1
|
Chang YC, Yen KC, Liang PC, Ho MC, Ho CM, Hsiao CY, Hsiao CH, Lu CH, Wu CH. Automated liver volumetry and hepatic steatosis quantification with magnetic resonance imaging proton density fat fraction. J Formos Med Assoc 2025; 124:264-270. [PMID: 38643056 DOI: 10.1016/j.jfma.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 04/04/2024] [Accepted: 04/16/2024] [Indexed: 04/22/2024] Open
Abstract
BACKGROUND Preoperative imaging evaluation of liver volume and hepatic steatosis for the donor affects transplantation outcomes. However, computed tomography (CT) for liver volumetry and magnetic resonance spectroscopy (MRS) for hepatic steatosis are time consuming. Therefore, we investigated the correlation of automated 3D-multi-echo-Dixon sequence magnetic resonance imaging (ME-Dixon MRI) and its derived proton density fat fraction (MRI-PDFF) with CT liver volumetry and MRS hepatic steatosis measurements in living liver donors. METHODS This retrospective cross-sectional study was conducted from December 2017 to November 2022. We enrolled donors who received a dynamic CT scan and an MRI exam within 2 days. First, the CT volumetry was processed semiautomatically using commercial software, and ME-Dixon MRI volumetry was automatically measured using an embedded sequence. Next, the signal intensity of MRI-PDFF volumetric data was correlated with MRS as the gold standard. RESULTS We included the 165 living donors. The total liver volume of ME-Dixon MRI was significantly correlated with CT (r = 0.913, p < 0.001). The fat percentage measured using MRI-PDFF revealed a strong correlation between automatic segmental volume and MRS (r = 0.705, p < 0.001). Furthermore, the hepatic steatosis group (MRS ≥5%) had a strong correlation than the non-hepatic steatosis group (MRS <5%) in both volumetric (r = 0.906 vs. r = 0.887) and fat fraction analysis (r = 0.779 vs. r = 0.338). CONCLUSION Automated ME-Dixon MRI liver volumetry and MRI-PDFF were strongly correlated with CT liver volumetry and MRS hepatic steatosis measurements, especially in donors with hepatic steatosis.
Collapse
Affiliation(s)
- Yuan-Chen Chang
- Department of Medical Imaging and Radiology, National Taiwan University Hospital and College of Medicine, Taiwan
| | - Kuang-Chen Yen
- Department of Medical Imaging and Radiology, National Taiwan University Hospital and College of Medicine, Taiwan
| | - Po-Chin Liang
- Department of Medical Imaging and Radiology, National Taiwan University Hospital and College of Medicine, Taiwan
| | - Ming-Chih Ho
- Departments of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan; Center for Functional Image and Interventional Image, National Taiwan University, Taipei, Taiwan; Department of Surgery, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Cheng-Maw Ho
- Departments of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Yang Hsiao
- Departments of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chiu-Han Hsiao
- Research Center for Information Technology Innovation, Academia Sinica, Taiwan
| | - Chia-Hsun Lu
- Department of Radiology, Wan-Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Chih-Horng Wu
- Department of Medical Imaging and Radiology, National Taiwan University Hospital and College of Medicine, Taiwan; Hepatits Research Center, National Taiwan University Hospital, Taipei, Taiwan; Center of Minimal-Invasive Interventional Radiology, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
2
|
Panc K, Gundogdu H, Sekmen S, Basaran M, Gurun E. Liver and pancreatic fat fractions as predictors of disease severity in acute pancreatitis: an MRI IDEAL-IQ study. Abdom Radiol (NY) 2025:10.1007/s00261-025-04809-y. [PMID: 39883165 DOI: 10.1007/s00261-025-04809-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/06/2025] [Accepted: 01/13/2025] [Indexed: 01/31/2025]
Abstract
PURPOSE Metabolic dysfunction-associated steatotic liver disease (MASLD) and non-alcoholic fatty pancreatic disease (NAFPD) are metabolic diseases with rising incidence. Fatty infiltration may lead to dysfunction of the liver and pancreatic tissues. This study aims to quantify liver and pancreatic fat fractions and examine their correlation with disease severity in acute pancreatitis patients. METHODS The severity of acute pancreatitis was assessed using the revised Atlanta classification (RAC), computed tomography severity index (CTSI), and modified CTSI (mCTSI). Proton density fat fraction (PDFF) levels of the liver and pancreas were measured via IDEAL MRI. Patients were categorized into biliary and non-biliary pancreatitis groups. Correlations between PDFF levels and the RAC, CTSI, and mCTSI scores were analyzed. RESULTS A total of 127 patients were included, with MASLD present in 40.9% and NAFPD in 30%. Liver PDFF values were significantly higher in non-biliary pancreatitis (p = 0.040). Patients with MASLD exhibited higher CTSI and mCTSI scores (p = 0.009, p = 0.033, respectively). No significant differences were observed in severity scales between patients with and without NAFPD. Liver PDFF was positively correlated with CTSI and mCTSI scores in biliary pancreatitis. ROC analysis identified a liver PDFF > 3.9% (p = 0.002) and pancreatic corpus PDFF > 12.1% (0.028) as diagnostic markers for severe pancreatitis. In addition, a liver PDFF < 4.5% (p = 0.042) was an indicator for biliary pancreatitis. CONCLUSION MASLD is associated with increased severity in acute pancreatitis. IDEAL MRI-derived PDFF levels of the liver and pancreas show potential in predicting severe acute pancreatitis and distinguishing between biliary and non-biliary etiologies.
Collapse
Affiliation(s)
- Kemal Panc
- Karakoçan State Hospital, Elazığ, Turkey
| | | | | | | | | |
Collapse
|
3
|
Liu D, Yin M, Chen J, Fu C, Schneider M, Nickel D, Yao X. Fatty acid composition evaluation of abdominal adipose tissue using chemical shiftencoded MRI: Association with diabetes. NMR IN BIOMEDICINE 2025; 38:e5290. [PMID: 39511916 DOI: 10.1002/nbm.5290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/26/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024]
Abstract
This study investigated the association between the fatty acid composition of abdominal adipose tissue in NAFLD patients using chemical shift-encoded MRI and the development of insulin resistance and T2DM. We enrolled 231 subjects with NAFLD who underwent both abdominal magnetic resonance spectroscopy and chemical shift-encoded MRI: comprising of 49 T2DM patients and 182 subjects without. MRI- and MRS-based liver fat fraction was measured from a circular region of interest on the right lobe of the liver. The abdominal fatty acid compositions were measured at the umbilical level with chemical shift-encoded MRI. Bland-Altman analysis, Student's t test, Mann-Whitney U test, and Spearman correlation analysis were performed. The logistic regression was applied to identify the independent factors for T2DM. Then, the predictive performance was assessed by Receiver operating characteristic curve analyses. An excellent agreement was found between liver fat fraction measured by MRS and MRI. (slope = 0.8; bias =-0.92%). In, patients with T2DM revealed lower fractions of mono-unsaturated fatty acid (Fmufa) (33.68 ± 10.62 vs 38.62 ± 12.21, P =.0089) and higher fractions of saturated fatty acid (Fsfa) (34.11 ± 9.746 vs 31.25 ± 8.66, P =.0351) of visceral fat tissue compared with patients without. BMI, HDL-c, Fmufa and Fsfa of visceral fat were independent factors for T2DM. Furthermore, Fsfa-S% was positively correlated with liver enzyme levels (P =.003 and 0.04). However, Fmufa-V% was negatively correlated with fasting blood glucose, HbA1c and HOMA-IR (P =.004, P =.001 and P =.03 respectively). Hence, the evaluation of fatty acid compositions of abdominal fat tissue using chemical shift-encoded MRI may have a predictive value for T2DM in patients with NAFLD.
Collapse
Affiliation(s)
- Dingxia Liu
- Shanghai Institute of Medical Imaging, Dept. of Radiology, Zhongshan Hospital of Fudan University, Fudan University, Shanghai, China
| | - Minyan Yin
- Shanghai Institute of Medical Imaging, Dept. of Radiology, Zhongshan Hospital of Fudan University, Fudan University, Shanghai, China
| | - Jiejun Chen
- Shanghai Institute of Medical Imaging, Dept. of Radiology, Zhongshan Hospital of Fudan University, Fudan University, Shanghai, China
| | - Caixia Fu
- Application Development, Siemens Shenzhen Magnetic Resonance Ltd, Shenzhen, China
| | - Manuel Schneider
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Dominik Nickel
- MR Application Predevelopment, Siemens Healthcare GmbH, Erlangen, Germany
| | - Xiuzhong Yao
- Shanghai Institute of Medical Imaging, Dept. of Radiology, Zhongshan Hospital of Fudan University, Fudan University, Shanghai, China
| |
Collapse
|
4
|
Šedivý P, Dusilová T, Šetinová B, Pajuelo D, Hájek M, Rossmeislová L, Šiklová M, Šrámková V, Krauzová E, Gojda J, Koc M, Dezortová M, Kovář J. Liver fat response to two days fasting and two days isocaloric high-carbohydrate refeeding in lean and obese women. Nutr Metab Cardiovasc Dis 2024; 34:2690-2695. [PMID: 39443278 DOI: 10.1016/j.numecd.2024.09.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/26/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND AND AIMS Prolonged fasting, which leads to the mobilization of fat from adipose tissue, can result in the development of hepatosteatosis. However, it is not yet known whether the accumulation of fat in the liver after fasting can be affected by concurrent obesity. Therefore, this study aimed to assess how excessive adiposity influences changes in liver fat content induced by fasting and subsequent refeeding. METHODS AND RESULTS Ten lean women and eleven women with obesity (age: 36.4 ± 7.9 and 34.5 ± 7.9 years, BMI: 21.4 ± 1.7 and 34.5 ± 4.8 kg/m2) underwent a 60-h fasting period followed by 2 days of isocaloric high-carbohydrate refeeding. Magnetic resonance spectroscopy (MRS) examinations of liver were conducted at baseline, after 48 h of fasting, and at the end of refeeding period. Hepatic fat content (HFC) increased in lean women after fasting, whereas no statistically significant change in HFC was observed in women with obesity. Additionally, fasting led to significant reductions in liver volume in both groups, likely attributable to glycogen depletion, with subsequent restoration upon refeeding. Notably, changes in hepatic fat volume (HFV) rather than HFC inversely correlated with baseline liver fat content and HOMA-IR. CONCLUSION We demonstrated that prolonged fasting results in accumulation of fat in the liver in lean subjects only and that this accumulation is inversely related to baseline fat content and insulin resistance. Moreover, the study underscored the importance of evaluating hepatic fat volume rather than hepatic fat content in studies that involve considerable changes in hepatic lean volume.
Collapse
Affiliation(s)
- Petr Šedivý
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Tereza Dusilová
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Bára Šetinová
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Dita Pajuelo
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Milan Hájek
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Lenka Rossmeislová
- Department of Pathophysiology, Centre for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Michaela Šiklová
- Department of Pathophysiology, Centre for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Veronika Šrámková
- Department of Pathophysiology, Centre for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Eva Krauzová
- Department of Pathophysiology, Centre for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic; Department of Internal Medicine, Third Faculty of Medicine, Charles University and Kralovske Vinohrady University Hospital, Prague, Czech Republic
| | - Jan Gojda
- Department of Pathophysiology, Centre for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic; Department of Internal Medicine, Third Faculty of Medicine, Charles University and Kralovske Vinohrady University Hospital, Prague, Czech Republic
| | - Michal Koc
- Department of Pathophysiology, Centre for Research on Nutrition, Metabolism and Diabetes, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Monika Dezortová
- MR Unit, Department of Diagnostic and Interventional Radiology, Institute for Clinical and Experimental Medicine, Prague, Czech Republic.
| | - Jan Kovář
- Centre of Experimental Medicine, Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
5
|
Dusilová T, Kovář J, Laňková I, Thieme L, Hubáčková M, Šedivý P, Pajuelo D, Burian M, Dezortová M, Miklánková D, Malínská H, Svobodová Šťastná P, Poledne R, Hájek M, Haluzík M. Semaglutide Treatment Effects on Liver Fat Content in Obese Subjects with Metabolic-Associated Steatotic Liver Disease (MASLD). J Clin Med 2024; 13:6100. [PMID: 39458050 PMCID: PMC11508983 DOI: 10.3390/jcm13206100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Metabolic-dysfunction-associated steatotic liver disease (MASLD) represents a major clinical complication of obesity. Methods: In this study, we used magnetic resonance (MR) methods to determine the effect of obesity treatment with semaglutide, a GLP-1 receptor agonist, on the liver fat content and selected metabolic variables. We investigated whether treatment would affect the acute response of liver fat to glucose and fructose administration and whether it would affect the fatty acid profile of VLDL-triglycerides. Sixteen obese non-diabetic men underwent a 16-week dietary intervention and 16-week treatment with subcutaneous semaglutide in a crossover design without a washout period. The order of the interventions was randomized. Results: After treatment, body weight of the subjects decreased by 5% and liver fat by a third, whereas dietary intervention had no impact on these parameters. The decrease in liver fat with semaglutide did not correlate with changes in body weight and other measures of adiposity and was unrelated to improved insulin sensitivity. Conclusions: The proportion of palmitic and palmitoleic acids in VLDL-triglycerides decreased after treatment, suggesting that the beneficial effects of semaglutide on liver fat are mediated by the suppression of de novo lipogenesis.
Collapse
Affiliation(s)
- Tereza Dusilová
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (T.D.); (I.L.); (L.T.); (M.H.); (P.Š.); (D.P.); (M.B.); (M.D.); (D.M.); (H.M.); (P.S.Š.); (R.P.); (M.H.); (M.H.)
- Department of Physiology, Faculty of Science, Charles University, 128 44 Prague, Czech Republic
| | - Jan Kovář
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (T.D.); (I.L.); (L.T.); (M.H.); (P.Š.); (D.P.); (M.B.); (M.D.); (D.M.); (H.M.); (P.S.Š.); (R.P.); (M.H.); (M.H.)
| | - Ivana Laňková
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (T.D.); (I.L.); (L.T.); (M.H.); (P.Š.); (D.P.); (M.B.); (M.D.); (D.M.); (H.M.); (P.S.Š.); (R.P.); (M.H.); (M.H.)
| | - Lenka Thieme
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (T.D.); (I.L.); (L.T.); (M.H.); (P.Š.); (D.P.); (M.B.); (M.D.); (D.M.); (H.M.); (P.S.Š.); (R.P.); (M.H.); (M.H.)
| | - Monika Hubáčková
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (T.D.); (I.L.); (L.T.); (M.H.); (P.Š.); (D.P.); (M.B.); (M.D.); (D.M.); (H.M.); (P.S.Š.); (R.P.); (M.H.); (M.H.)
| | - Petr Šedivý
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (T.D.); (I.L.); (L.T.); (M.H.); (P.Š.); (D.P.); (M.B.); (M.D.); (D.M.); (H.M.); (P.S.Š.); (R.P.); (M.H.); (M.H.)
| | - Dita Pajuelo
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (T.D.); (I.L.); (L.T.); (M.H.); (P.Š.); (D.P.); (M.B.); (M.D.); (D.M.); (H.M.); (P.S.Š.); (R.P.); (M.H.); (M.H.)
| | - Martin Burian
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (T.D.); (I.L.); (L.T.); (M.H.); (P.Š.); (D.P.); (M.B.); (M.D.); (D.M.); (H.M.); (P.S.Š.); (R.P.); (M.H.); (M.H.)
| | - Monika Dezortová
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (T.D.); (I.L.); (L.T.); (M.H.); (P.Š.); (D.P.); (M.B.); (M.D.); (D.M.); (H.M.); (P.S.Š.); (R.P.); (M.H.); (M.H.)
| | - Denisa Miklánková
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (T.D.); (I.L.); (L.T.); (M.H.); (P.Š.); (D.P.); (M.B.); (M.D.); (D.M.); (H.M.); (P.S.Š.); (R.P.); (M.H.); (M.H.)
| | - Hana Malínská
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (T.D.); (I.L.); (L.T.); (M.H.); (P.Š.); (D.P.); (M.B.); (M.D.); (D.M.); (H.M.); (P.S.Š.); (R.P.); (M.H.); (M.H.)
| | - Petra Svobodová Šťastná
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (T.D.); (I.L.); (L.T.); (M.H.); (P.Š.); (D.P.); (M.B.); (M.D.); (D.M.); (H.M.); (P.S.Š.); (R.P.); (M.H.); (M.H.)
| | - Rudolf Poledne
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (T.D.); (I.L.); (L.T.); (M.H.); (P.Š.); (D.P.); (M.B.); (M.D.); (D.M.); (H.M.); (P.S.Š.); (R.P.); (M.H.); (M.H.)
| | - Milan Hájek
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (T.D.); (I.L.); (L.T.); (M.H.); (P.Š.); (D.P.); (M.B.); (M.D.); (D.M.); (H.M.); (P.S.Š.); (R.P.); (M.H.); (M.H.)
| | - Martin Haluzík
- Institute for Clinical and Experimental Medicine, 140 21 Prague, Czech Republic; (T.D.); (I.L.); (L.T.); (M.H.); (P.Š.); (D.P.); (M.B.); (M.D.); (D.M.); (H.M.); (P.S.Š.); (R.P.); (M.H.); (M.H.)
| |
Collapse
|
6
|
Gomes NBN, Torres US, Caiado AHM, Fucuta PS, Ferraz MLCG, D'Ippolito G. Diagnostic accuracy of an uncorrected native T1 mapping sequence for liver fibrosis and inflammation in autoimmune hepatitis: a prospective study using histopathology as reference standard. LA RADIOLOGIA MEDICA 2024; 129:1431-1443. [PMID: 39106024 DOI: 10.1007/s11547-024-01863-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024]
Abstract
PURPOSE There is an unmet clinical need for non-invasive imaging biomarkers that could replace liver biopsy in the management of patients with autoimmune hepatitis (AIH). In this study, we sought to evaluate the diagnostic accuracy of a simple uncorrected, non-contrast T1 mapping for detecting fibrosis and inflammation in AIH patients using histopathology as a reference standard. MATERIAL AND METHODS Over 3 years, 33 patients with AIH were prospectively studied using a multiparametric liver MRI protocol which included T1 mapping. Biopsies were performed up to 3 months before imaging, and a standardized histopathological score for fibrosis (F0-F4) and inflammatory activity (PPA0-4) was used as a reference. Statistical analysis included independent t test, Mann-Whitney U-test, and ROC (receiver operating characteristic) analysis. RESULTS T1 mapping values were significantly higher in patients with advanced fibrosis (F0-2 vs. F3-4; p < 0.015), significant fibrosis (F0-1 vs. F2-4; p < 0.005), and significant inflammatory activity (PPA 0-1 vs. PPA 2-4 p = 0.048). Moreover, the technique demonstrated a good diagnostic performance in detecting significant (AUC 0.856) and advanced fibrosis (AUC 0.835), as well as significant inflammatory activity (AUC 0.763). CONCLUSION A rapid, simple, uncorrected, non-contrast T1 mapping sequence showed satisfactory diagnostic performance in comparison with histopathology for detecting significant tissue inflammation and fibrosis in AIH patients, being a potential non-invasive imaging biomarker for monitoring disease activity in such individuals.
