1
|
Li Q, Wen W, Wang Y, Gong T, Wang X, Tan Q, Fan B, Xie H, Li Y, Li S, Yang C, Zhou Z, Duan X, Lin W, Chen L. Autophagy-related protein 5 (ATG5) interacts with bone marrow stromal cell antigen 2 (BST2) to stimulate HBV replication through antagonizing the antiviral activity of BST2. J Med Virol 2024; 96:e29659. [PMID: 38747016 DOI: 10.1002/jmv.29659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 06/05/2024]
Abstract
Hepatitis B virus (HBV) infection is a major global health burden with 820 000 deaths per year. In our previous study, we found that the knockdown of autophagy-related protein 5 (ATG5) significantly upregulated the interferon-stimulated genes (ISGs) expression to exert the anti-HCV effect. However, the regulation of ATG5 on HBV replication and its underlying mechanism remains unclear. In this study, we screened the altered expression of type I interferon (IFN-I) pathway genes using RT² Profiler™ PCR array following ATG5 knock-down and we found the bone marrow stromal cell antigen 2 (BST2) expression was significantly increased. We then verified the upregulation of BST2 by ATG5 knockdown using RT-qPCR and found that the knockdown of ATG5 activated the Janus kinase/signal transducer and activator of transcription (JAK-STAT) signaling pathway. ATG5 knockdown or BST2 overexpression decreased Hepatitis B core Antigen (HBcAg) protein, HBV DNA levels in cells and supernatants of HepAD38 and HBV-infected NTCP-HepG2. Knockdown of BST2 abrogated the anti-HBV effect of ATG5 knockdown. Furthermore, we found that ATG5 interacted with BST2, and further formed a ternary complex together with HBV-X (HBx). In conclusion, our finding indicates that ATG5 promotes HBV replication through decreasing BST2 expression and interacting with it directly to antagonize its antiviral function.
Collapse
Affiliation(s)
- Qingyuan Li
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
- Research Platform for Transfusion-transmitted Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory for Transfusion-transmitted Infectious Diseases of the Health Commission of Sichuan Province, Chengdu, Sichuan, China
| | - Wenxian Wen
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
- Research Platform for Transfusion-transmitted Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory for Transfusion-transmitted Infectious Diseases of the Health Commission of Sichuan Province, Chengdu, Sichuan, China
| | - Yijin Wang
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
| | - Tao Gong
- Department of Clinical Medicine, North Sichuan Medical College, Nanchong, Sichuan, China
- Research Platform for Transfusion-transmitted Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory for Transfusion-transmitted Infectious Diseases of the Health Commission of Sichuan Province, Chengdu, Sichuan, China
| | - Xinwei Wang
- Joint Laboratory on Transfusion-transmitted Infectious Diseases between Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Nanning Blood Center, Nanning Blood Center, Key Laboratory for Transfusion-transmitted Infectious Diseases of the Health Commission of Nanning City, Nanning, Guangxi, China
| | - Qi Tan
- Research Platform for Transfusion-transmitted Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory for Transfusion-transmitted Infectious Diseases of the Health Commission of Sichuan Province, Chengdu, Sichuan, China
| | - Bin Fan
- Research Platform for Transfusion-transmitted Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory for Transfusion-transmitted Infectious Diseases of the Health Commission of Sichuan Province, Chengdu, Sichuan, China
| | - He Xie
- Department of Clinical Laboratory, The Hospital of Xidian Group, Xian, Shaanxi, China
| | - Yujia Li
- Research Platform for Transfusion-transmitted Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory for Transfusion-transmitted Infectious Diseases of the Health Commission of Sichuan Province, Chengdu, Sichuan, China
| | - Shilin Li
- Research Platform for Transfusion-transmitted Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory for Transfusion-transmitted Infectious Diseases of the Health Commission of Sichuan Province, Chengdu, Sichuan, China
| | - Chunhui Yang
- Research Platform for Transfusion-transmitted Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory for Transfusion-transmitted Infectious Diseases of the Health Commission of Sichuan Province, Chengdu, Sichuan, China
| | - Zhonghui Zhou
- Department of Infectious Diseases, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Xiaoqiong Duan
- Research Platform for Transfusion-transmitted Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory for Transfusion-transmitted Infectious Diseases of the Health Commission of Sichuan Province, Chengdu, Sichuan, China
| | - Wenyu Lin
- Department of Medicine, Liver Center and Gastrointestinal Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Limin Chen
- Research Platform for Transfusion-transmitted Diseases, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory for Transfusion-transmitted Infectious Diseases of the Health Commission of Sichuan Province, Chengdu, Sichuan, China
- Joint Laboratory on Transfusion-transmitted Infectious Diseases between Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Nanning Blood Center, Nanning Blood Center, Key Laboratory for Transfusion-transmitted Infectious Diseases of the Health Commission of Nanning City, Nanning, Guangxi, China
- Department of Clinical Laboratory, The Hospital of Xidian Group, Xian, Shaanxi, China
| |
Collapse
|
2
|
Liu J, Xiao Y, Cao L, Lu S, Zhang S, Yang R, Wang Y, Zhang N, Yu Y, Wang X, Guo W, Wang Z, Xu H, Xing C, Song X, Cao L. Insights on E1-like enzyme ATG7: functional regulation and relationships with aging-related diseases. Commun Biol 2024; 7:382. [PMID: 38553562 PMCID: PMC10980737 DOI: 10.1038/s42003-024-06080-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
Autophagy is a dynamic self-renovation biological process that maintains cell homeostasis and is responsible for the quality control of proteins, organelles, and energy metabolism. The E1-like ubiquitin-activating enzyme autophagy-related gene 7 (ATG7) is a critical factor that initiates classic autophagy reactions by promoting the formation and extension of autophagosome membranes. Recent studies have identified the key functions of ATG7 in regulating the cell cycle, apoptosis, and metabolism associated with the occurrence and development of multiple diseases. This review summarizes how ATG7 is precisely programmed by genetic, transcriptional, and epigenetic modifications in cells and the relationship between ATG7 and aging-related diseases.
Collapse
Affiliation(s)
- Jingwei Liu
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
- Department of Anus and Intestine Surgery, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yutong Xiao
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Liangzi Cao
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Songming Lu
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Siyi Zhang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Ruohan Yang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Yubang Wang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Naijin Zhang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Department of Cardiology, First Hospital of China Medical University, Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, China
| | - Yang Yu
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Xiwen Wang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wendong Guo
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Zhuo Wang
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China
| | - Hongde Xu
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China.
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China.
| | - Chengzhong Xing
- Department of Anus and Intestine Surgery, First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| | - Xiaoyu Song
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China.
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China.
| | - Liu Cao
- The College of Basic Medical Science, Health Sciences Institute, China Medical University, Shenyang, Liaoning, China.
- Key Laboratory of Cell Biology of Ministry of Public Health, Key Laboratory of Medical Cell Biology of Ministry of Education, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors (China Medical University), Ministry of Education, Liaoning Province Collaborative Innovation Center of Aging Related Disease Diagnosis and Treatment and Prevention, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
3
|
Behrooz AB, Cordani M, Donadelli M, Ghavami S. Metastatic outgrowth via the two-way interplay of autophagy and metabolism. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166824. [PMID: 37949196 DOI: 10.1016/j.bbadis.2023.166824] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 11/12/2023]
Abstract
Metastasis represents one of the most dangerous issue of cancer progression, characterized by intricate interactions between invading tumor cells, various proteins, and other cells on the way towards target sites. Tumor cells, while undergoing metastasis, engage in dynamic dialogues with stromal cells and undertake epithelial-mesenchymal transition (EMT) phenoconversion. To ensure survival, tumor cells employ several strategies such as restructuring their metabolic needs to adapt to the alterations of the microenvironmental resources via different mechanisms including macroautophagy (autophagy) and to circumvent anoikis-a form of cell death induced upon detachment from the extracellular matrix (ECM). This review focuses on the puzzling connections of autophagy and energetic metabolism within the context of cancer metastasis.
Collapse
Affiliation(s)
- Amir Barzegar Behrooz
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, Manitoba, Canada; Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Marco Cordani
- Department of Biochemistry and Molecular Biology, School of Biology, Complutense University, Madrid, Spain; Instituto de Investigaciones Sanitarias San Carlos (IdISSC), Madrid, Spain
| | - Massimo Donadelli
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba College of Medicine, Winnipeg, Manitoba, Canada; Academy of Silesia, Faculty of Medicine, Rolna 43 Street, 40-555 Katowice, Poland; Department of Biomedical Engineering, University of Manitoba, Winnipeg, MB, Canada; Research Institute of Oncology and Hematology, Cancer Care Manitoba-University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
4
|
Wu K, Liu Y, Xia J, Liu J, Wang K, Liang H, Xu F, Liu D, Nie D, Tang X, Huang A, Chen C, Tang N. Loss of SLC27A5 Activates Hepatic Stellate Cells and Promotes Liver Fibrosis via Unconjugated Cholic Acid. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304408. [PMID: 37957540 PMCID: PMC10787101 DOI: 10.1002/advs.202304408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/11/2023] [Indexed: 11/15/2023]
Abstract
Although the dysregulation of bile acid (BA) composition has been associated with fibrosis progression, its precise roles in liver fibrosis is poorly understood. This study demonstrates that solute carrier family 27 member 5 (SLC27A5), an enzyme involved in BAs metabolism, is substantially downregulated in the liver tissues of patients with cirrhosis and fibrosis mouse models. The downregulation of SLC27A5 depends on RUNX family transcription factor 2 (RUNX2), which serves as a transcriptional repressor. The findings reveal that experimental SLC27A5 knockout (Slc27a5-/- ) mice display spontaneous liver fibrosis after 24 months. The loss of SLC27A5 aggravates liver fibrosis induced by carbon tetrachloride (CCI4 ) and thioacetamide (TAA). Mechanistically, SLC27A5 deficiency results in the accumulation of unconjugated BA, particularly cholic acid (CA), in the liver. This accumulation leads to the activation of hepatic stellate cells (HSCs) by upregulated expression of early growth response protein 3 (EGR3). The re-expression of hepatic SLC27A5 by an adeno-associated virus or the reduction of CA levels in the liver using A4250, an apical sodium-dependent bile acid transporter (ASBT) inhibitor, ameliorates liver fibrosis in Slc27a5-/- mice. In conclusion, SLC27A5 deficiency in mice drives hepatic fibrosis through CA-induced activation of HSCs, highlighting its significant implications for liver fibrosis treatment.
Collapse
Affiliation(s)
- Kang Wu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Yi Liu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Jie Xia
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Jiale Liu
- Institute of Life SciencesChongqing Medical UniversityChongqing400016China
| | - Kai Wang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Huijun Liang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Fengli Xu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Dina Liu
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Dan Nie
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Xin Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Ailong Huang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| | - Chang Chen
- Institute of Life SciencesChongqing Medical UniversityChongqing400016China
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education)Institute for Viral HepatitisDepartment of Infectious DiseasesThe Second Affiliated HospitalChongqing Medical UniversityChongqing400010China
| |
Collapse
|
5
|
Han Q, Li H, Zhao F, Gao J, Liu X, Ma B. Auricularia auricula Peptides Nutritional Supplementation Delays H 2O 2-Induced Senescence of HepG2 Cells by Modulation of MAPK/NF-κB Signaling Pathways. Nutrients 2023; 15:3731. [PMID: 37686763 PMCID: PMC10489780 DOI: 10.3390/nu15173731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Auricularia auricula is a traditional medicinal and edible mushroom with anti-aging effects. Many studies focused on polysaccharides and melanin. However, the anti-aging effects and mechanism of the nutritional supplementation of Auricularia auricula peptides (AAPs) were not elucidated. In this study, AAPs were prepared by enzymolysis of flavor protease and the protective effects on H2O2-induced senescence of HepG2 cells were explored for the first time. The potential mechanism was also investigated. AAPs were mostly composed of low molecular weights with less than 1000 Da accounting for about 79.17%, and contained comprehensive amino acids nutritionally, including seven essential amino acids, aromatic, acidic, and basic amino acids. AAPs nutritional supplementation could significantly decrease the levels of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA), and increase the activities of antioxidant enzymes (SOD, CAT, and GSH-Px). In addition, the senescence-associated-β-galactosidase (SA-β-gal) activity was restrained, and the expression levels of senescence-associated secretory phenotype (SASP) (IL-6, IL-8, IL-1β, and CXCL2) were also decreased. Ribonucleic acid sequencing (RNA-Seq) was carried out to screen the differentially expressed genes (DEGs) between different groups. GO and KEGG enrichment analysis showed that the mechanism was related to the MAPK/NF-κB signaling pathways. Quantitative real-time PCR (qRT-PCR) analysis and Western blot were carried out to verify the key genes and proteins in the pathways, respectively. AAPs nutritional supplementation resulted a significant down-regulation in key the genes c-fos and c-jun and up-regulation in DUSP1 of the MAPK signaling pathway, and down-regulation in the key genes CXCL2 and IL-8 of the NF-κB signaling pathway. The results of Western blot demonstrate that AAPs nutritional supplementation could inhibit MAPK/NF-κB pathways by reducing the expression levels of IKK, IκB, P65, and phosphorylation of ERK, thus decreasing the inflammatory reaction and delaying cell senescence. It is the first time that AAPs nutritional supplementation was proved to have protective effects on H2O2-induced oxidative damage in HepG2 cells. These results implicate that dietary AAPs could be used as nutrients to reduce the development or severity of aging.
