1
|
Wang Q, Pan M, Kreiss L, Samaei S, Carp SA, Johansson JD, Zhang Y, Wu M, Horstmeyer R, Diop M, Li DDU. A comprehensive overview of diffuse correlation spectroscopy: Theoretical framework, recent advances in hardware, analysis, and applications. Neuroimage 2024; 298:120793. [PMID: 39153520 DOI: 10.1016/j.neuroimage.2024.120793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/23/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024] Open
Abstract
Diffuse correlation spectroscopy (DCS) is a powerful tool for assessing microvascular hemodynamic in deep tissues. Recent advances in sensors, lasers, and deep learning have further boosted the development of new DCS methods. However, newcomers might feel overwhelmed, not only by the already-complex DCS theoretical framework but also by the broad range of component options and system architectures. To facilitate new entry to this exciting field, we present a comprehensive review of DCS hardware architectures (continuous-wave, frequency-domain, and time-domain) and summarize corresponding theoretical models. Further, we discuss new applications of highly integrated silicon single-photon avalanche diode (SPAD) sensors in DCS, compare SPADs with existing sensors, and review other components (lasers, sensors, and correlators), as well as data analysis tools, including deep learning. Potential applications in medical diagnosis are discussed and an outlook for the future directions is provided, to offer effective guidance to embark on DCS research.
Collapse
Affiliation(s)
- Quan Wang
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Mingliang Pan
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Lucas Kreiss
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Saeed Samaei
- Department of Medical and Biophysics, Schulich School of Medical & Dentistry, Western University, London, Ontario, Canada; Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
| | - Stefan A Carp
- Massachusetts General Hospital, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Harvard Medical School, Charlestown, MA, United States
| | | | - Yuanzhe Zhang
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Melissa Wu
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Roarke Horstmeyer
- Department of Biomedical Engineering, Duke University, Durham, NC, United States
| | - Mamadou Diop
- Department of Medical and Biophysics, Schulich School of Medical & Dentistry, Western University, London, Ontario, Canada; Lawson Health Research Institute, Imaging Program, London, Ontario, Canada
| | - David Day-Uei Li
- Department of Biomedical Engineering, Faculty of Engineering, University of Strathclyde, Glasgow, United Kingdom.
| |
Collapse
|
2
|
Hurzeler T, Watt J, Logge W, Towers E, Suraev A, Lintzeris N, Haber P, Morley KC. Neuroimaging studies of cannabidiol and potential neurobiological mechanisms relevant for alcohol use disorders: a systematic review. J Cannabis Res 2024; 6:15. [PMID: 38509580 PMCID: PMC10956336 DOI: 10.1186/s42238-024-00224-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 03/03/2024] [Indexed: 03/22/2024] Open
Abstract
The underlying neurobiological mechanisms of cannabidiol's (CBD) management of alcohol use disorder (AUD) remains elusive.Aim We conducted a systematic review of neuroimaging literature investigating the effects of CBD on the brain in healthy participants. We then theorise the potential neurobiological mechanisms by which CBD may ameliorate various symptoms of AUD.Methods This review was conducted according to the PRISMA guidelines. Terms relating to CBD and neuroimaging were used to search original clinical research published in peer-reviewed journals.Results Of 767 studies identified by our search strategy, 16 studies satisfied our eligibility criteria. The results suggest that CBD modulates γ-Aminobutyric acid and glutamate signaling in the basal ganglia and dorso-medial prefrontal cortex. Furthermore, CBD regulates activity in regions associated with mesocorticolimbic reward pathways; salience, limbic and fronto-striatal networks which are implicated in reward anticipation; emotion regulation; salience processing; and executive functioning.Conclusion CBD appears to modulate neurotransmitter systems and functional connections in brain regions implicated in AUD, suggesting CBD may be used to manage AUD symptomatology.
Collapse
Affiliation(s)
- Tristan Hurzeler
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Translational Research in Alcohol, Edith Collins Centre, Sydney Local Health District, Sydney, Australia
| | - Joshua Watt
- Translational Research in Alcohol, Edith Collins Centre, Sydney Local Health District, Sydney, Australia
| | - Warren Logge
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Translational Research in Alcohol, Edith Collins Centre, Sydney Local Health District, Sydney, Australia
| | - Ellen Towers
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Translational Research in Alcohol, Edith Collins Centre, Sydney Local Health District, Sydney, Australia
| | - Anastasia Suraev
- Lambert Initiative for Cannabinoid Therapeutics, University of Sydney, Sydney, NSW, Australia
| | - Nicholas Lintzeris
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Drug and Alcohol Services, South Eastern Sydney Local Health District, Sydney, Australia
| | - Paul Haber
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
- Translational Research in Alcohol, Edith Collins Centre, Sydney Local Health District, Sydney, Australia
| | - Kirsten C Morley
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia.
- Translational Research in Alcohol, Edith Collins Centre, Sydney Local Health District, Sydney, Australia.
| |
Collapse
|
3
|
Erdemi S, Oğuz Ş, Aydoğan C, Bektaş O, Teymur A, Aydoğan Z, Bal EM, Tayar H. Brain damage evaluation via arterial spin labeling perfusion imaging for patients with aneurysmal subarachnoid hemorrhage. RADIOLOGIE (HEIDELBERG, GERMANY) 2023; 63:98-107. [PMID: 37950077 DOI: 10.1007/s00117-023-01228-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/11/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVE Subarachnoid hemorrhage (SAH) is a neurological condition with an annual incidence of 6-22 per 100,000. Despite many advances in diagnosis, the rates of mortality and morbidity in patients remain high. The most important reason for this is complications accompanied by perfusion changes. The aim of our study was to show the perfusion changes with arterial spin labelling (ASL) after SAH. MATERIALS AND METHODS In this prospective study, 23 patients diagnosed with aneurysmal SAH were evaluated by ASL perfusion imaging between days 1-3 and 8-10. The mean signal intensities (SI) of both hemispheres from the anterior cerebral artery, middle cerebral artery, and basal ganglia were measured manually according to the region of interest. The relationship between the SI values calculated for both cerebral hemispheres, complications, and grading scales of the side with more intense (ipsilateral) and less (contralateral) bleeding were evaluated. RESULTS There was a significant difference in the ipsilateral/contralateral SI ratio (SIIps/ConBGin) (p = 0.015) among all ASL values, including the basal ganglia between days 0-3 and 8-10. There was a significant negative correlation between ASL parameters and rating scale scores. Additionally, when the SIIps/ConBGinDay0-3 ratio cut-off value was ≤ 0.72, the sensitivity and specificity were 57.1% and 100.0%, respectively, in predicting non-fatal complications, and the sensitivity and specificity in predicting all complications, including death, were 55.6% and 100.0%, respectively. CONCLUSION Global or regional perfusion decrease can be shown using ASL, with or without the development of vasospasm, without the need for exogenous contrast agent use.
Collapse
Affiliation(s)
| | - Şükrü Oğuz
- Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Cemal Aydoğan
- Trabzon Ahi Evren Thoracic and Cardiovascular Surgery Training and Research Hospital, Trabzon, Turkey
| | - Onur Bektaş
- Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Aykut Teymur
- Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Zeynep Aydoğan
- Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Elif M Bal
- Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| | - Hatice Tayar
- Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
4
|
Mohn F, Exner M, Szwargulski P, Möddel M, Knopp T, Graeser M. Saline bolus for negative contrast perfusion imaging in magnetic particle imaging. Phys Med Biol 2023; 68:175026. [PMID: 37609892 DOI: 10.1088/1361-6560/ace309] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/29/2023] [Indexed: 08/24/2023]
Abstract
Objective.Magnetic particle imaging (MPI) is capable of high temporal resolution measurements of the spatial distribution of magnetic nanoparticles and therefore well suited for perfusion imaging, which is an important tool in medical diagnosis. Perfusion imaging in MPI usually requires a fresh bolus of tracer material to capture the key signal dynamics. Here, we propose a method to decouple the imaging sequence from the injection of additional tracer material, without further increasing the administered iron dose in the body with each image.Approach.A bolus of physiological saline solution without any particles (negative contrast) diminishes the steady-state concentration of a long-circulating tracer during passage. This depression in the measured concentration contributes to the required contrast dynamics. The presence of a long-circulating tracer is therefore a prerequisite to obtain the negative contrast. As a quantitative tracer based imaging method, the signal is linear in the tracer concentration for any location that contains nanoparticles and zero in the surrounding tissue which does not provide any intrinsic signal. After tracer injection, the concentration over time (positive contrast) can be utilized to calculate dynamic diagnostic parameters like perfusion parameters in vessels and organs. Every acquired perfusion image thus requires a new bolus of tracer with a sufficiently large iron dose to be visible above the background.Main results.Perfusion parameters are calculated based on the time response of the proposed negative bolus and compared to a positive bolus. Results from phantom experiments show that normalized signals from positive and negative boli are concurrent and deviations of calculated perfusion maps are low.Significance.Our method opens up the possibility to increase the total monitoring time of a future patient by utilizing a positive-negative contrast sequence, while minimizing the iron dose per acquired image.
Collapse
Affiliation(s)
- Fabian Mohn
- Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, Germany
- Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Miriam Exner
- Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, Germany
| | - Patryk Szwargulski
- Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, Germany
| | - Martin Möddel
- Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, Germany
- Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Tobias Knopp
- Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, Germany
- Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Fraunhofer Research Institution for Individualized and Cell-based Medicine, IMTE, Lübeck, Germany
| | - Matthias Graeser
- Institute for Biomedical Imaging, Hamburg University of Technology, Hamburg, Germany
- Section for Biomedical Imaging, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Fraunhofer Research Institution for Individualized and Cell-based Medicine, IMTE, Lübeck, Germany
- Institute for Medical Engineering, University of Lübeck, Lübeck, Germany
| |
Collapse
|
5
|
Pavilla A, Gambarota G, Signaté A, Arrigo A, Saint-Jalmes H, Mejdoubi M. Intravoxel incoherent motion and diffusion kurtosis imaging at 3T MRI: Application to ischemic stroke. Magn Reson Imaging 2023; 99:73-80. [PMID: 36669596 DOI: 10.1016/j.mri.2023.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/25/2022] [Accepted: 01/14/2023] [Indexed: 01/19/2023]
Abstract
BACKGROUND AND PURPOSE The DKI-IVIM model that incorporates DKI (diffusional kurtosis imaging) into the IVIM (Intravoxel Incoherent Motion) concept was investigated to assess its utility for both enhanced diffusion characterization and perfusion measurements in ischemic stroke at 3 T. METHODS Fifteen stroke patients (71 ± 11 years old) were enrolled and DKI-IVIM analysis was performed using 9 b-values from 0 to 1500 s/mm2 chosen with the Cramer-Rao-Lower-Bound optimization approach. Pseudo-diffusion coefficient D*, perfusion fraction f, blood flow-related parameter fD*, the diffusion coefficient D and an additional parameter, the kurtosis, K were determined in the ischemic lesion and controlateral normal tissue based on a region of interest approach. The apparent diffusion coefficient (ADC) and arterial spin labelling (ASL) cerebral blood flow (CBF) parameters were also assessed and parametric maps were obtained for all parameters. RESULTS Significant differences were observed for all diffusion parameters with a significant decrease for D (p < 0.0001), ADC (p < 0.0001), and a significant increase for K (p < 0.0001) in the ischemic lesions of all patients. f decreased significantly in these regions (p = 0.0002). The fD* increase was not significant (p = 0.56). The same significant differences were found with a motion correction except for fD* (p = 0.47). CBF significantly decreased in the lesions. ADC was significantly positively correlated with D (p < 0.0001) and negatively with K (p = 0.0002); K was also negatively significantly correlated with D (p = 0.01). CONCLUSIONS DKI-IVIM model enables for simultaneous cerebral perfusion and enhanced diffusion characterization in an acceptable clinically acquisition time for the ischemic stroke diagnosis with the additional kurtosis factor estimation, that may better reflect the microstructure heterogeneity.
