transfer and drug delivery, the mode of action of CPPs is still mysterious. It has even been argued that the observed transport across the cell membrane is an artifact caused by chemical fixation of the cells, a common preparation method for microscopic observation. Here we have synthesized a fluorescent derivative of the HIV-1 TAT protein transduction domain [Fg-CPP(TAT(PTD))] and have observed its uptake into nonfixated living fibroblasts with time-lapse confocal microscopy, eliminating the need for fixation. We observe that Fg-CPP(TAT(PTD)) enters the cytoplasm and nucleus of nonfixated fibroblasts within seconds, arguing against the suggested artifact of cell fixation. Using differential interference contrast microscopy, dense aggregates are detected on the cell surface. Several observations suggest that these aggregates consist of Fg-CPP(TAT(PTD)) bound to membrane-associated heparan sulfate (HS). The aggregates grow in parallel with Fg-CPP(TAT(PTD)) uptake and are detected only on fibroblasts showing Fg-CPP(TAT(PTD)) uptake. These observations resemble earlier reports of "capping" of cell surface molecules combined with a polarized endocytotic flow. Enzymatic removal of extracellular HS reduced the rate of both Fg-CPP(TAT(PTD)) uptake and aggregate formation, demonstrating that HS is involved in the uptake mechanism. The functionality of the fibroblasts during the CPP uptake was investigated with a cytosensor microphysiometer measuring the extracellular acidification rate (ECAR). Short exposures (2.5 min) to the CPP reduced the ECAR which was, however, reversible upon reperfusion with buffer only. In contrast, no recovery to baseline values was observed after repeated exposures to the CPP, suggesting that the CPP is toxic in long-term applications.
Collapse
Affiliation(s)
- André Ziegler
- Department of Biophysical Chemistry, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | | | | | | |
Collapse
|
33
|
Erduran E, Tekelioglu Y, Gedik Y, Bektaş I, Hacisalihoglu S. In vitro determination of the apoptotic effect of heparin on lymphoblasts using DNA analysis and measurements of Fas and Bcl-2 proteins by flow cytometry. Pediatr Hematol Oncol 2004; 21:383-91. [PMID: 15205081 DOI: 10.1080/08880010490457051] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Heparin has an apoptotic effect beside its anticoagulant, anti-inflammatory, antihypertensive, and antiproliferative effects. In this study, the authors detected the percentages of apoptotic lymphoblasts and the expressions of apoptotic Fas protein and antiapoptotic Bcl-2 protein with flow cytometry in vitro after the incubation of lymphoblasts with heparin. Eleven newly diagnosed acute lymphoblastic leukemia (ALL) children were included in the study. Lymphoblasts were incubated in all different levels of heparin concentrations (0, 10, and 20 U/mL) and the percentages of apoptotic lymphoblasts and the percentages of Fas protein and Bcl-2 proteins were simultaneously measured by flow cytometry at 0, 1, and 2 h. At 0, 1, and 2 h, apoptosis was determined when heparin was added in 10- and 20-U/mL concentrations (p <.05). The apoptotic effect of heparin on lymphoblasts was higher at the first hour than at 0 and 2 h in 10- and 20-U/mL heparin concentrations (p <.01). The highest apoptosis was detected in the 20-U/mL heparin concentration at the first hour. The expression levels of Fas protein on lymphoblasts were higher at the first hour than at 0 and 2 h in 10- and 20-U/mL heparin concentrations (p <.001). The highest expression of Fas protein was observed in the 20-U/mL heparin concentration at the first hour. The expression levels of Bcl-2 protein on lymphoblasts were lower at the first hour than at 0 and 2 h in 10- and 20-U/mL heparin concentrations (p <.001). The lowest expression of Bcl-2 protein was detected in the 20-U/mL heparin concentration at the first hour. Increased concentrations of heparin had an increasing effect on the percentages of apoptotic lymphoblasts. The expression percentages of Fas protein on lymphoblasts also increased, whereas the expression percentages of Bcl-2 protein on lymphoblasts decreased (p <.05). These results suggest that low-dose heparin may cause significant apoptosis of lymphoblasts in newly diagnosed ALL patients.