Collapse
Affiliation(s)
- Qianwen Han
- Key Laboratory of Geriatric Nutrition and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China; (Q.H.); (H.L.); (J.G.); (X.L.)
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Haiyan Li
- Key Laboratory of Geriatric Nutrition and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China; (Q.H.); (H.L.); (J.G.); (X.L.)
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Fen Zhao
- Key Laboratory of Geriatric Nutrition and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China; (Q.H.); (H.L.); (J.G.); (X.L.)
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Ji’an Gao
- Key Laboratory of Geriatric Nutrition and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China; (Q.H.); (H.L.); (J.G.); (X.L.)
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Xinqi Liu
- Key Laboratory of Geriatric Nutrition and Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing 100048, China; (Q.H.); (H.L.); (J.G.); (X.L.)
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Biao Ma
- Beijing Science Sun Pharmaceutical Co., Ltd., Beijing 100176, China;
| |
Collapse
|
6
|
Cao X, Zhang N, Chen H, Wang W, Liang Y, Zhang J, Liu R, Li S, Yao Y, Jin Q, Guo Z, Chen Y, Gong Y, Li X, Zao X, Ye Y. Exploring the mechanism of JiGuCao capsule formula on treating hepatitis B virus infection via network pharmacology analysis and in vivo/vitro experiment verification. Front Pharmacol 2023; 14:1159094. [PMID: 37361218 PMCID: PMC10285482 DOI: 10.3389/fphar.2023.1159094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
The JiGuCao capsule formula (JCF) has demonstrated promising curative effects in treating chronic hepatitis B (CHB) in clinical trials. Here, we aimed to investigate JCF's function and mechanism in diseases related to the hepatitis B virus (HBV). We used mass spectrometry (MS) to identify the active metabolites of JCF and established the HBV replication mouse model by hydrodynamically injecting HBV replication plasmids into the mice's tail vein. Liposomes were used to transfect the plasmids into the cells. The CCK-8 kit identified cell viability. We detected the levels of HBV s antigen (HBsAg) and HBV e antigen (HBeAg) by the quantitative determination kits. qRT-PCR and Western blot were used to detect the genes' expression. The key pathways and key genes related to JCF on CHB treatment were obtained by network pharmacological analysis. Our results showed that JCF accelerated the elimination of HBsAg in mice. JCF and its medicated serum inhibited HBV replication and proliferation of HBV-replicating hepatoma cells in vitro. And the key targets of JCF in treating CHB were CASP3, CXCL8, EGFR, HSPA8, IL6, MDM2, MMP9, NR3C1, PTGS2, and VEGFA. Furthermore, these key targets were related to pathways in cancer, hepatitis B, microRNAs in cancer, PI3K-Akt signaling, and proteoglycans in cancer pathways. Finally, Cholic Acid, Deoxycholic Acid, and 3', 4', 7-Trihydroxyflavone were the main active metabolites of JCF that we obtained. JCF employed its active metabolites to perform an anti-HBV effect and prevent the development of HBV-related diseases.
Collapse
Affiliation(s)
- Xu Cao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ningyi Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hening Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Sun Simiao Hospital, Beijing University of Chinese Medicine, Tongchuan, China
| | - Yijun Liang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaxin Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ruijia Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Shuo Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yuhao Yao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Qian Jin
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ziwei Guo
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Chen
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yuanyuan Gong
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoke Li
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaobin Zao
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yong’an Ye
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Liver Diseases Academy of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
7
|
Gong J, Tu W, Liu J, Tian D. Hepatocytes: A key role in liver inflammation. Front Immunol 2023; 13:1083780. [PMID: 36741394 PMCID: PMC9890163 DOI: 10.3389/fimmu.2022.1083780] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
Hepatocytes, the major parenchymal cells in the liver, are responsible for a variety of cellular functions including carbohydrate, lipid and protein metabolism, detoxification and immune cell activation to maintain liver homeotasis. Recent studies show hepatocytes play a pivotal role in liver inflammation. After receiving liver insults and inflammatory signals, hepatocytes may undergo organelle damage, and further respond by releasing mediators and expressing molecules that can act in the microenvironment as well as initiate a robust inflammatory response. In this review, we summarize how the hepatic organelle damage link to liver inflammation and introduce numerous hepatocyte-derived pro-inflammatory factors in response to chronic liver injury.
Collapse
Affiliation(s)
| | | | | | - Dean Tian
- *Correspondence: Jingmei Liu, ; Dean Tian,
| |
Collapse
|
8
|
Yang G, Wan P, Zhang Y, Tan Q, Qudus MS, Yue Z, Luo W, Zhang W, Ouyang J, Li Y, Wu J. Innate Immunity, Inflammation, and Intervention in HBV Infection. Viruses 2022; 14:2275. [PMID: 36298831 PMCID: PMC9609328 DOI: 10.3390/v14102275] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 07/30/2023] Open
Abstract
Hepatitis B virus (HBV) infection is still one of the most dangerous viral illnesses. HBV infects around 257 million individuals worldwide. Hepatitis B in many individuals ultimately develops hepatocellular carcinoma (HCC), which is the sixth most common cancer and the third leading cause of cancer-related deaths worldwide. The innate immunity acts as the first line of defense against HBV infection through activating antiviral genes. Along with the immune responses, pro-inflammatory cytokines are triggered to enhance the antiviral responses, but this may result in acute or chronic liver inflammation, especially when the clearance of virus is unsuccessful. To a degree, the host innate immune and inflammatory responses dominate the HBV infection and liver pathogenesis. Thus, it is crucial to figure out the signaling pathways involved in the activation of antiviral factors and inflammatory cytokines. Here, we review the interplay between HBV and the signal pathways that mediates innate immune responses and inflammation. In addition, we summarize current therapeutic strategies for HBV infection via modulating innate immunity or inflammation. Characterizing the mechanisms that underlie these HBV-host interplays might provide new approaches for the cure of chronic HBV infection.
Collapse
Affiliation(s)
- Ge Yang
- Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Pin Wan
- Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Yaru Zhang
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
| | - Qiaoru Tan
- Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Muhammad Suhaib Qudus
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zhaoyang Yue
- Foshan Institute of Medical Microbiology, Foshan 528315, China
| | - Wei Luo
- Clinical Research Institute, The First People’s Hospital, Foshan 528000, China
| | - Wen Zhang
- Guangdong Longfan Biological Science and Technology, Foshan 528315, China
| | - Jianhua Ouyang
- Guangdong Longfan Biological Science and Technology, Foshan 528315, China
| | - Yongkui Li
- Foshan Institute of Medical Microbiology, Foshan 528315, China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
- Guangdong Longfan Biological Science and Technology, Foshan 528315, China
| | - Jianguo Wu
- Foshan Institute of Medical Microbiology, Foshan 528315, China
- Guangdong Provincial Key Laboratory of Virology, Institute of Medical Microbiology, Jinan University, Guangzhou 510632, China
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
9
|
Li B, Li Y, Li S, Li H, Liu L, Xu Y. Inhibition of Protease Activated Receptor 2 Attenuates HBx-Induced Inflammation and Mitochondria Oxidative Stress. Infect Drug Resist 2022; 15:961-973. [PMID: 35299854 PMCID: PMC8921841 DOI: 10.2147/idr.s343864] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/19/2022] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) infection is one of the global public problems. Among the known infection cases, HBV X protein (HBx) is one of the key inducements of viral replication and host infection. This study was aimed to uncover the role of protease activated receptor 2 (PAR2) on HBx-induced liver injury. METHODS A PAR2-KO mouse model expressing HBx was constructed using hydrodynamics-based in vivo gene transfection method. In addition, pcDNA3.1-HBx was used to over-express HBx in LO2 cells. The effects of HBx overexpression on inflammation and mitochondria oxidative stress were evaluated. RESULTS We found that PAR2 protein level was increased by HBx overexpression. The enforced HBx inhibited LO2 cells apoptosis. Meanwhile, HBx induced inflammation reactions through promoting the secretion of pro-inflammatory cytokines such as TNF-α, IL-6, and CXCL-2. Overexpressed HBx also resulted in mitochondria oxidative stress by upregulation of ROS level and downregulation of MMP and ATP. However, in FSLLRY-NH2 (PAR2 antagonist) treated LO2 cells or PAR2-KO mice, PAR2 blockade reversed the above adverse effects of HBx on liver cells or tissues. CONCLUSION Inhibition of PAR2 may suppress inflammation and mitochondria oxidative stress caused by HBx, pointing out the potential application values of PAR2 antagonist on the treatment of HBV infection in clinic.
Collapse
Affiliation(s)
- Bin Li
- Laboratory of Immunology and Pathogenic Biology, Experimental Teaching Center of Basic Medicine, Jinzhou Medical University, Jinzhou City, Liaoning Province, 121001, People’s Republic of China
| | - Yonggang Li
- Department of Pathogenic Biology, School of Basic Medicine, Jinzhou Medical University, Jinzhou City, Liaoning Province, 121001, People’s Republic of China
| | - Shuhua Li
- Laboratory of Immunology and Pathogenic Biology, Experimental Teaching Center of Basic Medicine, Jinzhou Medical University, Jinzhou City, Liaoning Province, 121001, People’s Republic of China
| | - Hongwei Li
- Laboratory of Immunology and Pathogenic Biology, Experimental Teaching Center of Basic Medicine, Jinzhou Medical University, Jinzhou City, Liaoning Province, 121001, People’s Republic of China
| | - Ling Liu
- Laboratory of Immunology and Pathogenic Biology, Experimental Teaching Center of Basic Medicine, Jinzhou Medical University, Jinzhou City, Liaoning Province, 121001, People’s Republic of China
| | - Yao Xu
- School of Pharmacy, Jinzhou Medical University, Jinzhou City, Liaoning Province, 121001, People’s Republic of China
| |
Collapse
|
10
|
You H, Qin S, Zhang F, Hu W, Li X, Liu D, Kong F, Pan X, Zheng K, Tang R. Regulation of Pattern-Recognition Receptor Signaling by HBX During Hepatitis B Virus Infection. Front Immunol 2022; 13:829923. [PMID: 35251017 PMCID: PMC8891514 DOI: 10.3389/fimmu.2022.829923] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/24/2022] [Indexed: 12/16/2022] Open
Abstract
As a small DNA virus, hepatitis B virus (HBV) plays a pivotal role in the development of various liver diseases, including hepatitis, cirrhosis, and liver cancer. Among the molecules encoded by this virus, the HBV X protein (HBX) is a viral transactivator that plays a vital role in HBV replication and virus-associated diseases. Accumulating evidence so far indicates that pattern recognition receptors (PRRs) are at the front-line of the host defense responses to restrict the virus by inducing the expression of interferons and various inflammatory factors. However, depending on HBX, the virus can control PRR signaling by modulating the expression and activity of essential molecules involved in the toll-like receptor (TLR), retinoic acid inducible gene I (RIG-I)-like receptor (RLR), and NOD-like receptor (NLR) signaling pathways, to not only facilitate HBV replication, but also promote the development of viral diseases. In this review, we provide an overview of the mechanisms that are linked to the regulation of PRR signaling mediated by HBX to inhibit innate immunity, regulation of viral propagation, virus-induced inflammation, and hepatocarcinogenesis. Given the importance of PRRs in the control of HBV replication, we propose that a comprehensive understanding of the modulation of cellular factors involved in PRR signaling induced by the viral protein may open new avenues for the treatment of HBV infection.