Collapse
Affiliation(s)
- Natália B N Gomes
- Grupo Fleury, São Paulo, Brazil.
- Department of Diagnostic Imaging, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Vila Clementino Rua Napoleão de Barros, 800, São Paulo, SP, 04024-000, Brazil.
| | - Ulysses S Torres
- Grupo Fleury, São Paulo, Brazil
- Department of Diagnostic Imaging, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Vila Clementino Rua Napoleão de Barros, 800, São Paulo, SP, 04024-000, Brazil
| | | | - Patricia S Fucuta
- Hospital de Base, Faculdade de Medicina de São José do Rio Preto (FAMERP), São Paulo, Brazil
| | - Maria Lucia C G Ferraz
- Department of Gastroenterology, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), São Paulo, Brazil
| | - Giuseppe D'Ippolito
- Grupo Fleury, São Paulo, Brazil
- Department of Diagnostic Imaging, Escola Paulista de Medicina, Universidade Federal de São Paulo (UNIFESP), Vila Clementino Rua Napoleão de Barros, 800, São Paulo, SP, 04024-000, Brazil
| |
Collapse
|
7
|
Wang X, Zhang S, Huang Z, Tian G, Liu X, Chen L, An L, Li X, Liu N, Ji Y, Han Y. Influence of Gadoxetate disodium to the hepatic proton density fat fraction quantified with the Dixon sequences in a rabbit model. Abdom Radiol (NY) 2024; 49:3374-3382. [PMID: 38683216 PMCID: PMC11390814 DOI: 10.1007/s00261-024-04320-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 05/01/2024]
Abstract
OBJECTIVE To study the impact of Gx on quantification of hepatic fat contents under metabolic dysfunction-associated steatotic liver disease (MASLD) imaged on VIBE Dixon in hepatobiliary specific phase. METHODS Forty-two rabbits were randomly divided into control group (n = 10) and high-fat diet group (n = 32). Imaging was performed before enhancement (Pre-Gx) and at the 13th (Post-Gx13) and 17th (Post-Gx17) min after Gx enhancement with 2E- and 6E-VIBE Dixon to determine hepatic proton density fat fractions (PDFF). PDFFs were compared with vacuole percentage (VP) measured under histopathology. RESULTS 33 animals were evaluated and including control group (n = 11) and MASLD group (n = 22). Pre-Gx, Post-Gx13, Post-Gx17 PDFFs under 6E-VIBE Dixon had strong correlations with VPs (r2 = 0.8208-0.8536). PDFFs under 2E-VIBE Dixon were reduced significantly (P < 0.001) after enhancement (r2 = 0.7991/0.8014) compared with that before enhancement (r2 = 0.7643). There was no significant difference between PDFFs of Post-Gx13 and Post-Gx17 (P = 0.123) for which the highest consistency being found with 6E-VIBE Dixon before enhancement (r2 = 0.8536). The signal intensity of the precontrast compared with the postcontrast, water image under 2E-VIBE Dixon increased significantly (P < 0.001), fat image showed no significant difference (P = 0.754). CONCLUSION 2E- and 6E-VIBE Dixon can obtain accurate PDFFs in the hepatobiliary specific phase from 13 to 17th min after Gx enhancement. On 2E-VIBE Dixon (FA = 10°), effective minimization of T1 Bias by the Gx administration markedly improved the accuracy of the hepatic PDFF quantification.
Collapse
Affiliation(s)
- Xia Wang
- Department of Radiology, Xi'an GaoXin Hospital, Xi'an Jiao Tong University, South Tuanjie Rd 16, Xi'an, 710075, Shaanxi, China
| | - Sheng Zhang
- Department of Radiology, Xi'an GaoXin Hospital, Xi'an Jiao Tong University, South Tuanjie Rd 16, Xi'an, 710075, Shaanxi, China
| | - Zhe Huang
- Department of Radiology, Xi'an GaoXin Hospital, Xi'an Jiao Tong University, South Tuanjie Rd 16, Xi'an, 710075, Shaanxi, China
| | - Gang Tian
- Department of Radiology, Xi'an GaoXin Hospital, Xi'an Jiao Tong University, South Tuanjie Rd 16, Xi'an, 710075, Shaanxi, China
| | - Xiaofan Liu
- Department of Radiology, Xi'an GaoXin Hospital, Xi'an Jiao Tong University, South Tuanjie Rd 16, Xi'an, 710075, Shaanxi, China
| | - Lijun Chen
- Department of Radiology, Xi'an GaoXin Hospital, Xi'an Jiao Tong University, South Tuanjie Rd 16, Xi'an, 710075, Shaanxi, China
| | - Liang An
- Department of Clinical Laboratory, Xi'an GaoXin Hospital, Xi'an, China
| | - Xumiao Li
- Department of Pathology, Xi'an GaoXin Hospital, Xi'an, China
| | - Ningna Liu
- Department of Pathology, Xi'an GaoXin Hospital, Xi'an, China
| | - Yang Ji
- Department of Imaging Center, First Affiliated Hospital, Xi'an Medical University, Shaanxi, China.
| | - Yuedong Han
- Department of Radiology, Xi'an GaoXin Hospital, Xi'an Jiao Tong University, South Tuanjie Rd 16, Xi'an, 710075, Shaanxi, China.
| |
Collapse
|
8
|
Poli S, Emara AF, Lange NF, Ballabani E, Buser A, Schiavon M, Herzig D, Man CD, Bally L, Kreis R. Interleaved trinuclear MRS for single-session investigation of carbohydrate and lipid metabolism in human liver at 7T. NMR IN BIOMEDICINE 2024; 37:e5123. [PMID: 38423797 DOI: 10.1002/nbm.5123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 12/21/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
The liver plays a central role in metabolic homeostasis, as exemplified by a variety of clinical disorders with hepatic and systemic metabolic disarrays. Of particular interest are the complex interactions between lipid and carbohydrate metabolism in highly prevalent conditions such as obesity, diabetes, and fatty liver disease. Limited accessibility and the need for invasive procedures challenge direct investigations in humans. Hence, noninvasive dynamic evaluations of glycolytic flux and steady-state assessments of lipid levels and composition are crucial for basic understanding and may open new avenues toward novel therapeutic targets. Here, three different MR spectroscopy (MRS) techniques that have been combined in a single interleaved examination in a 7T MR scanner are evaluated. 1H-MRS and 13C-MRS probe endogenous metabolites, while deuterium metabolic imaging (DMI) relies on administration of deuterated tracers, currently 2H-labelled glucose, to map the spatial and temporal evolution of their metabolic fate. All three techniques have been optimized for a robust single-session clinical investigation and applied in a preliminary study of healthy subjects. The use of a triple-channel 1H/2H/13C RF coil enables interleaved examinations with no need for repositioning. Short-echo-time STEAM spectroscopy provides well resolved spectra to quantify lipid content and composition. The relative benefits of using water saturation versus metabolite cycling and types of respiratory synchronization were evaluated. 2H-MR spectroscopic imaging allowed for registration of time- and space-resolved glucose levels following oral ingestion of 2H-glucose, while natural abundance 13C-MRS of glycogen provides a dynamic measure of hepatic glucose storage. For DMI and 13C-MRS, the measurement precision of the method was estimated to be about 0.2 and about 16 mM, respectively, for 5 min scanning periods. Excellent results were shown for the determination of dynamic uptake of glucose with DMI and lipid profiles with 1H-MRS, while the determination of changes in glycogen levels by 13C-MRS is also feasible but somewhat more limited by signal-to-noise ratio.
Collapse
Affiliation(s)
- Simone Poli
- MR Methodology, Department for Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Ahmed F Emara
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism UDEM, University Hospital Bern, Bern, Switzerland
| | - Naomi F Lange
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Graduate School for Health Sciences, University of Bern, Bern, Switzerland
| | - Edona Ballabani
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism UDEM, University Hospital Bern, Bern, Switzerland
| | - Angeline Buser
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism UDEM, University Hospital Bern, Bern, Switzerland
| | - Michele Schiavon
- Department of Information Engineering (DEI), University of Padova, Padua, Italy
| | - David Herzig
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism UDEM, University Hospital Bern, Bern, Switzerland
| | - Chiara Dalla Man
- Department of Information Engineering (DEI), University of Padova, Padua, Italy
| | - Lia Bally
- Department of Diabetes, Endocrinology, Nutritional Medicine and Metabolism UDEM, University Hospital Bern, Bern, Switzerland
| | - Roland Kreis
- MR Methodology, Department for Diagnostic and Interventional Neuroradiology, University of Bern, Bern, Switzerland
- Translational Imaging Center (TIC), Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| |
Collapse
|
9
|
London A, Richter MM, Sjøberg KA, Wewer Albrechtsen NJ, Považan M, Drici L, Schaufuss A, Madsen L, Øyen J, Madsbad S, Holst JJ, van Hall G, Siebner HR, Richter EA, Kiens B, Lundsgaard A, Bojsen-Møller KN. The impact of short-term eucaloric low- and high-carbohydrate diets on liver triacylglycerol content in males with overweight and obesity: a randomized crossover study. Am J Clin Nutr 2024; 120:283-293. [PMID: 38914224 DOI: 10.1016/j.ajcnut.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024] Open
Abstract
BACKGROUND Intrahepatic triacylglycerol (liver TG) content is associated with hepatic insulin resistance and dyslipidemia. Liver TG content can be modulated within days under hypocaloric conditions. OBJECTIVES We hypothesized that 4 d of eucaloric low-carbohydrate/high-fat (LC) intake would decrease liver TG content, whereas a high-carbohydrate/low-fat (HC) intake would increase liver TG content, and further that alterations in liver TG would be linked to dynamic changes in hepatic glucose and lipid metabolism. METHODS A randomized crossover trial in males with 4 d + 4 d of LC and HC, respectively, with ≥2 wk of washout. 1H-magnetic resonance spectroscopy (1H-MRS) was used to measure liver TG content, with metabolic testing before and after intake of an LC diet (11E% carbohydrate corresponding to 102 ± 12 {mean ± standard deviation [SD]) g/d, 70E% fat} and an HC diet (65E% carbohydrate corresponding to 537 ± 56 g/d, 16E% fat). Stable [6,6-2H2]-glucose and [1,1,2,3,3-D5]-glycerol tracer infusions combined with hyperinsulinemic-euglycemic clamps and indirect calorimetry were used to measure rates of hepatic glucose production and lipolysis, whole-body insulin sensitivity and substrate oxidation. RESULTS Eleven normoglycemic males with overweight or obesity (BMI 31.6 ± 3.7 kg/m2) completed both diets. The LC diet reduced liver TG content by 35.3% (95% confidence interval: -46.6, -24.1) from 4.9% [2.4-11.0] (median interquartile range) to 2.9% [1.4-6.9], whereas there was no change after the HC diet. After the LC diet, fasting whole-body fat oxidation and plasma beta-hydroxybutyrate concentration increased, whereas markers of de novo lipogenesis (DNL) diminished. Fasting plasma TG and insulin concentrations were lowered and the hepatic insulin sensitivity index increased after LC. Peripheral glucose disposal was unchanged. CONCLUSIONS Reduced carbohydrate and increased fat intake for 4 d induced a marked reduction in liver TG content and increased hepatic insulin sensitivity. Increased rates of fat oxidation and ketogenesis combined with lower rates of DNL are suggested to be responsible for lowering liver TG. This trial was registered at clinicaltrials.gov as NCT04581421.
Collapse
Affiliation(s)
- Amalie London
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Nutrition, Exercise and Sports, The August Krogh Section for Molecular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Michael M Richter
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Nutrition, Exercise and Sports, The August Krogh Section for Molecular Physiology, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Biochemistry, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Kim Anker Sjøberg
- Department of Nutrition, Exercise and Sports, The August Krogh Section for Molecular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Nicolai J Wewer Albrechtsen
- Department of Clinical Biochemistry, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark; Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Michal Považan
- Danish Research Center for Magnetic Resonance (DRCMR), Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Lylia Drici
- Department of Clinical Biochemistry, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark; Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Amanda Schaufuss
- Department of Nutrition, Exercise and Sports, The August Krogh Section for Molecular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Lise Madsen
- Department of Biology, Laboratory of Genomics and Molecular Biomedicine, University of Copenhagen, Copenhagen, Denmark; Institute of Marine Research, Bergen, Norway
| | | | - Sten Madsbad
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Jens Juul Holst
- Department of Biomedical Sciences, Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Gerrit van Hall
- Department of Clinical Metabolomics, Rigshospitalet, Denmark
| | - Hartwig Roman Siebner
- Danish Research Center for Magnetic Resonance (DRCMR), Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg and Frederiksberg, Copenhagen, Denmark
| | - Erik A Richter
- Department of Nutrition, Exercise and Sports, The August Krogh Section for Molecular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Bente Kiens
- Department of Nutrition, Exercise and Sports, The August Krogh Section for Molecular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Annemarie Lundsgaard
- Department of Nutrition, Exercise and Sports, The August Krogh Section for Molecular Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Kirstine Nyvold Bojsen-Møller
- Department of Endocrinology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
10
|
Brouwers B, Rao G, Tang Y, Rodríguez Á, Glass LC, Hartman ML. Incretin-based investigational therapies for the treatment of MASLD/MASH. Diabetes Res Clin Pract 2024; 211:111675. [PMID: 38636848 DOI: 10.1016/j.diabres.2024.111675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD), is the most common form of chronic liver disease. It exists as either simple steatosis or its more progressive form, metabolic dysfunction-associated steatohepatitis (MASH), formerly, non-alcoholic steatohepatitis (NASH). The global prevalence of MASLD is estimated to be 32% among adults and is projected to continue to rise with increasing rates of obesity, type 2 diabetes, and metabolic syndrome. While simple steatosis is often considered benign and reversible, MASH is progressive, potentially leading to the development of cirrhosis, liver failure, and hepatocellular carcinoma. Treatment of MASH is therefore directed at slowing, stopping, or reversing the progression of disease. Evidence points to improved liver histology with therapies that result in sustained body weight reduction. Incretin-based molecules, such as glucagon-like peptide-1 receptor agonists (GLP-1 RAs), alone or in combination with glucose-dependent insulinotropic polypeptide (GIP) and/or glucagon receptor agonists, have shown benefit here, and several are under investigation for MASLD/MASH treatment. In this review, we discuss current published data on GLP-1, GIP/GLP-1, GLP-1/glucagon, and GLP-1/GIP/glucagon RAs in MASLD/MASH, focusing on their efficacy on liver histology, liver fat, and MASH biomarkers.