Collapse
Affiliation(s)
- Aude Pavilla
- Univ-Rennes, INSERM, LTSI - UMR 1099, F-35000 Rennes, France; Département de Neuroradiologie, CHU Martinique, F-97261 Fort de France, France.
| | | | - Aissatou Signaté
- Département de Neuroradiologie, CHU Martinique, F-97261 Fort de France, France
| | - Alessandro Arrigo
- Département de Neuroradiologie, CHU Martinique, F-97261 Fort de France, France
| | | | - Mehdi Mejdoubi
- Département de Neuroradiologie, CHU Martinique, F-97261 Fort de France, France
| |
Collapse
|
6
|
Nazarpoor M. The Direction of Flow and Phase-encoding Schemes Effects on Signal Intensity in T1-weighted Inversion Recovery TurboFLASH Images. J Biomed Phys Eng 2023; 13:45-54. [PMID: 36818011 PMCID: PMC9923244 DOI: 10.31661/jbpe.v0i0.2203-1468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/25/2022] [Indexed: 02/01/2023]
Abstract
Background It is needed to minimize the effect of flow direction on the desired area, such as arterial input function (AIF) in magnetic resonance imaging (MRI). Objective The current study aimed to investigate the effect of flow direction on different velocities (0-80.39 cm/s) for the strength of the signal intensity (SI) at the linear phase-encoding (LPE) and the center out phase-encoding (COPE) schemes and to recommend the best flow direction in a selected slice and scheme for absolute perfusion measurement by inversion recovery T1-weighted turbo fast low-angle shot (TurboFLASH) MR images. Material and Methods In this experimental study, the flow rates were measured using a flow phantom, and the signal intensity (SI) was measured at the two opposite flow directions in the Z-axis perpendicular to the coronal image at a concentration of 0.8 mmol/L of gadolinium-diethylenetriaminepantaacetic acid (Gd-DTPA) by using the LPE and COPE schemes. Results The increase in velocity along with the growth in SI and inflow affected the use of LPE and COPE acquisitions in both directions. The velocity of the arterial input function is needed to calculate the inflow correction factor by using two schemes in two opposite flow directions to investigate perfusion. Conclusion The COPE scheme was better than the LPE scheme in measuring perfusion since the velocity and direction of blood flow affect SI less.
Collapse
Affiliation(s)
- Mahmood Nazarpoor
- Department of Biomedical Engineering, Faculty of Health and Biomedical Engineering, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
7
|
Zhang X, Xie W, Liu Y, Li M, Lin J, Yin W, Yang L, Li P, Sun Y, Li T, Liu H, Ma H, Zhang J. Brain Structural and Functional Alterations in Native Tibetans Living at High Altitude. Neuroscience 2023; 520:134-143. [PMID: 36716913 DOI: 10.1016/j.neuroscience.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 01/15/2023] [Accepted: 01/18/2023] [Indexed: 01/30/2023]
Abstract
Tibetans have adapted to high altitude environments. However, the genetic effects in their brains have not been identified. Twenty-five native Tibetans living in Lhasa (3650 m) were recruited for comparison with 20 Han immigrants who originated from lowlands and had been living in Lhasa for two years. The physiological characteristics, brain structure and neuronal spontaneous activity were investigated. Compared with Han immigrants, Tibetans showed higher peripheral oxygen saturation (SpO2), and lower heart rate, red blood cell counts, hematocrit, and hemoglobin. Tibetans showed increased gray matter volume in the visual cortex, hippocampus, and rectus; increased the amplitudes of low-frequency fluctuations (ALFF) values in the left putamen and left fusiform gyrus; and decreased voxel-mirrored homotopic connectivity (VMHC) values in the precentral gyrus. Moreover, Tibetans have decreased functional connectivity (FC) between the left precentral gyrus and the frontal gyrusand right precuneus. In Tibetans and Han immigrants, hemoglobin and hematocrit were negatively correlated with total gray matter volume in males, SpO2 was also positively correlated with ALFF in the left fusiform gyrus, while hemoglobin, and hematocrit were positively correlated with VMHC in the precentral gyrus and FC in the precentral gyrus with other brain regions, SpO2 was also found to be negatively correlated with VMHC in the precentral gyrus, and hemoglobin and hematocrit were negatively correlated with ALFF in the left putamen and left fusiform gyrus. In summary, genetic mutations may result in modulation of some brain regions, which was further confirmed by the identification of correlations with hemoglobin and hematocrit in these regions.
Collapse
Affiliation(s)
- Xinjuan Zhang
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen 361102, China; Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Xiamen University, Xiamen 361102, China
| | - Weiwei Xie
- Plateau Brain Science Research Centre, Tibet University, Lhasa 850012, China
| | - Yanqiu Liu
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen 361102, China; Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Xiamen University, Xiamen 361102, China
| | - Minglu Li
- Department of Clinical Medicine, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Jianzhong Lin
- Department of Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Wu Yin
- Department of Radiology, Tibet Autonomous Region People's Hospital, Lhasa 850000, Tibet Autonomous Region, China
| | - Lihui Yang
- Department of Endocrinology, Tibet Autonomous Region People's Hospital, Lhasa 850000, Tibet Autonomous Region, China
| | - Pengji Li
- Plateau Brain Science Research Centre, Tibet University, Lhasa 850012, China
| | - Ying Sun
- Plateau Brain Science Research Centre, Tibet University, Lhasa 850012, China
| | - Tianzhi Li
- Plateau Brain Science Research Centre, Tibet University, Lhasa 850012, China
| | - Haipeng Liu
- Department of Radiology, Tibet Autonomous Region Women's and Children's Hospital, Lhasa 850000, Tibet Autonomous Region, China
| | - Hailin Ma
- Plateau Brain Science Research Centre, Tibet University, Lhasa 850012, China.
| | - Jiaxing Zhang
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen 361102, China; Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
8
|
Zhang X, Xie W, Du W, Liu Y, Lin J, Yin W, Yang L, Yuan F, Zhang R, Liu H, Ma H, Zhang J. Consistent differences in brain structure and functional connectivity in high-altitude native Tibetans and immigrants. Brain Imaging Behav 2023; 17:271-281. [PMID: 36694086 DOI: 10.1007/s11682-023-00759-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 12/13/2022] [Accepted: 01/17/2023] [Indexed: 01/26/2023]
Abstract
It has been well-established that high-altitude (HA) environments affect the human brain; however, the differences in brain structural and functional networks between HA natives and acclimatized immigrants have not been well clarified. In this study, native HA Tibetans were recruited for comparison with Han immigrants (average of 2.3 ± 0.3 years at HA), with lowland residents recruited as controls. Cortical gray matter volume, thickness, and functional connectivity were investigated using magnetic resonance imaging data. In addition, reaction time and correct score in the visual movement task, hematology, and SpO2 were measured. In both Tibetans and HA immigrants vs. lowlanders, decreased SpO2, increased hematocrit and hemoglobin, and increased reaction time and correct score in the visual movement task were detected. In both Tibetans and HA immigrants vs. lowlanders, gray matter volumes and cortical thickness were increased in the left somatosensory and motor cortex, and functional connectivity was decreased in the visual, default mode, subcortical, somatosensory-motor, ventral attention, and subcortical networks. Furthermore, SpO2 increased, hematocrit and hemoglobin decreased, and gray matter volumes and cortical thickness increased in the visual cortex, left motor cortex, and right auditory cortex in native Tibetans compared to immigrants. Movement time and correct score in task were positively correlated with the thickness of the visual cortex. In conclusion, brain structural and functional network difference in both Tibetan natives and HA immigrants were largely consistent, with native Tibetans only showing more intense brain modulation. Different populations acclimatized to HA develop similar brain mechanisms to cope with hostile HA environmental factors.
Collapse
Affiliation(s)
- Xinjuan Zhang
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Weiwei Xie
- Plateau Brain Science Research Centre, Tibet University, Lhasa, 850012, China
| | - Wenrui Du
- Department of Clinical Medicine, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Yanqiu Liu
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Jianzhong Lin
- Department of Radiology, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Wu Yin
- Department of Radiology, Tibet Autonomous Region People's Hospital, Lhasa, Tibet Autonomous Region, 850000, China
| | - Lihui Yang
- Department of Endocrinology, Tibet Autonomous Region People's Hospital, Tibet Autonomous Region, Lhasa, 850000, China
| | - Fengjuan Yuan
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Ran Zhang
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Haipeng Liu
- Department of Radiology, Tibet Autonomous Region Women's and Children's Hospital, Tibet Autonomous Region, Lhasa, 850000, China
| | - Hailin Ma
- Plateau Brain Science Research Centre, Tibet University, Lhasa, 850012, China.
| | - Jiaxing Zhang
- Institute of Brain Diseases and Cognition, School of Medicine, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
9
|
Zenger B, Rizzi S, Steinberg BA, Ranjan R, Bunch TJ. This is Your Brain, and This is Your Brain on Atrial Fibrillation: The Roles of Cardiac Malperfusion Events and Vascular Dysfunction in Cognitive Impairment. Arrhythm Electrophysiol Rev 2023; 12:e01. [PMID: 36845168 PMCID: PMC9945461 DOI: 10.15420/aer.2022.29] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/14/2022] [Indexed: 02/03/2023] Open
Abstract
AF is an independent and strong predictor of long-term cognitive decline. However, the mechanism for this cognitive decline is difficult to define and likely multifactorial, leading to many different hypotheses. Examples include macro- or microvascular stroke events, biochemical changes to the blood-brain barrier related to anticoagulation, or hypo-hyperperfusion events. This review explores and discusses the hypothesis that AF contributes to cognitive decline and dementia through hypo-hyperperfusion events occurring during cardiac arrhythmias. We briefly explain several brain perfusion imaging techniques and further examine the novel findings associated with changes in brain perfusion in patients with AF. Finally, we discuss the implications and areas requiring more research to further understand and treat patients with cognitive decline related to AF.
Collapse
Affiliation(s)
- Brian Zenger
- School of Medicine, University of Utah, Salt Lake City, UT, US
| | - Scott Rizzi
- Department of Internal Medicine, University of Utah Health Sciences, Salt Lake City, UT, US
| | - Benjamin A Steinberg
- School of Medicine, University of Utah, Salt Lake City, UT, US
- Division of Cardiovascular Medicine, University of Utah Health Sciences, Salt Lake City, UT, US
| | - Ravi Ranjan
- Division of Cardiovascular Medicine, University of Utah Health Sciences, Salt Lake City, UT, US
| | - T Jared Bunch
- School of Medicine, University of Utah, Salt Lake City, UT, US
- Division of Cardiovascular Medicine, University of Utah Health Sciences, Salt Lake City, UT, US
| |
Collapse
|
10
|
Ito S, Fuwa N, Nomura M, Daimon T, Ota S, Morishima T, Ii N, Miyati T. Intratumor hemodynamics using contrast-enhanced MRI in intra-arterial chemotherapy for head and neck cancer. Oral Surg Oral Med Oral Pathol Oral Radiol 2022; 133:706-715. [PMID: 35033464 DOI: 10.1016/j.oooo.2021.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/14/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022]
Abstract
OBJECTIVE The objectives of the study were to estimate the perfusion of tumors by drugs used in intra-arterial chemotherapy for head and neck cancer with magnetic resonance imaging and to establish the factors involved in determining the optimal dose. STUDY DESIGN Contrast agent was administered intra-arterially into either the lingual or maxillary artery in 43 patients. Triple-phase continuous fast spin echo magnetic resonance imaging was performed. Changes in blood water longitudinal relaxation rate (⊿R1) were measured in relation to imaging phase, type of artery, measurement site, and tumor size. RESULTS ⊿R1 was significantly higher at the tumor margin than at the center for both arteries, except in the first phase for the lingual artery. ⊿R1 was greatest in the third phase for the lingual artery and in the second phase for the maxillary artery. For both arteries, as the tumor size increased, there was a significant decrease in ⊿R1 at the center of the tumor compared with the margin. CONCLUSIONS The factors associated with ⊿R1 were imaging phase, type of artery, measurement site, and tumor size. When determining a drug's optimal dose, the type of artery and tumor size must be taken into consideration.