Collapse
Affiliation(s)
- Erol Erduran
- Karadeniz Technical University, School of Medicine, Department of Pediatrics, Pediatric Hematology Division, Trabzon, Turkey
| | | | | | | | | |
Collapse
|
34
|
Schubert SY, Ilan N, Shushy M, Ben-Izhak O, Vlodavsky I, Goldshmidt O. Human heparanase nuclear localization and enzymatic activity. J Transl Med 2004; 84:535-44. [PMID: 15034597 DOI: 10.1038/labinvest.3700084] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
In previous studies, we have demonstrated that human heparanase (endo-beta-D-glucuronidase) is localized primarily in a perinuclear pattern within lysosomes and late endosomes, and occasionally may be surface associated and secreted. The presence of two potential nuclear localization sequences in human heparanase, led us to investigate heparanase translocation into the nucleus and subsequent degradation of nuclear heparan sulfate. Applying cell fractionation, Western blot analysis, determination of heparanase activity and confocal microscopy, we identified heparanase within the nuclei of human glioma and breast carcinoma cells and estimated its amount to be about 7% of the cytosolic enzyme. Our results indicate that nuclear heparanase colocalizes with nuclear heparan sulfate and is enzymaticaly active. Moreover, following uptake of latent 65 kDa heparanase by cells that do not express the enzyme, an active 50 kDa heparanase was detected in the cell nucleus, capable of degrading both nuclear and extracellular matrix-derived heparan sulfate. Immunohistochemical examination of human squamous cell carcinoma specimens revealed a prominent granular staining of heparanase within the nuclei of the epithelial tumor cells vs no nuclear staining in the adjacent stromal cells. Taken together, it appears that heparanase is translocated into the cell nucleus where it may degrade the nuclear heparan sulfate and thereby affect nuclear functions that are thought to be regulated by heparan sulfate. Nuclear localization of heparanase suggests that the enzyme may fulfill nontraditional functions (ie, regulation of gene expression and signal transduction) apart of its well-documented involvement in cancer metastasis, angiogenesis and inflammation.
Collapse
Affiliation(s)
- Shay Y Schubert
- Cancer and Vascular Biology Research Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | | | | | | | | | | |
Collapse
|
35
|
Liguoro A, Prisco M, Mennella C, Ricchiari L, Angelini F, Andreuccetti P. Distribution of terminal sugar residues in the testis of the spotted rayTorpedo marmorata. Mol Reprod Dev 2004; 68:524-30. [PMID: 15236339 DOI: 10.1002/mrd.20112] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Lectins represent a class of proteins/glycoproteins binding specifically to terminal sugar residues. The present investigation aims to identify lectin-binding sites in testis of Torpedo marmorata. Using a panel of lectins coupled with fluoresceine isothiocyanate, we demonstrated that germ and somatic cells present in Torpedo testis contain glycoconjugates, whose distribution at the level of the surface, the cytoplasm and the nucleus changes during germ cell differentiation. Moreover our observations demonstrate that the germ cells undergoing apoptosis (Prisco et al., 2003a: Mol Reprod Dev 64:341-348) overexpress a residual sugar recognised by WFA lectin that can be considered a specific marker for apoptotic germ cells. Finally, our results indicate that there is a progressive increase in glycosilation during spermatogenesis, especially at the level of the acrosome in the spermatocyte-spermatid step, and that Leydig cells are differently stained in relation to the spermatogenetic cycle.