Collapse
Affiliation(s)
| | - Girish Rao
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | | | | |
Collapse
|
11
|
Qin ZW, Ren QN, Zhang HX, Liu YR, Huang K, Wu W, Dong GP, Ni Y, Fu JF. Development and validation of a novel non-invasive test for diagnosing nonalcoholic fatty liver disease in Chinese children. World J Pediatr 2024; 20:413-421. [PMID: 37004681 DOI: 10.1007/s12519-023-00704-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/07/2023] [Indexed: 04/04/2023]
Abstract
BACKGROUND With the exploding prevalence of obesity, many children are at risk of developing nonalcoholic fatty liver disease. Using anthropometric and laboratory parameters, our study aimed to develop a model to quantitatively evaluate liver fat content (LFC) in children with obesity. METHODS A well-characterized cohort of 181 children between 5 and 16 years of age were recruited to the study in the Endocrinology Department as the derivation cohort. The external validation cohort comprised 77 children. The assessment of liver fat content was performed using proton magnetic resonance spectroscopy. Anthropometry and laboratory metrics were measured in all subjects. B-ultrasound examination was carried out in the external validation cohort. The Kruskal-Wallis test, Spearman bivariate correlation analyses, univariable linear regressions and multivariable linear regression were used to build the optimal predictive model. RESULTS The model was based on indicators including alanine aminotransferase, homeostasis model assessment of insulin resistance, triglycerides, waist circumference and Tanner stage. The adjusted R2 of the model was 0.589, which presented high sensitivity and specificity both in internal [sensitivity of 0.824, specificity of 0.900, area under curve (AUC) of 0.900 with a 95% confidence interval: 0.783-1.000] and external validation (sensitivity of 0.918 and specificity of 0.821, AUC of 0.901 with a 95% confidence interval: 0.818-0.984). CONCLUSIONS Our model based on five clinical indicators was simple, non-invasive, and inexpensive; it had high sensitivity and specificity in predicting LFC in children. Thus, it may be useful for identifying children with obesity who are at risk for developing nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Zhe-Wen Qin
- Division of Endocrinology, National Clinical Research Center for Child Health, National Children's Regional Medical Center, The Children's HospitalDepartment of Endocrinology, National Clinical Research Center for Child Health, National Children's Regional Medical Center, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Qian-Nan Ren
- Division of Endocrinology, National Clinical Research Center for Child Health, National Children's Regional Medical Center, The Children's HospitalDepartment of Endocrinology, National Clinical Research Center for Child Health, National Children's Regional Medical Center, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Hong-Xi Zhang
- Department of Radiology, National Clinical Research Center for Child Health, National Children's Regional Medical Center, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Ya-Ru Liu
- Division of Endocrinology, National Clinical Research Center for Child Health, National Children's Regional Medical Center, The Children's HospitalDepartment of Endocrinology, National Clinical Research Center for Child Health, National Children's Regional Medical Center, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Ke Huang
- Division of Endocrinology, National Clinical Research Center for Child Health, National Children's Regional Medical Center, The Children's HospitalDepartment of Endocrinology, National Clinical Research Center for Child Health, National Children's Regional Medical Center, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Wei Wu
- Division of Endocrinology, National Clinical Research Center for Child Health, National Children's Regional Medical Center, The Children's HospitalDepartment of Endocrinology, National Clinical Research Center for Child Health, National Children's Regional Medical Center, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Guan-Ping Dong
- Division of Endocrinology, National Clinical Research Center for Child Health, National Children's Regional Medical Center, The Children's HospitalDepartment of Endocrinology, National Clinical Research Center for Child Health, National Children's Regional Medical Center, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Yan Ni
- Division of Endocrinology, National Clinical Research Center for Child Health, National Children's Regional Medical Center, The Children's HospitalDepartment of Endocrinology, National Clinical Research Center for Child Health, National Children's Regional Medical Center, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China
| | - Jun-Fen Fu
- Division of Endocrinology, National Clinical Research Center for Child Health, National Children's Regional Medical Center, The Children's HospitalDepartment of Endocrinology, National Clinical Research Center for Child Health, National Children's Regional Medical Center, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, 310052, China.
| |
Collapse
|
12
|
Orcel T, Chau HT, Turlin B, Chaigneau J, Bannier E, Otal P, Frampas E, Leguen A, Boulic A, Saint-Jalmes H, Aubé C, Boursier J, Bardou-Jacquet E, Gandon Y. Evaluation of proton density fat fraction (PDFF) obtained from a vendor-neutral MRI sequence and MRQuantif software. Eur Radiol 2023; 33:8999-9009. [PMID: 37402003 DOI: 10.1007/s00330-023-09798-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 03/29/2023] [Accepted: 04/21/2023] [Indexed: 07/05/2023]
Abstract
OBJECTIVE To validate the proton density fat fraction (PDFF) obtained by the MRQuantif software from 2D chemical shift encoded MR (CSE-MR) data in comparison with the histological steatosis data. METHODS This study, pooling data from 3 prospective studies spread over time between January 2007 and July 2020, analyzed 445 patients who underwent 2D CSE-MR and liver biopsy. MR derived liver iron concentration (MR-LIC) and PDFF was calculated using the MRQuantif software. The histological standard steatosis score (SS) served as reference. In order to get a value more comparable to PDFF, histomorphometry fat fraction (HFF) were centrally determined for 281 patients. Spearman correlation and the Bland and Altman method were used for comparison. RESULTS Strong correlations were found between PDFF and SS (rs = 0.84, p < 0.001) or HFF (rs = 0.87, p < 0.001). Spearman's coefficients increased to 0.88 (n = 324) and 0.94 (n = 202) when selecting only the patients without liver iron overload. The Bland and Altman analysis between PDFF and HFF found a mean bias of 5.4% ± 5.7 [95% CI 4.7, 6.1]. The mean bias was 4.7% ± 3.7 [95% CI 4.2, 5.3] and 7.1% ± 8.8 [95% CI 5.2, 9.0] for the patients without and with liver iron overload, respectively. CONCLUSION The PDFF obtained by MRQuantif from a 2D CSE-MR sequence is highly correlated with the steatosis score and very close to the fat fraction estimated by histomorphometry. Liver iron overload reduced the performance of steatosis quantification and joint quantification is recommended. This device-independent method can be particularly useful for multicenter studies. CLINICAL RELEVANCE STATEMENT The quantification of liver steatosis using a vendor-neutral 2D chemical-shift MR sequence, processed by MRQuantif, is well correlated to steatosis score and histomorphometric fat fraction obtained from biopsy, whatever the magnetic field and the MR device used. KEY POINTS • The PDFF measured by MRQuantif from 2D CSE-MR sequence data is highly correlated to hepatic steatosis. • Steatosis quantification performance is reduced in case of significant hepatic iron overload. • This vendor-neutral method may allow consistent estimation of PDFF in multicenter studies.
Collapse
Affiliation(s)
- T Orcel
- Department of Radiology, Rennes University Hospital, 2 Rue H. Le Guilloux, 35033, Rennes, France
| | - H T Chau
- Department of Radiology, Rennes University Hospital, 2 Rue H. Le Guilloux, 35033, Rennes, France
- NUMECAN, INSERM U1099, Rennes University Hospital, 2 Rue H. Le Guilloux, 35033, Rennes, France
| | - B Turlin
- NUMECAN, INSERM U1099, Rennes University Hospital, 2 Rue H. Le Guilloux, 35033, Rennes, France
- Department of Pathology, Rennes University Hospital, 2 Rue H. Le Guilloux, 35033, Rennes, France
| | - J Chaigneau
- HIFIH, UPRES EA3859, Angers University Hospital, 4 Rue Larrey, 49993, Angers, France
| | - E Bannier
- Department of Radiology, Rennes University Hospital, 2 Rue H. Le Guilloux, 35033, Rennes, France
- EMPENN U746 Unit/Project, INSERM/INRIA, IRISA, University of Rennes, Beaulieu Campus, UMR CNRS 6074, 35042, Rennes, France
| | - P Otal
- Department of Radiology, Toulouse University Hospital, 1 Av Pr J. Poulhes, 31059, Toulouse, France
| | - E Frampas
- Department of Radiology, Nantes University Hospital, 1 Pl. Alexis-Ricordeau, 44000, Nantes, France
| | - A Leguen
- Department of Radiology, Bretagne-Atlantique Hospital, 20 Bd Général Maurice Guillaudot, 56000, Vannes, France
| | - A Boulic
- Department of Radiology, Bretagne Sud Hospital, 5 Avenue de Choiseul, 56322, Lorient, France
| | - H Saint-Jalmes
- INSERM U1099, LTSI, University of Rennes, Beaulieu Campus, 35042, Rennes, France
| | - C Aubé
- HIFIH, UPRES EA3859, Angers University Hospital, 4 Rue Larrey, 49993, Angers, France
- Department of Radiology, Angers University Hospital, 4 Rue Larrey, 49993, Angers, France
| | - J Boursier
- HIFIH, UPRES EA3859, Angers University Hospital, 4 Rue Larrey, 49993, Angers, France
- Department of Hepatology-GastoeEnterology, Angers University Hospital, 4 Rue Larrey, 49993, Angers, France
| | - E Bardou-Jacquet
- NUMECAN, INSERM U1099, Rennes University Hospital, 2 Rue H. Le Guilloux, 35033, Rennes, France
- Department of Hepatology, Rennes University Hospital, 2 Rue H. Le Guilloux, 35033, Rennes, France
| | - Y Gandon
- Department of Radiology, Rennes University Hospital, 2 Rue H. Le Guilloux, 35033, Rennes, France.
- NUMECAN, INSERM U1099, Rennes University Hospital, 2 Rue H. Le Guilloux, 35033, Rennes, France.
| |
Collapse
|
13
|
Chouari T, Merali N, La Costa F, Santol J, Chapman S, Horton A, Aroori S, Connell J, Rockall TA, Mole D, Starlinger P, Welsh F, Rees M, Frampton AE. The Role of the Multiparametric MRI LiverMultiScan TM in the Quantitative Assessment of the Liver and Its Predicted Clinical Applications in Patients Undergoing Major Hepatic Resection for Colorectal Liver Metastasis. Cancers (Basel) 2023; 15:4863. [PMID: 37835557 PMCID: PMC10571783 DOI: 10.3390/cancers15194863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/05/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
Liver biopsy remains the gold standard for the histological assessment of the liver. With clear disadvantages and the rise in the incidences of liver disease, the role of neoadjuvant chemotherapy in colorectal liver metastasis (CRLM) and an explosion of surgical management options available, non-invasive serological and imaging markers of liver histopathology have never been more pertinent in order to assess liver health and stratify patients considered for surgical intervention. Liver MRI is a leading modality in the assessment of hepatic malignancy. Recent technological advancements in multiparametric MRI software such as the LiverMultiScanTM offers an attractive non-invasive assay of anatomy and histopathology in the pre-operative setting, especially in the context of CRLM. This narrative review examines the evidence for the LiverMultiScanTM in the assessment of hepatic fibrosis, steatosis/steatohepatitis, and potential applications for chemotherapy-associated hepatic changes. We postulate its future role and the hurdles it must surpass in order to be implemented in the pre-operative management of patients undergoing hepatic resection for colorectal liver metastasis. Such a role likely extends to other hepatic malignancies planned for resection.
Collapse
Affiliation(s)
- Tarak Chouari
- MATTU, The Leggett Building, Daphne Jackson Road, Guildford GU2 7WG, UK; (T.C.)
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital, Egerton Road, Guildford GU2 7XX, UK
- Oncology Section, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7WG, UK
| | - Nabeel Merali
- MATTU, The Leggett Building, Daphne Jackson Road, Guildford GU2 7WG, UK; (T.C.)
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital, Egerton Road, Guildford GU2 7XX, UK
- Oncology Section, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7WG, UK
| | - Francesca La Costa
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital, Egerton Road, Guildford GU2 7XX, UK
| | - Jonas Santol
- Department of Surgery, HPB Center, Vienna Health Network, Clinic Favoriten and Sigmund Freud Private University, 1090 Vienna, Austria
- Institute of Vascular Biology and Thrombosis Research, Center of Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Shelley Chapman
- Department of Radiology, Royal Surrey County Hospital, Egerton Road, Guildford GU2 7XX, UK
| | - Alex Horton
- Department of Radiology, Royal Surrey County Hospital, Egerton Road, Guildford GU2 7XX, UK
| | - Somaiah Aroori
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery and Transplant Surgery, Derriford Hospital, Plymouth PL6 8DH, UK
| | | | - Timothy A. Rockall
- MATTU, The Leggett Building, Daphne Jackson Road, Guildford GU2 7WG, UK; (T.C.)
- Oncology Section, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7WG, UK
| | - Damian Mole
- Clinical Surgery, Royal Infirmary of Edinburgh, University of Edinburgh, Edinburgh EH10 5HF, UK
- Centre for Inflammation Research, University of Edinburgh, Queen’s Medical Research Institute, Edinburgh EH105HF, UK
| | - Patrick Starlinger
- Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, Mayo Clinic, Rochester, MN 55902, USA
- Center of Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
- Department of Surgery, Medical University of Vienna, General Hospital, 1090 Vienna, Austria
| | - Fenella Welsh
- Hepato-Biliary Unit, Hampshire Hospitals Foundation Trust, Basingstoke, Hampshire RG24 9NA, UK
| | - Myrddin Rees
- Hepato-Biliary Unit, Hampshire Hospitals Foundation Trust, Basingstoke, Hampshire RG24 9NA, UK
| | - Adam E. Frampton
- MATTU, The Leggett Building, Daphne Jackson Road, Guildford GU2 7WG, UK; (T.C.)
- Department of Hepato-Pancreato-Biliary (HPB) Surgery, Royal Surrey County Hospital, Egerton Road, Guildford GU2 7XX, UK
- Oncology Section, Department of Clinical and Experimental Medicine, Faculty of Health and Medical Science, University of Surrey, Guildford GU2 7WG, UK
| |
Collapse
|
14
|
Yazdani L, Rafati I, Gesnik M, Nicolet F, Chayer B, Gilbert G, Volniansky A, Olivié D, Giard JM, Sebastiani G, Nguyen BN, Tang A, Cloutier G. Ultrasound Shear Wave Attenuation Imaging for Grading Liver Steatosis in Volunteers and Patients With Non-alcoholic Fatty Liver Disease: A Pilot Study. ULTRASOUND IN MEDICINE & BIOLOGY 2023; 49:2264-2272. [PMID: 37482477 DOI: 10.1016/j.ultrasmedbio.2023.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/25/2023]
Abstract
OBJECTIVE The aims of the work described here were to assess shear wave attenuation (SWA) in volunteers and patients with non-alcoholic fatty liver disease (NAFLD) and compare its diagnostic performance with that of shear wave dispersion (SWD), magnetic resonance imaging (MRI) proton density fat fraction (PDFF) and biopsy. METHODS Forty-nine participants (13 volunteers and 36 NAFLD patients) were enrolled. Ultrasound and MRI examinations were performed in all participants. Biopsy was also performed in patients. SWA was used to assess histopathology grades as potential confounders. The areas under curves (AUCs) of SWA, SWD and MRI-PDFF were assessed in different steatosis grades by biopsy. Youden's thresholds of SWA were obtained for steatosis grading while using biopsy or MRI-PDFF as the reference standard. RESULTS Spearman's correlations of SWA with histopathology (steatosis, inflammation, ballooning and fibrosis) were 0.89, 0.73, 0.62 and 0.31, respectively. Multiple linear regressions of SWA confirmed the correlation with steatosis grades (adjusted R2 = 0.77, p < 0.001). The AUCs of MRI-PDFF, SWA and SWD were respectively 0.97, 0.99 and 0.94 for S0 versus ≥S1 (p > 0.05); 0.94, 0.98 and 0.78 for ≤S1 versus ≥S2 (both MRI-PDFF and SWA were higher than SWD, p < 0.05); and 0.90, 0.93 and 0.68 for ≤S2 versus S3 (both SWA and MRI-PDFF were higher than SWD, p < 0.05). SWA's Youden thresholds (Np/m/Hz) (sensitivity, specificity) for S0 versus ≥S1, ≤S1 versus ≥S2 and ≤S2 versus S3 were 1.05 (1.00, 0.92), 1.37 (0.96, 0.96) and 1.51 (0.83, 0.87), respectively. These values were 1.16 (1.00, 0.81), 1.49 (0.91, 0.82) and 1.67 (0.87, 0.92) when considering MRI-PDFF as the reference standard. CONCLUSION In this pilot study, SWA increased with increasing steatosis grades, and its diagnostic performance was higher than that of SWD but equivalent to that of MRI-PDFF.
Collapse
Affiliation(s)
- Ladan Yazdani
- Laboratory of Biorheology and Medical Ultrasonics (LBUM), Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada; Institute of Biomedical Engineering, Université de Montréal, Montréal, QC, Canada
| | - Iman Rafati
- Laboratory of Biorheology and Medical Ultrasonics (LBUM), Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada; Institute of Biomedical Engineering, Université de Montréal, Montréal, QC, Canada
| | - Marc Gesnik
- Laboratory of Biorheology and Medical Ultrasonics (LBUM), Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Frank Nicolet
- Laboratory of Biorheology and Medical Ultrasonics (LBUM), Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Boris Chayer
- Laboratory of Biorheology and Medical Ultrasonics (LBUM), Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Guillaume Gilbert
- MR Clinical Science, Philips Healthcare Canada, Markham, ON, Canada; Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Montréal, QQ, Canada
| | - Anton Volniansky
- Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Montréal, QQ, Canada
| | - Damien Olivié
- Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Montréal, QQ, Canada
| | | | - Giada Sebastiani
- Division of Gastroenterology and Hepatology, McGill University Health Centre, Montreal, QC, Canada
| | - Bich N Nguyen
- Service of Pathology, Centre Hospitalier de l'Université de Montréal (CHUM), Montréal, QC, Canada
| | - An Tang
- Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Montréal, QQ, Canada; Laboratory of Clinical Image Processing, CRCHUM, Montréal, QC, Canada
| | - Guy Cloutier
- Laboratory of Biorheology and Medical Ultrasonics (LBUM), Centre de recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada; Institute of Biomedical Engineering, Université de Montréal, Montréal, QC, Canada; Department of Radiology, Radiation Oncology and Nuclear Medicine, Université de Montréal, Montréal, QQ, Canada.
| |
Collapse
|
15
|
Buitinga M, Veeraiah P, Haans F, Schrauwen-Hinderling VB. Ectopic lipid deposition in muscle and liver, quantified by proton magnetic resonance spectroscopy. Obesity (Silver Spring) 2023; 31:2447-2459. [PMID: 37667838 DOI: 10.1002/oby.23865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/09/2023] [Accepted: 05/09/2023] [Indexed: 09/06/2023]
Abstract
Advances in the development of noninvasive imaging techniques have spurred investigations into ectopic lipid deposition in the liver and muscle and its implications in the development of metabolic diseases such as type 2 diabetes. Computed tomography and ultrasound have been applied in the past, though magnetic resonance-based methods are currently considered the gold standard as they allow more accurate quantitative detection of ectopic lipid stores. This review focuses on methodological considerations of magnetic resonance-based methods to image hepatic and muscle fat fractions, and it emphasizes anatomical and morphological aspects and how these may influence data acquisition, analysis, and interpretation.
