1
|
Tan Y, Liu S, Tang Q. Effect of GLP-1 receptor agonists on bone mineral density, bone metabolism markers, and fracture risk in type 2 diabetes: a systematic review and meta-analysis. Acta Diabetol 2025:10.1007/s00592-025-02468-5. [PMID: 39985672 DOI: 10.1007/s00592-025-02468-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 02/04/2025] [Indexed: 02/24/2025]
Abstract
AIM To systematically assess randomized controlled trials that evaluated the effect of glucagon-like peptide-1 (GLP-1) receptor agonists on fracture incidence, bone mineral density, and bone metabolism markers in individuals with type 2 diabetes. METHODS From database setup to March 21, 2024, a search was conducted across nine Chinese and English databases. The Cochrane Risk of Bias Tool was applied to assess potential bias. Data analysis was performed using RevMan 5.3 and Stata 14.0. Subgroup analysis and meta regression were employed to explore sources of heterogeneity, and publication bias was evaluated using funnel plots and Egger's test. RESULTS Twenty-five studies were included. The results of the meta-analysis indicated that GLP-1 receptor agonist was not significantly associated with an increased risk of fracture (RR = 0.80; 95% CI 0.47 to 1.36; P = 0.41). Additionally, improvement in lumbar spine BMD (MD = 0.07 g/cm2, 95% CI 0.06 to 0.09, P < 0.00001), hip neck BMD (MD = 0.05 g/cm2, 95% CI 0.03 to 0.08, P = 0.0001) and total hip BMD (MD = 0.06 g/cm2, 95% CI 0.04 to 0.07, P < 0.00001) was superior to the control group. Similarly, GLP-1 receptor agonists significantly improved P1NP (SMD = 0.33, 95% CI 0.07 to 0.59, P = 0.01), OC (MD = 1.46 ug/L, 95% CI 1.10 to 1.83, P < 0.00001), 25-OH-D (SMD = 0.45, 95% CI 0.06 to 0.83, P = 0.02), and b-ALP (MD = 0.91ug/L, 95% CI 0.19 to 1.63, P = 0.01) while reducing β-CTX (SMD = - 0.34, 95% CI - 0.54 to - 0.14, P = 0.001). There was no significant impact on other bone metabolism markers, including N-MID-OT (SMD = 0.43, 95% CI 0.01 to 0.86, P = 0.05), ALP (SMD = - 0.00, 95% CI: - 0.25 to 0.25, P = 0.98), Calcium (MD = 0.00 mmol/L, 95% CI - 0.04 to 0.04, P = 0.94) and Phosphate (MD = 0.02 mmol/L, 95% CI - 0.04 to 0.07, P = 0.57). CONCLUSION This meta-analysis demonstrated no significant effect of GLP-1 receptor agonists on elevated fracture risk. There was a statistically significant improvement in BMD and certain bone turnover markers (β-CTX, P1NP, OC, b-ALP, and 25-OH-D). However, due to some limitations, further high-quality clinical studies with sufficient follow-up time are needed to draw more definitive conclusions.
Collapse
Affiliation(s)
- Yimei Tan
- Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, No.16, Guicheng South Fifth Road, Foshan, 528200, Guangdong, China
- Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, No.16, Guicheng South Fifth Road, Foshan, 528200, Guangdong, China
| | - Shuanghua Liu
- Jinan University, No.601, Huangpu Avenue West, Guangzhou, 510632, Guangdong, China
| | - Qizhi Tang
- Affiliated Guangdong Hospital of Integrated Traditional Chinese and Western Medicine of Guangzhou University of Chinese Medicine, No.16, Guicheng South Fifth Road, Foshan, 528200, Guangdong, China.
- Guangdong Provincial Hospital of Integrated Traditional Chinese and Western Medicine, No.16, Guicheng South Fifth Road, Foshan, 528200, Guangdong, China.
| |
Collapse
|
2
|
Leungsuwan DS, Chandran M. Bone Fragility in Diabetes and its Management: A Narrative Review. Drugs 2024; 84:1111-1134. [PMID: 39103693 DOI: 10.1007/s40265-024-02078-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 08/07/2024]
Abstract
Bone fragility is a serious yet under-recognised complication of diabetes mellitus (DM) that is associated with significant morbidity and mortality. Multiple complex pathophysiological mechanisms mediating bone fragility amongst DM patients have been proposed and identified. Fracture risk in both type 1 diabetes (T1D) and type 2 diabetes (T2D) continues to be understated and underestimated by conventional risk assessment tools, posing an additional challenge to the identification of at-risk patients who may benefit from earlier intervention or preventive strategies. Over the years, an increasing body of evidence has demonstrated the efficacy of osteo-pharmacological agents in managing skeletal fragility in DM. This review seeks to elaborate on the risk of bone fragility in DM, the underlying pathogenesis and skeletal alterations, the approach to fracture risk assessment in DM, management strategies and therapeutic options.
Collapse
Affiliation(s)
| | - Manju Chandran
- Osteoporosis and Bone Metabolism Unit, Department of Endocrinology, Singapore General Hospital, 20 College Road, ACADEMIA, Singapore, 169856, Singapore.
- DUKE NUS Medical School, Singapore, Singapore.
| |
Collapse
|
3
|
Zaki MK, Abed MN, Alassaf FA. Antidiabetic Agents and Bone Quality: A Focus on Glycation End Products and Incretin Pathway Modulations. J Bone Metab 2024; 31:169-181. [PMID: 39307518 PMCID: PMC11416877 DOI: 10.11005/jbm.2024.31.3.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/01/2024] [Accepted: 05/18/2024] [Indexed: 09/26/2024] Open
Abstract
Diabetes mellitus is associated with inadequate bone health and quality and heightened susceptibility to fractures, even in patients with normal or elevated bone mineral density. Elevated advanced glycation end-products (AGEs) and a suppressed incretin pathway are among the mechanisms through which diabetes affects the bone. Accordingly, the present review aimed to investigate the effects of antidiabetic medications on bone quality, primarily through AGEs and the incretin pathway. Google Scholar, Cochrane Library, and PubMed were used to examine related studies until February 2024. Antidiabetic medications influence AGEs and the incretin pathway directly or indirectly. Certain antidiabetic drugs including metformin, glucagon-like peptide-1 receptor agonists (GLP-1RA), dipeptidyl-peptidase-4 (DDP-4) inhibitors, α-glucosidase inhibitors (AGIs), sodium-glucose co-transporter-2 inhibitors, and thiazolidinediones (TZDs), directly affect AGEs through multiple mechanisms. These mechanisms include decreasing the formation of AGEs and the expression of AGEs receptor (RAGE) in tissue and increasing serum soluble RAGE levels, resulting in the reduced action of AGEs. Similarly, metformin, GLP-1RA, DDP-4 inhibitors, AGIs, and TZDs may enhance incretin hormones directly by increasing their production or suppressing their metabolism. Additionally, these medications could influence AGEs and the incretin pathway indirectly by enhancing glycemic control. In contrast, sulfonylureas have not demonstrated any obvious effects on AGEs or the incretin pathway. Considering their favorable effects on AGEs and the incretin pathway, a suitable selection of antidiabetic drugs may facilitate more protective effects on the bone in diabetic patients.
Collapse
Affiliation(s)
- Muthanna K. Zaki
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Mosul, Mosul,
Iraq
| | - Mohammed N. Abed
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul,
Iraq
| | - Fawaz A. Alassaf
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Mosul, Mosul,
Iraq
| |
Collapse
|
4
|
Mabilleau G, Bouvard B. Gut hormone analogues and skeletal health in diabetes and obesity: Evidence from preclinical models. Peptides 2024; 177:171228. [PMID: 38657908 DOI: 10.1016/j.peptides.2024.171228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/17/2024] [Accepted: 04/22/2024] [Indexed: 04/26/2024]
Abstract
Diabetes mellitus and obesity are rapidly growing worldwide. Aside from metabolic disturbances, these two disorders also affect bone with a higher prevalence of bone fractures. In the last decade, a growing body of evidence suggested that several gut hormones, including ghrelin, gastrin, glucose-dependent insulinotropic polypeptide (GIP), glucagon, and glucagon-like peptide-1 and 2 (GLP-1 and GLP-2, respectively) may affect bone physiology. Several gut hormone analogues have been developed for the treatment of type 2 diabetes and obesity, and could represent a new alternative in the therapeutic arsenal against bone fragility. In the present review, a summary of the physiological roles of these gut hormones and their analogues is presented at the cellular level but also in several preclinical models of bone fragility disorders including type 2 diabetes mellitus, especially on bone mineral density, microarchitecture and bone material properties. The present review also summarizes the impact of GLP-1 receptor agonists approved for the treatment of type 2 diabetes mellitus and the more recent dual or triple analogue on bone physiology and strength.
Collapse
Affiliation(s)
- Guillaume Mabilleau
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS, UMR 1229, SFR ICAT, Angers F-49000, France; CHU Angers, Département de Pathologie Cellulaire et Tissulaire, UF de Pathologie osseuse, Angers F-49933, France.
| | - Béatrice Bouvard
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS, UMR 1229, SFR ICAT, Angers F-49000, France; CHU Angers, Service de Rhumatologie, Angers F-49933, France
| |
Collapse
|
5
|
Bouvard B, Mabilleau G. Gut hormones and bone homeostasis: potential therapeutic implications. Nat Rev Endocrinol 2024:10.1038/s41574-024-01000-z. [PMID: 38858581 DOI: 10.1038/s41574-024-01000-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/14/2024] [Indexed: 06/12/2024]
Abstract
Bone resorption follows a circadian rhythm, with a marked reduction in circulating markers of resorption (such as carboxy-terminal telopeptide region of collagen type I in serum) in the postprandial period. Several gut hormones, including glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide 1 (GLP1) and GLP2, have been linked to this effect in humans and rodent models. These hormones are secreted from enteroendocrine cells in the gastrointestinal tract in response to a variety of stimuli and effect a wide range of physiological processes within and outside the gut. Single GLP1, dual GLP1-GIP or GLP1-glucagon and triple GLP1-GIP-glucagon receptor agonists have been developed for the treatment of type 2 diabetes mellitus and obesity. In addition, single GIP, GLP1 and GLP2 analogues have been investigated in preclinical studies as novel therapeutics to improve bone strength in bone fragility disorders. Dual GIP-GLP2 analogues have been developed that show therapeutic promise for bone fragility in preclinical studies and seem to exert considerable activity at the bone material level. This Review summarizes the evidence of the action of gut hormones on bone homeostasis and physiology.
Collapse
Affiliation(s)
- Béatrice Bouvard
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS UMR 1229, Angers, France
- CHU Angers, Service de Rhumatologie, Angers, France
| | - Guillaume Mabilleau
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS UMR 1229, Angers, France.
- CHU Angers, Departement de Pathologie Cellulaire et Tissulaire, Angers, France.
| |
Collapse
|
6
|
Wu Z, Deng W, Ye Y, Xu J, Han D, Zheng Y, Zheng Q. Liraglutide, a glucagon-like peptide-1 receptor agonist, inhibits bone loss in an animal model of osteoporosis with or without diabetes. Front Endocrinol (Lausanne) 2024; 15:1378291. [PMID: 38868747 PMCID: PMC11167098 DOI: 10.3389/fendo.2024.1378291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/07/2024] [Indexed: 06/14/2024] Open
Abstract
Introduction Liraglutide (Lrg), a novel anti-diabetic drug that mimics the endogenous glucagon-like peptide-1 to potentiate insulin secretion, is observed to be capable of partially reversing osteopenia. The aim of the present study is to further investigate the efficacy and potential anti-osteoporosis mechanisms of Lrg for improving bone pathology, bone- related parameters under imageology, and serum bone metabolism indexes in an animal model of osteoporosis with or without diabetes. Methods Eight databases were searched from their inception dates to April 27, 2024. The risk of bias and data on outcome measures were analyzed by the CAMARADES 10-item checklist and Rev-Man 5.3 software separately. Results Seventeen eligible studies were ultimately included in this review. The number of criteria met in each study varied from 4/10 to 8/10 with an average of 5.47. The aspects of blinded induction of the model, blinding assessment of outcome and sample size calculation need to be strengthened with emphasis. The pre-clinical evidence reveals that Lrg is capable of partially improving bone related parameters under imageology, bone pathology, and bone maximum load, increasing serum osteocalcin, N-terminal propeptide of type I procollagen, and reducing serum c-terminal cross-linked telopeptide of type I collagen (P<0.05). Lrg reverses osteopenia likely by activating osteoblast proliferation through promoting the Wnt signal pathway, p-AMPK/PGC1α signal pathway, and inhibiting the activation of osteoclasts by inhibiting the OPG/RANKL/RANK signal pathway through anti-inflammatory, antioxidant and anti-autophagic pathways. Furthermore, the present study recommends that more reasonable usage methods of streptozotocin, including dosage and injection methods, as well as other types of osteoporosis models, be attempted in future studies. Discussion Based on the results, this finding may help to improve the priority of Lrg in the treatment of diabetes patients with osteoporosis.
Collapse
Affiliation(s)
- Zongyi Wu
- Department of Orthopedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Deng
- Department of Rheumatology Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiming Ye
- Department of Rheumatology Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jie Xu
- Department of Rheumatology Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Deyu Han
- Department of Rheumatology Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu Zheng
- Department of Nephrology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qun Zheng
- Department of Rheumatology Immunology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Liu H, Xiao H, Lin S, Zhou H, Cheng Y, Xie B, Xu D. Effect of gut hormones on bone metabolism and their possible mechanisms in the treatment of osteoporosis. Front Pharmacol 2024; 15:1372399. [PMID: 38725663 PMCID: PMC11079205 DOI: 10.3389/fphar.2024.1372399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/25/2024] [Indexed: 05/12/2024] Open
Abstract
Bone is a highly dynamic organ that changes with the daily circadian rhythm. During the day, bone resorption is suppressed due to eating, while it increases at night. This circadian rhythm of the skeleton is regulated by gut hormones. Until now, gut hormones that have been found to affect skeletal homeostasis include glucagon-like peptide-1 (GLP-1), glucagon-like peptide-2 (GLP-2), glucose-dependent insulinotropic polypeptide (GIP), and peptide YY (PYY), which exerts its effects by binding to its cognate receptors (GLP-1R, GLP-2R, GIPR, and Y1R). Several studies have shown that GLP-1, GLP-2, and GIP all inhibit bone resorption, while GIP also promotes bone formation. Notably, PYY has a strong bone resorption-promoting effect. In addition, gut microbiota (GM) plays an important role in maintaining bone homeostasis. This review outlines the roles of GLP-1, GLP-2, GIP, and PYY in bone metabolism and discusses the roles of gut hormones and the GM in regulating bone homeostasis and their potential mechanisms.
