1
|
Jackson Cullison SR, Flemming JP, Karagoz K, Wermuth PJ, Mahoney MG. Mechanisms of extracellular vesicle uptake and implications for the design of cancer therapeutics. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70017. [PMID: 39483807 PMCID: PMC11522837 DOI: 10.1002/jex2.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/11/2024] [Accepted: 10/14/2024] [Indexed: 11/03/2024]
Abstract
The translation of pre-clinical anti-cancer therapies to regulatory approval has been promising, but slower than hoped. While innovative and effective treatments continue to achieve or seek approval, setbacks are often attributed to a lack of efficacy, failure to achieve clinical endpoints, and dose-limiting toxicities. Successful efforts have been characterized by the development of therapeutics designed to specifically deliver optimal and effective dosing to tumour cells while minimizing off-target toxicity. Much effort has been devoted to the rational design and application of synthetic nanoparticles to serve as targeted therapeutic delivery vehicles. Several challenges to the successful application of this modality as delivery vehicles include the induction of a protracted immune response that results in their rapid systemic clearance, manufacturing cost, lack of stability, and their biocompatibility. Extracellular vesicles (EVs) are a heterogeneous class of endogenous biologically produced lipid bilayer nanoparticles that mediate intercellular communication by carrying bioactive macromolecules capable of modifying cellular phenotypes to local and distant cells. By genetic, chemical, or metabolic methods, extracellular vesicles (EVs) can be engineered to display targeting moieties on their surface while transporting specific cargo to modulate pathological processes following uptake by target cell populations. This review will survey the types of EVs, their composition and cargoes, strategies employed to increase their targeting, uptake, and cargo release, and their potential as targeted anti-cancer therapeutic delivery vehicles.
Collapse
Affiliation(s)
| | - Joseph P. Flemming
- Rowan‐Virtua School of Osteopathic MedicineRowan UniversityStratfordNew JerseyUSA
| | - Kubra Karagoz
- Departments of PharmacologyPhysiology, and Cancer Biology, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | | | - Mỹ G. Mahoney
- Departments of PharmacologyPhysiology, and Cancer Biology, Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Department of Otolaryngology – Head and Neck SurgeryThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
2
|
Carney RP, Mizenko RR, Bozkurt BT, Lowe N, Henson T, Arizzi A, Wang A, Tan C, George SC. Harnessing extracellular vesicle heterogeneity for diagnostic and therapeutic applications. NATURE NANOTECHNOLOGY 2024:10.1038/s41565-024-01774-3. [PMID: 39468355 DOI: 10.1038/s41565-024-01774-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/11/2024] [Indexed: 10/30/2024]
Abstract
Extracellular vesicles (EVs) are diverse nanoparticles with large heterogeneity in size and molecular composition. Although this heterogeneity provides high diagnostic value for liquid biopsy and confers many exploitable functions for therapeutic applications in cancer detection, wound healing and neurodegenerative and cardiovascular diseases, it has also impeded their clinical translation-hence heterogeneity acts as a double-edged sword. Here we review the impact of subpopulation heterogeneity on EV function and identify key cornerstones for addressing heterogeneity in the context of modern analytical platforms with single-particle resolution. We outline concrete steps towards the identification of key active biomolecules that determine EV mechanisms of action across different EV subtypes. We describe how such knowledge could accelerate EV-based therapies and engineering approaches for mimetic artificial nanovesicle formulations. This approach blunts one edge of the sword, leaving only a single razor-sharp edge on which EV heterogeneity can be exploited for therapeutic applications across many diseases.
Collapse
Affiliation(s)
- Randy P Carney
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA.
| | - Rachel R Mizenko
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Batuhan T Bozkurt
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Neona Lowe
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Tanner Henson
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
- Center for Surgical Bioengineering, Department of Surgery, University of California, Davis, School of Medicine, Sacramento, CA, USA
| | - Alessandra Arizzi
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Aijun Wang
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
- Center for Surgical Bioengineering, Department of Surgery, University of California, Davis, School of Medicine, Sacramento, CA, USA
| | - Cheemeng Tan
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA.
- Center for Surgical Bioengineering, Department of Surgery, University of California, Davis, School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
3
|
Esparza D, Lima C, Abuelreich S, Ghaeli I, Hwang J, Oh E, Lenz A, Gu A, Jiang N, Kandeel F, Thurmond DC, Jovanovic-Talisman T. Pancreatic β-cells package double C2-like domain beta protein into extracellular vesicles via tandem C2 domains. Front Endocrinol (Lausanne) 2024; 15:1451279. [PMID: 39497805 PMCID: PMC11532064 DOI: 10.3389/fendo.2024.1451279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/10/2024] [Indexed: 11/07/2024] Open
Abstract
Introduction Double C2-like domain beta (DOC2B) is a vesicle priming protein critical for glucose-stimulated insulin secretion in β-cells. Individuals with type 1 diabetes (T1D) have lower levels of DOC2B in their residual functional β-cell mass and platelets, a phenotype also observed in a mouse model of T1D. Thus, DOC2B levels could provide important information on β-cell dys(function). Objective Our objective was to evaluate the DOC2B secretome of β-cells. In addition to soluble extracellular protein, we assessed DOC2B localized within membrane-delimited nanoparticles - extracellular vesicles (EVs). Moreover, in rat clonal β-cells, we probed domains required for DOC2B sorting into EVs. Method Using Single Extracellular VEsicle Nanoscopy, we quantified EVs derived from clonal β-cells (human EndoC-βH1, rat INS-1 832/13, and mouse MIN6); two other cell types known to regulate glucose homeostasis and functionally utilize DOC2B (skeletal muscle rat myotube L6-GLUT4myc and human neuronal-like SH-SY5Y cells); and human islets sourced from individuals with no diabetes (ND). EVs derived from ND human plasma, ND human islets, and cell lines were isolated with either size exclusion chromatography or differential centrifugation. Isolated EVs were comprehensively characterized using dotblots, transmission electron microscopy, nanoparticle tracking analysis, and immunoblotting. Results DOC2B was present within EVs derived from ND human plasma, ND human islets, and INS-1 832/13 β-cells. Compared to neuronal-like SH-SY5Y cells and L6-GLUT4myc myotubes, clonal β-cells (EndoC-βH1, INS-1 832/13, and MIN6) produced significantly more EVs. DOC2B levels in EVs (over whole cell lysates) were higher in INS-1 832/13 β-cells compared to L6-GLUT4myc myotubes; SH-SY5Y neuronal-like cells did not release appreciable DOC2B. Mechanistically, we show that DOC2B was localized to the EV lumen; the tandem C2 domains were sufficient to confer sorting to INS-1 832/13 β-cell EVs. Discussion Clonal β-cells and ND human islets produce abundant EVs. In cell culture, appreciable DOC2B can be packaged into EVs, and a small fraction is excreted as a soluble protein. While DOC2B-laden EVs and soluble protein are present in ND plasma, further studies will be necessary to determine if DOC2B originating from β-cells significantly contributes to the plasma secretome.
Collapse
Affiliation(s)
- Diana Esparza
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute at City of Hope, Duarte, CA, United States
| | - Carinna Lima
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute at City of Hope, Duarte, CA, United States
| | - Sarah Abuelreich
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute at City of Hope, Duarte, CA, United States
| | - Ima Ghaeli
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute at City of Hope, Duarte, CA, United States
| | - Jinhee Hwang
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute at City of Hope, Duarte, CA, United States
| | - Eunjin Oh
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute at City of Hope, Duarte, CA, United States
| | - Ayelet Lenz
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute at City of Hope, Duarte, CA, United States
| | - Angel Gu
- Department of Translational Research and Cellular Therapeutics, Beckman Research Institute at City of Hope, Duarte, CA, United States
| | - Nan Jiang
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute at City of Hope, Duarte, CA, United States
| | - Fouad Kandeel
- Department of Translational Research and Cellular Therapeutics, Beckman Research Institute at City of Hope, Duarte, CA, United States
| | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute at City of Hope, Duarte, CA, United States
| | - Tijana Jovanovic-Talisman
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute at City of Hope, Duarte, CA, United States
| |
Collapse
|
4
|
Okła E, Michlewska S, Buczkowski A, Zawadzki S, Miłowska K, Sánchez-Nieves J, Gómez R, de la Mata FJ, Bryszewska M, Blasiak J, Ionov M. Pegylated gold nanoparticles interact with lipid bilayer and human serum albumin and transferrin. Sci Rep 2024; 14:24408. [PMID: 39420206 PMCID: PMC11487075 DOI: 10.1038/s41598-024-74898-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Gold nanoparticles (AuNPs) are potentially applicable in drug/nucleic acid delivery systems. Low toxicity, high stability, and bioavailability are crucial for the therapeutic use of AuNPs and they are mainly determined by their interactions with proteins and lipids on their route to the target cells. In this work, we investigated the interaction of two pegylated gold nanoparticles, AuNP14a and AuNP14b, with human serum proteins albumin (HSA) and transferrin (Tf) as well as dimyristoyl-phosphatidylcholine (DMPC) liposomes, which can be a representative of biomembranes. We showed that AuNP14a/b interacted with HSA and Tf changing their electrical, thermodynamic, and structural properties as evidenced by dynamic light scattering, zeta potential, transmission electron microscopy, circular dichroism, fluorescence quenching, and isothermal titration calorimetry. These nanoparticles penetrated the DMPC membrane suggesting their ability to reach a target inside the cell. In most of the effects, AuNP14b was more effective than AuNP14a, which might result from its more positive charge. Further studies are needed to evaluate whether the interaction of AuNP14a/b with HSA and Tf is safe for the cell/organism and whether they may safely penetrate natural membranes.
Collapse
Affiliation(s)
- Elżbieta Okła
- Faculty of Biology and Environmental Protection, Department of General Biophysics, University of Lodz, Pomorska 141/143, Lodz, 90-236, Poland.
- University of Lodz Doctoral School of Exact and Natural Sciences, 21/23 Matejki St., Lodz, 90-237, Poland.
| | - Sylwia Michlewska
- Faculty of Biology and Environmental Protection, Laboratory of Microscopic Imaging and Specialized Biological Techniques, University of Lodz, Banacha 12/16, Lodz, 90-237, Poland
| | - Adam Buczkowski
- Faculty of Chemistry, Department of Physical Chemistry, Division of Biophysical Chemistry, University of Lodz, Pomorska 165, Lodz, 90-236, Poland
| | - Serafin Zawadzki
- Faculty of Biology and Environmental Protection, Department of General Biophysics, University of Lodz, Pomorska 141/143, Lodz, 90-236, Poland
- BioMedChem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, 21/23 Matejki St., 90‑237 , Lodz, Poland
| | - Katarzyna Miłowska
- Faculty of Biology and Environmental Protection, Department of General Biophysics, University of Lodz, Pomorska 141/143, Lodz, 90-236, Poland
| | - Javier Sánchez-Nieves
- Universidad de Alcalá Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Spain and Instituto Ramon y Cajal de Investigacion Sanitaria, IRYCIS, Colmenar Viejo Road, Km 9, 100, Madrid, 28034, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Rafael Gómez
- Universidad de Alcalá Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Spain and Instituto Ramon y Cajal de Investigacion Sanitaria, IRYCIS, Colmenar Viejo Road, Km 9, 100, Madrid, 28034, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Francisco Javier de la Mata
- Universidad de Alcalá Department of Organic and Inorganic Chemistry, and Research Institute in Chemistry "Andrés M. del Río" (IQAR), Spain and Instituto Ramon y Cajal de Investigacion Sanitaria, IRYCIS, Colmenar Viejo Road, Km 9, 100, Madrid, 28034, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Maria Bryszewska
- Faculty of Biology and Environmental Protection, Department of General Biophysics, University of Lodz, Pomorska 141/143, Lodz, 90-236, Poland
| | - Janusz Blasiak
- Collegium Medicum, Faculty of Medicine, Mazovian Academy in Plock, Pl. Dabrowskiego 2, Plock, 09-402, Poland
| | - Maksim Ionov
- Faculty of Biology and Environmental Protection, Department of General Biophysics, University of Lodz, Pomorska 141/143, Lodz, 90-236, Poland.
- Collegium Medicum, Faculty of Medicine, Mazovian Academy in Plock, Pl. Dabrowskiego 2, Plock, 09-402, Poland.
| |
Collapse
|
5
|
Huang Y, Feng J, Xu J, Dong L, Su W, Li B, Witwer KW, Zheng L. Associations of age and sex with characteristics of extracellular vesicles and protein-enriched fractions of blood plasma. Aging Cell 2024:e14356. [PMID: 39373063 DOI: 10.1111/acel.14356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/28/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024] Open
Abstract
Extracellular vesicles (EVs) are nanosized particles that are released by various cell types and play vital roles in intercellular communication. They carry biological molecules reflecting the physiological and pathological states of their source cells and tissues, showing potential as biomarkers. However, the impact of demographic factors like age and sex on the properties of blood plasma EVs remains underexplored. This study aims to fill this gap by evaluating how these factors influence the particle count and proteomic profiles of plasma EV preparations and corresponding protein fractions. Plasma samples from 120 healthy volunteers were collected and pooled into six groups: young males (age: 27.6 ± 4.0), young females (27.4 ± 3.8), middle-aged males (48.8 ± 3.8), middle-aged females (48.9 ± 3.9), old males (69.3 ± 3.9), and old females (69.4 ± 4.3). EV- and protein-enriched fractions were separated by size-exclusion chromatography (SEC). Fractions were characterized for particle number concentration and protein composition to identify characteristics affected by age and biological sex. Plasma EVs and corresponding protein fractions exhibited distinct characteristics, with differential enrichment of markers related to EVs and other blood components, including lipoproteins. Proteomic profiles of both EVs and protein fractions displayed sex- and age-dependent differences. Differentially abundant proteins displayed functions previously identified in the context of aging and sex differences, highlighting their utility as biomarkers. Age and sex significantly affect the characteristics of plasma EVs and proteins, potentially influencing their efficacy and interpretation as biomarkers in clinical applications. This study lays the groundwork for detailed mechanistic research to understand how EVs mediate age- and sex-related effects in health.
Collapse
Affiliation(s)
- Yiyao Huang
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Junjie Feng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jiannan Xu
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Liang Dong
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wanting Su
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Bo Li
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
6
|
Hwang JH, Lai A, Tung JP, Harkin DG, Flower RL, Pecheniuk NM. Proteomic Characterization of Transfusable Blood Components: Fresh Frozen Plasma, Cryoprecipitate, and Derived Extracellular Vesicles via Data-Independent Mass Spectrometry. J Proteome Res 2024; 23:4508-4522. [PMID: 39254217 DOI: 10.1021/acs.jproteome.4c00417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Extracellular vesicles (EVs) are a heterogeneous collection of particles that play a crucial role in cell-to-cell communication, primarily due to their ability to transport molecules, such as proteins. Thus, profiling EV-associated proteins offers insight into their biological effects. EVs can be isolated from various biological fluids, including donor blood components such as cryoprecipitate and fresh frozen plasma (FFP). In this study, we conducted a proteomic analysis of five single donor units of cryoprecipitate, FFP, and EVs derived from these blood components using a quantitative mass spectrometry approach. EVs were successfully isolated from both cryoprecipitate and FFP based on community guidelines. We identified and quantified approximately 360 proteins across all sample groups. Principal component analysis and heatmaps revealed that both cryoprecipitate and FFP are similar. Similarly, EVs derived from cryoprecipitate and FFP are comparable. However, they differ between the originating fluids and their derived EVs. Using the R-package MS-DAP, differentially expressed proteins (DEPs) were identified. The DEPs for all comparisons, when submitted for gene enrichment analysis, are involved in the complement and coagulation pathways. The protein profile generated from this study will have important clinical implications in increasing our knowledge of the proteins that are associated with EVs derived from blood components.
