1
|
Fujiwara A, Takemura K, Tanaka A, Matsumoto M, Katsuyama M, Okanoue T, Yamaguchi K, Itoh Y, Iwata K, Amagase K, Umemura A. Carfilzomib shows therapeutic potential for reduction of liver fibrosis by targeting hepatic stellate cell activation. Sci Rep 2024; 14:19288. [PMID: 39164386 PMCID: PMC11335859 DOI: 10.1038/s41598-024-70296-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/14/2024] [Indexed: 08/22/2024] Open
Abstract
Because hepatic stellate cells (HSCs) play a major role in fibrosis, we focused on HSCs as a potential target for the treatment of liver fibrosis. In this study, we attempted to identify drug candidates to inactivate HSCs and found that several proteasome inhibitors (PIs) reduced HSC viability. Our data showed that a second-generation PI, carfilzomib (CZM), suppressed the expression of fibrotic markers in primary murine HSCs at low concentrations of 5 or 10 nM. Since CZM was not toxic to HSCs up to a concentration of 12.5 nM, we examined its antifibrotic effects further. CZM achieved a clear reduction in liver fibrosis in the carbon tetrachloride (CCl4)-induced mouse model of liver fibrosis without worsening of liver injury. Mechanistically, RNA sequence analysis of primary HSCs revealed that CZM inhibits mitosis in HSCs. In the CCl4-injured liver, amphiregulin, which is known to activate mitogenic signaling pathways and fibrogenic activity and is upregulated in murine and human metabolic dysfunction-associated steatohepatitis (MASH), was downregulated by CZM administration, leading to inhibition of mitosis in HSCs. Thus, CZM and next-generation PIs in development could be potential therapeutic agents for the treatment of liver fibrosis via inactivation of HSCs without liver injury.
Collapse
Affiliation(s)
- Ayana Fujiwara
- Department of Pharmacology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
- Laboratory of Pharmacology and Pharmacotherapeutics, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Keisuke Takemura
- Department of Pharmacology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Anna Tanaka
- Laboratory of Pharmacology and Pharmacotherapeutics, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Misaki Matsumoto
- Department of Pharmacology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
- Department of Clinical Pharmacology and Pharmacotherapy, Wakayama Medical University, Wakayama, Japan
| | - Masato Katsuyama
- Radioisotope Center, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Japan
| | - Takeshi Okanoue
- Department of Gastroenterology and Hepatology, Saiseikai Suita Hospital, Osaka, Japan
| | - Kanji Yamaguchi
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshito Itoh
- Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazumi Iwata
- Department of Pharmacology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan
| | - Kikuko Amagase
- Laboratory of Pharmacology and Pharmacotherapeutics, College of Pharmaceutical Sciences, Ritsumeikan University, Shiga, 525-8577, Japan
| | - Atsushi Umemura
- Department of Pharmacology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kawaramachi-Hirokoji, Kamigyo-ku, Kyoto, 602-8566, Japan.
| |
Collapse
|
2
|
Wu L, Lin Q, Chatla S, Amarachintha S, Wilson AF, Atale N, Gao ZJ, Joseph J, Wolff EV, Du W. LepR+ niche cell-derived AREG compromises hematopoietic stem cell maintenance under conditions of DNA repair deficiency and aging. Blood 2023; 142:1529-1542. [PMID: 37584437 PMCID: PMC10656728 DOI: 10.1182/blood.2022018212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/17/2023] Open
Abstract
The cross talk between extrinsic niche-derived and intrinsic hematopoietic stem cell (HSC) factors controlling HSC maintenance remains elusive. Here, we demonstrated that amphiregulin (AREG) from bone marrow (BM) leptin receptor (LepR+) niche cells is an important factor that mediates the cross talk between the BM niche and HSCs in stem cell maintenance. Mice deficient of the DNA repair gene Brca2, specifically in LepR+ cells (LepR-Cre;Brca2fl/fl), exhibited increased frequencies of total and myeloid-biased HSCs. Furthermore, HSCs from LepR-Cre;Brca2fl/fl mice showed compromised repopulation, increased expansion of donor-derived, myeloid-biased HSCs, and increased myeloid output. Brca2-deficient BM LepR+ cells exhibited persistent DNA damage-inducible overproduction of AREG. Ex vivo treatment of wild-type HSCs or systemic treatment of C57BL/6 mice with recombinant AREG impaired repopulation, leading to HSC exhaustion. Conversely, inhibition of AREG by an anti-AREG-neutralizing antibody or deletion of the Areg gene in LepR-Cre;Brca2fl/fl mice rescued HSC defects caused by AREG. Mechanistically, AREG activated the phosphoinositide 3-kinases (PI3K)/AKT/mammalian target of rapamycin (mTOR) pathway, promoted HSC cycling, and compromised HSC quiescence. Finally, we demonstrated that BM LepR+ niche cells from other DNA repair-deficient and aged mice also showed persistent DNA damage-associated overexpression of AREG, which exerts similar negative effects on HSC maintenance. Therefore, we identified an important factor that regulates HSCs function under conditions of DNA repair deficiency and aging.
Collapse
Affiliation(s)
- Limei Wu
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Genome Stability Program, UPMC Hillman Cancer Center, Pittsburgh, PA
| | - Qiqi Lin
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Srinivas Chatla
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - Surya Amarachintha
- Department of Biology, Georgia Southwestern State University, Americus, GA
| | - Andrew F Wilson
- Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Neha Atale
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Genome Stability Program, UPMC Hillman Cancer Center, Pittsburgh, PA
| | - Zhenxia J Gao
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Genome Stability Program, UPMC Hillman Cancer Center, Pittsburgh, PA
| | - Jonathan Joseph
- University of Pittsburgh Medical Center Medical Education, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Emily V Wolff
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Genome Stability Program, UPMC Hillman Cancer Center, Pittsburgh, PA
| | - Wei Du
- Division of Hematology and Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Genome Stability Program, UPMC Hillman Cancer Center, Pittsburgh, PA
| |
Collapse
|
3
|
Morato A, Accornero P, Hovey RC. ERBB Receptors and Their Ligands in the Developing Mammary Glands of Different Species: Fifteen Characters in Search of an Author. J Mammary Gland Biol Neoplasia 2023; 28:10. [PMID: 37219601 DOI: 10.1007/s10911-023-09538-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/26/2023] [Indexed: 05/24/2023] Open
Abstract
The ERBB tyrosine kinase receptors and their ligands belong to a complex family that has diverse biological effects and expression profiles in the developing mammary glands, where its members play an essential role in translating hormone signals into local effects. While our understanding of these processes stems mostly from mouse models, there is the potential for differences in how this family functions in the mammary glands of other species, particularly in light of their unique histomorphological features. Herein we review the postnatal distribution and function of ERBB receptors and their ligands in the mammary glands of rodents and humans, as well as for livestock and companion animals. Our analysis highlights the diverse biology for this family and its members across species, the regulation of their expression, and how their roles and functions might be modulated by varying stromal composition and hormone interactions. Given that ERBB receptors and their ligands have the potential to influence processes ranging from normal mammary development to diseased states such as cancer and/or mastitis, both in human and veterinary medicine, a more complete understanding of their biological functions should help to direct future research and the identification of new therapeutic targets.
Collapse
Affiliation(s)
- Alessia Morato
- Department of Animal Science, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA.
| | - Paolo Accornero
- Department of Veterinary Science, University of Turin, Largo Paolo Braccini 2, Grugliasco, TO, 10095, Italy
| | - Russell C Hovey
- Department of Animal Science, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| |
Collapse
|
4
|
Lu Q, Gao Y, Fan Z, Xiao X, Chen Y, Si Y, Kong D, Wang S, Liao M, Chen X, Wang X, Chu W. Amphiregulin promotes hair regeneration of skin-derived precursors via the PI3K and MAPK pathways. Cell Prolif 2021; 54:e13106. [PMID: 34382262 PMCID: PMC8450126 DOI: 10.1111/cpr.13106] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 12/13/2022] Open
Abstract
Objectives There are significant clinical challenges associated with alopecia treatment, including poor efficiency of related drugs and insufficient hair follicles (HFs) for transplantation. Skin‐derived precursors (SKPs) exhibit great potential as stem cell‐based therapies for hair regeneration; however, the proliferation and hair‐inducing capacity of SKPs gradually decrease during culturing. Materials and Methods We describe a 3D co‐culture system accompanied by kyoto encyclopaedia of genes and genomes and gene ontology enrichment analyses to determine the key factors and pathways that enhance SKP stemness and verified using alkaline phosphatase assays, Ki‐67 staining, HF reconstitution, Western blot and immunofluorescence staining. The upregulated genes were confirmed utilizing corresponding recombinant protein or small‐interfering RNA silencing in vitro, as well as the evaluation of telogen‐to‐anagen transition and HF reconstitution in vivo. Results The 3D co‐culture system revealed that epidermal stem cells and adipose‐derived stem cells enhanced SKP proliferation and HF regeneration capacity by amphiregulin (AREG), with the promoted stemness allowing SKPs to gain an earlier telogen‐to‐anagen transition and high‐efficiency HF reconstitution. By contrast, inhibitors of the phosphoinositide 3‐kinase (PI3K) and mitogen‐activated protein kinase (MAPK) pathways downstream of AREG signalling resulted in diametrically opposite activities. Conclusions By exploiting a 3D co‐culture model, we determined that AREG promoted SKP stemness by enhancing both proliferation and hair‐inducing capacity through the PI3K and MAPK pathways. These findings suggest AREG therapy as a potentially promising approach for treating alopecia.