Collapse
Affiliation(s)
- Hongyu Liu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Huimin Xiao
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Sufen Lin
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Huan Zhou
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Yizhao Cheng
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| | - Baocheng Xie
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Department of Pharmacy, The 10th Affiliated Hospital of Southern Medical University (Dongguan People’s Hospital), Dongguan, China
| | - Daohua Xu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, Dongguan Key Laboratory of Traditional Chinese Medicine and New Pharmaceutical Development, School of Pharmacy, Guangdong Medical University, Dongguan, China
- Institute of Traditional Chinese Medicine and New Pharmacy Development, Guangdong Medical University, Dongguan, China
| |
Collapse
|
8
|
He Z, Li H, Zhang Y, Gao S, Liang K, Su Y, Du Y, Wang D, Xing D, Yang Z, Lin J. Enhanced bone regeneration via endochondral ossification using Exendin-4-modified mesenchymal stem cells. Bioact Mater 2024; 34:98-111. [PMID: 38186959 PMCID: PMC10770633 DOI: 10.1016/j.bioactmat.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Nonunions and delayed unions pose significant challenges in orthopedic treatment, with current therapies often proving inadequate. Bone tissue engineering (BTE), particularly through endochondral ossification (ECO), emerges as a promising strategy for addressing critical bone defects. This study introduces mesenchymal stem cells overexpressing Exendin-4 (MSC-E4), designed to modulate bone remodeling via their autocrine and paracrine functions. We established a type I collagen (Col-I) sponge-based in vitro model that effectively recapitulates the ECO pathway. MSC-E4 demonstrated superior chondrogenic and hypertrophic differentiation and enhanced the ECO cell fate in single-cell sequencing analysis. Furthermore, MSC-E4 encapsulated in microscaffold, effectively facilitated bone regeneration in a rat calvarial defect model, underscoring its potential as a therapeutic agent for bone regeneration. Our findings advocate for MSC-E4 within a BTE framework as a novel and potent approach for treating significant bone defects, leveraging the intrinsic ECO process.
Collapse
Affiliation(s)
- Zihao He
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, 100044, China
- Arthritis Institute, Peking University, Beijing, 100044, China
| | - Hui Li
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, 100044, China
- Arthritis Institute, Peking University, Beijing, 100044, China
| | - Yuanyuan Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Shuang Gao
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Kaini Liang
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Yiqi Su
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, 100044, China
- Arthritis Institute, Peking University, Beijing, 100044, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Du Wang
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, 100044, China
- Arthritis Institute, Peking University, Beijing, 100044, China
| | - Dan Xing
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, 100044, China
- Arthritis Institute, Peking University, Beijing, 100044, China
| | - Zhen Yang
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, 100044, China
- Arthritis Institute, Peking University, Beijing, 100044, China
| | - Jianhao Lin
- Arthritis Clinic & Research Center, Peking University People's Hospital, Peking University, Beijing, 100044, China
- Arthritis Institute, Peking University, Beijing, 100044, China
| |
Collapse
|
9
|
Kim TY, Schafer AL. Bariatric surgery, vitamin D, and bone loss. FELDMAN AND PIKE'S VITAMIN D 2024:161-184. [DOI: 10.1016/b978-0-323-91338-6.00009-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Wang R, Na H, Cheng S, Zheng Y, Yao J, Bian Y, Gu Y. Effects of glucagon‑like peptide‑1 receptor agonists on fracture healing in a rat osteoporotic model. Exp Ther Med 2023; 26:412. [PMID: 37559934 PMCID: PMC10407998 DOI: 10.3892/etm.2023.12111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 06/01/2023] [Indexed: 08/11/2023] Open
Abstract
Osteoporosis is a common disease characterized by reduced bone mass, microstructural deterioration, fragility and consequent fragility fractures and is particularly prevalent among the elderly population. Although glucagon-like peptide-1 receptor agonists (GLP-1 RAs) have positive effects on bones, their role in the prevention of osteoporotic fractures remains to be elucidated. The present study assigned female Sprague Dawley rats with osteoporotic fractures into variectomized osteoporosis (OVX), OVX + liraglutide (LIRA) (50 µg/kg/day subcutaneous LIRA) and control groups. At 3 and 6 weeks postoperatively, X-ray, tartrate-resistant acid phosphatase (TRAP) staining, histological and biomechanical assays and assessment of femoral bone mineral density (BMD) were performed. Compared with the OVX group, GLP-1 RA treatment improved the formation of calluses and osseous union. TRAP staining showed significantly fewer osteoclasts in the OVX + LIRA group compared with the OVX group. In the osteoporotically fractured rats, LIRA improved bone strength at the femoral diaphysis, stiffness, ultimate load and femoral trabecular BMD Compared with the OVX group. GLP-1 RA treatment inhibited osteoclast formation and improved trabecular bone architecture and mass in osteoporotic fracture model rats, leading to improved biomechanical strength. GLP-1 RAs may be used as novel anti-osteoporotic fracture agents.
Collapse
Affiliation(s)
- Rong Wang
- Department of Wound Repair, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Han Na
- Department of Wound Repair, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Shaowen Cheng
- Department of Wound Repair, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Yanglin Zheng
- Department of Wound Repair, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Jiangling Yao
- Department of Endocrinology, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Yangyang Bian
- Department of Wound Repair, The First Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| | - Yuntao Gu
- Department of Spinal Surgery, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, P.R. China
| |
Collapse
|
11
|
Zhai S, Liu C, Vimalraj S, Subramanian R, Abullais SS, Arora S, Saravanan S. Glucagon-like peptide-1 receptor promotes osteoblast differentiation of dental pulp stem cells and bone formation in a zebrafish scale regeneration model. Peptides 2023; 163:170974. [PMID: 36775021 DOI: 10.1016/j.peptides.2023.170974] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023]
Abstract
Bone cells express the glucagon-like peptide 1 receptor (GLP-1R). However, its presence and role in human dental pulp derived stem cells (hDPSCs) remains elusive. Hence, in the current study, we isolated hDPSCs and differentiated them into osteoblasts, where GLP-1R expression was found to be upregulated during osteoblast differentiation. GLP-1 receptor agonist, liraglutide peptide treatment, increased osteoblast differentiation in hDPSCs by increasing calcium deposition, ALP activity, and osteoblast marker genes, Runx2, type 1 col, osteonectin, and osteocalcin. Furthermore, activation of long non-coding RNA (LncRNA) LINC00968 and microRNA-3658 signalling increased Runx2 expression. Specifically, liraglutide increased LncRNA-LINC00968 expression while decreasing miR-3658 expression. LINC00968 targets miR-3658, and miR-3658 targets Runx2. Additionally, in an in-vivo study, zebrafish scale regeneration model, liraglutide promoted calcium deposition, osteoblastic cell count, collagen 1α, osteonectin, osteocalcin, runx2a MASNA isoform expression (transcribed from promoter P1), and Ca/P ratio in scales. Overall, GLP-1R activation promotes osteoblast differentiation via Runx2/LncRNA-LINC00968/miR-3658 signalling in hDPSCs and promotes bone formation in zebrafish scale regeneration.
Collapse
Affiliation(s)
- Shafei Zhai
- Department of Stomatology, Xi'an Medical University, Xi'an 710021, Shaanxi, China; Department of Periodontology, Hospital of Stomatology, The Third Affiliated Hospital of Xi'an Medical University, Xi'an 710068, Shaanxi, China
| | - Changkui Liu
- Department of Stomatology, Xi'an Medical University, Xi'an 710021, Shaanxi, China; Department of Periodontology, Hospital of Stomatology, The Third Affiliated Hospital of Xi'an Medical University, Xi'an 710068, Shaanxi, China
| | - Selvaraj Vimalraj
- Center for Biotechnology, Anna University, Chennai 600025, India; Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, SIMATS, Chennai 600077, Tamil Nadu, India.
| | - Raghunandhakumar Subramanian
- Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, SIMATS, Chennai 600077, Tamil Nadu, India
| | - Shahabe Saquib Abullais
- Department of Periodontics and Community Dental Sciences, College of Dentistry, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Suraj Arora
- Department of Restorative dental sciences, College of Dentistry, King Khalid University Abha, Kingdom of Saudi Arabia
| | - Sekaran Saravanan
- Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, SIMATS, Chennai 600077, Tamil Nadu, India
| |
Collapse
|
12
|
Dalsgaard NB, Gasbjerg LS, Helsted MM, Hansen LS, Hansen NL, Skov-Jeppesen K, Hartmann B, Holst JJ, Vilsbøll T, Knop FK. Acarbose diminishes postprandial suppression of bone resorption in patients with type 2 diabetes. Bone 2023; 170:116687. [PMID: 36754130 DOI: 10.1016/j.bone.2023.116687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/16/2023] [Accepted: 01/27/2023] [Indexed: 02/08/2023]
Abstract
AIMS The alpha-glucosidase inhibitor acarbose is an antidiabetic drug delaying assimilation of carbohydrates and, thus, increasing the amount of carbohydrates in the distal parts of the intestines, which in turn increases circulating levels of the gut-derived incretin hormone glucagon-like peptide 1 (GLP-1). As GLP-1 may suppress bone resorption, acarbose has been proposed to potentiate meal-induced suppression of bone resorption. We investigated the effect of acarbose treatment on postprandial bone resorption in patients with type 2 diabetes and used the GLP-1 receptor antagonist exendin(9-39)NH2 to disclose contributory effect of acarbose-induced GLP-1 secretion. METHODS In a randomised, placebo-controlled, double-blind, crossover study, 15 participants with metformin-treated type 2 diabetes (2 women/13 men, age 71 (57-85 years), BMI 29.7 (23.6-34.6 kg/m2), HbA1c 48 (40-74 mmol/mol)/6.5 (5.8-11.6 %) (median and range)) were subjected to two 14-day treatment periods with acarbose and placebo, respectively, separated by a six-week wash-out period. At the end of each period, circulating bone formation and resorption markers were assessed during two randomised 4-h liquid mixed meal tests (MMT) with infusions of exendin(9-39)NH2 and saline, respectively. Glucagon-like peptide 2 (GLP-2) was also assessed. RESULTS Compared to placebo, acarbose impaired the MMT-induced suppression of CTX as assessed by baseline-subtracted area under curve (P = 0.0037) and nadir of CTX (P = 0.0128). During acarbose treatment, exendin(9-39)NH2 infusion lowered nadir of CTX compared to saline (P = 0.0344). Neither parathyroid hormone or the bone formation marker procollagen 1 intact N-terminal propeptide were affected by acarbose or GLP-1 receptor antagonism. Acarbose treatment induced a greater postprandial GLP-2 response than placebo treatment (P = 0.0479) and exendin(9-39)NH2 infusion exacerbated this (P = 0.0002). CONCLUSIONS In patients with type 2 diabetes, treatment with acarbose reduced postprandial suppression of bone resorption. Acarbose-induced GLP-1 secretion may contribute to this phenomenon as the impairment was partially reversed by GLP-1 receptor antagonism. Also, acarbose-induced reductions in other factors reducing bone resorption, e.g. glucose-dependent insulinotropic polypeptide, may contribute.
Collapse
Affiliation(s)
- Niels B Dalsgaard
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Lærke S Gasbjerg
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Mads M Helsted
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Laura S Hansen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Nina L Hansen
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| | - Kirsa Skov-Jeppesen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tina Vilsbøll
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Filip K Knop
- Center for Clinical Metabolic Research, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark.
| |
Collapse
|
13
|
Tsai WH, Kong SK, Lin CL, Cheng KH, Cheng YT, Chien MN, Lee CC, Tsai MC. Risk of fracture caused by anti-diabetic drugs in individuals with type 2 diabetes: A network meta-analysis. Diabetes Res Clin Pract 2022; 192:110082. [PMID: 36122867 DOI: 10.1016/j.diabres.2022.110082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 08/28/2022] [Accepted: 09/10/2022] [Indexed: 11/23/2022]
Abstract
AIMS Diabetes is associated with increased risk of fracture. This study aims to evaluate the correlation between anti-diabetic agents and fracture risk in patients with type 2 diabetes. METHODS Literature research was conducted using PubMed, Embase, and ClinicalTrials.gov. Search-term included "type 2 diabetes," "fracture," "randomized controlled trial," and seven kinds of anti-diabetic agents. Random-effect models established fractures in the follow-up period as the primary outcome. A network meta-analysis was performed to compare available treatments within a single Bayesian analytical framework. RESULTS A total of 191,361 patients were included in 161 studies, with 2916 fractures. DPP-4i (risk ratio [RR] 1.76 [95 % confidence interval (CI) 1.21-2.55]), SGLT-2i (RR 1.5 [95 % CI 1.05-2.16]) and placebo (RR 1.44 [95 % CI 1.04-1.98]) increased fracture risk when compared to GLP1-RA. GLP1-RA (RR 0.5 [95 % CI 0.31-0.79]) and SU (RR 0.56 [95 % CI 0.41-0.77]) provided greater protection against fracture than TZD. DPP-4i increased fracture risk when compared to SU (RR 1.55 [95 % CI 1.08-2.22]), and was comparable in effect to TZD. CONCLUSIONS GLP1-RA offered better protection against fracture than placebo. Insulin and SU had effects comparable with GLP1-RA. SU offered greater protection against fractures than TZD and DPP-4i. SGLT-2i increased risk of fracture when compared to GLP1-RA.