Collapse
Affiliation(s)
- Annamaria Liguoro
- Department of Evolutionary and Comparative Biology, University of Naples Federico II, Italy
| | | | | | | | | | | |
Collapse
|
36
|
Hsia E, Richardson TP, Nugent MA. Nuclear localization of basic fibroblast growth factor is mediated by heparan sulfate proteoglycans through protein kinase C signaling. J Cell Biochem 2003; 88:1214-25. [PMID: 12647303 DOI: 10.1002/jcb.10470] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Understanding the process of wound healing will provide valuable insight for the development of new strategies to treat diseases associated with improper regeneration, such as blindness induced by corneal scarring. Heparan sulfate proteoglycans (HSPG) are not normally expressed in the corneal stroma, but their presence at sites of injury suggests their involvement in the wound healing response. Primary cultured corneal stromal fibroblasts constitutively express HSPG and represent an injured phenotype. Recently, nuclear localization of HSPG was shown to increase in corneal stromal fibroblasts plated on fibronectin (FN), an extracellular matrix protein whose appearance in the corneal stroma correlates with injury. One possible role for the nuclear localization of HSPG is to function as a shuttle for the nuclear transport of heparin-binding growth factors, such as basic fibroblast growth factor (FGF-2). Once in the nucleus, these growth factors might directly modulate cellular activities. To investigate this hypothesis, cells were treated with (125)I-labelled FGF-2 under various conditions and fractionated. Our results show that nuclear localization of FGF-2 was increased in cells plated on FN compared to those on collagen type I (CO). Interestingly, FGF-2-stimulated proliferation was increased in cells plated on FN compared to CO and this effect was absent in the presence of heparinase III. Furthermore, pre-treatment with heparinase III decreased nuclear FGF-2, and CHO cells defective in the ability to properly synthesize heparan sulfate chains showed reduced nuclear FGF-2 indicating that the heparan sulfate chains of HSPG are critical for this process. HSPG signaling, particularly through the cytoplasmic tails of syndecans, was investigated as a potential mechanism for the nuclear localization of FGF-2. Treatment with phorbol 12-myristate-13-acetate (PMA), under conditions that caused downregulation of protein kinase Calpha (PKCalpha), decreased nuclear FGF-2. Using pharmacological inhibitors of specific PKC isozymes, we elucidated a potential mode of regulation whereby PKCalpha mediates the nuclear localization of FGF-2 and PKCdelta inhibits it. Our studies suggest a novel mechanism in which FGF-2 translocates to the nucleus in response to injury.
Collapse
Affiliation(s)
- Edward Hsia
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | |
Collapse
|
37
|
Yip GW, Ferretti P, Copp AJ. Heparan sulphate proteoglycans and spinal neurulation in the mouse embryo. Development 2002; 129:2109-19. [PMID: 11959821 DOI: 10.1242/dev.129.9.2109] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Heparan sulphate proteoglycans have been implicated in the binding and presentation of several growth factors to their receptors, thereby regulating cellular growth and differentiation. To investigate the role of heparan sulphate proteoglycans in mouse spinal neurulation, we administered chlorate, a competitive inhibitor of glycosaminoglycan sulphation, to cultured E8.5 embryos. Treated embryos exhibit accelerated posterior neuropore closure, accompanied by suppression of neuroepithelial bending at the median hinge point and accentuated bending at the paired dorsolateral hinge points of the posterior neuropore. These effects appear specific, as they can be prevented by addition of heparan sulphate to the culture medium, whereas heparitinase-treated heparan sulphate and chondroitin sulphate are ineffective. Both N- and O-sulphate groups appear to be necessary for the action of heparan sulphate. In situ hybridisation analysis demonstrates a normal distribution of sonic hedgehog mRNA in chlorate-treated embryos. By contrast, patched 1 transcripts are abnormally abundant in the notochord, and diminished in the overlying neuroepithelium, suggesting that sonic hedgehog signalling from the notochord may be perturbed by inhibition of heparan sulphation. Together, these results demonstrate a regulatory role for heparan sulphate in mouse spinal neurulation.
Collapse
Affiliation(s)
- George W Yip
- Developmental Biology Unit, Institute of Child Health, University College London, London, UK
| | | | | |
Collapse
|
38
|
West CM, van der Wel H, Gaucher EA. Complex glycosylation of Skp1 in Dictyostelium: implications for the modification of other eukaryotic cytoplasmic and nuclear proteins. Glycobiology 2002; 12:17R-27R. [PMID: 11886837 DOI: 10.1093/glycob/12.2.17r] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Recently, complex O-glycosylation of the cytoplasmic/nuclear protein Skp1 has been characterized in the eukaryotic microorganism Dictyostelium. Skp1's glycosylation is mediated by the sequential action of a prolyl hydroxylase and five conventional sugar nucleotide-dependent glycosyltransferase activities that reside in the cytoplasm rather than the secretory compartment. The Skp1-HyPro GlcNAcTransferase, which adds the first sugar, appears to be related to a lineage of enzymes that originated in the prokaryotic cytoplasm and initiates mucin-type O-linked glycosylation in the lumen of the eukaryotic Golgi apparatus. GlcNAc is extended by a bifunctional glycosyltransferase that mediates the ordered addition of beta1,3-linked Gal and alpha1,2-linked Fuc. The architecture of this enzyme resembles that of certain two-domain prokaryotic glycosyltransferases. The catalytic domains are related to those of a large family of prokaryotic and eukaryotic, cytoplasmic, membrane-bound, inverting glycosyltransferases that modify glycolipids and polysaccharides prior to their translocation across membranes toward the secretory pathway or the cell exterior. The existence of these enzymes in the eukaryotic cytoplasm away from membranes and their ability to modify protein acceptors expose a new set of cytoplasmic and nuclear proteins to potential prolyl hydroxylation and complex O-linked glycosylation.