Collapse
Affiliation(s)
- Qiumei Lu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Ying Gao
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China.,Department of Anesthesiology, The First People's Hospital of Foshan, Foshan, China
| | - Zhimeng Fan
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xing Xiao
- Center of Scientific Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yu Chen
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuan Si
- Department of Dermatology, Guangzhou First People's Hospital, Guangzhou, China
| | - Deqiang Kong
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Shuai Wang
- The Yonghe Medical Beauty Clinic Limited Company, Guangzhou, China
| | - Meijian Liao
- School of basic medicine, Xuzhou Medical University, Xuzhou, China
| | - Xiaodong Chen
- Department of Burn Surgery, The First People's Hospital of Foshan, Foshan, China
| | - Xusheng Wang
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Weiwei Chu
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
5
|
Sisto M, Lorusso L, Ingravallo G, Lisi S. Exocrine Gland Morphogenesis: Insights into the Role of Amphiregulin from Development to Disease. Arch Immunol Ther Exp (Warsz) 2017; 65:477-499. [DOI: 10.1007/s00005-017-0478-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 06/02/2017] [Indexed: 12/12/2022]
|
6
|
Agosto-Arroyo E, Isayeva T, Wei S, Almeida JS, Harada S. Differential Gene Expression in Ductal Carcinoma In Situ of the Breast Based on ERBB2 Status. Cancer Control 2017; 24:102-110. [PMID: 28178722 DOI: 10.1177/107327481702400117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The molecular signature of ductal carcinoma in situ (DCIS) in the breast is not well understood. Erb-b2 receptor tyrosine kinase 2 (ERBB2 [formerly known as HER2/neu]) positivity in DCIS is predictive of coexistent early invasive breast carcinoma. The aim of this study is to identify the gene-expression signature profiles of estrogen receptor (ER)/progesterone receptor (PR)-positive, ERBB2, and triple-negative subtypes of DCIS. METHODS Based on ER, PR, and ERBB2 status, a total of 18 high nuclear grade DCIS cases with no evidence of invasive breast carcinoma were selected along with 6 non-neoplastic controls. The 3 study groups were defined as ER/PR-positive, ERBB2, and triple-negative subtypes. RESULTS A total of 49 genes were differentially expressed in the ERBB2 subtype compared with the ER/PR-positive and triple-negative groups. PROM1 was overexpressed in the ERBB2 subtype compared with ER/PR-positive and triple-negative subtypes. Other genes differentially expressed included TAOK1, AREG, AGR3, PEG10, and MMP9. CONCLUSIONS Our study identified unique gene signatures in ERBB2-positive DCIS, which may be associated with the development of invasive breast carcinoma. The results may enhance our understanding of the progression of breast cancer and become the basis for developing new predictive biomarkers and therapeutic targets for DCIS.
Collapse
Affiliation(s)
| | - Tatyana Isayeva
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Shi Wei
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Jonas S Almeida
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | - Shuko Harada
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL.
| |
Collapse
|
7
|
Amphiregulin enhances intercellular adhesion molecule-1 expression and promotes tumor metastasis in human osteosarcoma. Oncotarget 2016; 6:40880-95. [PMID: 26503469 PMCID: PMC4747375 DOI: 10.18632/oncotarget.5679] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/13/2015] [Indexed: 02/07/2023] Open
Abstract
Osteosarcoma is a common, high malignant, and metastatic bone cancer. Amphiregulin (AREG) has been associated with cancer cellular activities. However, the effect of AREG on metastasis activity in human osteosarcoma cells has yet to be determined. We determined that AREG increases the expression of intercellular adhesion molecule-1 (ICAM-1) through PI3K/Akt signaling pathway via its interaction with the epidermal growth factor receptor, thus resulting in the enhanced cell migration of osteosarcoma. Furthermore, AREG stimulation increased the association of NF-κB to ICAM-1 promoter which then up-regulated ICAM-1 expression. Finally, we observed that shRNA silencing of AREG decreased osteosarcoma metastasis in vivo. Our findings revealed a relationship between osteosarcoma metastatic potential and AREG expression and the modulating effect of AREG on ICAM-1 expression.
Collapse
|
8
|
Zaiss DMW, Gause WC, Osborne LC, Artis D. Emerging functions of amphiregulin in orchestrating immunity, inflammation, and tissue repair. Immunity 2015; 42:216-226. [PMID: 25692699 DOI: 10.1016/j.immuni.2015.01.020] [Citation(s) in RCA: 413] [Impact Index Per Article: 45.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Indexed: 01/14/2023]
Abstract
Type 2 inflammatory responses can be elicited by diverse stimuli, including toxins, venoms, allergens, and infectious agents, and play critical roles in resistance and tolerance associated with infection, wound healing, tissue repair, and tumor development. Emerging data suggest that in addition to characteristic type 2-associated cytokines, the epidermal growth factor (EGF)-like molecule Amphiregulin (AREG) might be a critical component of type 2-mediated resistance and tolerance. Notably, numerous studies demonstrate that in addition to the established role of epithelial- and mesenchymal-derived AREG, multiple leukocyte populations including mast cells, basophils, group 2 innate lymphoid cells (ILC2s), and a subset of tissue-resident regulatory CD4(+) T cells can express AREG. In this review, we discuss recent advances in our understanding of the AREG-EGF receptor pathway and its involvement in infection and inflammation and propose a model for the function of this pathway in the context of resistance and tissue tolerance.
Collapse
Affiliation(s)
- Dietmar M W Zaiss
- Ashworth Laboratories, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, EH9 3FL, UK.
| | - William C Gause
- Department of Medicine, Center for Immunity and Inflammation, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ 07101, USA.
| | - Lisa C Osborne
- Jill Roberts Institute for Research in IBD, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY 10021, USA
| | - David Artis
- Jill Roberts Institute for Research in IBD, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, NY 10021, USA.
| |
Collapse
|
9
|
Amphiregulin activates human hepatic stellate cells and is upregulated in non alcoholic steatohepatitis. Sci Rep 2015; 5:8812. [PMID: 25744849 PMCID: PMC4351520 DOI: 10.1038/srep08812] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 02/04/2015] [Indexed: 01/11/2023] Open
Abstract
Amphiregulin (AR) involvement in liver fibrogenesis and hepatic stellate cells (HSC) regulation is under study. Non-alcoholic fatty liver disease (NAFLD) and its more severe form non-alcoholic steatohepatitis (NASH) may progress to cirrhosis and hepatocellular cancer (HCC). Our aim was to investigate ex vivo the effect of AR on human primary HSC (hHSC) and verify in vivo the relevance of AR in NAFLD fibrogenesis. hHSC isolated from healthy liver segments were analyzed for expression of AR and its activator, TNF-α converting enzyme (TACE). AR induction of hHSC proliferation and matrix production was estimated in the presence of antagonists. AR involvement in fibrogenesis was also assessed in a mouse model of NASH and in humans with NASH. hHSC time dependently expressed AR and TACE. AR increased hHSC proliferation through several mitogenic signaling pathways such as EGFR, PI3K and p38. AR also induced marked upregulation of hHSC fibrogenic markers and reduced hHSC death. AR expression was enhanced in the HSC of a murine model of NASH and of severe human NASH. In conclusion, AR induces hHSC fibrogenic activity via multiple mitogenic signaling pathways, and is upregulated in murine and human NASH, suggesting that AR antagonists may be clinically useful anti-fibrotics in NAFLD.
Collapse
|
10
|
Tanaka H, Nishioka Y, Yokoyama Y, Higashiyama S, Matsuura N, Matsuura S, Hieda M. Nuclear envelope-localized EGF family protein amphiregulin activates breast cancer cell migration in an EGF-like domain independent manner. Biochem Biophys Res Commun 2012; 420:721-6. [PMID: 22445895 DOI: 10.1016/j.bbrc.2012.03.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 03/09/2012] [Indexed: 10/28/2022]
Abstract
Amphiregulin (AREG), an EGF family protein, is synthesized as a type I transmembrane precursor (proAREG) and expressed on the cell surface with an extracellular EGF-like domain and an intracellular short cytoplasmic tail. The ectodomain shedding yields a soluble EGF receptor ligand (soluble AREG) which binds to EGF receptor (EGFR) and concomitantly induces migration of unshed proAREG from the plasma membrane to the nuclear envelope (NE). AREG is known to play a potential role in breast cancer and has been intensively investigated as an EGF receptor ligand, while the function of the NE-localized proAREG remains unknown. In this study we used a truncated mutant that mimics NE-localized proAREG without shedding stimuli to discriminate between the functions of NE-localized and plasma membrane-localized proAREG and demonstrate that NE-localized proAREG activates breast cancer cell migration, but suppresses cell growth. Moreover, the present study shows that induction of cell migration by NE-localized proAREG does not require the extracellular growth factor domain or EGF receptor function. Collectively these data demonstrate a novel function mediated by the intracellular domain of proAREG and suggest a significant role for NE-localized proAREG in driving human breast cancer progression.
Collapse
Affiliation(s)
- Hisae Tanaka
- Osaka University Graduate School of Medicine and Health Science, 1-7 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
11
|
Busser B, Sancey L, Brambilla E, Coll JL, Hurbin A. The multiple roles of amphiregulin in human cancer. Biochim Biophys Acta Rev Cancer 2011; 1816:119-31. [PMID: 21658434 DOI: 10.1016/j.bbcan.2011.05.003] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 05/20/2011] [Accepted: 05/21/2011] [Indexed: 12/21/2022]
Abstract
Amphiregulin (AREG) is one of the ligands of the epidermal growth factor receptor (EGFR). AREG plays a central role in mammary gland development and branching morphogenesis in organs and is expressed both in physiological and in cancerous tissues. Various studies have highlighted the functional role of AREG in several aspects of tumorigenesis, including self-sufficiency in generating growth signals, limitless replicative potential, tissue invasion and metastasis, angiogenesis, and resistance to apoptosis. The oncogenic activity of AREG has already been described in the most common human epithelial malignancies, such as lung, breast, colorectal, ovary and prostate carcinomas, as well as in some hematological and mesenchymal cancers. Furthermore, AREG is also involved in resistance to several cancer treatments. In this review, we describe the various roles of AREG in oncogenesis and discuss its translational potential, such as the development of anti-AREG treatments, based on AREG activity. In the last decade, independent groups have reported successful but sometimes contradictory results in relation to the potential of AREG to serve as a prognostic and/or predictive marker for oncology, especially with regard to anti-EGFR therapies. Thus, we also discuss the potential usefulness of using AREG as a therapeutic target and validated biomarker for predicting cancer outcomes or treatment efficacy.