Collapse
Affiliation(s)
- Wen-Hsuan Tsai
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan, ROC
| | - Siang-Ke Kong
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan, ROC
| | - Chu-Lin Lin
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan, ROC
| | - Kai-Hsuan Cheng
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan, ROC
| | - Yi-Ting Cheng
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan, ROC
| | - Ming-Nan Chien
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan, ROC; Department of Medicine, Mackay Medical College, New Taipei City, Taiwan, ROC
| | - Chun-Chuan Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan, ROC; Department of Medicine, Mackay Medical College, New Taipei City, Taiwan, ROC
| | - Ming-Chieh Tsai
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Mackay Memorial Hospital, Taipei, Taiwan, ROC; Department of Medicine, Mackay Medical College, New Taipei City, Taiwan, ROC; Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan, ROC.
| |
Collapse
|
14
|
Paccou J, Caiazzo R, Lespessailles E, Cortet B. Bariatric Surgery and Osteoporosis. Calcif Tissue Int 2022; 110:576-591. [PMID: 33403429 DOI: 10.1007/s00223-020-00798-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/14/2020] [Indexed: 02/06/2023]
Abstract
It has been increasingly acknowledged that bariatric surgery adversely affects skeletal health. After bariatric surgery, the extent of high-turnover bone loss is much greater than what would be expected in the absence of a severe skeletal insult. Patients also experience a significant deterioration in bone microarchitecture and strength. There is now a growing body of evidence that suggests an association between bariatric surgery and higher fracture risk. Although the mechanisms underlying the high-turnover bone loss and increase in fracture risk after bariatric surgery are not fully understood, many factors seem to be involved. The usual suspects are nutritional factors and mechanical unloading, and the roles of gut hormones, adipokines, and bone marrow adiposity should be investigated further. Roux-en-Y gastric bypass (RYGB) was once the most commonly performed bariatric procedure worldwide, but sleeve gastrectomy (SG) has now become the predominant bariatric procedure. Accumulating evidence suggests that RYGB is associated with a greater reduction in BMD, a greater increase in markers of bone turnover, and a higher risk of fracture than SG. These findings should be taken into consideration in determining the most appropriate bariatric procedure for patients, especially those at higher fracture risk. Before and after all bariatric procedures, sufficient calcium, vitamin D and protein intake, and adequate physical activity, are needed to counteract negative impacts on bone. There are no studies to date that have evaluated the effect of osteoporosis treatment on high-turnover bone loss after bariatric surgery. However, in patients with a diagnosis of osteoporosis, anti-resorptive agents may be considered.
Collapse
Affiliation(s)
- Julien Paccou
- Department of Rheumatology, MABLaB ULR 4490, CHU Lille, Univ. Lille, 59000, Lille, France.
- Department of Rheumatology, MABLaB ULR 4490, CHU Lille, 2, Avenue Oscar Lambret, 59037, Lille, France.
| | - Robert Caiazzo
- Inserm, Endocrine and Metabolic Surgery, UMR 1190, CHU Lille, Univ. Lille, 59000, Lille, France
| | - Eric Lespessailles
- Department of Rheumatology, CHR Orléans, I3MTO EA 4708, Univ. Orléans, 45067, Orléans, France
| | - Bernard Cortet
- Department of Rheumatology, MABLaB ULR 4490, CHU Lille, Univ. Lille, 59000, Lille, France
| |
Collapse
|
15
|
Martínez-Montoro JI, García-Fontana B, García-Fontana C, Muñoz-Torres M. Evaluation of Quality and Bone Microstructure Alterations in Patients with Type 2 Diabetes: A Narrative Review. J Clin Med 2022; 11:2206. [PMID: 35456299 PMCID: PMC9024806 DOI: 10.3390/jcm11082206] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/30/2022] [Accepted: 04/13/2022] [Indexed: 01/25/2023] Open
Abstract
Bone fragility is a common complication in subjects with type 2 diabetes mellitus (T2DM). However, traditional techniques for the evaluation of bone fragility, such as dual-energy X-ray absorptiometry (DXA), do not perform well in this population. Moreover, the Fracture Risk Assessment Tool (FRAX) usually underestimates fracture risk in T2DM. Importantly, novel technologies for the assessment of one microarchitecture in patients with T2DM, such as the trabecular bone score (TBS), high-resolution peripheral quantitative computed tomography (HR-pQCT), and microindentation, are emerging. Furthermore, different serum and urine bone biomarkers may also be useful for the evaluation of bone quality in T2DM. Hence, in this article, we summarize the limitations of conventional tools for the evaluation of bone fragility and review the current evidence on novel approaches for the assessment of quality and bone microstructure alterations in patients with T2DM.
Collapse
Affiliation(s)
- José Ignacio Martínez-Montoro
- Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital, Instituto de Investigación Biomédica de Málaga (IBIMA), Faculty of Medicine, University of Malaga, 29010 Malaga, Spain;
| | - Beatriz García-Fontana
- Bone Metabolic Unit, Endocrinology and Nutrition Division, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. GRANADA), 18012 Granada, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Cristina García-Fontana
- Bone Metabolic Unit, Endocrinology and Nutrition Division, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. GRANADA), 18012 Granada, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Manuel Muñoz-Torres
- Bone Metabolic Unit, Endocrinology and Nutrition Division, University Hospital Clínico San Cecilio, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria de Granada (Ibs. GRANADA), 18012 Granada, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Medicine, University of Granada, 18016 Granada, Spain
| |
Collapse
|
16
|
Yang Q, Fu B, Luo D, Wang H, Cao H, Chen X, Tian L, Yu X. The Multiple Biological Functions of Dipeptidyl Peptidase-4 in Bone Metabolism. Front Endocrinol (Lausanne) 2022; 13:856954. [PMID: 35586625 PMCID: PMC9109619 DOI: 10.3389/fendo.2022.856954] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/24/2022] [Indexed: 02/05/2023] Open
Abstract
Dipeptidyl peptidase-4 (DPP4) is a ubiquitously occurring protease involved in various physiological and pathological processes ranging from glucose homeostasis, immunoregulation, inflammation to tumorigenesis. Recently, the benefits of DPP4 inhibitors as novel hypoglycemic agents on bone metabolism have attracted extensive attraction in many studies, indicating that DPP4 inhibitors may regulate bone homeostasis. The effects of DPP4 on bone metabolism are still unclear. This paper thoroughly reviews the potential mechanisms of DPP4 for interaction with adipokines, bone cells, bone immune cells, and cytokines in skeleton system. This literature review shows that the increased DPP4 activity may indirectly promote bone resorption and inhibit bone formation, increasing the risk of osteoporosis. Thus, bone metabolic balance can be improved by decreasing DPP4 activities. The substantial evidence collected and analyzed in this review supports this implication.
Collapse
Affiliation(s)
- Qiu Yang
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
- Department of Endocrinology and Metabolism, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Bing Fu
- Department of Medical Imaging, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Dan Luo
- Department of General Surgery, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Haibo Wang
- Department of General Surgery, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Hongyi Cao
- Department of Endocrinology and Metabolism, Chengdu Fifth People’s Hospital, Chengdu, China
| | - Xiang Chen
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Li Tian
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
| | - Xijie Yu
- Department of Endocrinology and Metabolism, Laboratory of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Xijie Yu,
| |
Collapse
|
17
|
Hioki T, Kuroyanagi G, Fujita K, Sakai G, Kawabata T, Kim W, Tachi J, Matsushima-Nishiwaki R, Iida H, Kozawa O, Tokuda H. Incretins Enhance PGF2α-Induced Synthesis of IL-6 and Osteoprotegerin in Osteoblasts. Horm Metab Res 2022; 54:42-49. [PMID: 34986499 DOI: 10.1055/a-1713-7967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Incretins including glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), which are secreted from the small intestine after oral food ingestion, are currently well-known to stimulate insulin secretion from pancreatic β-cells and used for the treatment of type 2 diabetes mellitus. We have previously reported that prostaglandin F2α (PGF2α) stimulates the synthesis of interleukin-6 (IL-6) and osteoprotegerin in osteoblast-like MC3T3-E1 cells, and that IL-6 and osteoprotegerin release are mediated through the p44/p42 mitogen-activated protein (MAP) kinase, p38 MAP kinase or stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK) pathways. In the present study, we investigated the effects of incretins including GLP-1 and GIP, on the PGF2α-induced synthesis of IL-6 and osteoprotegerin and examined the detailed mechanism in osteoblast-like MC3T3-E1 cells. We found that GIP and GLP-1 significantly stimulated the PGF2α-induced synthesis of IL-6 in osteoblast-like MC3T3-E1 cells. In addition, GIP and GLP-1 significantly enhanced the PGF2α-induced mRNA expression levels of IL-6. On the other hand, GIP and GLP-1 markedly stimulated the PGF2α-induced synthesis of osteoprotegerin. However, the phosphorylation of p44/p42 MAP kinase, p38 MAP kinase, or JNK induced by PGF2α was not affected by GIP or GLP-1. Therefore, these results strongly suggest that incretins enhance the PGF2α-induced synthesis of IL-6 and osteoprotegerin in osteoblast-like MC3T3-E1 cells. However, these syntheses are not mediated through p44/p42 MAP kinase, p38 MAP kinase, or JNK pathways.
Collapse
Affiliation(s)
- Tomoyuki Hioki
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Dermatology, Kizawa Memorial Hospital, Minokamo, Japan
| | - Gen Kuroyanagi
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Kazuhiko Fujita
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Go Sakai
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Tetsu Kawabata
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Woo Kim
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Junko Tachi
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | | | - Hiroki Iida
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Haruhiko Tokuda
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, Japan
- Department of Clinical Laboratory/Biobank of Medical Genome Center, National Center for Geriatrics and Gerontology, Obu, Japan
| |
Collapse
|
18
|
Lee DH, Kim KY, Yoo MY, Moon H, Ku EJ, Oh TK, Jeon HJ. Effect of Dipeptidyl Peptidase-4 Inhibitors on Bone Health in Patients with Type 2 Diabetes Mellitus. J Clin Med 2021; 10:jcm10204775. [PMID: 34682898 PMCID: PMC8541091 DOI: 10.3390/jcm10204775] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 11/20/2022] Open
Abstract
Patients with type 2 diabetes (T2DM) have a higher risk of bone fracture even when bone mineral density (BMD) values are normal. The trabecular bone score (TBS) was recently developed and used for evaluating bone strength in various diseases. We investigated the effect of DPP-4 inhibitors on bone health using TBS in patients with T2DM. This was a single-center, retrospective case-control study of 200 patients with T2DM. Patients were divided into two groups according to whether they were administered a DPP-4 inhibitor (DPP-4 inhibitor group vs. control group). Parameters related to bone health, including BMD, TBS, and serum markers of calcium homeostasis, were assessed at baseline and after one year of treatment. We found TBS values increased in the DPP-4 group and decreased in the control, indicating a significant difference in delta change between them. The BMD increased in both groups, with no significant differences in delta change between the two groups observed. Serum calcium and 25-hydroxy vitamin D3 increased only in the DPP-4 inhibitor group, while other glycemic parameters did not show significant differences between the two groups. Treatment with DPP-4 inhibitors was associated with favorable effects on bone health evaluated by TBS in patients with T2DM.
Collapse
Affiliation(s)
- Dong-Hwa Lee
- Department of Internal Medicine, Chungbuk National University College of Medicine and Chungbuk National University Hospital, Cheongju 28644, Korea; (D.-H.L.); (E.J.K.); (T.K.O.)
| | - Kyong Young Kim
- Department of Internal Medicine, Gyeongsang National University Changwon Hospital, Changwon 51472, Korea;
| | - Min Young Yoo
- Department of Nuclear Medicine, Chungbuk National University Hospital, Cheongju 28644, Korea; (M.Y.Y.); (H.M.)
| | - Hansol Moon
- Department of Nuclear Medicine, Chungbuk National University Hospital, Cheongju 28644, Korea; (M.Y.Y.); (H.M.)
| | - Eu Jeong Ku
- Department of Internal Medicine, Chungbuk National University College of Medicine and Chungbuk National University Hospital, Cheongju 28644, Korea; (D.-H.L.); (E.J.K.); (T.K.O.)
| | - Tae Keun Oh
- Department of Internal Medicine, Chungbuk National University College of Medicine and Chungbuk National University Hospital, Cheongju 28644, Korea; (D.-H.L.); (E.J.K.); (T.K.O.)
| | - Hyun Jeong Jeon
- Department of Internal Medicine, Chungbuk National University College of Medicine and Chungbuk National University Hospital, Cheongju 28644, Korea; (D.-H.L.); (E.J.K.); (T.K.O.)