Collapse
Affiliation(s)
- Shintaro Ito
- Department of Medical Technology, Ise Red Cross Hospital, Mie, Japan; Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan.
| | - Nobukazu Fuwa
- Department of Radiation Oncology, Ise Red Cross Hospital, Mie, Japan; Department of Radiation Oncology, Central Japan International Medical Center, Gifu, Japan
| | - Miwako Nomura
- Department of Radiation Oncology, Ise Red Cross Hospital, Mie, Japan
| | - Takashi Daimon
- Department of Biostatistics, Hyogo College of Medicine, Hyogo, Japan
| | - Suguru Ota
- Department of Medical Technology, Ise Red Cross Hospital, Mie, Japan
| | | | - Noriko Ii
- Department of Radiation Oncology, Ise Red Cross Hospital, Mie, Japan
| | - Tosiaki Miyati
- Division of Health Sciences, Graduate School of Medical Sciences, Kanazawa University, Ishikawa, Japan
| |
Collapse
|
11
|
Bhaduri S, Lesbats C, Sharkey J, Kelly CL, Mukherjee S, Taylor A, Delikatny EJ, Kim SG, Poptani H. Assessing Tumour Haemodynamic Heterogeneity and Response to Choline Kinase Inhibition Using Clustered Dynamic Contrast Enhanced MRI Parameters in Rodent Models of Glioblastoma. Cancers (Basel) 2022; 14:cancers14051223. [PMID: 35267531 PMCID: PMC8909848 DOI: 10.3390/cancers14051223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/16/2022] [Accepted: 02/23/2022] [Indexed: 12/04/2022] Open
Abstract
To investigate the utility of DCE-MRI derived pharmacokinetic parameters in evaluating tumour haemodynamic heterogeneity and treatment response in rodent models of glioblastoma, imaging was performed on intracranial F98 and GL261 glioblastoma bearing rodents. Clustering of the DCE-MRI-based parametric maps (using Tofts, extended Tofts, shutter speed, two-compartment, and the second generation shutter speed models) was performed using a hierarchical clustering algorithm, resulting in areas with poor fit (reflecting necrosis), low, medium, and high valued pixels representing parameters Ktrans, ve, Kep, vp, τi and Fp. There was a significant increase in the number of necrotic pixels with increasing tumour volume and a significant correlation between ve and tumour volume suggesting increased extracellular volume in larger tumours. In terms of therapeutic response in F98 rat GBMs, a sustained decrease in permeability and perfusion and a reduced cell density was observed during treatment with JAS239 based on Ktrans, Fp and ve as compared to control animals. No significant differences in these parameters were found for the GL261 tumour, indicating that this model may be less sensitive to JAS239 treatment regarding changes in vascular parameters. This study demonstrates that region-based clustered pharmacokinetic parameters derived from DCE-MRI may be useful in assessing tumour haemodynamic heterogeneity with the potential for assessing therapeutic response.
Collapse
Affiliation(s)
- Sourav Bhaduri
- Centre for Preclinical Imaging, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3BX, UK; (S.B.); (C.L.); (J.S.); (C.L.K.); (S.M.)
| | - Clémentine Lesbats
- Centre for Preclinical Imaging, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3BX, UK; (S.B.); (C.L.); (J.S.); (C.L.K.); (S.M.)
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SM2 5NG, UK
| | - Jack Sharkey
- Centre for Preclinical Imaging, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3BX, UK; (S.B.); (C.L.); (J.S.); (C.L.K.); (S.M.)
| | - Claire Louise Kelly
- Centre for Preclinical Imaging, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3BX, UK; (S.B.); (C.L.); (J.S.); (C.L.K.); (S.M.)
| | - Soham Mukherjee
- Centre for Preclinical Imaging, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3BX, UK; (S.B.); (C.L.); (J.S.); (C.L.K.); (S.M.)
| | - Arthur Taylor
- Department of Molecular Physiology & Cell Signalling, University of Liverpool, Liverpool L69 3BX, UK;
| | - Edward J. Delikatny
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Sungheon G. Kim
- Department of Radiology, Weill Cornell Medical College, New York, NY 10021, USA;
| | - Harish Poptani
- Centre for Preclinical Imaging, Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool L69 3BX, UK; (S.B.); (C.L.); (J.S.); (C.L.K.); (S.M.)
- Correspondence:
| |
Collapse
|
12
|
Wang Z, Liu Z, Li S. Weak Lesion Feature Extraction by Dual-branch Separation and Enhancement Network for Safe Hemorrhagic Transformation Prediction. Comput Med Imaging Graph 2022; 97:102038. [DOI: 10.1016/j.compmedimag.2022.102038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 11/24/2021] [Accepted: 01/13/2022] [Indexed: 11/28/2022]
|
13
|
Sidibe I, Tensaouti F, Roques M, Cohen-Jonathan-Moyal E, Laprie A. Pseudoprogression in Glioblastoma: Role of Metabolic and Functional MRI-Systematic Review. Biomedicines 2022; 10:biomedicines10020285. [PMID: 35203493 PMCID: PMC8869397 DOI: 10.3390/biomedicines10020285] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/20/2022] [Accepted: 01/22/2022] [Indexed: 12/16/2022] Open
Abstract
Background: Glioblastoma is the most frequent malignant primitive brain tumor in adults. The treatment includes surgery, radiotherapy, and chemotherapy. During follow-up, combined chemoradiotherapy can induce treatment-related changes mimicking tumor progression on medical imaging, such as pseudoprogression (PsP). Differentiating PsP from true progression (TP) remains a challenge for radiologists and oncologists, who need to promptly start a second-line treatment in the case of TP. Advanced magnetic resonance imaging (MRI) techniques such as diffusion-weighted imaging, perfusion MRI, and proton magnetic resonance spectroscopic imaging are more efficient than conventional MRI in differentiating PsP from TP. None of these techniques are fully effective, but current advances in computer science and the advent of artificial intelligence are opening up new possibilities in the imaging field with radiomics (i.e., extraction of a large number of quantitative MRI features describing tumor density, texture, and geometry). These features are used to build predictive models for diagnosis, prognosis, and therapeutic response. Method: Out of 7350 records for MR spectroscopy, GBM, glioma, recurrence, diffusion, perfusion, pseudoprogression, radiomics, and advanced imaging, we screened 574 papers. A total of 228 were eligible, and we analyzed 72 of them, in order to establish the role of each imaging modality and the usefulness and limitations of radiomics analysis.
Collapse
Affiliation(s)
- Ingrid Sidibe
- Radiation Oncology Department, Claudius Regaud Institute, Toulouse University Cancer Institute Oncopole, 31100 Toulouse, France; (I.S.); (F.T.); (E.C.-J.-M.)
- Toulouse NeuroImaging Center (ToNIC), University of Toulouse Paul Sabatier INSERM, 31100 Toulouse, France;
| | - Fatima Tensaouti
- Radiation Oncology Department, Claudius Regaud Institute, Toulouse University Cancer Institute Oncopole, 31100 Toulouse, France; (I.S.); (F.T.); (E.C.-J.-M.)
- Toulouse NeuroImaging Center (ToNIC), University of Toulouse Paul Sabatier INSERM, 31100 Toulouse, France;
| | - Margaux Roques
- Toulouse NeuroImaging Center (ToNIC), University of Toulouse Paul Sabatier INSERM, 31100 Toulouse, France;
- Radiology Department, Purpan University Hospital, 31300 Toulouse, France
| | - Elizabeth Cohen-Jonathan-Moyal
- Radiation Oncology Department, Claudius Regaud Institute, Toulouse University Cancer Institute Oncopole, 31100 Toulouse, France; (I.S.); (F.T.); (E.C.-J.-M.)
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT)/University Paul Sabatier Toulouse III, 31100 Toulouse, France
| | - Anne Laprie
- Radiation Oncology Department, Claudius Regaud Institute, Toulouse University Cancer Institute Oncopole, 31100 Toulouse, France; (I.S.); (F.T.); (E.C.-J.-M.)
- Toulouse NeuroImaging Center (ToNIC), University of Toulouse Paul Sabatier INSERM, 31100 Toulouse, France;
- Correspondence:
| |
Collapse
|
14
|
Kang M, Jin S, Cho H. MRI investigation of vascular remodeling for heterogeneous edema lesions in subacute ischemic stroke rat models: Correspondence between cerebral vessel structure and function. J Cereb Blood Flow Metab 2021; 41:3273-3287. [PMID: 34233533 PMCID: PMC8669276 DOI: 10.1177/0271678x211029197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The spatial heterogeneity in the temporal occurrence of pseudo-normalization of MR apparent diffusion coefficient values for ischemic lesions may be related to morphological and functional vascular remodeling. As the area of accelerated pseudo-normalization tends to expand faster and more extensively into the chronic stage, detailed vascular characterization of such areas is necessary. During the subacute stage of transient middle cerebral artery occlusion rat models, the morphological size of the macrovasculature, microvascular vessel size index (VSI), and microvessel density (MVD) were quantified along with functional perfusion measurements of the relative cerebral blood flow (rCBF) and mean transit time (rMTT) of the corresponding areas (33 cases for each parameter). When compared with typical pseudo-normalization lesions, early pseudo-normalization lesions exhibited larger VSI and rCBF (p < 0.001) at reperfusion days 4 and 7, along with reduced MVD and elongated rMTT (p < 0.001) at reperfusion days 1, 4, and 7. The group median VSI and rCBF exhibited a strong positive correlation (r = 0.92), and the corresponding MVD and rMTT showed a negative correlation (r = -0.48). Light sheet fluorescence microscopy images were used to quantitatively validate the corresponding MRI-derived microvascular size, density, and cerebral blood volume.
Collapse
Affiliation(s)
| | | | - HyungJoon Cho
- HyungJoon Cho, Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Unist-gil 50 (100 Banyeon-ri), Eonyang-eup, Uljugun, Ulsan Metropolitan City 689-798, South Korea.
| |
Collapse
|
15
|
Markicevic M, Savvateev I, Grimm C, Zerbi V. Emerging imaging methods to study whole-brain function in rodent models. Transl Psychiatry 2021; 11:457. [PMID: 34482367 PMCID: PMC8418612 DOI: 10.1038/s41398-021-01575-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/05/2021] [Accepted: 08/23/2021] [Indexed: 02/07/2023] Open
Abstract
In the past decade, the idea that single populations of neurons support cognition and behavior has gradually given way to the realization that connectivity matters and that complex behavior results from interactions between remote yet anatomically connected areas that form specialized networks. In parallel, innovation in brain imaging techniques has led to the availability of a broad set of imaging tools to characterize the functional organization of complex networks. However, each of these tools poses significant technical challenges and faces limitations, which require careful consideration of their underlying anatomical, physiological, and physical specificity. In this review, we focus on emerging methods for measuring spontaneous or evoked activity in the brain. We discuss methods that can measure large-scale brain activity (directly or indirectly) with a relatively high temporal resolution, from milliseconds to seconds. We further focus on methods designed for studying the mammalian brain in preclinical models, specifically in mice and rats. This field has seen a great deal of innovation in recent years, facilitated by concomitant innovation in gene-editing techniques and the possibility of more invasive recordings. This review aims to give an overview of currently available preclinical imaging methods and an outlook on future developments. This information is suitable for educational purposes and for assisting scientists in choosing the appropriate method for their own research question.
Collapse
Affiliation(s)
- Marija Markicevic
- Neural Control of Movement Lab, HEST, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
| | - Iurii Savvateev
- Neural Control of Movement Lab, HEST, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
- Decision Neuroscience Lab, HEST, ETH Zürich, Zürich, Switzerland
| | - Christina Grimm
- Neural Control of Movement Lab, HEST, ETH Zürich, Zürich, Switzerland
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland
| | - Valerio Zerbi
- Neural Control of Movement Lab, HEST, ETH Zürich, Zürich, Switzerland.
- Neuroscience Center Zurich, University and ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
16
|
Taxt T, Andersen E, Jiřík R. Single voxel vascular transport functions of arteries, capillaries and veins; and the associated arterial input function in dynamic susceptibility contrast magnetic resonance brain perfusion imaging. Magn Reson Imaging 2021; 84:101-114. [PMID: 34461158 DOI: 10.1016/j.mri.2021.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/13/2021] [Accepted: 08/15/2021] [Indexed: 10/20/2022]
Abstract
PURPOSE The composite vascular transport function of a brain voxel consists of one convolutional component for the arteries, one for the capillaries and one for the veins in the voxel of interest. Here, the goal is to find each of these three convolutional components and the associated arterial input function. PHARMACOKINETIC MODELLING The single voxel vascular transport functions for arteries, capillaries and veins were all modelled as causal exponential functions. Each observed multipass tissue contrast function was as a first approximation modelled as the resulting parametric composite vascular transport function convolved with a nonparametric and voxel specific multipass arterial input function. Subsequently, the residue function was used in the true perfusion equation to optimize the three parameters of the exponential functions. DECONVOLUTION METHODS For each voxel, the parameters of the three exponential functions were estimated by successive iterative blind deconvolutions using versions of the Lucy-Richardson algorithm. The final multipass arterial input function was then computed by nonblind deconvolution using the Lucy-Richardson algorithm and the estimated composite vascular transport function. RESULTS Simulations showed that the algorithm worked. The estimated mean transit time of arteries, capillaries and veins of the simulated data agreed with the known input values. For real data, the estimated capillary mean transit times agreed with known values for this parameter. The nonparametric multipass arterial input functions were used to derive the associated map of the arrival time. The arrival time map of a healthy volunteer agreed with known arterial anatomy and physiology. CONCLUSION Clinically important new voxelwise hemodynamic information for arteries, capillaries and veins separately can be estimated using multipass tissue contrast functions and the iterative blind Lucy-Richardson deconvolution algorithm.