Collapse
Affiliation(s)
- Mijke Buitinga
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Nutrition and Movement Sciences (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Pandichelvam Veeraiah
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- Scannexus (Ultra-High Field Imaging Center), Maastricht, The Netherlands
- Faculty of Health Medicine and Life Sciences (FHML), Maastricht, The Netherlands
| | - Florian Haans
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Vera B Schrauwen-Hinderling
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Nutrition and Movement Sciences (NUTRIM), Maastricht University, Maastricht, The Netherlands
- Institute for Clinical Diabetology, German Diabetes Center and Leibniz Center for Diabetes Research at Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
16
|
Dokpuang D, Zhiyong Yang J, Nemati R, He K, Plank LD, Murphy R, Lu J. Magnetic resonance study of visceral, subcutaneous, liver and pancreas fat changes after 12 weeks intermittent fasting in obese participants with prediabetes. Diabetes Res Clin Pract 2023:110775. [PMID: 37315900 DOI: 10.1016/j.diabres.2023.110775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/26/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND It is not clear whether there are differences in proportions of fat loss from visceral:subcutaneous depots by probiotic supplementation, ethnicity or sex during weight loss; or whether visceral/pancreatic fat depot changes are related to changes in HbA1c. Our objective is to investigate whether weight loss from different fat depots is related to these factors during weight loss achieved by intermittent fasting. METHOD Prediabetes participants on 5:2 intermittent fasting were randomized 1:1 to either daily probiotic or placebo for 12 weeks. Twenty-four patients had magnetic resonance imaging data at baseline and 12 weeks. RESULTS After 12 weeks of intermittent fasting, subcutaneous fat (%) changed from 35.9 ± 3.1 to 34.4 ± 3.2, visceral fat (%) from 15.8 ± 1.3 to 14.8 ± 1.2, liver fat (%) from 8.7 ± 0.8 to 7.5 ± 0.7 and pancreatic fat (%) from 7.7 ± 0.5 to 6.5 ± 0.5 (all p< 0.001). Changes in weight, HbA1c, SAT, VAT, LF and PF did not differ significantly between probiotic and placebo groups. CONCLUSION Overall weight loss was correlated with fat loss from subcutaneous depots. Losses from different fat depots did not correlate with changes in HbA1c or differ by probiotic supplementation, ethnicity or sex.
Collapse
Affiliation(s)
- Dech Dokpuang
- Division of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand
| | - John Zhiyong Yang
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Reza Nemati
- Canterbury Health Laboratories, Canterbury District Health Board, Christchurch 8022, New Zealand
| | - Kevin He
- School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lindsay D Plank
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Rinki Murphy
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand; Department of Diabetes, Te Toka Tumai, Te Whatu Ora, Auckland, New Zealand; Specialist Weight Management Service, Te Mana Ki Tua, Te Whatu Ora Counties, South Auckland, New Zealand; Maurice Wilkins Centre for Biodiscovery, Auckland, New Zealand.
| | - Jun Lu
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre for Biodiscovery, Auckland, New Zealand; College of Food Science and Technology, Nanchang University, Nanchang, Jiangxi Province, China; College of Food Science, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
17
|
Tian H, Zhang S, Liu Y, Wu Y, Zhang D. Fibroblast Growth Factors for Nonalcoholic Fatty Liver Disease: Opportunities and Challenges. Int J Mol Sci 2023; 24:ijms24054583. [PMID: 36902015 PMCID: PMC10003526 DOI: 10.3390/ijms24054583] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), a chronic condition associated with metabolic dysfunction and obesity, has reached epidemic proportions worldwide. Although early NAFLD can be treated with lifestyle changes, the treatment of advanced liver pathology, such as nonalcoholic steatohepatitis (NASH), remains a challenge. There are currently no FDA-approved drugs for NAFLD. Fibroblast growth factors (FGFs) play essential roles in lipid and carbohydrate metabolism and have recently emerged as promising therapeutic agents for metabolic diseases. Among them, endocrine members (FGF19 and FGF21) and classical members (FGF1 and FGF4) are key regulators of energy metabolism. FGF-based therapies have shown therapeutic benefits in patients with NAFLD, and substantial progress has recently been made in clinical trials. These FGF analogs are effective in alleviating steatosis, liver inflammation, and fibrosis. In this review, we describe the biology of four metabolism-related FGFs (FGF19, FGF21, FGF1, and FGF4) and their basic action mechanisms, and then summarize recent advances in the biopharmaceutical development of FGF-based therapies for patients with NAFLD.
Collapse
Affiliation(s)
- Haoyu Tian
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Shuairan Zhang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Ying Liu
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Yifan Wu
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Dianbao Zhang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
- Correspondence: or
| |
Collapse
|
18
|
Nogami A, Yoneda M, Iwaki M, Kobayashi T, Honda Y, Ogawa Y, Imajo K, Saito S, Nakajima A. Non-invasive imaging biomarkers for liver steatosis in non-alcoholic fatty liver disease: present and future. Clin Mol Hepatol 2023; 29:S123-S135. [PMID: 36503207 PMCID: PMC10029939 DOI: 10.3350/cmh.2022.0357] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease is currently the most common chronic liver disease, affecting up to 25% of the global population. Simple fatty liver, in which fat is deposited in the liver without fibrosis, has been regarded as a benign disease in the past, but it is now known to be prognostic. In the future, more emphasis should be placed on the quantification of liver fat. Traditionally, fatty liver has been assessed by histological evaluation, which requires an invasive examination; however, technological innovations have made it possible to evaluate fatty liver by non-invasive imaging methods, such as ultrasonography, computed tomography, and magnetic resonance imaging. In addition, quantitative as well as qualitative measurements for the detection of fatty liver have become available. In this review, we summarize the currently used qualitative evaluations of fatty liver and discuss quantitative evaluations that are expected to further develop in the future.
Collapse
Affiliation(s)
- Asako Nogami
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine Graduate school of Medicine, Yokohama, Japan
| | - Masato Yoneda
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine Graduate school of Medicine, Yokohama, Japan
| | - Michihiro Iwaki
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine Graduate school of Medicine, Yokohama, Japan
| | - Takashi Kobayashi
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine Graduate school of Medicine, Yokohama, Japan
| | - Yasushi Honda
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine Graduate school of Medicine, Yokohama, Japan
| | - Yuji Ogawa
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine Graduate school of Medicine, Yokohama, Japan
- Department of Gastroenterology, National Hospital Organization Yokohama Medical Center, Yokohama, Japan
| | - Kento Imajo
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine Graduate school of Medicine, Yokohama, Japan
- Department of Gastroenterology and Endoscopy, Shinyurigaoka General Hospital, Kawasaki, Japan
| | - Satoru Saito
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine Graduate school of Medicine, Yokohama, Japan
| | - Atsushi Nakajima
- Department of Gastroenterology and Hepatology, Yokohama City University School of Medicine Graduate school of Medicine, Yokohama, Japan
| |
Collapse
|
19
|
Brinker EJ, Towns TJ, Watanabe R, Ma X, Bashir A, Cole RC, Wang X, Graff EC. Direct activation of the fibroblast growth factor-21 pathway in overweight and obese cats. Front Vet Sci 2023; 10:1072680. [PMID: 36756310 PMCID: PMC9900002 DOI: 10.3389/fvets.2023.1072680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/03/2023] [Indexed: 01/24/2023] Open
Abstract
Introduction Feline obesity is common, afflicting ~25-40% of domestic cats. Obese cats are predisposed to many metabolic dyscrasias, such as insulin resistance, altered blood lipids, and feline hepatic lipidosis. Fibroblast Growth Factor-21 (FGF21) is an endocrine hormone that mediates the fat-liver axis, and in humans and animals, FGF21 can ameliorate insulin resistance, non-alcoholic fatty liver disease, and obesity. Activation of the FGF21 pathway may have therapeutic benefits for obese cats. Methods In this preliminary cross-sectional study, ad libitum fed, purpose-bred, male-neutered, 6-year-old, obese and overweight cats were administered either 10 mg/kg/day of an FGF21 mimetic (FGF21; n = 4) or saline (control; n = 3) for 14 days. Body weight, food, and water intake were quantified daily during and 2 weeks following treatment. Changes in metabolic and liver parameters, intrahepatic triglyceride content, liver elasticity, and gut microbiota were evaluated. Results Treatment with FGF21 resulted in significant weight loss (~5.93%) compared to control and a trend toward decreased intrahepatic triglyceride content. Cats treated with FGF21 had decreased serum alkaline phosphatase. No significant changes were noted in liver elasticity, serum, liver, or metabolic parameters, or gut microbiome composition. Discussion In obese and overweight cats, activation of the FGF21 pathway can safely induce weight loss with trends to improve liver lipid content. This exploratory study is the first to evaluate the FGF21 pathway in cats. Manipulation of the FGF21 pathway has promising potential as a therapeutic for feline obesity. Further studies are needed to see if FGF21-pathway manipulation can be therapeutic for feline hepatic lipidosis.
Collapse
Affiliation(s)
- Emily J. Brinker
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States,Scott Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - T. Jordan Towns
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States,Scott Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Rie Watanabe
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Xiaolei Ma
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States,School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Adil Bashir
- Department of Electrical and Computer Engineering, Samuel Ginn College of Engineering, Auburn University, Auburn, AL, United States
| | - Robert C. Cole
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Xu Wang
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States,Scott Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States,Center for Advanced Science, Innovation and Commerce, Alabama Agricultural Experiment Station, Auburn, AL, United States,HudsonAlpha Institute for Biotechnology, Huntsville, AL, United States
| | - Emily C. Graff
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States,Scott Ritchey Research Center, College of Veterinary Medicine, Auburn University, Auburn, AL, United States,*Correspondence: Emily C. Graff ✉
| |
Collapse
|
20
|
Karlsson M, Indurain A, Romu T, Tunon P, Segelmark M, Uhlin F, Fernström A, Leinhard OD. Assessing Tissue Hydration Dynamics Based on Water/Fat Separated MRI. J Magn Reson Imaging 2023. [PMID: 36591977 DOI: 10.1002/jmri.28581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Optimal fluid status is an important issue in hemodialysis. Clinical evaluation of volume status and different diagnostic tools are used to determine hydration status in these patients. However, there is still no accurate method for this assessment. PURPOSE To propose and evaluate relative lean water signal (LWSrel ) as a water-fat MRI-based tissue hydration measurement. STUDY TYPE Prospective. POPULATION A total of 16 healthy subjects (56 ± 6 years, 0 male) and 11 dialysis patients (60.3 ± 12.3 years, 9 male; dialysis time per week 15 ± 3.5 hours, dialysis duration 31.4 ± 27.9 months). FIELD STRENGTH/SEQUENCE A 3 T; 3D spoiled gradient echo. ASSESSMENT LWSrel , a measurement of the water concentration of tissue, was estimated from fat-referenced MR images. Segmentations of total adipose tissue as well as thigh and calf muscles were used to measure LWSrel and tissue volumes. LWSrel was compared between healthy subjects and dialysis patients, the latter before and after dialysis. Bioimpedance-based body composition monitor over hydration (BCM OH) was also measured. STATISTICAL TESTS T-tests were used to compare differences between the healthy subjects and dialysis patients, as well as changes between before and after dialysis. Pearson correlation was calculated between MRI and non-MRI biomarkers. A P value <0.05 was considered statistically significant. RESULTS The LWSrel in adipose tissue was significantly higher in the dialysis cohort compared with the healthy cohort (246.8% ± 60.0% vs. 100.0% ± 10.8%) and decreased significantly after dialysis (246.8 ± 60.0% vs. 233.8 ± 63.4%). Thigh and calf muscle volumes also significantly decreased by 3.78% ± 1.73% and 2.02% ± 2.50% after dialysis. There was a significant correlation between changes in adipose tissue LWSrel and ultrafiltration volume (r = 87), as well as with BCM OH (r = 0.66). DATA CONCLUSION MRI-based LWSrel and tissue volume measurements are sensitive to tissue hydration changes occurring during dialysis. EVIDENCE LEVEL 2. TECHNICAL EFFICACY Stage 3.
Collapse
Affiliation(s)
| | - Ainhoa Indurain
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Department of Nephrology, Linköping University Hospital, Linköping, Sweden.,Department of Acute Internal Medicine and Geriatrics, Linköping University Hospital, Linköping, Sweden
| | - Thobias Romu
- AMRA Medical AB, Linköping, Sweden.,Department of Biomedical Engineering, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
| | | | - Mårten Segelmark
- Department of Clinical Sciences, Lund University, Lund, Sweden.,Division of Nephrology Lund, Skåne University Hospital, Lund, Sweden
| | - Fredrik Uhlin
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Department of Nephrology, Linköping University Hospital, Linköping, Sweden.,Department of Health Technologies, Tallinn University of Technology, Tallinn, Estonia
| | - Anders Fernström
- Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Department of Nephrology, Linköping University Hospital, Linköping, Sweden
| | - Olof Dahlqvist Leinhard
- AMRA Medical AB, Linköping, Sweden.,Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization, Linköping University, Linköping, Sweden
| |
Collapse
|
21
|
Yang JZ, Murphy R, Lu J. A fat fraction phantom for establishing new convolutional neural network to determine the pancreatic fat deposition. Heliyon 2022; 8:e12478. [PMID: 36593841 PMCID: PMC9803836 DOI: 10.1016/j.heliyon.2022.e12478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/20/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The determination of fat fraction based on Magnetic Resonance Imaging (MRI) requires extremely accurate data reconstruction for the assessment of pancreatic fat accumulation in medical diagnostics and biological research. In this study, the signal model of the oil and water emulsion was created with a 3.0 T field strength. We examined the quantification of the fat fraction from phantom and the intrapancreatic fat fraction using the techniques of magnetic resonance spectroscopy (MRS) and Iterative Decomposition with Echo Asymmetry and Least-Squares estimate (IDEAL) in magnetic resonance imaging (MRI). Additionally, we contrasted expert manual pancreatic fat assessment with MRS and IDEAL pancreatic fat fraction quantification. There was a strong connection between the true fat volume fraction and the fat fraction from IDEAL and MRS (R2 = 0.99 and 0.99, respectively). For both phantom and in vivo measurements, Pearson's correlation and linear regression analysis were used. The findings of the in vivo assessment revealed a variable correlation between the pancreatic fat fraction MRI readings. We also used MR-opsy for manual pancreatic fat fraction segmentation since it read pancreatic fat fractions more accurately than IDEAL and MRS, which aided in the development of machine learning's ability to assess pancreatic fat automatically.
Collapse
Affiliation(s)
- John Zhiyong Yang
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand
| | - Rinki Murphy
- School of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand,Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand,Auckland Diabetes Centre, Auckland District Health Board, Auckland, New Zealand,Whitiora Diabetes Department, Counties Manukau District Health Board, Auckland, New Zealand,Maurice Wilkins Centre for Biodiscovery, Auckland, New Zealand
| | - Jun Lu
- Auckland Bioengineering Institute, The University of Auckland, Auckland, New Zealand,Maurice Wilkins Centre for Biodiscovery, Auckland, New Zealand,College of Food Engineering and Nutrition Sciences, Shanxi Normal University, Xi'an, 710119, Shanxi Province, China,Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China,Corresponding author.
| |
Collapse
|
22
|
Li YW, Jiao Y, Chen N, Gao Q, Chen YK, Zhang YF, Wen QP, Zhang ZM. How to select the quantitative magnetic resonance technique for subjects with fatty liver: A systematic review. World J Clin Cases 2022; 10:8906-8921. [PMID: 36157636 PMCID: PMC9477046 DOI: 10.12998/wjcc.v10.i25.8906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/25/2022] [Accepted: 07/22/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Early quantitative assessment of liver fat content is essential for patients with fatty liver disease. Mounting evidence has shown that magnetic resonance (MR) technique has high accuracy in the quantitative analysis of fatty liver, and is suitable for monitoring the therapeutic effect on fatty liver. However, many packaging methods and postprocessing functions have puzzled radiologists in clinical applications. Therefore, selecting a quantitative MR imaging technique for patients with fatty liver disease remains challenging.
AIM To provide information for the proper selection of commonly used quantitative MR techniques to quantify fatty liver.
METHODS We completed a systematic literature review of quantitative MR techniques for detecting fatty liver, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses protocol. Studies were retrieved from PubMed, Embase, and Cochrane Library databases, and their quality was assessed using the Quality Assessment of Diagnostic Studies criteria. The Reference Citation Analysis database (https://www.referencecitationanalysis.com) was used to analyze citation of articles which were included in this review.
RESULTS Forty studies were included for spectroscopy, two-point Dixon imaging, and multiple-point Dixon imaging comparing liver biopsy to other imaging methods. The advantages and disadvantages of each of the three techniques and their clinical diagnostic performances were analyzed.
CONCLUSION The proton density fat fraction derived from multiple-point Dixon imaging is a noninvasive method for accurate quantitative measurement of hepatic fat content in the diagnosis and monitoring of fatty liver progression.