Collapse
Affiliation(s)
- Ji Hui Hwang
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Qld 4000, Australia
- Research and Development, Australian Red Cross Lifeblood, Brisbane, QLD 4059, Australia
| | - Andrew Lai
- UQ Centre for Clinical Research, Faculty of Medicine, University of Queensland, Brisbane, QLD 4006, Australia
| | - John-Paul Tung
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Qld 4000, Australia
- Research and Development, Australian Red Cross Lifeblood, Brisbane, QLD 4059, Australia
- Faculty of Medicine, University of Queensland, Brisbane, QLD 4006, Australia
- School of Health, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia
| | - Damien G Harkin
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Qld 4000, Australia
- Research and Development, Australian Red Cross Lifeblood, Brisbane, QLD 4059, Australia
| | - Robert L Flower
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Qld 4000, Australia
- Research and Development, Australian Red Cross Lifeblood, Brisbane, QLD 4059, Australia
| | - Natalie M Pecheniuk
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Qld 4000, Australia
- Research and Development, Australian Red Cross Lifeblood, Brisbane, QLD 4059, Australia
| |
Collapse
|
7
|
Huber C, Elsaeed O, Lahmer P, Moertl S. Ionizing radiation effects on blood-derived extracellular vesicles: insights into miR-34a-5p-mediated cellular responses and biomarker potential. Cell Commun Signal 2024; 22:471. [PMID: 39358789 PMCID: PMC11446100 DOI: 10.1186/s12964-024-01845-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/20/2024] [Indexed: 10/04/2024] Open
Abstract
Adverse effects of ionizing radiation on normal tissues limit the radiation dose in cancer treatment, thereby compromising treatment efficiency. Among the consistently affected non-cancer cells, peripheral blood mononuclear cells (PBMCs) exhibit high radiosensitivity and have the potential to induce systemic effects. PBMC-released extracellular vesicles (EVs), contribute to the communication of such systemic effects. This study aimed to investigate the effects of ionizing radiation on EVs as part of the systemic response of PBMCs in terms of microRNA cargo and biological functions.Therefore, whole blood samples from healthy donors were irradiated ex-vivo (0 Gy, 1 Gy, 2 Gy, 4 Gy) and EVs from PBMCs were isolated after 96 h by PEG precipitation or ultracentrifugation. Candidate microRNAs were examined in PBMC-derived EVs from individual donors. The uptake of membrane-stained fluorescent EVs by different recipient cells was quantified by fluorescence-activated cell sorting analysis. The biological effects of increased miR-34a-5p and of total EVs on recipient cells were assessed.Irradiation of PBMCs induced a dose-dependent upregulation of miR-34a-5p within EVs and PBMCs. However, interindividual differences between donors were noticed in the extent of upregulation, and small EVs displayed more pronounced changes in microRNA levels in comparison to large EVs. Irradiation in presence of the small molecule inhibitor KU-60019 demonstrated that this upregulation is dependent on ATM (Ataxia telangiectasia mutated) activation. Moreover, fibroblasts and keratinocytes were identified as preferred EV recipients. Increased miR-34a-5p levels led to a significant reduction in viability and induction of senescence in keratinocytes but not in fibroblasts, indicating a cell type-specific response.In conclusion, this study further elucidated the complex cellular response of normal tissue after radiation exposure. It confirmed radiation-induced modifications of microRNA expression levels in EVs from PBMCs and identified a robust upregulation of miR-34a-5p in the small EV subfraction, suggesting this microRNA as a potential novel candidate for the development of biomarkers for radiation exposure. Moreover, the different uptake efficiencies observed among specific cell types suggested that EVs induce cell type-specific responses in the intercellular communication of systemic radiation effects.
Collapse
Affiliation(s)
- Chiara Huber
- Department of Effects and Risks of Ionizing & Non-Ionizing Radiation, Federal Office for Radiation Protection (BfS), Neuherberg, Germany
| | - Omar Elsaeed
- Department of Effects and Risks of Ionizing & Non-Ionizing Radiation, Federal Office for Radiation Protection (BfS), Neuherberg, Germany
| | - Pia Lahmer
- Department of Effects and Risks of Ionizing & Non-Ionizing Radiation, Federal Office for Radiation Protection (BfS), Neuherberg, Germany
| | - Simone Moertl
- Department of Effects and Risks of Ionizing & Non-Ionizing Radiation, Federal Office for Radiation Protection (BfS), Neuherberg, Germany.
| |
Collapse
|
8
|
Louro AF, Meliciano A, Alves PM, Costa MHG, Serra M. A roadmap towards manufacturing extracellular vesicles for cardiac repair. Trends Biotechnol 2024; 42:1305-1322. [PMID: 38653588 DOI: 10.1016/j.tibtech.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024]
Abstract
For the past two decades researchers have linked extracellular vesicle (EV)-mediated mechanisms to various physiological and pathological processes in the heart, such as immune response regulation, fibrosis, angiogenesis, and the survival and growth of cardiomyocytes. Although use of EVs has gathered momentum in the cardiac field, several obstacles in both upstream and downstream processes during EV manufacture need to be addressed before clinical success can be achieved. Low EV yields obtained in small-scale cultures deter clinical translation, as mass production is a prerequisite to meet therapeutic doses. Moreover, standardizing EV manufacture is critical given the inherent heterogeneity of EVs and the constraints of current isolation techniques. In this review, we discuss the critical steps for the large-scale manufacturing of high-potency EVs for cardiac therapies.
Collapse
Affiliation(s)
- Ana F Louro
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana Meliciano
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Marta H G Costa
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Margarida Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
9
|
Mizenko RR, Feaver M, Bozkurt BT, Lowe N, Nguyen B, Huang K, Wang A, Carney RP. A critical systematic review of extracellular vesicle clinical trials. J Extracell Vesicles 2024; 13:e12510. [PMID: 39330928 PMCID: PMC11428870 DOI: 10.1002/jev2.12510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/06/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024] Open
Abstract
This systematic review examines the landscape of extracellular vesicle (EV)-related clinical trials to elucidate the field's trends in clinical applications and EV-related methodologies, with an additional focus on the acknowledgement of EV subpopulations. By analysing data from public reporting repositories, we catalogued 471 EV-related clinical trials to date, with indications for over 200 diseases. Diagnostics and companion diagnostics represented the bulk of EV-related clinical trials with cancer being the most frequent application. EV-related therapeutics trials mainly utilized mesenchymal stromal cell (MSC) EVs and were most frequently used for treatment of respiratory illnesses. Ultracentrifugation and RNA-sequencing were the most common isolation and characterization techniques; however, methodology for each was not frequently reported in study records. Most of the reported characterization relied on bulk characterization of EV isolates, with only 11% utilizing EV subpopulations in their experimental design. While this may be connected to a lack of available techniques suitable for clinical implementation, it also highlights the opportunity for use of EV subpopulations to improve translational efforts. As academic research identifies more chemically distinct subpopulations and technologies for their enrichment, we forecast to more refined EV trials in the near future. This review emphasizes the need for meticulous methodological reporting and consideration of EV subpopulations to enhance the translational success of EV-based interventions, pointing towards a paradigm shift in personalized medicine.
Collapse
Affiliation(s)
- Rachel R. Mizenko
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Madison Feaver
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Batuhan T. Bozkurt
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Neona Lowe
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Bryan Nguyen
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Kuan‐Wei Huang
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Aijun Wang
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
- Department of SurgeryUniversity of CaliforniaDavisCaliforniaUSA
| | - Randy P. Carney
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| |
Collapse
|
10
|
Sonallya T, Juhász T, Szigyártó IC, Ilyés K, Singh P, Khamari D, Buzás EI, Varga Z, Beke-Somfai T. Categorizing interaction modes of antimicrobial peptides with extracellular vesicles: Disruption, membrane trespassing, and clearance of the protein corona. J Colloid Interface Sci 2024; 679:496-509. [PMID: 39378685 DOI: 10.1016/j.jcis.2024.09.244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/21/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
Host antimicrobial peptides (AMPs) and extracellular vesicles (EVs) are known to play important roles as part of the immune system, from antimicrobial actions to immune regulation. Recent results also demonstrate that EVs could serve as carriers for AMPs. Related, it was shown that some AMPs can remove the protein corona (PC), the externally adsorbed layer of proteins, from EVs which can be exploited for subtractive proteomics strategies. The interaction of these compounds is thus interesting for multiple reasons from better insight to natural processes to direct applications in EV-based bioengineering. However, we have only limited information on the various ways these species may interact with each other. To reach a broader overview, here we selected twenty-six AMPs, including cell-penetrating peptides (CPPs), and investigated their interactions with red blood cell-derived vesicles (REVs). For this, we employed a complex lipid biophysics including linearly polarized light spectroscopy, flow cytometry, nanoparticle tracking analysis, electron microscopy and also zeta-potential measurements. This enabled the categorization of these peptides into distinct groups. At specific low concentrations, peptides such as LL-37 and lasioglossin-III were effective in PC elimination with minimal disruption of the membrane. In contrast, AMPs like KLA, bradykinin, histatin-5, and most of the tested CPPs (e.g. octa-arginine, penetratin, and buforin II), demonstrate cell-penetrating mechanisms as they could sustain large peptide concentrations with minimal membrane damage. The systematic overview presented here shows the potential mechanism of how AMPs and EVs could interact in vivo, and also how certain peptides may be employed to manipulate EVs for specific applications.
Collapse
Affiliation(s)
- Tasvilla Sonallya
- Biomolecular Self-assembly Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest H-1117, Magyar Tudósok Körútja 2, Hungary; Hevesy György PhD School of Chemistry, ELTE Eötvös Loránd University, Budapest H-1117, Pázmány Péter Sétány 1/A, Hungary
| | - Tünde Juhász
- Biomolecular Self-assembly Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest H-1117, Magyar Tudósok Körútja 2, Hungary
| | - Imola Cs Szigyártó
- Biomolecular Self-assembly Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest H-1117, Magyar Tudósok Körútja 2, Hungary
| | - Kinga Ilyés
- Hevesy György PhD School of Chemistry, ELTE Eötvös Loránd University, Budapest H-1117, Pázmány Péter Sétány 1/A, Hungary; Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest H-1117, Magyar Tudósok Körútja 2, Hungary
| | - Priyanka Singh
- Biomolecular Self-assembly Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest H-1117, Magyar Tudósok Körútja 2, Hungary
| | - Delaram Khamari
- Department of Genetics, Cell and Immunobiology, Semmelweis University, H-1089 Budapest, Nagyvárad tér 4, Hungary
| | - Edit I Buzás
- Department of Genetics, Cell and Immunobiology, Semmelweis University, H-1089 Budapest, Nagyvárad tér 4, Hungary; HCEMM Extracellular Vesicle Research Group, Semmelweis University, H-1089 Budapest, Nagyvárad tér 4, Hungary; HUN-REN-SU Translational Extracellular Vesicle Research Group, H-1089 Budapest, Nagyvárad tér 4, Hungary
| | - Zoltán Varga
- Biological Nanochemistry Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest H-1117, Magyar Tudósok Körútja 2, Hungary; Department of Physical Chemistry and Materials Science, Budapest University of Technology and Economics, Műegyetem rkp. 3, Budapest 1111, Hungary
| | - Tamás Beke-Somfai
- Biomolecular Self-assembly Research Group, Institute of Materials and Environmental Chemistry, HUN-REN Research Centre for Natural Sciences, Budapest H-1117, Magyar Tudósok Körútja 2, Hungary.
| |
Collapse
|
11
|
Brezgin S, Danilik O, Yudaeva A, Kachanov A, Kostyusheva A, Karandashov I, Ponomareva N, Zamyatnin AA, Parodi A, Chulanov V, Kostyushev D. Basic Guide for Approaching Drug Delivery with Extracellular Vesicles. Int J Mol Sci 2024; 25:10401. [PMID: 39408730 PMCID: PMC11476574 DOI: 10.3390/ijms251910401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Extracellular vesicles (EVs) are natural carriers of biomolecules that play a crucial role in cell-to-cell communication and tissue homeostasis under normal and pathological conditions, including inflammatory diseases and cancer. Since the discovery of the pro-regenerative and immune-modulating properties of EVs, EV-based therapeutics have entered clinical trials for conditions such as myocardial infarction and autoimmune diseases, among others. Due to their unique advantages-such as superior bioavailability, substantial packaging capacity, and the ability to traverse biological barriers-EVs are regarded as a promising platform for targeted drug delivery. However, achieving a sufficient accumulation of therapeutic agents at the target site necessitates a larger quantity of EVs per dose compared to using EVs as standalone drugs. This challenge can be addressed by administering larger doses of EVs, increasing the drug dosage per administration, or enhancing the selective accumulation of EVs at target cells. In this review, we will discuss methods to improve the isolation and purification of EVs, approaches to enhance cargo packaging-including proteins, RNAs, and small-molecule drugs-and technologies for displaying targeting ligands on the surface of EVs to facilitate improved targeting. Ultimately, this guide can be applied to the development of novel classes of EV-based therapeutics and to overcoming existing technological challenges.
Collapse
Affiliation(s)
- Sergey Brezgin
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.B.); (A.Y.); (A.K.); (A.K.); (I.K.); (N.P.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia;
| | - Oleg Danilik
- Department of Pharmaceutical and Toxicological Chemistry, First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia;
| | - Alexandra Yudaeva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.B.); (A.Y.); (A.K.); (A.K.); (I.K.); (N.P.)
| | - Artyom Kachanov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.B.); (A.Y.); (A.K.); (A.K.); (I.K.); (N.P.)
| | - Anastasiya Kostyusheva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.B.); (A.Y.); (A.K.); (A.K.); (I.K.); (N.P.)
| | - Ivan Karandashov
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.B.); (A.Y.); (A.K.); (A.K.); (I.K.); (N.P.)
| | - Natalia Ponomareva
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.B.); (A.Y.); (A.K.); (A.K.); (I.K.); (N.P.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia;
- Department of Pharmaceutical and Toxicological Chemistry, First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia;
| | - Andrey A. Zamyatnin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia;
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
- Department of Biological Chemistry, Sechenov First Moscow State Medical University, Trubetskaya Str. 8-2, 119991 Moscow, Russia
| | - Alessandro Parodi
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia;
| | - Vladimir Chulanov
- Department of Infectious Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia;
| | - Dmitry Kostyushev
- Laboratory of Genetic Technologies, Martsinovsky Institute of Medical Parasitology, Tropical and Vector-Borne Diseases, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (S.B.); (A.Y.); (A.K.); (A.K.); (I.K.); (N.P.)
- Division of Biotechnology, Sirius University of Science and Technology, 354340 Sochi, Russia;
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia;
| |
Collapse
|
12
|
Dlugolecka M, Czystowska-Kuzmicz M. Factors to consider before choosing EV labeling method for fluorescence-based techniques. Front Bioeng Biotechnol 2024; 12:1479516. [PMID: 39359260 PMCID: PMC11445045 DOI: 10.3389/fbioe.2024.1479516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
A well-designed fluorescence-based analysis of extracellular vesicles (EV) can provide insights into the size, morphology, and biological function of EVs, which can be used in medical applications. Fluorescent nanoparticle tracking analysis with appropriate controls can provide reliable data for size and concentration measurements, while nanoscale flow cytometry is the most appropriate tool for characterizing molecular cargoes. Label selection is a crucial element in all fluorescence methods. The most comprehensive data can be obtained if several labeling approaches for a given marker are used, as they would provide complementary information about EV populations and interactions with the cells. In all EV-related experiments, the influence of lipoproteins and protein corona on the results should be considered. By reviewing and considering all the factors affecting EV labeling methods used in fluorescence-based techniques, we can assert that the data will provide as accurate as possible information about true EV biology and offer precise, clinically applicable information for future EV-based diagnostic or therapeutic applications.
Collapse
|
13
|
Giuliani P, De Simone C, Febo G, Bellasame A, Tupone N, Di Virglio V, di Giuseppe F, Ciccarelli R, Di Iorio P, Angelucci S. Proteomics Studies on Extracellular Vesicles Derived from Glioblastoma: Where Do We Stand? Int J Mol Sci 2024; 25:9778. [PMID: 39337267 PMCID: PMC11431518 DOI: 10.3390/ijms25189778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Like most tumors, glioblastoma multiforme (GBM), the deadliest brain tumor in human adulthood, releases extracellular vesicles (EVs). Their content, reflecting that of the tumor of origin, can be donated to nearby and distant cells which, by acquiring it, become more aggressive. Therefore, the study of EV-transported molecules has become very important. Particular attention has been paid to EV proteins to uncover new GBM biomarkers and potential druggable targets. Proteomic studies have mainly been performed by "bottom-up" mass spectrometry (MS) analysis of EVs isolated by different procedures from conditioned media of cultured GBM cells and biological fluids from GBM patients. Although a great number of dysregulated proteins have been identified, the translation of these findings into clinics remains elusive, probably due to multiple factors, including the lack of standardized procedures for isolation/characterization of EVs and analysis of their proteome. Thus, it is time to change research strategies by adopting, in addition to harmonized EV selection techniques, different MS methods aimed at identifying selected tumoral protein mutations and/or isoforms due to post-translational modifications, which more deeply influence the tumor behavior. Hopefully, these data integrated with those from other "omics" disciplines will lead to the discovery of druggable pathways for novel GBM therapies.