Collapse
Affiliation(s)
- Hongjuan You
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Suping Qin
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Fulong Zhang
- Imaging Department, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
| | - Wei Hu
- Nanjing Drum Tower Hospital Group Suqian Hospital, The Affiliate Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Xiaocui Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Dongsheng Liu
- Nanjing Drum Tower Hospital Group Suqian Hospital, The Affiliate Suqian Hospital of Xuzhou Medical University, Suqian, China
| | - Fanyun Kong
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Xiucheng Pan
- Department of Infectious Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- National Demonstration Center for Experimental Basic Medical Sciences Education, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
11
|
Ali AL, Nailwal NP, Doshi GM. Emerging Role of Interleukins for the Assessment and Treatment of Liver Diseases. Endocr Metab Immune Disord Drug Targets 2021; 22:371-382. [PMID: 34819013 DOI: 10.2174/1871530321666211124102837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The most common liver diseases are fibrosis, alcoholic liver disease, non-alcoholic fatty disease, viral hepatitis, and hepatocellular carcinoma. These liver diseases account for approximately 2 million deaths per year worldwide, with cirrhosis accounting for 2.1% of the worldwide burden. The most widely used liver function tests for diagnosis are alanine transaminase, aspartate transaminase, serum proteins, serum albumin, and serum globulins, whereas antivirals and corticosteroids have been proven to be useful for the treatment of liver diseases. A major disadvantage of these diagnostic measures is the lack of specificity to a particular tissue or cell type, as these enzymes are common to one or more tissues. The major adverse effect of current treatment methods is drug resistance. To overcome these issues, interleukins have been investigated. The balance of these interleukins determines the outcome of an immune response. Interleukins are considered interesting therapeutic targets for the treatment of liver diseases. In this review, we summarize the current state of knowledge regarding interleukins in the diagnosis, treatment, and pathogenesis of different acute and chronic liver diseases. OBJECTIVE To understand the role of interleukins in the assessment and treatment of different types of liver diseases. METHODS A literature search was conducted using PubMed, Science Direct, and NCBI with the following keywords: Interleukins, Acute Liver Failure, Alcoholic Liver Disease, Non-Alcoholic Fatty Liver Disease, Liver Fibrosis, Hepatocellular Carcinoma, Inflammation, Liver injury, Hepatoprotective effect. Clinical trial data on these interleukins have been searched on Clinicaltrials.gov. RESULTS Existing literature and preclinical and clinical trial data demonstrate that interleukins play a crucial role in the pathogenesis of liver diseases. CONCLUSION Our findings indicate that IL-1, IL-6, IL-10, IL-17, IL-22, IL-35, and IL-37 are involved in the progression and control of various liver conditions via the regulation of cell signaling pathways. However, further investigation on the involvement of these interleukins is necessary for their use as a targeted therapy in liver diseases.
Collapse
Affiliation(s)
- Aaliya L Ali
- Department of Pharmacology, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Mithibai Campus, Vile Parle (W), Mumbai-400056. India
| | - Namrata P Nailwal
- Department of Pharmacology, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Mithibai Campus, Vile Parle (W), Mumbai-400056. India
| | - Gaurav M Doshi
- Department of Pharmacology, SVKM'S Dr. Bhanuben Nanavati College of Pharmacy, Mithibai Campus, Vile Parle (W), Mumbai-400056. India
| |
Collapse
|
12
|
Son J, Kim MJ, Lee JS, Kim JY, Chun E, Lee KY. Hepatitis B virus X Protein Promotes Liver Cancer Progression through Autophagy Induction in Response to TLR4 Stimulation. Immune Netw 2021; 21:e37. [PMID: 34796041 PMCID: PMC8568915 DOI: 10.4110/in.2021.21.e37] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/28/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Hepatitis B virus X (HBx) protein has been reported as a key protein regulating the pathogenesis of HBV-induced hepatocellular carcinoma (HCC). Recent evidence has shown that HBx is implicated in the activation of autophagy in hepatic cells. Nevertheless, the precise molecular and cellular mechanism by which HBx induces autophagy is still controversial. Herein, we investigated the molecular and cellular mechanism by which HBx is involved in the TRAF6-BECN1-Bcl-2 signaling for the regulation of autophagy in response to TLR4 stimulation, therefore influencing the HCC progression. HBx interacts with BECN1 (Beclin 1) and inhibits the association of the BECN1-Bcl-2 complex, which is known to prevent the assembly of the pre-autophagosomal structure. Furthermore, HBx enhances the interaction between VPS34 and TRAF6-BECN1 complex, increases the ubiquitination of BECN1, and subsequently enhances autophagy induction in response to LPS stimulation. To verify the functional role of HBx in liver cancer progression, we utilized different HCC cell lines, HepG2, SK-Hep-1, and SNU-761. HBx-expressing HepG2 cells exhibited enhanced cell migration, invasion, and cell mobility in response to LPS stimulation compared to those of control HepG2 cells. These results were consistently observed in HBx-expressed SK-Hep-1 and HBx-expressed SNU-761 cells. Taken together, our findings suggest that HBx positively regulates the induction of autophagy through the inhibition of the BECN1-Bcl-2 complex and enhancement of the TRAF6-BECN1-VPS34 complex, leading to enhance liver cancer migration and invasion.
Collapse
Affiliation(s)
- Juhee Son
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Mi-Jeong Kim
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Ji Su Lee
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Ji Young Kim
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea
| | | | - Ki-Young Lee
- Department of Immunology and Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, Korea.,Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Samsung Medical Center, Sungkyunkwan University, Seoul, Korea.,Single Cell Network Research Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| |
Collapse
|
13
|
Leonardi L, Sibéril S, Alifano M, Cremer I, Joubert PE. Autophagy Modulation by Viral Infections Influences Tumor Development. Front Oncol 2021; 11:743780. [PMID: 34745965 PMCID: PMC8569469 DOI: 10.3389/fonc.2021.743780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/27/2021] [Indexed: 12/21/2022] Open
Abstract
Autophagy is a self-degradative process important for balancing cellular homeostasis at critical times in development and/or in response to nutrient stress. This is particularly relevant in tumor model in which autophagy has been demonstrated to have an important impact on tumor behavior. In one hand, autophagy limits tumor transformation of precancerous cells in early stage, and in the other hand, it favors the survival, proliferation, metastasis, and resistance to antitumor therapies in more advanced tumors. This catabolic machinery can be induced by an important variety of extra- and intracellular stimuli. For instance, viral infection has often been associated to autophagic modulation, and the role of autophagy in virus replication differs according to the virus studied. In the context of tumor development, virus-modulated autophagy can have an important impact on tumor cells' fate. Extensive analyses have shed light on the molecular and/or functional complex mechanisms by which virus-modulated autophagy influences precancerous or tumor cell development. This review includes an overview of discoveries describing the repercussions of an autophagy perturbation during viral infections on tumor behavior.
Collapse
Affiliation(s)
- Lucas Leonardi
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Univ Paris, Paris, France
| | - Sophie Sibéril
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Univ Paris, Paris, France
| | - Marco Alifano
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Department of Thoracic Surgery, Hospital Cochin Assistance Publique Hopitaux de Paris, Paris, France
| | - Isabelle Cremer
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Univ Paris, Paris, France
| | - Pierre-Emmanuel Joubert
- Institut National de la Santé et de la Recherche Médicale (INSERM), UMRS1138, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne Université, Univ Paris, Paris, France
| |
Collapse
|
14
|
Wei Y, Gao X, Zhao F, Baimanov D, Cong Y, Jiang Y, Hameed S, Ouyang Y, Gao X, Lin X, Wang L. Induced Autophagy of Macrophages and the Regulation of Inflammatory Effects by Perovskite Nanomaterial LaNiO 3. Front Immunol 2021; 12:676773. [PMID: 33968087 PMCID: PMC8100511 DOI: 10.3389/fimmu.2021.676773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 03/25/2021] [Indexed: 11/25/2022] Open
Abstract
Perovskite nanomaterials (NMs) possess excellent physicochemical properties and have promising applications in light-emitting diodes (LEDs), lasers, photodetectors, and artificial synapse electronics. Potential exposure to these NMs happens in the manufacture and application of the perovskite-based products, however, the biological safety of these NMs is still unknown. Here, we used the LaNiO3 NM (LNO), a typical kind of perovskite nanostructures to study the interaction with macrophages (J774A.1) and to explore its biological effects at the cellular level. Firstly, we characterized the properties of LNO including the size, shape, and crystal structure using Transmission electronic microscope (TEM), Dynamic lighting scattering (DLS), and X-ray diffraction (XRD). Secondly, to gain a better understanding of the biological effect, we evaluated the effect of LNO on cell viability and found that LNO induced cell autophagy at a concentration of 5 μg/ml and influenced the inflammatory response based on RT-PCR result. Finally, we demonstrated the mechanism that LNO causes cell autophagy and immune response is probably due to the metal ions released from LNO in acidic lysosomes, which triggered ROS and increased lysosomal membrane permeation. This study indicates the safety aspect of perovskite NMs and may guide the rational design of perovskite NMs with more biocompatibility during their manufacture and application.
Collapse
Affiliation(s)
- Yang Wei
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China.,CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, and Beijing Metallomics Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Xuejiao Gao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Feng Zhao
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, and Beijing Metallomics Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Didar Baimanov
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, and Beijing Metallomics Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yalin Cong
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, and Beijing Metallomics Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, Beijing, China
| | - Yingying Jiang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, and Beijing Metallomics Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.,School of Public Health, Qingdao University, Qingdao, China
| | - Saima Hameed
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, and Beijing Metallomics Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
| | - Yixin Ouyang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, and Beijing Metallomics Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.,School of Public Health, Capital Medical University, Beijing, China
| | - Xingfa Gao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, China
| | - Xiaoying Lin
- College of Pharmacy, Jilin Medical University, Jilin, China
| | - Liming Wang
- CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety & CAS-HKU Joint Laboratory of Metallomics on Health and Environment, and Beijing Metallomics Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Zhang C, Gao Y, Du C, Markowitz GJ, Fu J, Zhang Z, Liu C, Qin W, Wang H, Wang F, Yang P. Hepatitis B-Induced IL8 Promotes Hepatocellular Carcinoma Venous Metastasis and Intrahepatic Treg Accumulation. Cancer Res 2021; 81:2386-2398. [PMID: 33653774 DOI: 10.1158/0008-5472.can-20-3453] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/18/2021] [Accepted: 03/01/2021] [Indexed: 12/24/2022]
Abstract
Hepatitis B-associated hepatocellular carcinoma (HCC) is often accompanied by severe vascular invasion and portal vein tumor thrombus, leading to a poor prognosis. However, the underlying mechanism of this disease remains obscure. In this study, we demonstrate that the hepatitis B virus (HBV)-encoded gene HBx induces high IL8 production through MEK-ERK signal activation, leading to enhanced endothelial permeability to facilitate tumor vascular invasion. In a vascular metastatic model using a tail vein injection in a transgenic mouse with selective expression of human CXCR1 in the endothelium, activation of the IL8-CXCR1 cascade by overexpression of IL8 in tumor cells dramatically enhanced liver metastasis. Mechanistically, IL8 selectively induced GARP-latent-TGFβ in liver sinusoidal endothelial cells and subsequently provoked preferential regulatory T-cell polarization to suppress antitumor immunity. Collectively, these findings reveal a hepatitis B-associated IL8-CXCR1 signaling axis that mediates vascular invasion and local microenvironmental immune escape of HCC to induce intrahepatic metastasis, which may serve as potential therapeutic targets for HBV-associated HCC. SIGNIFICANCE: This study identifies a hepatitis B-induced IL8/CXCR1/TGFβ signaling cascade that suppresses antitumor immunity and enhances metastasis in hepatocellular carcinoma, providing new potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Changlu Zhang
- School of Life Sciences, University of Science and Technology of China, Hefei, China.,CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Yanan Gao
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Chengzhi Du
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Geoffrey J Markowitz
- Department of Cardiothoracic Surgery and Department of Cell and Developmental Biology, Neuberger Berman Lung Cancer Center, Weill Cornell Medicine, New York, New York
| | - Jing Fu
- National Center for Liver Cancer, Shanghai Key Laboratory of Hepato-Biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Zhenxing Zhang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Chunliang Liu
- National Center for Liver Cancer, Shanghai Key Laboratory of Hepato-Biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Wenhao Qin
- National Center for Liver Cancer, Shanghai Key Laboratory of Hepato-Biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Hongyang Wang
- National Center for Liver Cancer, Shanghai Key Laboratory of Hepato-Biliary Tumor Biology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Fan Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China. .,Medical Isotopes Research Center and Department of Radiation Medicine, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Pengyuan Yang
- School of Life Sciences, University of Science and Technology of China, Hefei, China. .,CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
16
|
Zhang LL, Zhang XY, Lu YY, Bi YD, Liu XL, Fang F. The Role of Autophagy in Murine Cytomegalovirus Hepatitis. Viral Immunol 2021; 34:241-255. [PMID: 33566740 DOI: 10.1089/vim.2020.0024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Autophagy is involved in the pathogenesis of multiple pathogen infection. Previous studies have reported that human cytomegalovirus (CMV) activates autophagy in the early stage of infection and then inhibits autophagy. Little is known about the role of autophagy in murine CMV (MCMV) infection, especially in MCMV-induced hepatitis. The purpose of this study is to investigate the role of autophagy in MCMV hepatitis. BALB/c mice were infected with MCMV and a series of experiments involving western blot, immunofluorescence, immunohistochemistry, H&E (Hematoxylin and Eosin) staining and quantitative real-time polymerase chain reaction were performed in this study. The expression of SQSTM1/p62, PI3K, the ratio of phosphorylated Akt to total Akt, and the ratio of phosphorylated mammalian target of rapamycin (mTOR) to total mTOR were increased, and the expression of light-chain 3 (LC3)-II were decreased in the livers of infected mice on days 3 and 7 postinfection (p.i.). Compared with the untreated infected group, increased transcription level of MCMV glycoprotein B (gB), increased expression levels of interleukin1-β (IL-1β), aspartate aminotransferase (AST) and alanine aminotransferase (ALT), decreased expression level of type I interferon α (IFN-α), as well as aggravated liver pathological injury were detected in starvation-treated infected group on days 3 and 7 p.i.; whereas decreased transcription level of MCMV gB, decreased expression levels of IL-1β, AST and ALT, increased expression level of type I IFN-α, as well as alleviated liver pathological injury were detected in chloroquine (CQ)-treated infected group on day 3 p.i. In conclusion, autophagy is inhibited through activating the PI3K/Akt/mTOR pathway in the liver of BALB/c mice during MCMV infection, and autophagy may promote MCMV replication and aggravate liver pathological damage and inflammation. Further understanding of the interactions between autophagy and MCMV infection and its potential mechanism may bring new important cues to the control of MCMV infection and antiviral therapy.