Collapse
Affiliation(s)
- You-Wei Li
- Department of Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Yang Jiao
- Department of Rehabilitation Psychology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Na Chen
- Department of Otorhinolaryngology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Qiang Gao
- Department of Gastroenterology and Hepatology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Yu-Kun Chen
- Department of Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Yuan-Fang Zhang
- Department of Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Qi-Ping Wen
- Department of Radiology, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, China
| | - Zong-Ming Zhang
- Department of General Surgery, Beijing Electric Power Hospital, State Grid Corporation of China, Capital Medical University, Beijing 100073, China
| |
Collapse
|
23
|
Ong YY, Pang WW, Huang JY, Aris IM, Sadananthan SA, Tint MT, Yuan WL, Chen LW, Chan YH, Karnani N, Velan SS, Fortier MV, Choo J, Ling LH, Shek L, Tan KH, Gluckman PD, Yap F, Chong YS, Godfrey KM, Chong MFF, Chan SY, Eriksson JG, Wlodek ME, Lee YS, Michael N. Breastfeeding may benefit cardiometabolic health of children exposed to increased gestational glycemia in utero. Eur J Nutr 2022; 61:2383-2395. [PMID: 35124728 PMCID: PMC7613060 DOI: 10.1007/s00394-022-02800-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/06/2022] [Indexed: 02/03/2023]
Abstract
PURPOSE There is altered breastmilk composition among mothers with gestational diabetes and conflicting evidence on whether breastfeeding is beneficial or detrimental to their offspring's cardiometabolic health. We aimed to investigate associations between breastfeeding and offspring's cardiometabolic health across the range of gestational glycemia. METHODS We included 827 naturally conceived, term singletons from a prospective mother-child cohort. We measured gestational (26-28 weeks) fasting plasma glucose (FPG) and 2-h plasma glucose (2 hPG) after an oral glucose tolerance test as continuous variables. Participants were classified into 2 breastfeeding categories (high/intermediate vs. low) according to their breastfeeding duration and exclusivity. Main outcome measures included magnetic resonance imaging (MRI)-measured abdominal fat, intramyocellular lipids (IMCL), and liver fat, quantitative magnetic resonance (QMR)-measured body fat mass, blood pressure, blood lipids, and insulin resistance at 6 years old (all continuous variables). We evaluated if gestational glycemia (FPG and 2 hPG) modified the association of breastfeeding with offspring outcomes after adjusting for confounders using a multiple linear regression model that included a 'gestational glycemia × breastfeeding' interaction term. RESULTS With increasing gestational FPG, high/intermediate (vs. low) breastfeeding was associated with lower levels of IMCL (p-interaction = 0.047), liver fat (p-interaction = 0.033), and triglycerides (p-interaction = 0.007), after adjusting for confounders. Specifically, at 2 standard deviations above the mean gestational FPG level, high/intermediate (vs. low) breastfeeding was linked to lower adjusted mean IMCL [0.39% of water signal (0.29, 0.50) vs. 0.54% of water signal (0.46, 0.62)], liver fat [0.39% by weight (0.20, 0.58) vs. 0.72% by weight (0.59, 0.85)], and triglycerides [0.62 mmol/L (0.51, 0.72) vs. 0.86 mmol/L (0.75, 0.97)]. 2 hPG did not significantly modify the association between breastfeeding and childhood cardiometabolic risk. CONCLUSION Our findings suggest breastfeeding may confer protection against adverse fat partitioning and higher triglyceride concentration among children exposed to increased glycemia in utero.
Collapse
Affiliation(s)
- Yi Ying Ong
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wei Wei Pang
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jonathan Y Huang
- Brenner Centre for Molecular Medicine, Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, 30 Medical Drive, Singapore, 117609, Singapore
| | - Izzuddin M Aris
- Division of Chronic Disease Research Across the Lifecourse, Department of Population Medicine, Harvard Medical School and Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Suresh Anand Sadananthan
- Brenner Centre for Molecular Medicine, Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, 30 Medical Drive, Singapore, 117609, Singapore
| | - Mya-Thway Tint
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Brenner Centre for Molecular Medicine, Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, 30 Medical Drive, Singapore, 117609, Singapore
| | - Wen Lun Yuan
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ling-Wei Chen
- Brenner Centre for Molecular Medicine, Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, 30 Medical Drive, Singapore, 117609, Singapore
| | - Yiong Huak Chan
- Biostatistics Unit, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Neerja Karnani
- Brenner Centre for Molecular Medicine, Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, 30 Medical Drive, Singapore, 117609, Singapore
| | - S Sendhil Velan
- Brenner Centre for Molecular Medicine, Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, 30 Medical Drive, Singapore, 117609, Singapore
- Singapore Bioimaging Consortium, Agency for Science Technology and Research, Singapore, Singapore
| | - Marielle V Fortier
- Brenner Centre for Molecular Medicine, Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, 30 Medical Drive, Singapore, 117609, Singapore
- Department of Diagnostic and Interventional Imaging, KK Women's and Children's Hospital, Singapore, Singapore
| | - Jonathan Choo
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore
| | - Lieng Hsi Ling
- Department of Cardiology, National University Heart Centre, Singapore, Singapore
| | - Lynette Shek
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Brenner Centre for Molecular Medicine, Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, 30 Medical Drive, Singapore, 117609, Singapore
- Division of Paediatric Endocrinology, Department of Paediatrics, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore, Singapore
| | - Kok Hian Tan
- Duke-NUS Medical School, Singapore, Singapore
- Department of Maternal Fetal Medicine, KK Women's and Children's Hospital, Singapore, Singapore
| | - Peter D Gluckman
- Brenner Centre for Molecular Medicine, Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, 30 Medical Drive, Singapore, 117609, Singapore
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Fabian Yap
- Department of Paediatrics, KK Women's and Children's Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Yap-Seng Chong
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Brenner Centre for Molecular Medicine, Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, 30 Medical Drive, Singapore, 117609, Singapore
| | - Keith M Godfrey
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
| | - Mary F-F Chong
- Brenner Centre for Molecular Medicine, Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, 30 Medical Drive, Singapore, 117609, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
| | - Shiao-Yng Chan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Brenner Centre for Molecular Medicine, Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, 30 Medical Drive, Singapore, 117609, Singapore
| | - Johan G Eriksson
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Brenner Centre for Molecular Medicine, Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, 30 Medical Drive, Singapore, 117609, Singapore
- Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Mary E Wlodek
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Brenner Centre for Molecular Medicine, Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, 30 Medical Drive, Singapore, 117609, Singapore
- Department of Physiology, University of Melbourne, Melbourne, Australia
| | - Yung Seng Lee
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Brenner Centre for Molecular Medicine, Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, 30 Medical Drive, Singapore, 117609, Singapore.
- Division of Paediatric Endocrinology, Department of Paediatrics, Khoo Teck Puat-National University Children's Medical Institute, National University Hospital, National University Health System, Singapore, Singapore.
| | - Navin Michael
- Brenner Centre for Molecular Medicine, Singapore Institute for Clinical Science, Agency for Science, Technology, and Research, 30 Medical Drive, Singapore, 117609, Singapore.
- , 1E Kent Ridge Road, NUHS Tower Block Level 12, Singapore, 119228, Singapore.
| |
Collapse
|
24
|
Theel W, Boxma-de Klerk BM, Dirksmeier-Harinck F, van Rossum EFC, Kanhai DA, Apers J, van Dalen BM, de Knegt RJ, Holleboom AG, Tushuizen ME, Grobbee DE, Wiebolt J, Castro Cabezas M. Evaluation of nonalcoholic fatty liver disease (NAFLD) in severe obesity using noninvasive tests and imaging techniques. Obes Rev 2022; 23:e13481. [PMID: 35692179 DOI: 10.1111/obr.13481] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 05/25/2022] [Accepted: 05/26/2022] [Indexed: 12/15/2022]
Abstract
The prevalence of nonalcoholic fatty liver disease (NAFLD) and the more severe and inflammatory type, nonalcoholic steatohepatitis (NASH), is increasing rapidly. Especially in high-risk patients, that is those with obesity, metabolic syndrome, and type 2 diabetes mellitus, the prevalence of NAFLD can be as high as 80% while NASH may be present in 20% of these subjects. With the worldwide increase of obesity, it is most likely that these numbers will rise. Since advanced stages of NAFLD and NASH are strongly associated with morbidity and mortality-in particular, cardiovascular disease, liver cirrhosis, and hepatocellular carcinoma-it is of great importance to identify subjects at risk. A great variety of noninvasive tests has been published to diagnose NAFLD and NASH, especially using blood- and imaging-based tests. Liver biopsy remains the gold standard for NAFLD/NASH. This review aims to summarize the different mechanisms leading to NASH and liver fibrosis, the different noninvasive liver tests to diagnose and evaluate patients with severe obesity.
Collapse
Affiliation(s)
- Willy Theel
- Department of Internal Medicine, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands.,Obesity Center CGG, Rotterdam, The Netherlands
| | - Bianca M Boxma-de Klerk
- Department of Statistics and Education, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands
| | - Femme Dirksmeier-Harinck
- Department of Gastroenterology and Hepatology, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands
| | - Elisabeth F C van Rossum
- Obesity Center CGG, Rotterdam, The Netherlands.,Department of Internal Medicine, Division of Endocrinology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Danny A Kanhai
- Department of Pediatrics, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands
| | - Jan Apers
- Department of Bariatric Surgery, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands
| | - Bas M van Dalen
- Department of Cardiology, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands
| | - Robert J de Knegt
- Department of Gastroenterology and Hepatology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | | | - Maarten E Tushuizen
- Department of Gastroenterology and Hepatology, Leiden UMC, Leiden, The Netherlands
| | - Diederick E Grobbee
- Julius Centre for Health Science and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands.,Julius Clinical, Zeist, The Netherlands
| | - Janneke Wiebolt
- Department of Internal Medicine, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands.,Obesity Center CGG, Rotterdam, The Netherlands
| | - Manuel Castro Cabezas
- Department of Internal Medicine, Franciscus Gasthuis & Vlietland, Rotterdam, The Netherlands.,Department of Internal Medicine, Division of Endocrinology, Erasmus University Medical Center, Rotterdam, The Netherlands.,Julius Clinical, Zeist, The Netherlands
| |
Collapse
|
25
|
Zhou X, Lin X, Chen J, Pu J, Wu W, Wu Z, Lin H, Huang K, Zhang L, Dai Y, Ni Y, Dong G, Fu J. Clinical spectrum transition and prediction model of nonalcoholic fatty liver disease in children with obesity. Front Endocrinol (Lausanne) 2022; 13:986841. [PMID: 36120457 PMCID: PMC9471666 DOI: 10.3389/fendo.2022.986841] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/08/2022] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE This study aims to outline the clinical characteristics of pediatric NAFLD, as well as establish and validate a prediction model for the disease. MATERIALS AND METHODS The retrospective study enrolled 3216 children with obesity from January 2003 to May 2021. They were divided into obese without NAFLD, nonalcoholic fatty liver (NAFL), and nonalcoholic steatohepatitis (NASH) groups. Clinical data were retrieved, and gender and chronologic characteristics were compared between groups. Data from the training set (3036) were assessed using univariate analyses and stepwise multivariate logistic regression, by which a nomogram was developed to estimate the probability of NAFLD. Another 180 cases received additional liver hydrogen proton magnetic resonance spectroscopy (1H-MRS) as a validation set. RESULTS The prevalence of NAFLD was higher in males than in females and has increased over the last 19 years. In total, 1915 cases were NAFLD, and the peak onset age was 10-12 years old. Hyperuricemia ranked first in childhood NAFLD comorbidities, followed by dyslipidemia, hypertension, metabolic syndrome (MetS), and dysglycemia. The AUROC of the eight-parameter nomogram, including waist-to-height ratio (WHtR), hip circumference (HC), triglyceride glucose-waist circumference (TyG-WC), alanine aminotransferase (ALT), high-density lipoprotein cholesterol (HDL-C), apolipoprotein A1(ApoA1), insulin sensitivity index [ISI (composite)], and gender, for predicting NAFLD was 0.913 (sensitivity 80.70%, specificity 90.10%). Calibration curves demonstrated a great calibration ability of the model. CONCLUSION AND RELEVANCE NAFLD is the most common complication in children with obesity. The nomogram based on anthropometric and laboratory indicators performed well in predicting NAFLD. This can be used as a quick screening tool to assess pediatric NAFLD in children with obesity.
Collapse
|
26
|
Seifeldein GS, Hassan EA, Imam HM, Makboul R, Idriss NK, Gaber MA, Elkady RM. Quantitative MDCT and MRI assessment of hepatic steatosis in genotype 4 chronic hepatitis C patients with fibrosis. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2021. [DOI: 10.1186/s43055-021-00590-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Hepatic steatosis has been shown to worsen the course of liver disease in chronic hepatitis C (CHC) patients, and it may reduce the efficacy of antiviral therapy and accelerate disease progression. In this cross-sectional study, we aimed to evaluate the role of multidetector computed tomography and magnetic resonance imaging (MRI) in the quantitative assessment and grading of hepatic steatosis to evaluate the association between hepatic steatosis and fibrosis in Egyptian genotype 4-CHC (G4-CHC) patients.
Results
Histopathological hepatic steatosis was found in 70.3% of 155 patients. No correlation was found between the CT ratio and pathological hepatic steatosis. Proton density fat fraction, T1-fat fraction, and fat percentage correlated with histological steatosis grading (r = 0.953, p < 0.001; r = 0.380, p = 0.027 and r = 0.384, p = 0.025, respectively). An agreement between steatosis grading by histology and 1H-MRS was found in 74.2% of patients. Compared to other MRI modalities, proton density fat fraction had the highest area under the receiver operating characteristic curve (AUC), with 0.910, 0.931, and 0.975 for mild, moderate, and severe steatosis, respectively. The cutoff with the best ability to predict steatosis was > 4.95 for a proton density fat fraction (AUC = 0.958) with 95.8% sensitivity, 90% specificity, 78.5% positive predictive value, and 96.1% negative predictive value.
Conclusion
1H-MRS had good diagnostic performance in predicting hepatic steatosis in G4-CHC patients, and hence, it may offer a useful noninvasive quantitative modality for grading steatosis with clinical applicability, especially in those where a liver biopsy cannot be done.
Collapse
|
27
|
Alhinai A, Patel K, Fonseca VA, Sebastiani G. Non-invasive diagnosis of nonalcoholic fatty liver disease in patients with type 2 diabetes. J Diabetes Complications 2021; 35:107978. [PMID: 34183247 DOI: 10.1016/j.jdiacomp.2021.107978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/19/2021] [Accepted: 06/12/2021] [Indexed: 02/07/2023]
Abstract
Liver disease has emerged as a significant cause of death in people with type 2 diabetes (T2D). Due to a common underlying pathogenic mechanism, namely insulin resistance, T2D represents the main risk factor for nonalcoholic fatty liver disease (NAFLD), characterized by a buildup of fat in the liver. Globally, NAFLD is the most common liver disease, affecting a quarter of the general adult population. The development of nonalcoholic steatohepatitis (NASH) signifies an increased risk of liver fibrosis progression that can result in cirrhosis, hepatocellular carcinoma (HCC), and death. Liver fibrosis progression and development of cirrhosis is mostly asymptomatic until complications from decompensated end-stage liver disease arise. Traditionally, liver biopsy is used to diagnose NASH and stage fibrosis, however, it is invasive and costly. Non-invasive diagnostic alternatives include serum biomarkers and imaging techniques. Early identification of advanced liver fibrosis is pivotal to prompt initiation of targeted surveillance, including screening for HCC, as well as providing options for current and investigational therapeutic interventions to reduce fibrosis progression. This review gives an update on non-invasive diagnostic tools for NAFLD and liver fibrosis in the specific context of T2D, providing clinicians a pragmatic diagnostic approach to this frequent comorbidity in diabetes medicine.
Collapse
Affiliation(s)
- Alshaima Alhinai
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Keyur Patel
- Division of Gastroenterology and Hepatology, University Health Network Toronto, Toronto General Hospital, Toronto, ON, Canada
| | - Vivian A Fonseca
- Department of Medicine, Division of Endocrinology and Metabolism, School of Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Giada Sebastiani
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada; Division of Gastroenterology and Hepatology, McGill University Health Centre, Montreal, QC, Canada.
| |
Collapse
|
28
|
Athithan L, Gulsin GS, House MJ, Pang W, Brady EM, Wormleighton J, Parke KS, Graham-Brown M, St. Pierre TG, Levelt E, McCann GP. A comparison of liver fat fraction measurement on MRI at 3T and 1.5T. PLoS One 2021; 16:e0252928. [PMID: 34255778 PMCID: PMC8277031 DOI: 10.1371/journal.pone.0252928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 05/26/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Volumetric liver fat fraction (VLFF) measurements were made using the HepaFat-Scan® technique at 1.5T and 3T to determine the agreement between the measurements obtained at the two fields. METHODS Sixty patients with type 2 diabetes (67% male, mean age 50.92 ± 6.56yrs) and thirty healthy volunteers (50% male, mean age 48.63 ± 6.32yrs) were scanned on 1.5T Aera and 3T Skyra (Siemens, Erlangen, Germany) MRI scanners on the same day using the HepaFat-Scan® gradient echo protocol with modification of echo times for 3T (TEs 2.38, 4.76, 7.14 ms at 1.5T and 1.2, 2.4, 3.6 ms at 3T). The 3T analyses were performed independently of the 1.5T analyses by a different analyst, blinded from the 1.5T results. Data were analysed for agreement and bias using Bland-Altman methods and intraclass correlation coefficients (ICC). A second cohort of 17 participants underwent interstudy repeatability assessment of VLFF measured by HepaFat-Scan® at 3T. RESULTS A small, but statistically significant mean bias of 0.48% was observed between 3T and 1.5T with 95% limits of agreement -2.2% to 3.2% VLFF. The ICC for agreement between field strengths was 0.983 (95% CI 0.972-0.989). In the repeatability cohort studied at 3T the repeatability coefficient was 4.2%. The ICC for agreement was 0.971 (95% CI 0.921-0.989). CONCLUSION There is minimal bias and excellent agreement between the measures of VLFF using the HepaFat-Scan® at 1.5 and 3T. The test retest repeatability coefficient at 3T is comparable to the 95% limits of agreement between 1.5T and 3T suggesting that measurements can be made interchangeably between field strengths.