Collapse
Affiliation(s)
- Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, ‘G. D’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy; (P.G.); (C.D.S.); (G.F.); (A.B.); (P.D.I.)
- Center for Advanced Studies and Technology (CAST), ‘G. D’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy; (N.T.); (V.D.V.); (F.d.G.)
| | - Chiara De Simone
- Department of Medical, Oral and Biotechnological Sciences, ‘G. D’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy; (P.G.); (C.D.S.); (G.F.); (A.B.); (P.D.I.)
- Center for Advanced Studies and Technology (CAST), ‘G. D’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy; (N.T.); (V.D.V.); (F.d.G.)
| | - Giorgia Febo
- Department of Medical, Oral and Biotechnological Sciences, ‘G. D’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy; (P.G.); (C.D.S.); (G.F.); (A.B.); (P.D.I.)
- Center for Advanced Studies and Technology (CAST), ‘G. D’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy; (N.T.); (V.D.V.); (F.d.G.)
| | - Alessia Bellasame
- Department of Medical, Oral and Biotechnological Sciences, ‘G. D’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy; (P.G.); (C.D.S.); (G.F.); (A.B.); (P.D.I.)
- Center for Advanced Studies and Technology (CAST), ‘G. D’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy; (N.T.); (V.D.V.); (F.d.G.)
| | - Nicola Tupone
- Center for Advanced Studies and Technology (CAST), ‘G. D’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy; (N.T.); (V.D.V.); (F.d.G.)
- Department of Innovative Technologies in Medicine and Dentistry, ‘G. D’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy;
| | - Vimal Di Virglio
- Center for Advanced Studies and Technology (CAST), ‘G. D’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy; (N.T.); (V.D.V.); (F.d.G.)
- Department of Innovative Technologies in Medicine and Dentistry, ‘G. D’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy;
| | - Fabrizio di Giuseppe
- Center for Advanced Studies and Technology (CAST), ‘G. D’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy; (N.T.); (V.D.V.); (F.d.G.)
- Department of Innovative Technologies in Medicine and Dentistry, ‘G. D’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy;
| | - Renata Ciccarelli
- Center for Advanced Studies and Technology (CAST), ‘G. D’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy; (N.T.); (V.D.V.); (F.d.G.)
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, ‘G. D’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy; (P.G.); (C.D.S.); (G.F.); (A.B.); (P.D.I.)
- Center for Advanced Studies and Technology (CAST), ‘G. D’Annunzio’ University of Chieti-Pescara, Via L Polacchi 13, 66100 Chieti, Italy; (N.T.); (V.D.V.); (F.d.G.)
| | - Stefania Angelucci
- Department of Innovative Technologies in Medicine and Dentistry, ‘G. D’Annunzio’ University of Chieti-Pescara, Via Vestini 31, 66100 Chieti, Italy;
- Stem TeCh Group, Via L Polacchi 13, 66100 Chieti, Italy
| |
Collapse
|
14
|
Marchan-Alvarez JG, Teeuwen L, Mamand DR, Gabrielsson S, Blomgren K, Wiklander OPB, Newton PT. A protocol to differentiate the chondrogenic ATDC5 cell-line for the collection of chondrocyte-derived extracellular vesicles. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70004. [PMID: 39238548 PMCID: PMC11375531 DOI: 10.1002/jex2.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/31/2024] [Accepted: 08/09/2024] [Indexed: 09/07/2024]
Abstract
Skeletal growth and fracture healing rely on the mineralization of cartilage in a process called endochondral ossification. Chondrocytes firstly synthesize and then modify cartilage by the release of a wide range of particles into their extracellular space. Extracellular vesicles (EVs) are one type of such particles, but their roles in endochondral ossification are yet to be fully understood. It remains a challenge to obtain representative populations of chondrocyte-derived EVs, owing to difficulties both in preserving the function of primary chondrocytes in culture and in applying the serum-free conditions required for EV production. Here, we used the ATDC5 cell-line to recover chondrocyte-derived EVs from early- and late-differentiation stages, representing chondrocytes before and during cartilage mineralization. After screening different culture conditions, our data indicate that a serum-free Opti-MEM-based culture medium preserves chondrocyte identity and function, matrix mineralization and cell viability. We subsequently scaled-up production and isolated EVs from conditioned medium by size-exclusion chromatography. The obtained chondrocyte-derived EVs had typical ultrastructure and expression of classical EV markers, at quantities suitable for downstream experiments. Importantly, chondrocyte-derived EVs from late-differentiation stages had elevated levels of alkaline phosphatase activity. Hence, we established a method to obtain functional chondrocyte-derived EVs before and during cartilage mineralization that may aid the further understanding of their roles in endochondral bone growth and fracture healing.
Collapse
Affiliation(s)
- Jose G Marchan-Alvarez
- Department of Women's and Children's Health Karolinska Institutet Stockholm Sweden
- Astrid Lindgren Children's hospital Stockholm Sweden
| | - Loes Teeuwen
- Division of Immunology and Allergy, Department of Medicine (Solna) Karolinska Institutet Stockholm Sweden
- Clinical Immunology and Transfusion Medicine Karolinska University Hospital Stockholm Sweden
| | - Doste R Mamand
- Department of Laboratory Medicine Unit for Biomolecular and Cellular Medicine Karolinska Institutet Stockholm Sweden
| | - Susanne Gabrielsson
- Division of Immunology and Allergy, Department of Medicine (Solna) Karolinska Institutet Stockholm Sweden
- Clinical Immunology and Transfusion Medicine Karolinska University Hospital Stockholm Sweden
| | - Klas Blomgren
- Department of Women's and Children's Health Karolinska Institutet Stockholm Sweden
- Pediatric Oncology Karolinska University Hospital Stockholm Sweden
| | - Oscar P B Wiklander
- Department of Laboratory Medicine Unit for Biomolecular and Cellular Medicine Karolinska Institutet Stockholm Sweden
| | - Phillip T Newton
- Department of Women's and Children's Health Karolinska Institutet Stockholm Sweden
- Astrid Lindgren Children's hospital Stockholm Sweden
| |
Collapse
|
15
|
Pham CV, Chowdhury R, Patel S, Melke H, Hou Y, Xu H, Jia L, Duan A, Duan W, Xiang D. The role of the size of affinity ligands in the detection and characterization of extracellular vesicles. Biosens Bioelectron 2024; 258:116381. [PMID: 38744116 DOI: 10.1016/j.bios.2024.116381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/15/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Surface proteins on the membrane of nano-sized extracellular vesicles (EVs) not only play crucial roles in cell-to-cell communication, but also are specific binding targets for EV detection, isolation and tracking. The low abundance of protein biomarkers on EV surface, the formation of clusters and the complex EV surface network impose significant challenges to the study of EVs. Employing bulky sized affinity ligands, such as antibodies, in the detection and characterization of these vesicles often result in reduced sensitivity of detection or poor quantification of proteins on the EV surface. By virtue of their small size and high specificity, Affibody molecules emerge as a potential alternative to their monoclonal antibody counterparts as robust affinity ligands in EV research. In this study, we present a theoretical framework on the superiority of anti-HER2 Affibodies over anti-HER2 antibodies in labeling and detecting HER2-positive EVs, followed by the demonstration of the advantages of HER2 Affibodies in accessing EV surface and the detection of EVs through multiple types of approaches including fluorescence intensity, colorimetry, and fluorescence polarization. HER2 Affibodies outperformed by 10-fold over three HER2 antibody clones in accessing HER2-positive EVs derived from different human cancer cell lines. Furthermore, HRP-Affibody molecules could detect EVs from cancer cells spiked into human serum with at least a 2-fold higher sensitivity compared with that of their antibody counterparts. In addition, in fluorescence polarization assays in which no separation of free from bound ligand is required, FITC-labeled HER2 Affibodies could sensitively detect HER2-positive EVs with a clinically relevant limit of detection, whilst HER2 antibodies failed to detect EVs in the same conditions. With the demonstrated superiority in accessing and detecting surface targets over bulky-sized antibodies in EVs, Affibodies may become the next-generation of affinity ligands in the precise characterization and quantification of molecular architecture on the surface of EVs.
Collapse
Affiliation(s)
- Cuong Viet Pham
- School of Medicine, Deakin University, and IMPACT Strategic Research Centre, Waurn Ponds, VIC, 3216, Australia
| | - Rocky Chowdhury
- School of Medicine, Deakin University, and IMPACT Strategic Research Centre, Waurn Ponds, VIC, 3216, Australia
| | - Shweta Patel
- School of Medicine, Deakin University, and IMPACT Strategic Research Centre, Waurn Ponds, VIC, 3216, Australia
| | - Haben Melke
- School of Medicine, Deakin University, and IMPACT Strategic Research Centre, Waurn Ponds, VIC, 3216, Australia
| | - Yingchu Hou
- Laboratory of Tumor Molecular and Cellular Biology College of Life Sciences, Shaanxi Normal University 620 West Chang'an Avenue, Xi'an, Shaanxi, 710119, China
| | - Huo Xu
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Lee Jia
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, Fujian, 350108, China
| | - Andrew Duan
- Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Vic, Australia
| | - Wei Duan
- School of Medicine, Deakin University, and IMPACT Strategic Research Centre, Waurn Ponds, VIC, 3216, Australia.
| | - Dongxi Xiang
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, The Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
16
|
Xia Y, Zhang J, Liu G, Wolfram J. Immunogenicity of Extracellular Vesicles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403199. [PMID: 38932653 DOI: 10.1002/adma.202403199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/30/2024] [Indexed: 06/28/2024]
Abstract
Extracellular vesicles (EVs) are promising next-generation therapeutics and drug delivery systems due to demonstrated safety and efficacy in preclinical models and early-stage clinical trials. There is an urgent need to address the immunogenicity of EVs (beyond the apparent lack of immunotoxicity) to advance clinical development. To date, few studies have assessed unintended immunological recognition of EVs. An in-depth understanding of EV-induced immunogenicity and clearance is necessary to develop effective therapeutic strategies, including approaches to mitigate immunological recognition when undesired. This article summarizes various factors involved in the potential immunogenicity of EVs and strategies to reduce immunological recognition for improved therapeutic benefit.
Collapse
Affiliation(s)
- Yutian Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jianzhong Zhang
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Joy Wolfram
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
17
|
Poupardin R, Wolf M, Maeding N, Paniushkina L, Geissler S, Bergese P, Witwer KW, Schallmoser K, Fuhrmann G, Strunk D. Advances in Extracellular Vesicle Research Over the Past Decade: Source and Isolation Method are Connected with Cargo and Function. Adv Healthc Mater 2024; 13:e2303941. [PMID: 38270559 DOI: 10.1002/adhm.202303941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/23/2023] [Indexed: 01/26/2024]
Abstract
The evolution of extracellular vesicle (EV) research has introduced nanotechnology into biomedical cell communication science while recognizing what is formerly considered cell "dust" as constituting an entirely new universe of cell signaling particles. To display the global EV research landscape, a systematic review of 20 364 original research articles selected from all 40 684 EV-related records identified in PubMed 2013-2022 is performed. Machine-learning is used to categorize the high-dimensional data and further dissected significant associations between EV source, isolation method, cargo, and function. Unexpected correlations between these four categories indicate prevalent experimental strategies based on cargo connectivity with function of interest being associated with certain EV sources or isolation strategies. Conceptually relevant association of size-based EV isolation with protein cargo and uptake function will guide strategic conclusions enhancing future EV research and product development. Based on this study, an open-source database is built to facilitate further analysis with conventional or AI tools to identify additional causative associations of interest.
Collapse
Affiliation(s)
- Rodolphe Poupardin
- Cell Therapy Institute, Paracelsus Medical University, Salzburg, 5020, Austria
| | - Martin Wolf
- Cell Therapy Institute, Paracelsus Medical University, Salzburg, 5020, Austria
| | - Nicole Maeding
- Cell Therapy Institute, Paracelsus Medical University, Salzburg, 5020, Austria
| | - Liliia Paniushkina
- Cell Therapy Institute, Paracelsus Medical University, Salzburg, 5020, Austria
- Departments of Molecular and Comparative Pathobiology and Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Sven Geissler
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health at Charité - Universitätsmedizin Berlin, 10178, Berlin, Germany
| | - Paolo Bergese
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, 25121, Italy
- INSTM - National Interuniversity Consortium of Materials Science and Technology, Firenze, 50121, Italy
- National Center for Gene Therapy and Drugs based on RNA Technology - CN3, Padova, 35122, Italy
| | - Kenneth W Witwer
- Departments of Molecular and Comparative Pathobiology and Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Katharina Schallmoser
- Institute of Transfusion Medicine, Paracelsus Medical University, Salzburg, 5020, Austria
| | - Gregor Fuhrmann
- Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Dirk Strunk
- Cell Therapy Institute, Paracelsus Medical University, Salzburg, 5020, Austria
- Institute of Transfusion Medicine, Paracelsus Medical University, Salzburg, 5020, Austria
| |
Collapse
|
18
|
Singh PK, Sarchet P, Hord C, Casadei L, Pollock R, Prakash S. Mechanical property estimation of sarcoma-relevant extracellular vesicles using transmission electron microscopy. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e158. [PMID: 38966868 PMCID: PMC11222873 DOI: 10.1002/jex2.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 02/18/2024] [Accepted: 05/11/2024] [Indexed: 07/06/2024]
Abstract
Analysis of single extracellular vesicles (EVs) has the potential to yield valuable label-free information on their morphological structure, biomarkers and therapeutic targets, though such analysis is hindered by the lack of reliable and quantitative measurements of the mechanical properties of these compliant nanoscale particles. The technical challenge in mechanical property measurements arises from the existing tools and methods that offer limited throughput, and the reported elastic moduli range over several orders of magnitude. Here, we report on a flow-based method complemented by transmission electron microscopy (TEM) imaging to provide a high throughput, whole EV deformation analysis for estimating the mechanical properties of liposarcoma-derived EVs as a function of their size. Our study includes extracting morphological data of EVs from a large dataset of 432 TEM images, with images containing single to multiple EVs, and implementing the thin-shell deformation theory. We estimated the elastic modulus, E = 0.16 ± 0.02 MPa (mean±SE) for small EVs (sEVs; 30-150 nm) and E = 0.17 ± 0.03 MPa (mean±SE) for large EVs (lEVs; >150 nm). To our knowledge, this is the first report on the mechanical property estimation of LPS-derived EVs and has the potential to establish a relationship between EV size and EV mechanical properties.
Collapse
Affiliation(s)
- Premanshu Kumar Singh
- Department of Mechanical and Aerospace EngineeringThe Ohio State UniversityColumbusOhioUSA
| | - Patricia Sarchet
- Comprehensive Cancer CenterThe Ohio State UniversityColumbusOhioUSA
| | - Catherine Hord
- Center for Life Sciences EducationThe Ohio State UniversityColumbusOhioUSA
| | - Lucia Casadei
- Comprehensive Cancer CenterThe Ohio State UniversityColumbusOhioUSA
| | - Raphael Pollock
- Comprehensive Cancer CenterThe Ohio State UniversityColumbusOhioUSA
| | - Shaurya Prakash
- Department of Mechanical and Aerospace EngineeringThe Ohio State UniversityColumbusOhioUSA
- Comprehensive Cancer CenterThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
19
|
He G, Liu J, Yu Y, Wei S, Peng X, Yang L, Li H. Revisiting the advances and challenges in the clinical applications of extracellular vesicles in cancer. Cancer Lett 2024; 593:216960. [PMID: 38762194 DOI: 10.1016/j.canlet.2024.216960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Extracellular vesicles (EVs) have been the subject of an exponentially growing number of studies covering their biogenesis mechanisms, isolation and analysis techniques, physiological and pathological roles, and clinical applications, such as biomarker and therapeutic uses. Nevertheless, the heterogeneity of EVs both challenges our understanding of them and presents new opportunities for their potential application. Recently, the EV field experienced a wide range of advances. However, the challenges also remain huge. This review focuses on the recent progress and difficulties encountered in the practical use of EVs in clinical settings. In addition, we also explored the concept of EV heterogeneity to acquire a more thorough understanding of EVs and their involvement in cancer, specifically focusing on the fundamental nature of EVs.