Collapse
Affiliation(s)
- Torfinn Taxt
- Department of Biomedicine, University of Bergen, Bergen, N-5020, Norway; Department of Radiology, Haukeland University Hospital, Bergen, N-5021, Norway
| | - Erling Andersen
- Department of Clinical Engineering, Haukeland University Hospital, Bergen, N-5021, Norway
| | - Radovan Jiřík
- Institute of Scientific Instruments of the Czech Academy of Sciences, Brno, 61264, Czech Republic.
| |
Collapse
|
17
|
Leaston J, Ferris CF, Kulkarni P, Chandramohan D, van de Ven AL, Qiao J, Timms L, Sepulcre J, El Fakhri G, Ma C, Normandin MD, Gharagouzloo C. Neurovascular imaging with QUTE-CE MRI in APOE4 rats reveals early vascular abnormalities. PLoS One 2021; 16:e0256749. [PMID: 34449808 PMCID: PMC8396782 DOI: 10.1371/journal.pone.0256749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 08/13/2021] [Indexed: 11/19/2022] Open
Abstract
Cerebrovascular abnormality is linked to Alzheimer's disease and related dementias (ADRDs). ApoE-Ɛ4 (APOE4) is known to play a critical role in neurovascular dysfunction, however current medical imaging technologies are limited in quantification. This cross-sectional study tested the feasibility of a recently established imaging modality, quantitative ultra-short time-to-echo contrast-enhanced magnetic resonance imaging (QUTE-CE MRI), to identify small vessel abnormality early in development of human APOE4 knock-in female rat (TGRA8960) animal model. At 8 months, 48.3% of the brain volume was found to have significant signal increase (75/173 anatomically segmented regions; q<0.05 for multiple comparisons). Notably, vascular abnormality was detected in the tri-synaptic circuit, cerebellum, and amygdala, all of which are known to functionally decline throughout AD pathology and have implications in learning and memory. The detected abnormality quantified with QUTE-CE MRI is likely a result of hyper-vascularization, but may also be partly, or wholly, due to contributions from blood-brain-barrier leakage. Further exploration with histological validation is warranted to verify the pathological cause. Regardless, these results indicate that QUTE-CE MRI can detect neurovascular dysfunction with high sensitivity with APOE4 and may be helpful to provide new insights into health and disease.
Collapse
Affiliation(s)
- Joshua Leaston
- Imaginostics, Inc., Cambridge, Massachusetts, United States of America
| | - Craig F. Ferris
- Department of Psychology, Northeastern University, Boston, Massachusetts, United States of America
- Center for Translational Neuroimaging, Northeastern University, Boston, Massachusetts, United States of America
| | - Praveen Kulkarni
- Department of Psychology, Northeastern University, Boston, Massachusetts, United States of America
- Center for Translational Neuroimaging, Northeastern University, Boston, Massachusetts, United States of America
| | | | - Anne L. van de Ven
- Department of Physics, Northeastern University, Boston, Massachusetts, United States of America
- Nanomedicine Science and Technology Center, Northeastern University, Boston, Massachusetts, United States of America
| | - Ju Qiao
- Center for Translational Neuroimaging, Northeastern University, Boston, Massachusetts, United States of America
- Nanomedicine Science and Technology Center, Northeastern University, Boston, Massachusetts, United States of America
| | - Liam Timms
- Department of Physics, Northeastern University, Boston, Massachusetts, United States of America
- Nanomedicine Science and Technology Center, Northeastern University, Boston, Massachusetts, United States of America
| | - Jorge Sepulcre
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Chao Ma
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Marc D. Normandin
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Codi Gharagouzloo
- Imaginostics, Inc., Cambridge, Massachusetts, United States of America
- Department of Psychology, Northeastern University, Boston, Massachusetts, United States of America
- Center for Translational Neuroimaging, Northeastern University, Boston, Massachusetts, United States of America
- Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| |
Collapse
|
18
|
Mazumder D, Wu MM, Ozana N, Tamborini D, Franceschini MA, Carp SA. Optimization of time domain diffuse correlation spectroscopy parameters for measuring brain blood flow. NEUROPHOTONICS 2021; 8:035005. [PMID: 34395719 PMCID: PMC8358828 DOI: 10.1117/1.nph.8.3.035005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/15/2021] [Indexed: 05/05/2023]
Abstract
Significance: Time domain diffuse correlation spectroscopy (TD-DCS) can offer increased sensitivity to cerebral hemodynamics and reduced contamination from extracerebral layers by differentiating photons based on their travel time in tissue. We have developed rigorous simulation and evaluation procedures to determine the optimal time gate parameters for monitoring cerebral perfusion considering instrumentation characteristics and realistic measurement noise. Aim: We simulate TD-DCS cerebral perfusion monitoring performance for different instrument response functions (IRFs) in the presence of realistic experimental noise and evaluate metrics of sensitivity to brain blood flow, signal-to-noise ratio (SNR), and ability to reject the influence of extracerebral blood flow across a variety of time gates to determine optimal operating parameters. Approach: Light propagation was modeled on an MRI-derived human head geometry using Monte Carlo simulations for 765- and 1064-nm excitation wavelengths. We use a virtual probe with a source-detector separation of 1 cm placed in the pre-frontal region. Performance metrics described above were evaluated to determine optimal time gate(s) for different IRFs. Validation of simulation noise estimates was done with experiments conducted on an intralipid-based liquid phantom. Results: We find that TD-DCS performance strongly depends on the system IRF. Among Gaussian pulse shapes, ∼ 300 ps pulse length appears to offer the best performance, at wide gates (500 ps and larger) with start times 400 and 600 ps after the peak of the TPSF at 765 and 1064 nm, respectively, for a 1-s integration time at photon detection rates seen experimentally (600 kcps at 765 nm and 4 Mcps at 1064 nm). Conclusions: Our work shows that optimal time gates satisfy competing requirements for sufficient sensitivity and sufficient SNR. The achievable performance is further impacted by system IRF with ∼ 300 ps quasi-Gaussian pulse obtained using electro-optic laser shaping providing the best results.
Collapse
Affiliation(s)
- Dibbyan Mazumder
- Harvard Medical School, Massachusetts General Hospital, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
- Address all correspondence to Dibbyan Mazumder,
| | - Melissa M. Wu
- Harvard Medical School, Massachusetts General Hospital, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Nisan Ozana
- Harvard Medical School, Massachusetts General Hospital, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Davide Tamborini
- Harvard Medical School, Massachusetts General Hospital, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Maria Angela Franceschini
- Harvard Medical School, Massachusetts General Hospital, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| | - Stefan A. Carp
- Harvard Medical School, Massachusetts General Hospital, Optics at Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Charlestown, Massachusetts, United States
| |
Collapse
|
19
|
Jaganmohan D, Pan S, Kesavadas C, Thomas B. A pictorial review of brain arterial spin labelling artefacts and their potential remedies in clinical studies. Neuroradiol J 2020; 34:154-168. [PMID: 33283653 DOI: 10.1177/1971400920977031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Arterial spin labelling is an emerging non-invasive magnetic resonance imaging technique for estimating the cerebral perfusion without the requirement for gadolinium-based intravenous contrast agents. Despite the wide range of applications in epilepsy, dementia, brain tumours, vascular malformations and stroke imaging, obtaining clinically useful arterial spin labelling data is technically challenging and prone to numerous artefacts. The objective of this review is to provide a comprehensive pictorial overview of the various artefacts associated with arterial spin labelling, particularly three-dimensional fast spin echo pseudocontinuous arterial spin labelling with spiral readout. These artefacts could be broadly classified as those occurring during the magnetic labelling, arterial transit or image acquisition. Arterial spin labelling artefacts of clinical diagnostic utility are also elaborated. A thorough knowledge of the basis of these artefacts will avoid diagnostic pitfalls while interpreting arterial spin labelling images. Important tips to reduce or overcome these artefacts are also discussed.
Collapse
Affiliation(s)
- Deepasree Jaganmohan
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Institute of Medical Sciences and Technology, India
| | - Somnath Pan
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Institute of Medical Sciences and Technology, India
| | - Chandrasekharan Kesavadas
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Institute of Medical Sciences and Technology, India
| | - Bejoy Thomas
- Department of Imaging Sciences and Interventional Radiology, Sree Chitra Institute of Medical Sciences and Technology, India
| |
Collapse
|
20
|
Johnson GB, Harms HJ, Johnson DR, Jacobson MS. PET Imaging of Tumor Perfusion: A Potential Cancer Biomarker? Semin Nucl Med 2020; 50:549-561. [PMID: 33059824 DOI: 10.1053/j.semnuclmed.2020.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Perfusion, as measured by imaging, is considered a standard of care biomarker for the evaluation of many tumors. Measurements of tumor perfusion may be used in a number of ways, including improving the visual detection of lesions, differentiating malignant from benign findings, assessing aggressiveness of tumors, identifying ischemia and by extension hypoxia within tumors, and assessing treatment response. While most clinical perfusion imaging is currently performed with CT or MR, a number of methods for PET imaging of tumor perfusion have been described. The inert PET radiotracer 15O-water PET represents the recognized gold standard for absolute quantification of tissue perfusion in both normal tissue and a variety of pathological conditions including cancer. Other cancer PET perfusion imaging strategies include the use of radiotracers with high first-pass uptake, analogous to those used in cardiac perfusion PET. This strategy produces more visually pleasing high-contrast images that provide relative rather than absolute perfusion quantification. Lastly, multiple timepoint imaging of PET tracers such as 18F-FDG, are not specifically optimized for perfusion, but have advantages related to availability, convenience, and reimbursement. Multiple obstacles have thus far blocked the routine use of PET imaging for tumor perfusion, including tracer production and distribution, image processing, patient body coverage, clinical validation, regulatory approval and reimbursement, and finally feasible clinical workflows. Fortunately, these obstacles are being overcome, especially within larger imaging centers, opening the door for PET imaging of tumor perfusion to become standard clinical practice. In the foreseeable future, it is possible that whole-body PET perfusion imaging with 15O-water will be able to be performed in a single imaging session concurrent with standard PET imaging techniques such as 18F-FDG-PET. This approach could establish an efficient clinical workflow. The resultant ability to measure absolute tumor blood flow in combination with glycolysis will provide important complementary information to inform prognosis and clinical decisions.
Collapse
Affiliation(s)
- Geoffrey B Johnson
- Department of Radiology, Mayo Clinic, Rochester, MNDepartment of Neurology, Mayo Clinic, Rochester, MN; Department of Immunology, Mayo Clinic, Rochester, MN.
| | - Hendrik J Harms
- Department of Surgical Sciences, Nuclear Medicine, PET and Radiology, Uppsala University, Uppsala Sweden
| | - Derek R Johnson
- Department of Radiology, Mayo Clinic, Rochester, MNDepartment of Neurology, Mayo Clinic, Rochester, MN
| | - Mark S Jacobson
- Department of Radiology, Mayo Clinic, Rochester, MNDepartment of Neurology, Mayo Clinic, Rochester, MN
| |
Collapse
|
21
|
Batouli SAH, Saba V. Larger Volume and Different Activation of the Brain in Response to Threat in Military Officers. Basic Clin Neurosci 2020; 11:669-685. [PMID: 33643560 PMCID: PMC7878053 DOI: 10.32598/bcn.9.10.160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/05/2019] [Accepted: 01/15/2020] [Indexed: 12/22/2022] Open
Abstract
Introduction: Military missions involve stressful and life-threatening situations; however, soldiers should have a healthy cognition on the battlefield despite their high-stress levels. This is an ability that should be gained during prior military training. Successful and influential training is suggested to be associated with structural and functional improvements of the brain. Methods: This study investigated the pattern of brain activation while observing videos relevant to life-threatening situations, in addition to brain structure. Accordingly, the obtained data were compared between 20 military members and 26 healthy controls. The study participants were all male, aged between 19 to 24 years, right-handed, studying BSc, and from the same socioeconomic status. Results: The obtained data presented a larger volume in a total number of 1103 voxels of the brain (in 5 brain areas) in the military group. Furthermore, the military group suggested higher brain activation in the visual processing areas of the brain when observing real combat videos; however, this increment was mostly in the areas associated with motor processing and executive functions in the controls. Conclusion: This study indicated that military training is associated with positive structural changes in the brain. Besides, it provided a different brain activation in response to stressful situations. These findings highlighted the importance of qualified military training.