Collapse
Affiliation(s)
- Benoit Busser
- INSERM, U823, Institut Albert Bonniot, Grenoble, France, Université Joseph Fourier, Grenoble, France.
| | | | | | | | | |
Collapse
|
12
|
Molecular characterization of lung dysplasia induced by c-Raf-1. PLoS One 2009; 4:e5637. [PMID: 19529782 PMCID: PMC2681412 DOI: 10.1371/journal.pone.0005637] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 04/14/2009] [Indexed: 11/19/2022] Open
Abstract
Background Lung cancer is a multistage process with poor prognosis and high morbidity. Importantly, the genetics of dysplasia, a facultative cancer, at the edge of malignant transformation is unknown. Methodology/Principal Findings We employed laser microdissection to harvest c-Raf1- induced dysplastic as opposed to transgenic but otherwise morphologically unaltered epithelium and compared findings to non-transgenic lung. We then employed microarrays to search genome wide for gene regulatory networks. A total of 120 and 287 genes were significantly regulated, respectively. Dysplasia was exclusive associated with up-regulation of genes coding for cell growth and proliferation, cell-to-cell signalling and interaction, lipid metabolism, development, and cancer. Likewise, when dysplasia was compared with non-transgenic cells up-regulation of cancer associated genes, tight junction proteins, xenobiotic defence and developmental regulators was observed. Further, in a comparison of the data sets of dysplasia vs transgenic and dysplasia vs non-transgenic 114 genes were regulated in common. We additionally confirmed regulation of some genes by immunohistochemistry and therefore demonstrate good concordance between gene regulation and coded protein. Conclusion Our study identified transcriptional networks at successive stages of tumor-development, i.e. from histological unaltered but transgenic lungs to nuclear atypia. Our SP-C/c-raf transgenic mouse model revealed interesting and novel candidate genes and pathways that provide clues on the mechanism forcing respiratory epithelium into dysplasia and subsequently cancer, some of which might also be useful in the molecular imaging and flagging of early stages of disease.
Collapse
|
13
|
McBryan J, Howlin J, Napoletano S, Martin F. Amphiregulin: role in mammary gland development and breast cancer. J Mammary Gland Biol Neoplasia 2008; 13:159-69. [PMID: 18398673 DOI: 10.1007/s10911-008-9075-7] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2008] [Accepted: 03/11/2008] [Indexed: 01/21/2023] Open
Abstract
Extensive epithelial cell proliferation underlies the ductal morphogenesis of puberty that generates the mammary tree that will eventually fill the fat pad. This estrogen-dependent process is believed to be essentially dependent on locally produced growth factors that act in a paracrine fashion. EGF-like growth factor ligands, acting through EGF receptors are some of the principal promoters of pubertal ductal morphogenesis. Amphiregulin is the most abundant EGF-like growth factor in the pubertal mammary gland. Its gene is transcriptionally regulated by ERalpha, and recent evidence identifies it as a key mediator of the estrogen-driven epithelial cell proliferation of puberty: The pubertal deficiency in mammary gland ductal morphogenesis in ERalpha, amphiregulin, and EGFR knockout mice phenocopy each other. As a prognostic indicator in human breast cancer, amphiregulin indicates an outcome identical to that predicted by ERalpha presence. Despite this, a range of studies both on preneoplastic human breast tissue and on cell culture based models of breast cancer, suggest a possibly significant role for amphiregulin in driving human breast cancer progression. Here we summarise our current understanding of amphiregulin's contribution to mammary gland development and breast cancer progression.
Collapse
Affiliation(s)
- Jean McBryan
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | | | | | | |
Collapse
|
14
|
Willmarth NE, Ethier SP. Autocrine and juxtacrine effects of amphiregulin on the proliferative, invasive, and migratory properties of normal and neoplastic human mammary epithelial cells. J Biol Chem 2006; 281:37728-37. [PMID: 17035230 DOI: 10.1074/jbc.m606532200] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Amphiregulin (AR) autocrine loops have been associated with several types of cancer. We demonstrate that SUM149 breast cancer cells have a self-sustaining AR autocrine loop. SUM149 cells are epidermal growth factor (EGF)-independent for growth, and they overexpress AR mRNA, AR membrane precursor protein, and secreted AR relative to the EGF-dependent human mammary epithelial cell line MCF10A. MCF10A cells made to overexpress AR (MCF10A AR) are also EGF-independent for growth. Treatment with the pan-ErbB inhibitor CI1033 and the anti-EGF receptor (EGFR) antibody C225 demonstrated that ligand-mediated activation of EGFR is required for SUM149 cell proliferation. AR-neutralizing antibody significantly reduced both SUM149 EGFR activity and cell proliferation, confirming that an AR autocrine loop is required for mitogenesis in SUM149 cells. EGFR tyrosine phosphorylation was dramatically decreased in both SUM149 and MCF10A AR cells after inhibition of AR cleavage with the broad spectrum metalloprotease inhibitor GM6001, indicating that an AR autocrine loop is strictly dependent on AR cleavage in culture. However, a juxtacrine assay where fixed SUM149 cells and MCF10A AR cells were overlaid on top of EGF-deprived MCF10A cells showed that the AR membrane precursor can activate EGFR. SUM149 cells, MCF10A AR cells, and MCF10A cells growing in exogenous AR were all considerably more invasive and motile than MCF10A cells grown in EGF. Moreover, AR up-regulates a number of genes involved in cell motility and invasion in MCF10A cells, suggesting that an AR autocrine loop contributes to the aggressive breast cancer phenotype.
Collapse
Affiliation(s)
- Nicole E Willmarth
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|
15
|
Berquin IM, Pang B, Dziubinski ML, Scott LM, Chen YQ, Nolan GP, Ethier SP. Y-box-binding protein 1 confers EGF independence to human mammary epithelial cells. Oncogene 2005; 24:3177-86. [PMID: 15735691 DOI: 10.1038/sj.onc.1208504] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The epidermal growth factor receptor (EGFR) is linked to poor outcome in breast cancer, and resistance to hormonal therapy is often accompanied by activation of growth factor receptors. To investigate the mechanism(s) by which EGFR becomes activated in breast cancer, we screened a cDNA expression library for genes that mediate EGF-independent proliferation of human mammary epithelial cells (HMECs). We isolated the NSEP1 cDNA encoding Y-box-binding protein 1 (YB-1), a multifunctional transcriptional and translational regulator. This cDNA conferred growth factor independence to HMECs. YB-1-transduced cells overexpressed EGFR, but ErbB-2 (Her-2/neu) levels were unchanged. Moreover, EGFR was constitutively phosphorylated in the absence of exogenous ligand. In these cells, an EGFR-blocking antibody failed to inhibit proliferation, conditioned medium activity could not be detected, and the synthesis of EGFR ligands was reduced compared to parental cells. This suggests that EGFR is activated in a ligand-independent fashion. However, cell growth could be blocked with an ErbB kinase inhibitor, indicating that EGFR signaling plays a major role in YB-1-induced growth factor independence. Taken together, our results demonstrate that YB-1 overexpression can induce EGF independence in HMECs via activation of the EGFR pathway. This could represent one of the mechanisms by which YB-1 contributes to breast tumor aggressiveness.
Collapse
Affiliation(s)
- Isabelle M Berquin
- Department of Pathology, Wake Forest University, Winston-Salem, NC 27157, USA.
| | | | | | | | | | | | | |
Collapse
|
16
|
Chu EK, Foley JS, Cheng J, Patel AS, Drazen JM, Tschumperlin DJ. Bronchial epithelial compression regulates epidermal growth factor receptor family ligand expression in an autocrine manner. Am J Respir Cell Mol Biol 2005; 32:373-80. [PMID: 15705969 DOI: 10.1165/rcmb.2004-0266oc] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The epidermal growth factor receptor (EGFR), an important signaling pathway in airway biology, is stimulated by compressive stress applied to human airway epithelial cells. Although the EGFR ligand, heparin-binding epidermal growth factor-like growth factor (HB-EGF), is known to be released as a result of this stimulation, whether compressive stress enhances expression of other EGFR ligands, and the duration of mechanical compression required to initiate this response, is not known. Human airway epithelial cells were exposed to compressive stress, and expression of four EGFR ligands was examined by quantitative PCR. Cells were exposed to: (1) continuous compressive stress over 8 h, (2) compression with and without EGFR inhibitor (AG1478), or (3) time-limited compression (3.75, 7.5, 15, 30, and 60 min). Compressive stress produced a sustained upregulation of the EGFR ligands HB-EGF, epiregulin, and amphiregulin, but not transforming growth factor-alpha. Inhibition with AG1478 demonstrated that expression of HB-EGF, epiregulin, and amphiregulin is dependent on the signaling via the EGFR. Immunostaining for epiregulin protein demonstrated increased expression with compression and attenuation with EGFR inhibition. The response of all three EGFR ligands persisted long after the mechanical stimulus was removed. Taken together, these data suggest the possibility of a mechanically activated EGFR autocrine feedback loop involving selected EGFR ligands.