Collapse
Affiliation(s)
- Guangpeng He
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China; Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Jiaxing Liu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China; Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Yifan Yu
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China; Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Shibo Wei
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China; Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China
| | - Xueqiang Peng
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China; Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China.
| | - Liang Yang
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China; Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China.
| | - Hangyu Li
- Department of General Surgery, The Fourth Affiliated Hospital, China Medical University, Shenyang, 110032, China; Shenyang Clinical Medical Research Center for Diagnosis, Treatment and Health Management of Early Digestive Cancer, Shenyang, 110032, China.
| |
Collapse
|
20
|
Nguyen VVT, Welsh JA, Tertel T, Choo A, van de Wakker SI, Defourny KAY, Giebel B, Vader P, Padmanabhan J, Lim SK, Nolte‐'t Hoen ENM, Verhaar MC, Bostancioglu RB, Zickler AM, Hong JM, Jones JC, EL Andaloussi S, van Balkom BWM, Görgens A. Inter-laboratory multiplex bead-based surface protein profiling of MSC-derived EV preparations identifies MSC-EV surface marker signatures. J Extracell Vesicles 2024; 13:e12463. [PMID: 38868945 PMCID: PMC11170075 DOI: 10.1002/jev2.12463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/15/2024] [Accepted: 05/21/2024] [Indexed: 06/14/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) are promising regenerative therapeutics that primarily exert their effects through secreted extracellular vesicles (EVs). These EVs - being small and non-living - are easier to handle and possess advantages over cellular products. Consequently, the therapeutic potential of MSC-EVs is increasingly investigated. However, due to variations in MSC-EV manufacturing strategies, MSC-EV products should be considered as highly diverse. Moreover, the diverse array of EV characterisation technologies used for MSC-EV characterisation further complicates reliable interlaboratory comparisons of published data. Consequently, this study aimed to establish a common method that can easily be used by various MSC-EV researchers to characterise MSC-EV preparations to facilitate interlaboratory comparisons. To this end, we conducted a comprehensive inter-laboratory assessment using a novel multiplex bead-based EV flow cytometry assay panel. This assessment involved 11 different MSC-EV products from five laboratories with varying MSC sources, culture conditions, and EV preparation methods. Through this assay panel covering a range of mostly MSC-related markers, we identified a set of cell surface markers consistently positive (CD44, CD73 and CD105) or negative (CD11b, CD45 and CD197) on EVs of all explored MSC-EV preparations. Hierarchical clustering analysis revealed distinct surface marker profiles associated with specific preparation processes and laboratory conditions. We propose CD73, CD105 and CD44 as robust positive markers for minimally identifying MSC-derived EVs and CD11b, CD14, CD19, CD45 and CD79 as reliable negative markers. Additionally, we highlight the influence of culture medium components, particularly human platelet lysate, on EV surface marker profiles, underscoring the influence of culture conditions on resulting EV products. This standardisable approach for MSC-EV surface marker profiling offers a tool for routine characterisation of manufactured EV products in pre-clinical and clinical research, enhances the quality control of MSC-EV preparations, and hopefully paves the way for higher consistency and reproducibility in the emerging therapeutic MSC-EV field.
Collapse
Affiliation(s)
| | - Joshua A. Welsh
- Translational Nanobiology Section, Laboratory of Pathology, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
- The Measuring Stick, LtdPeterboroughUK
- Advanced Technology GroupBecton DickinsonSan JoseCaliforniaUSA
| | - Tobias Tertel
- Institute for Transfusion MedicineUniversity Hospital EssenUniversity of Duisburg‐EssenEssenGermany
| | - Andre Choo
- Bioprocessing Technology Institute (BTI)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Simonides I. van de Wakker
- Department of Cardiology, Experimental Cardiology LaboratoryUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Kyra A. Y. Defourny
- Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Bernd Giebel
- Institute for Transfusion MedicineUniversity Hospital EssenUniversity of Duisburg‐EssenEssenGermany
| | - Pieter Vader
- Department of Cardiology, Experimental Cardiology LaboratoryUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
- CDL ResearchUniversity Medical Center Utrecht, Utrecht UniversityUtrechtThe Netherlands
| | - Jayanthi Padmanabhan
- Bioprocessing Technology Institute (BTI)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Sai Kiang Lim
- Bioprocessing Technology Institute (BTI)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Esther N. M. Nolte‐'t Hoen
- Division of Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | | | - R. Beklem Bostancioglu
- Division of Biomolecular and Cellular Medicine, Department of Laboratory MedicineKarolinska InstitutetStockholmSweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer CenterStockholmSweden
| | - Antje M. Zickler
- Division of Biomolecular and Cellular Medicine, Department of Laboratory MedicineKarolinska InstitutetStockholmSweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer CenterStockholmSweden
- Karolinska ATMP CenterANA FuturaHuddingeSweden
| | - Jia Mei Hong
- Bioprocessing Technology Institute (BTI)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
| | - Jennifer C. Jones
- Translational Nanobiology Section, Laboratory of Pathology, National Cancer InstituteNational Institutes of HealthBethesdaMarylandUSA
| | - Samir EL Andaloussi
- Division of Biomolecular and Cellular Medicine, Department of Laboratory MedicineKarolinska InstitutetStockholmSweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer CenterStockholmSweden
- Karolinska ATMP CenterANA FuturaHuddingeSweden
| | | | - André Görgens
- Institute for Transfusion MedicineUniversity Hospital EssenUniversity of Duisburg‐EssenEssenGermany
- Division of Biomolecular and Cellular Medicine, Department of Laboratory MedicineKarolinska InstitutetStockholmSweden
- Department of Cellular Therapy and Allogeneic Stem Cell Transplantation (CAST)Karolinska University Hospital Huddinge and Karolinska Comprehensive Cancer CenterStockholmSweden
- Karolinska ATMP CenterANA FuturaHuddingeSweden
| |
Collapse
|
21
|
Liam-Or R, Faruqu FN, Walters A, Han S, Xu L, Wang JTW, Oberlaender J, Sanchez-Fueyo A, Lombardi G, Dazzi F, Mailaender V, Al-Jamal KT. Cellular uptake and in vivo distribution of mesenchymal-stem-cell-derived extracellular vesicles are protein corona dependent. NATURE NANOTECHNOLOGY 2024; 19:846-855. [PMID: 38366223 PMCID: PMC11186763 DOI: 10.1038/s41565-023-01585-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/27/2023] [Indexed: 02/18/2024]
Abstract
Extracellular vesicles (EVs) derived from mesenchymal stem cells are promising nanotherapeutics in liver diseases due to their regenerative and immunomodulatory properties. Nevertheless, a concern has been raised regarding the rapid clearance of exogenous EVs by phagocytic cells. Here we explore the impact of protein corona on EVs derived from two culturing conditions in which specific proteins acquired from media were simultaneously adsorbed on the EV surface. Additionally, by incubating EVs with serum, simulating protein corona formation upon systemic delivery, further resolved protein corona-EV complex patterns were investigated. Our findings reveal the potential influences of corona composition on EVs under in vitro conditions and their in vivo kinetics. Our data suggest that bound albumin creates an EV signature that can retarget EVs from hepatic macrophages. This results in markedly improved cellular uptake by hepatocytes, liver sinusoidal endothelial cells and hepatic stellate cells. This phenomenon can be applied as a camouflage strategy by precoating EVs with albumin to fabricate the albumin-enriched protein corona-EV complex, enhancing non-phagocytic uptake in the liver. This work addresses a critical challenge facing intravenously administered EVs for liver therapy by tailoring the protein corona-EV complex for liver cell targeting and immune evasion.
Collapse
Affiliation(s)
- Revadee Liam-Or
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Farid N Faruqu
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, UK
- Pharmacology Department, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Adam Walters
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Shunping Han
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Lizhou Xu
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Julie Tzu-Wen Wang
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | - Jennifer Oberlaender
- Max Planck Institute for Polymer Research, Mainz, Germany
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Alberto Sanchez-Fueyo
- Institute of Liver Studies, King's College London University and King's College Hospital, London, UK
| | - Giovanna Lombardi
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Francesco Dazzi
- Comprehensive Cancer Centre, King's College London, London, UK
| | - Volker Mailaender
- Max Planck Institute for Polymer Research, Mainz, Germany
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Khuloud T Al-Jamal
- Institute of Pharmaceutical Science, Faculty of Life Sciences & Medicine, King's College London, London, UK.
| |
Collapse
|
22
|
Moon MJ, Rai A, Sharma P, Fang H, McFadyen JD, Greening DW, Peter K. Differential effects of physiological agonists on the proteome of platelet-derived extracellular vesicles. Proteomics 2024; 24:e2300391. [PMID: 38556629 DOI: 10.1002/pmic.202300391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 04/02/2024]
Abstract
Arterial thrombosis manifesting as heart attack and stroke is the leading cause of death worldwide. Platelets are central mediators of thrombosis that can be activated through multiple activation pathways. Platelet-derived extracellular vesicles (pEVs), also known as platelet-derived microparticles, are granular mixtures of membrane structures produced by platelets in response to various activating stimuli. Initial studies have attracted interest on how platelet agonists influence the composition of the pEV proteome. In the current study, we used physiological platelet agonists of varying potencies which reflect the microenvironments that platelets experience during thrombus formation: adenosine diphosphate, collagen, thrombin as well as a combination of thrombin/collagen to induce platelet activation and pEV generation. Proteomic profiling revealed that pEVs have an agonist-dependent altered proteome in comparison to their cells of origin, activated platelets. Furthermore, we found that various protein classes including those related to coagulation and complement (prothrombin, antithrombin, and plasminogen) and platelet activation (fibrinogen) are attributed to platelet EVs following agonist stimulation. This agonist-dependent altered proteome suggests that protein packaging is an active process that appears to occur without de novo protein synthesis. This study provides new information on the influence of physiological agonist stimuli on the biogenesis and proteome landscape of pEVs.
Collapse
Affiliation(s)
- Mitchell J Moon
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Alin Rai
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
| | - Prerna Sharma
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Haoyun Fang
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - James D McFadyen
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Haematology, Alfred Hospital, Melbourne, Victoria, Australia
- Australian Centre for Blood Diseases, Monash University, Melbourne, Victoria, Australia
| | - David W Greening
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
- Molecular Proteomics, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
| | - Karlheinz Peter
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
- Atherothrombosis and Vascular Biology, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Baker Department of Cardiovascular Research, Translation and Implementation, La Trobe University, Melbourne, Victoria, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, Victoria, Australia
| |
Collapse
|
23
|
Grätz C, Schuster M, Brandes F, Meidert AS, Kirchner B, Reithmair M, Schelling G, Pfaffl MW. A pipeline for the development and analysis of extracellular vesicle-based transcriptomic biomarkers in molecular diagnostics. Mol Aspects Med 2024; 97:101269. [PMID: 38552453 DOI: 10.1016/j.mam.2024.101269] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/11/2024] [Accepted: 03/17/2024] [Indexed: 06/12/2024]
Abstract
Extracellular vesicles are shed by every cell type and can be found in any biofluid. They contain different molecules that can be utilized as biomarkers, including several RNA species which they protect from degradation. Here, we present a pipeline for the development and analysis of extracellular vesicle-associated transcriptomic biomarkers that our group has successfully applied multiple times. We highlight the key steps of the pipeline and give particular emphasis to the necessary quality control checkpoints, which are linked to numerous available guidelines that should be considered along the workflow. Our pipeline starts with patient recruitment and continues with blood sampling and processing. The purification and characterization of extracellular vesicles is explained in detail, as well as the isolation and quality control of extracellular vesicle-associated RNA. We point out the possible pitfalls during library preparation and RNA sequencing and present multiple bioinformatic tools to pinpoint biomarker signature candidates from the sequencing data. Finally, considerations and pitfalls during the validation of the biomarker signature using RT-qPCR will be elaborated.
Collapse
Affiliation(s)
- Christian Grätz
- Department of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Freising, Germany.
| | - Martina Schuster
- Institute of Human Genetics, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Florian Brandes
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Agnes S Meidert
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Benedikt Kirchner
- Department of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Freising, Germany; Institute of Human Genetics, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Marlene Reithmair
- Institute of Human Genetics, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Gustav Schelling
- Department of Anesthesiology, University Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Michael W Pfaffl
- Department of Animal Physiology and Immunology, School of Life Sciences, Technical University of Munich, Freising, Germany.
| |
Collapse
|
24
|
Couse AD, Cox-Vazquez SJ, Ghatak S, Trinidad JC, Clemmer DE. Delineating Bovine Milk Derived Microvesicles from Exosomes Using Proteomics. J Proteome Res 2024. [PMID: 38805445 DOI: 10.1021/acs.jproteome.4c00352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
In the work presented herein, a simple serial-pelleting purification strategy combined with a mass spectrometry-based proteomics analysis was developed as a means of discerning differences in extracellular vesicle (EV) populations found in bovine milk samples. A sequence of ultracentrifugation speeds was used to generate changes in the abundances of EV populations, allowing for the identification of associated proteins. A metric was developed to determine the relative abundances of proteins in large EVs (>200 nm) and small EVs (<200 nm). Of the 476 proteins consistently found in this study, 340 are associated with vesicular components. Of these, 156 were heavily enriched in large EVs, 155 shared between large and small EVs, and 29 heavily enriched in small EVs. Additionally, out of 68 proteins annotated as exosome proteins, 32 were enriched in large EVs, 27 shared between large and small EVs, 5 enriched in small EVs, and 7 were found to be nonvesicular contaminant proteins. The top correlated proteins in the small EV group were predominantly membrane-bound proteins, whereas the top correlated proteins in the large EV group were mostly cytosolic enzymes for molecular processing. This method provides a means of assessing the origins of vesicle components and provides new potential marker proteins within discrete vesicle populations.
Collapse
Affiliation(s)
- Andrew D Couse
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana 47405, United States
| | - Sarah J Cox-Vazquez
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana 47405, United States
| | - Subhadip Ghatak
- McGowan Institute of Regenerative Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15219, United States
| | - Jonathan C Trinidad
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana 47405, United States
| | - David E Clemmer
- Department of Chemistry, Indiana University Bloomington, Bloomington, Indiana 47405, United States
| |
Collapse
|
25
|
Phelps J, Hart DA, Mitha AP, Duncan NA, Sen A. Extracellular Vesicles Generated by Mesenchymal Stem Cells in Stirred Suspension Bioreactors Promote Angiogenesis in Human-Brain-Derived Endothelial Cells. Int J Mol Sci 2024; 25:5219. [PMID: 38791256 PMCID: PMC11121007 DOI: 10.3390/ijms25105219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Interrupted blood flow in the brain due to ischemic injuries such as ischemic stroke or traumatic brain injury results in irreversible brain damage, leading to cognitive impairment associated with inflammation, disruption of the blood-brain barrier (BBB), and cell death. Since the BBB only allows entry to a small class of drugs, many drugs used to treat ischemia in other tissues have failed in brain-related disorders. The administration of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) has shown promise in improving the functional recovery of the brain following cerebral ischemia by inducing blood vessel formation. To facilitate such a treatment approach, it is necessary to develop bioprocesses that can produce therapeutically relevant MSC-EVs in a reproducible and scalable manner. This study evaluated the feasibility of using stirred suspension bioreactors (SSBs) to scale-up the serum-free production of pro-angiogenic MSC-EVs under clinically relevant physioxic conditions. It was found that MSCs grown in SSBs generated EVs that stimulated angiogenesis in cerebral microvascular endothelial cells, supporting the use of SSBs to produce MSC-EVs for application in cerebral ischemia. These properties were impaired at higher cell confluency, outlining the importance of considering the time of harvest when developing bioprocesses to manufacture EV populations.
Collapse
Affiliation(s)
- Jolene Phelps
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB T2N 1N4, Canada;
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB T2N 1N4, Canada; (D.A.H.); (A.P.M.)
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive N.W., Calgary, AB T2N 4Z6, Canada;
| | - David A. Hart
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB T2N 1N4, Canada; (D.A.H.); (A.P.M.)
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive N.W., Calgary, AB T2N 4Z6, Canada;
- Department of Surgery, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, AB T2N 4N1, Canada
- Faculty of Kinesiology, University of Calgary, 2500 University Drive N.W., Calgary, AB T2N 1N4, Canada
| | - Alim P. Mitha
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB T2N 1N4, Canada; (D.A.H.); (A.P.M.)