Collapse
Affiliation(s)
- Christopher M West
- Department of Anatomy and Cell Biology, 1600 SW Archer Road, University of Florida College of Medicine, Gainesville, FL 32610-0235, USA
| | | | | |
Collapse
|
39
|
Richardson TP, Trinkaus-Randall V, Nugent MA. Regulation of heparan sulfate proteoglycan nuclear localization by fibronectin. J Cell Sci 2001; 114:1613-23. [PMID: 11309193 DOI: 10.1242/jcs.114.9.1613] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Heparan sulfate proteoglycans (HSPG) regulate multiple cellular processes and mediate the cellular uptake of numerous molecules. While heparan sulphate glycosaminoglycan chains are known to modulate receptor binding of several heparin-binding proteins, here we show that distinct extracellular matrices direct HSPG to the nucleus. We analyzed HSPG localization in primary corneal fibroblasts, cultured on fibronectin or collagen type I matrices, using confocal laser scanning microscopy and cell fractionation. Image analysis revealed that the nuclear localization of HSPG core proteins was greater when cells were cultured on fibronectin versus collagen. Matrices containing the heparin-binding domain of fibronectin, but not the integrin-activating domain, demonstrated increased nuclear staining of core proteins. Furthermore, activation of protein kinase C with phorbol 12-myristate 13-acetate inhibited nuclear targeting of HSPG in cells on fibronectin, whereas inhibition of protein kinase C with Ro-31-8220 greatly enhanced nuclear localization of HSPG in cells on both collagen and fibronectin. We propose a matrix-dependent mechanism for nuclear localization of cell surface HSPG involving protein kinase C-mediated signaling. Nuclear localization of HSPG might play important roles in regulating nuclear function.
Collapse
Affiliation(s)
- T P Richardson
- Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | |
Collapse
|
40
|
Chen MR, Yang JF, Wu CW, Middeldorp JM, Chen JY. Physical association between the EBV protein EBNA-1 and P32/TAP/hyaluronectin. J Biomed Sci 2000; 5:173-9. [PMID: 9678487 DOI: 10.1007/bf02253466] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Epstein-Barr virus (EBV) nuclear antigen-1 (EBNA-1) is a protein expressed constitutively during EBV latency. It is required to support the replication of the EBV genome once per cell cycle via the latent origin of replication, oriP. EBNA-1 also can activate transcription through binding to the family repeats of oriP. We wished to identify candidate cellular protein(s) that may interact with EBNA-1 and mediate these functions. A 32-kd protein was co-immunoprecipitated with EBNA-1 from 293 cells using a monoclonal antibody EBNA.OT1x. The regions of EBNA-1 which interact with this protein were studied using two deletion clones and mapped to EBNA-1 residues 1-102 and 325-357. Deletion of this region was shown previously in a mutant of EBNA-1 which had dominant-negative effects on both DNA replication and transactivation assays. The 32-kd protein was found to react with a polyclonal antiserum against P32/TAP (HIV Tat associated protein), which is known to interact with other RNA binding proteins and the RNA splicing factor SF2. The function of P32 was therefore proposed to involve RNA processing. In addition, this molecule was recently identified as hyaluronectin, which binds hyaluronic acid. Because several reports documented that intracellular hyaluronic acid can potentially affect cell proliferation, the association between EBNA-1 and P32/TAP/hyaluronectin may help the maintenance of episomal viral DNA within proliferating cells.