Collapse
Affiliation(s)
| | - Valiallah Saba
- Department of Radiology, Faculty of Paramedicine, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Dolgorsuren EA, Harada M, Kanazawa Y, Abe T, Otomo M, Matsumoto Y, Mizobuchi Y, Nakajima K. Correlation and Characteristics of Intravoxel Incoherent Motion and Arterial Spin Labeling Techniques Versus Multiple Parameters Obtained on Dynamic Susceptibility Contrast Perfusion MRI for Brain Tumors. THE JOURNAL OF MEDICAL INVESTIGATION 2020; 66:308-313. [PMID: 31656295 DOI: 10.2152/jmi.66.308] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Purpose : To compare data on brain tumors derived from intravoxel incoherent motion (IVIM) and arterial spin labeling (ASL) imaging with multiple parameters obtained on dynamic susceptibility contrast (DSC) perfusion MRI and to clarify the characteristics of IVIM and ASL perfusion data from the viewpoint of cerebral blood flow (CBF) analysis. Methods : ASL-CBF and IVIM techniques as well as DSC examination were performed in 24 patients with brain tumors. The IVIM data were analyzed with the two models. The relative blood flow (rBF), relative blood volume (rBV) corrected relative blood volume (crBV), mean transit time (MTT), and leakage coefficient (K2) were obtained from the DSC MRI data. Results : The ASL-CBF had the same tendency as the perfusion parameters derived from the DSC data, but the permeability from the vessels had less of an effect on the ASL-CBF. The diffusion coefficient of the fast component on IVIM contained more information on permeability than the f value. Conclusion : ASL-CBF is more suitable for the evaluation of perfusion in brain tumors than IVIM parameters. ASL-CBF and IVIM techniques should be carefully selected and the biological significance of each parameter should be understood for the correct comprehension of the pathological status of brain tumors. J. Med. Invest. 66 : 308-313, August, 2019.
Collapse
Affiliation(s)
| | - Masafumi Harada
- Department of Radiology and Radiation Oncology, Tokushima University, Tokushima, Japan
| | - Yuki Kanazawa
- Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Takashi Abe
- Department of Radiology and Radiation Oncology, Tokushima University, Tokushima, Japan
| | - Maki Otomo
- Department of Radiology and Radiation Oncology, Tokushima University, Tokushima, Japan
| | - Yuki Matsumoto
- Department of Radiology and Radiation Oncology, Tokushima University, Tokushima, Japan
| | | | - Kohhei Nakajima
- Department of Neurosurgery, Tokushima University, Tokushima, Japan
| |
Collapse
|
23
|
MRI perfusion analysis using freeware, standard imaging software. BMC Vet Res 2020; 16:141. [PMID: 32423403 PMCID: PMC7236203 DOI: 10.1186/s12917-020-02352-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 04/29/2020] [Indexed: 11/10/2022] Open
Abstract
Background Perfusion-weighted imaging is only scarcely used in veterinary medicine. The exact reasons are unclear. One reason might be the typically high costs of the software packages for image analysis. In addition, a great variability concerning available programs makes it hard to compare results between different studies. Moreover, these algorithms are tuned for their usage in human medicine and often difficult to adapt to veterinary studies. In order to address these issues, our aim is to deliver a free open source package for calculating quantitative perfusion parameters. We develop an “R package” calculating mean transit time, cerebral blood flow and cerebral blood volume from data obtained with freely imaging software (OsiriX Light®). We hope that the free availability, in combination with the fact that the underlying algorithm is open and adaptable, makes it easier for scientists in veterinary medicine to use, compare and adapt perfusion-weighted imaging analysis. In order to demonstrate the usage of our software package, we reviewed previously acquired perfusion-weighted images from a group of eight purpose-breed healthy beagle dogs and twelve client-owned dogs with idiopathic epilepsy. In order to obtain the data needed for our algorithm, the following steps were performed: First, regions of interest (ROI) were drawn around different, previously reported, brain regions and the middle cerebral artery. Second, a ROI enhancement curve was generated for each ROI using a freely available PlugIn. Third, the signal intensity curves were exported as a comma-separated-value file. These files constitute the input to our software package, which then calculates the PWI parameters. Results We used our software package to re-assess perfusion weighted images from two previous studies. The clinical results were similar, showing a significant increase in the mean transit time and a significant decrease in cerebral blood flow for diseased dogs. Conclusion We provide an “R package” for computing the main perfusion parameters from measurements taken with standard imaging software and describe in detail how to obtain these measurements. We hope that our contribution enables users in veterinary medicine to easily obtain perfusion parameters using standard Open Source software in a standard, adaptable and comparable way.
Collapse
|
24
|
Kamphuis ME, Greuter MJW, Slart RHJA, Slump CH. Quantitative imaging: systematic review of perfusion/flow phantoms. Eur Radiol Exp 2020; 4:15. [PMID: 32128653 PMCID: PMC7054493 DOI: 10.1186/s41747-019-0133-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 11/08/2019] [Indexed: 11/10/2022] Open
Abstract
Background We aimed at reviewing design and realisation of perfusion/flow phantoms for validating quantitative perfusion imaging (PI) applications to encourage best practices. Methods A systematic search was performed on the Scopus database for “perfusion”, “flow”, and “phantom”, limited to articles written in English published between January 1999 and December 2018. Information on phantom design, used PI and phantom applications was extracted. Results Of 463 retrieved articles, 397 were rejected after abstract screening and 32 after full-text reading. The 37 accepted articles resulted to address PI simulation in brain (n = 11), myocardial (n = 8), liver (n = 2), tumour (n = 1), finger (n = 1), and non-specific tissue (n = 14), with diverse modalities: ultrasound (n = 11), computed tomography (n = 11), magnetic resonance imaging (n = 17), and positron emission tomography (n = 2). Three phantom designs were described: basic (n = 6), aligned capillary (n = 22), and tissue-filled (n = 12). Microvasculature and tissue perfusion were combined in one compartment (n = 23) or in two separated compartments (n = 17). With the only exception of one study, inter-compartmental fluid exchange could not be controlled. Nine studies compared phantom results with human or animal perfusion data. Only one commercially available perfusion phantom was identified. Conclusion We provided insights into contemporary phantom approaches to PI, which can be used for ground truth evaluation of quantitative PI applications. Investigators are recommended to verify and validate whether assumptions underlying PI phantom modelling are justified for their intended phantom application.
Collapse
Affiliation(s)
- Marije E Kamphuis
- Multimodality Medical Imaging M3i Group, Faculty of Science and Technology, Technical Medical Centre, University of Twente, PO Box 217, Enschede, The Netherlands. .,Robotics and Mechatronics Group, Faculty of Electrical Engineering, Mathematics, and Computer Science, Technical Medical Centre, University of Twente, Enschede, The Netherlands.
| | - Marcel J W Greuter
- Robotics and Mechatronics Group, Faculty of Electrical Engineering, Mathematics, and Computer Science, Technical Medical Centre, University of Twente, Enschede, The Netherlands.,Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Riemer H J A Slart
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.,Biomedical Photonic Imaging Group, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Cornelis H Slump
- Robotics and Mechatronics Group, Faculty of Electrical Engineering, Mathematics, and Computer Science, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| |
Collapse
|
25
|
Gottschalk M. Look-Locker FAIR TrueFISP for arterial spin labelling on mouse at 9.4 T. NMR IN BIOMEDICINE 2020; 33:e4191. [PMID: 31829485 DOI: 10.1002/nbm.4191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 08/21/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
Pulsed arterial spin labelling remains a non-invasive and highly used method for the study of rodent cerebral blood flow (CBF). Flow-sensitive alternating inversion recovery (FAIR) is one of the most commonly used MR-sequences for this purpose and exists with many different strategies to record the images. This study investigates Look-Locker (LL) TrueFISP readout for FAIR as an alternative to the standard EPI readout, which is provided by the manufacturer. The aim was to show the improved image quality using TrueFISP and to verify the reproducibility of the determination of the cerebral blood flow values. The measurement of many inversion points also allowed to investigate the influence of the correct blood relaxation rate on the fit of the CBF data. For the LL-FAIR TrueFISP an in-house written method was created. The method was tested on a group of C57BL/6 mice at the field strength of 9.4 T. The results show CBF maps with less distortion than for EPI and the values found are in good agreement with the literature. A comparison of the CBF values found with EPI and LL-TrueFISP shows very small differences, most being not significant. In conclusion, the method presented gives equivalent CBF maps in comparison to standard FAIR-EPI. Both methods have the same measurement time. TrueFISP has the advantage to EPI of producing undistorted images over larger areas of the mouse brain. It is advisable to check the value of the blood relaxation rate by measurement or to estimate it as a fitting parameter.
Collapse
|
26
|
Zhang K, Sturm VJ, Buschle LR, Hahn A, Yun SD, Jon Shah N, Bendszus M, Heiland S, Schlemmer HP, Ziener CH, Kurz FT. Dual-contrast pCASL using simultaneous gradient-echo/spin-echo multiband EPI. Magn Reson Imaging 2019; 57:359-367. [DOI: 10.1016/j.mri.2018.11.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/20/2018] [Accepted: 11/21/2018] [Indexed: 11/25/2022]
|
27
|
Chakhoyan A, Yao J, Leu K, Pope WB, Salamon N, Yong W, Lai A, Nghiemphu PL, Everson RG, Prins RM, Liau LM, Nathanson DA, Cloughesy TF, Ellingson BM. Validation of vessel size imaging (VSI) in high-grade human gliomas using magnetic resonance imaging, image-guided biopsies, and quantitative immunohistochemistry. Sci Rep 2019; 9:2846. [PMID: 30808879 PMCID: PMC6391482 DOI: 10.1038/s41598-018-37564-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/04/2018] [Indexed: 01/19/2023] Open
Abstract
To evaluate the association between a vessel size index (VSIMRI) derived from dynamic susceptibility contrast (DSC) perfusion imaging using a custom spin-and-gradient echo echoplanar imaging (SAGE-EPI) sequence and quantitative estimates of vessel morphometry based on immunohistochemistry from image-guided biopsy samples. The current study evaluated both relative cerebral blood volume (rCBV) and VSIMRI in eleven patients with high-grade glioma (7 WHO grade III and 4 WHO grade IV). Following 26 MRI-guided glioma biopsies in these 11 patients, we evaluated tissue morphometry, including vessel density and average radius, using an automated procedure based on the endothelial cell marker CD31 to highlight tumor vasculature. Measures of rCBV and VSIMRI were then compared to histological measures. We demonstrate good agreement between VSI measured by MRI and histology; VSIMRI = 13.67 μm and VSIHistology = 12.60 μm, with slight overestimation of VSIMRI in grade III patients compared to histology. rCBV showed a moderate but significant correlation with vessel density (r = 0.42, p = 0.03), and a correlation was also observed between VSIMRI and VSIHistology (r = 0.49, p = 0.01). The current study supports the hypothesis that vessel size measures using MRI accurately reflect vessel caliber within high-grade gliomas, while traditional measures of rCBV are correlated with vessel density and not vessel caliber.
Collapse
Affiliation(s)
- Ararat Chakhoyan
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Jingwen Yao
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA, USA
| | - Kevin Leu
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Whitney B Pope
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - William Yong
- Division of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Albert Lai
- Department of Neurology, Ronald Reagan UCLA Medical Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Phioanh L Nghiemphu
- Department of Neurology, Ronald Reagan UCLA Medical Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Richard G Everson
- Department of Neurosurgery, Ronald Reagan UCLA Medical Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Robert M Prins
- Department of Neurosurgery, Ronald Reagan UCLA Medical Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Linda M Liau
- Department of Neurosurgery, Ronald Reagan UCLA Medical Center, University of California Los Angeles, Los Angeles, CA, USA
| | - David A Nathanson
- Department of Molecular and Medical Pharmacology, David Geffen UCLA School of Medicine, Los Angeles, CA, USA
| | - Timothy F Cloughesy
- Department of Neurology, Ronald Reagan UCLA Medical Center, University of California Los Angeles, Los Angeles, CA, USA
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California Los Angeles, Los Angeles, CA, USA.
- UCLA Neuro Oncology Program, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
28
|
Zhang K, Huang D, Shah NJ. Comparison of Resting-State Brain Activation Detected by BOLD, Blood Volume and Blood Flow. Front Hum Neurosci 2018; 12:443. [PMID: 30467468 PMCID: PMC6235966 DOI: 10.3389/fnhum.2018.00443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/15/2018] [Indexed: 01/04/2023] Open
Abstract
Resting-state brain activity has been widely investigated using blood oxygenation level dependent (BOLD) contrast techniques. However, BOLD signal changes reflect a combination of the effects of cerebral blood flow (CBF), cerebral blood volume (CBV), as well as the cerebral metabolic rate of oxygen (CMRO2). In this study, resting-state brain activation was detected and compared using the following techniques: (a) BOLD, using a gradient-echo echo planar imaging (GE-EPI) sequence; (b) CBV-weighted signal, acquired using gradient and spin echo (GRASE) based vascular space occupancy (VASO); and (c) CBF, using pseudo-continuous arterial spin labeling (pCASL). Reliable brain networks were detected using VASO and ASL, including sensorimotor, auditory, primary visual, higher visual, default mode, salience and left/right executive control networks. Differences between the resting-state activation detected with ASL, VASO and BOLD could potentially be due to the different temporal signal-to-noise ratio (tSNR) and the short post-labeling delay (PLD) in ASL, along with differences in the spin-echo readout of VASO. It is also possible that the dynamics of spontaneous fluctuations in BOLD, CBV and CBF could differ due to biological reasons, according to their location within the brain.