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, 1403 29 Street N.W., Calgary, AB T2N 2T9, Canada
| | - Neil A. Duncan
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive N.W., Calgary, AB T2N 4Z6, Canada;
- Department of Surgery, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, AB T2N 4N1, Canada
- Department of Civil Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB T2N 1N4, Canada
| | - Arindom Sen
- Pharmaceutical Production Research Facility, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB T2N 1N4, Canada;
- Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB T2N 1N4, Canada; (D.A.H.); (A.P.M.)
- McCaig Institute for Bone and Joint Health, Cumming School of Medicine, University of Calgary, 3280 Hospital Drive N.W., Calgary, AB T2N 4Z6, Canada;
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, 2500 University Drive N.W., Calgary, AB T2N 1N4, Canada
| |
Collapse
|
26
|
Hisey CL, Rima XY, Doon-Ralls J, Nagaraj CK, Mayone S, Nguyen KT, Wiggins S, Dorayappan KDP, Selvendiran K, Wood D, Hu C, Patel D, Palmer A, Hansford D, Reategui E. Light-induced Extracellular Vesicle Adsorption. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590318. [PMID: 38712200 PMCID: PMC11071350 DOI: 10.1101/2024.04.24.590318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The role of extracellular vesicles (EVs) in human health and disease has garnered considerable attention over the past two decades. However, while several types of EVs are known to interact dynamically with the extracellular matrix and there is great potential value in producing high-fidelity EV micropatterns, there are currently no label-free, high-resolution, and tunable platform technologies with this capability. We introduce Light-induced Extracellular Vesicle Adsorption (LEVA) as a powerful solution to rapidly advance the study of matrix- and surface-bound EVs and other particles. The versatility of LEVA is demonstrated using commercial GFP-EV standards, EVs from glioblastoma bioreactors, and E. coli outer membrane vesicles (OMVs), with the resulting patterns used for single EV characterization, single cell migration on migrasome-mimetic trails, and OMV-mediated neutrophil swarming. LEVA will enable rapid advancements in the study of matrix- and surface-bound EVs and other particles, and should encourage researchers from many disciplines to create novel diagnostic, biomimetic, immunoengineering, and therapeutic screening assays.
Collapse
|
27
|
Augello G, Cusimano A, Cervello M, Cusimano A. Extracellular Vesicle-Related Non-Coding RNAs in Hepatocellular Carcinoma: An Overview. Cancers (Basel) 2024; 16:1415. [PMID: 38611093 PMCID: PMC11011022 DOI: 10.3390/cancers16071415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer. It is a major public health problem worldwide, and it is often diagnosed at advanced stages, when no effective treatment options are available. Extracellular vesicles (EVs) are nanosized double-layer lipid vesicles containing various biomolecule cargoes, such as lipids, proteins, and nucleic acids. EVs are released from nearly all types of cells and have been shown to play an important role in cell-to-cell communication. In recent years, many studies have investigated the role of EVs in cancer, including HCC. Emerging studies have shown that EVs play primary roles in the development and progression of cancer, modulating tumor growth and metastasis formation. Moreover, it has been observed that non-coding RNAs (ncRNAs) carried by tumor cell-derived EVs promote tumorigenesis, regulating the tumor microenvironment (TME) and playing critical roles in the progression, angiogenesis, metastasis, immune escape, and drug resistance of HCC. EV-related ncRNAs can provide information regarding disease status, thus encompassing a role as biomarkers. In this review, we discuss the main roles of ncRNAs present in HCC-derived EVs, including micro(mi) RNAs, long non-coding (lnc) RNAs, and circular (circ) RNAs, and their potential clinical value as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Giuseppa Augello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90146 Palermo, Italy; (A.C.); (M.C.)
| | - Alessandra Cusimano
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90146 Palermo, Italy; (A.C.); (M.C.)
- Department of Biological, Chemical and Pharmaceutical Science and Technology (STEBICEF), University of Palermo, 90128 Palermo, Italy
| | - Melchiorre Cervello
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90146 Palermo, Italy; (A.C.); (M.C.)
| | - Antonella Cusimano
- Institute for Biomedical Research and Innovation, National Research Council (CNR), 90146 Palermo, Italy; (A.C.); (M.C.)
| |
Collapse
|
28
|
Hsia T, Chen Y. RNA-encapsulating lipid nanoparticles in cancer immunotherapy: From pre-clinical studies to clinical trials. Eur J Pharm Biopharm 2024; 197:114234. [PMID: 38401743 DOI: 10.1016/j.ejpb.2024.114234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/29/2024] [Accepted: 02/14/2024] [Indexed: 02/26/2024]
Abstract
Nanoparticle-based delivery systems such as RNA-encapsulating lipid nanoparticles (RNA LNPs) have dramatically advanced in function and capacity over the last few decades. RNA LNPs boast of a diverse array of external and core configurations that enhance targeted delivery and prolong circulatory retention, advancing therapeutic outcomes. Particularly within the realm of cancer immunotherapies, RNA LNPs are increasingly gaining prominence. Pre-clinical in vitro and in vivo studies have laid a robust foundation for new and ongoing clinical trials that are actively enrolling patients for RNA LNP cancer immunotherapy. This review explores RNA LNPs, starting from their core composition to their external membrane formulation, set against a backdrop of recent clinical breakthroughs. We further elucidate the LNP delivery avenues, broach the prevailing challenges, and contemplate the future perspectives of RNA LNP-mediated immunotherapy.
Collapse
Affiliation(s)
- Tiffaney Hsia
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yunching Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
29
|
Lattmann E, Räss L, Tognetti M, Gómez JMM, Lapaire V, Bruderer R, Reiter L, Feng Y, Steinmetz LM, Levesque MP. Size-exclusion chromatography combined with DIA-MS enables deep proteome profiling of extracellular vesicles from melanoma plasma and serum. Cell Mol Life Sci 2024; 81:90. [PMID: 38353833 PMCID: PMC10867102 DOI: 10.1007/s00018-024-05137-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
Extracellular vesicles (EVs) are important players in melanoma progression, but their use as clinical biomarkers has been limited by the difficulty of profiling blood-derived EV proteins with high depth of coverage, the requirement for large input amounts, and complex protocols. Here, we provide a streamlined and reproducible experimental workflow to identify plasma- and serum- derived EV proteins of healthy donors and melanoma patients using minimal amounts of sample input. SEC-DIA-MS couples size-exclusion chromatography to EV concentration and deep-proteomic profiling using data-independent acquisition. From as little as 200 µL of plasma per patient in a cohort of three healthy donors and six melanoma patients, we identified and quantified 2896 EV-associated proteins, achieving a 3.5-fold increase in depth compared to previously published melanoma studies. To compare the EV-proteome to unenriched blood, we employed an automated workflow to deplete the 14 most abundant proteins from plasma and serum and thereby approximately doubled protein group identifications versus native blood. The EV proteome diverged from corresponding unenriched plasma and serum, and unlike the latter, separated healthy donor and melanoma patient samples. Furthermore, known melanoma markers, such as MCAM, TNC, and TGFBI, were upregulated in melanoma EVs but not in depleted melanoma plasma, highlighting the specific information contained in EVs. Overall, EVs were significantly enriched in intact membrane proteins and proteins related to SNARE protein interactions and T-cell biology. Taken together, we demonstrated the increased sensitivity of an EV-based proteomic workflow that can be easily applied to larger melanoma cohorts and other indications.
Collapse
Affiliation(s)
- Evelyn Lattmann
- Department of Dermatology, University Hospital Zurich, University of Zurich, Schlieren, Switzerland
| | - Luca Räss
- Biognosys AG, Schlieren, Switzerland
| | | | - Julia M Martínez Gómez
- Department of Dermatology, University Hospital Zurich, University of Zurich, Schlieren, Switzerland
| | - Valérie Lapaire
- Department of Dermatology, University Hospital Zurich, University of Zurich, Schlieren, Switzerland
| | | | | | | | - Lars M Steinmetz
- Stanford Genome Technology Center, Stanford University, Palo Alto, CA, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Mitchell P Levesque
- Department of Dermatology, University Hospital Zurich, University of Zurich, Schlieren, Switzerland.
| |
Collapse
|
30
|
Wong C, Stoilova I, Gazeau F, Herbeuval JP, Fourniols T. Mesenchymal stromal cell derived extracellular vesicles as a therapeutic tool: immune regulation, MSC priming, and applications to SLE. Front Immunol 2024; 15:1355845. [PMID: 38390327 PMCID: PMC10881725 DOI: 10.3389/fimmu.2024.1355845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune disease characterized by a dysfunction of the immune system. Mesenchymal stromal cell (MSCs) derived extracellular vesicles (EVs) are nanometer-sized particles carrying a diverse range of bioactive molecules, such as proteins, miRNAs, and lipids. Despite the methodological disparities, recent works on MSC-EVs have highlighted their broad immunosuppressive effect, thus driving forwards the potential of MSC-EVs in the treatment of chronic diseases. Nonetheless, their mechanism of action is still unclear, and better understanding is needed for clinical application. Therefore, we describe in this review the diverse range of bioactive molecules mediating their immunomodulatory effect, the techniques and possibilities for enhancing their immune activity, and finally the potential application to SLE.
Collapse
Affiliation(s)
- Christophe Wong
- EVerZom, Paris, France
- Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8601, Université Paris Cité, Paris, France
- Chemistry and Biology, Modeling and Immunology for Therapy (CBMIT), Université Paris Cité, Paris, France
| | - Ivana Stoilova
- Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8601, Université Paris Cité, Paris, France
- Chemistry and Biology, Modeling and Immunology for Therapy (CBMIT), Université Paris Cité, Paris, France
| | - Florence Gazeau
- Matière et Systèmes Complexes (MSC) UMR CNRS 7057, Université Paris Cité, Paris, France
| | - Jean-Philippe Herbeuval
- Centre National de la Recherche Scientifique (CNRS) Unité Mixte de Recherche (UMR) 8601, Université Paris Cité, Paris, France
- Chemistry and Biology, Modeling and Immunology for Therapy (CBMIT), Université Paris Cité, Paris, France
| | | |
Collapse
|
31
|
Welsh JA, Goberdhan DCI, O'Driscoll L, Buzas EI, Blenkiron C, Bussolati B, Cai H, Di Vizio D, Driedonks TAP, Erdbrügger U, Falcon‐Perez JM, Fu Q, Hill AF, Lenassi M, Lim SK, Mahoney MG, Mohanty S, Möller A, Nieuwland R, Ochiya T, Sahoo S, Torrecilhas AC, Zheng L, Zijlstra A, Abuelreich S, Bagabas R, Bergese P, Bridges EM, Brucale M, Burger D, Carney RP, Cocucci E, Colombo F, Crescitelli R, Hanser E, Harris AL, Haughey NJ, Hendrix A, Ivanov AR, Jovanovic‐Talisman T, Kruh‐Garcia NA, Ku'ulei‐Lyn Faustino V, Kyburz D, Lässer C, Lennon KM, Lötvall J, Maddox AL, Martens‐Uzunova ES, Mizenko RR, Newman LA, Ridolfi A, Rohde E, Rojalin T, Rowland A, Saftics A, Sandau US, Saugstad JA, Shekari F, Swift S, Ter‐Ovanesyan D, Tosar JP, Useckaite Z, Valle F, Varga Z, van der Pol E, van Herwijnen MJC, Wauben MHM, Wehman AM, Williams S, Zendrini A, Zimmerman AJ, MISEV Consortium, Théry C, Witwer KW. Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches. J Extracell Vesicles 2024; 13:e12404. [PMID: 38326288 PMCID: PMC10850029 DOI: 10.1002/jev2.12404] [Citation(s) in RCA: 318] [Impact Index Per Article: 318.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 02/09/2024] Open
Abstract
Extracellular vesicles (EVs), through their complex cargo, can reflect the state of their cell of origin and change the functions and phenotypes of other cells. These features indicate strong biomarker and therapeutic potential and have generated broad interest, as evidenced by the steady year-on-year increase in the numbers of scientific publications about EVs. Important advances have been made in EV metrology and in understanding and applying EV biology. However, hurdles remain to realising the potential of EVs in domains ranging from basic biology to clinical applications due to challenges in EV nomenclature, separation from non-vesicular extracellular particles, characterisation and functional studies. To address the challenges and opportunities in this rapidly evolving field, the International Society for Extracellular Vesicles (ISEV) updates its 'Minimal Information for Studies of Extracellular Vesicles', which was first published in 2014 and then in 2018 as MISEV2014 and MISEV2018, respectively. The goal of the current document, MISEV2023, is to provide researchers with an updated snapshot of available approaches and their advantages and limitations for production, separation and characterisation of EVs from multiple sources, including cell culture, body fluids and solid tissues. In addition to presenting the latest state of the art in basic principles of EV research, this document also covers advanced techniques and approaches that are currently expanding the boundaries of the field. MISEV2023 also includes new sections on EV release and uptake and a brief discussion of in vivo approaches to study EVs. Compiling feedback from ISEV expert task forces and more than 1000 researchers, this document conveys the current state of EV research to facilitate robust scientific discoveries and move the field forward even more rapidly.
Collapse
Affiliation(s)
- Joshua A. Welsh
- Translational Nanobiology Section, Laboratory of PathologyNational Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Deborah C. I. Goberdhan
- Nuffield Department of Women's and Reproductive HealthUniversity of Oxford, Women's Centre, John Radcliffe HospitalOxfordUK
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical SciencesTrinity College DublinDublinIreland
- Trinity Biomedical Sciences InstituteTrinity College DublinDublinIreland
- Trinity St. James's Cancer InstituteTrinity College DublinDublinIreland
| | - Edit I. Buzas
- Department of Genetics, Cell‐ and ImmunobiologySemmelweis UniversityBudapestHungary
- HCEMM‐SU Extracellular Vesicle Research GroupSemmelweis UniversityBudapestHungary
- HUN‐REN‐SU Translational Extracellular Vesicle Research GroupSemmelweis UniversityBudapestHungary
| | - Cherie Blenkiron
- Faculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand
| | - Benedetta Bussolati
- Department of Molecular Biotechnology and Health SciencesUniversity of TurinTurinItaly
| | | | - Dolores Di Vizio
- Department of Surgery, Division of Cancer Biology and TherapeuticsCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Tom A. P. Driedonks
- Department CDL ResearchUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Uta Erdbrügger
- University of Virginia Health SystemCharlottesvilleVirginiaUSA
| | - Juan M. Falcon‐Perez
- Exosomes Laboratory, Center for Cooperative Research in BiosciencesBasque Research and Technology AllianceDerioSpain
- Metabolomics Platform, Center for Cooperative Research in BiosciencesBasque Research and Technology AllianceDerioSpain
- IKERBASQUE, Basque Foundation for ScienceBilbaoSpain
| | - Qing‐Ling Fu
- Otorhinolaryngology Hospital, The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
- Extracellular Vesicle Research and Clinical Translational CenterThe First Affiliated Hospital, Sun Yat‐sen UniversityGuangzhouChina
| | - Andrew F. Hill
- Institute for Health and SportVictoria UniversityMelbourneAustralia
| | - Metka Lenassi
- Faculty of MedicineUniversity of LjubljanaLjubljanaSlovenia
| | - Sai Kiang Lim
- Institute of Molecular and Cell Biology (IMCB)Agency for Science, Technology and Research (A*STAR)SingaporeSingapore
- Paracrine Therapeutics Pte. Ltd.SingaporeSingapore
- Department of Surgery, YLL School of MedicineNational University SingaporeSingaporeSingapore
| | - Mỹ G. Mahoney
- Thomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Sujata Mohanty
- Stem Cell FacilityAll India Institute of Medical SciencesNew DelhiIndia
| | - Andreas Möller
- Chinese University of Hong KongHong KongHong Kong S.A.R.