Collapse
Affiliation(s)
- Lavanya Athithan
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Cardiovascular Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Gaurav S. Gulsin
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Cardiovascular Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Michael J. House
- Department of Physics, The University of Western Australia, Crawley, Western Australia, Australia
- Resonance Health Ltd, Burswood, Western Australia, Australia
| | - Wenjie Pang
- Resonance Health Ltd, Burswood, Western Australia, Australia
| | - Emer M. Brady
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Cardiovascular Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Joanne Wormleighton
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Cardiovascular Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Kelly S. Parke
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Cardiovascular Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Matthew Graham-Brown
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Cardiovascular Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Tim G. St. Pierre
- Department of Physics, The University of Western Australia, Crawley, Western Australia, Australia
| | - Eylem Levelt
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Cardiovascular Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| | - Gerry P. McCann
- Department of Cardiovascular Sciences, University of Leicester and NIHR Leicester Cardiovascular Biomedical Research Centre, Glenfield Hospital, Leicester, United Kingdom
| |
Collapse
|
29
|
Shim JR, Ko HJ, Lee TB, Choi BH, Yang K, Kim TU, Ryu H, Ryu JH. Usefulness of Preoperative Magnetic Resonance Spectroscopy to Improve the Safety of a Living Liver Donor. EXP CLIN TRANSPLANT 2021; 19:244-249. [PMID: 33719947 DOI: 10.6002/ect.2020.0329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
OBJECTIVES The steatosis of graft liver is an important factor in liver transplant that determines the graft function in the recipient and the recovery of the remnant liver in the living donor. We analyzed the data of living donors from our center to evaluate whether magnetic resonance imaging and magnetic resonance spectroscopy can replace liver biopsy. MATERIALS AND METHODS From May 2010 to May 2019, data from a total of 239 living donors was collected. There were 84 patients who had no magnetic resonance imaging or magnetic resonance spectroscopy data, and they were excluded. The result of preoperative liver biopsy was compared with preoperative magnetic resonance imaging and magnetic resonance spectroscopy data. The steatosis was defined by the degree of macrosteatosis. RESULTS The magnetic resonance imaging of the fat fraction was a good parameter to predict fatty changes between normal and fatty liver groups (3.09 ± 3.38% for normal 7.48 ± 4.07% for fatty liver; P < .001). The magnetic resonance spectroscopy was also a good parameter to predict fatty changes between normal and fatty liver groups (2.09 ± 1.43% for normal and 6.89 ± 2.68% for fatty liver; P < .001). Linear regression showed that pathology results were significantly correlated with magnetic resonance spectroscopy (P < .001, R2 = 0.604) but not with magnetic resonance imaging (P < .001, R2 = 0.227). CONCLUSIONS Magnetic resonance spectroscopy has several benefits for quantifying hepatic steatosis during a living donor liver transplant evaluation, including no radiation exposure, and a noninvasive procedure. Moreover, preoperative magnetic resonance spectroscopy can determine an anatomic variation of the bile duct, which helps improve the safety of the living donor. However, more clinical data and further studies are needed to ensure that preoperative magnetic resonance spectroscopy is essential.
Collapse
Affiliation(s)
- Jae Ryong Shim
- From the Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Pusan National University, Yangsan Hospital, Yangsan, Korea
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Rothe M, Wessel C, Cames S, Szendroedi J, Burkart V, Hwang JH, Roden M. In vivo absolute quantification of hepatic γ-ATP concentration in mice using 31 P MRS at 11.7 T. NMR IN BIOMEDICINE 2021; 34:e4422. [PMID: 33025629 DOI: 10.1002/nbm.4422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Measurement of ATP concentrations and synthesis in humans indicated abnormal hepatic energy metabolism in obesity, non-alcoholic fatty liver disease (NAFLD) and Type 2 diabetes. Further mechanistic studies on energy metabolism require the detailed phenotyping of specific mouse models. Thus, this study aimed to establish and evaluate a robust and fast single voxel 31 P MRS method to quantify hepatic γ-ATP concentrations at 11.7 T in three mouse models with different insulin sensitivities and liver fat contents (72-week-old C57BL/6 control mice, 72-week-old insulin resistant sterol regulatory-element binding protein-1c overexpressing (SREBP-1c+ ) mice and 10-12-week-old prediabetic non-obese diabetic (NOD) mice). Absolute quantification was performed by employing an external reference and a matching replacement ATP phantom with 3D image selected in vivo spectroscopy 31 P MRS. This single voxel 31 P MRS method non-invasively quantified hepatic γ-ATP within 17 min and the repeatability tests provided a coefficient of variation of 7.8 ± 1.1%. The mean hepatic γ-ATP concentrations were markedly lower in SREBP-1c+ mice (1.14 ± 0.10 mM) than in C57BL/6 mice (2.15 ± 0.13 mM; p < 0.0002) and NOD mice (1.78 ± 0.13 mM; p < 0.006, one-way ANOVA test). In conclusion, this method allows us to rapidly and precisely measure hepatic γ-ATP concentrations, and thereby to non-invasively detect abnormal hepatic energy metabolism in mice with different degrees of insulin resistance and NAFLD. Thus, this 31 P MRS will also be useful for future mechanistic as well as therapeutic translational studies in other murine models.
Collapse
Affiliation(s)
- Maik Rothe
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Institute for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Corinna Wessel
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Institute for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Sandra Cames
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Institute for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Julia Szendroedi
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Institute for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Volker Burkart
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Institute for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Jong-Hee Hwang
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Institute for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center at Heinrich Heine University, Leibniz Institute for Diabetes Research, Düsseldorf, Germany
- German Center for Diabetes Research, München-Neuherberg, Germany
- Division of Endocrinology and Diabetology, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
31
|
Luukkonen PK, Qadri S, Lehtimäki TE, Juuti A, Sammalkorpi H, Penttilä AK, Hakkarainen A, Orho-Melander M, Arola J, Yki-Järvinen H. The PNPLA3-I148M Variant Confers an Antiatherogenic Lipid Profile in Insulin-resistant Patients. J Clin Endocrinol Metab 2021; 106:e300-e315. [PMID: 33064150 DOI: 10.1210/clinem/dgaa729] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/14/2020] [Indexed: 02/08/2023]
Abstract
CONTEXT The I148M (rs738409-G) variant in PNPLA3 increases liver fat content but may be protective against cardiovascular disease. Insulin resistance (IR) amplifies the effect of PNPLA3-I148M on liver fat. OBJECTIVE To study whether PNPLA3-I148M confers an antihyperlipidemic effect in insulin-resistant patients. DESIGN Cross-sectional study comparing the impact of PNPLA3-I148M on plasma lipids and lipoproteins in 2 cohorts, both divided into groups based on rs738409-G allele carrier status and median HOMA-IR. SETTING Tertiary referral center. PATIENTS A total of 298 obese patients who underwent a liver biopsy during bariatric surgery (bariatric cohort: age 49 ± 9 years, body mass index [BMI] 43.2 ± 6.8 kg/m2), and 345 less obese volunteers in whom liver fat was measured by proton magnetic resonance spectroscopy (nonbariatric cohort: age 45 ± 14 years, BMI 29.7 ± 5.7 kg/m2). MAIN OUTCOME MEASURES Nuclear magnetic resonance profiling of plasma lipids, lipoprotein particle subclasses and their composition. RESULTS In both cohorts, individuals carrying the PNPLA3-I148M variant had significantly higher liver fat content than noncarriers. In insulin-resistant and homozygous carriers, PNPLA3-I148M exerted a distinct antihyperlipidemic effect with decreased very-low-density lipoprotein (VLDL) and low-density lipoprotein (LDL) particles and their constituents, and increased high-density lipoprotein particles and their constituents, compared with noncarriers. VLDL particles were smaller and LDL particles larger in PNPLA3-I148M carriers. These changes were geometrically opposite to those due to IR. PNPLA3-I148M did not have a measurable effect in patients with lower IR, and its effect was smaller albeit still significant in the less obese than in the obese cohort. CONCLUSIONS PNPLA3-I148M confers an antiatherogenic plasma lipid profile particularly in insulin-resistant individuals.
Collapse
Affiliation(s)
- Panu K Luukkonen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Sami Qadri
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| | - Tiina E Lehtimäki
- HUS Medical Imaging Center, Helsinki University Hospital, Helsinki, Finland
| | - Anne Juuti
- Department of Gastrointestinal Surgery, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - Henna Sammalkorpi
- Department of Gastrointestinal Surgery, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - Anne K Penttilä
- Department of Gastrointestinal Surgery, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - Antti Hakkarainen
- HUS Medical Imaging Center, Helsinki University Hospital, Helsinki, Finland
| | | | - Johanna Arola
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Hannele Yki-Järvinen
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Helsinki, Finland
| |
Collapse
|
32
|
Labyed Y, Milkowski A. Novel Method for Ultrasound-Derived Fat Fraction Using an Integrated Phantom. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2020; 39:2427-2438. [PMID: 32525261 DOI: 10.1002/jum.15364] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVES The purpose of this study was to demonstrate the clinical feasibility of an integrated reference phantom method for quantitative ultrasound by creating an ultrasound-derived fat fraction (UDFF) tool. This tool was evaluated with respect to its diagnostic performance as a biomarker for assessing histologic hepatic steatosis and its agreement with the magnetic resonance imaging (MRI) proton density fat fraction (PDFF). METHODS Adults (n = 101) with known or suspected nonalcoholic fatty liver disease consented to participate in this prospective cross-sectional study. All patients underwent MRI-PDFF and ultrasound scans, whereas 90 underwent liver biopsy. A linear least-squares analysis used the attenuation coefficient and backscatter coefficient to create the UDFF model for predicting MRI-PDFF. RESULTS The area under the receiver operating characteristic curve values were 0.94 (95% confidence interval [CI], 0.85-0.98) for histologic steatosis grade 0 (n = 6) versus 1 or higher (n = 84), 0.88 (95% CI, 0.8-0.94) for grade 1 or lower (n = 45) versus 2 or higher (n = 45), and 0.83 (95% CI, 0.73-0.9) for grade 2 or lower (n = 78) versus 3 (n = 12). The Pearson correlation coefficient between UDFF and PDFF was ρ = 0.87 with 95% limits of agreement of ±8.5%. Additionally, the diagnosis of steatosis, defined as MRI-PDFF higher than 5% and 10%, had area under the receiver operating characteristic curve values of 0.97 (95% CI, 0.93-0.99) and 0.95 (95% CI, 0.9-0.98), respectively. The body mass index was not correlated with either UDFF or PDFF. CONCLUSIONS An on-system, integrated UDFF tool provides a simple, noninvasive, accessible, low-cost, and commercially viable clinical tool for quantifying the hepatic fat fraction with a high degree of agreement with histologic biopsy or the MRI-PDFF biomarker.
Collapse
Affiliation(s)
- Yassin Labyed
- Ultrasound Division, Siemens Healthineers, Issaquah, Washington, USA
| | - Andy Milkowski
- Ultrasound Division, Siemens Healthineers, Issaquah, Washington, USA
| |
Collapse
|
33
|
Leao Filho H, de Oliveira CV, Horvat N. Other types of diffuse liver disease: is there a way to do it? Abdom Radiol (NY) 2020; 45:3425-3443. [PMID: 32306241 DOI: 10.1007/s00261-020-02530-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
There are a variety of less common diffuse liver diseases that can be asymptomatic or cause severe liver dysfunction. For the majority of them, the association of clinical, laboratory, and imaging findings are needed to narrow the differential diagnosis. In this article, we will review and describe the rarer diffuse liver diseases including drug-related liver disease, inflammatory and infectious diseases, and deposition disorders such as amyloidosis, glycogen storage disease, Wilson's disease, and alpha-1 antitrypsin deficiency. Abdominal radiologists should be familiar with the imaging features of different types of diffuse liver diseases to help the multidisciplinary team involved in the treatment of these patients. The data related to some of these conditions are scarce and sometimes experimental, but we want to demonstrate to the reader the value of imaging techniques in their analysis and introduce the potential of new imaging methods.
Collapse
|
34
|
Mojtahed A, Gee MS, Yokoo T. Pearls and Pitfalls of Metabolic Liver Magnetic Resonance Imaging in the Pediatric Population. Semin Ultrasound CT MR 2020; 41:451-461. [DOI: 10.1053/j.sult.2020.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
35
|
Parmar KL, O'Reilly D, Valle JW, Braun M, Naish JH, Williams SR, Lloyd WK, Malcomson L, Cresswell K, Bamford C, Renehan AG. Prospective study of change in liver function and fat in patients with colorectal liver metastases undergoing preoperative chemotherapy: protocol for the CLiFF Study. BMJ Open 2020; 10:e027630. [PMID: 32967864 PMCID: PMC7513559 DOI: 10.1136/bmjopen-2018-027630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Preoperative chemotherapy in patients undergoing resection for colorectal liver metastases (CLM) improves oncological outcomes. However, chemotherapy-associated liver injury (occurring in two patterns: vascular and fat deposition) is a real clinical concern prior to hepatic resection. After major liver resection, regeneration of the residual liver is a prerequisite for recovery and avoidance of liver failure, but this regenerative capacity may be hindered by chemotherapy. Thus, there is a need to predict for this serious complication. Over the past two decades, several tests and derived indices have been developed, which have failed to achieve clinical utility, mainly as they were indirect measurements of liver function. Here, we will use a novel test of liver function (the liver maximum capacity (LiMAx) test), and measure liver fat using MRI. METHODS AND ANALYSIS This prospective study will assess changes in liver function longitudinally, measured by the LiMAx test, and liver fat, measured by advanced MRI using both MR spectroscopy and the modified Dixon method, in up to 35 patients undergoing preoperative chemotherapy for CLM. The primary outcomes will be the changes in liver function and fat compared with baseline prechemotherapy measurements. Secondary outcome measures include: routinely measured liver function blood tests, anthropometric measurements, postoperative histology and digital quantification of fat, postoperative complications and mortality and quality of life. ETHICS AND DISSEMINATION The study was approved by a National Health Service Research Ethics Committee and registered with the Health Research Authority. Dissemination will be via international and national conferences and the National Institute for Health Research network. Manuscripts will be published. TRIAL REGISTRATION NUMBER This study is registered online at www.clinicaltrials.gov (registration number NCT03562234).
Collapse
Affiliation(s)
- Kat L Parmar
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Cancer Research Centre, Manchester, UK
| | - Derek O'Reilly
- Hepatobiliary Surgery, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
| | - Juan W Valle
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Oncology, Christie NHS Foundation Trust, Manchester, UK
| | - Michael Braun
- Oncology, Christie NHS Foundation Trust, Manchester, UK
| | - Jo H Naish
- Institute of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Steve R Williams
- Centre for Imaging Sciences, University of Manchester, Manchester, UK
| | - William K Lloyd
- Centre for Imaging Sciences, University of Manchester, Manchester, UK
| | - Lee Malcomson
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Surgery, Christie NHS Foundation Trust, Manchester, UK
| | - Katharine Cresswell
- Public Programmes Team, Research and Innovation Division, Manchester University NHS Foundation Trust, Manchester, UK
| | - Colin Bamford
- Cancer Patient and Public Advisory Group, NIHR Manchester Biomedical Research Centre, Manchester, UK
| | - Andrew G Renehan
- Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Surgery, Christie NHS Foundation Trust, Manchester, UK
| |
Collapse
|
36
|
Usefulness of Different Imaging Modalities in Evaluation of Patients with Non-Alcoholic Fatty Liver Disease. Biomedicines 2020; 8:biomedicines8090298. [PMID: 32839409 PMCID: PMC7556032 DOI: 10.3390/biomedicines8090298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 12/14/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are becoming some of the major health problems in well-developed countries, together with the increasing prevalence of obesity, metabolic syndrome, and all of their systemic complications. As the future prognoses are even more disturbing and point toward further increase in population affected with NAFLD/NASH, there is an urgent need for widely available and reliable diagnostic methods. Consensus on a non-invasive, accurate diagnostic modality for the use in ongoing clinical trials is also required, particularly considering a current lack of any registered drug for the treatment of NAFLD/NASH. The aim of this narrative review was to present current information on methods used to assess liver steatosis and fibrosis. There are several imaging modalities for the assessment of hepatic steatosis ranging from simple density analysis by computed tomography or conventional B-mode ultrasound to magnetic resonance spectroscopy (MRS), magnetic resonance imaging proton density fat fraction (MRI-PDFF) or controlled attenuation parameter (CAP). Fibrosis stage can be assessed by magnetic resonance elastography (MRE) or different ultrasound-based techniques: transient elastography (TE), shear-wave elastography (SWE) and acoustic radiation force impulse (ARFI). Although all of these methods have been validated against liver biopsy as the reference standard and provided good accuracy, the MRS and MRI-PDFF currently outperform other methods in terms of diagnosis of steatosis, and MRE in terms of evaluation of fibrosis.
Collapse
|
37
|
Jacobsen MC, Thrower SL. Multi-energy computed tomography and material quantification: Current barriers and opportunities for advancement. Med Phys 2020; 47:3752-3771. [PMID: 32453879 PMCID: PMC8495770 DOI: 10.1002/mp.14241] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 04/20/2020] [Accepted: 05/07/2020] [Indexed: 12/21/2022] Open
Abstract
Computed tomography (CT) technology has rapidly evolved since its introduction in the 1970s. It is a highly important diagnostic tool for clinicians as demonstrated by the significant increase in utilization over several decades. However, much of the effort to develop and advance CT applications has been focused on improving visual sensitivity and reducing radiation dose. In comparison to these areas, improvements in quantitative CT have lagged behind. While this could be a consequence of the technological limitations of conventional CT, advanced dual-energy CT (DECT) and photon-counting detector CT (PCD-CT) offer new opportunities for quantitation. Routine use of DECT is becoming more widely available and PCD-CT is rapidly developing. This review covers efforts to address an unmet need for improved quantitative imaging to better characterize disease, identify biomarkers, and evaluate therapeutic response, with an emphasis on multi-energy CT applications. The review will primarily discuss applications that have utilized quantitative metrics using both conventional and DECT, such as bone mineral density measurement, evaluation of renal lesions, and diagnosis of fatty liver disease. Other topics that will be discussed include efforts to improve quantitative CT volumetry and radiomics. Finally, we will address the use of quantitative CT to enhance image-guided techniques for surgery, radiotherapy and interventions and provide unique opportunities for development of new contrast agents.