Collapse
Affiliation(s)
- Ke Zhang
- Institute of Neuroscience and Medicine INM-4, Medical Imaging Physics, Forschungszentrum Jülich, Jülich, Germany
| | - Dengfeng Huang
- Institute of Neuroscience and Medicine INM-4, Medical Imaging Physics, Forschungszentrum Jülich, Jülich, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine INM-4, Medical Imaging Physics, Forschungszentrum Jülich, Jülich, Germany.,Department of Neurology, Faculty of Medicine, JARA, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
29
|
Knutsson L, Xu J, Ahlgren A, van Zijl P. CEST, ASL, and magnetization transfer contrast: How similar pulse sequences detect different phenomena. Magn Reson Med 2018; 80:1320-1340. [PMID: 29845640 PMCID: PMC6097930 DOI: 10.1002/mrm.27341] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/10/2018] [Accepted: 04/11/2018] [Indexed: 12/28/2022]
Abstract
Chemical exchange saturation transfer (CEST), arterial spin labeling (ASL), and magnetization transfer contrast (MTC) methods generate different contrasts for MRI. However, they share many similarities in terms of pulse sequences and mechanistic principles. They all use RF pulse preparation schemes to label the longitudinal magnetization of certain proton pools and follow the delivery and transfer of this magnetic label to a water proton pool in a tissue region of interest, where it accumulates and can be detected using any imaging sequence. Due to the versatility of MRI, differences in spectral, spatial or motional selectivity of these schemes can be exploited to achieve pool specificity, such as for arterial water protons in ASL, protons on solute molecules in CEST, and protons on semi-solid cell structures in MTC. Timing of these sequences can be used to optimize for the rate of a particular delivery and/or exchange transfer process, for instance, between different tissue compartments (ASL) or between tissue molecules (CEST/MTC). In this review, magnetic labeling strategies for ASL and the corresponding CEST and MTC pulse sequences are compared, including continuous labeling, single-pulse labeling, and multi-pulse labeling. Insight into the similarities and differences among these techniques is important not only to comprehend the mechanisms and confounds of the contrasts they generate, but also to stimulate the development of new MRI techniques to improve these contrasts or to reduce their interference. This, in turn, should benefit many possible applications in the fields of physiological and molecular imaging and spectroscopy.
Collapse
Affiliation(s)
- L Knutsson
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - J Xu
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - A Ahlgren
- Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - P.C.M van Zijl
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|
30
|
Coquery N, Serduc R, Rémy C, Barbier EL, Lemasson B. Cluster versus ROI analysis to assess combined antiangiogenic therapy and radiotherapy in the F98 rat-glioma model. NMR IN BIOMEDICINE 2018; 31:e3933. [PMID: 29863805 DOI: 10.1002/nbm.3933] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/20/2018] [Accepted: 03/22/2018] [Indexed: 06/08/2023]
Abstract
For glioblastoma (GBM), current therapeutic approaches focus on the combination of several therapies, each of them individually approved for GBM or other tumor types. Many efforts are made to decipher the best sequence of treatments that would ultimately promote the most efficient tumor response. There is therefore a strong interest in developing new clinical in vivo imaging procedures that can rapidly detect treatment efficacy and allow individual modulation of the treatment. In this preclinical study, we propose to evaluate tumor tissue changes under combined therapies, tumor vascular normalization under antiangiogenic treatment followed by radiotherapy, using a voxel-based clustering approach. This approach was applied to a rat model of glioma (F98). Six MRI parameters were mapped: apparent diffusion coefficient, vessel wall permeability, cerebral blood volume fraction, cerebral blood flow, tissue oxygen saturation and vessel size index. We compared the classical region of interest (ROI)-based analysis with a cluster-based analysis. Five clusters, defined by their MRI features, were sufficient to characterize tumor progression and tumor changes during treatments. These results suggest that the cluster-based analysis was as efficient as the ROI-based analysis to assess tumor physiological changes during treatment, but also gave additional information regarding the voxels impacted by treatments and their localization within the tumor. Overall, cluster-based analysis appears to be a powerful tool for subtle monitoring of tumor changes during combined therapies.
Collapse
Affiliation(s)
- Nicolas Coquery
- Université Grenoble Alpes, Grenoble Institut des Neurosciences (GIN), Grenoble, France
- Inserm, U1216, Grenoble, France
- INRA, INSERM, Université Rennes, Nutrition Metabolisms and Cancer (NuMeCan), Rennes, France
| | - Raphael Serduc
- Rayonnement synchrotron et Recherche médicale, Université Grenoble Alpes, EA, Grenoble, France
| | - Chantal Rémy
- Université Grenoble Alpes, Grenoble Institut des Neurosciences (GIN), Grenoble, France
- Inserm, U1216, Grenoble, France
| | - Emmanuel Luc Barbier
- Université Grenoble Alpes, Grenoble Institut des Neurosciences (GIN), Grenoble, France
- Inserm, U1216, Grenoble, France
| | - Benjamin Lemasson
- Université Grenoble Alpes, Grenoble Institut des Neurosciences (GIN), Grenoble, France
- Inserm, U1216, Grenoble, France
| |
Collapse
|
31
|
Chen JJ. Functional MRI of brain physiology in aging and neurodegenerative diseases. Neuroimage 2018; 187:209-225. [PMID: 29793062 DOI: 10.1016/j.neuroimage.2018.05.050] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 05/16/2018] [Accepted: 05/20/2018] [Indexed: 12/14/2022] Open
Abstract
Brain aging and associated neurodegeneration constitute a major societal challenge as well as one for the neuroimaging community. A full understanding of the physiological mechanisms underlying neurodegeneration still eludes medical researchers, fuelling the development of in vivo neuroimaging markers. Hence it is increasingly recognized that our understanding of neurodegenerative processes likely will depend upon the available information provided by imaging techniques. At the same time, the imaging techniques are often developed in response to the desire to observe certain physiological processes. In this context, functional MRI (fMRI), which has for decades provided information on neuronal activity, has evolved into a large family of techniques well suited for in vivo observations of brain physiology. Given the rapid technical advances in fMRI in recent years, this review aims to summarize the physiological basis of fMRI observations in healthy aging as well as in age-related neurodegeneration. This review focuses on in-vivo human brain imaging studies in this review and on disease features that can be imaged using fMRI methods. In addition to providing detailed literature summaries, this review also discusses future directions in the study of brain physiology using fMRI in the clinical setting.
Collapse
Affiliation(s)
- J Jean Chen
- Rotman Research Institute at Baycrest Centre, Canada; Department of Medical Biophysics, University of Toronto, Canada.
| |
Collapse
|
32
|
Hartmann A, von Klopmann C, Lautenschläger IE, Scholz VB, Schmidt MJ. Quantitative analysis of brain perfusion parameters in dogs with idiopathic epilepsy by use of magnetic resonance imaging. Am J Vet Res 2018; 79:433-442. [DOI: 10.2460/ajvr.79.4.433] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Bae J, Zhang J, Wadghiri YZ, Minhas AS, Poptani H, Ge Y, Kim SG. Measurement of blood-brain barrier permeability using dynamic contrast-enhanced magnetic resonance imaging with reduced scan time. Magn Reson Med 2018; 80:1686-1696. [PMID: 29508443 DOI: 10.1002/mrm.27145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 02/04/2023]
Abstract
PURPOSE To investigate the feasibility of measuring the subtle disruption of blood-brain barrier (BBB) using DCE-MRI with a scan duration shorter than 10 min. METHODS The extended Patlak-model (EPM) was introduced to include the effect of plasma flow (Fp ) in the estimation of vascular permeability-surface area product (PS). Numerical simulation studies were carried out to investigate how the reduction in scan time affects the accuracy in estimating contrast kinetic parameters. DCE-MRI studies of the rat brain were conducted with Fisher rats to confirm the results from the simulation. Intracranial F98 glioblastoma models were used to assess areas with different levels of permeability. In the normal brain tissues, the Patlak model (PM) and EPM were compared, whereas the 2-compartment-exchange-model (TCM) and EPM were assessed in the peri-tumor and the tumor regions. RESULTS The simulation study results demonstrated that scan time reduction could lead to larger bias in PS estimated by PM (>2000%) than by EPM (<47%), especially when Fp is low. When Fp was high as in the gray matter, the bias in PM-PS (>900%) were larger than that in EPM-PS (<42%). The animal study also showed similar results, where the PM parameters were more sensitive to the scan duration than the EPM parameters. It was also demonstrated that, in the peri-tumor region, the EPM parameters showed less change by scan duration than the TCM parameters. CONCLUSION The results of this study suggest that EPM can be used to measure PS with a scan duration of 10 min or less.
Collapse
Affiliation(s)
- Jonghyun Bae
- Sackler Institute of Graduate Biomedical Science, New York University School of Medicine, New York, New York.,Bernard and Irene Schwartz Center for Biomedical Imaging, Radiology, New York University School of Medicine, New York, New York.,Center for Advanced Imaging Innovation and Research, Radiology, New York University School of Medicine, New York, New York
| | - Jin Zhang
- Bernard and Irene Schwartz Center for Biomedical Imaging, Radiology, New York University School of Medicine, New York, New York.,Center for Advanced Imaging Innovation and Research, Radiology, New York University School of Medicine, New York, New York
| | - Youssef Zaim Wadghiri
- Bernard and Irene Schwartz Center for Biomedical Imaging, Radiology, New York University School of Medicine, New York, New York.,Center for Advanced Imaging Innovation and Research, Radiology, New York University School of Medicine, New York, New York
| | - Atul Singh Minhas
- Centre for Preclinical Imaging, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Harish Poptani
- Centre for Preclinical Imaging, Institute of Translational Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Yulin Ge
- Bernard and Irene Schwartz Center for Biomedical Imaging, Radiology, New York University School of Medicine, New York, New York.,Center for Advanced Imaging Innovation and Research, Radiology, New York University School of Medicine, New York, New York
| | - Sungheon Gene Kim
- Bernard and Irene Schwartz Center for Biomedical Imaging, Radiology, New York University School of Medicine, New York, New York.,Center for Advanced Imaging Innovation and Research, Radiology, New York University School of Medicine, New York, New York
| |
Collapse
|
34
|
Cerebrovascular heterogeneity and neuronal excitability. Neurosci Lett 2018; 667:75-83. [DOI: 10.1016/j.neulet.2017.01.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 01/04/2017] [Accepted: 01/06/2017] [Indexed: 01/01/2023]
|
35
|
Dynamic Susceptibility Contrast MRI in Small Animals. Methods Mol Biol 2018. [PMID: 29341001 DOI: 10.1007/978-1-4939-7531-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
The use of magnetic resonance imaging (MRI) for studying the cerebral perfusion mechanisms is well proved and contrasted in the clinical and research setups. This methodology is a promising tool in assessing numerous brain diseases like intracranial tumors, neurodegeneration processes, mental disorders, injuries and so on. In the preclinical environment, perfusion MRI offers a powerful resource for characterizing pathological models and specially identifying biomarkers to monitor the illness and validate the efficacy of therapeutical approaches. This chapter presents the theoretical bases and experimental protocols of dynamic susceptibility contrast MRI acquisitions for developing perfusion MRI studies in small animals.
Collapse
|
36
|
Abstract
Stroke consists of the loss of cerebral functions resulting from the interruption of blood supply to a region of the brain, and represents the second cause of death and the leading cause of major disability in adults in Europe. Stroke is a very active field of research at preclinical and clinical levels, and Magnetic Resonance Imaging (MRI) is one of the most powerful tools that scientist and clinicians have for the study of the onset, evolution and consequences of this devastating disease, as well as for the monitoring of the success of available treatments, or for the development of novel therapeutic strategies.MRI can tackle the study of stroke from different points of view, and at scales ranging from subcellular to systems biology level. Magnetic resonance spectroscopy (MRS) allows the noninvasive measurement of the levels of principal metabolites in the brain, and how they change during the course of the disease, or in response to therapy. Glutamate, in particular, is very important in the field of stroke. Several anatomical MR techniques allow the characterization of the lesion volumes, the formation of cytotoxic and vasogenic edema, changes in cerebral blood flow and volume, structural changes in gray and white matter, the obtaining of the vascular architecture and status, etc. At functional level, diverse modalities of functional MRI (fMRI) allow the assessment of the alteration in the function and organization of neuronal networks of the subject under study, as a consequence of the disease or in response to treatment. Finally, emerging imaging modalities that include temperature and pH mapping of the brain, imaging by chemical exchange saturation transfer effect (CEST), all of them closely related to tissue status, or the use of contrast agents for the targeting of tissue in theranostic approaches or for cell tracking studies in cell-based therapies, etc., are only a few examples of the power and versatility of MRI as a definitive tool for the study of stroke.In this work we will set our focus on preclinical imaging of stroke models, emphasizing the most commonly used imaging modalities in a stroke-dedicated research laboratory. However, advanced techniques will be briefly discussed, providing references to specialized literature for more advanced readers. Thus, the aim of this chapter consist in the description of a simple imaging protocol for the study of the most important and common aspects of stroke in a research laboratory.
