1
|
Duque-Afonso J, Veratti P, Rehman UU, Herzog H, Mitschke J, Greve G, Eble J, Berberich B, Thomas J, Pantic M, Waterhouse M, Gentile G, Heidenreich O, Miething C, Lübbert M. Identification of epigenetic modifiers essential for growth and survival of AML1/ETO-positive leukemia. Int J Cancer 2024; 155:2068-2079. [PMID: 39146497 DOI: 10.1002/ijc.35134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 08/17/2024]
Abstract
Aberrant gene expression patterns in acute myeloid leukemia (AML) with balanced chromosomal translocations are often associated with dysregulation of epigenetic modifiers. The AML1/ETO (RUNX1/MTG8) fusion protein, caused by the translocation (8;21)(q22;q22), leads to the epigenetic repression of its target genes. We aimed in this work to identify critical epigenetic modifiers, on which AML1/ETO-positive AML cells depend on for proliferation and survival using shRNA library screens and global transcriptomics approaches. Using shRNA library screens, we identified 41 commonly depleted genes in two AML1/ETO-positive cell lines Kasumi-1 and SKNO-1. We validated, genetically and pharmacologically, DNMT1 and ATR using several AML1/ETO-positive and negative cell lines. We also demonstrated in vivo differentiation of myeloblasts after treatment with the DNMT1 inhibitor decitabine in a patient with an AML1/ETO-positive AML. Bioinformatic analysis of global transcriptomics after AML1/ETO induction in 9/14/18-U937 cells identified 973 differentially expressed genes (DEGs). Three genes (PARP2, PRKCD, and SMARCA4) were both downregulated after AML1/ETO induction, and identified in shRNA screens. In conclusion, using unbiased shRNA library screens and global transcriptomics, we have identified several driver epigenetic regulators for proliferation in AML1/ETO-positive AML. DNMT1 and ATR were validated and are susceptible to pharmacological inhibition by small molecules showing promising preclinical and clinical efficacy.
Collapse
MESH Headings
- Humans
- Core Binding Factor Alpha 2 Subunit/genetics
- Core Binding Factor Alpha 2 Subunit/metabolism
- RUNX1 Translocation Partner 1 Protein/genetics
- RUNX1 Translocation Partner 1 Protein/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- Epigenesis, Genetic
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Cell Proliferation/genetics
- Cell Line, Tumor
- DNA (Cytosine-5-)-Methyltransferase 1/genetics
- DNA (Cytosine-5-)-Methyltransferase 1/metabolism
- Decitabine/pharmacology
- Gene Expression Regulation, Leukemic
- RNA, Small Interfering/genetics
- DNA Methylation
- Cell Survival/genetics
- Cell Differentiation/genetics
Collapse
Affiliation(s)
- Jesús Duque-Afonso
- Department of Hematology/Oncology/Stem Cell Transplantation, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany
| | - Pia Veratti
- Department of Hematology/Oncology/Stem Cell Transplantation, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany
- German Cancer Consortium (DKTK), Partnering Site Freiburg, Freiburg, Germany
| | - Usama-Ur Rehman
- Department of Hematology/Oncology/Stem Cell Transplantation, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany
| | - Heike Herzog
- Department of Hematology/Oncology/Stem Cell Transplantation, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany
| | - Jan Mitschke
- Department of Hematology/Oncology/Stem Cell Transplantation, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany
- German Cancer Consortium (DKTK), Partnering Site Freiburg, Freiburg, Germany
| | - Gabriele Greve
- Department of Hematology/Oncology/Stem Cell Transplantation, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Julian Eble
- Department of Hematology/Oncology/Stem Cell Transplantation, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany
| | - Bettina Berberich
- Department of Hematology/Oncology/Stem Cell Transplantation, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany
| | - Johanna Thomas
- Department of Hematology/Oncology/Stem Cell Transplantation, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany
| | - Milena Pantic
- Department of Hematology/Oncology/Stem Cell Transplantation, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany
| | - Miguel Waterhouse
- Department of Hematology/Oncology/Stem Cell Transplantation, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany
| | - Gaia Gentile
- Department of Hematology/Oncology/Stem Cell Transplantation, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany
| | - Olaf Heidenreich
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Cornelius Miething
- Department of Hematology/Oncology/Stem Cell Transplantation, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany
- German Cancer Consortium (DKTK), Partnering Site Freiburg, Freiburg, Germany
| | - Michael Lübbert
- Department of Hematology/Oncology/Stem Cell Transplantation, Faculty of Medicine, University of Freiburg Medical Center, Freiburg, Germany
- German Cancer Consortium (DKTK), Partnering Site Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
Fischer A, Albert TK, Moreno N, Interlandi M, Mormann J, Glaser S, Patil P, de Faria FW, Richter M, Verma A, Balbach ST, Wagener R, Bens S, Dahlum S, Göbel C, Münter D, Inserte C, Graf M, Kremer E, Melcher V, Di Stefano G, Santi R, Chan A, Dogan A, Bush J, Hasselblatt M, Cheng S, Spetalen S, Fosså A, Hartmann W, Herbrüggen H, Robert S, Oyen F, Dugas M, Walter C, Sandmann S, Varghese J, Rossig C, Schüller U, Tzankov A, Pedersen MB, d'Amore FA, Mellgren K, Kontny U, Kancherla V, Veloza L, Missiaglia E, Fataccioli V, Gaulard P, Burkhardt B, Soehnlein O, Klapper W, de Leval L, Siebert R, Kerl K. Lack of SMARCB1 expression characterizes a subset of human and murine peripheral T-cell lymphomas. Nat Commun 2024; 15:8571. [PMID: 39362842 PMCID: PMC11452211 DOI: 10.1038/s41467-024-52826-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/23/2024] [Indexed: 10/05/2024] Open
Abstract
Peripheral T-cell lymphoma, not otherwise specified (PTCL-NOS) is a heterogeneous group of malignancies with poor outcome. Here, we identify a subgroup, PTCL-NOSSMARCB1-, which is characterized by the lack of the SMARCB1 protein and occurs more frequently in young patients. Human and murine PTCL-NOSSMARCB1- show similar DNA methylation profiles, with hypermethylation of T-cell-related genes and hypomethylation of genes involved in myeloid development. Single-cell analyses of human and murine tumors revealed a rich and complex network of interactions between tumor cells and an immunosuppressive and exhausted tumor microenvironment (TME). In a drug screen, we identified histone deacetylase inhibitors (HDACi) as a class of drugs effective against PTCL-NOSSmarcb1-. In vivo treatment of mouse tumors with SAHA, a pan-HDACi, triggered remodeling of the TME, promoting replenishment of lymphoid compartments and reversal of the exhaustion phenotype. These results provide a rationale for further exploration of HDACi combination therapies targeting PTCL-NOSSMARCB1- within the TME.
Collapse
MESH Headings
- Animals
- SMARCB1 Protein/genetics
- SMARCB1 Protein/metabolism
- Humans
- Lymphoma, T-Cell, Peripheral/genetics
- Lymphoma, T-Cell, Peripheral/drug therapy
- Lymphoma, T-Cell, Peripheral/metabolism
- Lymphoma, T-Cell, Peripheral/pathology
- Mice
- Histone Deacetylase Inhibitors/pharmacology
- Tumor Microenvironment/genetics
- Tumor Microenvironment/drug effects
- DNA Methylation
- Gene Expression Regulation, Neoplastic
- Female
- Cell Line, Tumor
- Male
- Vorinostat/pharmacology
- Single-Cell Analysis
Collapse
Affiliation(s)
- Anja Fischer
- Institute of Human Genetics, Ulm University Medical Center, Ulm, Germany
| | - Thomas K Albert
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Natalia Moreno
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Marta Interlandi
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
| | - Jana Mormann
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Selina Glaser
- Institute of Human Genetics, Ulm University Medical Center, Ulm, Germany
| | - Paurnima Patil
- Institute of Human Genetics, Ulm University Medical Center, Ulm, Germany
| | - Flavia W de Faria
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Mathis Richter
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Archana Verma
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Sebastian T Balbach
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Rabea Wagener
- Institute of Human Genetics, Ulm University Medical Center, Ulm, Germany
| | - Susanne Bens
- Institute of Human Genetics, Ulm University Medical Center, Ulm, Germany
| | - Sonja Dahlum
- Institute of Human Genetics, Ulm University Medical Center, Ulm, Germany
| | - Carolin Göbel
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Eppendorf (UKE), 20251, Hamburg, Germany
- Research Institute Children's Cancer Center, 20251, Hamburg, Germany
| | - Daniel Münter
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Clara Inserte
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
| | - Monika Graf
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Eva Kremer
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Viktoria Melcher
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Gioia Di Stefano
- Pathological Anatomy Section, Careggi University Hospital, Florence, Italy
| | - Raffaella Santi
- Pathological Anatomy Section, Careggi University Hospital, Florence, Italy
| | - Alexander Chan
- Department of Pathology, Hematopathology Service, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Ahmet Dogan
- Department of Pathology, Hematopathology Service, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Jonathan Bush
- Division of Anatomical Pathology, British Columbia Children's Hospital and Women's Hospital and Health Center, Vancouver, BC, Canada
| | - Martin Hasselblatt
- Institute of Neuropathology, University Hospital Münster, 48149, Münster, Germany
| | - Sylvia Cheng
- Division of Pediatric Hematology/Oncology/BMT, Department of Pediatrics, British Columbia Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Signe Spetalen
- Department of Pathology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Alexander Fosså
- Department of Oncology, Oslo University Hospital-Norwegian Radium Hospital, Oslo, Norway
| | - Wolfgang Hartmann
- Division of Translational Pathology, Gerhard-Domagk-Institut für Pathologie, Universitätsklinikum Münster, Albert-Schweitzer-Campus 1, Gebäude D17, 48149, Münster, Germany
| | - Heidi Herbrüggen
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Stella Robert
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, Münster, Germany
| | - Florian Oyen
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Eppendorf (UKE), 20251, Hamburg, Germany
| | - Martin Dugas
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
- Institute of Medical Informatics, Heidelberg University Hospital, Heidelberg, Germany
| | - Carolin Walter
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
| | - Sarah Sandmann
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
| | - Julian Varghese
- Institute of Medical Informatics, University of Münster, 48149, Münster, Germany
| | - Claudia Rossig
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Eppendorf (UKE), 20251, Hamburg, Germany
- Research Institute Children's Cancer Center, 20251, Hamburg, Germany
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf (UKE), 20251, Hamburg, Germany
| | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Martin B Pedersen
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
| | - Francesco A d'Amore
- Department of Hematology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Karin Mellgren
- Department of Pediatric Oncology and Hematology, Sahlgrenska University Hospital, The Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Udo Kontny
- Section of Pediatric Hematology, Oncology, and Stem Cell Transplantation, Department of Pediatric and Adolescent Medicine, RWTH Aachen University Hospital, Aachen, Germany
| | - Venkatesh Kancherla
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital, Lausanne, Switzerland
| | - Luis Veloza
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital, Lausanne, Switzerland
| | - Edoardo Missiaglia
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital, Lausanne, Switzerland
| | - Virginie Fataccioli
- INSERM U955, Université Paris-Est, Créteil, France
- Département de Pathologie, Hôpitaux Universitaires Henri Mondor, AP-HP, INSERM U955, Université Paris Est Créteil, Créteil, France
| | - Philippe Gaulard
- Département de Pathologie, Hôpitaux Universitaires Henri Mondor, AP-HP, INSERM U955, Université Paris Est Créteil, Créteil, France
| | - Birgit Burkhardt
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany
| | - Oliver Soehnlein
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, University of Münster, Münster, Germany
| | - Wolfram Klapper
- Department of Pathology, Haematopathology Section and Lymph Node Registry, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Laurence de Leval
- Institute of Pathology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital, Lausanne, Switzerland
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University Medical Center, Ulm, Germany
| | - Kornelius Kerl
- Department of Pediatric Hematology and Oncology, University Children's Hospital Münster, Münster, Germany.
| |
Collapse
|
3
|
Abu Sailik F, Emerald BS, Ansari SA. Opening and changing: mammalian SWI/SNF complexes in organ development and carcinogenesis. Open Biol 2024; 14:240039. [PMID: 39471843 PMCID: PMC11521604 DOI: 10.1098/rsob.240039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/04/2024] [Accepted: 09/18/2024] [Indexed: 11/01/2024] Open
Abstract
The switch/sucrose non-fermentable (SWI/SNF) subfamily are evolutionarily conserved, ATP-dependent chromatin-remodelling complexes that alter nucleosome position and regulate a spectrum of nuclear processes, including gene expression, DNA replication, DNA damage repair, genome stability and tumour suppression. These complexes, through their ATP-dependent chromatin remodelling, contribute to the dynamic regulation of genetic information and the maintenance of cellular processes essential for normal cellular function and overall genomic integrity. Mutations in SWI/SNF subunits are detected in 25% of human malignancies, indicating that efficient functioning of this complex is required to prevent tumourigenesis in diverse tissues. During development, SWI/SNF subunits help establish and maintain gene expression patterns essential for proper cellular identity and function, including maintenance of lineage-specific enhancers. Moreover, specific molecular signatures associated with SWI/SNF mutations, including disruption of SWI/SNF activity at enhancers, evasion of G0 cell cycle arrest, induction of cellular plasticity through pro-oncogene activation and Polycomb group (PcG) complex antagonism, are linked to the initiation and progression of carcinogenesis. Here, we review the molecular insights into the aetiology of human malignancies driven by disruption of the SWI/SNF complex and correlate these mechanisms to their developmental functions. Finally, we discuss the therapeutic potential of targeting SWI/SNF subunits in cancer.
Collapse
Affiliation(s)
- Fadia Abu Sailik
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- ASPIRE Precision Medicine Research Institute Abu Dhabi (PMRI-AD), United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Suraiya Anjum Ansari
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- ASPIRE Precision Medicine Research Institute Abu Dhabi (PMRI-AD), United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| |
Collapse
|
4
|
Liu X, Liu K, Wang Y, Meng X, Wang Q, Tao S, Xu Q, Shen X, Gao X, Hong S, Jin H, Wang JQ, Wang D, Lu L, Meng Z, Wang L. SWI/SNF chromatin remodeling factor BAF60b restrains inflammatory diseases by affecting regulatory T cell migration. Cell Rep 2024; 43:114458. [PMID: 38996070 DOI: 10.1016/j.celrep.2024.114458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/21/2024] [Accepted: 06/21/2024] [Indexed: 07/14/2024] Open
Abstract
Regulatory T (Treg) cells play a critical regulatory role in the immune system by suppressing excessive immune responses and maintaining immune balance. The effective migration of Treg cells is crucial for controlling the development and progression of inflammatory diseases. However, the mechanisms responsible for directing Treg cells into the inflammatory tissue remain incompletely elucidated. In this study, we identified BAF60b, a subunit of switch/sucrose nonfermentable (SWI/SNF) chromatin remodeling complexes, as a positive regulator of Treg cell migration that inhibits the progression of inflammation in experimental autoimmune encephalomyelitis (EAE) and colitis animal models. Mechanistically, transcriptome and genome-wide chromatin-landscaped analyses demonstrated that BAF60b interacts with the transcription factor RUNX1 to promote the expression of CCR9 on Treg cells, which in turn affects their ability to migrate to inflammatory tissues. Our work provides insights into the essential role of BAF60b in regulating Treg cell migration and its impact on inflammatory diseases.