Collapse
Affiliation(s)
- Megan C. Jacobsen
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sara L. Thrower
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
38
|
Xavier A, Arteaga de Castro C, Andia ME, Luijten PR, Klomp DW, Fillmer A, Prompers JJ. Metabolite cycled liver 1 H MRS on a 7 T parallel transmit system. NMR IN BIOMEDICINE 2020; 33:e4343. [PMID: 32515151 PMCID: PMC7379278 DOI: 10.1002/nbm.4343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 05/03/2023]
Abstract
INTRODUCTION Single-voxel 1 H MRS in body applications often suffers from respiratory and other motion induced phase and frequency shifts, which lead to incoherent averaging and hence to suboptimal results. METHODS Here we show the application of metabolite cycling (MC) for liver STEAM-localized 1 H MRS on a 7 T parallel transmit system, using eight transmit-receive fractionated dipole antennas with 16 additional, integrated receive loops. MC-STEAM measurements were made in six healthy, lean subjects and compared with STEAM measurements using VAPOR water suppression. Measurements were performed during free breathing and during synchronized breathing, for which the subjects did breathe in between the MRS acquisitions. Both intra-session repeatability and inter-session reproducibility of liver lipid quantification with MC-STEAM and VAPOR-STEAM were determined. RESULTS The preserved water signal in MC-STEAM allowed for robust phase and frequency correction of individual acquisitions before averaging, which resulted in in vivo liver spectra that were of equal quality when measurements were made with free breathing or synchronized breathing. Intra-session repeatability and inter-session reproducibility of liver lipid quantification were better for MC-STEAM than for VAPOR-STEAM. This may also be explained by the more robust phase and frequency correction of the individual MC-STEAM acquisitions as compared with the VAPOR-STEAM acquisitions, for which the low-signal-to-noise ratio lipid signals had to be used for the corrections. CONCLUSION Non-water-suppressed MC-STEAM on a 7 T system with parallel transmit is a promising approach for 1 H MRS applications in the body that are affected by motion, such as in the liver, and yields better repeatability and reproducibility compared with water-suppressed measurements.
Collapse
Affiliation(s)
- Aline Xavier
- Department of Radiology, Imaging DivisionUniversity Medical Center UtrechtUtrechtThe Netherlands
- Biomedical Imaging Center, Pontificia Universidad Católica de ChileSantiagoChile
- Millennium Nucleus for Cardiovascular Magnetic ResonanceSantiagoChile
| | | | - Marcelo E. Andia
- Biomedical Imaging Center, Pontificia Universidad Católica de ChileSantiagoChile
- Millennium Nucleus for Cardiovascular Magnetic ResonanceSantiagoChile
| | - Peter R. Luijten
- Department of Radiology, Imaging DivisionUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Dennis W. Klomp
- Department of Radiology, Imaging DivisionUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Ariane Fillmer
- Department of Radiology, Imaging DivisionUniversity Medical Center UtrechtUtrechtThe Netherlands
- Physikalisch‐Technische Bundesanstalt (PTB)BerlinGermany
| | - Jeanine J. Prompers
- Department of Radiology, Imaging DivisionUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
39
|
Pirinen E, Auranen M, Khan NA, Brilhante V, Urho N, Pessia A, Hakkarainen A, Kuula J, Heinonen U, Schmidt MS, Haimilahti K, Piirilä P, Lundbom N, Taskinen MR, Brenner C, Velagapudi V, Pietiläinen KH, Suomalainen A. Niacin Cures Systemic NAD + Deficiency and Improves Muscle Performance in Adult-Onset Mitochondrial Myopathy. Cell Metab 2020; 31:1078-1090.e5. [PMID: 32386566 DOI: 10.1016/j.cmet.2020.04.008] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/24/2020] [Accepted: 04/03/2020] [Indexed: 12/21/2022]
Abstract
NAD+ is a redox-active metabolite, the depletion of which has been proposed to promote aging and degenerative diseases in rodents. However, whether NAD+ depletion occurs in patients with degenerative disorders and whether NAD+ repletion improves their symptoms has remained open. Here, we report systemic NAD+ deficiency in adult-onset mitochondrial myopathy patients. We administered an increasing dose of NAD+-booster niacin, a vitamin B3 form (to 750-1,000 mg/day; clinicaltrials.govNCT03973203) for patients and their matched controls for 10 or 4 months, respectively. Blood NAD+ increased in all subjects, up to 8-fold, and muscle NAD+ of patients reached the level of their controls. Some patients showed anemia tendency, while muscle strength and mitochondrial biogenesis increased in all subjects. In patients, muscle metabolome shifted toward controls and liver fat decreased even 50%. Our evidence indicates that blood analysis is useful in identifying NAD+ deficiency and points niacin to be an efficient NAD+ booster for treating mitochondrial myopathy.
Collapse
Affiliation(s)
- Eija Pirinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland.
| | - Mari Auranen
- Research Program of Stem Cells and Metabolism, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland; Department of Neurosciences, Helsinki University Hospital, Helsinki, Finland
| | - Nahid A Khan
- Research Program of Stem Cells and Metabolism, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| | - Virginia Brilhante
- Research Program of Stem Cells and Metabolism, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| | - Niina Urho
- Department of Neurosciences, Helsinki University Hospital, Helsinki, Finland
| | - Alberto Pessia
- Metabolomics Unit, Institute for Molecular Medicine Finland (FIMM), Helsinki 00290, Finland
| | - Antti Hakkarainen
- Department of Radiology, Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo 12200, Finland
| | - Juho Kuula
- Department of Radiology, Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ulla Heinonen
- Department of Neurosciences, Helsinki University Hospital, Helsinki, Finland
| | - Mark S Schmidt
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Kimmo Haimilahti
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| | - Päivi Piirilä
- Unit of Clinical Physiology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Nina Lundbom
- Department of Radiology, Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Marja-Riitta Taskinen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland
| | - Charles Brenner
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Vidya Velagapudi
- Metabolomics Unit, Institute for Molecular Medicine Finland (FIMM), Helsinki 00290, Finland
| | - Kirsi H Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland; Obesity Centre, Abdominal Centre, Endocrinology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Anu Suomalainen
- Research Program of Stem Cells and Metabolism, Faculty of Medicine, University of Helsinki, Helsinki 00290, Finland; HUSlab, Helsinki University Hospital, Helsinki 00290, Finland; Neuroscience Center, HiLife, University of Helsinki, Helsinki 00290, Finland.
| |
Collapse
|
40
|
Luukkonen PK, Dufour S, Lyu K, Zhang XM, Hakkarainen A, Lehtimäki TE, Cline GW, Petersen KF, Shulman GI, Yki-Järvinen H. Effect of a ketogenic diet on hepatic steatosis and hepatic mitochondrial metabolism in nonalcoholic fatty liver disease. Proc Natl Acad Sci U S A 2020; 117:7347-7354. [PMID: 32179679 PMCID: PMC7132133 DOI: 10.1073/pnas.1922344117] [Citation(s) in RCA: 150] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Weight loss by ketogenic diet (KD) has gained popularity in management of nonalcoholic fatty liver disease (NAFLD). KD rapidly reverses NAFLD and insulin resistance despite increasing circulating nonesterified fatty acids (NEFA), the main substrate for synthesis of intrahepatic triglycerides (IHTG). To explore the underlying mechanism, we quantified hepatic mitochondrial fluxes and their regulators in humans by using positional isotopomer NMR tracer analysis. Ten overweight/obese subjects received stable isotope infusions of: [D7]glucose, [13C4]β-hydroxybutyrate and [3-13C]lactate before and after a 6-d KD. IHTG was determined by proton magnetic resonance spectroscopy (1H-MRS). The KD diet decreased IHTG by 31% in the face of a 3% decrease in body weight and decreased hepatic insulin resistance (-58%) despite an increase in NEFA concentrations (+35%). These changes were attributed to increased net hydrolysis of IHTG and partitioning of the resulting fatty acids toward ketogenesis (+232%) due to reductions in serum insulin concentrations (-53%) and hepatic citrate synthase flux (-38%), respectively. The former was attributed to decreased hepatic insulin resistance and the latter to increased hepatic mitochondrial redox state (+167%) and decreased plasma leptin (-45%) and triiodothyronine (-21%) concentrations. These data demonstrate heretofore undescribed adaptations underlying the reversal of NAFLD by KD: That is, markedly altered hepatic mitochondrial fluxes and redox state to promote ketogenesis rather than synthesis of IHTG.
Collapse
Affiliation(s)
- Panu K Luukkonen
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520
- Minerva Foundation Institute for Medical Research, Helsinki 00290, Finland
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki 00290, Finland
| | - Sylvie Dufour
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520
- Yale Diabetes Research Center, Yale School of Medicine, New Haven, CT 06520
| | - Kun Lyu
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06520
| | - Xian-Man Zhang
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520
- Yale Diabetes Research Center, Yale School of Medicine, New Haven, CT 06520
| | - Antti Hakkarainen
- Department of Radiology, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki 00290, Finland
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, 00076 Espoo, Finland
| | - Tiina E Lehtimäki
- Department of Radiology, HUS Medical Imaging Center, University of Helsinki and Helsinki University Hospital, Helsinki 00290, Finland
| | - Gary W Cline
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520
- Yale Diabetes Research Center, Yale School of Medicine, New Haven, CT 06520
| | - Kitt Falk Petersen
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520
- Yale Diabetes Research Center, Yale School of Medicine, New Haven, CT 06520
| | - Gerald I Shulman
- Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06520;
- Yale Diabetes Research Center, Yale School of Medicine, New Haven, CT 06520
- Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT 06520
| | - Hannele Yki-Järvinen
- Minerva Foundation Institute for Medical Research, Helsinki 00290, Finland;
- Department of Medicine, University of Helsinki and Helsinki University Hospital, Helsinki 00290, Finland
| |
Collapse
|
41
|
Igarashi H, Shigiyama F, Wakui N, Nagai H, Shibuya K, Shiraga N, Hirose T, Kumashiro N. Whole hepatic lipid volume quantification and color mapping by multi-slice and multi-point magnetic resonance imaging. Hepatol Res 2019; 49:1374-1385. [PMID: 31313870 DOI: 10.1111/hepr.13408] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/04/2019] [Accepted: 07/11/2019] [Indexed: 01/08/2023]
Abstract
AIM Current approaches for hepatic steatosis assess only a small point within the liver and might cause inaccuracy for longitudinal observation. We aimed to establish a reliable non-invasive method for whole hepatic lipid content evaluation. METHODS A total of 52 patients with hepatic steatosis underwent liver biopsy. Hepatic lipid content was assessed by Dixon in-phase/out-of-phase magnetic resonance imaging and proton magnetic resonance spectroscopy. Using multi-slice and multi-point magnetic resonance imaging, we calculated the lipid intensity of every voxel throughout the liver and showed the color-mapped lipid distributions. This new analysis could also quantify the whole hepatic lipid and whole liver volumes absolutely. The diagnostic performance of hepatic lipid content between the new analysis and proton magnetic resonance spectroscopy methods was compared by receiver operating characteristic curve analysis referring to the steatosis scores of the liver biopsy. RESULTS Areas under the receiver operating characteristic for the diagnosis of steatosis scores ≥1, ≥2, and ≥3 using magnetic resonance imaging and proton magnetic resonance spectroscopy were 0.86 (95% confidence interval [CI] 0.70-1.00) and 0.98 (95% CI 0.93-1.00), 0.94 (95% CI 0.87-1.00) and 0.93 (95% CI 0.86-1.00), and 0.95 (95% CI 0.89-1.00) and 0.97 (95% CI 0.93-1.00), respectively, showing comparable diagnostic accuracies. However, color mapping showed some inconsistencies between the methods. CONCLUSIONS We described a non-invasive and repeatable evaluation method of whole hepatic lipid accumulation with absolute quantification and color mapping. Hepatic steatosis was accurately evaluated regardless of heterogeneous lipid accumulation. The whole hepatic lean volume, reflecting the hepatic parenchymal condition, can also be determined by this method.
Collapse
Affiliation(s)
- Hiroyuki Igarashi
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Fumika Shigiyama
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Noritaka Wakui
- Division of Gastroenterology and Hepatology, Department of Medicine, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Hidenari Nagai
- Division of Gastroenterology and Hepatology, Department of Medicine, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Kazutoshi Shibuya
- Department of Surgical Pathology, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Nobuyuki Shiraga
- Department of Radiology, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Takahisa Hirose
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Toho University Graduate School of Medicine, Tokyo, Japan
| | - Naoki Kumashiro
- Division of Diabetes, Metabolism, and Endocrinology, Department of Medicine, Toho University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
42
|
Liu S, Wu P, Liu H, Hu Z, Guo H. Referenceless multi‐channel signal combination: A demonstration in chemical‐shift‐encoded water‐fat imaging. Magn Reson Med 2019; 83:1810-1824. [DOI: 10.1002/mrm.28028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 09/09/2019] [Accepted: 09/12/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Simin Liu
- Center for Biomedical Imaging Research Department of Biomedical Engineering School of Medicine Tsinghua University Beijing China
| | - Peng Wu
- Center for Biomedical Imaging Research Department of Biomedical Engineering School of Medicine Tsinghua University Beijing China
- Philips Healthcare Suzhou Co Ltd Suzhou
| | - Haining Liu
- Department of Radiology University of Washington Seattle Washington
| | - Zhangxuan Hu
- Center for Biomedical Imaging Research Department of Biomedical Engineering School of Medicine Tsinghua University Beijing China
| | - Hua Guo
- Center for Biomedical Imaging Research Department of Biomedical Engineering School of Medicine Tsinghua University Beijing China
| |
Collapse
|
43
|
Flisiak-Jackiewicz M, Bobrus-Chociej A, Wasilewska N, Tarasow E, Wojtkowska M, Lebensztejn DM. Can hepatokines be regarded as novel non-invasive serum biomarkers of intrahepatic lipid content in obese children? Adv Med Sci 2019; 64:280-284. [PMID: 30921653 DOI: 10.1016/j.advms.2019.02.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 10/14/2018] [Accepted: 02/28/2019] [Indexed: 12/24/2022]
Abstract
PURPOSE Hepatokines are proteins produced by the liver and involved in regulating glucose and lipid metabolism. However, their role as the biomarkers of intrahepatic lipid content is not clear. The aim of the study was to evaluate the serum concentration of selected hepatokines: fibroblast growth factor-21 (FGF-21), selenoprotein P (SELENOP) and sex hormone-binding globulin (SHBG) in obese children. PATIENTS AND METHODS The cross-sectional study included 86 obese children with suspected liver disease. Nonalcoholic fatty liver disease (NAFLD) was diagnosed in children with liver steatosis in ultrasound with elevated alanine aminotransferase (ALT) serum activity and excluded other liver diseases. The total intrahepatic lipid content (TILC) was assessed by magnetic resonance proton spectroscopy (1H-MRS). RESULTS The concentration of FGF-21 and SELENOP was significantly higher and SHBG significantly lower in children with NAFLD compared to controls. Only FGF-21 level was significantly higher in NAFLD children than in obese patients without NAFLD. The significant positive correlation of FGF-21 with ALT, gamma glutamyltransferase (GGT), triglycerides, homeostatic model assessment-insulin resistance (HOMA-IR), the degree of liver steatosis in ultrasound and TILC in 1H-MRS were found. The ability of serum FGF-21 to diagnose severe liver steatosis was significant. CONCLUSIONS FGF-21 can be considered as a suitable biomarker in predicting TILC and fatty liver in obese children.
Collapse
Affiliation(s)
- Marta Flisiak-Jackiewicz
- Department of Pediatrics, Gastroenterology, Hepatology, Nutrition and Allergology, Medical University of Bialystok, Bialystok, Poland.
| | - Anna Bobrus-Chociej
- Department of Pediatrics, Gastroenterology, Hepatology, Nutrition and Allergology, Medical University of Bialystok, Bialystok, Poland
| | - Natalia Wasilewska
- Department of Pediatrics, Gastroenterology, Hepatology, Nutrition and Allergology, Medical University of Bialystok, Bialystok, Poland
| | - Eugeniusz Tarasow
- Department of Radiology, Medical University of Bialystok, Bialystok, Poland
| | | | - Dariusz Marek Lebensztejn
- Department of Pediatrics, Gastroenterology, Hepatology, Nutrition and Allergology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
44
|
Houghton D, Zalewski P, Hallsworth K, Cassidy S, Thoma C, Avery L, Slomko J, Hardy T, Burt AD, Tiniakos D, Hollingsworth KG, Taylor R, Day CP, Masson S, McPherson S, Anstee QM, Newton JL, Trenell MI. The degree of hepatic steatosis associates with impaired cardiac and autonomic function. J Hepatol 2019; 70:1203-1213. [PMID: 30769007 DOI: 10.1016/j.jhep.2019.01.035] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 12/05/2018] [Accepted: 01/22/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND & AIMS Cardiovascular disease is the principle cause of death in patients with elevated liver fat unrelated to alcohol consumption, more so than liver-related morbidity and mortality. The aim of this study was to evaluate the relationship between liver fat and cardiac and autonomic function, as well as to assess how impairment in cardiac and autonomic function is influenced by metabolic risk factors. METHODS Cardiovascular and autonomic function were assessed in 96 sedentary individuals: i) non-alcoholic fatty liver disease (NAFLD) (n = 46, hepatic steatosis >5% by magnetic resonance spectroscopy), ii) Hepatic steatosis and alcohol (dual aetiology fatty liver disease [DAFLD]) (n = 16, hepatic steatosis >5%, consuming >20 g/day of alcohol) and iii) CONTROL (n = 34, no cardiac, liver or metabolic disorders, <20 g/day of alcohol). RESULTS Patients with NAFLD and DAFLD had significantly impaired cardiac and autonomic function when compared with controls. Diastolic variability and systolic variability (LF/HF-sBP [n/1]; 2.3 (1.7) and 2.3 (1.5) vs. 3.4 (1.5), p <0.01) were impaired in patients with NAFLD and DAFLD when compared to controls, with DAFLD individuals showing a decrease in diastolic variability relative to NAFLD patients. Hepatic steatosis and fasting glucose were negatively correlated with stroke volume index. Fibrosis stage was significantly negatively associated with mean blood pressure (r = -0.47, p = 0.02), diastolic variability (r = -0.58, p ≤0.01) and systolic variability (r = -0.42, p = 0.04). Hepatic steatosis was independently associated with cardiac function (p ≤0.01); TNF-α (p ≤0.05) and CK-18 (p ≤0.05) were independently associated with autonomic function. CONCLUSION Cardiac and autonomic impairments appear to be dependent on level of liver fat, metabolic dysfunction, inflammation and fibrosis staging, and to a lesser extent alcohol intake. Interventions should be sought to moderate the excess cardiovascular risk in patients with NAFLD or DAFLD. LAY SUMMARY Increased levels of fat in the liver impair the ability of the cardiovascular system to work properly. The amount of fat in the liver, metabolic control, inflammation and alcohol are all linked to the degree that the cardiovascular system is affected.