Collapse
Affiliation(s)
- M R Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei.
| | | | | | | | | |
Collapse
|
41
|
Huang L, Grammatikakis N, Yoneda M, Banerjee SD, Toole BP. Molecular characterization of a novel intracellular hyaluronan-binding protein. J Biol Chem 2000; 275:29829-39. [PMID: 10887182 DOI: 10.1074/jbc.m002737200] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Hyaluronan has well defined functions in extracellular matrices and at the surface of cells. However, several studies have now shown that significant pools of hyaluronan are also present intracellularly, but its function therein is unknown. One avenue of investigation that may assist in defining the function of intracellular hyaluronan is to identify intracellular hyaluronan-binding proteins. In previous studies we identified CDC37, a cell cycle regulatory protein, using a monoclonal antibody that recognizes a novel group of hyaluronan-binding proteins. In this study, we have identified a second hyaluronan-binding protein with this antibody and characterized its properties. This protein, which we have termed IHABP4, was also found to be an intracellular and a specific hyaluronan-binding protein, containing several hyaluronan-binding motifs: (R/K)[X(7)](R/K) (where R/K denotes arginine or lysine and X denotes non-acidic amino acids). Furthermore, we have determined the gene organization of IHABP4 and cloned cDNAs for the chick, mouse, and human homologs. Comparison of the deduced chick, mouse, and human protein sequences showed that the hyaluronan-binding motifs, (R/K)[X(7)](R/K), in these sequences are conserved; both chick and mouse IHABP4 were shown directly to bind hyaluronan. Biochemical fractionation and immunofluorescent localization of epitope-tagged IHABP4 indicated that it is mainly present in the cytoplasm. These data support the possibility that intracellular hyaluronan and its binding proteins may play important roles in cell behavior.
Collapse
Affiliation(s)
- L Huang
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | | | | | |
Collapse
|
42
|
Abstract
Hyaluronan is a high molecular weight glycosaminoglycan found in the extracellular matrix of many tissues, where it is believed to promote cell migration and proliferation. It was recently shown that hyaluronan-dependent pericellular matrix formation is a rapid process that occurs as cells detach during mitosis. Growing evidence for intracellular hyaluronan in tissues in vivo, together with evidence of intracellular hyaluronan binding molecules, prompted us to examine hyaluronan distribution and uptake as well as hyaluronan binding sites in cells and their relationship to cell proliferation in vitro, using a biotinylated hyaluronan binding protein and fluorescein-labeled hyaluronan. In permeabilized smooth muscle cells and fibroblasts, hyaluronan staining was seen in the cytoplasm in a diffuse, network-like pattern and in vesicles. Nuclear hyaluronan staining was observed and confirmed by confocal microscopy and was often associated with nucleoli and nuclear clefts. After serum stimulation of 3T3 cells, there was a dramatic increase in cytoplasmic hyaluronan staining, especially during late prophase/early prometaphase of mitosis. In contrast, unstimulated cells were negative. There was a pronounced alteration in the amount and distribution of hyaluronan binding sites, from a mostly nucleolar distribution in unstimulated cells to one throughout the cytoplasm and nucleus after stimulation. Exogenous fluorescein-labeled hyaluronan was taken up avidly into vesicles in growing cells but was localized distinctly compared to endogenous hyaluronan, suggesting that hyaluronan in cells may be derived from an intracellular source. These data indicate that intracellular hyaluronan may be involved in nucleolar function, chromosomal rearrangement, or other events in proliferating cells. (J Histochem Cytochem 47:1331-1341, 1999)
Collapse
Affiliation(s)
- S P Evanko
- Department of Pathology, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
43
|
Zhao M, Lu Y, Takata T, Ogawa I, Miyauchi M, Mock D, Nikai H. Immunohistochemical and histochemical characterization of the mucosubstances of odontogenic myxoma: histogenesis and differential diagnosis. Pathol Res Pract 1999; 195:391-7. [PMID: 10399179 DOI: 10.1016/s0344-0338(99)80012-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
To discuss the dental origin of odontogenic myxoma and to provide further information for the differential diagnosis between this tumor and myxoid malignant fibrous histiocytoma (MFH) which occasionally occurs in jaw bones, the contents of glycosaminoglycans (GAGs) and proteoglycans (PGs) in the mucosubstances of 15 odontogenic myxomas, 5 myxoid MFH and 3 human fetal tooth germs in the bell stage of development were characterized using histochemical and immunohistochemical methods. Histochemical staining of hyaluronic acid (HA) was undertaken using biotinylated HA binding protein (B-HABP), and immunohistochemical detection was done using a panel of antibodies against chondroitin 6-sulfate (CS-6), chondroitin 4-sulfate (CS-4), dermatan sulfate (DS), keratan sulfate (KS), heparan sulfate (HS), aggrecan, PG-M/versican, decorin and biglycan. In odontogenic myxoma, CS-6, HA and PG-M/versican were observed in the myxomatous matrix of all cases, while KS and HS were seen in none. As for CS-4, DS, aggrecan, decorin and biglycan, only irregular and mild stainings were shown. Consistent and strong positive straining for CS-6, HA and PG-M/versican were seen in dental papilla and provided evidence supporting the origin of this tumor from dental papilla. Except for the constant staining for HA, the myxoid matrix was rarely stained for most GAGs and PGs in myxoid MFH. Immunodetection of CS-6 and PG-M/version with the use of monoclonal antibodies 3-B-3 and 2-B-1 is therefore recommended as a useful tool in differentiating odontogenic myoma from myxoid MFH.