- Correspondence: ; Tel.: +82-43-269-6352; Fax: +82-43-273-3252
| |
Collapse
|
19
|
Kikkawa K, Hoshi H, Isoda A, Okada K, Okada J, Watanabe T, Yamada E, Ohshima K, Okada S. Long-Acting Glucagon-Like Peptide-1 Receptor Agonist-Induced Rheumatoid Arthritis in a Patient with Type 2 Diabetes Mellitus. DUBAI DIABETES AND ENDOCRINOLOGY JOURNAL 2021. [DOI: 10.1159/000519008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
<b><i>Case Presentation:</i></b> We report a case of a male patient with rheumatoid arthritis (RA) diagnosed during treatment with a long-acting glucagon-like peptide-1 (GLP-1) receptor agonist (once-weekly dulaglutide injection). At 3 months after dulaglutide initiation, he began experiencing left shoulder pain that continued despite treatment by an acupuncturist, indicating that the pain was not due to periarthritis scapulohumeralis. His HbA1c level was 7.3% at the 3-month follow-up. At the 6-month follow-up visit, the HbA1c level was 8.2%, the low-density lipoprotein cholesterol level was 132 mg/dL, and he expressed right shoulder pain. After 3 months, the HbA1c level was 9.0%, and his bilateral shoulder pain worsened, due to which he could not use his arms well. Routine laboratory testing revealed no other abnormalities at that time. However, several inflammatory and serological RA markers were detected, including an erythrocyte sedimentation rate of 73 (normal range, <10) mm/h, a C-reactive protein level of 1.89 (normal range, 0.0–0.14) mg/dL, a rheumatoid factor level of 26 (normal range, 0–15) IU/mL, and an anti-cyclic citrullinated protein antibody level of 195 (normal range, <4.5) U/mL. However, tests for antinuclear antibodies, anti-SS-A/Ro antibodies, and anti-RNP antibodies showed negative results. He was diagnosed with RA, and salazosulfapyridine (500 mg/day) was started. At 1 month after RA treatment initiation, his shoulder pain began showing improvement and improved HbA1c levels from 9.0% to 8.0%. <b><i>Discussion:</i></b> Thus, this case report suggests an association between RA and GLP-1. Based on a literature search in PubMed, we believe that this case report is the first to demonstrate that a patient with type 2 diabetes mellitus treated with a long-acting GLP-1 receptor agonist had RA. However, further research is needed to determine whether RA is one of the adverse effects of long-acting GLP-1 receptor agonists. <b><i>Conclusion:</i></b> During treatment with long-acting GLP-1 receptor agonists, it is necessary to consider the possibility of RA as a differential diagnosis when patients complain of persistent joint pain.
Collapse
|
20
|
Kitaura H, Ogawa S, Ohori F, Noguchi T, Marahleh A, Nara Y, Pramusita A, Kinjo R, Ma J, Kanou K, Mizoguchi I. Effects of Incretin-Related Diabetes Drugs on Bone Formation and Bone Resorption. Int J Mol Sci 2021; 22:ijms22126578. [PMID: 34205264 PMCID: PMC8234693 DOI: 10.3390/ijms22126578] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/14/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Patients with type 2 diabetes have an increased risk of fracture compared to the general population. Glucose absorption is accelerated by incretin hormones, which induce insulin secretion from the pancreas. The level of the incretin hormone, glucagon-like peptide-1 (GLP-1), shows an immediate postprandial increase, and the circulating level of intact GLP-1 is reduced rapidly by dipeptidyl peptidase-4 (DPP-4)-mediated inactivation. Therefore, GLP-1 receptor agonists and DPP-4 inhibitors are effective in the treatment of type 2 diabetes. However, these incretin-related diabetic agents have been reported to affect bone metabolism, including bone formation and resorption. These agents enhance the expression of bone markers, and have been applied to improve bone quality and bone density. In addition, they have been reported to suppress chronic inflammation and reduce the levels of inflammatory cytokine expression. Previously, we reported that these incretin-related agents inhibited both the expression of inflammatory cytokines and inflammation-induced bone resorption. This review presents an overview of current knowledge regarding the effects of incretin-related diabetes drugs on osteoblast differentiation and bone formation as well as osteoclast differentiation and bone resorption. The mechanisms by which incretin-related diabetes drugs regulate bone formation and bone resorption are also discussed.
Collapse
|
21
|
Xie B, Chen S, Xu Y, Han W, Hu R, Chen M, Zhang Y, Ding S. The Impact of Glucagon-Like Peptide 1 Receptor Agonists on Bone Metabolism and Its Possible Mechanisms in Osteoporosis Treatment. Front Pharmacol 2021; 12:697442. [PMID: 34220521 PMCID: PMC8243369 DOI: 10.3389/fphar.2021.697442] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 05/31/2021] [Indexed: 12/14/2022] Open
Abstract
Diabetes mellitus and osteoporosis are closely related and have complex influencing factors. The impact of anti-diabetic drugs on bone metabolism has received more and more attention. Type 2 diabetes mellitus (T2DM) would lead to bone fragility, high risk of fracture, poor bone repair and other bone-related diseases. Furthermore, hypoglycemic drugs used to treat T2DM may have notable detrimental effects on bones. Thus, the clinically therapeutic strategy for T2DM should not only effectively control the patient's glucose levels, but also minimize the complications of bone metabolism diseases. Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are novel and promising drug for the treatment of T2DM. Some studies have found that GLP-1RAs may play an anti-osteoporotic effect by controlling blood sugar levels, promoting bone formation and inhibiting bone resorption. However, in clinical practice, the specific effects of GLP-1RA on fracture risk and osteoporosis have not been clearly defined and evidenced. This review summarizes the current research findings by which GLP-1RAs treatment of diabetic osteoporosis, postmenopausal osteoporosis and glucocorticoid-induced osteoporosis and describes possible mechanisms, such as GLP-1R/MAPK signaling pathway, GLP-1R/PI3K/AKT signaling pathway and Wnt/β-catenin pathway, that are associated with GLP-1RAs and osteoporosis. The specific role and related mechanisms of GLP-1RAs in the bone metabolism of patients with different types of osteoporosis need to be further explored and clarified.
Collapse
Affiliation(s)
- Baocheng Xie
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Shichun Chen
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Yongxiang Xu
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Weichao Han
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Runkai Hu
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Minyi Chen
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Yusheng Zhang
- Department of Pharmacy, The First People's Hospital of Foshan (The Affiliated Foshan Hospital of Sun Yat-Sen University), Foshan, China
| | - Shaobo Ding
- Department of Pharmacy, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| |
Collapse
|
22
|
Sedky AA. Improvement of cognitive function, glucose and lipid homeostasis and serum osteocalcin levels by liraglutide in diabetic rats. Fundam Clin Pharmacol 2021; 35:989-1003. [PMID: 33683755 DOI: 10.1111/fcp.12664] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/25/2021] [Accepted: 03/01/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Glucose and lipid abnormalities, oxidative stress (OXS) and reduced brain-derived neurotrophic factor (BDNF) are involved in cognitive dysfunction in diabetes. Glucagon like peptide 1 (GLP1) receptors modulate glucose and lipid metabolism, cognitive function and serum osteocalcin. On the other hand, osteocalcin modulates cognitive function and glucose and lipid metabolism. This study investigated whether the GLP 1 agonist liraglutide improves cognitive function via modulation of serum osteocalcin and glucose and lipid metabolism. METHODS Effects of 4 weeks liraglutide treatment (100 µg/Kg/d and 300 µg/Kg/d) on changes in cognitive function and bone homeostasis, induced by high fat diet/low-dose streptozotocin (HFD-STZ), were determined in rats. Cognitive function was assessed using Morris water maze (MWM) test. Serum and bone biochemical parameters were determined. RESULTS Liraglutide dose-dependently improved cognitive function in diabetic rats (reduced escape latency, and increased time spent in target quadrant in MWM test, compared to diabetic control). Glucose and lipid abnormalities and the associated changes in serum BDNF and oxidative stress makers were improved. Serum BDNF and glutathione were significantly increased, whereas malondialdehyde level was reduced. Serum osteocalcin was significantly increased and correlated with improvement in cognitive dysfunction. Serum and bone receptor activator of nuclear factor κB ligand (RANKL)/osteoprotegerin ratios were significantly reduced by liraglutide treatment. CONCLUSION Improvement of cognitive dysfunction by liraglutide involves modulation of glucose and lipid metabolism and serum osteocalcin. GLP1 agonists may provide an alternative metabolic approach for cognitive dysfunction in diabetes.
Collapse
|
23
|
Mieczkowska A, Bouvard B, Legrand E, Mabilleau G. [Gly²]-GLP-2, But Not Glucagon or [D-Ala²]-GLP-1, Controls Collagen Crosslinking in Murine Osteoblast Cultures. Front Endocrinol (Lausanne) 2021; 12:721506. [PMID: 34421828 PMCID: PMC8371440 DOI: 10.3389/fendo.2021.721506] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/16/2021] [Indexed: 11/23/2022] Open
Abstract
Bone tissue is organized at the molecular level to resist fracture with the minimum of bone material. This implies that several modifications of the extracellular matrix, including enzymatic collagen crosslinking, take place. We previously highlighted the role of several gut hormones in enhancing collagen maturity and bone strength. The present study investigated the effect of proglucagon-derived peptides on osteoblast-mediated collagen post-processing. Briefly, MC3T3-E1 murine osteoblasts were cultured in the presence of glucagon (GCG), [D-Ala²]-glucagon-like peptide-1 ([D-Ala²]-GLP-1), and [Gly²]-glucagon-like peptide-2 ([Gly²]-GLP-2). Gut hormone receptor expression at the mRNA and protein levels were investigated by qPCR and Western blot. Extent of collagen postprocessing was examined by Fourier transform infrared microspectroscopy. GCG and GLP-1 receptors were not evidenced in osteoblast cells at the mRNA and protein levels. However, it is not clear whether the known GLP-2 receptor is expressed. Nevertheless, administration of [Gly²]-GLP-2, but not GCG or [D-Ala²]-GLP-1, led to a dose-dependent increase in collagen maturity and an acceleration of collagen post-processing. This mechanism was dependent on adenylyl cyclase activation. In conclusion, the present study highlighted a direct effect of [Gly²]-GLP-2 to enhance collagen post-processing and crosslinking maturation in murine osteoblast cultures. Whether this effect is translatable to human osteoblasts remains to be elucidated.
Collapse
Affiliation(s)
| | - Beatrice Bouvard
- Univ Angers, GEROM, SFR ICAT, Angers, France
- CHU Angers, Rheumatology Department, Angers, France
| | - Erick Legrand
- Univ Angers, GEROM, SFR ICAT, Angers, France
- CHU Angers, Rheumatology Department, Angers, France
| | - Guillaume Mabilleau
- Univ Angers, GEROM, SFR ICAT, Angers, France
- CHU Angers, Bone Pathology Unit, Angers, France
- *Correspondence: Guillaume Mabilleau,
| |
Collapse
|
24
|
Abstract
INTRODUCTION Preclinical, clinical, and population-based studies have provided evidence that anti-diabetic drugs affect bone metabolism and may affect the risk of fracture in diabetic patients. AREAS COVERED An overview of the skeletal effects of anti-diabetic drugs used in type 2 diabetes is provided. Searches on AdisInsight, PubMed, and Medline databases were conducted up to 1st July 2020. The latest evidence from randomized clinical trials and population-based studies on the skeletal safety of the most recent drugs (DPP-4i, GLP-1RA, and SGLT-2i) is provided. EXPERT OPINION Diabetic patients present with a higher risk of fracture for a given bone mineral density suggesting a role of bone quality in the etiology of diabetic fracture. Bone quality is difficult to assess in human clinical practice and the use of preclinical models provides valuable information on diabetic bone alterations. As several links have been established between bone and energy homeostasis, it is interesting to study the safety of anti-diabetic drugs on the skeleton. So far, evidence for the newest molecules suggests a neutral fracture risk, but further studies, especially in different types of patient populations (patients at risk or with history of cardiovascular disease, renal impairment, neuropathy) are required to fully appreciate this matter.
Collapse
Affiliation(s)
- Guillaume Mabilleau
- Groupe Etude Remodelage Osseux et biomatériaux, GEROM, UPRES EA 4658, UNIV Angers, SFR ICAT 4208, Institut de Biologie en Santé , Angers, France
- Service Commun d'Imagerie et Analyses Microscopiques, SCIAM, UNIV Angers, SFR ICAT 4208, Institut de Biologie en Santé , Angers, France
- Bone pathology unit, Angers University hospital , Angers Cedex, France
| | - Béatrice Bouvard
- Groupe Etude Remodelage Osseux et biomatériaux, GEROM, UPRES EA 4658, UNIV Angers, SFR ICAT 4208, Institut de Biologie en Santé , Angers, France
- Rheumatology department, Angers University Hospital , Angers Cedex, France
| |
Collapse
|
25
|
Guerrero-Pérez F, Casajoana A, Gómez-Vaquero C, Virgili N, López-Urdiales R, Hernández-Montoliu L, Pujol-Gebelli J, Osorio J, Alves C, Perez-Maraver M, Pellitero S, Vidal-Alabró A, Fernández-Veledo S, Vendrell J, Vilarrasa N. Changes in Bone Mineral Density in Patients with Type 2 Diabetes After Different Bariatric Surgery Procedures and the Role of Gastrointestinal Hormones. Obes Surg 2020; 30:180-188. [PMID: 31420830 DOI: 10.1007/s11695-019-04127-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
BACKGROUND To compare changes in bone mineral density (BMD) in patients with morbid obesity and type 2 diabetes (T2D) a year after being randomized to metabolic gastric bypass (mRYGB), sleeve gastrectomy (SG), and greater curvature plication (GCP). We also analyzed the association of gastrointestinal hormones with skeletal metabolism. METHODS Forty-five patients with T2D (mean BMI 39.4 ± 1.9 kg/m2) were randomly assigned to mRYGB, SG, or GCP. Before and 12 months after surgery, anthropometric, body composition, biochemical parameters, fasting plasma glucagon, ghrelin, and PYY as well as GLP-1, GLP-2, and insulin after a standard meal were determined. RESULTS After surgery, the decrease at femoral neck (FN) was similar but at lumbar spine (LS), it was greater in the mRYGB group compared with SG and GCP - 7.29 (4.6) vs. - 0.48 (3.9) vs. - 1.2 (2.7)%, p < 0.001. Osteocalcin and alkaline phosphatase increased more after mRYGB. Bone mineral content (BMC) at the LS after surgery correlated with fasting ghrelin (r = - 0.412, p = 0.01) and AUC for GLP-1 (r = - 0.402, p = 0.017). FN BMD at 12 months correlated with post-surgical fasting glucagon (r = 0.498, p = 0.04) and insulin AUC (r = 0.384, p = 0.030) and at LS with the AUC for GLP-1 in the same time period (r = - 0.335, p = 0.049). However, in the multiple regression analysis after adjusting for age, sex, and BMI, the type of surgery (mRYGB) remained the only factor associated with BMD reduction at LS and FN. CONCLUSIONS mRYGB induces greater deleterious effects on the bone at LS compared with SG and GCP, and gastrointestinal hormones do not play a major role in bone changes.