Collapse
MESH Headings
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Animals
- Cell Movement
- Mice
- Mice, Inbred C57BL
- Inflammation/pathology
- Inflammation/metabolism
- Chromatin Assembly and Disassembly
- Chromosomal Proteins, Non-Histone/metabolism
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Humans
- Transcription Factors/metabolism
- Core Binding Factor Alpha 2 Subunit/metabolism
- Core Binding Factor Alpha 2 Subunit/genetics
- Colitis/metabolism
- Colitis/pathology
- Colitis/immunology
- Colitis/genetics
Collapse
Affiliation(s)
- Xiaoqian Liu
- Institute of Immunology and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311100, China; Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Kuai Liu
- Institute of Immunology and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311100, China; Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yuxi Wang
- Laboratory Animal Center, Zhejiang University, Hangzhou 310058, China
| | - Xiaoyu Meng
- Institute of Immunology and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311100, China; Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Qianqian Wang
- Laboratory Animal Center, Zhejiang University, Hangzhou 310058, China
| | - Sijue Tao
- Laboratory Animal Center, Zhejiang University, Hangzhou 310058, China
| | - Qianying Xu
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xin Shen
- Co-Facility Center, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xianzhi Gao
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311100, China; Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Shenghui Hong
- Laboratory Animal Center, Zhejiang University, Hangzhou 310058, China
| | - Huihui Jin
- Laboratory Animal Center, Zhejiang University, Hangzhou 310058, China
| | - James Q Wang
- Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining 314400, China
| | - Di Wang
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Linrong Lu
- Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Zhuoxian Meng
- Department of Pathology and Pathophysiology and Department of Cardiology, School of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou 310009, China
| | - Lie Wang
- Institute of Immunology and Bone Marrow Transplantation Center, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311100, China; Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 311100, China; Zhejiang University School of Medicine, Hangzhou 310058, China; Laboratory Animal Center, Zhejiang University, Hangzhou 310058, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining 314400, China; Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China.
| |
Collapse
|
5
|
Robertson AL, Yue L, Choudhuri A, Kubaczka C, Wattrus SJ, Mandelbaum J, Avagyan S, Yang S, Freeman RJ, Chan V, Blair MC, Daley GQ, Zon LI. Hematopoietic stem cell division is governed by distinct RUNX1 binding partners. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.596542. [PMID: 38895208 PMCID: PMC11185638 DOI: 10.1101/2024.06.07.596542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
A defined number of hematopoietic stem cell (HSC) clones are born during development and expand to form the pool of adult stem cells. An intricate balance between self-renewal and differentiation of these HSCs supports hematopoiesis for life. HSC fate is determined by complex transcription factor networks that drive cell-type specific gene programs. The transcription factor RUNX1 is required for definitive hematopoiesis, and mutations in Runx1 have been shown to reduce clonal diversity. The RUNX1 cofactor, CBFý, stabilizes RUNX1 binding to DNA, and disruption of their interaction alters downstream gene expression. Chemical screening for modulators of Runx1 and HSC expansion in zebrafish led us to identify a new mechanism for the RUNX1 inhibitor, Ro5-3335. We found that Ro5-3335 increased HSC divisions in zebrafish, and animals transplanted with Ro5-3335 treated cells had enhanced chimerism compared to untreated cells. Using human CD34+ cells, we show that Ro5-3335 remodels the RUNX1 transcription complex by binding to ELF1, independent of CBFý. This allows specific expression of cell cycle and hematopoietic genes that enhance HSC self-renewal and prevent differentiation. Furthermore, we provide the first evidence to show that it is possible to pharmacologically increase the number of stem cell clones in vivo , revealing a previously unknown mechanism for enhancing clonal diversity. Our studies have revealed a mechanism by which binding partners of RUNX1 determine cell fate, with ELF transcription factors guiding cell division. This information could lead to treatments that enhance clonal diversity for blood diseases.
Collapse
|
6
|
Liu W, Kurkewich JL, Stoddart A, Khan S, Anandan D, Gaubil AN, Wolfgeher DJ, Jueng L, Kron SJ, McNerney ME. CUX1 regulates human hematopoietic stem cell chromatin accessibility via the BAF complex. Cell Rep 2024; 43:114227. [PMID: 38735044 PMCID: PMC11163479 DOI: 10.1016/j.celrep.2024.114227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 03/16/2024] [Accepted: 04/26/2024] [Indexed: 05/14/2024] Open
Abstract
CUX1 is a homeodomain-containing transcription factor that is essential for the development and differentiation of multiple tissues. CUX1 is recurrently mutated or deleted in cancer, particularly in myeloid malignancies. However, the mechanism by which CUX1 regulates gene expression and differentiation remains poorly understood, creating a barrier to understanding the tumor-suppressive functions of CUX1. Here, we demonstrate that CUX1 directs the BAF chromatin remodeling complex to DNA to increase chromatin accessibility in hematopoietic cells. CUX1 preferentially regulates lineage-specific enhancers, and CUX1 target genes are predictive of cell fate in vivo. These data indicate that CUX1 regulates hematopoietic lineage commitment and homeostasis via pioneer factor activity, and CUX1 deficiency disrupts these processes in stem and progenitor cells, facilitating transformation.
Collapse
Affiliation(s)
- Weihan Liu
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA; Committee on Cancer Biology, The University of Chicago, Chicago, IL 60637, USA
| | | | - Angela Stoddart
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Saira Khan
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Dhivyaa Anandan
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Alexandre N Gaubil
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Donald J Wolfgeher
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Lia Jueng
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA
| | - Stephen J Kron
- The University of Chicago Medicine Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637, USA; Committee on Cancer Biology, The University of Chicago, Chicago, IL 60637, USA; Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Megan E McNerney
- Department of Pathology, The University of Chicago, Chicago, IL 60637, USA; The University of Chicago Medicine Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637, USA; Committee on Cancer Biology, The University of Chicago, Chicago, IL 60637, USA; Department of Pediatrics, Section of Hematology/Oncology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
7
|
Gamble N, Bradu A, Caldwell JA, McKeever J, Bolonduro O, Ermis E, Kaiser C, Kim Y, Parks B, Klemm S, Greenleaf WJ, Crabtree GR, Koh AS. PU.1 and BCL11B sequentially cooperate with RUNX1 to anchor mSWI/SNF to poise the T cell effector landscape. Nat Immunol 2024; 25:860-872. [PMID: 38632339 PMCID: PMC11089574 DOI: 10.1038/s41590-024-01807-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 03/11/2024] [Indexed: 04/19/2024]
Abstract
Adaptive immunity relies on specialized effector functions elicited by lymphocytes, yet how antigen recognition activates appropriate effector responses through nonspecific signaling intermediates is unclear. Here we examined the role of chromatin priming in specifying the functional outputs of effector T cells and found that most of the cis-regulatory landscape active in effector T cells was poised early in development before the expression of the T cell antigen receptor. We identified two principal mechanisms underpinning this poised landscape: the recruitment of the nucleosome remodeler mammalian SWItch/Sucrose Non-Fermentable (mSWI/SNF) by the transcription factors RUNX1 and PU.1 to establish chromatin accessibility at T effector loci; and a 'relay' whereby the transcription factor BCL11B succeeded PU.1 to maintain occupancy of the chromatin remodeling complex mSWI/SNF together with RUNX1, after PU.1 silencing during lineage commitment. These mechanisms define modes by which T cells acquire the potential to elicit specialized effector functions early in their ontogeny and underscore the importance of integrating extrinsic cues to the developmentally specified intrinsic program.
Collapse
Affiliation(s)
- Noah Gamble
- Department of Pathology, University of Chicago, Chicago, IL, USA
- Graduate Program in Biophysical Sciences, University of Chicago, Chicago, IL, USA
| | - Alexandra Bradu
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Jason A Caldwell
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Joshua McKeever
- Department of Pathology, University of Chicago, Chicago, IL, USA
- Committee on Molecular Metabolism and Nutrition, University of Chicago, Chicago, IL, USA
| | - Olubusayo Bolonduro
- Department of Pathology, University of Chicago, Chicago, IL, USA
- Committee on Genetics, Genomics, Systems Biology, University of Chicago, Chicago, IL, USA
| | - Ebru Ermis
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Caroline Kaiser
- Department of Pathology, University of Chicago, Chicago, IL, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - YeEun Kim
- Immunology Program, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Benjamin Parks
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Sandy Klemm
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - William J Greenleaf
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Gerald R Crabtree
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Developmental Biology, Stanford University, Stanford, CA, USA
| | - Andrew S Koh
- Department of Pathology, University of Chicago, Chicago, IL, USA.
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
8
|
Aoki K, Hyuga M, Tarumoto Y, Nishibuchi G, Ueda A, Ochi Y, Sugino S, Mikami T, Kobushi H, Kato I, Akahane K, Inukai T, Takaori-Kondo A, Takita J, Ogawa S, Yusa K. Canonical BAF complex regulates the oncogenic program in human T-cell acute lymphoblastic leukemia. Blood 2024; 143:604-618. [PMID: 37922452 DOI: 10.1182/blood.2023020857] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2023] Open
Abstract
ABSTRACT Acute leukemia cells require bone marrow microenvironments, known as niches, which provide leukemic cells with niche factors that are essential for leukemic cell survival and/or proliferation. However, it remains unclear how the dynamics of the leukemic cell-niche interaction are regulated. Using a genome-wide CRISPR screen, we discovered that canonical BRG1/BRM-associated factor (cBAF), a variant of the switch/sucrose nonfermenting chromatin remodeling complex, regulates the migratory response of human T-cell acute lymphoblastic leukemia (T-ALL) cells to a niche factor CXCL12. Mechanistically, cBAF maintains chromatin accessibility and allows RUNX1 to bind to CXCR4 enhancer regions. cBAF inhibition evicts RUNX1 from the genome, resulting in CXCR4 downregulation and impaired migration activity. In addition, cBAF maintains chromatin accessibility preferentially at RUNX1 binding sites, ensuring RUNX1 binding at these sites, and is required for expression of RUNX1-regulated genes, such as CDK6; therefore, cBAF inhibition negatively impacts cell proliferation and profoundly induces apoptosis. This anticancer effect was also confirmed using T-ALL xenograft models, suggesting cBAF as a promising therapeutic target. Thus, we provide novel evidence that cBAF regulates the RUNX1-driven leukemic program and governs migration activity toward CXCL12 and cell-autonomous growth in human T-ALL.
Collapse
Affiliation(s)
- Kazunari Aoki
- Stem Cell Genetics, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Mizuki Hyuga
- Stem Cell Genetics, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yusuke Tarumoto
- Stem Cell Genetics, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Gohei Nishibuchi
- Stem Cell Genetics, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Atsushi Ueda
- Stem Cell Genetics, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yotaro Ochi
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| | - Seiichi Sugino
- Stem Cell Genetics, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Takashi Mikami
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hirokazu Kobushi
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Itaru Kato
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koshi Akahane
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Takeshi Inukai
- Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
- Department of Medicine, Centre for Haematology and Regenerative Medicine, Karolinska Institute, Stockholm, Sweden
| | - Kosuke Yusa
- Stem Cell Genetics, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan
| |
Collapse
|
9
|
Kuwahara Y, Iehara T, Matsumoto A, Okuda T. Recent insights into the SWI/SNF complex and the molecular mechanism of hSNF5 deficiency in rhabdoid tumors. Cancer Med 2023; 12:16323-16336. [PMID: 37317642 PMCID: PMC10469780 DOI: 10.1002/cam4.6255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 05/04/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023] Open
Abstract
Genetic information encoded by DNA is packaged in the nucleus using the chromatin structure. The accessibility of transcriptional elements in DNA is controlled by the dynamic structural changes of chromatin for the appropriate regulation of gene transcription. Chromatin structure is regulated by two general mechanisms, one is histone modification and the other is chromatin remodeling in an ATP-dependent manner. Switch/sucrose nonfermentable (SWI/SNF) complexes utilize the energy from ATP hydrolysis to mobilize nucleosomes and remodel the chromatin structure, contributing to conformational changes in chromatin. Recently, the inactivation of encoding genes for subunits of the SWI/SNF complexes has been documented in a series of human cancers, accounting for up to almost 20% of all human cancers. For example, human SNF5 (hSNF5), the gene that encodes a subunit of the SWI/SNF complexes, is the sole mutation target that drives malignant rhabdoid tumors (MRT). Despite remarkably simple genomes, the MRT has highly malignant characteristics. As a key to understanding MRT tumorigenesis, it is necessary to fully examine the mechanism of chromatin remodeling by the SWI/SNF complexes. Herein, we review the current understanding of chromatin remodeling by focusing on SWI/SNF complexes. In addition, we describe the molecular mechanisms and influences of hSNF5 deficiency in rhabdoid tumors and the prospects for developing new therapeutic targets to overcome the epigenetic drive of cancer that is caused by abnormal chromatin remodeling.