Collapse
Affiliation(s)
- Lin-Lin Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin-Yan Zhang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan-Yuan Lu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-Dan Bi
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing-Lou Liu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Fang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
17
|
Role of Hypoxia-Mediated Autophagy in Tumor Cell Death and Survival. Cancers (Basel) 2021; 13:cancers13030533. [PMID: 33573362 PMCID: PMC7866864 DOI: 10.3390/cancers13030533] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
Programmed cell death or type I apoptosis has been extensively studied and its contribution to the pathogenesis of disease is well established. However, autophagy functions together with apoptosis to determine the overall fate of the cell. The cross talk between this active self-destruction process and apoptosis is quite complex and contradictory as well, but it is unquestionably decisive for cell survival or cell death. Autophagy can promote tumor suppression but also tumor growth by inducing cancer-cell development and proliferation. In this review, we will discuss how autophagy reprograms tumor cells in the context of tumor hypoxic stress. We will illustrate how autophagy acts as both a suppressor and a driver of tumorigenesis through tuning survival in a context dependent manner. We also shed light on the relationship between autophagy and immune response in this complex regulation. A better understanding of the autophagy mechanisms and pathways will undoubtedly ameliorate the design of therapeutics aimed at targeting autophagy for future cancer immunotherapies.
Collapse
|
18
|
Kouroumalis E, Voumvouraki A, Augoustaki A, Samonakis DN. Autophagy in liver diseases. World J Hepatol 2021; 13:6-65. [PMID: 33584986 PMCID: PMC7856864 DOI: 10.4254/wjh.v13.i1.6] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/10/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is the liver cell energy recycling system regulating a variety of homeostatic mechanisms. Damaged organelles, lipids and proteins are degraded in the lysosomes and their elements are re-used by the cell. Investigations on autophagy have led to the award of two Nobel Prizes and a health of important reports. In this review we describe the fundamental functions of autophagy in the liver including new data on the regulation of autophagy. Moreover we emphasize the fact that autophagy acts like a two edge sword in many occasions with the most prominent paradigm being its involvement in the initiation and progress of hepatocellular carcinoma. We also focused to the implication of autophagy and its specialized forms of lipophagy and mitophagy in the pathogenesis of various liver diseases. We analyzed autophagy not only in well studied diseases, like alcoholic and nonalcoholic fatty liver and liver fibrosis but also in viral hepatitis, biliary diseases, autoimmune hepatitis and rare diseases including inherited metabolic diseases and also acetaminophene hepatotoxicity. We also stressed the different consequences that activation or impairment of autophagy may have in hepatocytes as opposed to Kupffer cells, sinusoidal endothelial cells or hepatic stellate cells. Finally, we analyzed the limited clinical data compared to the extensive experimental evidence and the possible future therapeutic interventions based on autophagy manipulation.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Liver Research Laboratory, University of Crete Medical School, Heraklion 71110, Greece
| | - Argryro Voumvouraki
- 1 Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54636, Greece
| | - Aikaterini Augoustaki
- Department of Gastroenterology and Hepatology, University Hospital of Crete, Heraklion 71110, Greece
| | - Dimitrios N Samonakis
- Department of Gastroenterology and Hepatology, University Hospital of Crete, Heraklion 71110, Greece.
| |
Collapse
|
19
|
Golbabapour S, Bagheri-Lankarani K, Ghavami S, Geramizadeh B. Autoimmune Hepatitis and Stellate Cells: An Insight into the Role of Autophagy. Curr Med Chem 2020; 27:6073-6095. [PMID: 30947648 DOI: 10.2174/0929867326666190402120231] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 03/11/2019] [Accepted: 03/15/2019] [Indexed: 02/08/2023]
Abstract
Autoimmune hepatitis is a necroinflammatory process of liver, featuring interface hepatitis
by T cells, macrophages and plasma cells that invade to periportal parenchyma. In this process, a
variety of cytokines are secreted and liver tissues undergo fibrogenesis, resulting in the apoptosis of
hepatocytes. Autophagy is a complementary mechanism for restraining intracellular pathogens to
which the innate immune system does not provide efficient endocytosis. Hepatocytes with their
particular regenerative features are normally in a quiescent state, and, autophagy controls the accumulation
of excess products, therefore the liver serves as a basic model for the study of autophagy.
Impairment of autophagy in the liver causes the accumulation of damaged organelles, misfolded
proteins and exceeded lipids in hepatocytes as seen in metabolic diseases. In this review, we introduce
autoimmune hepatitis in association with autophagy signaling. We also discuss some genes and
proteins of autophagy, their regulatory roles in the activation of hepatic stellate cells and the importance
of lipophagy and tyrosine kinase in hepatic fibrogenesis. In order to provide a comprehensive
overview of the regulatory role of autophagy in autoimmune hepatitis, the pathway analysis of autophagy
in autoimmune hepatitis is also included in this article.
Collapse
Affiliation(s)
- Shahram Golbabapour
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Queen Elizabeth Hospital, Birmingham, B15 2WB, United Kingdom
| | - Kamran Bagheri-Lankarani
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeid Ghavami
- Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Bita Geramizadeh
- Department of Pathology, Medical school of Shiraz University, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
20
|
Lin Y, Zhao Z, Huang A, Lu M. Interplay between Cellular Autophagy and Hepatitis B Virus Replication: A Systematic Review. Cells 2020; 9:cells9092101. [PMID: 32942717 PMCID: PMC7563265 DOI: 10.3390/cells9092101] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 12/18/2022] Open
Abstract
Autophagy, a conserved process in which cells break down and destroy old, damaged, or abnormal proteins and other substances in the cytoplasm through lysosomal degradation, occurs via autophagosome formation and aids in the maintenance of intracellular homeostasis. Autophagy is closely associated with hepatitis B virus (HBV) replication and assembly. Currently, HBV infection is still one of the most serious public health issues worldwide. The unavailability of satisfactory therapeutic strategies for chronic HBV infection indicates an urgent need to elucidate the mechanisms underlying the pathogenesis of HBV infection. Increasing evidence has shown that HBV not only possesses the ability to induce incomplete autophagy but also evades autophagic degradation, indicating that HBV utilizes or hijacks the autophagy machinery for its own replication. Therefore, autophagy might be a crucial target pathway for controlling HBV infection. The definite molecular mechanisms underlying the association between cellular autophagy and HBV replication require further clarification. In this review, we have summarized and discussed the latest findings on the interplay between autophagy and HBV replication.
Collapse
Affiliation(s)
- Yong Lin
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing 400016, China; (Z.Z.); (A.H.)
- Correspondence: (Y.L.); (M.L.); Tel./Fax: +86-236-848-6780 (Y.L.); Tel.: +49-2017233530 (M.L.); +49-2017235929 (M.L.)
| | - Zhenyu Zhao
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing 400016, China; (Z.Z.); (A.H.)
| | - Ailong Huang
- Key Laboratory of Molecular Biology of Infectious Diseases (Chinese Ministry of Education), The Second Affiliated Hospital, Institute for Viral Hepatitis, Chongqing Medical University, Chongqing 400016, China; (Z.Z.); (A.H.)
| | - Mengji Lu
- Institute of Virology, University Hospital Essen, University of Duisburg-Essen, 45122 Essen, Germany
- Correspondence: (Y.L.); (M.L.); Tel./Fax: +86-236-848-6780 (Y.L.); Tel.: +49-2017233530 (M.L.); +49-2017235929 (M.L.)
| |
Collapse
|
21
|
Cicco S, Cicco G, Racanelli V, Vacca A. Neutrophil Extracellular Traps (NETs) and Damage-Associated Molecular Patterns (DAMPs): Two Potential Targets for COVID-19 Treatment. Mediators Inflamm 2020; 2020:7527953. [PMID: 32724296 PMCID: PMC7366221 DOI: 10.1155/2020/7527953] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/11/2020] [Accepted: 06/30/2020] [Indexed: 12/17/2022] Open
Abstract
COVID-19 is a pandemic disease caused by the new coronavirus SARS-CoV-2 that mostly affects the respiratory system. The consequent inflammation is not able to clear viruses. The persistent excessive inflammatory response can build up a clinical picture that is very difficult to manage and potentially fatal. Modulating the immune response plays a key role in fighting the disease. One of the main defence systems is the activation of neutrophils that release neutrophil extracellular traps (NETs) under the stimulus of autophagy. Various molecules can induce NETosis and autophagy; some potent activators are damage-associated molecular patterns (DAMPs) and, in particular, the high-mobility group box 1 (HMGB1). This molecule is released by damaged lung cells and can induce a robust innate immunity response. The increase in HMGB1 and NETosis could lead to sustained inflammation due to SARS-CoV-2 infection. Therefore, blocking these molecules might be useful in COVID-19 treatment and should be further studied in the context of targeted therapy.
Collapse
Affiliation(s)
- Sebastiano Cicco
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro Medical School, Piazza G. Cesare 11, I-70124 Bari, Italy
| | - Gerolamo Cicco
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro Medical School, Piazza G. Cesare 11, I-70124 Bari, Italy
| | - Vito Racanelli
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro Medical School, Piazza G. Cesare 11, I-70124 Bari, Italy
| | - Angelo Vacca
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro Medical School, Piazza G. Cesare 11, I-70124 Bari, Italy
| |
Collapse
|
22
|
Hu Z, Pan Y, Cheng A, Zhang X, Wang M, Chen S, Zhu D, Liu M, Yang Q, Wu Y, Zhao X, Huang J, Zhang S, Mao S, Ou X, Yu Y, Zhang L, Liu Y, Tian B, Pan L, Rehman MU, Yin Z, Jia R. Autophagy Is a Potential Therapeutic Target Against Duck Tembusu Virus Infection in vivo. Front Cell Infect Microbiol 2020; 10:155. [PMID: 32351903 PMCID: PMC7174708 DOI: 10.3389/fcimb.2020.00155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 03/24/2020] [Indexed: 12/18/2022] Open
Abstract
Duck tembusu virus (DTMUV) is newly emerged in poultry and causes great losses to the breeding industry in China and neighboring countries. Effective antiviral strategies are still being studied. Autophagy is a cellular degradative pathway, and our lab's previous data show that autophagy promotes DTMUV replication in vitro. To study the role of autophagy further in vivo, we utilized ducks as the animal model to investigate the autophagy responses in DTMUV-targeted tissues. And also, we utilized autophagy regulators, including Rapamycin (Rapa) as the autophagy enhancer, 3-Methyladenine (3-MA) and Chloroquine (CQ) as the autophagy inhibitors, to adjust the host autophagic levels and then study the effects of autophagy on tissue damages and virus replication. As a result, we first found DTMUV infection trigged autophagy and autophagy regulator treatments regulated autophagy levels successfully in duck spleens and brains. Next, we found that autophagy inhibitors inhibited DTMUV replication and alleviated DTMUV-induced pathological symptoms, whereas the autophagy inducer treatment led to the opposite effects. And we also found that autophagic regulation was correlated with the expression of innate immune genes, including pattern recognition receptors, type I interferons, and cytokines, and caused different effects in different tissues. In summary, we demonstrated that autophagy facilitated DTMUV replication, aggravated the developments of pathological symptoms and possibly counteracts the host's innate immunity response in vivo.