Collapse
Affiliation(s)
- M Zhao
- Department of Oral Pathology, Hiroshima University School of Dentistry, Japan
| | | | | | | | | | | | | |
Collapse
|
44
|
Erduran E, Tekelioğlu Y, Gedik Y, Yildiran A. Apoptotic effects of heparin on lymphoblasts, neutrophils, and mononuclear cells: results of a preliminary in vitro study. Am J Hematol 1999; 61:90-3. [PMID: 10367785 DOI: 10.1002/(sici)1096-8652(199906)61:2<90::aid-ajh2>3.0.co;2-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In this study the apoptotic effects of heparin on lymphoblasts, neutrophils, and mononuclear cells were evaluated by flow cytometry for detection of sub-G1 peak, in vitro. Ten children with acute lymphoblastic leukemia (ALL) at diagnosis (Group I), six children with ALL at relapse (Group II), and 10 healthy children (controls) were included in this study. Lymphoblasts in ALL patients, and neutrophils and mononuclear cells in controls, were incubated in increasing heparin concentrations (0, 5, 10, 20 U/ml). Flow cytometric analyses were performed at 0, 1, and 2 hours of incubation in heparin for determination of the apoptotic effects of heparin. In Group I apoptosis was detected in all different levels of heparin concentration except 0 U/ml at 0, 1, and 2 hours. The apoptotic effects of heparin on blast cells peaked at the first hour in 5-, 10-, and 20-U/ml heparin concentrations (p < 0.0001). In Group II similar findings were observed only at zero hour and apoptosis was higher than those in Group I except in 5-U/ml heparin concentration (p < 0.001). Apoptosis was found to increase with heparin levels in both groups (p < 0.02). In the control group, apoptosis was detected only at the 20-U/ml heparin concentration and only at the first and second hours. Lymphoblasts are more sensitive to apoptotic effects of heparin than either neutrophils and mononuclear cells (p < 0.004). It can be suggested that low-dose heparin may cause significant apoptosis of lymphoblasts while inducing no apoptosis on neutrophils and mononuclear cells. The findings of this preliminary study indicate that further and more comprehensive research on the apoptotic effect of heparin on lymphoblasts should be done.
Collapse
Affiliation(s)
- E Erduran
- Karadeniz Technical University, Medical School, Department of Pediatrics, Trabzon, Turkey
| | | | | | | |
Collapse
|
45
|
Abstract
Heparan sulfate is a component of vertebrate and invertebrate tissues which appears during the cytodifferentiation stage of embryonic development. Its structure varies according to the tissue and species of origin and is modified during neoplastic transformation. Several lines of experimental evidence suggest that heparan sulfate plays a role in cellular recognition, cellular adhesion and growth control. Heparan sulfate can participate in the process of cell division in two distinct ways, either as a positive or negative modulator of cellular proliferation, or as a response to a mitogenic stimulus.