Collapse
Affiliation(s)
- Yasumichi Kuwahara
- Department of Biochemistry and Molecular Biology, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Tomoko Iehara
- Department of Pediatrics, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Akifumi Matsumoto
- Department of Ophthalmology, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| | - Tsukasa Okuda
- Department of Biochemistry and Molecular Biology, Graduate School of Medical ScienceKyoto Prefectural University of MedicineKyotoJapan
| |
Collapse
|
10
|
Butcher MJ, Gurram RK, Zhu X, Chen X, Hu G, Lazarevic V, Zhao K, Zhu J. GATA3 induces the pathogenicity of Th17 cells via regulating GM-CSF expression. Front Immunol 2023; 14:1186580. [PMID: 37449212 PMCID: PMC10337884 DOI: 10.3389/fimmu.2023.1186580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
T-bet-expressing Th17 (T-bet+RORγt+) cells are associated with the induction of pathology during experimental autoimmune encephalomyelitis (EAE) and the encephalitic nature of these Th17 cells can be explained by their ability to produce GM-CSF. However, the upstream regulatory mechanisms that control Csf2 (gene encoding GM-CSF) expression are still unclear. In this study, we found that Th17 cells dynamically expressed GATA3, the master transcription factor for Th2 cell differentiation, during their differentiation both in vitro and in vivo. Early deletion of Gata3 in three complimentary conditional knockout models by Cre-ERT2, hCd2 Cre and Tbx21 Cre, respectively, limited the pathogenicity of Th17 cells during EAE, which was correlated with a defect in generating pathogenic T-bet-expressing Th17 cells. These results indicate that early GATA3-dependent gene regulation is critically required to generate a de novo encephalitogenic Th17 response. Furthermore, a late deletion of Gata3 via Cre-ERT2 in the adoptive transfer EAE model resulted in a cell intrinsic failure to induce EAE symptoms which was correlated with a substantial reduction in GM-CSF production without affecting the generation and/or maintenance of T-bet-expressing Th17 cells. RNA-Seq analysis of Gata3-sufficient and Gata3-deficient CNS-infiltrating CD4+ effector T cells from mixed congenic co-transfer recipient mice revealed an important, cell-intrinsic, function of GATA3 in regulating the expression of Egr2, Bhlhe40, and Csf2. Thus, our data highlights a novel role for GATA3 in promoting and maintaining the pathogenicity of T-bet-expressing Th17 cells in EAE, via putative regulation of Egr2, Bhlhe40, and GM-CSF expression.
Collapse
Affiliation(s)
- Matthew J Butcher
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Rama Krishna Gurram
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Xiaoliang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Xi Chen
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Gangqing Hu
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
- Department of Microbiology, Immunology, and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Vanja Lazarevic
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Keji Zhao
- Laboratory of Epigenome Biology, Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
11
|
Chambers C, Cermakova K, Chan YS, Kurtz K, Wohlan K, Lewis AH, Wang C, Pham A, Dejmek M, Sala M, Loeza Cabrera M, Aguilar R, Nencka R, Lacorazza HD, Rau RE, Hodges HC. SWI/SNF Blockade Disrupts PU.1-Directed Enhancer Programs in Normal Hematopoietic Cells and Acute Myeloid Leukemia. Cancer Res 2023; 83:983-996. [PMID: 36662812 PMCID: PMC10071820 DOI: 10.1158/0008-5472.can-22-2129] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 11/09/2022] [Accepted: 01/18/2023] [Indexed: 01/21/2023]
Abstract
In acute myeloid leukemia (AML), SWI/SNF chromatin remodeling complexes sustain leukemic identity by driving high levels of MYC. Previous studies have implicated the hematopoietic transcription factor PU.1 (SPI1) as an important target of SWI/SNF inhibition, but PU.1 is widely regarded to have pioneer-like activity. As a result, many questions have remained regarding the interplay between PU.1 and SWI/SNF in AML as well as normal hematopoiesis. Here we found that PU.1 binds to most of its targets in a SWI/SNF-independent manner and recruits SWI/SNF to promote accessibility for other AML core regulatory factors, including RUNX1, LMO2, and MEIS1. SWI/SNF inhibition in AML cells reduced DNA accessibility and binding of these factors at PU.1 sites and redistributed PU.1 to promoters. Analysis of nontumor hematopoietic cells revealed that similar effects also impair PU.1-dependent B-cell and monocyte populations. Nevertheless, SWI/SNF inhibition induced profound therapeutic response in an immunocompetent AML mouse model as well as in primary human AML samples. In vivo, SWI/SNF inhibition promoted leukemic differentiation and reduced the leukemic stem cell burden in bone marrow but also induced leukopenia. These results reveal a variable therapeutic window for SWI/SNF blockade in AML and highlight important off-tumor effects of such therapies in immunocompetent settings. SIGNIFICANCE Disruption of PU.1-directed enhancer programs upon SWI/SNF inhibition causes differentiation of AML cells and induces leukopenia of PU.1-dependent B cells and monocytes, revealing the on- and off-tumor effects of SWI/SNF blockade.
Collapse
Affiliation(s)
- Courtney Chambers
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
- Translational Biology and Molecular Medicine Graduate Program, Baylor College of Medicine, Houston, Texas
| | - Katerina Cermakova
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Yuen San Chan
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Kristen Kurtz
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Katharina Wohlan
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas
| | - Andrew Henry Lewis
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Christiana Wang
- Genetics and Genomics Graduate Program, Baylor College of Medicine, Houston, Texas
| | - Anh Pham
- Department of Bioengineering, Rice University, Houston, Texas
| | - Milan Dejmek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Michal Sala
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Mario Loeza Cabrera
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas
| | - Rogelio Aguilar
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas
| | - Radim Nencka
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - H. Daniel Lacorazza
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas
| | - Rachel E. Rau
- Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
- Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, Texas
| | - H. Courtney Hodges
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas
- Department of Bioengineering, Rice University, Houston, Texas
- Center for Cancer Epigenetics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
12
|
Moena D, Vargas E, Montecino M. Epigenetic regulation during 1,25-dihydroxyvitamin D 3-dependent gene transcription. VITAMINS AND HORMONES 2023; 122:51-74. [PMID: 36863801 DOI: 10.1016/bs.vh.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Multiple evidence accumulated over the years, demonstrates that vitamin D-dependent physiological control in vertebrates occurs primarily through the regulation of target gene transcription. In addition, there has been an increasing appreciation of the role of the chromatin organization of the genome on the ability of the active form of vitamin D, 1,25(OH)2D3, and its specific receptor VDR to regulate gene expression. Chromatin structure in eukaryotic cells is principally modulated through epigenetic mechanisms including, but not limited to, a wide number of post-translational modifications of histone proteins and ATP-dependent chromatin remodelers, which are operative in different tissues during response to physiological cues. Hence, there is necessity to understand in depth the epigenetic control mechanisms that operate during 1,25(OH)2D3-dependent gene regulation. This chapter provides a general overview about epigenetic mechanisms functioning in mammalian cells and discusses how some of these mechanisms represent important components during transcriptional regulation of the model gene system CYP24A1 in response to 1,25(OH)2D3.
Collapse
Affiliation(s)
- Daniel Moena
- School of Bachelor in Science, Faculty of Life Sciences, Universidad Andres Bello, Concepcion, Chile
| | - Esther Vargas
- School of Medicine, Universidad Andres Bello, Santiago, Chile
| | - Martin Montecino
- Institute of Biomedical Sciences, Faculty of Medicine, Universidad Andres Bello, Santiago, Chile; Millenium Institute Center for Genome Regulation (CRG), Santiago, Chile.
| |
Collapse
|
13
|
Andrades A, Peinado P, Alvarez-Perez JC, Sanjuan-Hidalgo J, García DJ, Arenas AM, Matia-González AM, Medina PP. SWI/SNF complexes in hematological malignancies: biological implications and therapeutic opportunities. Mol Cancer 2023; 22:39. [PMID: 36810086 PMCID: PMC9942420 DOI: 10.1186/s12943-023-01736-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/30/2023] [Indexed: 02/23/2023] Open
Abstract
Hematological malignancies are a highly heterogeneous group of diseases with varied molecular and phenotypical characteristics. SWI/SNF (SWItch/Sucrose Non-Fermentable) chromatin remodeling complexes play significant roles in the regulation of gene expression, being essential for processes such as cell maintenance and differentiation in hematopoietic stem cells. Furthermore, alterations in SWI/SNF complex subunits, especially in ARID1A/1B/2, SMARCA2/4, and BCL7A, are highly recurrent across a wide variety of lymphoid and myeloid malignancies. Most genetic alterations cause a loss of function of the subunit, suggesting a tumor suppressor role. However, SWI/SNF subunits can also be required for tumor maintenance or even play an oncogenic role in certain disease contexts. The recurrent alterations of SWI/SNF subunits highlight not only the biological relevance of SWI/SNF complexes in hematological malignancies but also their clinical potential. In particular, increasing evidence has shown that mutations in SWI/SNF complex subunits confer resistance to several antineoplastic agents routinely used for the treatment of hematological malignancies. Furthermore, mutations in SWI/SNF subunits often create synthetic lethality relationships with other SWI/SNF or non-SWI/SNF proteins that could be exploited therapeutically. In conclusion, SWI/SNF complexes are recurrently altered in hematological malignancies and some SWI/SNF subunits may be essential for tumor maintenance. These alterations, as well as their synthetic lethal relationships with SWI/SNF and non-SWI/SNF proteins, may be pharmacologically exploited for the treatment of diverse hematological cancers.
Collapse
Affiliation(s)
- Alvaro Andrades
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Paola Peinado
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain ,grid.451388.30000 0004 1795 1830Present Address: The Francis Crick Institute, London, UK
| | - Juan Carlos Alvarez-Perez
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Juan Sanjuan-Hidalgo
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain
| | - Daniel J. García
- grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.4489.10000000121678994Department of Biochemistry and Molecular Biology III and Immunology, University of Granada, Granada, Spain
| | - Alberto M. Arenas
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Ana M. Matia-González
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Pedro P. Medina
- grid.4489.10000000121678994Department of Biochemistry and Molecular Biology I. Faculty of Sciences, University of Granada, Granada, Spain ,grid.470860.d0000 0004 4677 7069GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain ,grid.507088.2Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| |
Collapse
|
14
|
Khan AS, Campbell KJ, Cameron ER, Blyth K. The RUNX/CBFβ Complex in Breast Cancer: A Conundrum of Context. Cells 2023; 12:641. [PMID: 36831308 PMCID: PMC9953914 DOI: 10.3390/cells12040641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/19/2023] Open
Abstract
Dissecting and identifying the major actors and pathways in the genesis, progression and aggressive advancement of breast cancer is challenging, in part because neoplasms arising in this tissue represent distinct diseases and in part because the tumors themselves evolve. This review attempts to illustrate the complexity of this mutational landscape as it pertains to the RUNX genes and their transcription co-factor CBFβ. Large-scale genomic studies that characterize genetic alterations across a disease subtype are a useful starting point and as such have identified recurring alterations in CBFB and in the RUNX genes (particularly RUNX1). Intriguingly, the functional output of these mutations is often context dependent with regards to the estrogen receptor (ER) status of the breast cancer. Therefore, such studies need to be integrated with an in-depth understanding of both the normal and corrupted function in mammary cells to begin to tease out how loss or gain of function can alter the cell phenotype and contribute to disease progression. We review how alterations to RUNX/CBFβ function contextually ascribe to breast cancer subtypes and discuss how the in vitro analyses and mouse model systems have contributed to our current understanding of these proteins in the pathogenesis of this complex set of diseases.
Collapse
Affiliation(s)
- Adiba S. Khan
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Rd, Glasgow G61 1BD, UK; (A.S.K.); (K.J.C.)
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| | - Kirsteen J. Campbell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Rd, Glasgow G61 1BD, UK; (A.S.K.); (K.J.C.)
| | - Ewan R. Cameron
- School of Biodiversity One Health & Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK;
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Rd, Glasgow G61 1BD, UK; (A.S.K.); (K.J.C.)
- School of Cancer Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK
| |
Collapse
|
15
|
Mikami M, Masuda T, Kanatani T, Noura M, Umeda K, Hiramatsu H, Kubota H, Daifu T, Iwai A, Hattori EY, Furuichi K, Takasaki S, Tanaka S, Matsui Y, Matsuo H, Hirata M, Kataoka TR, Nakahata T, Kuwahara Y, Iehara T, Hosoi H, Imai Y, Takita J, Sugiyama H, Adachi S, Kamikubo Y. RUNX1-Survivin Axis Is a Novel Therapeutic Target for Malignant Rhabdoid Tumors. Mol Cells 2022; 45:886-895. [PMID: 36572559 PMCID: PMC9794559 DOI: 10.14348/molcells.2022.2031] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 07/18/2022] [Accepted: 08/06/2022] [Indexed: 12/28/2022] Open
Abstract
Malignant rhabdoid tumor (MRT) is a highly aggressive pediatric malignancy with no effective therapy. Therefore, it is necessary to identify a target for the development of novel molecule-targeting therapeutic agents. In this study, we report the importance of the runt-related transcription factor 1 (RUNX1) and RUNX1-Baculoviral IAP (inhibitor of apoptosis) Repeat-Containing 5 (BIRC5/survivin) axis in the proliferation of MRT cells, as it can be used as an ideal target for anti-tumor strategies. The mechanism of this reaction can be explained by the interaction of RUNX1 with the RUNX1-binding DNA sequence located in the survivin promoter and its positive regulation. Specific knockdown of RUNX1 led to decreased expression of survivin, which subsequently suppressed the proliferation of MRT cells in vitro and in vivo. We also found that our novel RUNX inhibitor, Chb-M, which switches off RUNX1 using alkylating agent-conjugated pyrrole-imidazole polyamides designed to specifically bind to consensus RUNX-binding sequences (5'-TGTGGT-3'), inhibited survivin expression in vivo. Taken together, we identified a novel interaction between RUNX1 and survivin in MRT. Therefore the negative regulation of RUNX1 activity may be a novel strategy for MRT treatment.
Collapse
Affiliation(s)
- Masamitsu Mikami
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto 606-8303, Japan
| | - Tatsuya Masuda
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8303, Japan
| | - Takuya Kanatani
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8303, Japan
| | - Mina Noura
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8303, Japan
| | - Katsutsugu Umeda
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto 606-8303, Japan
| | - Hidefumi Hiramatsu
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto 606-8303, Japan
| | - Hirohito Kubota
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto 606-8303, Japan
| | - Tomoo Daifu
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto 606-8303, Japan
| | - Atsushi Iwai
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto 606-8303, Japan
| | - Etsuko Yamamoto Hattori
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8303, Japan
| | - Kana Furuichi
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8303, Japan
| | - Saho Takasaki
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8303, Japan
| | - Sunao Tanaka
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8303, Japan
| | - Yasuzumi Matsui
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8303, Japan
| | - Hidemasa Matsuo
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8303, Japan
| | - Masahiro Hirata
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto 606-8507, Japan
| | - Tatsuki R. Kataoka
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto 606-8507, Japan
| | - Tatsutoshi Nakahata
- Drug Discovery Technology Development Office, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Yasumichi Kuwahara
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Tomoko Iehara
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Hajime Hosoi
- Department of Pediatrics, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto 602-8566, Japan
| | - Yoichi Imai
- Department of Hematology/Oncology, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Junko Takita
- Department of Pediatrics, Graduate School of Medicine, Kyoto University, Kyoto 606-8303, Japan
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8303, Japan
| | - Souichi Adachi
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8303, Japan
| | - Yasuhiko Kamikubo
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto 606-8303, Japan
| |
Collapse
|
16
|
Kellaway SG, Coleman DJL, Cockerill PN, Raghavan M, Bonifer C. Molecular Basis of Hematological Disease Caused by Inherited or Acquired RUNX1 Mutations. Exp Hematol 2022; 111:1-12. [PMID: 35341804 DOI: 10.1016/j.exphem.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 11/04/2022]
Abstract
The transcription factor RUNX1 is essential for correct hematopoietic development; in its absence in the germ line, blood stem cells are not formed. RUNX1 orchestrates dramatic changes in the chromatin landscape at the onset of stem cell formation, which set the stage for both stem self-renewal and further differentiation. However, once blood stem cells are formed, the mutation of the RUNX1 gene is not lethal but can lead to various hematopoietic defects and a predisposition to cancer. Here we summarize the current literature on inherited and acquired RUNX1 mutations, with a particular emphasis on mutations that alter the structure of the RUNX1 protein itself, and place these changes in the context of what is known about RUNX1 function. We also summarize which mutant RUNX1 proteins are actually expressed in cells and discuss the molecular mechanism underlying how such variants reprogram the epigenome setting stem cells on the path to malignancy.