Collapse
Affiliation(s)
- Pedro Ramos-Cabrer
- Molecular Imaging Unit, CIC biomaGUNE, Paseo de Miramón 182, 20009, Donostia-San Sebastián, Spain.
- Ikerbasque, Basque Foundation for Science, María Díaz de Haro 3, 48013, Bilbao, Spain.
| | - Daniel Padro
- Molecular Imaging Unit, CIC biomaGUNE, Paseo de Miramón 182, 20009, Donostia-San Sebastián, Spain
| |
Collapse
|
37
|
Leakage correction improves prognosis prediction of dynamic susceptibility contrast perfusion MRI in primary central nervous system lymphoma. Sci Rep 2018; 8:456. [PMID: 29323247 PMCID: PMC5765049 DOI: 10.1038/s41598-017-18901-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 12/19/2017] [Indexed: 12/20/2022] Open
Abstract
To evaluate whether the cerebral blood volume (CBV) measurement with leakage correction from dynamic susceptibility contrast perfusion weighted imaging can be useful in predicting prognosis for primary central nervous system lymphoma (PCNSL). 46 PCNSL patients were included and classified by radiation therapy (RT) stratification into RT (n = 30) and non-RT (n = 16) groups. The corresponding histogram parameters of normalized CBV (nCBV) maps with or without leakage correction were calculated on contrast-enhanced T1 weighted image (CE T1WI) or on fluid attenuated inversion recovery image. The 75th percentile nCBV with leakage correction based on CE T1WI (T1 nCBVL75%) had a significant difference between the short and long progression free survival (PFS) subgroups of the RT group and the non-RT group, respectively. Based on the survival analysis, patients in the RT group with high T1 nCBVL75% had earlier progression than the others with a low T1 nCBVL75%. However, patients in the non-RT group with a high T1 nCBVL75% had slower progression than the others with a low T1 nCBVL75%. Based on RT stratification, the CBV with leakage correction has potential as a noninvasive biomarker for the prognosis prediction of PCNSL to identify high risk patients and it has a different correlation with the PFS based on the presence of combined RT.
Collapse
|
38
|
Abstract
Magnetic resonance imaging has been utilized as a quantitative and noninvasive method to image blood flow. Arterial spin labeling (ASL) is an MRI technique that images blood flow using arterial blood water as an endogenous tracer. Herein we describe the use of ASL to measure cerebral blood flow completely noninvasively in rodents, including methods, analysis, and important considerations when utilizing this technique.
Collapse
Affiliation(s)
- Eric R Muir
- Department of Ophthalmology, Research Imaging Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
39
|
Bansal V, Kumar S, Sharma S, Sharma S, Sood RG. Usefulness of Pulsed Arterial Spin Labeling Magnetic Resonance Imaging in New-onset Seizure Patients and Its Comparison with Dynamic Susceptibility Contrast Magnetic Resonance Imaging. J Neurosci Rural Pract 2017; 8:569-574. [PMID: 29204016 PMCID: PMC5709879 DOI: 10.4103/jnrp.jnrp_141_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Introduction Dynamic susceptibility contrast (DSC) perfusion and pulsed arterial spin labeling (PASL) imaging are newer advanced magnetic resonance sequences which are capable of detecting vascular changes in patients with new-onset seizure disorder even when no significant abnormalities are visualized on conventional sequences. The purpose of our study is to establish utility of arterial spin labeling (ASL) in new-onset seizure patients and compare ASL with DSC perfusion sequence. Materials and Methods Twenty-six patients coming to emergency department with new-onset seizure disorder were evaluated using DSC and ASL sequence. Perfusion asymmetry was assessed using region of interests taken at places where signal asymmetry was maximal. Results PASL sequence showed focal vascular changes in form of hyperperfusion in four patients, hypoperfusion in nine patients, and normal perfusion in 13 patients. Altered perfusion whether hypo/hyperperfusion was detected in five out of 16 patients even when conventional sequences were normal. There was strong positive linear correlation between ASL and DSC with P = 0.001. Conclusion Noninvasive PASL is capable of detecting vascular changes induced by seizure and is comparable to DSC sequence. Thus, it is recommended when there is a need for repeated evaluations; in follow-up/therapy response assessment and when contrast administration is contraindicated.
Collapse
Affiliation(s)
- Varun Bansal
- Department of Radio-Diagnosis, IGMC, Shimla, Himachal Pradesh, India
| | - Suresh Kumar
- Department of Radio-Diagnosis, IGMC, Shimla, Himachal Pradesh, India
| | - Sudhir Sharma
- Department of Neurology, IGMC, Shimla, Himachal Pradesh, India
| | - Sanjiv Sharma
- Department of Radio-Diagnosis, IGMC, Shimla, Himachal Pradesh, India
| | - R G Sood
- Department of Radio-Diagnosis, IGMC, Shimla, Himachal Pradesh, India
| |
Collapse
|
40
|
Gharagouzloo CA, Timms L, Qiao J, Fang Z, Nneji J, Pandya A, Kulkarni P, van de Ven AL, Ferris C, Sridhar S. Quantitative vascular neuroimaging of the rat brain using superparamagnetic nanoparticles: New insights on vascular organization and brain function. Neuroimage 2017; 163:24-33. [PMID: 28889004 PMCID: PMC5824692 DOI: 10.1016/j.neuroimage.2017.09.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 02/08/2023] Open
Abstract
A method called Quantitative Ultra-Short Time-to-Echo Contrast Enhanced (QUTE-CE) Magnetic Resonance Imaging (MRI) which utilizes superparamagnetic iron oxide nanoparticles (SPIONs) as a contrast agent to yield positive contrast angiograms with high clarity and definition is applied to the whole live rat brain. QUTE-CE MRI intensity data are particularly well suited for measuring quantitative cerebral blood volume (qCBV). A global map of qCBV in the awake resting-state with unprecedented detail was created via application of a 3D MRI rat brain atlas with 173 segmented and annotated brain areas. From this map we identified two distributed, integrated neural circuits showing the highest capillary densities in the brain. One is the neural circuitry involved with the primary senses of smell, hearing and vision and the other is the neural circuitry of memory. Under isoflurane anesthesia, these same circuits showed significant decreases in qCBV suggesting a role in consciousness. Neural circuits in the brainstem associated with the reticular activating system and the maintenance of respiration, body temperature and cardiovascular function showed an increase in qCBV with anesthesia. During awake CO2 challenge, 84 regions showed significant increases relative to an awake baseline state. This CO2 response provides a measure of cerebral vascular reactivity and regional perfusion reserve with the highest response measured in the somatosensory cortex. These results demonstrate the utility of QUTE-CE MRI for qCBV analysis and offer a new perspective on brain function and vascular organization.
Collapse
Affiliation(s)
- Codi A. Gharagouzloo
- Nanomedicine Science and Technology Center, Northeastern University, Boston MA
- Department of Bioengineering, Northeastern University, Boston MA
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Liam Timms
- Nanomedicine Science and Technology Center, Northeastern University, Boston MA
- Department of Physics, Northeastern University, Boston MA
| | - Ju Qiao
- Nanomedicine Science and Technology Center, Northeastern University, Boston MA
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston MA
| | - Zihang Fang
- Nanomedicine Science and Technology Center, Northeastern University, Boston MA
| | - Joseph Nneji
- Nanomedicine Science and Technology Center, Northeastern University, Boston MA
| | - Aniket Pandya
- Nanomedicine Science and Technology Center, Northeastern University, Boston MA
| | - Praveen Kulkarni
- Center for Translational NeuroImaging, Northeastern University, Boston MA
- Psychology Department, Northeastern University, Boston MA
| | - Anne L. van de Ven
- Nanomedicine Science and Technology Center, Northeastern University, Boston MA
- Department of Physics, Northeastern University, Boston MA
| | - Craig Ferris
- Center for Translational NeuroImaging, Northeastern University, Boston MA
- Psychology Department, Northeastern University, Boston MA
- Department of Pharmaceutical Sciences, Northeastern University, Boston MA
| | - Srinivas Sridhar
- Nanomedicine Science and Technology Center, Northeastern University, Boston MA
- Department of Bioengineering, Northeastern University, Boston MA
- Department of Physics, Northeastern University, Boston MA
| |
Collapse
|
41
|
Schmidt MJ, Kolecka M, Kirberger R, Hartmann A. Dynamic Susceptibility Contrast Perfusion Magnetic Resonance Imaging Demonstrates Reduced Periventricular Cerebral Blood Flow in Dogs with Ventriculomegaly. Front Vet Sci 2017; 4:137. [PMID: 28879204 PMCID: PMC5572229 DOI: 10.3389/fvets.2017.00137] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 08/09/2017] [Indexed: 12/31/2022] Open
Abstract
The nature of ventriculomegaly in dogs is still a matter of debate. Signs of increased intraventricular pressure and atrophy of the cerebral white matter have been found in dogs with ventriculomegaly, which would imply increased intraventricular pressure and, therefore, a pathological condition, i.e., to some extent. Reduced periventricular blood flow was found in people with high elevated intraventricular pressure. The aim of this study was to compare periventricular brain perfusion in dogs with and without ventriculomegaly using perfusion weighted-magnetic-resonance-imaging to clarify as to whether ventriculomegaly might be associated with an increase in intraventricular pressure. Perfusion was measured in 32 Cavalier King Charles spaniels (CKCS) with ventriculomegaly, 10 CKCSs were examined as a control group. Cerebral blood flow (CBF) was measured using free-hand regions of interest (ROI) in five brain regions: periventricular white matter, caudate nucleus, parietal cortex, hippocampus, and thalamus. CBF was significantly lower in the periventricular white matter of the dogs with ventriculomegaly (p = 0.0029) but not in the other ROIs. Reduction of periventricular CBF might imply increase of intraventricular pressure in ventriculomegaly.
Collapse
Affiliation(s)
- Martin J Schmidt
- Department of Veterinary Clinical Sciences, Clinic for Small Animals, Justus-Liebig-University Giessen, Giessen, Germany
| | - Malgorzata Kolecka
- Department of Veterinary Clinical Sciences, Clinic for Small Animals, Justus-Liebig-University Giessen, Giessen, Germany
| | - Robert Kirberger
- Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | | |
Collapse
|
42
|
At least eighty percent of brain grey matter is modifiable by physical activity: A review study. Behav Brain Res 2017; 332:204-217. [DOI: 10.1016/j.bbr.2017.06.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 05/27/2017] [Accepted: 06/03/2017] [Indexed: 12/12/2022]
|
43
|
Digernes I, Bjørnerud A, Vatnehol SAS, Løvland G, Courivaud F, Vik-Mo E, Meling TR, Emblem KE. A theoretical framework for determining cerebral vascular function and heterogeneity from dynamic susceptibility contrast MRI. J Cereb Blood Flow Metab 2017; 37:2237-2248. [PMID: 28273722 PMCID: PMC5444554 DOI: 10.1177/0271678x17694187] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mapping the complex heterogeneity of vascular tissue in the brain is important for understanding cerebrovascular disease. In this translational study, we build on previous work using vessel architectural imaging (VAI) and present a theoretical framework for determining cerebral vascular function and heterogeneity from dynamic susceptibility contrast magnetic resonance imaging (MRI). Our tissue model covers realistic structural architectures for vessel branching and orientations, as well as a range of hemodynamic scenarios for blood flow, capillary transit times and oxygenation. In a typical image voxel, our findings show that the apparent MRI relaxation rates are independent of the mean vessel orientation and that the vortex area, a VAI-based parameter, is determined by the relative oxygen saturation level and the vessel branching of the tissue. Finally, in both simulated and patient data, we show that the relative distributions of the vortex area parameter as a function of capillary transit times show unique characteristics in normal-appearing white and gray matter tissue, whereas tumour-voxels in comparison display a heterogeneous distribution. Collectively, our study presents a comprehensive framework that may serve as a roadmap for in vivo and per-voxel determination of vascular status and heterogeneity in cerebral tissue.