Collapse
Affiliation(s)
- Zhiqiang Hu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Yuhong Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Xingcui Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Dekang Zhu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Yanling Yu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Ling Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Yunya Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Leichang Pan
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Mujeeb Ur Rehman
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Zhongqiong Yin
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, China.,Avian Disease Research Center, College of Veterinary Medicine of Sichuan Agricultural University, Wenjiang, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, China
| |
Collapse
|
23
|
Ke PY. Mitophagy in the Pathogenesis of Liver Diseases. Cells 2020; 9:cells9040831. [PMID: 32235615 PMCID: PMC7226805 DOI: 10.3390/cells9040831] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 02/07/2023] Open
Abstract
Autophagy is a catabolic process involving vacuolar sequestration of intracellular components and their targeting to lysosomes for degradation, thus supporting nutrient recycling and energy regeneration. Accumulating evidence indicates that in addition to being a bulk, nonselective degradation mechanism, autophagy may selectively eliminate damaged mitochondria to promote mitochondrial turnover, a process termed “mitophagy”. Mitophagy sequesters dysfunctional mitochondria via ubiquitination and cargo receptor recognition and has emerged as an important event in the regulation of liver physiology. Recent studies have shown that mitophagy may participate in the pathogenesis of various liver diseases, such as liver injury, liver steatosis/fatty liver disease, hepatocellular carcinoma, viral hepatitis, and hepatic fibrosis. This review summarizes the current knowledge on the molecular regulations and functions of mitophagy in liver physiology and the roles of mitophagy in the development of liver-related diseases. Furthermore, the therapeutic implications of targeting hepatic mitophagy to design a new strategy to cure liver diseases are discussed.
Collapse
Affiliation(s)
- Po-Yuan Ke
- Department of Biochemistry & Molecular Biology and Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan; ; Tel.: +886-3-211-8800 (ext. 5115); Fax: +886-3-211-8700
- Liver Research Center, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
- Division of Allergy, Immunology, and Rheumatology, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| |
Collapse
|
24
|
Vescovo T, Pagni B, Piacentini M, Fimia GM, Antonioli M. Regulation of Autophagy in Cells Infected With Oncogenic Human Viruses and Its Impact on Cancer Development. Front Cell Dev Biol 2020; 8:47. [PMID: 32181249 PMCID: PMC7059124 DOI: 10.3389/fcell.2020.00047] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/20/2020] [Indexed: 12/14/2022] Open
Abstract
About 20% of total cancer cases are associated to infections. To date, seven human viruses have been directly linked to cancer development: high-risk human papillomaviruses (hrHPVs), Merkel cell polyomavirus (MCPyV), hepatitis B virus (HBV), hepatitis C virus (HCV), Epstein–Barr virus (EBV), Kaposi’s sarcoma-associated herpesvirus (KSHV), and human T-lymphotropic virus 1 (HTLV-1). These viruses impact on several molecular mechanisms in the host cells, often resulting in chronic inflammation, uncontrolled proliferation, and cell death inhibition, and mechanisms, which favor viral life cycle but may indirectly promote tumorigenesis. Recently, the ability of oncogenic viruses to alter autophagy, a catabolic process activated during the innate immune response to infections, is emerging as a key event for the onset of human cancers. Here, we summarize the current understanding of the molecular mechanisms by which human oncogenic viruses regulate autophagy and how this negative regulation impacts on cancer development. Finally, we highlight novel autophagy-related candidates for the treatment of virus-related cancers.
Collapse
Affiliation(s)
- Tiziana Vescovo
- National Institute for Infectious Diseases "Lazzaro Spallanzani" - IRCCS, Rome, Italy
| | - Benedetta Pagni
- National Institute for Infectious Diseases "Lazzaro Spallanzani" - IRCCS, Rome, Italy.,Department of Biology, University of Rome "Tor Vergata," Rome, Italy
| | - Mauro Piacentini
- National Institute for Infectious Diseases "Lazzaro Spallanzani" - IRCCS, Rome, Italy.,Department of Biology, University of Rome "Tor Vergata," Rome, Italy
| | - Gian Maria Fimia
- National Institute for Infectious Diseases "Lazzaro Spallanzani" - IRCCS, Rome, Italy.,Department of Molecular Medicine, University of Rome "Sapienza," Rome, Italy
| | - Manuela Antonioli
- National Institute for Infectious Diseases "Lazzaro Spallanzani" - IRCCS, Rome, Italy
| |
Collapse
|
25
|
Kang R, Zeh H, Lotze M, Tang D. The Multifaceted Effects of Autophagy on the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1225:99-114. [PMID: 32030650 DOI: 10.1007/978-3-030-35727-6_7] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The tumor microenvironment is composed of cancer cells, noncancer cells (e.g., immune cells, stromal cells, endothelial cells, and adipocytes), and various mediators (e.g., cytokines, chemokines, growth factors, and humoral factors) that work together to support cancer growth, progression, and resistance to therapies. Autophagy is an evolutionarily conserved degradation mechanism by which various cytosolic cargos (e.g., damaged organelles, unused molecules, or invaded pathogens) are engulfed by double-membrane autophagosomes, and then delivered into the lysosome for degradation and recycling. The level of autophagy is a crucial threshold to either promote cell survival or induce cell death in response to environmental stresses. Autophagy plays a context-dependent role in tumorigenesis and anticancer therapy via shaping the inflammatory, hypoxic, immunosuppressive, and metabolic tumor microenvironment. In particular, impaired autophagy flux is associated with chronic inflammation, immunosuppression, stromal formation, cancer stemness, angiogenesis, metastasis, and metabolic reprogramming in the tumor microenvironment. Understanding the molecular machinery of autophagy and its communication with hallmarks of cancer could lead to potential new anticancer strategies or drugs.
Collapse
Affiliation(s)
- Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| | - Herbert Zeh
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Michael Lotze
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
26
|
Zhang F, Chen C, Hu J, Su R, Zhang J, Han Z, Chen H, Li Y. Molecular mechanism of Helicobacter pylori-induced autophagy in gastric cancer. Oncol Lett 2019; 18:6221-6227. [PMID: 31788098 DOI: 10.3892/ol.2019.10976] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/26/2019] [Indexed: 12/14/2022] Open
Abstract
Helicobacter pylori (H. pylori) is a gram-negative pathogen that colonizes gastric epithelial cells. The drug resistance rates of H. pylori have dramatically increased, causing persistent infections. Chronic infection by H. pylori is a critical cause of gastritis, peptic ulcers and even gastric cancer. In host cells, autophagy is stimulated to maintain cellular homeostasis following intracellular pathogen recognition by the innate immune defense system. However, H. pylori-induced autophagy is not consistent during acute and chronic infection. Therefore, a deeper understanding of the association between H. pylori infection and autophagy in gastric epithelial cells could aid the understanding of the mechanisms of persistent infection and the identification of autophagy-associated therapeutic targets for H. pylori infection. The present review describes the role of H. pylori and associated virulence factors in the induction of autophagy by different signaling pathways during acute infection. Additionally, the inhibition of autophagy in gastric epithelial cells during chronic infection was discussed. The present review summarized H. pylori-mediated autophagy and provided insights into its mechanism of action, suggesting the induction of autophagy as a novel therapeutic target for persistent H. pylori infection.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Oncology Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Cong Chen
- Department of Oncology Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Jike Hu
- Department of Oncology Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Ruiliang Su
- Department of Oncology Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Junqiang Zhang
- Department of Oncology Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Zhijian Han
- Department of Oncology Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Hao Chen
- Department of Oncology Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| | - Yumin Li
- Department of Oncology Surgery, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China.,Key Laboratory of Digestive System Tumors of Gansu Province, Lanzhou University Second Hospital, Lanzhou, Gansu 730030, P.R. China
| |
Collapse
|
27
|
Bender D, Hildt E. Effect of Hepatitis Viruses on the Nrf2/Keap1-Signaling Pathway and Its Impact on Viral Replication and Pathogenesis. Int J Mol Sci 2019; 20:ijms20184659. [PMID: 31546975 PMCID: PMC6769940 DOI: 10.3390/ijms20184659] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 12/15/2022] Open
Abstract
With respect to their genome and their structure, the human hepatitis B virus (HBV) and hepatitis C virus (HCV) are complete different viruses. However, both viruses can cause an acute and chronic infection of the liver that is associated with liver inflammation (hepatitis). For both viruses chronic infection can lead to fibrosis, cirrhosis and hepatocellular carcinoma (HCC). Reactive oxygen species (ROS) play a central role in a variety of chronic inflammatory diseases. In light of this, this review summarizes the impact of both viruses on ROS-generating and ROS-inactivating mechanisms. The focus is on the effect of both viruses on the transcription factor Nrf2 (nuclear factor erythroid 2 (NF-E2)-related factor 2). By binding to its target sequence, the antioxidant response element (ARE), Nrf2 triggers the expression of a variety of cytoprotective genes including ROS-detoxifying enzymes. The review summarizes the literature about the pathways for the modulation of Nrf2 that are deregulated by HBV and HCV and describes the impact of Nrf2 deregulation on the viral life cycle of the respective viruses and the virus-associated pathogenesis.
Collapse
Affiliation(s)
- Daniela Bender
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straβe 51-59, D-63225 Langen, Germany.
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straβe 51-59, D-63225 Langen, Germany.
| |
Collapse
|
28
|
Abdoli A, Nakhaie M, Feizi N, Salimi Jeda A, Ramezani A. Harmonized Autophagy Versus Full-Fledged Hepatitis B Virus: Victorious or Defeated. Viral Immunol 2019; 32:322-334. [PMID: 31483214 DOI: 10.1089/vim.2019.0042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Autophagy is a finely tuned process in the regulation of innate immunity to avoid excessive inflammatory responses and inflammasome signaling. In contrast, the results of recent studies have shown that autophagy may disease-dependently contribute to the pathogenesis of liver diseases, such as fibrosis, cirrhosis, and hepatocellular carcinoma (HCC) during hepatitis B virus (HBV) infection. HBV has learned to subvert the cell's autophagic machinery to promote its replication. Given the great impact of the autophagy mechanism on the HBV infection and HCC, recognizing these factors may be offered new hope for human intervention and treatment of chronic HBV. This review focuses on recent findings viewing the dual role of autophagy plays in the pathogenesis of HBV infected hepatocytes.
Collapse
Affiliation(s)
- Asghar Abdoli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Mohsen Nakhaie
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Neda Feizi
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Ali Salimi Jeda
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amitis Ramezani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
29
|
Shokri S, Mahmoudvand S, Taherkhani R, Farshadpour F, Jalalian FA. Complexity on modulation of NF-κB pathways by hepatitis B and C: A double-edged sword in hepatocarcinogenesis. J Cell Physiol 2019; 234:14734-14742. [PMID: 30741410 DOI: 10.1002/jcp.28249] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 01/24/2023]
Abstract
Nuclear factor-κB (NF-κB), a family of master regulated dimeric transcription factors, signaling transduction pathways are active players in the cell signaling that control vital cellular processes, including cell growth, proliferation, differentiation, apoptosis, morphogenesis, angiogenesis, and immune responses. Nevertheless, aberrant regulation of the NF-κB signaling pathways has been associated with a significant number of human cancers. In fact, NF-κB acts as a double-edged sword in the vital cellular processes and carcinogenesis. This review provides an overview on the modulation of the NF-κB signaling pathways by proteins of hepatitis B and C viruses. One of the major NF-κB events that are modulated by these viruses is the induction of hepatocellular carcinoma. Given the central function of NF-κB in carcinogenesis, it has turned out to be a considerable therapeutic target for cancer therapy.