Collapse
Affiliation(s)
- Sophie G Kellaway
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK.
| | - Daniel J L Coleman
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK
| | - Peter N Cockerill
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK
| | - Manoj Raghavan
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK; Centre of Clinical Haematology, Queen Elizabeth Hospital, Birmingham, UK
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, Birmingham, UK.
| |
Collapse
|
17
|
Akram F, Haq IU, Sahreen S, Nasir N, Naseem W, Imitaz M, Aqeel A. CRISPR/Cas9: A revolutionary genome editing tool for human cancers treatment. Technol Cancer Res Treat 2022; 21:15330338221132078. [PMID: 36254536 PMCID: PMC9580090 DOI: 10.1177/15330338221132078] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 11/11/2022] Open
Abstract
Cancer is a genetic disease stemming from genetic and epigenetic mutations and is the second most common cause of death across the globe. Clustered regularly interspaced short palindromic repeats (CRISPR) is an emerging gene-editing tool, acting as a defense system in bacteria and archaea. CRISPR/Cas9 technology holds immense potential in cancer diagnosis and treatment and has been utilized to develop cancer disease models such as medulloblastoma and glioblastoma mice models. In diagnostics, CRISPR can be used to quickly and efficiently detect genes involved in various cancer development, proliferation, metastasis, and drug resistance. CRISPR/Cas9 mediated cancer immunotherapy is a well-known treatment option after surgery, chemotherapy, and radiation therapy. It has marked a turning point in cancer treatment. However, despite its advantages and tremendous potential, there are many challenges such as off-target effects, editing efficiency of CRISPR/Cas9, efficient delivery of CRISPR/Cas9 components into the target cells and tissues, and low efficiency of HDR, which are some of the main issues and need further research and development for completely clinical application of this novel gene editing tool. Here, we present a CRISPR/Cas9 mediated cancer treatment method, its role and applications in various cancer treatments, its challenges, and possible solution to counter these challenges.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Ikram ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
- Pakistan Academy of Sciences, Islamabad, Pakistan
| | - Sania Sahreen
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Narmeen Nasir
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Waqas Naseem
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Memoona Imitaz
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| | - Amna Aqeel
- Institute of Industrial Biotechnology, Government College University, Lahore, Pakistan
| |
Collapse
|
18
|
Rago F, Rodrigues LU, Bonney M, Sprouffske K, Kurth E, Elliott G, Ambrose J, Aspesi P, Oborski J, Chen JT, McDonald ER, Mapa FA, Ruddy DA, Kauffmann A, Abrams T, Bhang HEC, Jagani Z. Exquisite Sensitivity to Dual BRG1/BRM ATPase Inhibitors Reveals Broad SWI/SNF Dependencies in Acute Myeloid Leukemia. Mol Cancer Res 2021; 20:361-372. [PMID: 34799403 DOI: 10.1158/1541-7786.mcr-21-0390] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 10/03/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022]
Abstract
Various subunits of mammalian SWI/SNF chromatin remodeling complexes display loss-of-function mutations characteristic of tumor suppressors in different cancers, but an additional role for SWI/SNF supporting cell survival in distinct cancer contexts is emerging. In particular, genetic dependence on the catalytic subunit BRG1/SMARCA4 has been observed in acute myeloid leukemia (AML), yet the feasibility of direct therapeutic targeting of SWI/SNF catalytic activity in leukemia remains unknown. Here, we evaluated the activity of dual BRG1/BRM ATPase inhibitors across a genetically diverse panel of cancer cell lines and observed that hematopoietic cancer cell lines were among the most sensitive compared to other lineages. This result was striking in comparison to data from pooled short hairpin RNA screens, which showed that only a subset of leukemia cell lines display sensitivity to BRG1 knockdown. We demonstrate that combined genetic knockdown of BRG1 and BRM is required to recapitulate the effects of dual inhibitors, suggesting that SWI/SNF dependency in human leukemia extends beyond a predominantly BRG1-driven mechanism. Through gene expression and chromatin accessibility studies, we show that the dual inhibitors act at genomic loci associated with oncogenic transcription factors, and observe a downregulation of leukemic pathway genes including MYC, a well-established target of BRG1 activity in AML. Overall, small molecule inhibition of BRG1/BRM induced common transcriptional responses across leukemia models resulting in a spectrum of cellular phenotypes. Implications: Our studies reveal the breadth of SWI/SNF dependency in leukemia and support targeting SWI/SNF catalytic function as a potential therapeutic strategy in AML.
Collapse
Affiliation(s)
| | | | - Megan Bonney
- Oncology, Novartis Institutes for Biomedical Research
| | | | - Esther Kurth
- Oncology, Novartis Institutes for Biomedical Research
| | | | - Jessi Ambrose
- Oncology, Novartis Institutes for Biomedical Research
| | - Peter Aspesi
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research
| | - Justin Oborski
- High Throughput Biology, Novartis Institutes for Biomedical Research
| | - Julie T Chen
- Oncology, Novartis Institutes for Biomedical Research
| | | | - Felipa A Mapa
- Chemical Biology and Therapeutics, Novartis Institutes for Biomedical Research
| | - David A Ruddy
- Oncology Drug Discovery, Novartis Institutes for BioMedical Research
| | - Audrey Kauffmann
- Oncology Disease Area, Novartis Institutes for Biomedical Research
| | - Tinya Abrams
- Disease Area Oncology, Novartis Institutes for BioMedical Research
| | | | - Zainab Jagani
- Oncology, Novartis Institutes for Biomedical Research
| |
Collapse
|
19
|
Korinfskaya S, Parameswaran S, Weirauch MT, Barski A. Runx Transcription Factors in T Cells-What Is Beyond Thymic Development? Front Immunol 2021; 12:701924. [PMID: 34421907 PMCID: PMC8377396 DOI: 10.3389/fimmu.2021.701924] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Runx proteins (also known as Runt-domain transcription factors) have been studied for a long time as key regulators of cellular differentiation. RUNX2 has been described as essential for osteogenesis, whereas RUNX1 and RUNX3 are known to control blood cell development during different stages of cell lineage specification. However, recent studies show evidence of complex relationships between RUNX proteins, chromatin-modifying machinery, the cytoskeleton and different transcription factors in various non-embryonic contexts, including mature T cell homeostasis, inflammation and cancer. In this review, we discuss the diversity of Runx functions in mature T helper cells, such as production of cytokines and chemokines by different CD4 T cell populations; apoptosis; and immunologic memory acquisition. We then briefly cover recent findings about the contribution of RUNX1, RUNX2 and RUNX3 to various immunologic diseases. Finally, we discuss areas that require further study to better understand the role that Runx proteins play in inflammation and immunity.
Collapse
Affiliation(s)
- Svetlana Korinfskaya
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Sreeja Parameswaran
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Artem Barski
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
20
|
Gene Transcription as a Therapeutic Target in Leukemia. Int J Mol Sci 2021; 22:ijms22147340. [PMID: 34298959 PMCID: PMC8304797 DOI: 10.3390/ijms22147340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 12/11/2022] Open
Abstract
Blood malignancies often arise from undifferentiated hematopoietic stem cells or partially differentiated stem-like cells. A tight balance of multipotency and differentiation, cell division, and quiescence underlying normal hematopoiesis requires a special program governed by the transcriptional machinery. Acquisition of drug resistance by tumor cells also involves reprogramming of their transcriptional landscape. Limiting tumor cell plasticity by disabling reprogramming of the gene transcription is a promising strategy for improvement of treatment outcomes. Herein, we review the molecular mechanisms of action of transcription-targeted drugs in hematological malignancies (largely in leukemia) with particular respect to the results of clinical trials.
Collapse
|
21
|
Abstract
The core binding factor composed of CBFβ and RUNX subunits plays a critical role in most hematopoietic lineages and is deregulated in acute myeloid leukemia (AML). The fusion oncogene CBFβ-SMMHC expressed in AML with the chromosome inversion inv(16)(p13q22) acts as a driver oncogene in hematopoietic stem cells and induces AML. This review focuses on novel insights regarding the molecular mechanisms involved in CBFβ-SMMHC-driven leukemogenesis and recent advances in therapeutic approaches to target CBFβ-SMMHC in inv(16) AML.
Collapse
|
22
|
Akram F, Ikram Ul Haq, Ahmed Z, Khan H, Ali MS. CRISPR-Cas9, A Promising Therapeutic Tool for Cancer Therapy: A Review. Protein Pept Lett 2021; 27:931-944. [PMID: 32264803 DOI: 10.2174/0929866527666200407112432] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 02/08/2020] [Accepted: 02/17/2020] [Indexed: 02/07/2023]
Abstract
Cancer is one of the most leading causes of mortality all over the world and remains a foremost social and economic burden. Mutations in the genome of individuals are taking place more frequently due to the excessive progress of xenobiotics and industrialization in the present world. With the progress in the field of molecular biology, it is possible to alter the genome and to observe the functional changes derived from genetic modulation using gene-editing technologies. Several therapies have been applied for the treatment of malignancy which affect the normal body cells; however, more effort is required to develop vsome latest therapeutic approaches for cancer biology and oncology exploiting these molecular biology advances. Recently, the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) associated protein 9 (Cas9) system has emerged as a powerful technology for cancer therapy because of its great accuracy and efficiency. Genome editing technologies have demonstrated a plethora of benefits to the biological sciences. CRISPR- Cas9, a versatile gene editing tool, has become a robust strategy for making alterations to the genome of organisms and a potent weapon in the arsenal of tumor treatment. It has revealed an excellent clinical potential for cancer therapy by discovering novel targets and has provided the researchers with the perception about how tumors respond to drug therapy. Stern efforts are in progress to enhance its efficiency of sequence specific targeting and consequently repressing offtarget effects. CRISPR-Cas9 uses specific proteins to convalesce mutations at genetic level. In CRISPR-Cas9 system, RNA-guided Cas9 endonuclease harnesses gene mutation, DNA deletion or insertion, transcriptional activation or repression, multiplex targeting only by manipulating 20-nucleotide components of RNA. Originally, CRISPR-Cas9 system was used by bacteria for their defense against different bacteriophages, and recently this system is receiving noteworthy appreciation due to its emerging role in the treatment of genetic disorders and carcinogenesis. CRISPR-Cas9 can be employed to promptly engineer oncolytic viruses and immune cells for cancer therapeutic applications. More notably, it has the ability to precisely edit genes not only in model organisms but also in human being that permits its use in therapeutic analysis. It also plays a significant role in the development of complete genomic libraries for cancer patients. In this review, we have highlighted the involvement of CRISPR-Cas9 system in cancer therapy accompanied by its prospective applications in various types of malignancy and cancer biology. In addition, some other conspicuous functions of this unique system have also been discussed beyond genome editing.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, GC University, Lahore-54000, Pakistan
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, GC University, Lahore-54000, Pakistan
| | - Zeeshan Ahmed
- Institute of Industrial Biotechnology, GC University, Lahore-54000, Pakistan
| | - Hamza Khan
- Institute of Industrial Biotechnology, GC University, Lahore-54000, Pakistan
| | | |
Collapse
|
23
|
Puente-Bedia A, Berciano MT, Tapia O, Martínez-Cué C, Lafarga M, Rueda N. Nuclear Reorganization in Hippocampal Granule Cell Neurons from a Mouse Model of Down Syndrome: Changes in Chromatin Configuration, Nucleoli and Cajal Bodies. Int J Mol Sci 2021; 22:ijms22031259. [PMID: 33514010 PMCID: PMC7865916 DOI: 10.3390/ijms22031259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/16/2021] [Accepted: 01/22/2021] [Indexed: 01/05/2023] Open
Abstract
Down syndrome (DS) or trisomy of chromosome 21 (Hsa21) is characterized by impaired hippocampal-dependent learning and memory. These alterations are due to defective neurogenesis and to neuromorphological and functional anomalies of numerous neuronal populations, including hippocampal granular cells (GCs). It has been proposed that the additional gene dose in trisomic cells induces modifications in nuclear compartments and on the chromatin landscape, which could contribute to some DS phenotypes. The Ts65Dn (TS) mouse model of DS carries a triplication of 92 genes orthologous to those found in Hsa21, and shares many phenotypes with DS individuals, including cognitive and neuromorphological alterations. Considering its essential role in hippocampal memory formation, we investigated whether the triplication of this set of Hsa21 orthologous genes in TS mice modifies the nuclear architecture of their GCs. Our results show that the TS mouse presents alterations in the nuclear architecture of its GCs, affecting nuclear compartments involved in transcription and pre-rRNA and pre-mRNA processing. In particular, the GCs of the TS mouse show alterations in the nucleolar fusion pattern and the molecular assembly of Cajal bodies (CBs). Furthermore, hippocampal GCs of TS mice present an epigenetic dysregulation of chromatin that results in an increased heterochromatinization and reduced global transcriptional activity. These nuclear alterations could play an important role in the neuromorphological and/or functional alterations of the hippocampal GCs implicated in the cognitive dysfunction characteristic of TS mice.