Collapse
Affiliation(s)
- Eric K Chu
- Department of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Wildhaber BE, Yang H, Coran AG, Teitelbaum DH. Gene alteration of intestinal intraepithelial lymphocytes in response to massive small bowel resection. Pediatr Surg Int 2003; 19:310-5. [PMID: 12728327 DOI: 10.1007/s00383-003-1001-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/10/2002] [Indexed: 10/26/2022]
Abstract
BACKGROUND The intestinal adaptive response [increased epithelial cell (EC) proliferation and apoptosis] after massive small bowel resection (SBR) is partially controlled by intraepithelial lymphocytes (IEL). To identify IEL factors contributing to EC adaptation post-SBR we utilized microarray assays. METHODS Mice underwent a 70% SBR (SBR1w/SBR4w) or sham operation (Sham1w/Sham4w). After 1 or 4 weeks (1w, 4w) small bowel was harvested, and IEL isolated. Determination of the EC-proliferation rate used BrdU incorporation, and of the EC-apoptotic rate used Annexin V staining. Affymetrix system microarrays (12,491 genes) were performed to examine IEL-mRNA expression. Results were considered significant if fold-change (FC) between groups was >2 and P<0.05 (F-test), or FC>3 and 0.05> P >0.01, or FC>4 and P>0.05. Significant genes were confirmed by conventional RT-PCR. RESULTS The SBR EC-proliferation rate increased significantly in both 1w and 4w groups compared to Sham: SBR1w 0.24+/-0.07 vs. Sham1w 0.12+/-0.02 (P=0.03); SBR4w 0.35+/-0.04 vs. Sham4w 0.19+/-0.02 ( P<0.01). The EC-apoptotic rate was unchanged in the 1w group, but significantly differed from controls after 4 weeks: SBR4w 39.92+/-6.78 vs. Sham4w 12.56+/-6.44 ( P<0.01). Microarray results were analyzed to identify potential growth-modifying IEL genes. The following were identified (function in parenthesis; A, apoptosis; P, proliferation): lipocalin 2 (promotes A), angiotensin converting enzyme (increases A), Rap2 interacting protein (reduces A, promotes P), amphiregulin (promotes P) and leucine-rich-alpha2-glycoprotein (promotes A, reduces P). Based on RT-PCR results these genes showed significant changes between groups. The increase in ACE at 1w preceded the observed apoptotic changes. The alterations in lipocalin 2, Rap2 and amphiregulin at 4w coincided with the marked changes in growth and apoptosis in the SBR mice. CONCLUSIONS IEL undergo temporal changes after SBR. These findings provide profound insight into potential IEL-dependent regulation of EC homeostasis post-SBR.
Collapse
Affiliation(s)
- Barbara E Wildhaber
- Department of Surgery, Section of Pediatric Surgery, C.S. Mott Children's Hospital, University of Michigan Medical School, Mott F3970, Box 0245, Ann Arbor, MI 48109, USA
| | | | | | | |
Collapse
|
18
|
|
19
|
Wolf R, Orion E, Matz H, Tüzün Y, Tüzün B. Miscellaneous treatments, II: niacin and heparin: unapproved uses, dosages, or indications. Clin Dermatol 2002; 20:547-57. [PMID: 12435525 DOI: 10.1016/s0738-081x(02)00268-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Ronni Wolf
- Dermatology Unit, Kaplan Medical Center, Rechovot, Israel.
| | | | | | | | | |
Collapse
|
20
|
Simeoni L, Rufini A, Moretti T, Forte P, Aiuti A, Fantoni A. Human CD26 expression in transgenic mice affects murine T-cell populations and modifies their subset distribution. Hum Immunol 2002; 63:719-30. [PMID: 12175726 DOI: 10.1016/s0198-8859(02)00433-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
CD26 is a type II transmembrane glycoprotein with dipeptidyl peptidase (DPPIV) activity, constitutively expressed in different cell types and contributing to T-cell activation by acting as costimulatory molecule. Although data suggest an important role for CD26 within the immune system, the physiologic function of this molecule is still unknown. To investigate the role of CD26 in vivo we have produced transgenic mice expressing the human molecule in T cells. Human CD26 (huCD26) is constitutively expressed in all thymocytes and peripheral T lymphocytes of these transgenic mice and is endowed with an enhanced DPPIV activity. CD26 transgene expression induces major phenotypic changes to T-cell populations within the thymus and in peripheral blood. After the onset of sexual maturity, huCD26 expression induces an age-related overreduction of thymus cellularity accompanied by a relative impairment of thymocyte proliferation following lectin stimulation. Also the peripheral blood T-cell pool is reduced in huCD26 transgenic mice and this is accompanied by an increase of the apoptotic rate of CD4+ and CD8+ subpopulations. Taken together these data suggest that CD26 interferes with transduction pathway(s) needed for the maturation of T cells and plays an important role in T lymphocyte homeostasis in peripheral blood.
Collapse
Affiliation(s)
- Luca Simeoni
- Sezione di Genetica Molecolare, Departimento di Biotecnologi Cellulari ed Ematolgia, Universitá di Roma, Rome, Italy
| | | | | | | | | | | |
Collapse
|
21
|
Ma L, de Roquancourt A, Bertheau P, Chevret S, Millot G, Sastre-Garau X, Espié M, Marty M, Janin A, Calvo F. Expression of amphiregulin and epidermal growth factor receptor in human breast cancer: analysis of autocriny and stromal-epithelial interactions. J Pathol 2001; 194:413-9. [PMID: 11523048 DOI: 10.1002/path.902] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Amphiregulin (AR) and its receptor, epidermal growth factor receptor (EGFR), were evaluated by dual immunostaining in a series of 84 invasive ductal breast carcinoma specimens, 33 of which were from locally advanced inflammatory (T4d) cancer. Co-expression of AR and EGFR was always found in non-malignant breast tissues adjacent to tumours (24/24). Alternatively, expression of AR and EGFR was found in invasive epithelial tumour cells in 50% and 17.8% of specimens, respectively. In tumour stroma, 59.5% and 30.9% of specimens, respectively, were positively stained. By univariate analysis, AR and EGFR expression in invasive carcinomas was correlated with large tumour size, inflammatory carcinoma, node involvement, Bloom-Richardson (SBR) grade III, and absence of oestrogen receptor. EGFR expression in stromal cells was correlated with non-inflammatory carcinoma. A putative autocrine loop with AR and EGFR expression in invasive carcinoma was detected in 14.3% of cases. Stromal expression of AR and EGFR expression in invasive tumour cells was detected in 11.9% of cases and related to poor prognostic parameters. By multivariate analysis, AR expression in invasive tumour was strongly related to inflammatory carcinoma (p=0.005) and marginally related to SBR grade III (p=0.07). EGFR expression in invasive tumour and stromal cells was correlated with absence of oestrogen receptor and non-inflammatory carcinoma (p=0.002 and p=0.015, respectively).
Collapse
Affiliation(s)
- L Ma
- Laboratoire de Pharmacologie Expérimentale et Clinique, INSERM EPI 99-32, Institut de Génétique Moléculaire, 27 Rue Juliette Dodu, 75010 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
DeWitt AE, Dong JY, Wiley HS, Lauffenburger DA. Quantitative analysis of the EGF receptor autocrine system reveals cryptic regulation of cell response by ligand capture. J Cell Sci 2001; 114:2301-13. [PMID: 11493669 DOI: 10.1242/jcs.114.12.2301] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Autocrine signaling is important in normal tissue physiology as well as pathological conditions. It is difficult to analyze these systems, however, because they are both self-contained and recursive. To understand how parameters such as ligand production and receptor expression influence autocrine activity, we investigated a human epidermal growth factor/epidermal growth factor receptor (EGF/EGFR) loop engineered into mouse B82 fibroblasts. We varied the level of ligand production using the tet-off expression system and used metalloprotease inhibitors to modulate ligand release. Receptor expression was varied using antagonistic blocking antibodies. We compared autocrine ligand release with receptor activation using a microphysiometer-based assay and analyzed our data using a quantitative model of ligand release and receptor dynamics. We found that the activity of our autocrine system could be described in terms of a simple ratio between the rate of ligand production (VLT) and the rate of receptor production (VR). At a VLT/VR ratio of <0.3, essentially no ligand was found in the extracellular medium, but a significant number of cell receptors (30-40%) were occupied. As the VLT/VR ratio increased from 0.3 towards unity, receptor occupancy increased and significant amounts of ligand appeared in the medium. Above a VLT/VR ratio of 1.0, receptor occupancy approached saturation and most of the released ligand was lost into the medium. Analysis of human mammary epithelial cells showed that a VLT/VR ratio of <5×10−4was sufficient to evoke >20% of a maximal proliferative response. This demonstrates that natural autocrine systems can be active even when no ligand appears in the extracellular medium.
Collapse
Affiliation(s)
- A E DeWitt
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
23
|
Silvy M, Giusti C, Martin PM, Berthois Y. Differential regulation of cell proliferation and protease secretion by epidermal growth factor and amphiregulin in tumoral versus normal breast epithelial cells. Br J Cancer 2001; 84:936-45. [PMID: 11286474 PMCID: PMC2363843 DOI: 10.1054/bjoc.2000.1678] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Amphiregulin (AR) is a heparin-binding epidermal growth factor (EGF)-related peptide that seems to play an important role in mammary epithelial cell growth regulation. We have investigated the regulation of AR-gene expression and -protein secretion by EGF in normal breast epithelial cells (HMECs), as well as in the tumoral breast epithelial cell lines MCF-7 and MDA-MB231. EGF induced a dose-dependent increase of AR mRNA level in both normal and tumoral cells. Thus, 10(-8)M EGF stimulated AR expression in HMECs to 140-300% of control. A similar EGF concentration increased AR mRNA level to 550% and 980% of control in MCF-7 and MDA-MB231 cells, respectively. This was accompanied by an accumulation of AR into conditioned culture media. However, HMECs secreted in response to EGF, 5-10 fold more AR than tumour cells. Furthermore, the potential participation of AR in the regulation of the plasminogen activator (PA)/plasmin system was investigated. Whereas HMEC-proliferation was stimulated by AR, the levels of secreted urokinase-type plasminogen activator (uPA) and type-1 plasminogen activator inhibitor (PAi-1) remained unaffected. Conversely, AR failed to regulate the proliferation of tumoral cell lines but induced an accumulation of uPA and PAi-1 into culture media. This was accompanied by an increase of the number of tumoral cells that invaded matrigel in vitro. Moreover, the presence of a neutralizing anti-uPA receptor antibody reversed the increased invasiveness of MDA-MB231 cells induced by AR. These data reveal differential behaviour of normal versus tumoral breast epithelial cells in regard to the action of AR and demonstrate that, in a number of cases, AR might play a significant role in tumour progression through the regulation of the PA/plasmin system.