- QIMR Berghofer Medical Research InstituteBrisbaneAustralia
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Amsterdam Vesicle Center, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Susmita Sahoo
- Icahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ana C. Torrecilhas
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e FarmacêuticasUniversidade Federal de São Paulo (UNIFESP) Campus DiademaDiademaBrazil
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Andries Zijlstra
- Department of PathologyVanderbilt University Medical CenterNashvilleTennesseeUSA
- GenentechSouth San FranciscoCaliforniaUSA
| | - Sarah Abuelreich
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Reem Bagabas
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Paolo Bergese
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
- Center for Colloid and Surface Science (CSGI)FlorenceItaly
- National Center for Gene Therapy and Drugs based on RNA TechnologyPaduaItaly
| | - Esther M. Bridges
- Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Marco Brucale
- Consiglio Nazionale delle Ricerche ‐ Istituto per lo Studio dei Materiali NanostrutturatiBolognaItaly
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFlorenceItaly
| | - Dylan Burger
- Kidney Research CentreOttawa Hopsital Research InstituteOttawaCanada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaCanada
- School of Pharmaceutical SciencesUniversity of OttawaOttawaCanada
| | - Randy P. Carney
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Emanuele Cocucci
- Division of Pharmaceutics and Pharmacology, College of PharmacyThe Ohio State UniversityColumbusOhioUSA
- Comprehensive Cancer CenterThe Ohio State UniversityColumbusOhioUSA
| | - Federico Colombo
- Division of Pharmaceutics and Pharmacology, College of PharmacyThe Ohio State UniversityColumbusOhioUSA
| | - Rossella Crescitelli
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical SciencesSahlgrenska Academy, University of GothenburgGothenburgSweden
- Wallenberg Centre for Molecular and Translational Medicine, Institute of Clinical SciencesSahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Edveena Hanser
- Department of BiomedicineUniversity Hospital BaselBaselSwitzerland
- Department of BiomedicineUniversity of BaselBaselSwitzerland
| | | | - Norman J. Haughey
- Departments of Neurology and PsychiatryJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - An Hendrix
- Laboratory of Experimental Cancer Research, Department of Human Structure and RepairGhent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| | - Alexander R. Ivanov
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMassachusettsUSA
| | - Tijana Jovanovic‐Talisman
- Department of Cancer Biology and Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Nicole A. Kruh‐Garcia
- Bio‐pharmaceutical Manufacturing and Academic Resource Center (BioMARC)Infectious Disease Research Center, Colorado State UniversityFort CollinsColoradoUSA
| | - Vroniqa Ku'ulei‐Lyn Faustino
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Diego Kyburz
- Department of BiomedicineUniversity of BaselBaselSwitzerland
- Department of RheumatologyUniversity Hospital BaselBaselSwitzerland
| | - Cecilia Lässer
- Krefting Research Centre, Department of Internal Medicine and Clinical NutritionInstitute of Medicine at Sahlgrenska Academy, University of GothenburgGothenburgSweden
| | - Kathleen M. Lennon
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Jan Lötvall
- Krefting Research Centre, Institute of Medicine at Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Adam L. Maddox
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Elena S. Martens‐Uzunova
- Erasmus MC Cancer InstituteUniversity Medical Center Rotterdam, Department of UrologyRotterdamThe Netherlands
| | - Rachel R. Mizenko
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
| | - Lauren A. Newman
- College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| | - Andrea Ridolfi
- Department of Physics and Astronomy, and LaserLaB AmsterdamVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Eva Rohde
- Department of Transfusion Medicine, University HospitalSalzburger Landeskliniken GmbH of Paracelsus Medical UniversitySalzburgAustria
- GMP Unit, Paracelsus Medical UniversitySalzburgAustria
- Transfer Centre for Extracellular Vesicle Theralytic Technologies, EV‐TTSalzburgAustria
| | - Tatu Rojalin
- Department of Biomedical EngineeringUniversity of CaliforniaDavisCaliforniaUSA
- Expansion Therapeutics, Structural Biology and BiophysicsJupiterFloridaUSA
| | - Andrew Rowland
- College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| | - Andras Saftics
- Department of Molecular Medicine, Beckman Research InstituteCity of Hope Comprehensive Cancer CenterDuarteCaliforniaUSA
| | - Ursula S. Sandau
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Julie A. Saugstad
- Department of Anesthesiology & Perioperative MedicineOregon Health & Science UniversityPortlandOregonUSA
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Celer DiagnosticsTorontoCanada
| | - Simon Swift
- Waipapa Taumata Rau University of AucklandAucklandNew Zealand
| | - Dmitry Ter‐Ovanesyan
- Wyss Institute for Biologically Inspired EngineeringHarvard UniversityBostonMassachusettsUSA
| | - Juan P. Tosar
- Universidad de la RepúblicaMontevideoUruguay
- Institut Pasteur de MontevideoMontevideoUruguay
| | - Zivile Useckaite
- College of Medicine and Public HealthFlinders UniversityAdelaideAustralia
| | - Francesco Valle
- Consiglio Nazionale delle Ricerche ‐ Istituto per lo Studio dei Materiali NanostrutturatiBolognaItaly
- Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande InterfaseFlorenceItaly
| | - Zoltan Varga
- Biological Nanochemistry Research GroupInstitute of Materials and Environmental Chemistry, Research Centre for Natural SciencesBudapestHungary
- Department of Biophysics and Radiation BiologySemmelweis UniversityBudapestHungary
| | - Edwin van der Pol
- Amsterdam Vesicle Center, Amsterdam University Medical Centers, Location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Biomedical Engineering and Physics, Amsterdam UMC, location AMCUniversity of AmsterdamAmsterdamThe Netherlands
- Laboratory of Experimental Clinical Chemistry, Amsterdam UMC, location AMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Martijn J. C. van Herwijnen
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Marca H. M. Wauben
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | | | | | - Andrea Zendrini
- Department of Molecular and Translational MedicineUniversity of BresciaBresciaItaly
- Center for Colloid and Surface Science (CSGI)FlorenceItaly
| | - Alan J. Zimmerman
- Barnett Institute of Chemical and Biological Analysis, Department of Chemistry and Chemical BiologyNortheastern UniversityBostonMassachusettsUSA
| | | | - Clotilde Théry
- Institut Curie, INSERM U932PSL UniversityParisFrance
- CurieCoreTech Extracellular Vesicles, Institut CurieParisFrance
| | - Kenneth W. Witwer
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- EV Core Facility “EXCEL”, Institute for Basic Biomedical SciencesJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's DiseaseJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
32
|
Ghebosu RE, Goncalves JP, Wolfram J. Extracellular Vesicle and Lipoprotein Interactions. NANO LETTERS 2024; 24:1-8. [PMID: 38122812 PMCID: PMC10872241 DOI: 10.1021/acs.nanolett.3c03579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Extracellular vesicles and lipoproteins are lipid-based biological nanoparticles that play important roles in (patho)physiology. Recent evidence suggests that extracellular vesicles and lipoproteins can interact to form functional complexes. Such complexes have been observed in biofluids from healthy human donors and in various in vitro disease models such as breast cancer and hepatitis C infection. Lipoprotein components can also form part of the biomolecular corona that surrounds extracellular vesicles and contributes to biological identity. Potential mechanisms and the functional relevance of extracellular vesicle-lipoprotein complexes remain poorly understood. This Review addresses the current knowledge of the extracellular vesicle-lipoprotein interface while drawing on pre-existing knowledge of liposome interactions with biological nanoparticles. There is an urgent need for further research on the lipoprotein-extracellular vesicle interface, which could return important mechanistic, therapeutic, and diagnostic findings.
Collapse
Affiliation(s)
- Raluca E. Ghebosu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| | - Jenifer Pendiuk Goncalves
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
| | - Joy Wolfram
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
| |
Collapse
|
33
|
Rendra E, Uhlig S, Moskal I, Thielemann C, Klüter H, Bieback K. Adipose Stromal Cell-Derived Secretome Attenuates Cisplatin-Induced Injury In Vitro Surpassing the Intricate Interplay between Proximal Tubular Epithelial Cells and Macrophages. Cells 2024; 13:121. [PMID: 38247813 PMCID: PMC10814170 DOI: 10.3390/cells13020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/23/2024] Open
Abstract
(1) Background: The chemotherapeutic drug cisplatin exerts toxic side effects causing acute kidney injury. Mesenchymal stromal cells can ameliorate cisplatin-induced kidney injury. We hypothesize that the MSC secretome orchestrates the vicious cycle of injury and inflammation by acting on proximal tubule epithelial cells (PTECs) and macrophages individually, but further by counteracting their cellular crosstalk. (2) Methods: Conditioned medium (CM) from adipose stromal cells was used, first assessing its effect on cisplatin injury in PTECs. Second, the effects of cisplatin and the CM on macrophages were measured. Lastly, in an indirect co-culture system, the interplay between the two cell types was assessed. (3) Results: First, the CM rescued PTECs from cisplatin-induced apoptosis by reducing oxidative stress and expression of nephrotoxicity genes. Second, while cisplatin exerted only minor effects on macrophages, the CM skewed macrophage phenotypes to the anti-inflammatory M2-like phenotype and increased phagocytosis. Finally, in the co-culture system, the CM suppressed PTEC death by inhibiting apoptosis and nuclei fragmentation. The CM lowered TNF-α release, while cisplatin inhibited macrophage phagocytosis, PTECs, and the CM to a greater extent, thus enhancing it. The CM strongly dampened the inflammatory macrophage cytokine secretion triggered by PTECs. (4) Conclusions: ASC-CM surpasses the PTEC-macrophage crosstalk in cisplatin injury. The positive effects on reducing cisplatin cytotoxicity, on polarizing macrophages, and on fine-tuning cytokine secretion underscore MSCs' CM benefit to prevent kidney injury progression.
Collapse
Affiliation(s)
- Erika Rendra
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany; (E.R.); (H.K.)
| | - Stefanie Uhlig
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany; (E.R.); (H.K.)
- Flow Core Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Isabell Moskal
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany; (E.R.); (H.K.)
| | - Corinna Thielemann
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany; (E.R.); (H.K.)
| | - Harald Klüter
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany; (E.R.); (H.K.)
- Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| | - Karen Bieback
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service Baden-Württemberg-Hessen, 68167 Mannheim, Germany; (E.R.); (H.K.)
- Flow Core Mannheim, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- Mannheim Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
| |
Collapse
|
34
|
Nieuwland R, Siljander PR. A beginner's guide to study extracellular vesicles in human blood plasma and serum. J Extracell Vesicles 2024; 13:e12400. [PMID: 38193375 PMCID: PMC10775135 DOI: 10.1002/jev2.12400] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
Blood is the most commonly used body fluid for obtaining and studying extracellular vesicles (EVs). While blood is a standard choice for clinical analysis, using blood as a source of EVs introduces multiple layers of complexity. At the Blood Extracellular Vesicle Workshop organized by the International Society for Extracellular Vesicles in Helsinki (2022), it became evident that beginner researchers lack trustworthy information on how to initiate their research and avoid common pitfalls. This educational guide explains the composition and frequently used terminology of blood, provides guidelines for blood collection, and the preparation of plasma and serum. It also introduces the basic principles of isolating and detecting blood EVs while considering blood-related factors. The goal of this guide is to assist beginners by offering a concise and evidence-based introduction to the current knowledge and available resources to study blood EVs.
Collapse
Affiliation(s)
- Rienk Nieuwland
- Amsterdam Vesicle Center, Amsterdam University Medical Centerslocation University of AmsterdamAmsterdamThe Netherlands
- Laboratory of Experimental Clinical Chemistry, Amsterdam University Medical Centerslocation University of AmsterdamAmsterdamThe Netherlands
| | - Pia R‐M Siljander
- EV Group, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, and CURED, Drug Research Program, Faculty of PharmacyUniversity of HelsinkiHelsinkiFinland
- EV Core, Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
35
|
Fu P, Yin S, Cheng H, Xu W, Jiang J. Engineered Exosomes for Drug Delivery in Cancer Therapy: A Promising Approach and Application. Curr Drug Deliv 2024; 21:817-827. [PMID: 37438904 DOI: 10.2174/1567201820666230712103942] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/01/2023] [Accepted: 06/13/2023] [Indexed: 07/14/2023]
Abstract
A significant amount of research effort is currently focused on investigating the role of exosomes in various cancers. These tiny vesicles, apart from acting as biomarkers, also play a crucial role in tumor formation and development. Several studies have demonstrated that exosomes can be a drug delivery vehicle for cancer therapy. In this paper, we highlight the key advantages of exosomes as a drug delivery candidate, with a particular focus on their low immunogenicity, natural targeting ability and suitable mechanical properties. Furthermore, we propose that the selection of appropriate exosomes and drug loading methods based on therapeutic goals and product heterogeneity is essential for preparing engineered exosomes. We comprehensively analyzed the superiorities of current drug-loading methods to improve the creation of designed exosomes. Moreover, we systematically review the applications of engineered exosomes in various therapies such as immunotherapy, gene therapy, protein therapy, chemotherapy, indicating that engineered exosomes have the potential to be reliable and, safe drug carriers that can address the unmet needs in cancer clinical practice.
Collapse
Affiliation(s)
- Peiwen Fu
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, 215600, Jiangsu, China
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Siqi Yin
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Huiying Cheng
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, 215600, Jiangsu, China
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Wenrong Xu
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, 215600, Jiangsu, China
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jiajia Jiang
- Aoyang Cancer Institute, Affiliated Aoyang Hospital of Jiangsu University, Zhangjiagang, 215600, Jiangsu, China
- Jiangsu Province Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| |
Collapse
|
36
|
Epanchintseva AV, Poletaeva JE, Bakhno IA, Belov VV, Grigor’eva AE, Baranova SV, Ryabchikova EI, Dovydenko IS. Fixation and Visualization of Full Protein Corona on Lipid Surface of Composite Nanoconstruction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3094. [PMID: 38132992 PMCID: PMC10745710 DOI: 10.3390/nano13243094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
Spontaneous sorption of proteins on the nanoparticles' surface leads to the fact that nanoparticles in biological media are always enveloped by a layer of proteins-the protein corona. Corona proteins affect the properties of nanoparticles and their behavior in a biological environment. In this regard, knowledge about the composition of the corona is a necessary element for the development of nanomedicine. Because proteins have different sorption efficacy, isolating particles with a full corona and characterizing the full corona is challenging. In this study, we propose a photo-activated cross-linker for full protein corona fixation. We believe that the application of our proposed approach will make it possible to capture and visualize the full corona on nanoparticles coated with a lipid shell.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Elena I. Ryabchikova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (A.V.E.); (J.E.P.); (I.A.B.); (V.V.B.); (A.E.G.); (S.V.B.)
| | - Ilya S. Dovydenko
- Institute of Chemical Biology and Fundamental Medicine SB RAS, 630090 Novosibirsk, Russia; (A.V.E.); (J.E.P.); (I.A.B.); (V.V.B.); (A.E.G.); (S.V.B.)
| |
Collapse
|
37
|
Lin TY, Chang TM, Tsai WC, Hsieh YJ, Wang LT, Huang HC. Human Umbilical Cord Mesenchymal-Stem-Cell-Derived Extracellular Vesicles Reduce Skin Inflammation In Vitro. Int J Mol Sci 2023; 24:17109. [PMID: 38069436 PMCID: PMC10707458 DOI: 10.3390/ijms242317109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
The protective roles of extracellular vesicles derived from human umbilical cord mesenchymal stem cells against oxazolone-induced damage in the immortalized human keratinocyte cell line HaCaT were investigated. The cells were pretreated with or without UCMSC-derived extracellular vesicles 24 h before oxazolone exposure. The pretreated UVMSC-EVs showed protective activity, elevating cell viability, reducing intracellular ROS, and reducing the changes in the mitochondrial membrane potential compared to the cells with a direct oxazolone treatment alone. The UCMSC-EVs exhibited anti-inflammatory activity via reducing the inflammatory cytokines IL-1β and TNF-α. A mechanism study showed that the UCMSC-EVs increased the protein expression levels of SIRT1 and P53 and reduced P65 protein expression. It was concluded that UVMSC-EVs can induce the antioxidant defense systems of HaCaT cells and that they may have potential as functional ingredients in anti-aging cosmetics for skin care.