Collapse
Affiliation(s)
- Somayeh Shokri
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahab Mahmoudvand
- Department of Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reza Taherkhani
- The Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Fatemeh Farshadpour
- The Persian Gulf Tropical Medicine Research Center, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Farid Azizi Jalalian
- Department of Virology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
30
|
Xie L, Huang Y. Antagonism of RIP1 using necrostatin-1 (Nec-1) ameliorated damage and inflammation of HBV X protein (HBx) in human normal hepatocytes. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1194-1199. [PMID: 30963789 DOI: 10.1080/21691401.2019.1575231] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Linsen Xie
- Department of Clinical Laboratory, Zhengzhou Central Hospital Affiliated To Zhengzhou University, Zhengzhou, China
| | - Yongjie Huang
- Department of Clinical Laboratory, Zhengzhou Central Hospital Affiliated To Zhengzhou University, Zhengzhou, China
| |
Collapse
|
31
|
Cao L, Zhang X, Yuan S, Cheng K, Zhang X. Autophagy induced by enterovirus 71 regulates the production of IL-6 through the p38MAPK and ERK signaling pathways. Microb Pathog 2019; 131:120-127. [PMID: 30910719 DOI: 10.1016/j.micpath.2019.03.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 02/25/2019] [Accepted: 03/21/2019] [Indexed: 01/29/2023]
Abstract
Enterovirus 71 (EV71) is the main causative agent of hand, foot, and mouth disease (HFMD), which has high morbidity and mortality. It mainly threatens children under six years of age. Because of a poor understanding of its pathogenesis, there are no effective drugs to control EV71 infection. Previous studies showed that EV71 infection induced autophagy and the production of cytokine IL-6. However, the underlying mechanisms between autophagy and the production of IL-6 induced by EV71 remain unclear. This study aimed to reveal the regulatory mechanisms between autophagy and the expression of IL-6 induced by EV71 infection. Our results showed that the proliferation of human gastric epithelial (GES-1) cells was inhibited by EV71 in a time- and dose-dependent manner. In addition, EV71 induced autophagy in GES-1 cells. EV71 infection promoted the expression and the release of IL-6 to the extracellular space, although the expression and release were inhibited by autophagy inhibitors 3-methyladenine (3-MA) and chloroquine (CQ) in GES-1 cells. The phosphorylated levels of p38MAPK and ERK proteins in GES-1 cells also increased after infection with EV71, and these changes were also reversed by 3-MA and CQ treatment. Our findings suggested that EV71-induced autophagy regulated the production of IL-6 through the p38MAPK and ERK signaling pathways.
Collapse
Affiliation(s)
- Li Cao
- Fenyang College of Shanxi Medical University, Fenyang, China; Graduate School of Shanxi Medical University, Taiyuan, China
| | - Xinyan Zhang
- Fenyang College of Shanxi Medical University, Fenyang, China; Graduate School of Shanxi Medical University, Taiyuan, China
| | - Sumei Yuan
- Fenyang College of Shanxi Medical University, Fenyang, China
| | - Kai Cheng
- Fenyang College of Shanxi Medical University, Fenyang, China
| | - Xiaoyan Zhang
- Fenyang College of Shanxi Medical University, Fenyang, China; Graduate School of Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
32
|
Jiang GM, Tan Y, Wang H, Peng L, Chen HT, Meng XJ, Li LL, Liu Y, Li WF, Shan H. The relationship between autophagy and the immune system and its applications for tumor immunotherapy. Mol Cancer 2019; 18:17. [PMID: 30678689 PMCID: PMC6345046 DOI: 10.1186/s12943-019-0944-z] [Citation(s) in RCA: 243] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/14/2019] [Indexed: 12/15/2022] Open
Abstract
Autophagy is a genetically well-controlled cellular process that is tightly controlled by a set of core genes, including the family of autophagy-related genes (ATG). Autophagy is a “double-edged sword” in tumors. It can promote or suppress tumor development, which depends on the cell and tissue types and the stages of tumor. At present, tumor immunotherapy is a promising treatment strategy against tumors. Recent studies have shown that autophagy significantly controls immune responses by modulating the functions of immune cells and the production of cytokines. Conversely, some cytokines and immune cells have a great effect on the function of autophagy. Therapies aiming at autophagy to enhance the immune responses and anti-tumor effects of immunotherapy have become the prospective strategy, with enhanced antigen presentation and higher sensitivity to CTLs. However, the induction of autophagy may also benefit tumor cells escape from immune surveillance and result in intrinsic resistance against anti-tumor immunotherapy. Increasing studies have proven the optimal use of either ATG inducers or inhibitors can restrain tumor growth and progression by enhancing anti-tumor immune responses and overcoming the anti-tumor immune resistance in combination with several immunotherapeutic strategies, indicating that induction or inhibition of autophagy might show us a prospective therapeutic strategy when combined with immunotherapy. In this article, the possible mechanisms of autophagy regulating immune system, and the potential applications of autophagy in tumor immunotherapy will be discussed.
Collapse
Affiliation(s)
- Guan-Min Jiang
- Department of Clinical laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China. .,Central Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China.
| | - Yuan Tan
- Department of Clinical Laboratory, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hao Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
| | - Liang Peng
- Department of Clinical laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Hong-Tao Chen
- Department of Clinical laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Xiao-Jun Meng
- Department of Endocrinology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Ling-Ling Li
- Central Laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Yan Liu
- Department of Clinical laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Wen-Fang Li
- Department of Clinical laboratory, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Hong Shan
- Key Laboratory of Biomedical Imaging of Guangdong Province, Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong, China.
| |
Collapse
|
33
|
Autophagy and Its Role in Protein Secretion: Implications for Cancer Therapy. Mediators Inflamm 2018; 2018:4231591. [PMID: 30622432 PMCID: PMC6304875 DOI: 10.1155/2018/4231591] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 09/26/2018] [Accepted: 10/02/2018] [Indexed: 12/11/2022] Open
Abstract
Autophagy is a protein and organelle degradation pathway important for the maintenance of cytoplasmic homeostasis and for providing nutrients for survival in response to stress conditions. Recently, autophagy has been shown to be important for the secretion of diverse proteins involved in inflammation, intercellular signaling, and cancer progression. The role of autophagy in cancer depends on the stage of tumorigenesis, serving a tumor-suppressor role before transformation and a tumor-survival function once a tumor is established. We review recent evidence demonstrating the complexity of autophagy regulation during cancer, considering the interaction of autophagy with protein secretion pathways. Autophagy manipulation during cancer treatment is likely to affect protein secretion andinter-cellular signaling either to the neighboring cancer cells or to the antitumoral immune response. This will be an important consideration during cancer therapy since several clinical trials are trying to manipulate autophagy in combination with chemotherapy for the treatment of diverse types of cancers.
Collapse
|
34
|
ER stress regulating protein phosphatase 2A-B56γ, targeted by hepatitis B virus X protein, induces cell cycle arrest and apoptosis of hepatocytes. Cell Death Dis 2018; 9:762. [PMID: 29988038 PMCID: PMC6037732 DOI: 10.1038/s41419-018-0787-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/08/2018] [Accepted: 06/13/2018] [Indexed: 12/13/2022]
Abstract
Hepatitis B virus X (HBx) protein contributes to the progression of hepatitis B virus (HBV)-related hepatic injury and diseases, but the exact mechanism remains unclear. Protein phosphatase 2 A (PP2A) is a major serine/threonine phosphatase involved in regulating many cellular phosphorylation signals that are important for regulation of cell cycle and apoptosis. Does HBx target to PP2A-B56γ and therefore affect HBx-induced hepatotoxicity? In the present study, the expression of B56γ positively correlated with the level of HBx in HBV-infected primary human hepatocytes in human-liver-chimeric mice, HBx-transgenic mice, HBV-infected cells, and HBx-expressing hepatic cells. B56γ promoted p53/p21-dependent cell cycle arrest and apoptosis. Mechanistically, B56γ was transactivated by AP-1, which was under the regulation of endoplasmic reticulum (ER) stress induced CREBH signaling in HBx-expressing hepatic cells. B56γ dephosphorylated p-Thr55-p53 to trigger p53/p21 pathway-dependent cell cycle G1 phase arrest, resulting in apoptosis of hepatic cells. In conclusion, this study provides a novel insight into a mechanism of B56γ mediating cell cycle arrest and apoptosis of HBx-expressing hepatic cells and a basis for B56γ being a potential therapeutic target for HBV-infected hepatic cells.
Collapse
|
35
|
Duan Y, Tian L, Gao Q, Liang L, Zhang W, Yang Y, Zheng Y, Pan E, Li S, Tang N. Chromatin remodeling gene ARID2 targets cyclin D1 and cyclin E1 to suppress hepatoma cell progression. Oncotarget 2018; 7:45863-45875. [PMID: 27351279 PMCID: PMC5216766 DOI: 10.18632/oncotarget.10244] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/03/2016] [Indexed: 12/11/2022] Open
Abstract
Exome and whole-genome sequencing studies have drawn attention to the role of somatic mutations in SWI/SNF chromatin remodeling complexes in the carcinogenesis of hepatocellular carcinoma (HCC). Here, we explored the molecular mechanisms underlying the biological roles of AT-rich interactive domain 2 (ARID2) in the pathogenesis of HCC. We found that ARID2 expression was significantly downregulated in HCC tissues compared with non-tumorous tissues. Restoration of ARID2 expression in hepatoma cells was sufficient to suppress cell proliferation and tumor growth in mice, whereas ARID2 knockdown contributed to the enhancement of cellular proliferation and tumorigenicity. Suppression of ARID2 expression accelerated G1/S transition associated with upregulation of cyclin D1, cyclin E1, CDK4, and phosphorylation of the retinoblastoma protein (Rb). Furthermore, we demonstrated that ARID2 physically interacts with E2F1 and decreases binding of E2F1/RNA Pol II to the promoters of CCND1 and CCNE1. Taken together, these results demonstrate that ARID2 suppresses tumor cell growth through repression of cyclin D1 and cyclin E1 expression, thereby retarding cell cycle progression and cell proliferation in hepatoma cells. These findings highlight the potential role of ARID2 as a tumor growth suppressor in HCC.
Collapse
Affiliation(s)
- Yujie Duan
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China
| | - Ling Tian
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China
| | - Qingzhu Gao
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China
| | - Li Liang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China
| | - Wenlu Zhang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China
| | - Yi Yang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China
| | - Yaqiu Zheng
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China
| | - E Pan
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China
| | - Shengwei Li
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China
| | - Ni Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, PR China
| |
Collapse
|
36
|
Wu WKK, Zhang L, Chan MTV. Autophagy, NAFLD and NAFLD-Related HCC. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1061:127-138. [PMID: 29956211 DOI: 10.1007/978-981-10-8684-7_10] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) will become a dominant cause of hepatocellular carcinoma (HCC) in the coming decade. Whereas the exact molecular mechanisms underlying the progression from simple steatosis, through steatohepatitis, to HCC remains largely unclear, emerging evidence has supported a central role of defective autophagy in the pathogenesis of NAFLD and its complications. Autophagy not only regulates lipid metabolism and insulin resistance, but also protects hepatocytes from injury and cell death. Nevertheless, in inflammation and tumorigenesis, the role of autophagy is more paradoxical. In NAFLD, defective hepatic autophagy occurs at multiple levels through numerous mechanisms and is causally linked to NAFLD-related HCC. In this chapter, we summarize the regulation and function of autophagy in NAFLD and highlight recent identification of potential pharmacological agents for restoring autophagic flux in NAFLD.
Collapse
Affiliation(s)
- William K K Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, Hong Kong. .,State Key Laboratory of Digestive Diseases, Department of Medicine & Therapeutics and LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong.
| | - Lin Zhang
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, Hong Kong.,State Key Laboratory of Digestive Diseases, Department of Medicine & Therapeutics and LKS Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
37
|
Yu S, Wang Y, Jing L, Claret FX, Li Q, Tian T, Liang X, Ruan Z, Jiang L, Yao Y, Nan K, Lv Y, Guo H. Autophagy in the "inflammation-carcinogenesis" pathway of liver and HCC immunotherapy. Cancer Lett 2017; 411:82-89. [PMID: 28987386 DOI: 10.1016/j.canlet.2017.09.049] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Revised: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 02/07/2023]
Abstract
Autophagy plays a dual role in many types of cancer, such as hepatocellular carcinoma (HCC). Autophagy seems to be inhibited and functions as a tumor-suppression mechanism in the "inflammation-carcinogenesis" pathway of the liver, including hepatitis B virus and hepatitis C virus, alcoholic steatohepatitis and non-alcoholic steatohepatitis related HCC. However, in established tumors, autophagy plays a tumor-promoting role. Because of the varied function of autophagy in HCC, we hypothesized p62 as a marker to evaluate the autophagic level. Moreover, autophagy is critical in antigen presentation and homeostasis of immune cells and tumor microenvironment. Understanding the intricate relationships of autophagy, inflammation, and immunity provides us with new insights into HCC immunotherapy.