Collapse
Affiliation(s)
- M Silvy
- Laboratoire de Cancérologie Expérimentale, EA 2671, IFR Jean Roche, Faculté de Médecine secteur Nord, Bd Pierre Dramard, 13916 Marseille Cedex 20, France
| | | | | | | |
Collapse
|
24
|
Novak U, Walker F, Kaye A. Expression of EGFR-family proteins in the brain: role in development, health and disease. J Clin Neurosci 2001; 8:106-11. [PMID: 11243764 DOI: 10.1054/jocn.2000.0799] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- U Novak
- Dept. of Surgery, Royal Melbourne Hospital, University of Melbourne, Parkville, 3050, Australia.
| | | | | |
Collapse
|
25
|
Ma L, Gauvillé C, Berthois Y, Millot G, Johnson GR, Calvo F. Antisense expression for amphiregulin suppresses tumorigenicity of a transformed human breast epithelial cell line. Oncogene 1999; 18:6513-20. [PMID: 10597254 DOI: 10.1038/sj.onc.1203042] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The epidermal growth factor (EFG) family of receptors and their respective ligands play a major role in breast cancer progression and are the targets of new therapeutic approaches. Following immortalization with SV40 T antigen of normal human breast epithelial cells, a transformed variant cell line (NS2T2A1) was selected for its increased tumorigenicity in nude mice. This cell line was shown to have a higher expression of EGF receptors (EGFR) and amphiregulin (AR) when compared to their normal counterparts or less aggressive transformed cells. Dual staining of EGFR and AR was observed in 50-60% of NS2T2A1 cells, while 30-40% cells expressed AR only. To explore the potential tumorigenic role of AR, a 1.1 kb AR cDNA in an antisense orientation was transfected in NS2T2A1 cells. Three clones, selected by hygromycin B, expressed AR antisense RNA (AR AS1, AR AS2 and AR AS3 cell lines) in which AR protein expression was reduced (ranging from about 50 to < 5%). The anchorage-independent growth of AR AS cell lines was reduced to levels ranging from 32.4-6.8% relative to the control cell line transfected with the vector alone. The clones expressing AR antisense RNA showed a reversion of the malignant phenotype when injected in nude mice, since a significant reduction of tumor intake was observed coincident with a significant tumor mass reduction (> 96%). Moreover, intra-tumoral vascularization decreased significantly in tumors derived from AR AS cells (26.7, 70.7 and 50.4% of control). These in vitro and in vivo data reveal the oncogenic nature of AR in transformed breast epithelial cells and imply a role for AR in tumor angiogenesis.
Collapse
Affiliation(s)
- L Ma
- Laboratoire de Pharmacologie Expérimentale et Clinique, INSERM EP-9932, Institut de Génétique Moléculaire, Paris, France
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Binding of ligand to the epidermal growth factor receptor (EGFR) initiates a series of processes including activation of the intrinsic EGFR tyrosine kinase, receptor autophosphorylation, and the assembly of active signaling complexes at the plasma membrane. Concomitantly, receptor trafficking is initiated, and the receptor is ultimately delivered to the lysosome, where it is degraded. Virtually all studies on EGFR trafficking have used fibroblasts and transformed cells. Because EGFR exerts a potent effect on the physiology of epithelial cells, we examined the regulation of EGFR activity and trafficking in nontransformed human mammary epithelial cells (HMEC). We found that HMEC that displayed a luminal phenotype were largely unresponsive to EGF and maintained a majority of their EGFR at the cell surface. In contrast, HMEC with a basal phenotype were highly responsive to EGF and, at steady state in the absence of exogenous ligand, distributed empty EGFR into intracellular pools. Maintenance of the intracellular pools was a direct consequence of specific and rapid endocytosis of the empty EGFR. The trafficking pattern was EGFR specific, used coated pits, and did not require receptor tyrosine kinase activity. Such an mechanism redistributes EGFR signaling potential among different membrane domains and into vesicles with unique biochemical microenviroments. In addition, our data show that EGFR endocytosis can be regulated in the absence of ligand binding and receptor activation in a cell-type-specific manner.
Collapse
Affiliation(s)
- P M Burke
- Department of Pathology, University of Utah, Salt Lake City 84132, USA
| | | |
Collapse
|
27
|
Damstrup L, Kuwada SK, Dempsey PJ, Brown CL, Hawkey CJ, Poulsen HS, Wiley HS, Coffey RJ. Amphiregulin acts as an autocrine growth factor in two human polarizing colon cancer lines that exhibit domain selective EGF receptor mitogenesis. Br J Cancer 1999; 80:1012-9. [PMID: 10362109 PMCID: PMC2363033 DOI: 10.1038/sj.bjc.6690456] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Colonic enterocytes, like many epithelial cells in vivo, are polarized with functionally distinct apical and basolateral membrane domains. The aims of this study were to characterize the endogenous epidermal growth factor (EGF)-like ligands expressed in two polarizing colon cancer cell lines, HCA-7 Colony 29 (HCA-7) and Caco-2, and to examine the effects of cell polarity on EGF receptor-mediated mitogenesis. HCA-7 and Caco-2 cells were grown on plastic, or as a polarized monolayer on Transwell filters. Cell proliferation was measured by 3H-thymidine incorporation and EGF receptor (EGFR) binding was assessed by Scatchard analysis. EGFR ligand expression was determined by Northern blot analysis, reverse transcription polymerase chain reaction, metabolic labelling and confocal microscopy. We found that amphiregulin (AR) was the most abundant EGFR ligand expressed in HCA-7 and Caco-2 cells. AR was localized to the basolateral surface and detected in basolateral-conditioned medium. Basolateral administration of neutralizing AR antibodies significantly reduced basal DNA replication. A single class of high-affinity EGFRs was detected in the basolateral compartment, whereas the apical compartment of polarized cells, and cells cultured on plastic, displayed two classes of receptor affinity. Basolateral administration of transforming growth factor alpha (TGF-alpha) or an EGFR neutralizing antibody also resulted in a dose-dependent stimulation or attenuation, respectively, of DNA replication. However, no mitogenic response was observed when these agents were added to the apical compartment or to confluent cells cultured on plastic. We conclude that amphiregulin acts as an autocrine growth factor in HCA-7 and Caco-2 cells, and EGFR ligand-induced proliferation is influenced by cellular polarity.
Collapse
Affiliation(s)
- L Damstrup
- Department of Medicine, Vanderbilt University School of Medicine and Veterans Affairs Medical Center, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Dong J, Opresko LK, Dempsey PJ, Lauffenburger DA, Coffey RJ, Wiley HS. Metalloprotease-mediated ligand release regulates autocrine signaling through the epidermal growth factor receptor. Proc Natl Acad Sci U S A 1999; 96:6235-40. [PMID: 10339571 PMCID: PMC26865 DOI: 10.1073/pnas.96.11.6235] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/1999] [Indexed: 11/18/2022] Open
Abstract
Ligands that activate the epidermal growth factor receptor (EGFR) are synthesized as membrane-anchored precursors that appear to be proteolytically released by members of the ADAM family of metalloproteases. Because membrane-anchored EGFR ligands are thought to be biologically active, the role of ligand release in the regulation of EGFR signaling is unclear. To investigate this question, we used metalloprotease inhibitors to block EGFR ligand release from human mammary epithelial cells. These cells express both transforming growth factor alpha and amphiregulin and require autocrine signaling through the EGFR for proliferation and migration. We found that metalloprotease inhibitors reduced cell proliferation in direct proportion to their effect on transforming growth factor alpha release. Metalloprotease inhibitors also reduced growth of EGF-responsive tumorigenic cell lines and were synergistic with the inhibitory effects of antagonistic EGFR antibodies. Blocking release of EGFR ligands also strongly inhibited autocrine activation of the EGFR and reduced both the rate and persistence of cell migration. The effects of metalloprotease inhibitors could be reversed by either adding exogenous EGF or by expressing an artificial gene for EGF that lacked a membrane-anchoring domain. Our results indicate that soluble rather than membrane-anchored forms of the ligands mediate most of the biological effects of EGFR ligands. Metalloprotease inhibitors have shown promise in preventing spread of metastatic disease. Many of their antimetastatic effects could be the result of their ability to inhibit autocrine signaling through the EGFR.
Collapse
Affiliation(s)
- J Dong
- Department of Pathology, University of Utah, Salt Lake City, UT 84132, USA
| | | | | | | | | | | |
Collapse
|
29
|
Affiliation(s)
- D R Brigstock
- Department of Surgery, Ohio State University, Columbus 43210, USA.
| |
Collapse
|
30
|
Epidermal Growth Factor-Related Peptides and Their Cognate Receptors in Breast Cancer. Breast Cancer 1999. [DOI: 10.1007/978-1-59259-456-6_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
31
|
Wiley HS, Woolf MF, Opresko LK, Burke PM, Will B, Morgan JR, Lauffenburger DA. Removal of the membrane-anchoring domain of epidermal growth factor leads to intracrine signaling and disruption of mammary epithelial cell organization. J Cell Biol 1998; 143:1317-28. [PMID: 9832559 PMCID: PMC2133076 DOI: 10.1083/jcb.143.5.1317] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/1998] [Revised: 09/11/1998] [Indexed: 11/22/2022] Open
Abstract
Autocrine EGF-receptor (EGFR) ligands are normally made as membrane-anchored precursors that are proteolytically processed to yield mature, soluble peptides. To explore the function of the membrane-anchoring domain of EGF, we expressed artificial EGF genes either with or without this structure in human mammary epithelial cells (HMEC). These cells require activation of the EGFR for cell proliferation. We found that HMEC expressing high levels of membrane- anchored EGF grew at a maximal rate that was not increased by exogenous EGF, but could be inhibited by anti-EGFR antibodies. In contrast, when cells expressed EGF lacking the membrane-anchoring domain (sEGF), their proliferation rate, growth at clonal densities, and receptor substrate phosphorylation were not affected by anti-EGFR antibodies. The sEGF was found to be colocalized with the EGFR within small cytoplasmic vesicles. It thus appears that removal of the membrane-anchoring domain converts autocrine to intracrine signaling. Significantly, sEGF inhibited the organization of HMEC on Matrigel, suggesting that spatial restriction of EGF access to its receptor is necessary for organization. Our results indicate that an important role of the membrane-anchoring domain of EGFR ligands is to restrict the cellular compartments in which the receptor is activated.