Collapse
Affiliation(s)
- Tzou-Yien Lin
- Department of Paediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan 33305, Taiwan;
| | - Tsong-Min Chang
- Department of Hair Styling and Design, Department of Applied Cosmetology, Hungkuang University, Taichung 433304, Taiwan;
| | - Wei-Cheng Tsai
- ExoOne Bio Co., Ltd., Taipei City 115011, Taiwan; (W.-C.T.); (Y.-J.H.); (L.-T.W.)
| | - Yi-Ju Hsieh
- ExoOne Bio Co., Ltd., Taipei City 115011, Taiwan; (W.-C.T.); (Y.-J.H.); (L.-T.W.)
| | - Li-Ting Wang
- ExoOne Bio Co., Ltd., Taipei City 115011, Taiwan; (W.-C.T.); (Y.-J.H.); (L.-T.W.)
| | - Huey-Chun Huang
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, China Medical University, Taichung 404328, Taiwan
| |
Collapse
|
38
|
Dietz L, Oberländer J, Mateos‐Maroto A, Schunke J, Fichter M, Krämer‐Albers E, Landfester K, Mailänder V. Uptake of extracellular vesicles into immune cells is enhanced by the protein corona. J Extracell Vesicles 2023; 12:e12399. [PMID: 38124271 PMCID: PMC10733601 DOI: 10.1002/jev2.12399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
The influence of a protein corona on the uptake of nanoparticles in cells has been demonstrated in various publications over the last years. Extracellular vesicles (EVs), can be seen as natural nanoparticles. However, EVs are produced under different cell culture conditions and little is known about the protein corona forming on EVs and its influence on their uptake by target cells. Here, we use a proteomic approach in order to analyze the protein composition of the EVs themselves and the protein composition of a human blood plasma protein corona around EVs. Moreover, we analyze the influence of the protein corona on EV uptake into human monocytes and compare it with the influence on the uptake of engineered liposomes. We show that the presence of a protein corona increases the uptake of EVs in human monocytes. While for liposomes this seems to be triggered by the presence of immunoglobulins in the protein corona, for EVs blocking the Fc receptors on monocytes did not show an influence of uptake. Therefore, other mechanisms of docking to the cell membrane and uptake are most like involved, demonstrating a clear difference between EVs and liposomes as technically produced nanocarriers.
Collapse
Affiliation(s)
- Laura Dietz
- Department of DermatologyUniversity Medical Center MainzMainzGermany
- Max Planck Institute for Polymer ResearchMainzGermany
| | - Jennifer Oberländer
- Department of DermatologyUniversity Medical Center MainzMainzGermany
- Max Planck Institute for Polymer ResearchMainzGermany
| | | | - Jenny Schunke
- Department of DermatologyUniversity Medical Center MainzMainzGermany
- Max Planck Institute for Polymer ResearchMainzGermany
| | - Michael Fichter
- Department of DermatologyUniversity Medical Center MainzMainzGermany
- Max Planck Institute for Polymer ResearchMainzGermany
| | - Eva‐Maria Krämer‐Albers
- Institute of Developmental Biology and NeurobiologyJohannes Gutenberg University of MainzMainzGermany
| | | | - Volker Mailänder
- Department of DermatologyUniversity Medical Center MainzMainzGermany
- Max Planck Institute for Polymer ResearchMainzGermany
| |
Collapse
|
39
|
Abyadeh M, Alikhani M, Mirzaei M, Gupta V, Shekari F, Salekdeh GH. Proteomics provides insights into the theranostic potential of extracellular vesicles. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 138:101-133. [PMID: 38220422 DOI: 10.1016/bs.apcsb.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Extracellular vesicles (EVs) encompass a diverse range of membranous structures derived from cells, including exosomes and microvesicles. These vesicles are present in biological fluids and play vital roles in various physiological and pathological processes. They facilitate intercellular communication by enabling the exchange of proteins, lipids, and genetic material between cells. Understanding the cellular processes that govern EV biology is essential for unraveling their physiological and pathological functions and their potential clinical applications. Despite significant advancements in EV research in recent years, there is still much to learn about these vesicles. The advent of improved mass spectrometry (MS)-based techniques has allowed for a deeper characterization of EV protein composition, providing valuable insights into their roles in different physiological and pathological conditions. In this chapter, we provide an overview of proteomics studies conducted to identify the protein contents of EVs, which contribute to their therapeutic and pathological features. We also provided evidence on the potential of EV proteome contents as biomarkers for early disease diagnosis, progression, and treatment response, as well as factors that influence their composition. Additionally, we discuss the available databases containing information on EV proteome contents, and finally, we highlight the need for further research to pave the way toward their utilization in clinical settings.
Collapse
Affiliation(s)
- Morteza Abyadeh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mehdi Alikhani
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Mehdi Mirzaei
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia
| | - Vivek Gupta
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, North Ryde, Sydney, NSW, Australia
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | |
Collapse
|
40
|
Ganguin AA, Skorup I, Streb S, Othman A, Luciani P. Formation and Investigation of Cell-Derived Nanovesicles as Potential Therapeutics against Chronic Liver Disease. Adv Healthc Mater 2023; 12:e2300811. [PMID: 37669775 PMCID: PMC11468924 DOI: 10.1002/adhm.202300811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/04/2023] [Indexed: 09/07/2023]
Abstract
A new therapeutic approach using cell-derived nanovesicles (cdNVs) is offered here to overcome the lack of effective treatments for liver fibrosis, a reversible chronic liver disease. To achieve this goal the formation and purification of cdNVs from untreated, quiescent-like, or activated LX-2 cells, an immortalized human hepatic stellate cell (HSC) line with key features of transdifferentiated HSCs are established. Analysis of the genotype and phenotype of naïve and transdifferentiated LX-2 cells activated through transforming growth factor beta 1, following treatment with cdNVs, reveals a concentration-dependent fibrosis regression. The beneficial fibrosis-resolving effects of cdNVs are linked to their biomolecular corona. Liposomes generated using lipids extracted from cdNVs exhibit a reduced antifibrotic response in perpetuated LX-2 cells and show a reduced cellular uptake. However, incubation with soluble factors collected during purification results in a new corona, thereby restoring fibrosis regression activity. Overall, cdNVs display encouraging therapeutic properties, making them a promising candidate for the development of liver fibrosis resolving therapeutics.
Collapse
Affiliation(s)
- Aymar Abel Ganguin
- Department of ChemistryBiochemistry and Pharmaceutical SciencesUniversity of BernBern3012Switzerland
| | - Ivo Skorup
- Department of ChemistryBiochemistry and Pharmaceutical SciencesUniversity of BernBern3012Switzerland
| | - Sebastian Streb
- Functional Genomics Center Zurich (FGCZ)University of Zurich/ETH ZurichZurich8057Switzerland
| | - Alaa Othman
- Functional Genomics Center Zurich (FGCZ)University of Zurich/ETH ZurichZurich8057Switzerland
| | - Paola Luciani
- Department of ChemistryBiochemistry and Pharmaceutical SciencesUniversity of BernBern3012Switzerland
| |
Collapse
|
41
|
Rodriguez BV, Wen Y, Shirk EN, Vazquez S, Gololobova O, Maxwell A, Plunkard J, Castell N, Carlson B, Queen SE, Izzi JM, Driedonks TAP, Witwer KW. An ex vivo model of interactions between extracellular vesicles and peripheral mononuclear blood cells in whole blood. J Extracell Vesicles 2023; 12:e12368. [PMID: 38047476 PMCID: PMC10694845 DOI: 10.1002/jev2.12368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/25/2023] [Accepted: 09/13/2023] [Indexed: 12/05/2023] Open
Abstract
Extracellular vesicles (EVs) can be loaded with therapeutic cargo and engineered for retention by specific body sites; therefore, they have great potential for targeted delivery of biomolecules to treat diseases. However, the pharmacokinetics and biodistribution of EVs in large animals remain relatively unknown, especially in primates. We recently reported that when cell culture-derived EVs are administered intravenously to Macaca nemestrina (pig-tailed macaques), they differentially associate with specific subsets of peripheral blood mononuclear cells (PBMCs). More than 60% of CD20+ B cells were observed to associate with EVs for up to 1 h post-intravenous administration. To investigate these associations further, we developed an ex vivo model of whole blood collected from healthy pig-tailed macaques. Using this ex vivo system, we found that labelled EVs preferentially associate with B cells in whole blood at levels similar to those detected in vivo. This study demonstrates that ex vivo blood can be used to study EV-blood cell interactions.
Collapse
Affiliation(s)
- Blanca V. Rodriguez
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Yi Wen
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Erin N. Shirk
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Samuel Vazquez
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Olesia Gololobova
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Amanda Maxwell
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Jessica Plunkard
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Natalie Castell
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Bess Carlson
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Suzanne E. Queen
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Jessica M. Izzi
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Tom A. P. Driedonks
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- University Medical CenterUtrecht UniversityUtrechtThe Netherlands
| | - Kenneth W. Witwer
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Richman Family Precision Medicine Center of Excellence in Alzheimer's DiseaseJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
42
|
Zhang J, Rima XY, Wang X, Nguyen LTH, Huntoon K, Ma Y, Palacio PL, Nguyen KT, Albert K, Duong-Thi MD, Walters N, Kwak KJ, Yoon MJ, Li H, Doon-Ralls J, Hisey CL, Lee D, Wang Y, Ha J, Scherler K, Fallen S, Lee I, Palmer AF, Jiang W, Magaña SM, Wang K, Kim BYS, Lee LJ, Reátegui E. Engineering a tunable micropattern-array assay to sort single extracellular vesicles and particles to detect RNA and protein in situ. J Extracell Vesicles 2023; 12:e12369. [PMID: 37908159 PMCID: PMC10618633 DOI: 10.1002/jev2.12369] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 11/02/2023] Open
Abstract
The molecular heterogeneity of extracellular vesicles (EVs) and the co-isolation of physically similar particles, such as lipoproteins (LPs), confounds and limits the sensitivity of EV bulk biomarker characterization. Herein, we present a single-EV and particle (siEVP) protein and RNA assay (siEVP PRA) to simultaneously detect mRNAs, miRNAs, and proteins in subpopulations of EVs and LPs. The siEVP PRA immobilizes and sorts particles via positive immunoselection onto micropatterns and focuses biomolecular signals in situ. By detecting EVPs at a single-particle resolution, the siEVP PRA outperformed the sensitivities of bulk-analysis benchmark assays for RNA and protein. To assess the specificity of RNA detection in complex biofluids, EVs from various glioma cell lines were processed with small RNA sequencing, whereby two mRNAs and two miRNAs associated with glioblastoma multiforme (GBM) were chosen for cross-validation. Despite the presence of single-EV-LP co-isolates in serum, the siEVP PRA detected GBM-associated vesicular RNA profiles in GBM patient siEVPs. The siEVP PRA effectively examines intravesicular, intervesicular, and interparticle heterogeneity with diagnostic promise.
Collapse
Affiliation(s)
- Jingjing Zhang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Xilal Y Rima
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Xinyu Wang
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Luong T H Nguyen
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Kristin Huntoon
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yifan Ma
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Paola Loreto Palacio
- Department of Pediatrics, Division of Neurology, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Kim Truc Nguyen
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Karunya Albert
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Minh-Dao Duong-Thi
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Nicole Walters
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | | | - Min Jin Yoon
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Hong Li
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Jacob Doon-Ralls
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Colin L Hisey
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Daeyong Lee
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yifan Wang
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jonghoon Ha
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | - Inyoul Lee
- Institute for Systems Biology, Seattle, Washington, USA
| | - Andre F Palmer
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Setty M Magaña
- Department of Pediatrics, Division of Neurology, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Kai Wang
- Institute for Systems Biology, Seattle, Washington, USA
| | - Betty Y S Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
- The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - L James Lee
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
- Spot Biosystems Ltd., Palo Alto, California, USA
| | - Eduardo Reátegui
- William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio, USA
- Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
43
|
Bertolino GM, Maumus M, Jorgensen C, Noël D. Therapeutic potential in rheumatic diseases of extracellular vesicles derived from mesenchymal stromal cells. Nat Rev Rheumatol 2023; 19:682-694. [PMID: 37666995 DOI: 10.1038/s41584-023-01010-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2023] [Indexed: 09/06/2023]
Abstract
The incidence of rheumatic diseases such as rheumatoid arthritis and osteoarthritis and injuries to articular cartilage that lead to osteochondral defects is predicted to rise as a result of population ageing and the increase in high-intensity physical activities among young and middle-aged people. Current treatments focus on the management of pain and joint functionality to improve the patient's quality of life, but curative strategies are greatly desired. In the past two decades, the therapeutic value of mesenchymal stromal cells (MSCs) has been evaluated because of their regenerative potential, which is mainly attributed to the secretion of paracrine factors. Many of these factors are enclosed in extracellular vesicles (EVs) that reproduce the main functions of parental cells. MSC-derived EVs have anti-inflammatory, anti-apoptotic as well as pro-regenerative activities. Research on EVs has gained considerable attention as they are a potential cell-free therapy with lower immunogenicity and easier management than whole cells. MSC-derived EVs can rescue the pathogenetic phenotypes of chondrocytes and exert a protective effect in animal models of rheumatic disease. To facilitate the therapeutic use of EVs, appropriate cell sources for the production of EVs with the desired biological effects in each disease should be identified. Production and isolation of EVs should be optimized, and pre-isolation and post-isolation modifications should be considered to maximize the disease-modifying potential of the EVs.
Collapse
Affiliation(s)
| | - Marie Maumus
- IRMB, University of Montpellier, INSERM, 34295, Montpellier, France
| | - Christian Jorgensen
- IRMB, University of Montpellier, INSERM, 34295, Montpellier, France.
- Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU Montpellier, 34095, Montpellier, France.
| | - Danièle Noël
- IRMB, University of Montpellier, INSERM, 34295, Montpellier, France.
- Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU Montpellier, 34095, Montpellier, France.
| |
Collapse
|
44
|
Sun M, Yang J, Fan Y, Zhang Y, Sun J, Hu M, Sun K, Zhang J. Beyond Extracellular Vesicles: Hybrid Membrane Nanovesicles as Emerging Advanced Tools for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303617. [PMID: 37749882 PMCID: PMC10646251 DOI: 10.1002/advs.202303617] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/02/2023] [Indexed: 09/27/2023]
Abstract
Extracellular vesicles (EVs), involved in essential physiological and pathological processes of the organism, have emerged as powerful tools for disease treatment owing to their unique natural biological characteristics and artificially acquired advantages. However, the limited targeting ability, insufficient production yield, and low drug-loading capability of natural simplex EVs have greatly hindered their development in clinical translation. Therefore, the establishment of multifunctional hybrid membrane nanovesicles (HMNVs) with favorable adaptability and flexibility has become the key to expanding the practical application of EVs. This timely review summarizes the current progress of HMNVs for biomedical applications. Different HMNVs preparation strategies including physical, chemical, and chimera approaches are first discussed. This review then individually describes the diverse types of HMNVs based on homologous or heterologous cell membrane substances, a fusion of cell membrane and liposome, as well as a fusion of cell membrane and bacterial membrane. Subsequently, a specific emphasis is placed on the highlight of biological applications of the HMNVs toward various diseases with representative examples. Finally, ongoing challenges and prospects of the currently developed HMNVs in clinical translational applications are briefly presented. This review will not only stimulate broad interest among researchers from diverse disciplines but also provide valuable insights for the development of promising nanoplatforms in precision medicine.
Collapse
Affiliation(s)
- Meng Sun
- Key Laboratory of Molecular Medicine and BiotherapySchool of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| | - Jiani Yang
- Key Laboratory of Molecular Medicine and BiotherapySchool of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| | - Yueyun Fan
- Key Laboratory of Molecular Medicine and BiotherapySchool of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| | - Yinfeng Zhang
- International Medical CenterBeijing Friendship HospitalCapital Medical UniversityBeijing100050P. R. China
| | - Jian Sun
- Department of Hepatobiliary SurgeryJinan University First Affiliated HospitalGuangzhou510630P. R. China
| | - Min Hu
- Department of Hepatobiliary SurgeryJinan University First Affiliated HospitalGuangzhou510630P. R. China
| | - Ke Sun
- Department of Urinary surgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450052China
| | - Jinfeng Zhang
- Key Laboratory of Molecular Medicine and BiotherapySchool of Life SciencesBeijing Institute of TechnologyBeijing100081P. R. China
| |
Collapse
|
45
|
Lozano‐Andrés E, Enciso‐Martinez A, Gijsbers A, Ridolfi A, Van Niel G, Libregts SFWM, Pinheiro C, van Herwijnen MJC, Hendrix A, Brucale M, Valle F, Peters PJ, Otto C, Arkesteijn GJA, Wauben MHM. Physical association of low density lipoprotein particles and extracellular vesicles unveiled by single particle analysis. J Extracell Vesicles 2023; 12:e12376. [PMID: 37942918 PMCID: PMC10634195 DOI: 10.1002/jev2.12376] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023] Open
Abstract
Extracellular vesicles (EVs) in blood plasma are recognized as potential biomarkers for disease. Although blood plasma is easily obtainable, analysis of EVs at the single particle level is still challenging due to the biological complexity of this body fluid. Besides EVs, plasma contains different types of lipoproteins particles (LPPs), that outnumber EVs by orders of magnitude and which partially overlap in biophysical properties such as size, density and molecular makeup. Consequently, during EV isolation LPPs are often co-isolated. Furthermore, physical EV-LPP complexes have been observed in purified EV preparations. Since co-isolation or association of LPPs can impact EV-based analysis and biomarker profiling, we investigated the presence and formation of EV-LPP complexes in biological samples by using label-free atomic force microscopy, cryo-electron tomography and synchronous Rayleigh and Raman scattering analysis of optically trapped particles and fluorescence-based high sensitivity single particle flow cytometry. Furthermore, we evaluated the impact on flow cytometric analysis in the presence of LPPs using in vitro spike-in experiments of purified tumour cell line-derived EVs in different classes of purified human LPPs. Based on orthogonal single-particle analysis techniques we demonstrate that EV-LPP complexes can form under physiological conditions. Furthermore, we show that in fluorescence-based flow cytometric EV analysis staining of LPPs, as well as EV-LPP associations, can influence quantitative and qualitative EV analysis. Lastly, we demonstrate that the colloidal matrix of the biofluid in which EVs reside impacts their buoyant density, size and/or refractive index (RI), which may have consequences for down-stream EV analysis and EV biomarker profiling.