Collapse
Affiliation(s)
- Alba Puente-Bedia
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, 39011 Santander, Spain; (A.P.-B.); (C.M.-C.)
| | - María T. Berciano
- Department of Molecular Biology, “Red sobre Enfermedades Neurodegenerativas (CIBERNED)” and University of Cantabria-IDIVAL, 39011 Santander, Spain;
| | - Olga Tapia
- Instituto de Investigación Sanitaria Valdecilla (IDIVAL), “Red sobre Enfermedades Neurodegenerativas (CIBERNED)” and Universidad Europea del Atlántico, 39011 Santander, Spain;
| | - Carmen Martínez-Cué
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, 39011 Santander, Spain; (A.P.-B.); (C.M.-C.)
| | - Miguel Lafarga
- Department of Anatomy and Cell Biology, “Red sobre Enfermedades Neurodegenerativas (CIBERNED)” and University of Cantabria-IDIVAL, 39011 Santander, Spain
- Correspondence: (M.L.); (N.R.); Tel.: +34-942201966 (N.R.); Fax: +34-942201903 (N.R.)
| | - Noemí Rueda
- Department of Physiology and Pharmacology, Faculty of Medicine, University of Cantabria, 39011 Santander, Spain; (A.P.-B.); (C.M.-C.)
- Correspondence: (M.L.); (N.R.); Tel.: +34-942201966 (N.R.); Fax: +34-942201903 (N.R.)
| |
Collapse
|
24
|
Wang Z, Wang P, Li Y, Peng H, Zhu Y, Mohandas N, Liu J. Interplay between cofactors and transcription factors in hematopoiesis and hematological malignancies. Signal Transduct Target Ther 2021; 6:24. [PMID: 33468999 PMCID: PMC7815747 DOI: 10.1038/s41392-020-00422-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/16/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
Hematopoiesis requires finely tuned regulation of gene expression at each stage of development. The regulation of gene transcription involves not only individual transcription factors (TFs) but also transcription complexes (TCs) composed of transcription factor(s) and multisubunit cofactors. In their normal compositions, TCs orchestrate lineage-specific patterns of gene expression and ensure the production of the correct proportions of individual cell lineages during hematopoiesis. The integration of posttranslational and conformational modifications in the chromatin landscape, nucleosomes, histones and interacting components via the cofactor–TF interplay is critical to optimal TF activity. Mutations or translocations of cofactor genes are expected to alter cofactor–TF interactions, which may be causative for the pathogenesis of various hematologic disorders. Blocking TF oncogenic activity in hematologic disorders through targeting cofactors in aberrant complexes has been an exciting therapeutic strategy. In this review, we summarize the current knowledge regarding the models and functions of cofactor–TF interplay in physiological hematopoiesis and highlight their implications in the etiology of hematological malignancies. This review presents a deep insight into the physiological and pathological implications of transcription machinery in the blood system.
Collapse
Affiliation(s)
- Zi Wang
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, 410011, ChangSha, Hunan, China. .,Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, 410078, Changsha, Hunan, China.
| | - Pan Wang
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, 410078, Changsha, Hunan, China
| | - Yanan Li
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, 410078, Changsha, Hunan, China
| | - Hongling Peng
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, 410011, ChangSha, Hunan, China
| | - Yu Zhu
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, 410078, Changsha, Hunan, China
| | - Narla Mohandas
- Red Cell Physiology Laboratory, New York Blood Center, New York, NY, USA
| | - Jing Liu
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, 410078, Changsha, Hunan, China.
| |
Collapse
|
25
|
Montecino M, Carrasco ME, Nardocci G. Epigenetic Control of Osteogenic Lineage Commitment. Front Cell Dev Biol 2021; 8:611197. [PMID: 33490076 PMCID: PMC7820369 DOI: 10.3389/fcell.2020.611197] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/11/2020] [Indexed: 12/22/2022] Open
Abstract
Within the eukaryotic nucleus the genomic DNA is organized into chromatin by stably interacting with the histone proteins as well as with several other nuclear components including non-histone proteins and non-coding RNAs. Together these interactions distribute the genetic material into chromatin subdomains which can exhibit higher and lower compaction levels. This organization contributes to differentially control the access to genomic sequences encoding key regulatory genetic information. In this context, epigenetic mechanisms play a critical role in the regulation of gene expression as they modify the degree of chromatin compaction to facilitate both activation and repression of transcription. Among the most studied epigenetic mechanisms we find the methylation of DNA, ATP-dependent chromatin remodeling, and enzyme-mediated deposition and elimination of post-translational modifications at histone and non-histone proteins. In this mini review, we discuss evidence that supports the role of these epigenetic mechanisms during transcriptional control of osteoblast-related genes. Special attention is dedicated to mechanisms of epigenetic control operating at the Runx2 and Sp7 genes coding for the two principal master regulators of the osteogenic lineage during mesenchymal stem cell commitment.
Collapse
Affiliation(s)
- Martin Montecino
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences and FONDAP Center for Genome Regulation, Universidad Andres Bello, Santiago, Chile
| | - Margarita E Carrasco
- Faculty of Medicine and Faculty of Life Sciences, Institute of Biomedical Sciences and FONDAP Center for Genome Regulation, Universidad Andres Bello, Santiago, Chile
| | - Gino Nardocci
- Faculty of Medicine, Universidad de los Andes, Santiago, Chile.,Molecular Biology and Bioinformatic Lab, Program in Molecular Biology and Bioinformatics, Center for Biomedical Research and Innovation (CIIB), Universidad de los Andes, Santiago, Chile
| |
Collapse
|
26
|
Frkatovic A, Zaytseva OO, Klaric L. Genetic Regulation of Immunoglobulin G Glycosylation. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:259-287. [PMID: 34687013 DOI: 10.1007/978-3-030-76912-3_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Defining the genetic components that control glycosylation of the human immunoglobulin G (IgG) is an ongoing effort, which has so far been addressed by means of heritability, linkage and genome-wide association studies (GWAS). Unlike the synthesis of proteins, N-glycosylation biosynthesis is not a template-driven process, but rather a complex process regulated by both genetic and environmental factors. Current heritability studies have shown that while up to 75% of the variation in levels of some IgG glycan traits can be explained by genetics, some glycan traits are completely defined by environmental influences. Advances in both high-throughput genotyping and glycan quantification methods have enabled genome-wide association studies that are increasingly used to estimate associations of millions of single-nucleotide polymorphisms and glycosylation traits. Using this method, 18 genomic regions have so far been robustly associated with IgG N-glycosylation, discovering associations with genes encoding glycosyltransferases, but also transcription factors, co-factors, membrane transporters and other genes with no apparent role in IgG glycosylation. Further computational analyses have shown that IgG glycosylation is likely to be regulated through the expression of glycosyltransferases, but have also for the first time suggested which transcription factors are involved in the process. Moreover, it was also shown that IgG glycosylation and inflammatory diseases share common underlying causal genetic variants, suggesting that studying genetic regulation of IgG glycosylation helps not only to better understand this complex process but can also contribute to understanding why glycans are changed in disease. However, further studies are needed to unravel whether changes in IgG glycosylation are causing these diseases or the changes in the glycome are caused by the disease.
Collapse
Affiliation(s)
- Azra Frkatovic
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia
| | - Olga O Zaytseva
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia
| | - Lucija Klaric
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
27
|
Astori A, Tingvall-Gustafsson J, Kuruvilla J, Coyaud E, Laurent EMN, Sunnerhagen M, Åhsberg J, Ungerbäck J, Strid T, Sigvardsson M, Raught B, Somasundaram R. ARID1a Associates with Lymphoid-Restricted Transcription Factors and Has an Essential Role in T Cell Development. THE JOURNAL OF IMMUNOLOGY 2020; 205:1419-1432. [PMID: 32747500 DOI: 10.4049/jimmunol.1900959] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 06/29/2020] [Indexed: 11/19/2022]
Abstract
Maturation of lymphoid cells is controlled by the action of stage and lineage-restricted transcription factors working in concert with the general transcription and chromatin remodeling machinery to regulate gene expression. To better understand this functional interplay, we used Biotin Identification in human embryonic kidney cells to identify proximity interaction partners for GATA3, TCF7 (TCF1), SPI1, HLF, IKZF1, PAX5, ID1, and ID2. The proximity interaction partners shared among the lineage-restricted transcription factors included ARID1a, a BRG1-associated factor complex component. CUT&RUN analysis revealed that ARID1a shared binding with TCF7 and GATA3 at a substantial number of putative regulatory elements in mouse T cell progenitors. In support of an important function for ARID1a in lymphocyte development, deletion of Arid1a in early lymphoid progenitors in mice resulted in a pronounced developmental arrest in early T cell development with a reduction of CD4+CD8+ cells and a 20-fold reduction in thymic cellularity. Exploring gene expression patterns in DN3 cells from Wt and Arid1a-deficient mice suggested that the developmental block resided in the DN3a to DN3b transition, indicating a deficiency in β-selection. Our work highlights the critical importance of functional interactions between stage and lineage-restricted factors and the basic transcription machinery during lymphocyte differentiation.
Collapse
Affiliation(s)
- Audrey Astori
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | | | - Jacob Kuruvilla
- Department of Biomedical and Clinical Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Etienne Coyaud
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Estelle M N Laurent
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada
| | - Maria Sunnerhagen
- Department of Physics, Chemistry and Biology, Linköping University, 581 83 Linköping, Sweden; and
| | - Josefine Åhsberg
- Department of Biomedical and Clinical Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Jonas Ungerbäck
- Division of Molecular Hematology, Lund University, 22184 Lund, Sweden
| | - Tobias Strid
- Department of Biomedical and Clinical Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Mikael Sigvardsson
- Division of Molecular Hematology, Lund University, 22184 Lund, Sweden; .,Department of Biomedical and Clinical Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Brian Raught
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario M5G 1L7, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 3K1, Canada
| | - Rajesh Somasundaram
- Department of Biomedical and Clinical Sciences, Linköping University, 581 85 Linköping, Sweden
| |
Collapse
|
28
|
Mechanisms governing the pioneering and redistribution capabilities of the non-classical pioneer PU.1. Nat Commun 2020; 11:402. [PMID: 31964861 PMCID: PMC6972792 DOI: 10.1038/s41467-019-13960-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 12/10/2019] [Indexed: 12/21/2022] Open
Abstract
Establishing gene regulatory networks during differentiation or reprogramming requires master or pioneer transcription factors (TFs) such as PU.1, a prototype master TF of hematopoietic lineage differentiation. To systematically determine molecular features that control its activity, here we analyze DNA-binding in vitro and genome-wide in vivo across different cell types with native or ectopic PU.1 expression. Although PU.1, in contrast to classical pioneer factors, is unable to access nucleosomal target sites in vitro, ectopic induction of PU.1 leads to the extensive remodeling of chromatin and redistribution of partner TFs. De novo chromatin access, stable binding, and redistribution of partner TFs both require PU.1's N-terminal acidic activation domain and its ability to recruit SWI/SNF remodeling complexes, suggesting that the latter may collect and distribute co-associated TFs in conjunction with the non-classical pioneer TF PU.1.
Collapse
|
29
|
RUNX family: Oncogenes or tumor suppressors (Review). Oncol Rep 2019; 42:3-19. [PMID: 31059069 PMCID: PMC6549079 DOI: 10.3892/or.2019.7149] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 04/11/2019] [Indexed: 02/07/2023] Open
Abstract
Runt-related transcription factor (RUNX) proteins belong to a transcription factors family known as master regulators of important embryonic developmental programs. In the last decade, the whole family has been implicated in the regulation of different oncogenic processes and signaling pathways associated with cancer. Furthermore, a suppressor tumor function has been also reported, suggesting the RUNX family serves key role in all different types of cancer. In this review, the known biological characteristics, specific regulatory abilities and experimental evidence of RUNX proteins will be analyzed to demonstrate their oncogenic potential and tumor suppressor abilities during oncogenic processes, suggesting their importance as biomarkers of cancer. Additionally, the importance of continuing with the molecular studies of RUNX proteins' and its dual functions in cancer will be underlined in order to apply it in the future development of specific diagnostic methods and therapies against different types of cancer.
Collapse
|
30
|
Bell S, Rousseau J, Peng H, Aouabed Z, Priam P, Theroux JF, Jefri M, Tanti A, Wu H, Kolobova I, Silviera H, Manzano-Vargas K, Ehresmann S, Hamdan FF, Hettige N, Zhang X, Antonyan L, Nassif C, Ghaloul-Gonzalez L, Sebastian J, Vockley J, Begtrup AG, Wentzensen IM, Crunk A, Nicholls RD, Herman KC, Deignan JL, Al-Hertani W, Efthymiou S, Salpietro V, Miyake N, Makita Y, Matsumoto N, Østern R, Houge G, Hafström M, Fassi E, Houlden H, Klein Wassink-Ruiter JS, Nelson D, Goldstein A, Dabir T, van Gils J, Bourgeron T, Delorme R, Cooper GM, Martinez JE, Finnila CR, Carmant L, Lortie A, Oegema R, van Gassen K, Mehta SG, Huhle D, Abou Jamra R, Martin S, Brunner HG, Lindhout D, Au M, Graham JM, Coubes C, Turecki G, Gravel S, Mechawar N, Rossignol E, Michaud JL, Lessard J, Ernst C, Campeau PM. Mutations in ACTL6B Cause Neurodevelopmental Deficits and Epilepsy and Lead to Loss of Dendrites in Human Neurons. Am J Hum Genet 2019; 104:815-834. [PMID: 31031012 PMCID: PMC6507050 DOI: 10.1016/j.ajhg.2019.03.022] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 03/01/2019] [Indexed: 02/04/2023] Open
Abstract
We identified individuals with variations in ACTL6B, a component of the chromatin remodeling machinery including the BAF complex. Ten individuals harbored bi-allelic mutations and presented with global developmental delay, epileptic encephalopathy, and spasticity, and ten individuals with de novo heterozygous mutations displayed intellectual disability, ambulation deficits, severe language impairment, hypotonia, Rett-like stereotypies, and minor facial dysmorphisms (wide mouth, diastema, bulbous nose). Nine of these ten unrelated individuals had the identical de novo c.1027G>A (p.Gly343Arg) mutation. Human-derived neurons were generated that recaptured ACTL6B expression patterns in development from progenitor cell to post-mitotic neuron, validating the use of this model. Engineered knock-out of ACTL6B in wild-type human neurons resulted in profound deficits in dendrite development, a result recapitulated in two individuals with different bi-allelic mutations, and reversed on clonal genetic repair or exogenous expression of ACTL6B. Whole-transcriptome analyses and whole-genomic profiling of the BAF complex in wild-type and bi-allelic mutant ACTL6B neural progenitor cells and neurons revealed increased genomic binding of the BAF complex in ACTL6B mutants, with corresponding transcriptional changes in several genes including TPPP and FSCN1, suggesting that altered regulation of some cytoskeletal genes contribute to altered dendrite development. Assessment of bi-alleic and heterozygous ACTL6B mutations on an ACTL6B knock-out human background demonstrated that bi-allelic mutations mimic engineered deletion deficits while heterozygous mutations do not, suggesting that the former are loss of function and the latter are gain of function. These results reveal a role for ACTL6B in neurodevelopment and implicate another component of chromatin remodeling machinery in brain disease.