Collapse
Affiliation(s)
- H S Wiley
- Division of Cell Biology and Immunology, Department of Pathology, University of Utah Medical School, Salt Lake City, Utah 84132, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Piepkorn M, Pittelkow MR, Cook PW. Autocrine regulation of keratinocytes: the emerging role of heparin-binding, epidermal growth factor-related growth factors. J Invest Dermatol 1998; 111:715-21. [PMID: 9804327 DOI: 10.1046/j.1523-1747.1998.00390.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although originally conceived as a basis for malignant cell growth, autocrine signaling networks are currently known to be activated during tissue repair and with in vitro cultivation. In human epidermal keratinocytes, activation of the epidermal growth factor receptor by cognate ligands mediates the majority of the autonomous replicative capacity of these cells and is necessary to inhibit differentiation and apoptosis. The importance of heparin-binding growth factors in activation of this receptor was first suggested by the strong anti-proliferative effects of soluble heparin-like molecules on keratinocyte growth. This and related evidence led to the identification of amphiregulin as a major autocrine factor for keratinocytes. The binding of amphiregulin and its homolog, heparin-binding epidermal growth factor-like growth factor, to the receptor is potentially amplified by autoinduction and cross-signaling through epidermal growth factor-related polypeptides and by transmodulation of other ErbB-family receptors (HER-2, -3, -4) in cells expressing these receptors. Heparan sulfate proteoglycans and the tetraspanin family of membrane-associated proteins appear to act as cofactors in amphiregulin-driven mitogenesis mediated by the epidermal growth factor receptor, but amphiregulin's immunolocalization to keratinocyte nuclei and to filopodia may indicate other potentially novel effects. Following from the observation that amphiregulin is overexpressed in lesional psoriatic epidermis, the importance of amphiregulin in hyperproliferative skin diseases has been further supported by recent studies of the targeted expression of a transgene encoding keratin 14 promoter-driven human amphiregulin to the basal epidermis of mice. Founder transgenic mice displayed a morphologic and microscopic cutaneous phenotype that shares characteristics with psoriasis. Pharmacologic regulation of amphiregulin's expression and receptor signaling may eventually prove to be an effective strategy in the treatment of hyperproliferative skin diseases.
Collapse
Affiliation(s)
- M Piepkorn
- Department of Medicine, University of Washington School of Medicine, Seattle, USA
| | | | | |
Collapse
|
33
|
Brown CL, Meise KS, Plowman GD, Coffey RJ, Dempsey PJ. Cell surface ectodomain cleavage of human amphiregulin precursor is sensitive to a metalloprotease inhibitor. Release of a predominant N-glycosylated 43-kDa soluble form. J Biol Chem 1998; 273:17258-68. [PMID: 9642297 DOI: 10.1074/jbc.273.27.17258] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Biosynthesis and processing of amphiregulin (AR) have been investigated in human colorectal (HCA-7, Caco-2) and mammary (MCF-7) cancer cell lines, as well as in Madin-Darby canine kidney cells stably expressing various human AR precursor (pro-AR) forms. Both cells expressing endogenous and transfected AR produce multiple cellular and soluble forms of AR with an N-glycosylated 50-kDa pro-AR form being predominant. Our results demonstrate that sequential proteolytic cleavage within the ectodomain of the 50-kDa pro-AR form leads to release of a predominant N-glycosylated 43-kDa soluble AR, as well as the appearance of other cellular and soluble AR forms. Cell surface biotinylation studies using a C-terminal epitope-tagged pro-AR indicate that all cell surface forms are membrane-anchored and support that AR is released by ectodomain cleavage of pro-AR at the plasma membrane. We also show that pro-AR ectodomain cleavage is a regulated process, which can be stimulated by phorbol 12-myristate 13-acetate and inhibited by the metalloprotease inhibitor, batimastat. In addition, we provide evidence that high molecular mass AR forms may retain the full-length N-terminal pro-region, which may influence the biological activities of these forms.
Collapse
Affiliation(s)
- C L Brown
- Department of Cell Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-2279, USA
| | | | | | | | | |
Collapse
|
34
|
Silvy M, Martin PM, Chajry N, Berthois Y. Differential dose-dependent effects of epidermal growth factor on gene expression in A431 cells: evidence for a signal transduction pathway that can bypass Raf-1 activation. Endocrinology 1998; 139:2382-91. [PMID: 9564849 DOI: 10.1210/endo.139.5.5981] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epidermal growth factor (EGF), which plays an important role in normal and tumoral cell growth regulation, displays an ambivalent dose-dependent effect on the proliferation of epithelial cells overexpressing EGF receptor. However, the underlying molecular mechanisms remain obscure. In this study we have examined the regulation of amphiregulin (AR) gene expression by growth inhibitory (10(-9) M) and stimulatory (10(-12) M) EGF concentrations in A431 cells. The time course of AR messenger RNA (mRNA) accumulation was different with 10(-12) and 10(-9) M EGF; AR induction by 10(-9) M EGF peaked between 1 and 1.5 h, then decreased to the basal level within 2 h. Conversely, the induction by 10(-12) M EGF was slightly delayed, but persisted for 4 h. The involvement of tyrosine phosphorylation in AR induction by EGF was suggested by the ability of the tyrosine phosphatase inhibitor sodium orthovanadate to prolong AR expression induced by 10(-12) or 10(-9) M EGF. In the presence of the protein phosphatase 2A inhibitor, okadaic acid, 10(-9) M EGF induced a persistent accumulation of AR mRNA. On the contrary, okadaic acid abrogated the stimulation of AR mRNA level induced by a low EGF concentration, suggesting that both EGF concentrations activated distinct regulatory mechanisms. The signaling components involved in the differential activities of EGF in A431 cells were then examined. We previously reported a relationship between the ambivalent activity of EGF and the p42-mitogen-activated protein (MAP) kinase activity. Thus, 10(-12) M EGF induced a sustained MAP kinase activation, whereas 10(-9) M EGF led to a sharp, but transitory, activation. The MAP kinases are activated by MAP kinase kinases (MEK1 and MEK2). Whereas no significant effect of 10(-12) M EGF could be detected, 10(-9) M EGF was shown to activate MEK1 and, to a lesser extent, MEK2. Also, both MAP kinase activation and AR induction by 10(-9) M, but not by 10(-12) M, EGF were inhibited by the MEK1 inhibitor PD98059. Moreover, the involvement of c-Raf-1 in the signaling pathway induced by EGF was verified. A concentration of 10(-9) M EGF induced stimulation of c-Raf-1 kinase activity, whereas 10(-12) M EGF not only failed to activate c-Raf-1, but led to a moderate decrease in its kinase activity. These results demonstrate that in EGF receptor-overexpressing cells, EGF may differently affect gene expression and cell proliferation through distinct mechanisms of regulation.
Collapse
Affiliation(s)
- M Silvy
- Laboratoire Interactions Cellulaires Intratumorales, CJF INSERM 9311, IFR Jean Roche, Faculté de Médecine Secteur Nord, Marseille, France
| | | | | | | |
Collapse
|
35
|
Nylander N, Smith LT, Underwood RA, Piepkorn M. Topography of amphiregulin expression in cultured human keratinocytes: colocalization with the epidermal growth factor receptor and CD44. In Vitro Cell Dev Biol Anim 1998; 34:182-8. [PMID: 9542658 DOI: 10.1007/s11626-998-0103-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Much of the autonomous growth of cultured keratinocytes is attributable to the signaling of amphiregulin, a heparin-binding autocrine growth factor, through the epidermal growth factor receptor. Emerging evidence suggests, moreover, that the membrane proteoglycan, CD44, is a cofactor for the interaction of heparin-binding ligands with their receptors. This model was evaluated by characterizing the patterns of the immunolabeled molecules in cultured human neonatal keratinocytes, to test the hypothesis that involvement in a common function results in coordinate segregation within or on the cell. The molecules were localized by double immunofluorescence labeling to detect amphiregulin and either the epidermal growth factor receptor or CD44, and the immunostained products were imaged by scanning laser confocal microscopy. Both amphiregulin and the epidermal growth factor receptor segregated to a perinuclear distribution and to intercellular contacts. In addition, amphiregulin localized to the outer leading edge of colonies and focally to intranuclear sites. Metabolic blockade of proteoglycan sulfation with sodium chlorate inhibited growth of the cells and concurrently enhanced the nuclear, but decreased the outer leading edge, labeling for amphiregulin. There was no nuclear or perimeter labeling for the epidermal growth factor receptor. Cultures co-immunolabeled for CD44 and amphiregulin exhibited variable perinuclear staining for both, but otherwise CD44 was distributed to intercellular contacts. The intercellular localizations of CD44 with amphiregulin and of amphiregulin with the epidermal growth factor receptor were strongly concordant. These data are consistent with a concerted function at intercellular contacts, where cytokine signaling is mediated via receptor binding and possibly regulated by the CD44 proteoglycan as cofactor. The intranuclear and perimeter labeling of amphiregulin, however, suggests that this cytokine has additional functions, both in the nucleus and as a matrix receptor.