Collapse
Affiliation(s)
- Sizhe Yu
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Yu Wang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Li Jing
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - F X Claret
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Qing Li
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Tao Tian
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Xuan Liang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Zhiping Ruan
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Lili Jiang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Yu Yao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Kejun Nan
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Yi Lv
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| | - Hui Guo
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, PR China.
| |
Collapse
|
38
|
Luo F, Zou Z, Liu X, Ling M, Wang Q, Wang Q, Lu L, Shi L, Liu Y, Liu Q, Zhang A. Enhanced glycolysis, regulated by HIF-1α via MCT-4, promotes inflammation in arsenite-induced carcinogenesis. Carcinogenesis 2017; 38:615-626. [PMID: 28419250 DOI: 10.1093/carcin/bgx034] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 04/06/2017] [Indexed: 12/14/2022] Open
Abstract
Arsenite is well established as a human carcinogen, but the molecular mechanisms leading to arsenite-induced carcinogenesis are complex and elusive. Accelerated glycolysis, a common process in tumor cells called the Warburg effect, is associated with various biological phenomena. However, the role of glycolysis induced by arsenite is unknown. We have found that, with chronic exposure to arsenite, L-02 cells undergo a metabolic shift to glycolysis. In liver cells exposed to arsenite, hypoxia inducible factor-1α (HIF-1α) and monocarboxylate transporter-4 (MCT-4) are over-expressed. MCT-4, directly mediated by HIF-1α, maintains a high level of glycolysis, and the enhanced glycolysis promotes pro-inflammatory properties, which are involved in arsenite carcinogenesis. In addition, serum lactate and cytokines are higher in arsenite-exposed human populations, and there is a positive correlation between them. Moreover, there is a positive relationship between lactate and cytokines with arsenic in hair. In sum, these findings indicate that MCT-4, mediated by HIF-1α, enhances the glycolysis induced by arsenite. Lactate, the end product of glycolysis, is released into the extracellular environment. The acidic microenvironment promotes production of pro-inflammatory cytokines, which contribute to arsenite-induced liver carcinogenesis. These results provide a link between the induction of glycolysis and inflammation in liver cells exposed to arsenite, and thus establish a previously unknown mechanism for arsenite-induced hepatotoxicity.
Collapse
Affiliation(s)
- Fei Luo
- Institute of Toxicology.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Zhonglan Zou
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China and
| | - Xinlu Liu
- Institute of Toxicology.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Min Ling
- Jiangsu Center for Disease Control and Prevention, Nanjing 210009, Jiangsu, People's Republic of China
| | - Qingling Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China and
| | - Qi Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China and
| | - Lu Lu
- Institute of Toxicology.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Le Shi
- Institute of Toxicology.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Yonglian Liu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China and
| | - Qizhan Liu
- Institute of Toxicology.,The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, Jiangsu, People's Republic of China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China and
| |
Collapse
|
39
|
Autophagy Induced FHL2 Upregulation Promotes IL-6 Production by Activating the NF-κB Pathway in Mouse Aortic Endothelial Cells after Exposure to PM2.5. Int J Mol Sci 2017; 18:ijms18071484. [PMID: 28714941 PMCID: PMC5535974 DOI: 10.3390/ijms18071484] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 06/30/2017] [Accepted: 07/07/2017] [Indexed: 02/06/2023] Open
Abstract
Epidemiological and clinical studies have increasingly shown that fine particulate matter (PM2.5) is associated with cardiovascular morbidity and mortality, which share the common feature of PM2.5-induced vascular inflammation; however, the underlying mechanisms of how PM2.5 triggers increased inflammatory response in vascular endothelial cells are not well understood. After treating mouse aortic endothelial cells (MAECs) with different concentrations of PM2.5, we assessed interleukin (IL)-6 and four and a half LIM domains 2 (FHL2) expression in cell supernatant by enzyme-linked immunosorbent assay and Western blot, respectively, as well as activation of nuclear factor (NF)-κB and immune-response signaling pathways. Additionally, changes in pathway activation, IL-6 expression, and autophagy were evaluated under PM2.5 exposure, following FHL2 knockdown with small interfering RNA. Our results indicated that PM2.5 exposure induced FHL2 expression and IL-6 secretion, as well as activation of pathways associated with immune response. Additionally, following FHL2 knockdown, the activation of NF-κB-related pathways and IL-6 secretion was inhibited under PM2.5 exposure, although the Akt- and p38-signaling pathways were not affected. Furthermore, PM2.5 exposure induced autophagy, whereas autophagy inhibition eventually inhibited PM2.5-induced FHL2 expression. These findings suggested a novel link between autophagy induced FHL2 upregulation and IL-6 production in MAECs under PM2.5 exposure.
Collapse
|
40
|
DNA Oncogenic Virus-Induced Oxidative Stress, Genomic Damage, and Aberrant Epigenetic Alterations. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3179421. [PMID: 28740569 PMCID: PMC5504953 DOI: 10.1155/2017/3179421] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/01/2017] [Accepted: 05/23/2017] [Indexed: 12/18/2022]
Abstract
Approximately 20% of human cancers is attributable to DNA oncogenic viruses such as human papillomavirus (HPV), hepatitis B virus (HBV), and Epstein-Barr virus (EBV). Unrepaired DNA damage is the most common and overlapping feature of these DNA oncogenic viruses and a source of genomic instability and tumour development. Sustained DNA damage results from unceasing production of reactive oxygen species and activation of inflammasome cascades that trigger genomic changes and increased propensity of epigenetic alterations. Accumulation of epigenetic alterations may interfere with genome-wide cellular signalling machineries and promote malignant transformation leading to cancer development. Untangling and understanding the underlying mechanisms that promote these detrimental effects remain the major objectives for ongoing research and hope for effective virus-induced cancer therapy. Here, we review current literature with an emphasis on how DNA damage influences HPV, HVB, and EBV replication and epigenetic alterations that are associated with carcinogenesis.
Collapse
|
41
|
Wang Y, Li Y, Li H, Song H, Zhai N, Lou L, Wang F, Zhang K, Bao W, Jin X, Su L, Tu Z. Brucella Dysregulates Monocytes and Inhibits Macrophage Polarization through LC3-Dependent Autophagy. Front Immunol 2017; 8:691. [PMID: 28659924 PMCID: PMC5467008 DOI: 10.3389/fimmu.2017.00691] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/29/2017] [Indexed: 01/18/2023] Open
Abstract
Brucellosis is caused by infection with Brucella species and exhibits diverse clinical manifestations in infected humans. Monocytes and macrophages are not only the first line of defense against Brucella infection but also a main reservoir for Brucella. In the present study, we examined the effects of Brucella infection on human peripheral monocytes and monocyte-derived polarized macrophages. We showed that Brucella infection led to an increase in the proportion of CD14++CD16− monocytes and the expression of the autophagy-related protein LC3B, and the effects of Brucella-induced monocytes are inhibited after 6 weeks of antibiotic treatment. Additionally, the production of IL-1β, IL-6, IL-10, and TNF-α from monocytes in patients with brucellosis was suppressed through the LC3-dependent autophagy pathway during Brucella infection. Moreover, Brucella infection inhibited macrophage polarization. Consistently, the addition of 3-MA, an inhibitor of LC3-related autophagy, partially restored macrophage polarization. Intriguingly, we also found that the upregulation of LC3B expression by rapamycin and heat-killed Brucella in vitro inhibits M2 macrophage polarization, which can be reversed partially by 3-MA. Taken together, these findings reveal that Brucella dysregulates monocyte and macrophage polarization through LC3-dependent autophagy. Thus, targeting this pathway may lead to the development of new therapeutics against Brucellosis.
Collapse
Affiliation(s)
- Yang Wang
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.,Department of Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Yuxiang Li
- Department of Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Haijun Li
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Hongxiao Song
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Naicui Zhai
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Lixin Lou
- Department of Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Feng Wang
- Department of Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Kaiyu Zhang
- Department of Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Wanguo Bao
- Department of Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| | - Xia Jin
- CAS Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Lishan Su
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.,Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Zhengkun Tu
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.,Department of Infectious Diseases, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
42
|
Abstract
The concept of macroautophagy was established in 1963, soon after the discovery of lysosomes in rat liver. Over the 50 years since, studies of liver autophagy have produced many important findings. The liver is rich in lysosomes and possesses high levels of metabolic-stress-induced autophagy, which is precisely regulated by concentrations of hormones and amino acids. Liver autophagy provides starved cells with amino acids, glucose and free fatty acids for use in energy production and synthesis of new macromolecules, and also controls the quality and quantity of organelles such as mitochondria. Although the efforts of early investigators contributed markedly to our current knowledge of autophagy, the identification of autophagy-related genes represented a revolutionary breakthrough in our understanding of the physiological roles of autophagy in the liver. A growing body of evidence has shown that liver autophagy contributes to basic hepatic functions, including glycogenolysis, gluconeogenesis and β-oxidation, through selective turnover of specific cargos controlled by a series of transcription factors. In this Review, we outline the history of liver autophagy study, and then describe the roles of autophagy in hepatic metabolism under healthy and disease conditions, including the involvement of autophagy in α1-antitrypsin deficiency, NAFLD, hepatocellular carcinoma and viral hepatitis.
Collapse
Affiliation(s)
- Takashi Ueno
- Laboratory of Proteomics and Biomolecular Science, Research Support Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masaaki Komatsu
- Department of Biochemistry, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata 951-8510, Japan
| |
Collapse
|
43
|
Chen RJ, Lee YH, Yeh YL, Wang YJ, Wang BJ. The Roles of Autophagy and the Inflammasome during Environmental Stress-Triggered Skin Inflammation. Int J Mol Sci 2016; 17:E2063. [PMID: 27941683 PMCID: PMC5187863 DOI: 10.3390/ijms17122063] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/29/2016] [Accepted: 12/05/2016] [Indexed: 02/07/2023] Open
Abstract
Inflammatory skin diseases are the most common problem in dermatology. The induction of skin inflammation by environmental stressors such as ultraviolet radiation (UVR), hexavalent chromium (Cr(VI)) and TiO₂/ZnO/Ag nanoparticles (NPs) has been demonstrated previously. Recent studies have indicated that the inflammasome is often wrongly activated by these environmental irritants, thus inducing massive inflammation and resulting in the development of inflammatory diseases. The regulation of the inflammasome with respect to skin inflammation is complex and is still not completely understood. Autophagy, an intracellular degradation system that is associated with the maintenance of cellular homeostasis, plays a key role in inflammasome inactivation. As a housekeeping pathway, cells utilize autophagy to maintain the homeostasis of the organ structure and function when exposed to environmental stressors. However, only a few studies have examined the effect of autophagy and/or the inflammasome on skin pathogenesis. Here we review recent findings regarding the involvement of autophagy and inflammasome activation during skin inflammation. We posit that autophagy induction is a novel mechanism inter-modulating environmental stressor-induced skin inflammation. We also attempt to highlight the role of the inflammasome and the possible underlying mechanisms and pathways reflecting the pathogenesis of skin inflammation induced by UVR, Cr(VI) and TiO₂/ZnO/Ag NPs. A more profound understanding about the crosstalk between autophagy and the inflammasome will contribute to the development of prevention and intervention strategies against human skin disease.
Collapse
Affiliation(s)
- Rong-Jane Chen
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
| | - Yu-Hsuan Lee
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
| | - Ya-Ling Yeh
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
- Department of Biomedical Informatics, Asia University, Taichung 41354, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan.
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Bour-Jr Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, Tainan 70428, Taiwan.
- Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, Tainan 70428, Taiwan.
- Department of Cosmetic Science and Institute of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan.
| |
Collapse
|
44
|
Shin GC, Kang HS, Lee AR, Kim KH. Hepatitis B virus-triggered autophagy targets TNFRSF10B/death receptor 5 for degradation to limit TNFSF10/TRAIL response. Autophagy 2016; 12:2451-2466. [PMID: 27740879 DOI: 10.1080/15548627.2016.1239002] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Death receptors of TNFSF10/TRAIL (tumor necrosis factor superfamily member 10) contribute to immune surveillance against virus-infected or transformed cells by promoting apoptosis. Many viruses evade antiviral immunity by modulating TNFSF10 receptor signaling, leading to persistent infection. Here, we report that hepatitis B virus (HBV) X protein (HBx) restricts TNFSF10 receptor signaling via macroautophagy/autophagy-mediated degradation of TNFRSF10B/DR5, a TNFSF10 death receptor, and thus permits survival of virus-infected cells. We demonstrate that the expression of the TNFRSF10B protein is dramatically reduced both in liver tissues of chronic hepatitis B patients and in cell lines transfected with HBV or HBx. HBx-mediated downregulation of TNFRSF10B is caused by the lysosomal, but not proteasomal, degradation pathway. Immunoblotting analysis of LC3B and SQSTM1, and microscopy analysis of tandem-fluorescence-tagged LC3B revealed that HBx promotes complete autophagy. Inhibition of autophagy with a pharmacological inhibitor and LC3B knockdown revealed that HBx-induced autophagy is crucial for TNFRSF10B degradation. Immunoprecipitation and GST affinity isolation assays showed that HBx directly interacts with TNFRSF10B and recruits it to phagophores, the precursors to autophagosomes. We confirmed that autophagy activation is related to the downregulation of the TNFRSF10B protein in liver tissues of chronic hepatitis B patients. Inhibition of autophagy enhanced the susceptibility of HBx-infected hepatocytes to TNFSF10. These results identify the dual function of HBx in TNFRSF10B degradation: HBx plays a role as an autophagy receptor-like molecule, which promotes the association of TNFRSF10B with LC3B; HBx is also an autophagy inducer. Our data suggest a molecular mechanism for HBV evasion from TNFSF10-mediated antiviral immunity, which may contribute to chronic HBV infection.