Collapse
Affiliation(s)
- Scott Bell
- Psychiatric Genetics Group, Douglas Hospital Research Institute, McGill University, Montreal, QC H4H 1R3, Canada
| | - Justine Rousseau
- CHU-Sainte Justine Research Centre, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Huashan Peng
- Psychiatric Genetics Group, Douglas Hospital Research Institute, McGill University, Montreal, QC H4H 1R3, Canada
| | - Zahia Aouabed
- Psychiatric Genetics Group, Douglas Hospital Research Institute, McGill University, Montreal, QC H4H 1R3, Canada
| | - Pierre Priam
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Jean-Francois Theroux
- Psychiatric Genetics Group, Douglas Hospital Research Institute, McGill University, Montreal, QC H4H 1R3, Canada
| | - Malvin Jefri
- Psychiatric Genetics Group, Douglas Hospital Research Institute, McGill University, Montreal, QC H4H 1R3, Canada
| | - Arnaud Tanti
- Psychiatric Genetics Group, Douglas Hospital Research Institute, McGill University, Montreal, QC H4H 1R3, Canada
| | - Hanrong Wu
- Psychiatric Genetics Group, Douglas Hospital Research Institute, McGill University, Montreal, QC H4H 1R3, Canada
| | - Ilaria Kolobova
- Psychiatric Genetics Group, Douglas Hospital Research Institute, McGill University, Montreal, QC H4H 1R3, Canada
| | - Heika Silviera
- Psychiatric Genetics Group, Douglas Hospital Research Institute, McGill University, Montreal, QC H4H 1R3, Canada
| | - Karla Manzano-Vargas
- Psychiatric Genetics Group, Douglas Hospital Research Institute, McGill University, Montreal, QC H4H 1R3, Canada
| | - Sophie Ehresmann
- CHU-Sainte Justine Research Centre, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Fadi F Hamdan
- CHU-Sainte Justine Research Centre, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Nuwan Hettige
- Psychiatric Genetics Group, Douglas Hospital Research Institute, McGill University, Montreal, QC H4H 1R3, Canada
| | - Xin Zhang
- Psychiatric Genetics Group, Douglas Hospital Research Institute, McGill University, Montreal, QC H4H 1R3, Canada
| | - Lilit Antonyan
- Psychiatric Genetics Group, Douglas Hospital Research Institute, McGill University, Montreal, QC H4H 1R3, Canada
| | - Christina Nassif
- CHU-Sainte Justine Research Centre, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Lina Ghaloul-Gonzalez
- Department of Pediatrics, Division of Medical Genetics, University of Pittsburgh, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | - Jessica Sebastian
- Department of Pediatrics, Division of Medical Genetics, University of Pittsburgh, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | - Jerry Vockley
- Department of Pediatrics, Division of Medical Genetics, University of Pittsburgh, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | | | | | | | - Robert D Nicholls
- Department of Pediatrics, Division of Medical Genetics, University of Pittsburgh, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | - Kristin C Herman
- University of California at Davis Medical Center, Section of Medical Genomics, Sacramento, CA 95817, USA
| | - Joshua L Deignan
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Walla Al-Hertani
- Departments of Medical Genetics and Paediatrics, Cumming School of Medicine, Alberta Children's Hospital and University of Calgary, Calgary, AB T3B 6A8, Canada
| | - Stephanie Efthymiou
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
| | - Vincenzo Salpietro
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
| | - Noriko Miyake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Yoshio Makita
- Education Center, Asahikawa Medical University, Asahikawa 078-8510, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama 236-0004, Japan
| | - Rune Østern
- Department of Pediatrics, St. Olav's Hospital, Trondheim University Hospital, Postbox 3250, Sluppen 7006 Trondheim, Norway
| | - Gunnar Houge
- Department of Medical Genetics, Haukeland University Hospital, 5021 Bergen, Norway
| | - Maria Hafström
- Department of Pediatrics, St. Olav's Hospital, Trondheim University Hospital, Postbox 3250, Sluppen 7006 Trondheim, Norway
| | - Emily Fassi
- Division of Genetics and Genomic Medicine, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Henry Houlden
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
| | - Jolien S Klein Wassink-Ruiter
- Department of Genetics, University of Groningen and University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Dominic Nelson
- McGill University, Department of Human Genetics, Montreal, QC H3G 0B1, Canada
| | - Amy Goldstein
- Division of Child Neurology, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Tabib Dabir
- Northern Ireland Regional Genetics Centre, Belfast Health and Social Care Trust, Belfast City Hospital, Lisburn Road, Belfast BT9 7AB, UK
| | - Julien van Gils
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, University Paris Diderot, Paris 75015, France
| | - Thomas Bourgeron
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, University Paris Diderot, Paris 75015, France
| | - Richard Delorme
- Assistance Publique Hôpitaux de Paris (APHP), Robert Debré Hospital, Child and Adolescent Psychiatry Department, Paris, France
| | - Gregory M Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | | | | | - Lionel Carmant
- Children's Rehabilitation Service, Mobile, AL 36604, USA
| | - Anne Lortie
- Department of Neurology, University of Montreal, Montreal, QC, Canada
| | - Renske Oegema
- Department of Genetics, University Medical Center Utrecht, 3508 AB Utrecht, the Netherlands
| | - Koen van Gassen
- Department of Genetics, University Medical Center Utrecht, 3508 AB Utrecht, the Netherlands
| | - Sarju G Mehta
- Department of Clinical Genetics, Addenbrookes Hospital, Cambridge CB2 0QQ, UK
| | - Dagmar Huhle
- Department of Clinical Genetics, Addenbrookes Hospital, Cambridge CB2 0QQ, UK
| | - Rami Abou Jamra
- Institute of Human Genetics, University Medical Center Leipzig, 04103 Leipzig, Germany
| | - Sonja Martin
- Institute of Human Genetics, University Medical Center Leipzig, 04103 Leipzig, Germany
| | - Han G Brunner
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen 6500 GA, the Netherlands; Department of Clinical Genetics and School for Oncology & Developmental Biology (GROW), Maastricht University Medical Center, 6202 AZ Maastricht, the Netherlands
| | - Dick Lindhout
- Department of Genetics, University Medical Center Utrecht, Utrecht & Stichting Epilepsie Instellingen Nederland (SEIN), Heemstede, the Netherlands
| | - Margaret Au
- Medical Genetics, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - John M Graham
- Medical Genetics, Cedars Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Christine Coubes
- Service de génétique clinique, Département de génétique médicale, Maladies rares et médecine personnalisée, Centre de Référence Anomalies du développement et Syndromes malformatifs du Sud-Ouest Occitanie Réunion, CHU de Montpellier, 34295 Montpellier Cedex 5, France
| | - Gustavo Turecki
- Psychiatric Genetics Group, Douglas Hospital Research Institute, McGill University, Montreal, QC H4H 1R3, Canada
| | - Simon Gravel
- Department of Genetics, University of Groningen and University Medical Center Groningen, 9700 RB Groningen, the Netherlands
| | - Naguib Mechawar
- Psychiatric Genetics Group, Douglas Hospital Research Institute, McGill University, Montreal, QC H4H 1R3, Canada
| | - Elsa Rossignol
- CHU-Sainte Justine Research Centre, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Jacques L Michaud
- CHU-Sainte Justine Research Centre, University of Montreal, Montreal, QC H3T 1C5, Canada
| | - Julie Lessard
- Institute for Research in Immunology and Cancer (IRIC), University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Carl Ernst
- Psychiatric Genetics Group, Douglas Hospital Research Institute, McGill University, Montreal, QC H4H 1R3, Canada.
| | - Philippe M Campeau
- CHU-Sainte Justine Research Centre, University of Montreal, Montreal, QC H3T 1C5, Canada.
| |
Collapse
|
31
|
Goldman SL, Hassan C, Khunte M, Soldatenko A, Jong Y, Afshinnekoo E, Mason CE. Epigenetic Modifications in Acute Myeloid Leukemia: Prognosis, Treatment, and Heterogeneity. Front Genet 2019; 10:133. [PMID: 30881380 PMCID: PMC6405641 DOI: 10.3389/fgene.2019.00133] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/08/2019] [Indexed: 01/09/2023] Open
Abstract
Leukemia, specifically acute myeloid leukemia (AML), is a common malignancy that can be differentiated into multiple subtypes based on leukemogenic history and etiology. Although genetic aberrations, particularly cytogenetic abnormalities and mutations in known oncogenes, play an integral role in AML development, epigenetic processes have been shown as a significant and sometimes independent dynamic in AML pathophysiology. Here, we summarize how tumors evolve and describe AML through an epigenetic lens, including discussions on recent discoveries that include prognostics from epialleles, changes in RNA function for hematopoietic stem cells and the epitranscriptome, and novel epigenetic treatment options. We further describe the limitations of treatment in the context of the high degree of heterogeneity that characterizes acute myeloid leukemia.
Collapse
Affiliation(s)
- Samantha L Goldman
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States.,The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States.,University of Maryland, College Park, MD, United States
| | - Ciaran Hassan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States.,The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States.,Yale College, New Haven, CT, United States
| | - Mihir Khunte
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States.,Yale College, New Haven, CT, United States
| | - Arielle Soldatenko
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States.,Yale College, New Haven, CT, United States
| | - Yunji Jong
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States.,Yale College, New Haven, CT, United States
| | - Ebrahim Afshinnekoo
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States.,The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States.,The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, United States
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States.,The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, United States.,The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, United States.,The Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
32
|
Zainal Abidin S, Fam SZ, Chong CE, Abdullah S, Cheah PS, Nordin N, Ling KH. miR-3099 promotes neurogenesis and inhibits astrogliogenesis during murine neural development. Gene 2019; 697:201-212. [PMID: 30769142 DOI: 10.1016/j.gene.2019.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 02/03/2019] [Accepted: 02/05/2019] [Indexed: 12/29/2022]
Abstract
MicroRNA-3099 is highly expressed during neuronal differentiation and development of the central nervous system. Here we characterised the role of miR-3099 during neural differentiation and embryonic brain development using a stable and regulatable mouse embryonic stem cell culture system for miR-3099 expression and in utero electroporation of miR-3099 expression construct into E15.5 embryonic mouse brains. In the in vitro system, miR-3099 overexpression upregulated gene related to neuronal markers such as Tuj1, NeuN, Gat1, vGluT1 and vGluT2. In contrast, gene related to astrocyte markers (Gfap, S100β and Slc1a3) were suppressed upon overexpression of miR-3099. Furthermore, miR-3099 overexpression between E15.5 and E18.5 mouse embryonic brains led to disorganised neuronal migration potentially due to significantly decreased Gfap+ cells. Collectively, our results indicated that miR-3099 plays a role in modulating and regulating expression of key markers involved in neuronal differentiation. In silico analysis was also performed to identify miR-3099 homologues in the human genome, and candidates were validated by stem-loop RT-qPCR. Analysis of the miR-3099 seed sequence AGGCUA against human transcriptomes revealed that a potential miRNA, mds21 (Chr21:39186698-39186677) (GenBank accession ID: MK521584), was 100% identical to the miR-3099 seed sequence. Mds21 expression was observed and validated in various human cell lines (293FT, human Wharton's jelly and dental pulp mesenchymal stem cells, and MCF-7, MDA-MB-231, C-Sert, SW780, RT112, 5637, EJ28 and SH-SY5Y cells), with the highest levels detected in human mesenchymal stem cell lines. The analysis validated mds21 as a novel miRNA and a novel homologue of miR-3099 in the human genome.
Collapse
Affiliation(s)
- Shahidee Zainal Abidin
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Sze-Zheng Fam
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Chan-Eng Chong
- Department of Genetics and Molecular Pathology, SA Pathology and University of South Australia Alliance, Adelaide, South Australia, Australia
| | - Syahril Abdullah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Pike-See Cheah
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Norshariza Nordin
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - King-Hwa Ling
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
33
|
Chen B, Teng J, Liu H, Pan X, Zhou Y, Huang S, Lai M, Bian G, Mao B, Sun W, Zhou Q, Yang S, Nakahata T, Ma F. Inducible overexpression of RUNX1b/c in human embryonic stem cells blocks early hematopoiesis from mesoderm. J Mol Cell Biol 2018; 9:262-273. [PMID: 28992293 DOI: 10.1093/jmcb/mjx032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 08/12/2017] [Indexed: 12/16/2022] Open
Abstract
RUNX1 is absolutely required for definitive hematopoiesis, but the function of RUNX1b/c, two isoforms of human RUNX1, is unclear. We established inducible RUNX1b/c-overexpressing human embryonic stem cell (hESC) lines, in which RUNX1b/c overexpression prevented the emergence of CD34+ cells from early stage, thereby drastically reducing the production of hematopoietic stem/progenitor cells. Simultaneously, the expression of hematopoiesis-related factors was downregulated. However, such blockage effect disappeared from day 6 in hESC/AGM-S3 cell co-cultures, proving that the blockage occurred before the generation of hemogenic endothelial cells. This blockage was partially rescued by RepSox, an inhibitor of the transforming growth factor (TGF)-β signaling pathway, indicating a close relationship between RUNX1b/c and TGF-β pathway. Our results suggest a unique inhibitory function of RUNX1b/c in the development of early hematopoiesis and may aid further understanding of its biological function in normal and diseased models.
Collapse
Affiliation(s)
- B Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Jiawen Teng
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Hongwei Liu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - X Pan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Y Zhou
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Shu Huang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Mowen Lai
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Guohui Bian
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Bin Mao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Wencui Sun
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Qiongxiu Zhou
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
| | - Shengyong Yang
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610065, China
| | - Tatsutoshi Nakahata
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan
| | - Feng Ma
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College (CAMS & PUMC), Chengdu 610052, China
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Experimental Hematology, CAMS & PUMC, Tianjin 300020, China
| |
Collapse
|
34
|
Ratan ZA, Son YJ, Haidere MF, Uddin BMM, Yusuf MA, Zaman SB, Kim JH, Banu LA, Cho JY. CRISPR-Cas9: a promising genetic engineering approach in cancer research. Ther Adv Med Oncol 2018; 10:1758834018755089. [PMID: 29434679 PMCID: PMC5802696 DOI: 10.1177/1758834018755089] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/22/2017] [Indexed: 12/26/2022] Open
Abstract
Bacteria and archaea possess adaptive immunity against foreign genetic materials through clustered regularly interspaced short palindromic repeat (CRISPR) systems. The discovery of this intriguing bacterial system heralded a revolutionary change in the field of medical science. The CRISPR and CRISPR-associated protein 9 (Cas9) based molecular mechanism has been applied to genome editing. This CRISPR-Cas9 technique is now able to mediate precise genetic corrections or disruptions in in vitro and in vivo environments. The accuracy and versatility of CRISPR-Cas have been capitalized upon in biological and medical research and bring new hope to cancer research. Cancer involves complex alterations and multiple mutations, translocations and chromosomal losses and gains. The ability to identify and correct such mutations is an important goal in cancer treatment. In the context of this complex cancer genomic landscape, there is a need for a simple and flexible genetic tool that can easily identify functional cancer driver genes within a comparatively short time. The CRISPR-Cas system shows promising potential for modeling, repairing and correcting genetic events in different types of cancer. This article reviews the concept of CRISPR-Cas, its application and related advantages in oncology.