Collapse
Affiliation(s)
- M A Porcionatto
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, Brasil.
| | | | | |
Collapse
|
46
|
Zhao M, Takata T, Ogawa I, Miyauchi M, Ito H, Nikai H. Localization of glycosaminoglycans (GAGs) in pleomorphic adenoma (PA) of salivary glands: an immunohistochemical and histochemical evaluation. J Oral Pathol Med 1998; 27:272-7. [PMID: 9707280 DOI: 10.1111/j.1600-0714.1998.tb01955.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The tumor matrix of salivary pleomorphic adenoma (PA) is characteristically rich in glycosaminoglycans (GAGs), which contribute to its complex histoarchitecture. This study evaluated the microscopic localization of various GAGs in 17 PAs, using a panel of anti-GAG monoclonal antibodies and biotinylated hyaluronic acid (HA)-binding protein. Both epithelial and mesenchymal-like tissues were confirmed to contain GAGs. Luminal epithelial cells mostly lacked GAGs, whereas GAGs were seen both in the cytoplasm and cell membrane of non-luminal epithelial cells. In addition, small intercellular accumulations of GAGs were often present in solid epithelial areas, implying the epithelial origin of GAGs. GAGs did not appear to be a main component of the hyaline matrix. The myxoid region was consistently stained for both chondroitin 6-sulfate (CS-6) and HA but variably for chondroitin 4-sulfate (CS-4), dermatan sulfate (DS) and keratan sulfate (KS); heparan sulfate (HS) was not detected. The chondroid region showed increased staining for CS-6 but reduced staining for HA when compared with the myxoid region. In addition, CS-4, DS and KS were seen both in chondroid cells and the territorial matrix, whereas HS was present only in the cells. It is suggested that GAGs in PA are mainly produced by non-luminal cells and influence the proliferation, differentiation, secretory activity and shape of tumor cells, thus contributing to the morphological diversity of this tumor.
Collapse
Affiliation(s)
- M Zhao
- Department of Oral Pathology, Hiroshima University School of Dentistry, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Kovalszky I, Dudás J, Oláh-Nagy J, Pogány G, Töváry J, Timár J, Kopper L, Jeney A, Iozzo RV. Inhibition of DNA topoisomerase I activity by heparan sulfate and modulation by basic fibroblast growth factor. Mol Cell Biochem 1998; 183:11-23. [PMID: 9655174 DOI: 10.1023/a:1006898920637] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Eukaryotic DNA topoisomerase I catalyzes changes in the superhelical state of duplex DNA by transiently breaking single strands thereby allowing relaxation of both positively and negatively supercoiled DNA. Topoisomerase I is a nuclear enzyme localized at active sites of transcription, and abnormal levels of the enzyme have been observed in a variety of neoplasms. Because the enzyme binds heparin and, given the presence of heparan sulfate within the nuclei of mammalian cells, we sought to investigate the interaction between topoisomerase I and sulfated glycosaminoglycans isolated from normal and neoplastic human liver. The results demonstrated that low concentrations (approximately 100 nM) of heparan sulfate from normal liver but not from its malignant counterpart effectively blocked relaxation of supercoiled DNA driven by either purified holoenzyme or topoisomerase I activity present in nuclear extracts of three malignant cell lines. Heparin acted at even lower (approximately 10 nM) concentrations. Moreover, we show that basic fibroblast growth factor could interfere with this heparan sulfate/heparin-driven inhibition and that both basic fibroblast growth factor and heparin-binding sites co-localized in the nuclei of U937 leukemic cells. Our results suggest that DNA topoisomerase I activity may be modulated in vivo by specific heparan sulfate moieties present in normal cells but markedly reduced or absent in their transformed counterparts.
Collapse
Affiliation(s)
- I Kovalszky
- First Institute of Pathology and Experimental Cancer Research, Semmelweis Medical University, Budapest, Hungary
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ambrosio AL, Iglesias MM, Wolfenstein-Todel C. The heparin-binding lectin from ovine placenta: purification and identification as histone H4. Glycoconj J 1997; 14:831-6. [PMID: 9511988 DOI: 10.1023/a:1018538004923] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The heparin-binding lectin complex from ovine placental cotyledons was purified by affinity chromatography on heparin-agarose column. It showed three protein bands, which had molecular weights of 13000, 15000 and 17000 by sodium dodecylsulfate-polyacrylamide gel electrophoresis, and the presence of DNA by agarose gel electrophoresis. The protein components of the complex were separated by reverse-phase HPLC. The minimum inhibitory concentrations of glycosaminoglycans were significantly different for the lectin complex and the separated proteins, suggesting affinity changes upon DNA binding. The haemagglutinating activity specificity allowed the characterization of the fraction with a molecular weight of 13000 as the heparin-binding lectin. This protein was identified as histone H4 by internal sequencing, thus showing that this is the histone responsible for the heparin-binding property of the complex. The accompanying proteins were tentatively identified as histones H2A and H2B.