Collapse
Affiliation(s)
- N Nylander
- Department of Medicine, University of Washington School of Medicine, Seattle 98195-6524, USA
| | | | | | | |
Collapse
|
36
|
Affiliation(s)
- E D Adamson
- Burnham Institute, La Jolla Cancer Research Center, California 92037, USA
| | | |
Collapse
|
37
|
Ikematsu Y, Liu G, Fienhold MA, Cano M, Adrian TE, Hollingsworth MA, Williamson JE, Sanger W, Tomioka T, Pour PM. In vitro pancreatic ductal cell carcinogenesis. Int J Cancer 1997; 72:1095-103. [PMID: 9378545 DOI: 10.1002/(sici)1097-0215(19970917)72:6<1095::aid-ijc26>3.0.co;2-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Our experiments were designed to identify initial biochemical and biological changes that occur during pancreatic carcinogenesis. TAKA-1, an immortal hamster pancreatic ductal cell line, was treated in vitro for up to 11 weeks with the pancreatic carcinogen N-nitorosobis(2-oxopropyl)amine (BOP). These treated cells were designated TAKA-1 + BOP. The growth of TAKA-1 and TAKA-1 + BOP cell lines was investigated in soft agar and in hamsters intradermally. The resulting tumor from TAKA-1 + BOP was re-cultured in vitro and designated TAKA-1 + BOP-T. Mutation of c-K-ras and p53 oncogenes, chromosomal changes, expression of transforming growth factor alpha (TGF-alpha) and epidermal growth factor (EGF) receptor and several biochemical markers were examined in all cell lines. TAKA-1 + BOP but not TAKA-1 cells grew in soft agar and produced an invasive tumor in vivo. However, there were no differences in cell growth rate, DNA flow cytometry, or immunohistochemical findings between the non-transformed and transformed cells. TAKA-1, TAKA-1 + BOP and TAKA-1 + BOP-T cells all expressed mRNA of TGF-alpha and EGF receptor in a comparable pattern. DNA sequence analysis following polymerase chain reaction showed that neither TAKA-1 nor TAKA-1 + BOP cells has a mutation of c-K-ras or p53. Karyotype analysis demonstrated that TAKA-1 + BOP cells had more chromosomal abnormalities compared with TAKA-1 cells. Mutation of c-K-ras and p53 was not essential for carcinogenesis in hamster pancreatic ductal cells in vitro. In conclusion, immortality of the TAKA-1 cells caused expression of TGF-alpha to the same extent as in malignant cells. Chromosomal and ultrastructural patterns were the only differences detected between the non-transformed and BOP-transformed cells.
Collapse
Affiliation(s)
- Y Ikematsu
- The Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha 68198-6805, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Funatomi H, Itakura J, Ishiwata T, Pastan I, Thompson SA, Johnson GR, Korc M. Amphiregulin antisense oligonucleotide inhibits the growth of T3M4 human pancreatic cancer cells and sensitizes the cells to EGF receptor-targeted therapy. Int J Cancer 1997; 72:512-7. [PMID: 9247297 DOI: 10.1002/(sici)1097-0215(19970729)72:3<512::aid-ijc21>3.0.co;2-c] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Human pancreatic cancers overexpress the epidermal growth factor (EGF) receptor (EGFR) and all 5 ligands that bind to this receptor, including amphiregulin. It is not known, however, whether amphiregulin contributes in an autocrine manner to enhance pancreatic cancer cell growth. Therefore, we used an amphiregulin antisense oligonucleotide (AR-AS) to suppress amphiregulin expression in T3M4 human pancreatic cancer cells. These cells express high levels of EGFR and amphiregulin. AR-AS abolished amphiregulin immunoreactivity in T3M4 cells, decreased amphiregulin release into the medium and inhibited cell growth in a dose-dependent manner. Exogenous amphiregulin reversed AR-AS-mediated growth inhibition. A random oligonucleotide (AR-R) did not alter either cell growth or cellular amphiregulin immunoreactivity. AR-AS also increased cellular EGFR protein levels and enhanced the growth-inhibitory actions of TP40, a chimeric protein consisting of transforming growth factor-alpha coupled to Pseudomonas exotoxin that internalizes into cells via EGFR. These findings indicate that there is an important EGFR/ amphiregulin autocrine loop in T3M4 cells and raise the possibility that modalities aimed at abrogating amphiregulin action may prove useful in pancreatic cancer, especially when used in conjunction with EGFR-targeted therapy.
Collapse
Affiliation(s)
- H Funatomi
- Department of Medicine, University of California, Irvine 92697, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Amphiregulin and transforming growth factor-alpha, agonists for the epidermal growth factor receptor, are the major autocrine growth factors for cultured keratinocytes, and their substantial overexpression in psoriatic lesions suggests that they are crucial to the basal hyperplasia that characterizes psoriasis. Amphiregulin binds to heparin and related highly sulfated polysaccharides, and exogenous heparin blocks its growth factor activity, rationalizing previous reports that psoriasis responds to heparin therapy. Differentiating keratinocytes produce increased amounts of protein-bound as well as free-chain heparan sulfates, which may function physiologically as amphiregulin antagonists. By promoting keratinocyte synthesis of these heparan sulfates, glucosamine administration may inhibit amphiregulin function and thus provide therapeutic benefit in psoriasis. Concurrent ingestion of fish oil, by impeding the excessive activation of protein kinase C, may decrease keratinocyte production of amphiregulin and other autocrine growth factors, thus complementing the postulated benefits of glucosamine.
Collapse
|
40
|
Normanno N, Ciardiello F. EGF-related peptides in the pathophysiology of the mammary gland. J Mammary Gland Biol Neoplasia 1997; 2:143-51. [PMID: 10882300 DOI: 10.1023/a:1026351730785] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Normal mammary gland development is the result of complex interactions between a number of hormones and growth factors. Normal and malignant human mammary epithelial cells are able to synthesize and to respond to various different, locally acting growth factors and growth inhibitors. Among these, the EGF-related peptides play an important role in regulating the proliferation and differentiation of human mammary epithelial cells. EGF4 and TGF4 are able to stimulate the lobulo-alveolar development of the mammary gland in vivo as well they are involved in the pathogenesis of human breast cancer. Experimental evidence suggests that estrogen-induced proliferation of breast carcinoma cells is mediated in part by EGF-related growth factors. It has also been demonstrated that activation of certain cellular protooncogenes such as c-Ha-ras in human mammary epithelial cells results in cellular transformation and in an increased production of several EGF-related growth factors such as TGFalpha and amphiregulin. Coexpression of both EGF-related peptides and their own receptors frequently occurs in human breast carcinomas and in human breast cancer cell lines, suggesting that an autocrine pathway of uncontrolled cell growth sustains neoplastic transformation.
Collapse
Affiliation(s)
- N Normanno
- Divisione di Oncologia Sperimentale D, Istituto Nazionale per lo Studio e la Cura dei Tumori-Fondazione Pascale, Napoli, Italy
| | | |
Collapse
|
41
|
Gomm JJ, Coope RC, Browne PJ, Coombes RC. Separated human breast epithelial and myoepithelial cells have different growth factor requirements in vitro but can reconstitute normal breast lobuloalveolar structure. J Cell Physiol 1997; 171:11-9. [PMID: 9119887 DOI: 10.1002/(sici)1097-4652(199704)171:1<11::aid-jcp2>3.0.co;2-k] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In order to investigate the specific factors controlling the growth of normal breast cell types, purified populations of human breast epithelial and myoepithelial cells from reduction mammoplasties were grown in primary culture in three defined media and their response to foetal calf serum (FCS), epidermal growth factor (EGF) and basic fibroblast growth factor (FGF2) measured using MTT growth assays. Epithelial and myoepithelial cells differed markedly in their growth requirements. Whereas epithelial cell survival was dependent on the presence of FCS, myoepithelial cell growth was dramatically inhibited by serum. EGF and FGF2 were mitogenic for epithelial cells but not myoepithelial cells, the addition of insulin being the only essential supplement required for myoepithelial cell growth. Heparin inhibited FGF2-stimulated epithelial cell growth but also basal myoepithelial cell proliferation and this inhibition could be overcome by the addition of EGF. Neutralizing antibodies to EGF also inhibited basal myoepithelial cell growth. This suggests the possibility of an autocrine role for a heparin-binding member of the EGF family in the growth of myoepithelial cells. Purified cells combined to form lobuloalveolar structures when incubated in a reconstituted basement membrane matrix (Matrigel) in the presence of EGF and FGF2.
Collapse
Affiliation(s)
- J J Gomm
- CRC Department of Medical Oncology, Charing Cross and Westminster Medical School, London, United Kingdom
| | | | | | | |
Collapse
|
42
|
DiAugustine RP, Richards RG, Sebastian J. EGF-related peptides and their receptors in mammary gland development. J Mammary Gland Biol Neoplasia 1997; 2:109-17. [PMID: 10882297 DOI: 10.1023/a:1026395513038] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The discovery of multiple EGF-like ligands and erbB receptors offers the potential for a highly diverse signaling system allowing specific ligand/receptor complexes to be created in response to a certain hormone(s) or stage of mammary development. The known erbB receptors and several of the erbB-related ligands are synthesized by the normal mammary gland and have different temporal and spatial expression patterns. For instance, cumulative findings support the concepts that the EGF receptor has an essential role in morphogenesis of the mammary gland and that activation of this receptor occurs in response to estradiol-stimulated synthesis of an EGF receptor ligand in mammary stromal cells. The importance of both epithelial and stromal mammary cells in the hormonal activation of erbB-related pathways is underscored in this review. Current experimental protocols that utilize erbB mutant mice or enable detection of phosphorylated erbB members and their proximal substrates should permit more precise identification of the pathways operative in the mammary gland.
Collapse
Affiliation(s)
- R P DiAugustine
- Hormones and Cancer Section, Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | |
Collapse
|
43
|
Mammary stem cells in normal development and cancer. Stem Cells 1997. [DOI: 10.1016/b978-012563455-7/50008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
44
|
Martinez-Lacaci I, Johnson GR, Salomon DS, Dickson RB. Characterization of a novel amphiregulin-related molecule in 12-O-tetradecanoylphorbol-13-acetate-treated breast cancer cells. J Cell Physiol 1996; 169:497-508. [PMID: 8952699 DOI: 10.1002/(sici)1097-4652(199612)169:3<497::aid-jcp10>3.0.co;2-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Amphiregulin (AR) can be induced at the mRNA level by 17-beta-estradiol (E2) or the phorbol ester tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). This study compares the effects of TPA and E2 on the regulation of processing of AR isoforms and on subcellular localization in human MCF-7 breast cancer cells. AR was localized in the nucleus of MCF-7 cells after E2 treatment, whereas it was predominantly secreted after TPA treatment. AR isoforms of 28, 18, and 10 kDa and an additional species of approximately 55-60 kDa were detected in the cellular conditioned media after TPA stimulation. Expression of this unusual AR isoform was inhibited by protein kinase C (PKC) inhibitors such as bryostatin or H-7. The biochemical properties of this isoform are consistent with it being an N-linked glycosylated form of the AR precursor that contains unprocessed mannose residues. The size of this large isoform is reduced to approximately 40 kDa after treating the TPA-induced MCF-7 cells with tunicamycin or treating the conditioned media of such cells with N-glycosidase F or with endoglycosidase H. Moreover, this isoform is able to blind several lectins with specificity for mannose residues. The 55-60 kDa glycosylated AR isoform, like lower Mr AR isoforms, is able to bind to heparin and to stimulate the growth of MCF-10A cells by interacting with the EGF receptor. These data suggest that TPA activation of PKC may be involved in post-translational modifications of AR, such as glycosylation, and in alteration of its subcellular routing to predominantly a secretory pathway.