Collapse
Affiliation(s)
- Gu-Choul Shin
- a Department of Pharmacology , Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University , Seoul , Korea.,b KU Open Innovation Center, Research Institute of Medical Sciences, Konkuk University , Seoul , Korea
| | - Hong Seok Kang
- a Department of Pharmacology , Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University , Seoul , Korea
| | - Ah Ram Lee
- a Department of Pharmacology , Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University , Seoul , Korea
| | - Kyun-Hwan Kim
- a Department of Pharmacology , Center for Cancer Research and Diagnostic Medicine, IBST, School of Medicine, Konkuk University , Seoul , Korea.,b KU Open Innovation Center, Research Institute of Medical Sciences, Konkuk University , Seoul , Korea.,c Research Institute of Medical Sciences, Konkuk University , Seoul , Korea
| |
Collapse
|
45
|
Yin JJ, Xie G, Zhang N, Li Y. Inhibiting autophagy promotes endoplasmic reticulum stress and the ROS‑induced nod‑like receptor 3‑dependent proinflammatory response in HepG2 cells. Mol Med Rep 2016; 14:3999-4007. [PMID: 27600251 DOI: 10.3892/mmr.2016.5708] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 08/09/2016] [Indexed: 11/06/2022] Open
Abstract
Inflammation and endoplasmic reticulum (ER) stress are key contributors to insulin resistance and metabolic disease, and interleukin (IL)‑1β is involved in insulin resistance. The present study aimed to investigated the role of autophagy in LPS‑induced ER stress and inflammation, which may provide evidence for controlling metabolic disease associated with inflammation. Lipopolysaccharide (LPS) induced the activation of ER stress and the nod‑like receptor 3‑dependent expression of IL‑1β and caspase‑1, as shown by western blotting, which contributed to HepG2 cell death. This also involved the generation of mitochondrial reactive oxygen species and the autophagy signaling response, which are derived from the ER stress pathway. The percentage of apoptotic cells was measured by flow cytometry with fluorescein isothiocyanate/propidium iodide staining. Reactive oxygen species formation was detected by flow cytometry using the peroxide sensitive fluorescent probe 2',7'‑dichlorofluorescin diacetate. Autophagy activation was measured by western blotting and confirmed using transmission electron microscopy. Furthermore, inhibiting autophagy promoted ER stress and the proinflammatory response in addition to cell death. These findings provide insights into the protective role of autophagy in LPS‑induced cell death and ER stress, and further identified the association of autophagy, ER stress and inflammation in HepG2 cells.
Collapse
Affiliation(s)
- Jia-Jing Yin
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Guangying Xie
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Ning Zhang
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yanbo Li
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
46
|
Lalazar G, Ilyas G, Malik SA, Liu K, Zhao E, Amir M, Lin Y, Tanaka KE, Czaja MJ. Autophagy confers resistance to lipopolysaccharide-induced mouse hepatocyte injury. Am J Physiol Gastrointest Liver Physiol 2016; 311:G377-86. [PMID: 27469366 PMCID: PMC5076014 DOI: 10.1152/ajpgi.00124.2016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 07/12/2016] [Indexed: 01/31/2023]
Abstract
During sepsis, bacterial products, particularly LPS, trigger injury in organs such as the liver. This common condition remains largely untreatable, in part due to a lack of understanding of how high concentrations of LPS cause cellular injury. In the liver, the lysosomal degradative pathway of autophagy performs essential hepatoprotective functions and is induced by LPS. We, therefore, examined whether hepatocyte autophagy protects against liver injury from septic levels of LPS. Mice with an inducible hepatocyte-specific knockout of the critical autophagy gene Atg7 were examined for their sensitivity to high-dose LPS. Increased liver injury occurred in knockout mice, as determined by significantly increased serum alanine aminotransferase levels, histological evidence of liver injury, terminal deoxynucleotide transferase-mediated deoxyuridine triphosphate nick end-labeling, and effector caspase-3 and -7 activation. Hepatic inflammation and proinflammatory cytokine induction were unaffected by the decrease in hepatocyte autophagy. Although knockout mice had normal NF-κB signaling, hepatic levels of Akt1 and Akt2 phosphorylation in response to LPS were decreased. Cultured hepatocytes from knockout mice displayed a generalized defect in Akt signaling in response to multiple stimuli, including LPS, TNF, and IL-1β. Akt activation mediates hepatocyte resistance to TNF cytotoxicity, and anti-TNF antibodies significantly decreased LPS-induced liver injury in knockout mice, indicating that the loss of autophagy sensitized to TNF-dependent liver damage. Hepatocyte autophagy, therefore, protects against LPS-induced liver injury. Conditions such as aging and steatosis that impair hepatic autophagy may predispose to poor outcomes from sepsis through this mechanism.
Collapse
Affiliation(s)
- Gadi Lalazar
- 1Department of Medicine and the Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York;
| | - Ghulam Ilyas
- 1Department of Medicine and the Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York;
| | - Shoaib Ahmad Malik
- 2Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; ,3Department of Biochemistry, Sargodha Medical College, University of Sargodha, Sargodha, Pakistan; and
| | - Kun Liu
- 1Department of Medicine and the Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York;
| | - Enpeng Zhao
- 1Department of Medicine and the Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York;
| | - Mohammad Amir
- 1Department of Medicine and the Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York;
| | - Yu Lin
- 1Department of Medicine and the Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York;
| | - Kathryn E. Tanaka
- 4Department of Pathology, Albert Einstein College of Medicine, Bronx, New York
| | - Mark J. Czaja
- 1Department of Medicine and the Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York; ,2Division of Digestive Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia;
| |
Collapse
|
47
|
Zhang H, Chen Z, Miranda RN, Medeiros LJ, McCarty N. TG2 and NF-κB Signaling Coordinates the Survival of Mantle Cell Lymphoma Cells via IL6-Mediated Autophagy. Cancer Res 2016; 76:6410-6423. [PMID: 27488529 DOI: 10.1158/0008-5472.can-16-0595] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 07/05/2016] [Indexed: 01/01/2023]
Abstract
Expression of the transglutaminase TG2 has been linked to constitutive activation of NF-κB and chemotherapy resistance in mantle cell lymphoma (MCL) cells. TG2 forms complexes with NF-κB components, but mechanistic insights that could be used to leverage therapeutic responses has been lacking. In the current study, we address this issue with the discovery of an unexpected role for TG2 in triggering autophagy in drug-resistant MCL cells through induction of IL6. CRISPR-mediated silencing of TG2 delayed apoptosis while overexpressing TG2 enhanced tumor progression. Under stress, TG2 and IL6 mediate enhanced autophagy formation to promote MCL cell survival. Interestingly, the autophagy product ATG5 involved in autophagosome elongation positively regulated TG2/NF-κB/IL6 signaling, suggesting a positive feedback loop. Our results uncover an interconnected network of TG2/NF-κB and IL6/STAT3 signaling with autophagy regulation in MCL cells, the disruption of which may offer a promising therapeutic strategy. Cancer Res; 76(21); 6410-23. ©2016 AACR.
Collapse
Affiliation(s)
- Han Zhang
- Center for Stem Cell and Regenerative Disease, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), The University of Texas-Health Science Center at Houston, Houston, Texas
| | - Zheng Chen
- Center for Stem Cell and Regenerative Disease, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), The University of Texas-Health Science Center at Houston, Houston, Texas
| | - Roberto N Miranda
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - L Jeffrey Medeiros
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nami McCarty
- Center for Stem Cell and Regenerative Disease, Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases (IMM), The University of Texas-Health Science Center at Houston, Houston, Texas.
| |
Collapse
|
48
|
RNA-Seq reveals common and unique PXR- and CAR-target gene signatures in the mouse liver transcriptome. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1198-1217. [PMID: 27113289 DOI: 10.1016/j.bbagrm.2016.04.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/19/2016] [Accepted: 04/19/2016] [Indexed: 12/14/2022]
Abstract
The pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are well-known xenobiotic-sensing nuclear receptors with overlapping functions. However, there lacks a quantitative characterization to distinguish between the PXR and CAR target genes and signaling pathways in the liver. The present study performed a transcriptomic comparison of the PXR- and CAR-targets using RNA-Seq in livers of adult wild-type mice that were treated with the prototypical PXR ligand PCN (200mg/kg, i.p. once daily for 4days in corn oil) or the prototypical CAR ligand TCPOBOP (3mg/kg, i.p., once daily for 4days in corn oil). At the given doses, TCPOBOP differentially regulated many more genes (2125) than PCN (212), and 147 of the same genes were differentially regulated by both chemicals. As expected, the top pathways differentially regulated by both PCN and TCPOBOP were involved in xenobiotic metabolism, and they also up-regulated genes involved in retinoid metabolism, but down-regulated genes involved in inflammation and iron homeostasis. Regarding unique pathways, PXR activation appeared to overlap with the aryl hydrocarbon receptor signaling, whereas CAR activation appeared to overlap with the farnesoid X receptor signaling, acute-phase response, and mitochondrial dysfunction. The mRNAs of differentially regulated drug-processing genes (DPGs) partitioned into three patterns, namely TCPOBOP-induced, PCN-induced, as well as TCPOBOP-suppressed gene clusters. The cumulative mRNAs of the differentially regulated DPGs, phase-I and -II enzymes, as well as efflux transporters were all up-regulated by both PCN and TCPOBOPOP, whereas the cumulative mRNAs of the uptake transporters were down-regulated only by TCPOBOP. The absolute mRNA abundance in control and receptor-activated conditions was examined in each DPG category to predict the contribution of specific DPG genes in the PXR/CAR-mediated pharmacokinetic responses. The preferable differential regulation by TCPOBOP in the entire hepatic transcriptome correlated with a marked change in the expression of many DNA and histone epigenetic modifiers. In conclusion, the present study has revealed known and novel, as well as common and unique targets of PXR and CAR in mouse liver following pharmacological activation using their prototypical ligands. Results from this study will further support the role of these receptors in regulating the homeostasis of xenobiotic and intermediary metabolism in the liver, and aid in distinguishing between PXR and CAR signaling at various physiological and pathophysiological conditions. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.
Collapse
|
49
|
Wang DY, Zou LP, Liu XJ, Zhu HG, Zhu R. Chemokine Expression Profiles of Human Hepatoma Cell Lines Mediated by Hepatitis B Virus X Protein. Pathol Oncol Res 2015; 22:393-9. [PMID: 26581611 DOI: 10.1007/s12253-015-0014-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 11/12/2015] [Indexed: 12/31/2022]
Abstract
The hepatitis B virus X protein (HBx), which is encoded by hepatitis B virus (HBV), plays crucial roles in the tumorigenesis of HBV associated hepatocellular carcinoma (HCC). Recent studies suggest that the HBx is involved in regulation of host immune cytokines and chemokines in HBV-associated HCC patients. However, effects of the HBx on autocrine chemokine expression profiles of hepatoma cells, which were shown in modulation of tumor-immune cell interactions, have not been investigated comprehensively. In the present study, human hepatoma cell lines SMMC-7721 and HepG2 were transfected with HBx-expressing plasmid. Human chemokine antibody array 1 (RayBio®), which simultaneously detects 38 chemokine factors, was used to determine chemokine expression profiles. Real-time polymerase chain reaction (real-time PCR) was used to further confirm the differential expression of chemokines. Chemokine antibody array revealed that all 38 chomekines were found to be expressed by SMMC-7721 and HepG2 cell lines. Interleukin-8 (IL-8) was obviously up-regulated, and epithelial neutrophil-activating protein 78 (ENA78), eosinophil chemotactic protein-1 (Eotaxin-1), monocyte chemotactic protein-1 (MCP-1), MCP-2, MCP-3 and macrophage inflammatory protein-3β (MIP-3β) were significantly declined in both cell lines following transfection of HBx-expressing plasmid. Other chemokines showed little or no significant changes. HBx-induced differential chemokine expression levels were validated by real-time PCR. Hierarchical cluster analysis identified a distinction of chomekine expression profiles between HBX-expressing hepatoma cell lines and controls. Our findings provide new evidence that HBx is able to selectively regulate chomekines in hepatoma cells that may be involved in the regulation of tumor-immune cell interactions.
Collapse
Affiliation(s)
- Di-Yi Wang
- Department of Pathology, Affiliated Hospital of Taishan Medical University, Taian, 271000, China.
| | - Li-Ping Zou
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xiao-Jia Liu
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Hong-Guang Zhu
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Rong Zhu
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| |
Collapse
|