Collapse
Affiliation(s)
- Zubair Ahmed Ratan
- Department of Biomedical Engineering, Khulna University of Engineering and Technology, Khulna, Bangladesh
| | - Young-Jin Son
- Department of Pharmacy, Sunchon National University, Suncheon, Korea
| | | | | | - Md Abdullah Yusuf
- Department of Microbiology, National Institute of Neurosciences & Hospital, Dhaka, Bangladesh
| | - Sojib Bin Zaman
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Jong-Hoon Kim
- Department of Physiology, College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Korea
| | - Laila Anjuman Banu
- Department of Anatomy, Bangabandhu Sheikh Mujib Medical University (BSMMU), Shahbag, Dhaka 1000, Bangladesh
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Korea
| |
Collapse
|
35
|
RUNX1 is required for oncogenic Myb and Myc enhancer activity in T-cell acute lymphoblastic leukemia. Blood 2017; 130:1722-1733. [PMID: 28790107 DOI: 10.1182/blood-2017-03-775536] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Accepted: 07/24/2017] [Indexed: 12/14/2022] Open
Abstract
The gene encoding the RUNX1 transcription factor is mutated in a subset of T-cell acute lymphoblastic leukemia (T-ALL) patients, and RUNX1 mutations are associated with a poor prognosis. These mutations cluster in the DNA-binding Runt domain and are thought to represent loss-of-function mutations, indicating that RUNX1 suppresses T-cell transformation. RUNX1 has been proposed to have tumor suppressor roles in T-cell leukemia homeobox 1/3-transformed human T-ALL cell lines and NOTCH1 T-ALL mouse models. Yet, retroviral insertional mutagenesis screens identify RUNX genes as collaborating oncogenes in MYC-driven leukemia mouse models. To elucidate RUNX1 function(s) in leukemogenesis, we generated Tal1/Lmo2/Rosa26-CreERT2Runx1f/f mice and examined leukemia progression in the presence of vehicle or tamoxifen. We found that Runx1 deletion inhibits mouse leukemic growth in vivo and that RUNX silencing in human T-ALL cells triggers apoptosis. We demonstrate that a small molecule inhibitor, designed to interfere with CBFβ binding to RUNX proteins, impairs the growth of human T-ALL cell lines and primary patient samples. We demonstrate that a RUNX1 deficiency alters the expression of a crucial subset of TAL1- and NOTCH1-regulated genes, including the MYB and MYC oncogenes, respectively. These studies provide genetic and pharmacologic evidence that RUNX1 has oncogenic roles and reveal RUNX1 as a novel therapeutic target in T-ALL.
Collapse
|
36
|
Molecular Basis and Targeted Inhibition of CBFβ-SMMHC Acute Myeloid Leukemia. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:229-244. [PMID: 28299661 DOI: 10.1007/978-981-10-3233-2_15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Acute myeloid leukemia (AML) is characterized by recurrent chromosomal rearrangements that encode for fusion proteins which drive leukemia initiation and maintenance. The inv(16) (p13q22) rearrangement is a founding mutation and the associated CBFβ-SMMHC fusion protein is essential for the survival of inv(16) AML cells. This Chapter will discuss our understanding of the function of this fusion protein in disrupting hematopoietic homeostasis and creating pre-leukemic blasts, in its cooperation with other co-occurring mutations during leukemia initiation, and in leukemia maintenance. In addition, this chapter will discuss the current approaches used for the treatment of inv(16) AML and the recent development of AI-10-49, a selective targeted inhibitor of CBFβ-SMMHC/RUNX1 binding, the first candidate targeted therapy for inv(16) AML.
Collapse
|
37
|
Bonifer C, Levantini E, Kouskoff V, Lacaud G. Runx1 Structure and Function in Blood Cell Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:65-81. [PMID: 28299651 DOI: 10.1007/978-981-10-3233-2_5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RUNX transcription factors belong to a highly conserved class of transcriptional regulators which play various roles in the development of the majority of metazoans. In this review we focus on the founding member of the family, RUNX1, and its role in the transcriptional control of blood cell development in mammals. We summarize data showing that RUNX1 functions both as activator and repressor within a chromatin environment, a feature that requires its interaction with multiple other transcription factors and co-factors. Furthermore, we outline how RUNX1 works together with other factors to reshape the epigenetic landscape and the three-dimensional structure of gene loci within the nucleus. Finally, we review how aberrant forms of RUNX1 deregulate blood cell development and cause hematopoietic malignancies.
Collapse
Affiliation(s)
- Constanze Bonifer
- Institute for Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK.
| | - Elena Levantini
- Beth Israel Diaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Istituto di Tecnologie Biomediche, Consiglio Nazionale delle Richerche, Pisa, Italy
| | - Valerie Kouskoff
- Division of Developmental Biology & Medicine, The University of Manchester, Manchester, UK
| | - Georges Lacaud
- Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
| |
Collapse
|
38
|
Obier N, Bonifer C. Chromatin programming by developmentally regulated transcription factors: lessons from the study of haematopoietic stem cell specification and differentiation. FEBS Lett 2016; 590:4105-4115. [PMID: 27497427 DOI: 10.1002/1873-3468.12343] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 07/26/2016] [Accepted: 07/31/2016] [Indexed: 01/08/2023]
Abstract
Although the body plan of individuals is encoded in their genomes, each cell type expresses a different gene expression programme and therefore has access to only a subset of this information. Alterations to gene expression programmes are the underlying basis for the differentiation of multiple cell types and are driven by tissue-specific transcription factors (TFs) that interact with the epigenetic regulatory machinery to programme the chromatin landscape into transcriptionally active and inactive states. The haematopoietic system has long served as a paradigm for studying the molecular principles that regulate gene expression in development. In this review article, we summarize the current knowledge on the mechanism of action of TFs regulating haematopoietic stem cell specification and differentiation, and place this information into the context of general principles governing development.
Collapse
Affiliation(s)
- Nadine Obier
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, UK
| | - Constanze Bonifer
- Institute of Cancer and Genomic Sciences, College of Medicine and Dentistry, University of Birmingham, UK
| |
Collapse
|
39
|
Where Environment Meets Cognition: A Focus on Two Developmental Intellectual Disability Disorders. Neural Plast 2016; 2016:4235898. [PMID: 27547454 PMCID: PMC4980517 DOI: 10.1155/2016/4235898] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/03/2016] [Indexed: 11/22/2022] Open
Abstract
One of the most challenging questions in neuroscience is to dissect how learning and memory, the foundational pillars of cognition, are grounded in stable, yet plastic, gene expression states. All known epigenetic mechanisms such as DNA methylation and hydroxymethylation, histone modifications, chromatin remodelling, and noncoding RNAs regulate brain gene expression, both during neurodevelopment and in the adult brain in processes related to cognition. On the other hand, alterations in the various components of the epigenetic machinery have been linked to well-known causes of intellectual disability disorders (IDDs). Two examples are Down Syndrome (DS) and Fragile X Syndrome (FXS), where global and local epigenetic alterations lead to impairments in synaptic plasticity, memory, and learning. Since epigenetic modifications are reversible, it is theoretically possible to use epigenetic drugs as cognitive enhancers for the treatment of IDDs. Epigenetic treatments act in a context specific manner, targeting different regions based on cell and state specific chromatin accessibility, facilitating the establishment of the lost balance. Here, we discuss epigenetic studies of IDDs, focusing on DS and FXS, and the use of epidrugs in combinatorial therapies for IDDs.
Collapse
|
40
|
Illendula A, Gilmour J, Grembecka J, Tirumala VSS, Boulton A, Kuntimaddi A, Schmidt C, Wang L, Pulikkan JA, Zong H, Parlak M, Kuscu C, Pickin A, Zhou Y, Gao Y, Mishra L, Adli M, Castilla LH, Rajewski RA, Janes KA, Guzman ML, Bonifer C, Bushweller JH. Small Molecule Inhibitor of CBFβ-RUNX Binding for RUNX Transcription Factor Driven Cancers. EBioMedicine 2016; 8:117-131. [PMID: 27428424 PMCID: PMC4919611 DOI: 10.1016/j.ebiom.2016.04.032] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 04/12/2016] [Accepted: 04/25/2016] [Indexed: 10/29/2022] Open
Abstract
Transcription factors have traditionally been viewed with skepticism as viable drug targets, but they offer the potential for completely novel mechanisms of action that could more effectively address the stem cell like properties, such as self-renewal and chemo-resistance, that lead to the failure of traditional chemotherapy approaches. Core binding factor is a heterodimeric transcription factor comprised of one of 3 RUNX proteins (RUNX1-3) and a CBFβ binding partner. CBFβ enhances DNA binding of RUNX subunits by relieving auto-inhibition. Both RUNX1 and CBFβ are frequently mutated in human leukemia. More recently, RUNX proteins have been shown to be key players in epithelial cancers, suggesting the targeting of this pathway could have broad utility. In order to test this, we developed small molecules which bind to CBFβ and inhibit its binding to RUNX. Treatment with these inhibitors reduces binding of RUNX1 to target genes, alters the expression of RUNX1 target genes, and impacts cell survival and differentiation. These inhibitors show efficacy against leukemia cells as well as basal-like (triple-negative) breast cancer cells. These inhibitors provide effective tools to probe the utility of targeting RUNX transcription factor function in other cancers.
Collapse
Affiliation(s)
- Anuradha Illendula
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Jane Gilmour
- School of Cancer Sciences, Institute of Biomedical Research, University of Birmingham, Birmingham, UK
| | | | | | - Adam Boulton
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Aravinda Kuntimaddi
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Charles Schmidt
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Lixin Wang
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - John A Pulikkan
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Hongliang Zong
- Division of Hematology/Oncology, Department of Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | - Mahmut Parlak
- Department of Biochemistry, University of Virginia, Charlottesville, VA, USA
| | - Cem Kuscu
- Department of Biochemistry, University of Virginia, Charlottesville, VA, USA
| | - Anna Pickin
- School of Cancer Sciences, Institute of Biomedical Research, University of Birmingham, Birmingham, UK
| | - Yunpeng Zhou
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Yan Gao
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | - Lauren Mishra
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Mazhar Adli
- Department of Biochemistry, University of Virginia, Charlottesville, VA, USA
| | - Lucio H Castilla
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Roger A Rajewski
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS, USA
| | - Kevin A Janes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA
| | - Monica L Guzman
- Division of Hematology/Oncology, Department of Medicine, Weill Medical College of Cornell University, New York, NY, USA
| | - Constanze Bonifer
- School of Cancer Sciences, Institute of Biomedical Research, University of Birmingham, Birmingham, UK
| | - John H Bushweller
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
41
|
Cheng CK, Chan NPH, Wan TSK, Lam LY, Cheung CHY, Wong THY, Ip RKL, Wong RSM, Ng MHL. Helicase-like transcription factor is a RUNX1 target whose downregulation promotes genomic instability and correlates with complex cytogenetic features in acute myeloid leukemia. Haematologica 2016; 101:448-57. [PMID: 26802049 DOI: 10.3324/haematol.2015.137125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 01/13/2016] [Indexed: 12/27/2022] Open
Abstract
Helicase-like transcription factor is a SWI/SNF chromatin remodeling factor involved in various biological processes. However, little is known about its role in hematopoiesis. In this study, we measured helicase-like transcription factor mRNA expression in the bone marrow of 204 adult patients with de novo acute myeloid leukemia. Patients were dichotomized into low and high expression groups at the median level for clinicopathological correlations. Helicase-like transcription factor levels were dramatically reduced in the low expression patient group compared to those in the normal controls (n=40) (P<0.0001). Low helicase-like transcription factor expression correlated positively with French-American-British M4/M5 subtypes (P<0.0001) and complex cytogenetic abnormalities (P=0.02 for ≥3 abnormalities;P=0.004 for ≥5 abnormalities) but negatively with CEBPA double mutations (P=0.012). Also, low expression correlated with poorer overall (P=0.005) and event-free (P=0.006) survival in the intermediate-risk cytogenetic subgroup. Consistent with the more aggressive disease associated with low expression, helicase-like transcription factor knockdown in leukemic cells promoted proliferation and chromosomal instability that was accompanied by downregulation of mitotic regulators and impaired DNA damage response. The significance of helicase-like transcription factor in genome maintenance was further indicated by its markedly elevated expression in normal human CD34(+)hematopoietic stem cells. We further demonstrated that helicase-like transcription factor was a RUNX1 target and transcriptionally repressed by RUNX1-ETO and site-specific DNA methylation through a duplicated RUNX1 binding site in its promoter. Taken together, our findings provide new mechanistic insights on genomic instability linked to helicase-like transcription factor deregulation, and strongly suggest a tumor suppressor function of the SWI/SNF protein in acute myeloid leukemia.