Collapse
Affiliation(s)
- Estefanía Lozano‐Andrés
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Agustin Enciso‐Martinez
- Department of Cell and Chemical BiologyLeiden University Medical CenterLeidenThe Netherlands
- Medical Cell Biophysics GroupUniversity of TwenteEnschedeThe Netherlands
| | - Abril Gijsbers
- Maastricht Multimodal Molecular Imaging Institute, Division of NanoscopyMaastricht UniversityMaastrichtThe Netherlands
| | - Andrea Ridolfi
- Department of Physics and Astronomy and LaserLaB AmsterdamVrije Universiteit AmsterdamAmsterdamThe Netherlands
| | - Guillaume Van Niel
- Institute for Psychiatry and Neuroscience of ParisHopital Saint‐Anne, Université DescartesParisFrance
| | - Sten F. W. M. Libregts
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Cláudio Pinheiro
- Laboratory of Experimental Cancer ResearchDepartment of Human Structure and Repair Ghent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| | - Martijn J. C. van Herwijnen
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - An Hendrix
- Laboratory of Experimental Cancer ResearchDepartment of Human Structure and Repair Ghent UniversityGhentBelgium
- Cancer Research Institute GhentGhentBelgium
| | - Marco Brucale
- Institute for the Study of Nanostructured Materials (ISMN)Italian National Research Council (CNR)BolognaItaly
| | - Francesco Valle
- Institute for the Study of Nanostructured Materials (ISMN)Italian National Research Council (CNR)BolognaItaly
| | - Peter J. Peters
- Maastricht Multimodal Molecular Imaging Institute, Division of NanoscopyMaastricht UniversityMaastrichtThe Netherlands
| | - Cees Otto
- Medical Cell Biophysics GroupUniversity of TwenteEnschedeThe Netherlands
| | - Ger J. A. Arkesteijn
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Marca H. M. Wauben
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
46
|
Sharma M, Sheth M, Poling HM, Kuhnell D, Langevin SM, Esfandiari L. Rapid purification and multiparametric characterization of circulating small extracellular vesicles utilizing a label-free lab-on-a-chip device. Sci Rep 2023; 13:18293. [PMID: 37880299 PMCID: PMC10600140 DOI: 10.1038/s41598-023-45409-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023] Open
Abstract
Nano-scale extracellular vesicles are lipid-bilayer delimited particles that are naturally secreted by all cells and have emerged as valuable biomarkers for a wide range of diseases. Efficient isolation of small extracellular vesicles while maintaining yield and purity is crucial to harvest their potential in diagnostic, prognostic, and therapeutic applications. Most conventional methods of isolation suffer from significant shortcomings, including low purity or yield, long duration, need for large sample volumes, specialized equipment, trained personnel, and high costs. To address some of these challenges, our group has reported a novel insulator-based dielectrophoretic device for rapid isolation of small extracellular vesicles from biofluids and cell culture media based on their size and dielectric properties. In this study, we report a comprehensive characterization of small extracellular vesicles isolated from cancer-patients' biofluids at a twofold enrichment using the device. The three-fold characterization that was performed using conventional flow cytometry, advanced imaging flow cytometry, and microRNA sequencing indicated high yield and purity of the isolated small extracellular vesicles. The device thus offers an efficient platform for rapid isolation while maintaining biomolecular integrity.
Collapse
Affiliation(s)
- Manju Sharma
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Maulee Sheth
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Holly M Poling
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA
- Division of Pediatric General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Damaris Kuhnell
- Department of Environmental and Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Scott M Langevin
- Larner College of Medicine, University of Vermont, Burlington, VT, USA
- University of Vermont Cancer Center, Burlington, VT, USA
| | - Leyla Esfandiari
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA.
- Department of Environmental and Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
- Department of Electrical Engineering and Computer Science, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA.
- University of Cincinnati Cancer Center, Cincinnati, OH, USA.
| |
Collapse
|
47
|
Susa F, Limongi T, Borgione F, Peiretti S, Vallino M, Cauda V, Pisano R. Comparative Studies of Different Preservation Methods and Relative Freeze-Drying Formulations for Extracellular Vesicle Pharmaceutical Applications. ACS Biomater Sci Eng 2023; 9:5871-5885. [PMID: 37671648 PMCID: PMC10565719 DOI: 10.1021/acsbiomaterials.3c00678] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/15/2023] [Indexed: 09/07/2023]
Abstract
Extracellular vesicles (EVs) have been studied for years for their role as effectors and mediators of cell-to-cell communication and their potential application to develop new and increasingly performing nanotechnological systems for the diagnosis and/or treatment of many diseases. Given all the EVs applications as just isolated, functionalized, or even engineered cellular-derived pharmaceuticals, the standardization of reliable and reproducible methods for their preservation is urgently needed. In this study, we isolated EVs from a healthy blood cell line, B lymphocytes, and compared the effectiveness of different storage methods and relative freeze-drying formulations to preserve some of the most important EVs' key features, i.e., concentration, mean size, protein content, and surface antigen's expression. To develop a preservation method that minimally affects the EVs' integrity and functionality, we applied the freeze-drying process in combination with different excipients. Since EVs are isolated not only from body fluids but also from culture media conditioned by the cells growing there, we decided to test both the effects of the traditional pharmaceutical excipient and of biological media to develop EVs solidified products with desirable appearance and performance properties. Results showed that some of the tested excipients, i.e., sugars in combination with dextran and glycine, successfully maintained the stability and integrity of EVs upon lyophilization. In addition, to evaluate the preservation of the EVs' biological activity, we assessed the cytotoxicity and internalization ability of the reconstituted EVs in healthy (B lymphocytes) and tumoral (Burkitt's lymphoma) cells. Reconstituted EVs demonstrated toxicity only toward the cancerous cells, opening new therapeutic opportunities for the oncological field. Furthermore, our study showed how some biological or cellular-conditioned fluids, commonly used in the field of cell cultures, can act not only as cryoprotectants but also as active pharmaceutical ingredients, significantly tuning the therapeutic effect of EVs, even increasing their cellular internalization.
Collapse
Affiliation(s)
- Francesca Susa
- Department
of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Tania Limongi
- Department
of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Francesca Borgione
- Department
of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Silvia Peiretti
- Department
of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Marta Vallino
- Consiglio
Nazionale delle Ricerche di Torino, Strada delle Cacce 73, 10129 Turin, Italy
| | - Valentina Cauda
- Department
of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Roberto Pisano
- Department
of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| |
Collapse
|
48
|
Shekari F, Alibhai FJ, Baharvand H, Börger V, Bruno S, Davies O, Giebel B, Gimona M, Salekdeh GH, Martin‐Jaular L, Mathivanan S, Nelissen I, Nolte‐’t Hoen E, O'Driscoll L, Perut F, Pluchino S, Pocsfalvi G, Salomon C, Soekmadji C, Staubach S, Torrecilhas AC, Shelke GV, Tertel T, Zhu D, Théry C, Witwer K, Nieuwland R. Cell culture-derived extracellular vesicles: Considerations for reporting cell culturing parameters. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e115. [PMID: 38939735 PMCID: PMC11080896 DOI: 10.1002/jex2.115] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/18/2023] [Accepted: 09/17/2023] [Indexed: 06/29/2024]
Abstract
Cell culture-conditioned medium (CCM) is a valuable source of extracellular vesicles (EVs) for basic scientific, therapeutic and diagnostic applications. Cell culturing parameters affect the biochemical composition, release and possibly the function of CCM-derived EVs (CCM-EV). The CCM-EV task force of the Rigor and Standardization Subcommittee of the International Society for Extracellular Vesicles aims to identify relevant cell culturing parameters, describe their effects based on current knowledge, recommend reporting parameters and identify outstanding questions. While some recommendations are valid for all cell types, cell-specific recommendations may need to be established for non-mammalian sources, such as bacteria, yeast and plant cells. Current progress towards these goals is summarized in this perspective paper, along with a checklist to facilitate transparent reporting of cell culturing parameters to improve the reproducibility of CCM-EV research.
Collapse
Affiliation(s)
- Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Advanced Therapy Medicinal Product Technology Development Center (ATMP‐TDC), Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | | | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in BiologyUniversity of Science and CultureTehranIran
| | - Verena Börger
- Institute for Transfusion MedicineUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Stefania Bruno
- Department of Medical Sciences and Molecular Biotechnology CenterUniversity of TorinoTurinItaly
| | - Owen Davies
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Bernd Giebel
- Institute for Transfusion MedicineUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Mario Gimona
- GMP UnitSpinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI‐TReCS) and Research Program “Nanovesicular Therapies” Paracelsus Medical UniversitySalzburgAustria
| | | | - Lorena Martin‐Jaular
- Institut Curie, INSERM U932 and Curie CoreTech Extracellular VesiclesPSL Research UniversityParisFrance
| | - Suresh Mathivanan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVICAustralia
| | - Inge Nelissen
- VITO (Flemish Institute for Technological Research), Health departmentBoeretangBelgium
| | - Esther Nolte‐’t Hoen
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical Sciences & Trinity Biomedical Sciences InstituteTrinity College DublinDublinIreland
| | - Francesca Perut
- Biomedical Science and Technologies and Nanobiotechnology LabIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Stefano Pluchino
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Gabriella Pocsfalvi
- Institute of Biosciences and BioResourcesNational Research CouncilNaplesItaly
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae‐Oncology Group, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of MedicineThe University of QueenslandBrisbaneAustralia
| | - Carolina Soekmadji
- School of Biomedical Sciences, Faculty of MedicineUniversity of QueenslandBrisbaneAustralia
| | | | - Ana Claudia Torrecilhas
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)SPBrazil
| | - Ganesh Vilas Shelke
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMarylandUSA
| | - Tobias Tertel
- Institute for Transfusion MedicineUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Dandan Zhu
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVICAustralia
| | - Clotilde Théry
- Institut Curie, INSERM U932 and Curie CoreTech Extracellular VesiclesPSL Research UniversityParisFrance
| | - Kenneth Witwer
- Departments of Molecular and Comparative Pathobiology and Neurology and Richman Family Precision Medicine Center of Excellence in Alzheimer's DiseaseJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, Department of Clinical Chemistry, Amsterdam University Medical CentersLocation AMC, University of AmsterdamAmsterdamThe Netherlands
- Amsterdam Vesicle Center, Amsterdam University Medical Centers, location AMCUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
49
|
Lee YJ, Chae S, Choi D. Monitoring of single extracellular vesicle heterogeneity in cancer progression and therapy. Front Oncol 2023; 13:1256585. [PMID: 37823055 PMCID: PMC10562638 DOI: 10.3389/fonc.2023.1256585] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/04/2023] [Indexed: 10/13/2023] Open
Abstract
Cancer cells actively release lipid bilayer extracellular vesicles (EVs) that affect their microenvironment, favoring their progression and response to extracellular stress. These EVs contain dynamically regulating molecular cargos (proteins and nucleic acids) selected from their parental cells, representing the active biological functionality for cancer progression. These EVs are heterogeneous according to their size and molecular composition and are usually defined based on their biogenetic mechanisms, such as exosomes and ectosomes. Recent single EV detection technologies, such as nano-flow cytometry, have revealed the dynamically regulated molecular diversity within bulk EVs, indicating complex EV heterogeneity beyond classical biogenetic-based EV subtypes. EVs can be changed by internal oncogenic transformation or external stress such as chemotherapy. Among the altered combinations of EV subtypes, only a specific set of EVs represents functional molecular cargo, enabling cancer progression and immune modulation in the tumor microenvironment through their altered targeting efficiency and specificity. This review covers the heterogeneity of EVs discovered by emerging single EV analysis technologies, which reveal the complex distribution of EVs affected by oncogenic transformation and chemotherapy. Encouragingly, these unique molecular signatures in individual EVs indicate the status of their parental cancer cells. Thus, precise molecular profiling of circulating single EVs would open new areas for in-depth monitoring of the cancer microenvironment and shed new light on non-invasive diagnostic approaches using liquid biopsy.
Collapse
Affiliation(s)
| | | | - Dongsic Choi
- Department of Biochemistry, College of Medicine, Soonchunhyang University, Cheonan, Chungcheongnam, Republic of Korea
| |
Collapse
|
50
|
Jammes M, Cassé F, Velot E, Bianchi A, Audigié F, Contentin R, Galéra P. Pro-Inflammatory Cytokine Priming and Purification Method Modulate the Impact of Exosomes Derived from Equine Bone Marrow Mesenchymal Stromal Cells on Equine Articular Chondrocytes. Int J Mol Sci 2023; 24:14169. [PMID: 37762473 PMCID: PMC10531906 DOI: 10.3390/ijms241814169] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Osteoarthritis (OA) is a widespread osteoarticular pathology characterized by progressive hyaline cartilage degradation, exposing horses to impaired well-being, premature career termination, alongside substantial financial losses for horse owners. Among the new therapeutic strategies for OA, using mesenchymal stromal cell (MSC)-derived exosomes (MSC-exos) appears to be a promising option for conveying MSC therapeutic potential, yet avoiding the limitations inherent to cell therapy. Here, we first purified and characterized exosomes from MSCs by membrane affinity capture (MAC) and size-exclusion chromatography (SEC). We showed that intact MSC-exos are indeed internalized by equine articular chondrocytes (eACs), and then evaluated their functionality on cartilaginous organoids. Compared to SEC, mRNA and protein expression profiles revealed that MAC-exos induced a greater improvement of eAC-neosynthesized hyaline-like matrix by modulating collagen levels, increasing PCNA, and decreasing Htra1 synthesis. However, because the MAC elution buffer induced unexpected effects on eACs, an ultrafiltration step was included to the isolation protocol. Finally, exosomes from MSCs primed with equine pro-inflammatory cytokines (IL-1β, TNF-α, or IFN-γ) further improved the eAC hyaline-like phenotype, particularly IL-1β and TNF-α. Altogether, these findings indicate the importance of the exosome purification method and further demonstrate the potential of pro-inflammatory priming in the enhancement of the therapeutic value of MSC-exos for equine OA treatment.
Collapse
Affiliation(s)
- Manon Jammes
- BIOTARGEN, UNICAEN, Normandie University, 14000 Caen, France; (M.J.); (F.C.); (R.C.)
| | - Frédéric Cassé
- BIOTARGEN, UNICAEN, Normandie University, 14000 Caen, France; (M.J.); (F.C.); (R.C.)
| | - Emilie Velot
- Molecular Engineering and Articular Physiopathology (IMoPA), French National Center for Scientific Research (CNRS), Université de Lorraine, 54000 Nancy, France; (E.V.); (A.B.)
| | - Arnaud Bianchi
- Molecular Engineering and Articular Physiopathology (IMoPA), French National Center for Scientific Research (CNRS), Université de Lorraine, 54000 Nancy, France; (E.V.); (A.B.)
| | - Fabrice Audigié
- Center of Imaging and Research in Locomotor Affections on Equines, Veterinary School of Alfort, 14430 Goustranville, France;
| | - Romain Contentin
- BIOTARGEN, UNICAEN, Normandie University, 14000 Caen, France; (M.J.); (F.C.); (R.C.)
| | - Philippe Galéra
- BIOTARGEN, UNICAEN, Normandie University, 14000 Caen, France; (M.J.); (F.C.); (R.C.)
| |
Collapse
|