Collapse
Affiliation(s)
- Ingrid Digernes
- 1 Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway
| | - Atle Bjørnerud
- 1 Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway.,2 Department of Physics, University of Oslo, Oslo, Norway
| | | | - Grete Løvland
- 1 Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway
| | - Frédéric Courivaud
- 1 Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway
| | - Einar Vik-Mo
- 3 Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - Torstein R Meling
- 3 Department of Neurosurgery, Oslo University Hospital, Oslo, Norway.,4 Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Kyrre E Emblem
- 1 Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
44
|
Coles JA, Myburgh E, Brewer JM, McMenamin PG. Where are we? The anatomy of the murine cortical meninges revisited for intravital imaging, immunology, and clearance of waste from the brain. Prog Neurobiol 2017; 156:107-148. [PMID: 28552391 DOI: 10.1016/j.pneurobio.2017.05.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 04/25/2017] [Accepted: 05/08/2017] [Indexed: 12/15/2022]
Abstract
Rapid progress is being made in understanding the roles of the cerebral meninges in the maintenance of normal brain function, in immune surveillance, and as a site of disease. Most basic research on the meninges and the neural brain is now done on mice, major attractions being the availability of reporter mice with fluorescent cells, and of a huge range of antibodies useful for immunocytochemistry and the characterization of isolated cells. In addition, two-photon microscopy through the unperforated calvaria allows intravital imaging of the undisturbed meninges with sub-micron resolution. The anatomy of the dorsal meninges of the mouse (and, indeed, of all mammals) differs considerably from that shown in many published diagrams: over cortical convexities, the outer layer, the dura, is usually thicker than the inner layer, the leptomeninx, and both layers are richly vascularized and innervated, and communicate with the lymphatic system. A membrane barrier separates them and, in disease, inflammation can be localized to one layer or the other, so experimentalists must be able to identify the compartment they are studying. Here, we present current knowledge of the functional anatomy of the meninges, particularly as it appears in intravital imaging, and review their role as a gateway between the brain, blood, and lymphatics, drawing on information that is scattered among works on different pathologies.
Collapse
Affiliation(s)
- Jonathan A Coles
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davis Building, University of Glasgow, Glasgow, G12 8TA, United Kingdom.
| | - Elmarie Myburgh
- Centre for Immunology and Infection Department of Biology, University of York, Wentworth Way, Heslington, York YO10 5DD, United Kingdom
| | - James M Brewer
- Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, Sir Graeme Davis Building, University of Glasgow, Glasgow, G12 8TA, United Kingdom
| | - Paul G McMenamin
- Department of Anatomy & Developmental Biology, School of Biomedical and Psychological Sciences and Monash Biomedical Discovery Institute, Faculty of Medicine, Nursing and Health Sciences, Monash University, 10 Chancellor's Walk, Clayton, Victoria, 3800, Australia
| |
Collapse
|
45
|
Leoni R, Oliveira I, Pontes-Neto O, Santos A, Leite J. Cerebral blood flow and vasoreactivity in aging: an arterial spin labeling study. Braz J Med Biol Res 2017; 50:e5670. [PMID: 28355354 PMCID: PMC5423749 DOI: 10.1590/1414-431x20175670] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 01/13/2017] [Indexed: 12/29/2022] Open
Abstract
Regional cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) in young and elderly participants were assessed using pulsed arterial spin labeling (ASL) and blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI) techniques in combination with inhalation of CO2. Pulsed ASL and BOLD-MRI were acquired in seventeen asymptomatic volunteers (10 young adults, age: 30±7 years; 7 elderly adults, age: 64±8 years) with no history of diabetes, hypertension, and neurological diseases. Data from one elderly participant was excluded due to the incorrigible head motion. Average baseline CBF in gray matter was significantly reduced in elderly (46±9 mL·100 g-1·min-1) compared to young adults (57±8 mL·100 g-1·min-1; P=0.02). Decreased pulsed ASL-CVR and BOLD-CVR in gray matter were also observed in elderly (2.12±1.30 and 0.13±0.06 %/mmHg, respectively) compared to young adults (3.28±1.43 and 0.28±0.11 %/mmHg, respectively; P<0.05), suggesting some degree of vascular impairment with aging. Moreover, age-related decrease in baseline CBF was observed in different brain regions (inferior, middle and superior frontal gyri; precentral and postcentral gyri; superior temporal gyrus; cingulate gyri; insula, putamen, caudate, and supramarginal gyrus). In conclusion, CBF and CVR were successfully investigated using a protocol that causes minimal or no discomfort for the participants. Age-related decreases in baseline CBF and CVR were observed in the cerebral cortex, which may be related to the vulnerability for neurological disorders in aging.
Collapse
Affiliation(s)
- R.F. Leoni
- Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - I.A.F. Oliveira
- Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - O.M. Pontes-Neto
- Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - A.C. Santos
- Divisão de Radiologia, Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - J.P. Leite
- Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| |
Collapse
|
46
|
Faustino-Rocha AI, Gama A, Oliveira PA, Vanderperren K, Saunders JH, Pires MJ, Ferreira R, Ginja M. Modulation of mammary tumor vascularization by mast cells: Ultrasonographic and histopathological approaches. Life Sci 2017; 176:35-41. [PMID: 28336398 DOI: 10.1016/j.lfs.2017.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 03/07/2017] [Accepted: 03/19/2017] [Indexed: 02/07/2023]
Abstract
AIMS The inhibition of mast cells' degranulation may be an approach to prevent the formation of new vessels during the mammary carcinogenesis. MATERIALS AND METHODS Female Sprague-Dawley rats were randomly divided into five experimental groups. Mammary tumors were induced by intraperitoneal injection of N-methyl-N-nitrosourea (MNU). Animals from group II were treated with ketotifen for 18weeks immediately after the MNU administration, while animals from group III only received the ketotifen after the development of the first mammary tumor. Mammary tumors vascularization was assessed by ultrasonography (Doppler, B Flow and contrast-enhanced ultrasound) and immunohistochemistry (vascular endothelial growth factor-A). KEY FINDINGS AND SIGNIFICANCE Similar to what occurs in women with breast cancer, the majority of MNU-induced mammary tumors exhibited a centripetal enhancement order of the contrast agent, clear margin and heterogeneous enhancement. Ultrasonographic and immunohistochemical data suggest that the inhibition of mast cells' degranulation did not change the mammary tumors vascularization.
Collapse
Affiliation(s)
- Ana I Faustino-Rocha
- Faculty of Veterinary Medicine, Lusophone University of Humanities and Technologies, Lisbon, Portugal; Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal.
| | - Adelina Gama
- Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, UTAD, 5001-911 Vila Real, Portugal; Animal and Veterinary Research Center (CECAV), School of Agrarian and Veterinary Sciences, UTAD, 5001-911 Vila Real, Portugal
| | - Paula A Oliveira
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, UTAD, 5001-911 Vila Real, Portugal
| | - Katrien Vanderperren
- Department of Veterinary Medical Imaging and Small Animal Orthopedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jimmy H Saunders
- Department of Veterinary Medical Imaging and Small Animal Orthopedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Maria J Pires
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, UTAD, 5001-911 Vila Real, Portugal
| | - Rita Ferreira
- Organic Chemistry, Natural Products and Foodstuffs (QOPNA), Mass Spectrometry Center, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mário Ginja
- Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes and Alto Douro (UTAD), Vila Real, Portugal; Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, UTAD, 5001-911 Vila Real, Portugal
| |
Collapse
|
47
|
Karwacki GM, Benz MR, Tyndall AJ, Ulmer S. Hematocrit and Serum Hemoglobin Do Not Influence Values in Computed Tomography Perfusion of Patients With Acute Ischemic Stroke. J Comput Assist Tomogr 2017; 41:511-514. [DOI: 10.1097/rct.0000000000000560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Armitage PA, Skipper N, Connolly DJA, Griffiths PD. A qualitative comparison of arterial spin labelling and dynamic susceptibility contrast MRI in 52 children with a range of neurological conditions. Br J Radiol 2017; 90:20160495. [PMID: 27858468 PMCID: PMC5605026 DOI: 10.1259/bjr.20160495] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 11/11/2016] [Accepted: 11/15/2016] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To assess the usefulness of arterial spin labelling (ASL) compared with dynamic susceptibility contrast (DSC) perfusion MRI for typical paediatric neuroimaging applications at 1.5 T. METHODS 52 children (age: 4 months-17 years) with a variety of neurological disorders were scanned using three-dimensional ASL and echoplanar imaging DSC sequences. All images were reviewed by an experienced neuroradiologist; image quality was recorded as "good", "acceptable" or "poor" and diagnostic value was noted as being "greater", "similar" or "less" for ASL when compared with DSC. RESULTS ASL cerebral blood flow (CBF) images were judged to be acceptable in 89% of cases, poor in 11% of cases and good in 0% of cases, while DSC CBF images were acceptable in 88% of cases, poor in 12% of cases and good in 0% of cases. ASL images were judged to have better diagnostic value than DSC images in 28% of cases, about the same in 58% of cases and worse in 14% of cases. CONCLUSION The results of this study suggest that ASL offers a realistic alternative to DSC in the paediatric setting for the majority of cases encountered in this study. However, there are some situations where DSC outperforms ASL; so, care is required to choose the most appropriate technique for the pathology under investigation. A larger study is required to corroborate these preliminary findings. Advances in knowledge: ASL is a relatively new perfusion imaging technique whose use has not been explored extensively in the paediatric setting. This work is a preliminary study to evaluate its usefulness in paediatric neuroimaging.
Collapse
Affiliation(s)
- Paul A Armitage
- Academic Unit of Radiology, University of Sheffield, Sheffield, UK
| | - Nicholas Skipper
- Department of Radiology, Sheffield Children's Hospital, Sheffield, UK
| | | | - Paul D Griffiths
- Academic Unit of Radiology, University of Sheffield, Sheffield, UK
| |
Collapse
|
49
|
Lemasson B, Pannetier N, Coquery N, Boisserand LSB, Collomb N, Schuff N, Moseley M, Zaharchuk G, Barbier EL, Christen T. MR Vascular Fingerprinting in Stroke and Brain Tumors Models. Sci Rep 2016; 6:37071. [PMID: 27883015 PMCID: PMC5121626 DOI: 10.1038/srep37071] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 10/25/2016] [Indexed: 02/08/2023] Open
Abstract
In this study, we evaluated an MRI fingerprinting approach (MRvF) designed to provide high-resolution parametric maps of the microvascular architecture (i.e., blood volume fraction, vessel diameter) and function (blood oxygenation) simultaneously. The method was tested in rats (n = 115), divided in 3 models: brain tumors (9 L, C6, F98), permanent stroke, and a control group of healthy animals. We showed that fingerprinting can robustly distinguish between healthy and pathological brain tissues with different behaviors in tumor and stroke models. In particular, fingerprinting revealed that C6 and F98 glioma models have similar signatures while 9 L present a distinct evolution. We also showed that it is possible to improve the results of MRvF and obtain supplemental information by changing the numerical representation of the vascular network. Finally, good agreement was found between MRvF and conventional MR approaches in healthy tissues and in the C6, F98, and permanent stroke models. For the 9 L glioma model, fingerprinting showed blood oxygenation measurements that contradict results obtained with a quantitative BOLD approach. In conclusion, MR vascular fingerprinting seems to be an efficient technique to study microvascular properties in vivo. Multiple technical improvements are feasible and might improve diagnosis and management of brain diseases.
Collapse
Affiliation(s)
- B Lemasson
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France.,Inserm, U1216, F-38000 Grenoble, France
| | - N Pannetier
- Center for Imaging of Neurodegenerative diseases, Veterans Affairs Medical Centrer, San Francisco, USA.,Department of Radiology, University of California San Francisco, San Francisco, CA, USA
| | - N Coquery
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France.,Inserm, U1216, F-38000 Grenoble, France
| | - Ligia S B Boisserand
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France.,Inserm, U1216, F-38000 Grenoble, France
| | - Nora Collomb
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France.,Inserm, U1216, F-38000 Grenoble, France
| | - N Schuff
- Center for Imaging of Neurodegenerative diseases, Veterans Affairs Medical Centrer, San Francisco, USA.,Department of Radiology, University of California San Francisco, San Francisco, CA, USA
| | - M Moseley
- Department of Radiology, Stanford University, Stanford, California, USA
| | - G Zaharchuk
- Department of Radiology, Stanford University, Stanford, California, USA
| | - E L Barbier
- Univ. Grenoble Alpes, Grenoble Institut des Neurosciences, GIN, F-38000 Grenoble, France.,Inserm, U1216, F-38000 Grenoble, France
| | - T Christen
- Department of Radiology, Stanford University, Stanford, California, USA
| |
Collapse
|
50
|
Hartmann A, Driesen A, Lautenschläger IE, Scholz VB, Schmidt MJ. Quantitative analysis of brain perfusion in healthy dogs by means of magnetic resonance imaging. Am J Vet Res 2016; 77:1227-1235. [DOI: 10.2460/ajvr.77.11.1227] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|