Collapse
|
45
|
Thompson SA, Harris A, Hoang D, Ferrer M, Johnson GR. COOH-terminal extended recombinant amphiregulin with bioactivity comparable with naturally derived growth factor. J Biol Chem 1996; 271:17927-31. [PMID: 8663535 DOI: 10.1074/jbc.271.30.17927] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The mature secreted form of the epidermal growth factor (EGF) receptor ligand amphiregulin (AR) is reported to be an 84-amino acid residue polypeptide, which is generated by proteolytic processing of a 252-amino acid precursor. This form of recombinant AR (rAR84) and two forms with COOH-terminal extensions corresponding to sequences from the AR precursor (rAR87 and rAR92) were expressed at high levels in Escherichia coli, oxidized to the correct disulfide arrangement, and purified to homogeneity. rAR84 competed poorly for binding of radiolabeled EGF to the EGF receptor and had little ability to stimulate growth of Balb/c/3T3 cells. In striking contrast, rAR87 and rAR92 possessed 42- and 20-fold greater receptor binding activity and 55- and 14-fold greater bioactivity, respectively. Furthermore, addition of the COOH-terminal four amino acids from transforming growth factor alpha to the COOH terminus of rAR84 improved the activity of rAR84 by 100- and 1000-fold, respectively, in these assays. rAR87 was found to have approximately 32% of the specific activity of natural AR from MCF-7 cells when compared in two different bioassays. These findings strongly suggest that the 84-amino acid sequence is not the correct structure of the naturally occurring secreted form of AR and that natural AR contains additional amino acid residues at the COOH-terminal end.
Collapse
Affiliation(s)
- S A Thompson
- Department of Protein Chemistry and Biophysics, Berlex Biosciences, Richmond, California 94804, USA
| | | | | | | | | |
Collapse
|
46
|
Forsyth IA. The insulin-like growth factor and epidermal growth factor families in mammary cell growth in ruminants: action and interaction with hormones. J Dairy Sci 1996; 79:1085-96. [PMID: 8827474 DOI: 10.3168/jds.s0022-0302(96)76462-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Selective breeding and improved management have had major effects in increasing peak milk yields but relatively little effect on lactation persistency. In ruminants, cell loss appears to be largely responsible for the decline in milk yield. Little is known about the longevity of individual cells, but, in lactating dairy cows, few epithelial cells are in the S phase (DNA synthesis) of the cell cycle. The IGF and epidermal growth factor families are direct mitogens, stimulating DNA synthesis in cultures of ruminant mammary epithelial cells. Receptors that mediate the effects of these growth factors, the type 1 IGF receptor and the epidermal growth factor receptor, respectively, are present at similar levels in membranes prepared from the mammary glands of nonpregnant and pregnant sheep. Binding capacity falls by parturition and remains low during lactation. These findings suggest that the drive to mammary development in pregnancy comes from control of growth factors, and, in the case of IGF, modulating binding proteins, a control exerted by hormones, which, in general, are not themselves mitogens. A paracrine or autocrine mode of action and, therefore, local growth factor synthesis, are more likely to be important than systemic concentrations of growth factor. Stimulatory growth factors produced locally by the mammary gland include IGF-I, IGF-II, transforming growth factor-alpha, and amphiregulin. More information is needed on the control of stimulatory and inhibitory growth factors and on how growth factors control the cell cycle. Knowledge of these processes could result in strategies to improve lactation persistency by increasing secretory cell renewal or reducing cell loss during lactation.
Collapse
Affiliation(s)
- I A Forsyth
- Department of Cellular Physiology, Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
47
|
Schuger L, Johnson GR, Gilbride K, Plowman GD, Mandel R. Amphiregulin in lung branching morphogenesis: interaction with heparan sulfate proteoglycan modulates cell proliferation. Development 1996; 122:1759-67. [PMID: 8674415 DOI: 10.1242/dev.122.6.1759] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Epithelial and mesenchymal cells isolated from mouse embryonic lungs synthesized and responded to amphiregulin (AR) in a different fashion. Mesenchymal cells produced and deposited 3- to 4-fold more AR than epithelial cells, proliferated in the presence of exogenous AR, and their spontaneous growth was blocked by up to 85% by anti-AR antibodies. In contrast, epithelial cells exhibited a broad response to this growth regulator factor depending on whether they were supplemented with extracellular matrix (ECM) and whether this ECM was of epithelial or mesenchymal origin. AR-treated epithelial cells proliferated by up to 3-fold in the presence of mesenchymal-deposited ECM, remained unchanged in the presence of epithelial-deposited ECM, and decreased in their proliferation rate below controls in the absence of ECM supplementation. This effect was abolished by treatment with the glycosaminoglycan-degrading enzymes heparinase and heparitinase suggesting the specific involvement of heparan sulfate proteoglycan (HSPG) in AR-mediated cell proliferation. In whole lung explants, branching morphogenesis was inhibited by antibodies against the AR heparan sulfate binding site and stimulated by exogenous AR. Since during development, epithelial cells are in contact with mesenchymal ECM at the tips of the growing buds and alongside the basement membrane, focal variations in the proportion of epithelial and mesenchymal HSPG will focally affect epithelial proliferation rates. Therefore, AR-HSPG interaction may underlie the process of branching morphogenesis by inducing differential cell proliferation.
Collapse
Affiliation(s)
- L Schuger
- Department of Pathology and Laboratory Medicine, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
48
|
Piepkorn M. Overexpression of amphiregulin, a major autocrine growth factor for cultured human keratinocytes, in hyperproliferative skin diseases. Am J Dermatopathol 1996; 18:165-71. [PMID: 8739992 DOI: 10.1097/00000372-199604000-00010] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Previous studies have indicated that amphiregulin is a major autocrine growth factor for cultured human keratinocytes. Its overexpression could therefore be important in hyperproliferative skin diseases. The purpose of this preliminary study was to determine if there is upregulation of amphiregulin protein in those disorders. A variety of lesions was surveyed for qualitative alterations in its immunostaining with an anti-amphiregulin monoclonal antibody. Amphiregulin was barely detectable in the epidermis of normal controls, although there was random nuclear staining of keratinocytes, and the epidermal appendages, especially sebaceous glands, were usually reactive. In contrast, psoriatic lesions exhibited prominent cytoplasmic staining of basal and spinous keratinocytes. Somewhat increased reactivity was also evident in actinic keratoses, in nests of squamous carcinoma cells, and in verrucae. Adnexal tumors were often strongly stained. Whereas basal cell carcinomas were nonreactive, staining was present in adjacent epidermis. Similarly, the melanocytes of nevi and melanoma were nonreactive but there was increased staining in contiguous keratinocytes. The pattern of amphiregulin immunostaining suggests a role for the protein in the aberrant keratinocyte growth of hyperproliferative disorders.
Collapse
Affiliation(s)
- M Piepkorn
- Department of Medicine (Dermatology), University of Washington School of Medicine, Seattle 98195, USA
| |
Collapse
|
49
|
Abstract
We have previously shown that the epidermal growth factor receptor (EGFR) ligand, amphiregulin (AR) exhibits low potency as a result of its C-terminal truncation. This led us to investigate whether its inability to promote anchorage-independent growth (AIG) of normal cells arose because of its compromised interaction with EGFR. Wild type AR(1-84) was tested in AIG and mitogenesis assays using NRK-49F or NR6/HER fibroblasts. In contrast to NR6/HER cells, the response of NRK-49F fibroblasts to AR was much lower than expected. As the effect of AR was heparin-insensitive, contributions from heparan sulphate proteoglycan interactions could not explain the differing sensitivities of the cells. Comparison of the effects of AR on two additional cell lines indicated that low EGFR number correlated with AR insensitivity: this suggested that the low potency of AR precluded activation of sufficient receptors to elicit a response. Consistent with this proposal, a modified form of AR (AR[1-90(leu86)]) with enhanced potency was able to induce AIG of NRK-49F fibroblasts. Thus, the ability of AR to promote AIG is determined both by ligand potency and the EGFR complement of cells.
Collapse
|
50
|
Martinez-Lacaci I, Dickson RB. Dual regulation of the epidermal growth factor family of growth factors in breast cancer by sex steroids and protein kinase C. J Steroid Biochem Mol Biol 1996; 57:1-11. [PMID: 8645607 DOI: 10.1016/0960-0760(95)00245-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
There has been increased interest in the last few years in seeking a better understanding of the local regulation of polypeptide growth factors by systemic hormones, such as sex steroids and by polypeptide hormones. Growth factors and systemic hormones play pivotal roles in hormone-regulated cancers such as breast cancer. In this review, we discuss the regulation of members of the epidermal growth factor (EGF) family by sex steroids and by regulators of the polypeptide hormone signal transduction enzyme termed protein kinase C (PKC). Regulation of the EGF family of genes will be discussed as a model system to evaluate interactions between these two important types of regulatory pathways in breast cancer.
Collapse
Affiliation(s)
- I Martinez-Lacaci
- Vincent T. Lombardi Cancer Center, Georgetown University, Washingotn, DC 20007, USA
| | | |
Collapse
|