Collapse
Affiliation(s)
- Fernando Guerrero-Pérez
- Department of Endocrinology and Nutrition, Bellvitge University Hospital-IDIBELL, c/ Feixa Llarga s/n, 08907, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Anna Casajoana
- Department of General and Gastrointestinal Surgery. Bariatric Surgery Unit, Bellvitge University Hospital-IDIBELL, c/ Feixa Llarga s/n, 08907, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Carmen Gómez-Vaquero
- Department of Rheumatology, Bellvitge University Hospital-IDIBELL, c/ Feixa Llarga s/n, 08907, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Nuria Virgili
- Department of Endocrinology and Nutrition, Bellvitge University Hospital-IDIBELL, c/ Feixa Llarga s/n, 08907, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Rafael López-Urdiales
- Department of Endocrinology and Nutrition, Bellvitge University Hospital-IDIBELL, c/ Feixa Llarga s/n, 08907, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Laura Hernández-Montoliu
- Department of Endocrinology and Nutrition, Bellvitge University Hospital-IDIBELL, c/ Feixa Llarga s/n, 08907, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jordi Pujol-Gebelli
- Department of General and Gastrointestinal Surgery. Bariatric Surgery Unit, Bellvitge University Hospital-IDIBELL, c/ Feixa Llarga s/n, 08907, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Javier Osorio
- Department of General and Gastrointestinal Surgery. Bariatric Surgery Unit, Bellvitge University Hospital-IDIBELL, c/ Feixa Llarga s/n, 08907, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Carolina Alves
- Clinical Nutrition Unit, Bellvitge University Hospital-IDIBELL, c/ Feixa Llarga s/n, 08907, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Manuel Perez-Maraver
- Department of Endocrinology and Nutrition, Bellvitge University Hospital-IDIBELL, c/ Feixa Llarga s/n, 08907, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Silvia Pellitero
- Department of Endocrinology and Nutrition and Health Sciences Research Institute, University Hospital Germans Trias i Pujol, Badalona, Spain.,CIBERDEM-CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Barcelona, Spain
| | - Anna Vidal-Alabró
- Instituto de Investigación Biomédica-IDIBELL,, c/ Feixa Llarga s/n, 08907, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sonia Fernández-Veledo
- CIBERDEM-CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Barcelona, Spain.,Diabetes and Metabolic Associated Diseases Research Group, Hospital Joan XXIII, School of Medicine, Rovira i Virgili University, Tarragona, Spain
| | - Joan Vendrell
- CIBERDEM-CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Barcelona, Spain. .,Diabetes and Metabolic Associated Diseases Research Group, Hospital Joan XXIII, School of Medicine, Rovira i Virgili University, Tarragona, Spain.
| | - Nuria Vilarrasa
- Department of Endocrinology and Nutrition, Bellvitge University Hospital-IDIBELL, c/ Feixa Llarga s/n, 08907, L'Hospitalet de Llobregat, Barcelona, Spain. .,CIBERDEM-CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Barcelona, Spain.
| |
Collapse
|
26
|
Kawabata T, Tokuda H, Kuroyanagi G, Fujita K, Sakai G, Kim W, Matsushima-Nishiwaki R, Iida H, Yata KI, Wang S, Mizoguchi A, Otsuka T, Kozawa O. Incretin accelerates platelet-derived growth factor-BB-induced osteoblast migration via protein kinase A: The upregulation of p38 MAP kinase. Sci Rep 2020; 10:2341. [PMID: 32047216 PMCID: PMC7012849 DOI: 10.1038/s41598-020-59392-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 01/27/2020] [Indexed: 11/18/2022] Open
Abstract
Incretins, including glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP), secreted from enteroendocrine cells after food ingestion, are currently recognized to regulate glucose metabolism through insulin secretion. We previously demonstrated that platelet-derived growth factor-BB (PDGF-BB) induces the migration of osteoblast-like MC3T3-E1 cells through mitogen-activated protein (MAP) kinases, including p38 MAP kinase. In the present study, we investigated whether or not incretins affect the osteoblast migration. The PDGF-BB-induced cell migration was significantly reinforced by GLP-1, GIP or cAMP analogues in MC3T3-E1 cells and normal human osteoblasts. The upregulated migration by GLP-1 or cAMP analogues was suppressed by H89, an inhibitor of protein kinase A. The amplification by GLP-1 of migration induced by PDGF-BB was almost completely reduced by SB203580, a p38 MAP kinase inhibitor in MC3T3-E1 cells and normal human osteoblasts. In addition, GIP markedly strengthened the PDGF-BB-induced phosphorylation of p38 MAP kinase. Exendin-4, a GLP-1 analogue, induced Rho A expression and its translocation from cytoplasm to plasma membranes in osteoblasts at the epiphyseal lines of developing mouse femurs in vivo. These results strongly suggest that incretins accelerates the PDGF-BB-induced migration of osteoblasts via protein kinase A, and the up-regulation of p38 MAP kinase is involved in this acceleration. Our findings may highlight the novel potential of incretins to bone physiology and therapeutic strategy against bone repair.
Collapse
Affiliation(s)
- Tetsu Kawabata
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan.,Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan.,Department of Orthopedic Surgery, Toyokawa City Hospital, Toyokawa, 442-8561, Japan
| | - Haruhiko Tokuda
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan.,Department of Clinical Laboratory/Medical Genome Center Biobank, National Center for Geriatrics and Gerontology, Obu, 474-8511, Japan
| | - Gen Kuroyanagi
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan.,Department of Rehabilitation Medicine, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Kazuhiko Fujita
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan.,Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Go Sakai
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan.,Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Woo Kim
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan.,Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | | | - Hiroki Iida
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan
| | - Ken-Ichiro Yata
- Department of Neurology, Graduate School of Medicine, Mie University, Tsu, 514-8507, Japan
| | - Shujie Wang
- Deaprtment of Neural Regeneration and Cell Communication, Graduate School of Medicine, Mie University, Tsu, 514-8507, Japan
| | - Akira Mizoguchi
- Deaprtment of Neural Regeneration and Cell Communication, Graduate School of Medicine, Mie University, Tsu, 514-8507, Japan
| | - Takanobu Otsuka
- Department of Orthopedic Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu, 501-1194, Japan.
| |
Collapse
|
27
|
Eller-Vainicher C, Cairoli E, Grassi G, Grassi F, Catalano A, Merlotti D, Falchetti A, Gaudio A, Chiodini I, Gennari L. Pathophysiology and Management of Type 2 Diabetes Mellitus Bone Fragility. J Diabetes Res 2020; 2020:7608964. [PMID: 32566682 PMCID: PMC7262667 DOI: 10.1155/2020/7608964] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/29/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022] Open
Abstract
Individuals with type 2 diabetes mellitus (T2DM) have an increased risk of bone fragility fractures compared to nondiabetic subjects. This increased fracture risk may occur despite normal or even increased values of bone mineral density (BMD), and poor bone quality is suggested to contribute to skeletal fragility in this population. These concepts explain why the only evaluation of BMD could not be considered an adequate tool for evaluating the risk of fracture in the individual T2DM patient. Unfortunately, nowadays, the bone quality could not be reliably evaluated in the routine clinical practice. On the other hand, getting further insight on the pathogenesis of T2DM-related bone fragility could consent to ameliorate both the detection of the patients at risk for fracture and their appropriate treatment. The pathophysiological mechanisms underlying the increased risk of fragility fractures in a T2DM population are complex. Indeed, in T2DM, bone health is negatively affected by several factors, such as inflammatory cytokines, muscle-derived hormones, incretins, hydrogen sulfide (H2S) production and cortisol secretion, peripheral activation, and sensitivity. All these factors may alter bone formation and resorption, collagen formation, and bone marrow adiposity, ultimately leading to reduced bone strength. Additional factors such as hypoglycemia and the consequent increased propensity for falls and the direct effects on bone and mineral metabolism of certain antidiabetic medications may contribute to the increased fracture risk in this population. The purpose of this review is to summarize the literature evidence that faces the pathophysiological mechanisms underlying bone fragility in T2DM patients.
Collapse
Affiliation(s)
- C. Eller-Vainicher
- Unit of Endocrinology, Fondazione IRCCS Cà Granda-Ospedale Maggiore Policlinico, Milan, Italy
| | - E. Cairoli
- Istituto Auxologico Italiano, IRCCS, Unit for Bone Metabolism Diseases and Diabetes & Lab of Endocrine and Metabolic Research, Italy
- Dept. of Clinical Sciences & Community Health, University of Milan, Milan, Italy
| | - G. Grassi
- Unit of Endocrinology, Fondazione IRCCS Cà Granda-Ospedale Maggiore Policlinico, Milan, Italy
- Dept. of Clinical Sciences & Community Health, University of Milan, Milan, Italy
| | - F. Grassi
- Ramses Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - A. Catalano
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - D. Merlotti
- Department of Medicine, Surgery and Neurosciences, University of Siena, Italy
| | - A. Falchetti
- Istituto Auxologico Italiano, IRCCS, Unit for Bone Metabolism Diseases and Diabetes & Lab of Endocrine and Metabolic Research, Italy
| | - A. Gaudio
- Department of Clinical and Experimental Medicine, University of Catania, University Hospital ‘G. Rodolico', Catania, Italy
| | - I. Chiodini
- Istituto Auxologico Italiano, IRCCS, Unit for Bone Metabolism Diseases and Diabetes & Lab of Endocrine and Metabolic Research, Italy
- Dept. of Clinical Sciences & Community Health, University of Milan, Milan, Italy
| | - L. Gennari
- Department of Medicine, Surgery and Neurosciences, University of Siena, Italy
| |
Collapse
|
28
|
Sun Y, Liang Y, Li Z, Xia N. Liraglutide Promotes Osteoblastic Differentiation in MC3T3-E1 Cells by ERK5 Pathway. Int J Endocrinol 2020; 2020:8821077. [PMID: 33488706 PMCID: PMC7780226 DOI: 10.1155/2020/8821077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/03/2020] [Accepted: 11/24/2020] [Indexed: 01/29/2023] Open
Abstract
Liraglutide is a glucagon-like peptide-1 analogue widely used in the treatment of type 2 diabetes mellitus. However, the effects of liraglutide on osteoblast proliferation and differentiation in MC3T3-E1 cells have not been fully elucidated. In the present study, the promoting effects of liraglutide were investigated in MC3T3-E1 cells. The results indicated that cell viability was affected following the treatment of the cells with different concentrations of liraglutide (0, 10, 100, and 1000 nM) at different time periods of culture (24, 48, and 72 h). Moreover, the activity levels of alkaline phosphatase and the number of mineralized nodules in MC3T3-E1 cells were significantly increased following treatment with 100 nM liraglutide. The mRNA and protein levels of Col-1, OPG, and OCN in MC3T3-E1 cells were also markedly increased following 100 nM liraglutide treatment compared with those of the control group. The expression levels of the ERK5 signaling pathway key proteins (MEK5, p-ERK5, ERK5, and NUR77) were increased following liraglutide treatment in MC3T3-E1 cells, and the gene expression levels of the ERK5 signaling pathway were also elevated. Moreover, the ERK5 inhibitor XMD8-92 significantly decreased the expression levels of p-ERK5 and NUR77 as well as the proliferation of osteoblasts. However, these changes could be rescued by liraglutide to some extent. Therefore, these results revealed that liraglutide may promote osteoblastic differentiation and proliferation in MC3T3-E1 cells via the activation of the ERK5 signaling pathway.
Collapse
Affiliation(s)
- Yue Sun
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Yuzhen Liang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Zhengming Li
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| | - Ning Xia
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China
| |
Collapse
|
29
|
Murray CE, Coleman CM. Impact of Diabetes Mellitus on Bone Health. Int J Mol Sci 2019; 20:ijms20194873. [PMID: 31575077 PMCID: PMC6801685 DOI: 10.3390/ijms20194873] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 12/21/2022] Open
Abstract
Long-term exposure to a diabetic environment leads to changes in bone metabolism and impaired bone micro-architecture through a variety of mechanisms on molecular and structural levels. These changes predispose the bone to an increased fracture risk and impaired osseus healing. In a clinical practice, adequate control of diabetes mellitus is essential for preventing detrimental effects on bone health. Alternative fracture risk assessment tools may be needed to accurately determine fracture risk in patients living with diabetes mellitus. Currently, there is no conclusive model explaining the mechanism of action of diabetes mellitus on bone health, particularly in view of progenitor cells. In this review, the best available literature on the impact of diabetes mellitus on bone health in vitro and in vivo is summarised with an emphasis on future translational research opportunities in this field.