Collapse
Affiliation(s)
- A L Ambrosio
- Instituto de Química y Fisicoquímica Biológicas, (UBA-CONICET), Facultad de Farmacia y Bioquímica, Buenos Aires, Argentina
| | | | | |
Collapse
|
49
|
Ihrcke NS, Platt JL. Shedding of heparan sulfate proteoglycan by stimulated endothelial cells: evidence for proteolysis of cell-surface molecules. J Cell Physiol 1996; 168:625-37. [PMID: 8816917 DOI: 10.1002/(sici)1097-4652(199609)168:3<625::aid-jcp15>3.0.co;2-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Activation of endothelial cells by cytokines and endotoxin causes procoagulant and pro-inflammatory changes over a period of hours. We postulated that the same functional state might be achieved more rapidly by changes in the metabolism of heparan sulfate, which supports many of the normal functions of endothelial cells. We previously found that binding of anti-endothelial cell antibodies and activation of complement on endothelial cells causes the rapid shedding of endothelial cell heparan sulfate. Here we report the biochemical mechanism responsible for the release of the heparan sulfate. Stimulation of endothelial cells by anti-endothelial cell antibodies and complement resulted in the release of 35S-heparan sulfate proteoglycan and partially degraded 35S-heparan sulfate chains. Degradation of the 35S-heparan sulfate chains was not necessary for release since heparin and suramin prevented cleavage of the heparan sulfate but did not inhibit release from stimulated endothelial cells. The 35S-heparan sulfate proteoglycan released from endothelial cells originated from the cell surface and had a core protein similar in size (70.5 kD) to syndecan-1. Release was due to proteolytic cleavage of the protein core by serine and/or cysteine proteinases since the release of heparan sulfate was inhibited 87% by antipain and 53% by leupeptin. Release of heparan sulfate coincided with a decrease of approximately 7 kD in the mass of the protein core and with a loss of hydrophobicity of the proteoglycan, consistent with the loss of the hydrophobic transmembrane domain. The cleavage and release of cell-surface 35S-heparan sulfate proteoglycan might be a novel mechanism by which endothelial cells may rapidly acquire the functional properties of activated endothelial cells.
Collapse
Affiliation(s)
- N S Ihrcke
- Department of Surgery, Duke University Medical Center Durham, North Carolina 27710, USA
| | | |
Collapse
|
50
|
Abstract
Hyaluronan (HA) is a ubiquitous component of the extracellular matrix (ECM) and occurs transiently in both the cell nucleus and cytoplasm. It has been shown to promote cell motility, adhesion, and proliferation and thus it has an important role in such processes as morphogenesis, wound repair, inflammation, and metastasis. These processes require massive cell movement and tissue reorganization and are always accompanied by elevated levels of HA. Many of the effects of HA are mediated through cell surface receptors, three of which have been molecularly characterized, namely CD44, RHAMM, and ICAM-1. Binding of the HA ligand to its receptors triggers signal transduction events which, in concert with other ECM and cytoskeletal components, can direct cell trafficking during physiological and pathological events. The HA mediated signals are transmitted, at least in part, by the activation of protein phosphorylation cascades, cytokine release, and the stimulation of cell cycle proteins. A variety of extracellular signals regulate the expression of both HA and the receptors necessitating that HA-receptor signalling is a tightly controlled process. Regulated production of soluble forms of the receptors, alternately spliced cell surface isoforms, and glycosylation variants of these receptors can dramatically modulate HA binding, ligand specificity, and stimulation of the signalling pathway. When these processes are deregulated cell behaviour becomes uncontrolled leading to developmental abnormalities, abnormal physiological responses, and tumorigenesis. The elucidation of the molecular mechanisms regulating HA-mediated events will not only contribute greatly to our understanding of a variety of disease processes but will also offer many new avenues of therapeutic intervention.
Collapse
Affiliation(s)
- J Entwistle
- Manitoba Institute of Cell Biology, University of Manitoba, Winnipeg, Canada
| | | | | |
Collapse
|