Collapse
Affiliation(s)
- Chi Keung Cheng
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Cina
| | - Natalie P H Chan
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Cina
| | - Thomas S K Wan
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Cina
| | - Lai Ying Lam
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Cina
| | - Coty H Y Cheung
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Cina
| | - Terry H Y Wong
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Cina
| | - Rosalina K L Ip
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Cina
| | - Raymond S M Wong
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Cina Sir Y. K. Pao Centre for Cancer, Prince of Wales Hospital, Hong Kong, Cina
| | - Margaret H L Ng
- Department of Anatomical and Cellular Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Cina State Key Laboratory in Oncology in South China, The Chinese University of Hong Kong, Cina
| |
Collapse
|
42
|
Takayama KI, Suzuki T, Tsutsumi S, Fujimura T, Urano T, Takahashi S, Homma Y, Aburatani H, Inoue S. RUNX1, an androgen- and EZH2-regulated gene, has differential roles in AR-dependent and -independent prostate cancer. Oncotarget 2016; 6:2263-76. [PMID: 25537508 PMCID: PMC4385850 DOI: 10.18632/oncotarget.2949] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/09/2015] [Indexed: 12/03/2022] Open
Abstract
Androgen receptor (AR) signaling is essential for the development of prostate cancer. Here, we report that runt-related transcription factor (RUNX1) could be a key molecule for the androgen-dependence of prostate cancer. We found RUNX1 is a target of AR and regulated positively by androgen. Our RUNX1 ChIP-seq analysis indicated that RUNX1 is recruited to AR binding sites by interacting with AR. In androgen-dependent cancer, loss of RUNX1 impairs AR-dependent transcription and cell growth. The RUNX1 promoter is bound by enhancer of zeste homolog 2 (EZH2) and is negatively regulated by histone H3 lysine 27 (K27) trimethylation. Repression of RUNX1 is important for the growth promotion ability of EZH2 in AR-independent cells. In clinical prostate cancer samples, the RUNX1 expression level is negatively associated with EZH2 and that RUNX1 loss correlated with poor prognosis. These results indicated the significance of RUNX1 for androgen-dependency and that loss of RUNX1 could be a key step for the progression of prostate cancer.
Collapse
Affiliation(s)
- Ken-ichi Takayama
- Department of Anti-Aging Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Department of Geriatric Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Takashi Suzuki
- Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | - Shuichi Tsutsumi
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Tetsuya Fujimura
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Tomohiko Urano
- Department of Anti-Aging Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Department of Geriatric Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Satoru Takahashi
- Department of Urology, Nihon University School of Medicine, Itabashi-ku, Tokyo, Japan
| | - Yukio Homma
- Department of Urology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hiroyuki Aburatani
- Genome Science Division, Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, Meguro-ku, Tokyo, Japan
| | - Satoshi Inoue
- Department of Anti-Aging Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Department of Geriatric Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| |
Collapse
|
43
|
Majumder A, Syed KM, Joseph S, Scambler PJ, Dutta D. Histone Chaperone HIRA in Regulation of Transcription Factor RUNX1. J Biol Chem 2015; 290:13053-63. [PMID: 25847244 DOI: 10.1074/jbc.m114.615492] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Indexed: 12/14/2022] Open
Abstract
RUNX1 (Runt-related transcription factor 1) is indispensable for the generation of hemogenic endothelium. However, the regulation of RUNX1 during this developmental process is poorly understood. We investigated the role of the histone chaperone HIRA (histone cell cycle regulation-defective homolog A) from this perspective and report that HIRA significantly contributes toward the regulation of RUNX1 in the transition of differentiating mouse embryonic stem cells from hemogenic to hematopoietic stage. Direct interaction of HIRA and RUNX1 activates the downstream targets of RUNX1 implicated in generation of hematopoietic stem cells. At the molecular level, HIRA-mediated incorporation of histone H3.3 variant within the Runx1 +24 mouse conserved noncoding element is essential for the expression of Runx1 during endothelial to hematopoietic transition. An inactive chromatin at the intronic enhancer of Runx1 in absence of HIRA significantly repressed the transition of cells from hemogenic to hematopoietic fate. We expect that the HIRA-RUNX1 axis might open up a novel approach in understanding leukemogenesis in future.
Collapse
Affiliation(s)
- Aditi Majumder
- From the Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, 695 014 Kerala, India and
| | - Khaja Mohieddin Syed
- From the Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, 695 014 Kerala, India and
| | - Sunu Joseph
- From the Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, 695 014 Kerala, India and
| | - Peter J Scambler
- the Institute of Child Health, University College of London, London WC1E 6BT, United Kingdom
| | - Debasree Dutta
- From the Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, 695 014 Kerala, India and
| |
Collapse
|
44
|
Dekker AD, De Deyn PP, Rots MG. Epigenetics: The neglected key to minimize learning and memory deficits in Down syndrome. Neurosci Biobehav Rev 2014; 45:72-84. [DOI: 10.1016/j.neubiorev.2014.05.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/04/2014] [Accepted: 05/13/2014] [Indexed: 10/25/2022]
|
45
|
Himeda CL, Debarnot C, Homma S, Beermann ML, Miller JB, Jones PL, Jones TI. Myogenic enhancers regulate expression of the facioscapulohumeral muscular dystrophy-associated DUX4 gene. Mol Cell Biol 2014; 34:1942-55. [PMID: 24636994 PMCID: PMC4019064 DOI: 10.1128/mcb.00149-14] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 02/12/2014] [Accepted: 03/11/2014] [Indexed: 11/20/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is linked to epigenetic dysregulation of the chromosome 4q35 D4Z4 macrosatellite. However, this does not account for the tissue specificity of FSHD pathology, which requires stable expression of an alternative full-length mRNA splice form of DUX4 (DUX4-fl) from the D4Z4 array in skeletal muscle. Here, we describe the identification of two enhancers, DUX4 myogenic enhancer 1 (DME1) and DME2 which activate DUX4-fl expression in skeletal myocytes but not fibroblasts. Analysis of the chromatin revealed histone modifications and RNA polymerase II occupancy consistent with DME1 and DME2 being functional enhancers. Chromosome conformation capture analysis confirmed association of DME1 and DME2 with the DUX4 promoter in vivo. The strong interaction between DME2 and the DUX4 promoter in both FSHD and unaffected primary myocytes was greatly reduced in fibroblasts, suggesting a muscle-specific interaction. Nucleosome occupancy and methylome sequencing analysis indicated that in most FSHD myocytes, both enhancers are associated with nucleosomes but have hypomethylated DNA, consistent with a permissive transcriptional state, sporadic occupancy, and the observed DUX4 expression in rare myonuclei. Our data support a model in which these myogenic enhancers associate with the DUX4 promoter in skeletal myocytes and activate transcription when epigenetically derepressed in FSHD, resulting in the pathological misexpression of DUX4-fl.
Collapse
Affiliation(s)
- Charis L. Himeda
- Wellstone Program, Departments of Cell and Developmental Biology and Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Céline Debarnot
- Ecole Supérieure de Biotechnologie Strasbourg, Illkirch, France
| | - Sachiko Homma
- Neuromuscular Biology and Disease Group, Departments of Neurology and Physiology Biophysics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Mary Lou Beermann
- Neuromuscular Biology and Disease Group, Departments of Neurology and Physiology Biophysics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jeffrey B. Miller
- Neuromuscular Biology and Disease Group, Departments of Neurology and Physiology Biophysics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Peter L. Jones
- Wellstone Program, Departments of Cell and Developmental Biology and Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Takako I. Jones
- Wellstone Program, Departments of Cell and Developmental Biology and Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
46
|
Domains of genome-wide gene expression dysregulation in Down's syndrome. Nature 2014; 508:345-50. [PMID: 24740065 DOI: 10.1038/nature13200] [Citation(s) in RCA: 200] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 03/04/2014] [Indexed: 12/27/2022]
Abstract
Trisomy 21 is the most frequent genetic cause of cognitive impairment. To assess the perturbations of gene expression in trisomy 21, and to eliminate the noise of genomic variability, we studied the transcriptome of fetal fibroblasts from a pair of monozygotic twins discordant for trisomy 21. Here we show that the differential expression between the twins is organized in domains along all chromosomes that are either upregulated or downregulated. These gene expression dysregulation domains (GEDDs) can be defined by the expression level of their gene content, and are well conserved in induced pluripotent stem cells derived from the twins' fibroblasts. Comparison of the transcriptome of the Ts65Dn mouse model of Down's syndrome and normal littermate mouse fibroblasts also showed GEDDs along the mouse chromosomes that were syntenic in human. The GEDDs correlate with the lamina-associated (LADs) and replication domains of mammalian cells. The overall position of LADs was not altered in trisomic cells; however, the H3K4me3 profile of the trisomic fibroblasts was modified and accurately followed the GEDD pattern. These results indicate that the nuclear compartments of trisomic cells undergo modifications of the chromatin environment influencing the overall transcriptome, and that GEDDs may therefore contribute to some trisomy 21 phenotypes.
Collapse
|
47
|
Bhlhe40 controls cytokine production by T cells and is essential for pathogenicity in autoimmune neuroinflammation. Nat Commun 2014; 5:3551. [PMID: 24699451 PMCID: PMC4016562 DOI: 10.1038/ncomms4551] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 03/04/2014] [Indexed: 01/12/2023] Open
Abstract
TH1 and TH17 cells mediate neuroinflammation in experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis. Pathogenic TH cells in EAE must produce the pro-inflammatory cytokine granulocyte-macrophage colony stimulating factor (GM-CSF). TH cell pathogenicity in EAE is also regulated by cell-intrinsic production of the immunosuppressive cytokine interleukin 10 (IL-10). Here, we demonstrate that mice deficient for the basic helix-loop-helix (bHLH) transcription factor Bhlhe40 (Bhlhe40−/−) are resistant to the induction of EAE. Bhlhe40 is required in vivo in a T cell-intrinsic manner, where it positively regulates the production of GM-CSF and negatively regulates the production of IL-10. In vitro, GM-CSF secretion is selectively abrogated in polarized Bhlhe40−/− TH1 and TH17 cells, and these cells show increased production of IL-10. Blockade of IL-10 receptor in Bhlhe40−/− mice renders them susceptible to EAE. These findings identify Bhlhe40 as a critical regulator of autoreactive T cell pathogenicity.
Collapse
|
48
|
Shi J, Whyte WA, Zepeda-Mendoza CJ, Milazzo JP, Shen C, Roe JS, Minder JL, Mercan F, Wang E, Eckersley-Maslin MA, Campbell AE, Kawaoka S, Shareef S, Zhu Z, Kendall J, Muhar M, Haslinger C, Yu M, Roeder RG, Wigler MH, Blobel GA, Zuber J, Spector DL, Young RA, Vakoc CR. Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated Myc regulation. Genes Dev 2013; 27:2648-62. [PMID: 24285714 PMCID: PMC3877755 DOI: 10.1101/gad.232710.113] [Citation(s) in RCA: 371] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer cells frequently depend on chromatin regulators to maintain their malignant phenotype. Brg1, an ATPase subunit of SWI/SNF, is known to suppress tumor formation in several cell types. Vakoc and colleagues now show that leukemia cells instead rely on Brg1 to support their oncogenic transcriptional program, which includes Myc as a key target. Brg1 is critical to sustain transcription factor occupancy and enable long-range looping interactions with the Myc promoter. These findings thus implicate enhancer-mediated Myc regulation in leukemia pathogenesis. Cancer cells frequently depend on chromatin regulatory activities to maintain a malignant phenotype. Here, we show that leukemia cells require the mammalian SWI/SNF chromatin remodeling complex for their survival and aberrant self-renewal potential. While Brg1, an ATPase subunit of SWI/SNF, is known to suppress tumor formation in several cell types, we found that leukemia cells instead rely on Brg1 to support their oncogenic transcriptional program, which includes Myc as one of its key targets. To account for this context-specific function, we identify a cluster of lineage-specific enhancers located 1.7 Mb downstream from Myc that are occupied by SWI/SNF as well as the BET protein Brd4. Brg1 is required at these distal elements to maintain transcription factor occupancy and for long-range chromatin looping interactions with the Myc promoter. Notably, these distal Myc enhancers coincide with a region that is focally amplified in ∼3% of acute myeloid leukemias. Together, these findings define a leukemia maintenance function for SWI/SNF that is linked to enhancer-mediated gene regulation, providing general insights into how cancer cells exploit transcriptional coactivators to maintain oncogenic gene expression programs.
Collapse
Affiliation(s)
- Junwei Shi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lee YS, Lee JW, Jang JW, Chi XZ, Kim JH, Li YH, Kim MK, Kim DM, Choi BS, Kim EG, Chung JH, Lee OJ, Lee YM, Suh JW, Chuang LSH, Ito Y, Bae SC. Runx3 inactivation is a crucial early event in the development of lung adenocarcinoma. Cancer Cell 2013; 24:603-16. [PMID: 24229708 DOI: 10.1016/j.ccr.2013.10.003] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Revised: 08/08/2013] [Accepted: 10/02/2013] [Indexed: 12/20/2022]
Abstract
Targeted inactivation of Runx3 in mouse lung induced mucinous and nonmucinous adenomas and markedly shortened latency of adenocarcinoma formation induced by oncogenic K-Ras. RUNX3 was frequently inactivated in K-RAS mutated human lung adenocarcinomas. A functional genetic screen of a fly mutant library and molecular analysis in cultured cell lines revealed that Runx3 forms a complex with BRD2 in a K-Ras-dependent manner in the early phase of the cell cycle; this complex induces expression of p14(ARF)/p19(Arf) and p21(WAF/CIP). When K-Ras was constitutively activated, the Runx3-BRD2 complex was stably maintained and expression of both p14(ARF) and p21(WAF/CIP) was prolonged. These results provide a missing link between oncogenic K-Ras and the p14(ARF)-p53 pathway, and may explain how cells defend against oncogenic K-Ras.
Collapse
Affiliation(s)
- You-Soub Lee
- Department of Biochemistry, College of Medicine, Chungbuk National University, Cheongju 361-763, South Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kelly KJ, Liu Y, Zhang J, Goswami C, Lin H, Dominguez JH. Comprehensive genomic profiling in diabetic nephropathy reveals the predominance of proinflammatory pathways. Physiol Genomics 2013; 45:710-9. [PMID: 23757392 DOI: 10.1152/physiolgenomics.00028.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Despite advances in the treatment of diabetic nephropathy (DN), currently available therapies have not prevented the epidemic of progressive chronic kidney disease (CKD). The morbidity of CKD, and the inexorable increase in the prevalence of end-stage renal disease, demands more effective approaches to prevent and treat progressive CKD. We undertook next-generation sequencing in a rat model of diabetic nephropathy to study in depth the pathogenic alterations involved in DN with progressive CKD. We employed the obese, diabetic ZS rat, a model that develops diabetic nephropathy, characterized by progressive CKD, inflammation, and fibrosis, the hallmarks of human disease. We then used RNA-seq to examine the combined effects of renal cells and infiltrating inflammatory cells acting as a pathophysiological unit. The comprehensive systems biology analysis of progressive CKD revealed multiple interactions of altered genes that were integrated into morbid networks. These pathological gene assemblies lead to renal inflammation and promote apoptosis and cell cycle arrest in progressive CKD. Moreover, in what is clearly a major therapeutic challenge, multiple and redundant pathways were found to be linked to renal fibrosis, a major cause of kidney loss. We conclude that systems biology applied to progressive CKD in DN can be used to develop novel therapeutic strategies directed to restore critical anomalies in affected gene networks.
Collapse
Affiliation(s)
- K J Kelly
- Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | | | | | | | | |
Collapse
|