Collapse
Affiliation(s)
- Cliodhna E Murray
- Regenerative Medicine Institute, National University of Ireland, Galway, Biomedical Sciences Building, Dangan, Newcastle Road, Galway City, County Galway, H91W2TY, Ireland.
| | - Cynthia M Coleman
- Regenerative Medicine Institute, National University of Ireland, Galway, Biomedical Sciences Building, Dangan, Newcastle Road, Galway City, County Galway, H91W2TY, Ireland.
| |
Collapse
|
30
|
Montes Castillo MC, Martínez Ramírez MJ, Soriano Arroyo R, Prieto Gomez I, Segarra Robles AB, Garrido-Martínez M, Santiago-Fernández P, Delgado Rodríguez M. Glucagon-like peptide 1 and Glucagon-like peptide 2 in relation to osteoporosis in non-diabetic postmenopausal women. Sci Rep 2019; 9:13651. [PMID: 31541189 PMCID: PMC6754449 DOI: 10.1038/s41598-019-50117-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/04/2019] [Indexed: 01/02/2023] Open
Abstract
Osteoporosis results from an imbalance in bone remodeling, which is known to follow a circadian rhythm determined by a functional relationship between intestine and bone tissue. Specific intestinal peptides have been identified as mediators. Glucagon-like peptide 1 and glucagon-like peptide 2, have been associated with bone health. Our main objective was to determine whether postprandial plasma levels of glucagon-like peptide 1, glucagon-like peptide 2 and dipeptidyl-peptidase 4 activity, are associated with osteoporosis in non-diabetic postmenopausal women. We studied non-diabetic postmenopausal women with osteoporosis diagnosed by dual-energy X-ray absorptiometry (cases, n = 43) and age-matched (±1 yr) controls without osteoporosis or a history of osteoporotic fracture (n = 43). We measured postprandial plasma levels of glucagon-like peptide 1, glucagon-like peptide 2, and dipeptidyl-peptidase 4 activity, bone mineral density, and baseline levels of bone remodeling markers and analyzed the food intake using a food-frequency questionnaire. Postprandial glucagon-like peptide 1 values were lower (p < 0.001) in cases, μ (SEM) = 116.25 (2.68), than in controls, μ (SEM) = 126.79 (2.68). Glucagon-like peptide 1 was associated with reduced osteoporosis risk in the crude logistic regression analysis [OR (95% CI) = 0.724 (0.53-0.97), p = 0.031] and adjusted analysis [OR = 0.603 (0.38-0.94), p = 0.027]. We found no association of glucagon-like peptide 2, or dipeptidyl-peptidase 4 activity with osteoporosis. Postprandial glucagon-like peptide 1 levels are related to osteoporosis and osteoporosis risk in non-diabetic postmenopausal women. Further studies are required to verify these findings.
Collapse
Affiliation(s)
- María Cristina Montes Castillo
- Endocrinology and Nutrition, Jaen University Hospital, Av. Ejército Español, sn, Jaén, Spain.
- Endocrinology and Nutrition, La Paz University Hospital, Madrid, Spain.
| | - María José Martínez Ramírez
- Endocrinology and Nutrition, Jaen University Hospital, Av. Ejército Español, sn, Jaén, Spain
- Department of Health Sciences, University of Jaen, Campus "Las Lagunillas", Building B3, Jaén, Spain
| | - Rubén Soriano Arroyo
- Endocrinology and Nutrition, Jaen University Hospital, Av. Ejército Español, sn, Jaén, Spain
- Emergency Department, La Paz University Hospital, Madrid, Spain
| | - Isabel Prieto Gomez
- Area of Physiology, University of Jaen, Campus "Las Lagunillas", Building B3, Jaén, Spain
| | | | | | | | - Miguel Delgado Rodríguez
- Department of Preventive Medicine and Public Health, University of Jaen, Campus "Las Lagunillas", Building B3, Jaén, Spain
- CIBERESP, Carlos III Health Institute, Madrid, Spain
| |
Collapse
|
31
|
Nissen A, Marstrand S, Skov-Jeppesen K, Bremholm L, Hornum M, Andersen UB, Holst JJ, Rosenkilde MM, Hartmann B. A Pilot Study Showing Acute Inhibitory Effect of GLP-1 on the Bone Resorption Marker CTX in Humans. JBMR Plus 2019; 3:e10209. [PMID: 31687645 PMCID: PMC6820456 DOI: 10.1002/jbm4.10209] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 03/19/2019] [Accepted: 04/07/2019] [Indexed: 12/12/2022] Open
Abstract
Bones have been suggested to be a target for glucagon-like peptide -1 (GLP-1); however, studies of the effects on human bones so far have given diverging results. We hypothesized that GLP-1, together with glucagon-like peptide-2 and glucose-dependent insulinotropic polypeptide, plays a role in the gut-bone axis. We examined the acute effect of three GLP-1 receptor ligands [GLP-1 (7-36)amide, GLP-1 (9-36)amide, and exenatide] on markers of bone remodeling. Eight healthy, normal-weight participants, with a mean age of 24.3 years, were studied for 4 days in a double-blinded, randomized clinical trial. Blood was collected before and after s.c. injection of GLP-1 (7-36)amide (1.5 nmol/kg), GLP-1 (9-36)amide (1.5 nmol/kg), exenatide (2.4 nmol/subject), or saline. Plasma was analyzed for bone markers and for osteoprotegerin (OPG), PTH, and IGF-1 levels. All ligands were tested in vitro for their cAMP-inducing activity on the human GLP-1 receptor. GLP-1 (7-36)amide decreased CTX-levels, compared with placebo (area under the curve [AUC] ±SD 0 to 120 min = -2143 ± 1294 % × min versus -883 ± 1557 % × min; p < 0.05). No difference was observed between placebo and GLP-1 (9-36)amide, or between placebo and exenatide, although exenatide had a similar potency as GLP-1 (7-36)amide for cAMP formation in vitro (EC50 of 0.093 and 0.054 nmol/L). However, exenatide reached maximum plasma concentration at 90 min versus 15 min for GLP-1 (7-36)amide, and plasma CTX was significantly decreased during the second hour of the study after exenatide injections compared with placebo (AUC ±SD -463.1 ± 218 % × min and -136 ± 91 % × min; p < 0.05). There was no effect of the injections on bone formation markers (P1NP and osteocalcin) or on OPG, PTH and IGF-1 levels. In conclusion, we show that GLP-1 receptor agonists, but not the primary metabolite GLP-1 (9-36)amide, decrease bone resorption, and suggest that GLP-1 may be part of the gut-bone axis. © 2019 The Authors. JBMR Plus is published by Wiley Periodicals, Inc. on behalf of the American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Anne Nissen
- Department of Biomedical Sciences The Panum Institute, University of Copenhagen Copenhagen Denmark.,NNF Center for Basic Metabolic Research The Panum Institute, University of Copenhagen Copenhagen Denmark
| | - Simone Marstrand
- Department of Biomedical Sciences The Panum Institute, University of Copenhagen Copenhagen Denmark.,NNF Center for Basic Metabolic Research The Panum Institute, University of Copenhagen Copenhagen Denmark
| | - Kirsa Skov-Jeppesen
- Department of Biomedical Sciences The Panum Institute, University of Copenhagen Copenhagen Denmark.,NNF Center for Basic Metabolic Research The Panum Institute, University of Copenhagen Copenhagen Denmark
| | - Lasse Bremholm
- Department of Surgery (Gastroenterology Section) Zealand University Hospital, University of Copenhagen Copenhagen Denmark
| | - Mads Hornum
- Department of Nephrology Rigshospitalet Copenhagen Denmark.,Institute for Clinical Medicine University of Copenhagen Copenhagen Denmark
| | - Ulrik B Andersen
- Department of Clinical Physiology and Nuclear Medicine and PET Rigshospitalet (Glostrup Section), University of Copenhagen Copenhagen Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences The Panum Institute, University of Copenhagen Copenhagen Denmark.,NNF Center for Basic Metabolic Research The Panum Institute, University of Copenhagen Copenhagen Denmark
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences The Panum Institute, University of Copenhagen Copenhagen Denmark.,NNF Center for Basic Metabolic Research The Panum Institute, University of Copenhagen Copenhagen Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences The Panum Institute, University of Copenhagen Copenhagen Denmark.,NNF Center for Basic Metabolic Research The Panum Institute, University of Copenhagen Copenhagen Denmark
| |
Collapse
|
32
|
Zhang L, Li P, Tang Z, Dou Q, Feng B. Effects of GLP-1 receptor analogue liraglutide and DPP-4 inhibitor vildagliptin on the bone metabolism in ApoE -/- mice. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:369. [PMID: 31555683 DOI: 10.21037/atm.2019.06.74] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background It has been reported that glucagon-like peptide-1 (GLP-1) can alleviate diabetic osteoporosis (DOP). This study was to investigate the effects of GLP-1RA liraglutide and dipeptidyl peptdase-4 (DPP-4) inhibitor vildagliptin on the advanced glycation end products (AGEs)-induced bone injury in ApoE-/- mice with euglycemia. Methods The bone markers OC, PINP, PTH, TRACP and CTX, the mRNA and protein expressions of RAGE in the femur, and the femoral morphology index were determined to evaluate whether the osteoporosis was improved by liraglutide or vildagliptin. Results AGEs adversely affected the bone metabolism, characterized by reduced OC and increased CTX. However, vildagliptin reduced AGEs and increased OC, and liraglutide significantly decreased AGEs and PTH. Both vildagliptin and liraglutide had no effects on the bone metrology and RAGE expression in the femurs of ApoE-/- mice. Conclusions The elevated AGEs may exacerbate osteogenesis and increase bone resorption, and vildagliptin/liraglutide may improve bone metabolism.
Collapse
Affiliation(s)
- Lizhi Zhang
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Peicheng Li
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Zhaosheng Tang
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Qin Dou
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Bo Feng
- Department of Endocrinology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| |
Collapse
|
33
|
Grammatiki M, Antonopoulou V, Kotsa K. Emerging incretin hormones actions: focus on bone metabolism. MINERVA ENDOCRINOL 2019; 44:264-272. [DOI: 10.23736/s0391-1977.19.03008-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
34
|
Hygum K, Starup-Linde J, Langdahl BL. Diabetes and bone. Osteoporos Sarcopenia 2019; 5:29-37. [PMID: 31346556 PMCID: PMC6630041 DOI: 10.1016/j.afos.2019.05.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/11/2019] [Accepted: 05/03/2019] [Indexed: 12/16/2022] Open
Abstract
Bone disease is a serious complication to diabetes. Patients with type 1 diabetes (T1D) and type 2 diabetes (T2D) suffer from an increased risk of fracture, most notably at the hip, compared with patients without diabetes. Confounders such as patient sex, age, body mass index, blood glucose status, fall risk, and diabetes medications may influence the fracture risk. Different underlying mechanisms contribute to bone disease in patients with diabetes. Bone quality is affected by low bone turnover in T1D and T2D, and furthermore, incorporation of advanced glycation end-products, changes in the incretin hormone response, and microvascular complications contribute to impaired bone quality and increased fracture risk. Diagnosis of bone disease in patients with diabetes is a challenge as current methods for fracture prediction such as bone mineral density T-score and fracture risk assessment tools underestimate fracture risk for patients with T1D and T2D. This review focuses on bone disease and fracture risk in patients with diabetes regarding epidemiology, underlying disease mechanisms, and diagnostic methods, and we also provide considerations regarding the management of diabetes patients with bone disease in terms of an intervention threshold and different treatments.
Collapse
Affiliation(s)
| | | | - Bente L. Langdahl
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
35
|
Casimiro I, Sam S, Brady MJ. Endocrine implications of bariatric surgery: a review on the intersection between incretins, bone, and sex hormones. Physiol Rep 2019; 7:e14111. [PMID: 31134746 PMCID: PMC6536581 DOI: 10.14814/phy2.14111] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/08/2019] [Accepted: 05/08/2019] [Indexed: 12/25/2022] Open
Abstract
Bariatric surgery is now the most widely used intervention for the treatment of human obesity. A large body of literature has demonstrated its efficacy in sustained weight loss and improvement in its associated comorbidities. Here, we review the effect of bariatric surgery in gut hormone physiology, bone remodeling and the reproductive axis. Rapid improvements in insulin release and sensitivity appear to be weight loss independent and occur immediately after surgery. These effects on pancreatic beta cells are mostly due to increased gut hormone secretion due to augmented nutrient delivery to the small intestine. Bone remodeling is also affected by gut hormones. Phenotypic skeletal changes observed in mice deficient in GLP-1 or GIP suggest that increased incretins may improve bone density. However, these positive effects may be counterbalanced by the association between weight loss and a reduction in bone density. Finally, studies have shown a marked improvement following bariatric surgery in infertility and PCOS in women and hypogonadism in men. Thus, the net effect on endocrine systems after bariatric surgery will likely vary on an individual basis and depend on factors such as comorbidities, peri-menopausal state, amount of weight loss, and likelihood to adhere to vitamin supplementation after surgery.
Collapse
Affiliation(s)
- Isabel Casimiro
- Section of Endocrinology, Diabetes & MetabolismUniversity of ChicagoChicagoIllinois
| | - Susan Sam
- Section of Endocrinology, Diabetes & MetabolismUniversity of ChicagoChicagoIllinois
| | - Matthew J. Brady
- Section of Endocrinology, Diabetes & MetabolismUniversity of ChicagoChicagoIllinois
| |
Collapse
|
36
|
Schiellerup SP, Skov-Jeppesen K, Windeløv JA, Svane MS, Holst JJ, Hartmann B, Rosenkilde MM. Gut Hormones and Their Effect on Bone Metabolism. Potential Drug Therapies in Future Osteoporosis Treatment. Front Endocrinol (Lausanne) 2019; 10:75. [PMID: 30863364 PMCID: PMC6399108 DOI: 10.3389/fendo.2019.00075] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 01/28/2019] [Indexed: 12/19/2022] Open
Abstract
Bone homeostasis displays a circadian rhythm with increased resorption during the night time as compared to day time, a difference that seems-at least partly-to be caused by food intake during the day. Thus, ingestion of a meal results in a decrease in bone resorption, but people suffering from short bowel syndrome lack this response. Gut hormones, released in response to a meal, contribute to this link between the gut and bone metabolism. The responsible hormones appear to include glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), known as incretin hormones due to their role in regulating glucose homeostasis by enhancing insulin release in response to food intake. They interact with their cognate receptors (GIPR and GLP-1R), which are both members of the class B G protein-coupled receptors (GPCRs), and already recognized as targets for treatment of metabolic diseases, such as type 2 diabetes mellitus (T2DM) and obesity. Glucagon-like peptide-2 (GLP-2), secreted concomitantly with GLP-1, acting via another class B receptor (GLP-2R), is also part of this gut-bone axis. Several studies, including human studies, have indicated that these three hormones inhibit bone resorption and, moreover, that GIP increases bone formation. Another hormone, peptide YY (PYY), is also secreted from the enteroendocrine L-cells (together with GLP-1 and GLP-2), and acts mainly via interaction with the class A GPCR NPY-R2. PYY is best known for its effect on appetite regulation, but recent studies have also shown an effect of PYY on bone metabolism. The aim of this review is to summarize the current knowledge of the actions of GIP, GLP-1, GLP-2, and PYY on bone metabolism, and to discuss future therapies targeting these receptors for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Sine Paasch Schiellerup
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kirsa Skov-Jeppesen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation (NNF) Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Johanne Agerlin Windeløv
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation (NNF) Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Maria Saur Svane
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation (NNF) Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Bolette Hartmann
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Novo Nordisk Foundation (NNF) Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Mette Marie Rosenkilde
- Laboratory of Molecular Pharmacology, Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
37
|
Kalaitzoglou E, Fowlkes JL, Popescu I, Thrailkill KM. Diabetes pharmacotherapy and effects on the musculoskeletal system. Diabetes Metab Res Rev 2019; 35:e3100. [PMID: 30467957 PMCID: PMC6358500 DOI: 10.1002/dmrr.3100] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/14/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022]
Abstract
Persons with type 1 or type 2 diabetes have a significantly higher fracture risk than age-matched persons without diabetes, attributed to disease-specific deficits in the microarchitecture and material properties of bone tissue. Therefore, independent effects of diabetes drugs on skeletal integrity are vitally important. Studies of incretin-based therapies have shown divergent effects of different agents on fracture risk, including detrimental, beneficial, and neutral effects. The sulfonylurea class of drugs, owing to its hypoglycemic potential, is thought to amplify the risk of fall-related fractures, particularly in the elderly. Other agents such as the biguanides may, in fact, be osteo-anabolic. In contrast, despite similarly expected anabolic properties of insulin, data suggests that insulin pharmacotherapy itself, particularly in type 2 diabetes, may be a risk factor for fracture, negatively associated with determinants of bone quality and bone strength. Finally, sodium-dependent glucose co-transporter 2 inhibitors have been associated with an increased risk of atypical fractures in select populations, and possibly with an increase in lower extremity amputation with specific SGLT2I drugs. The role of skeletal muscle, as a potential mediator and determinant of bone quality, is also a relevant area of exploration. Currently, data regarding the impact of glucose lowering medications on diabetes-related muscle atrophy is more limited, although preclinical studies suggest that various hypoglycemic agents may have either aggravating (sulfonylureas, glinides) or repairing (thiazolidinediones, biguanides, incretins) effects on skeletal muscle atrophy, thereby influencing bone quality. Hence, the therapeutic efficacy of each hypoglycemic agent must also be evaluated in light of its impact, alone or in combination, on musculoskeletal health, when determining an individualized treatment approach. Moreover, the effect of newer medications (potentially seeking expanded clinical indication into the pediatric age range) on the growing skeleton is largely unknown. Herein, we review the available literature regarding effects of diabetes pharmacotherapy, by drug class and/or by clinical indication, on the musculoskeletal health of persons with diabetes.
Collapse
Affiliation(s)
- Evangelia Kalaitzoglou
- University of Kentucky Barnstable Brown Diabetes Center Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - John L Fowlkes
- University of Kentucky Barnstable Brown Diabetes Center Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Iuliana Popescu
- University of Kentucky Barnstable Brown Diabetes Center Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Kathryn M Thrailkill
- University of Kentucky Barnstable Brown Diabetes Center Department of Pediatrics, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
38
|
Ding L, Fang Z, Liu Y, Zhang E, Huang T, Yang L, Wang Z, Huang W. Targeting Bile Acid-Activated Receptors in Bariatric Surgery. Handb Exp Pharmacol 2019; 256:359-378. [PMID: 31144046 DOI: 10.1007/164_2019_229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bariatric surgical procedures, including Roux-en-Y gastric bypass and vertical sleeve gastrectomy, are currently the most effective clinical approaches to achieve a significant and sustainable weight loss. Bariatric surgery also concomitantly improves type 2 diabetes and other metabolic diseases such as nonalcoholic steatohepatitis, cardiovascular diseases, and hyperlipidemia. However, despite the recent exciting progress in the understanding how bariatric surgery works, the underlying molecular mechanisms of bariatric surgery remain largely unknown. Interestingly, bile acids are emerging as potential signaling molecules to mediate the beneficial effects of bariatric surgery. In this review, we summarize the recent findings on bile acids and their activated receptors in mediating the beneficial metabolic effects of bariatric surgery. We also discuss the potential to target bile acid-activated receptors in order to treat obesity and other metabolic diseases.
Collapse
Affiliation(s)
- Lili Ding
- Department of Diabetes Complications and Metabolism, Diabetes & Metabolism Research Institute of City of Hope, Beckman Research Institute of City of Hope, Duarte, CA, USA.,Shanghai Key Laboratory of Compound Chinese Medicines and The Ministry of Education (MOE) Key Laboratory of Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhipeng Fang
- Department of Diabetes Complications and Metabolism, Diabetes & Metabolism Research Institute of City of Hope, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Yanjun Liu
- Department of Diabetes Complications and Metabolism, Diabetes & Metabolism Research Institute of City of Hope, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | - Eryun Zhang
- Department of Diabetes Complications and Metabolism, Diabetes & Metabolism Research Institute of City of Hope, Beckman Research Institute of City of Hope, Duarte, CA, USA.,Shanghai Key Laboratory of Compound Chinese Medicines and The Ministry of Education (MOE) Key Laboratory of Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tracy Huang
- Eugene and Roth Roberts Summer Student Academy, City of Hope, Duarte, CA, USA
| | - Li Yang
- Shanghai Key Laboratory of Compound Chinese Medicines and The Ministry of Education (MOE) Key Laboratory of Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhengtao Wang
- Shanghai Key Laboratory of Compound Chinese Medicines and The Ministry of Education (MOE) Key Laboratory of Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Diabetes & Metabolism Research Institute of City of Hope, Beckman Research Institute of City of Hope, Duarte, CA, USA.
| |
Collapse
|
39
|
Gao L, Li SL, Li YK. Liraglutide Promotes the Osteogenic Differentiation in MC3T3-E1 Cells via Regulating the Expression of Smad2/3 Through PI3K/Akt and Wnt/β-Catenin Pathways. DNA Cell Biol 2018; 37:1031-1043. [PMID: 30403540 DOI: 10.1089/dna.2018.4397] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Liu Gao
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Shi-Lun Li
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang, Hebei, China
| | - Yu-Kun Li
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
40
|
Starup-Linde J, Hygum K, Langdahl BL. Skeletal Fragility in Type 2 Diabetes Mellitus. Endocrinol Metab (Seoul) 2018; 33:339-351. [PMID: 30229573 PMCID: PMC6145952 DOI: 10.3803/enm.2018.33.3.339] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 08/22/2018] [Accepted: 08/29/2018] [Indexed: 12/16/2022] Open
Abstract
Type 2 diabetes (T2D) is associated with an increased risk of fracture, which has been reported in several epidemiological studies. However, bone mineral density in T2D is increased and underestimates the fracture risk. Common risk factors for fracture do not fully explain the increased fracture risk observed in patients with T2D. We propose that the pathogenesis of increased fracture risk in T2D is due to low bone turnover caused by osteocyte dysfunction resulting in bone microcracks and fractures. Increased levels of sclerostin may mediate the low bone turnover and may be a novel marker of increased fracture risk, although further research is needed. An impaired incretin response in T2D may also affect bone turnover. Accumulation of advanced glycosylation endproducts may also impair bone strength. Concerning antidiabetic medication, the glitazones are detrimental to bone health and associated with increased fracture risk, and the sulphonylureas may increase fracture risk by causing hypoglycemia. So far, the results on the effect of other antidiabetics are ambiguous. No specific guideline for the management of bone disease in T2D is available and current evidence on the effects of antiosteoporotic medication in T2D is sparse. The aim of this review is to collate current evidence of the pathogenesis, detection and treatment of diabetic bone disease.
Collapse
Affiliation(s)
- Jakob Starup-Linde
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
- Steno Diabetes Center North Jutland, Aalborg University Hospital, Aalborg, Denmark
| | - Katrine Hygum
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Bente Lomholt Langdahl
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark.
| |
Collapse
|
41
|
Luciani P, Fibbi B, Mazzanti B, Deledda C, Ballerini L, Aldinucci A, Benvenuti S, Saccardi R, Peri A. The effects of Exendin-4 on bone marrow-derived mesenchymal cells. Endocrine 2018; 60:423-434. [PMID: 29094257 DOI: 10.1007/s12020-017-1430-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 09/16/2017] [Indexed: 12/14/2022]
Abstract
PURPOSE GLP-1 receptor agonists are antidiabetic drugs currently used in the therapy of type 2 diabetes. Despite several in vitro and in vivo animal studies suggesting a beneficial effect of GLP-1 analogues on bone, in humans their skeletal effects are not clear and clinical studies report conflicting results. METHODS We differentiated human mesenchymal stromal cells (hMSC) toward the adipogenic and the osteoblastic lineages, analysing the effect of Exendin-4 (EXE) before, during and after specific differentiations. RESULTS We showed EXE ability to act selectively on a sub-population of hMSC characterised by a more stem potential, shifting them from G1 to S/M phase of cell cycle. We observed that EXE pre-treatment promotes both adipogenic and osteoblastic differentiations, possibly determined by an increased number of uncommitted progenitors. In fully differentiated cells, EXE affects mature adipocytes by increasing lipolysis, otherwise not altering osteoblasts metabolic activity. Moreover, the increased expression of osteoprotegerin, a modulator of the RANK/RANKL system, observed during osteogenic induction in presence of EXE, could negatively modulate osteoclastogenesis. CONCLUSIONS Our data suggest a complex action of EXE on bone, targeting the proliferation of mesenchymal progenitors, the metabolism of mature adipocytes and the modulation of osteoclastogenesis. Thus, an overall positive effect of this molecule on bone quality might be hypothesised.
Collapse
Affiliation(s)
- Paola Luciani
- Endocrine Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Benedetta Fibbi
- Endocrine Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Benedetta Mazzanti
- Haematology Unit, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Cristiana Deledda
- Endocrine Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Lara Ballerini
- Haematology Unit, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Susanna Benvenuti
- Endocrine Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Riccardo Saccardi
- Haematology Unit, Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Alessandro Peri
- Endocrine Unit, Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.
| |
Collapse
|
42
|
Exenatide preserves trabecular bone microarchitecture in experimental ovariectomized rat model. Arch Gynecol Obstet 2018; 297:1587-1593. [PMID: 29696350 DOI: 10.1007/s00404-018-4776-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Accepted: 03/12/2018] [Indexed: 02/05/2023]
|
43
|
Wen B, Zhao L, Zhao H, Wang X. Liraglutide exerts a bone-protective effect in ovariectomized rats with streptozotocin-induced diabetes by inhibiting osteoclastogenesis. Exp Ther Med 2018; 15:5077-5083. [PMID: 29805533 DOI: 10.3892/etm.2018.6043] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 03/07/2018] [Indexed: 01/18/2023] Open
Abstract
Liraglutide, a glucagon-like peptide-1 receptor agonist, is an anti-diabetic medicine associated with a reduced risk of fracture in diabetic patients. In the present study, rats with streptozotocin (STZ)-induced diabetes and/or bilateral ovariectomy (OVX) were treated with liraglutide for eight weeks. Liraglutide treatment increased insulin secretion and managed blood glucose levels in the rats following STZ-induced diabetes. In addition, STZ- and OVX-induced reduction of femoral bone mineral density and destruction of bone microarchitecture were alleviated by liraglutide. STZ decreased, whereas OVX increased, serum osteocalcin (OC) level (a bone formation marker) and osteoblast counts in the trabecular bone. OVX, however not STZ, markedly increased the level of serum c-terminal telopeptide of type 1 collagen (CTX-1, a bone resorption marker) and osteoclast counts in the trabecular area. Liraglutide treatment significantly increased serum OC levels in all three osteoporotic models, however had minimal effects on osteoblast counts. Furthermore, liraglutide significantly decreased serum CTX-1 level and osteoclast numbers in OVX and STZ+OVX rats. Furthermore, the present study examined the mRNA expression and serum concentrations of osteoprotegerin (OPG) and receptor activator of nuclear factor-κB ligand (RANKL), and liraglutide significantly decreased the RANKL/OPG ratio compared with the untreated rats, indicating that osteoclastogenesis was inhibited by liraglutide. In summary, the results suggested that liraglutide ameliorates STZ+OVX-induced bone deterioration in the rat model, primarily through the inhibition of osteoclastogenesis. These preliminary findings propose a potentially beneficial effect of liraglutide on the bone health of postmenopausal diabetic patients.
Collapse
Affiliation(s)
- Binhong Wen
- Department of Endocrinology, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, P.R. China
| | - Lu Zhao
- Department of Endocrinology, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, P.R. China
| | - Hongmei Zhao
- Department of Endocrinology, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, P.R. China
| | - Xiaochen Wang
- Department of Endocrinology, The People's Hospital of China Medical University, The People's Hospital of Liaoning Province, Shenyang, Liaoning 110016, P.R. China
| |
Collapse
|
44
|
Wu X, Li S, Xue P, Li Y. Liraglutide Inhibits the Apoptosis of MC3T3-E1 Cells Induced by Serum Deprivation through cAMP/PKA/β-Catenin and PI3K/AKT/GSK3β Signaling Pathways. Mol Cells 2018; 41:234-243. [PMID: 29463067 PMCID: PMC5881097 DOI: 10.14348/molcells.2018.2340] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 12/28/2017] [Accepted: 12/29/2017] [Indexed: 01/06/2023] Open
Abstract
In recent years, the interest towards the relationship between incretins and bone has been increasing. Previous studies have suggested that glucagon-like peptide-1 (GLP-1) and its receptor agonists exert beneficial anabolic influence on skeletal metabolism, such as promoting proliferation and differentiation of osteoblasts via entero-osseous-axis. However, little is known regarding the effects of GLP-1 on osteoblast apoptosis and the underlying mechanisms involved. Thus, in the present study, we investigated the effects of liraglutide, a glucagon-like peptide-1 receptor agonist, on apoptosis of murine MC3T3-E1 osteoblastic cells. We confirmed the presence of GLP-1 receptor (GLP-1R) in MC3T3-E1 cells. Our data demonstrated that liraglutide inhibited the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation, as detected by Annexin V/PI and Hoechst 33258 staining and ELISA assays. Moreover, liraglutide upregulated Bcl-2 expression and downregulated Bax expression and caspase-3 activity at intermediate concentration (100 nM) for maximum effect. Further study suggested that liraglutide stimulated the phosphorylation of AKT and enhanced cAMP level, along with decreased phosphorylation of GSK3β, increased β-catenin phosphorylation at Ser675 site and upregulated nuclear β-catenin content and transcriptional activity. Pretreatment of cells with the PI3K inhibitor LY294002, PKA inhibitor H89, and siRNAs GLP-1R, β-catenin abrogated the liraglutide-induced activation of cAMP, AKT, β-catenin, respectively. In conclusion, these findings illustrate that activation of GLP-1 receptor by liraglutide inhibits the apoptosis of osteoblastic MC3T3-E1 cells induced by serum deprivation through cAMP/PKA/β-catenin and PI3K/Akt/GSK3β signaling pathways.
Collapse
Affiliation(s)
- Xuelun Wu
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei Province,
PR China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang 050051, Hebei Province,
PR China
| | - Shilun Li
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang 050051, Hebei Province,
PR China
| | - Peng Xue
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei Province,
PR China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang 050051, Hebei Province,
PR China
| | - Yukun Li
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, Hebei Province,
PR China
- Key Orthopaedic Biomechanics Laboratory of Hebei Province, Shijiazhuang 050051, Hebei Province,
PR China
| |
Collapse
|
45
|
Gamble JM, Donnan JR, Chibrikov E, Twells LK, Midodzi WK, Majumdar SR. The risk of fragility fractures in new users of dipeptidyl peptidase-4 inhibitors compared to sulfonylureas and other anti-diabetic drugs: A cohort study. Diabetes Res Clin Pract 2018; 136:159-167. [PMID: 29258886 DOI: 10.1016/j.diabres.2017.12.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/30/2017] [Accepted: 12/12/2017] [Indexed: 12/14/2022]
Abstract
AIMS Mixed evidence exists for the effect of incretin-based therapies on osteoporosis in type-2 diabetes. Therefore, we conducted a cohort study to determine the association between dipeptidyl peptidase-4 (DPP-4) inhibitors and common osteoporotic "fragility fractures" (upper extremity, hip, spine). METHODS The UK-based Clinical Practice Research Datalink was used to identify adults without prior fractures receiving a new anti-diabetic drug or a new type-2 diabetes diagnosis between 2007 and 2016. The primary aim was to compare new-users of DPP-4 inhibitors versus new-users of sulfonylureas (SU). The association between DPP-4 inhibitors and incident fractures was estimated using Cox proportional hazards models. Deciles of high-dimensional propensity scores and other anti-diabetic drugs were used as covariates. RESULTS We identified 7993 and 26,636 new-users of DPP-4 inhibitors and SUs, respectively. At cohort entry, the mean age was 58.8, 40% were female, mean diabetes duration was 1.3 years, and 42% had A1c > 9%. Over 9 years (mean follow-up = 1.2 years), the incident rate of fragility fractures was lower among DPP-4 versus SU users (3.0/1000 vs. 5.2/1000 person-years; P-value = 0.007). After adjustment, there was no statistically significant difference in fracture risk (hazard ratio adjusted, aHR = 0.80, 95%CI 0.51-1.24; P-value = 0.3125). In a secondary analysis, DPP-4 inhibitors were not associated with a difference in fracture risk compared to insulin (aHR = 0.91, 95%CI 0.40-2.09); however were associated with a lower fracture risk versus thiazolidinediones (aHR = 0.47, 95%CI 0.26-0.83). Sensitivity analyses supported findings. CONCLUSIONS DPP-4 inhibitors are not associated with an increased risk of fragility fractures compared with SUs or insulin; however, are associated with a lower risk versus thiazolidinediones.
Collapse
Affiliation(s)
- John-Michael Gamble
- School of Pharmacy, University of Waterloo, Kitchener, Ontario, Canada; School of Pharmacy, Memorial University, St. John's, Newfoundland and Labrador, Canada.
| | - Jennifer R Donnan
- School of Pharmacy, Memorial University, St. John's, Newfoundland and Labrador, Canada
| | - Eugene Chibrikov
- School of Pharmacy, Memorial University, St. John's, Newfoundland and Labrador, Canada
| | - Laurie K Twells
- School of Pharmacy, Memorial University, St. John's, Newfoundland and Labrador, Canada; Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador, Canada
| | - William K Midodzi
- Faculty of Medicine, Memorial University, St. John's, Newfoundland and Labrador, Canada
| | - Sumit R Majumdar
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
46
|
Mabilleau G, Gobron B, Bouvard B, Chappard D. Incretin-based therapy for the treatment of bone fragility in diabetes mellitus. Peptides 2018; 100:108-113. [PMID: 29412811 DOI: 10.1016/j.peptides.2017.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 12/23/2022]
Abstract
Bone fractures are common comorbidities of type 2 diabetes mellitus (T2DM). Bone fracture incidence seems to develop due to increased risk of falls, poor bone quality and/or anti-diabetic medications. Previously, a relation between gut hormones and bone has been suspected. Most recent evidences suggest indeed that two gut hormones, namely glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), may control bone remodeling and quality. The GIP receptor is expressed in bone cells and knockout of either GIP or its receptor induces severe bone quality alterations. Similar alterations are also encountered in GLP-1 receptor knock-out animals associated with abnormal osteoclast resorption. Some GLP-1 receptor agonist (GLP-1RA) have been approved for the treatment of type 2 diabetes mellitus and although clinical trials may not have been designed to investigate bone fracture, first results suggest that GLP-1RA may not exacerbate abnormal bone quality observed in T2DM. The recent design of double and triple gut hormone agonists may also represent a suitable alternative for restoring compromised bone quality observed in T2DM. However, although most of these new molecules demonstrated weight loss action, little is known on their bone safety. The present review summarizes the most recent findings on peptide-based incretin therapy and bone physiology.
Collapse
Affiliation(s)
- Guillaume Mabilleau
- GEROM-LHEA UPRES EA4658, University of Angers, Institut de Biologie en Santé, Angers, France; SCIAM, University of Angers, Institut de Biologie en Santé, Angers, France; Bone Pathology Unit, Angers University Hospital, Angers, France.
| | - Benoît Gobron
- GEROM-LHEA UPRES EA4658, University of Angers, Institut de Biologie en Santé, Angers, France; Rheumatology Department, Angers University Hospital, Angers, France
| | - Béatrice Bouvard
- GEROM-LHEA UPRES EA4658, University of Angers, Institut de Biologie en Santé, Angers, France; Rheumatology Department, Angers University Hospital, Angers, France
| | - Daniel Chappard
- GEROM-LHEA UPRES EA4658, University of Angers, Institut de Biologie en Santé, Angers, France; SCIAM, University of Angers, Institut de Biologie en Santé, Angers, France; Bone Pathology Unit, Angers University Hospital, Angers, France
| |
Collapse
|
47
|
Mabilleau G, Pereira M, Chenu C. Novel skeletal effects of glucagon-like peptide-1 (GLP-1) receptor agonists. J Endocrinol 2018; 236:R29-R42. [PMID: 28855317 DOI: 10.1530/joe-17-0278] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 08/30/2017] [Indexed: 12/14/2022]
Abstract
Type 2 diabetes mellitus (T2DM) leads to bone fragility and predisposes to increased risk of fracture, poor bone healing and other skeletal complications. In addition, some anti-diabetic therapies for T2DM can have notable detrimental skeletal effects. Thus, an appropriate therapeutic strategy for T2DM should not only be effective in re-establishing good glycaemic control but also in minimising skeletal complications. There is increasing evidence that glucagon-like peptide-1 receptor agonists (GLP-1RAs), now greatly prescribed for the treatment of T2DM, have beneficial skeletal effects although the underlying mechanisms are not completely understood. This review provides an overview of the direct and indirect effects of GLP-1RAs on bone physiology, focusing on bone quality and novel mechanisms of action on the vasculature and hormonal regulation. The overall experimental studies indicate significant positive skeletal effects of GLP-1RAs on bone quality and strength although their mechanisms of actions may differ according to various GLP-1RAs and clinical studies supporting their bone protective effects are still lacking. The possibility that GLP-1RAs could improve blood supply to bone, which is essential for skeletal health, is of major interest and suggests that GLP-1 anti-diabetic therapy could benefit the rising number of elderly T2DM patients with osteoporosis and high fracture risk.
Collapse
Affiliation(s)
- Guillaume Mabilleau
- GEROM Groupe Etudes Remodelage Osseux et biomatériauxIRIS-IBS Institut de Biologie en Santé, CHU d'Angers, Université d'Angers, Angers, France
| | - Marie Pereira
- Centre for Complement and Inflammation Research (CCIR)Department of Medicine, Imperial College London, London, UK
| | - Chantal Chenu
- Department of Comparative Biomedical SciencesRoyal Veterinary College, London, UK
| |
Collapse
|
48
|
|
49
|
Vianna AGD, Sanches CP, Barreto FC. Review article: effects of type 2 diabetes therapies on bone metabolism. Diabetol Metab Syndr 2017; 9:75. [PMID: 29021829 PMCID: PMC5613523 DOI: 10.1186/s13098-017-0274-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 09/18/2017] [Indexed: 12/25/2022] Open
Abstract
Diabetes complications and osteoporotic fractures are two of the most important causes of morbidity and mortality in older patients, and they share many features, including genetic susceptibility, molecular mechanisms, and environmental factors. Type 2 diabetes mellitus (T2DM) compromises bone microarchitecture by inducing abnormal bone cell function and matrix structure with increased osteoblast apoptosis, diminished osteoblast differentiation, and enhanced osteoclast-mediated bone resorption. The linkage between these two chronic diseases creates a possibility that certain antidiabetic therapies may affect bone function. The treatment of T2DM has been improved in the past two decades with the development of new therapeutic drugs. Each class has a pathophysiologic target related to the regulation of the energy metabolism and insulin secretion. However, both glycemic homeostasis and bone homeostasis are under the control of common regulatory factors. This background allows the individual pharmacological targets of antidiabetic therapies to affect bone quality due to their indirect effects on bone cell differentiation and the bone remodeling process. With a greater number of diabetic patients and antidiabetic agents being launched, it is critical to highlight the consequences of this disease and its pharmacological agents on bone health and fracture risk. Currently, there is little scientific knowledge approaching the impact of most anti-diabetic treatments on bone quality and fracture risk. Thus, this review aims to explore the pros and cons of the available pharmacologic treatments for T2DM on bone mineral density and risk fractures in humans.
Collapse
Affiliation(s)
- A. G. D. Vianna
- Curitiba Diabetes Center, Division of Endocrinology, Hospital Nossa Senhora das Graças, Rua Alcides Munhoz, 433–4° andar–Mercês, Curitiba, Paraná 80810-040 Brazil
- Pontifical Catholic University of Parana, Rua Imaculada Conceição, 1155–Bloco Medicina–Prado Velho, Curitiba, Paraná 80215-901 Brazil
| | - C. P. Sanches
- Curitiba Diabetes Center, Division of Endocrinology, Hospital Nossa Senhora das Graças, Rua Alcides Munhoz, 433–4° andar–Mercês, Curitiba, Paraná 80810-040 Brazil
| | - F. C. Barreto
- Division of Nephrology, Department of Internal Medicine, Federal University of Paraná, Rua General Carneiro, 181–Alto da Gloria, Curitiba, Paraná 80060-900 Brazil
| |
Collapse
|
50
|
Liraglutide, a glucagon-like peptide-1 receptor agonist, facilitates osteogenic proliferation and differentiation in MC3T3-E1 cells through phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT), extracellular signal-related kinase (ERK)1/2, and cAMP/protein kinase A (PKA) signaling pathways involving β-catenin. Exp Cell Res 2017; 360:281-291. [PMID: 28919123 DOI: 10.1016/j.yexcr.2017.09.018] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 09/09/2017] [Accepted: 09/12/2017] [Indexed: 12/22/2022]
Abstract
Previous studies have proven that glucagon-like peptide-1 (GLP-1) and its receptor agonist exert favorable anabolic effects on skeletal metabolism. However, whether GLP-1 could directly impact osteoblast-mediated bone formation is still controversial, and the underlying molecular mechanism remains to be elucidated. Thus in this paper, we investigated the effects of liraglutide, a glucagon-like peptide-1 (GLP-1) receptor agonist, on murine MC3T3-E1 preosteoblasts proliferation and differentiation and explored the potential cellular basis. Our study confirmed the presence of GLP-1R in MC3T3-E1, and demonstrated that liraglutide promotes osteoblasts proliferation at an intermediate concentration (100nM) and time (48h), upregulated the expression of osteoblastogenic biomarkers at various stages, and stimulated osteoblastic mineralization. Liraglutide also elevated the intracellular cAMP level and phosphorylation of AKT, ERK and β-catenin simultaneously with increased nuclear β-catenin content and transcriptional activity. Pretreatment of cells with the inhibitors LY294002, PD98059, H89 and GLP-1R and β-catenin siRNA partially blocked the liraglutide-induced signaling activation and attenuated the facilitating effect of liraglutide on MC3T3-E1 cells. Collectively, liraglutide was capable of acting upon osteoblasts directly through GLP-1R by activating PI3K/AKT, ERK1/2, cAMP/PKA/β-cat-Ser675 signaling to promote bone formation via GLP-1R. Thus, GLP-1 analogues may be potential therapeutic strategy for the treatment of osteoporosis in diabetics.
Collapse
|