Collapse
Affiliation(s)
- David Houghton
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Paweł Zalewski
- Department of Hygiene, Epidemiology and Ergonomics, Nicolaus Copernicus University in Torun, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Faculty of Health Sciences, M. Sklodowskiej-Curie 9, 85-094 Bydgoszcz, Poland
| | - Kate Hallsworth
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Sophie Cassidy
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Christian Thoma
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Leah Avery
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Joanna Slomko
- Department of Hygiene, Epidemiology and Ergonomics, Nicolaus Copernicus University in Torun, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Faculty of Health Sciences, M. Sklodowskiej-Curie 9, 85-094 Bydgoszcz, Poland
| | - Timothy Hardy
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK; Liver Unit, Newcastle Upon Tyne Hospitals NHS Trust, Freeman Hospital, Newcastle upon Tyne, UK
| | - Alastair D Burt
- Faculty of Health Sciences, The University of Adelaide, Level 2, Barr Smith South, North Terrace, Adelaide, SA 5005, Australia
| | - Dina Tiniakos
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK; Dept of Pathology, Aretaieion Hospital, National & Kapodistrian University of Athens, Athens 11528, Greece
| | | | - Roy Taylor
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Christopher P Day
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK; Liver Unit, Newcastle Upon Tyne Hospitals NHS Trust, Freeman Hospital, Newcastle upon Tyne, UK
| | - Steven Masson
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK; Liver Unit, Newcastle Upon Tyne Hospitals NHS Trust, Freeman Hospital, Newcastle upon Tyne, UK
| | - Stuart McPherson
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK; Liver Unit, Newcastle Upon Tyne Hospitals NHS Trust, Freeman Hospital, Newcastle upon Tyne, UK
| | - Quentin M Anstee
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK; Liver Unit, Newcastle Upon Tyne Hospitals NHS Trust, Freeman Hospital, Newcastle upon Tyne, UK
| | - Julia L Newton
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK; Liver Unit, Newcastle Upon Tyne Hospitals NHS Trust, Freeman Hospital, Newcastle upon Tyne, UK
| | - Michael I Trenell
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
45
|
Dusilová T, Kovář J, Drobný M, Šedivý P, Dezortová M, Poledne R, Zemánková K, Hájek M. Different acute effects of fructose and glucose administration on hepatic fat content. Am J Clin Nutr 2019; 109:1519-1526. [PMID: 31136656 DOI: 10.1093/ajcn/nqy386] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 12/19/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Diets rich in fat and added sugars (especially fructose) play an important role in the pathogenesis of nonalcoholic liver disease (NAFLD), but there is only limited information on the acute effects of these nutrients on hepatic fat content (HFC). OBJECTIVES We therefore explored how the administration of high-fat load, glucose, fructose, and combinations thereof affects HFC measured in vivo using proton magnetic resonance spectroscopy (1H-MRS) in healthy subjects. METHODS Ten healthy nonsteatotic male volunteers (age 38.5 ± 9.6 y, body mass index [BMI, kg/m2] 26.9 ± 2.7) underwent, in random order, 6 experiments, each lasting 8 h, that included: 1) fasting; 2) a high-fat load (150 g of fat [dairy cream] at time 0); 3) glucose (3 doses of 50 g at 0, 2, and 4 h); 4) a high-fat load with glucose; 5) fructose (3 doses of 50 g at 0, 2, and 4 h); and 6) a high-fat load with fructose. HFC was measured using 1H-MRS prior to test meal administration (before time 0) and at 3 and 6 h. Plasma concentrations of triglycerides, nonesterified fatty acids, glucose, and insulin were monitored throughout each experiment. RESULTS HFC increased to 119 ± 19% (P < 0.05) and 117 ± 17% (P < 0.01) of baseline when subjects consumed a high-fat load alone or a high-fat load with fructose, respectively, but was not affected when glucose was coadministered with a high-fat load. HFC was not affected when subjects had fasted or had consumed repeated doses of fructose. When subjects were administered 3 doses of glucose, HFC dropped to 85 ± 13% (P < 0.05) of baseline. CONCLUSIONS Our results demonstrate that fructose and glucose have a different immediate impact on HFC in humans in vivo. Clinical trial registry: The study was registered at clinicaltrials.gov and obtained clinicaltrials.gov identifier: NCT03680248.
Collapse
Affiliation(s)
- Tereza Dusilová
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic.,Department of Physiology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Kovář
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Miloslav Drobný
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Petr Šedivý
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Monika Dezortová
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Rudolf Poledne
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Kateřina Zemánková
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| | - Milan Hájek
- Institute for Clinical and Experimental Medicine, Prague, Czech Republic
| |
Collapse
|
46
|
Mouillot T, Beylot M, Drai J, Hillon P, Gelas P, Lauverjat M, Brondel L, Chambrier C. Effect of bile acid supplementation on endogenous lipid synthesis in patients with short bowel syndrome: A pilot study. Clin Nutr 2019; 39:928-934. [PMID: 31000340 DOI: 10.1016/j.clnu.2019.03.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 01/18/2019] [Accepted: 03/26/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND & AIMS Short bowel syndrome patients (SBS) receiving parenteral nutrition (PN) often have dyslipidaemia and can develop intestinal failure-associated liver disease (IFALD). These patients demonstrate increased cholesterol synthesis and hepatic lipogenesis. These lipid disturbances may be due to a decreased concentration of the bile acid pool or malabsorption. The aim of this pilot study was to evaluate the effect of bile acid administration on lipid synthesis in patients with SBS. METHODS The 24 h fractional synthesis rate (FSR) of cholesterol and triglycerides was measured by the isotopic method (deuterated water) before and after 4 months of ursodeoxycholic acid (UDCA) treatment (20 mg/kg/day). Five short bowel patients (age: 53.4 ± 19.2 years) who had normal liver function and lipid plasmatic profiles received 1920 ± 300 ml of PN for 151 ± 74 days (mean PN energy intake was 27.0 ± 6.0 kcal/kg body weight, composed with 3.87 ± 1.38 g/kg of carbohydrate, 0.72 ± 0.25 g/kg of fat and 1.10 ± 0.23 g/kg of amino acids). Plasma metabolites, liver enzymes, 7-α-OH-cholesterol and steatosis levels were also evaluated before and after treatment. Student's t-tests were performed, and the results were expressed in means (±SD). RESULTS After treatment, decreases in the absolute values of cholesterol synthesis (0.31 ± 0.12 mmol L-1 to 0.24 ± 0.11 mmol L-1; p < 0.05), FSR of cholesterol (31.6 ± 4.7% to 26.4 ± 4.7%; p = 0.06) and FSR of triglycerides (12.8 ± 5.8% to 9.2 ± 5.5%; p < 0.01) were observed. Cholesterol and alanine aminotransferase concentrations also decreased (ALT) (p < 0.05). The absolute values of triglyceride synthesis and triglyceride concentrations remained unchanged. CONCLUSIONS In SBS patients, UDCA decreases the hepatic synthesis of triglycerides and cholesterol. These results suggest that UDCA could prevent the onset of the IFALD.
Collapse
Affiliation(s)
- Thomas Mouillot
- Hepatology and Gastroenterology Department, University Hospital F. Mitterrand, F-21000, Dijon, France; Centre for Taste and Feeding Behaviour, CNRS, INRA, University of Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Michel Beylot
- Neurocardiology Unit - EA 4612, Institute of Pharmaceutical and Biological Sciences, University Claude Bernard Lyon 1, Lyon, France
| | - Jocelyne Drai
- Biochemistry and Molecular Biology Unit, Hospices Civil de Lyon, F-69495, Pierre Benite Cedex, France
| | - Patrick Hillon
- Hepatology and Gastroenterology Department, University Hospital F. Mitterrand, F-21000, Dijon, France
| | - Patrick Gelas
- Nutrition Intensive Care Unit, Hospices Civil de Lyon, F-69495, Pierre Benite Cedex, France
| | - Madeleine Lauverjat
- Nutrition Intensive Care Unit, Hospices Civil de Lyon, F-69495, Pierre Benite Cedex, France
| | - Laurent Brondel
- Hepatology and Gastroenterology Department, University Hospital F. Mitterrand, F-21000, Dijon, France; Centre for Taste and Feeding Behaviour, CNRS, INRA, University of Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Cécile Chambrier
- Nutrition Intensive Care Unit, Hospices Civil de Lyon, F-69495, Pierre Benite Cedex, France.
| |
Collapse
|
47
|
Engel KM, Sampels S, Dzyuba B, Podhorec P, Policar T, Dannenberger D, Schiller J. Swimming at different temperatures: The lipid composition of sperm from three freshwater fish species determined by mass spectrometry and nuclear magnetic resonance spectroscopy. Chem Phys Lipids 2019; 221:65-72. [PMID: 30922837 DOI: 10.1016/j.chemphyslip.2019.03.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 03/22/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022]
Abstract
The spawning behavior of different fish species is as diverse as their habitats. A lot of factors influence the (phospho)lipid composition of fish sperm, including the water temperature at which spawning takes place. Therefore, this study aimed on the elucidation of the phospholipid composition of sperm from three fish species from different orders (common carp - Cyprinus carpio, northern pike - Esox lucius and burbot - Lota lota) with different spawning temperatures by nuclear magnetic resonance spectroscopy (NMR), matrix-assisted laser desorption/ionization mass spectrometry and thin-layer chromatography (TLC) coupled to electrospray ionization mass spectrometry as well as gas chromatography. Next to the lipid composition that was different for carp, northern pike and burbot, regarding the moieties of the different (phospho)lipid classes (particularly sphingomyelin and acidic phospholipids) and the saturation degree of the fatty acyl residues, there were differences observed depending on the analytical method that was used. The results from TLC and NMR investigations differed regarding the amounts of the different phospholipids. Reasons for these discrepancies are discussed in detail.
Collapse
Affiliation(s)
- Kathrin M Engel
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany.
| | - Sabine Sampels
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, PO Box 7015, 75007 Uppsala, Sweden
| | - Borys Dzyuba
- Faculty of Fisheries and Protection of Waters, University of South Bohemia, South Bohemian Research Centre for Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Peter Podhorec
- Faculty of Fisheries and Protection of Waters, University of South Bohemia, South Bohemian Research Centre for Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Tomáš Policar
- Faculty of Fisheries and Protection of Waters, University of South Bohemia, South Bohemian Research Centre for Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Dirk Dannenberger
- Leibniz Institute for Farm Animal Biology, Institute of Muscle Biology and Growth, Lipid Metabolism and Muscular Adaptation Workgroup, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | - Jürgen Schiller
- Institute for Medical Physics and Biophysics, Medical Faculty, University of Leipzig, Härtelstr. 16-18, 04107 Leipzig, Germany
| |
Collapse
|
48
|
Karlsson M, Ekstedt M, Dahlström N, Forsgren MF, Ignatova S, Norén B, Dahlqvist Leinhard O, Kechagias S, Lundberg P. Liver R2* is affected by both iron and fat: A dual biopsy-validated study of chronic liver disease. J Magn Reson Imaging 2019; 50:325-333. [PMID: 30637926 DOI: 10.1002/jmri.26601] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/21/2018] [Accepted: 11/21/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Liver iron content (LIC) in chronic liver disease (CLD) is currently determined by performing an invasive liver biopsy. MRI using R2* relaxometry is a noninvasive alternative for estimating LIC. Fat accumulation in the liver, or proton density fat fraction (PDFF), may be a possible confounder of R2* measurements. Previous studies of the effect of PDFF on R2* have not used quantitative LIC measurement. PURPOSE To assess the associations between R2*, LIC, PDFF, and liver histology in patients with suspected CLD. STUDY TYPE Prospective. POPULATION Eighty-one patients with suspected CLD. FIELD STRENGTH/SEQUENCE 1.5 T. Multiecho turbo field echo to quantify R2*. PRESS MRS to quantify PDFF. ASSESSMENT Each patient underwent an MR examination, followed by two needle biopsies immediately following the MR examination. The first biopsy was used for conventional histological assessment of LIC, whereas the second biopsy was used to quantitatively measure LIC using mass spectrometry. R2* was correlated with both LIC and PDFF. A correction for the influence of fat on R2* was calculated. STATISTICAL TESTS Pearson correlation, linear regression, and area under the receiver operating curve. RESULTS There was a positive linear correlation between R2* and PDFF (R = 0.69), after removing data from patients with elevated iron levels, as defined by LIC. R2*, corrected for PDFF, was the best method for identifying patients with elevated iron levels, with a correlation of R = 0.87 and a sensitivity and specificity of 87.5% and 98.6%, respectively. DATA CONCLUSION PDFF increases R2*. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:325-333.
Collapse
Affiliation(s)
- Markus Karlsson
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Mattias Ekstedt
- Department of Gastroenterology and Hepatology, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Nils Dahlström
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,Department of Radiology, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Mikael F Forsgren
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,Wolfram MathCore AB and Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Simone Ignatova
- Department of Clinical Pathology and Clinical Genetics, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Bengt Norén
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Olof Dahlqvist Leinhard
- Department of Medical and Health Sciences, Linköping University, Linköping, Sweden.,Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
| | - Stergios Kechagias
- Department of Gastroenterology and Hepatology, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| | - Peter Lundberg
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden.,Department of Radiation Physics, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
49
|
Xavier A, Zacconi F, Gainza C, Cabrera D, Arrese M, Uribe S, Sing-Long C, Andia ME. Intrahepatic fatty acids composition as a biomarker of NAFLD progression from steatosis to NASH by using1H-MRS. RSC Adv 2019; 9:42132-42139. [PMID: 35542850 PMCID: PMC9076551 DOI: 10.1039/c9ra08914d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/10/2019] [Indexed: 12/30/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the world and it is becoming one of the most frequent cause of liver transplantation. Unfortunately, the only available method that can reliably determine the stage of this disease is liver biopsy, however, it is invasive and risky for patients. The purpose of this study is to investigate changes in the intracellular composition of the liver fatty acids during the progression of the NAFLD in a mouse model fed with Western diet, with the aim of identify non-invasive biomarkers of NAFLD progression based in 1H-MRS. Our results showed that the intracellular liver fatty acid composition changes as NAFLD progresses from simple steatosis to steatohepatitis (NASH). Using principal component analysis with a clustering method, it was possible to identify the three most relevant clinical groups: normal, steatosis and NASH by using 1H-MRS. These results showed a good agreement with the results obtained by GC-MS and histology. Our results suggest that it would be possible to detect the progression of simple steatosis to NASH using 1H-MRS, that has the potential to be used routinely in clinical application for screening high-risk patients. Our results suggest that it would be possible to detect the progression of simple steatosis to NASH using 1H-MRS.![]()
Collapse
Affiliation(s)
- Aline Xavier
- Biomedical Imaging Center
- Pontificia Universidad Católica de Chile
- Chile
- Millennium Nucleus for Cardiovascular Magnetic Resonance
- Chile
| | - Flavia Zacconi
- Faculty of Chemistry and Pharmacy
- Pontificia Universidad Católica de Chile
- Chile
- Research Center for Nanotechnology and Advanced Materials CIEN-UC
- Pontificia Univesidad Católica de Chile
| | - Constanza Gainza
- Institute for Mathematical and Computational Engineering
- Pontificia Universidad Católica de Chile
- Chile
| | - Daniel Cabrera
- Gastroenterology Department
- School of Medicine
- Pontificia Universidad Católica de Chile
- Chile
- Department of Chemical and Biological Sciences
| | - Marco Arrese
- Gastroenterology Department
- School of Medicine
- Pontificia Universidad Católica de Chile
- Chile
| | - Sergio Uribe
- Biomedical Imaging Center
- Pontificia Universidad Católica de Chile
- Chile
- Millennium Nucleus for Cardiovascular Magnetic Resonance
- Chile
| | - Carlos Sing-Long
- Biomedical Imaging Center
- Pontificia Universidad Católica de Chile
- Chile
- Millennium Nucleus for Cardiovascular Magnetic Resonance
- Chile
| | - Marcelo E. Andia
- Biomedical Imaging Center
- Pontificia Universidad Católica de Chile
- Chile
- Millennium Nucleus for Cardiovascular Magnetic Resonance
- Chile
| |
Collapse
|
50
|
Rout G, Kedia S, Nayak B, Yadav R, Das P, Acharya SK, Gunjan D, Singh V, Mahanta M, Gupta S, Aggarwal S, Shalimar. Controlled Attenuation Parameter for Assessment of Hepatic Steatosis in Indian Patients. J Clin Exp Hepatol 2019; 9:13-21. [PMID: 30765934 PMCID: PMC6363949 DOI: 10.1016/j.jceh.2018.02.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/20/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND/AIMS The gold standard method for measurement of hepatic steatosis is liver histology. Controlled Attenuation Parameter (CAP) can measure hepatic steatosis non-invasively. We aimed to assess the accuracy of CAP for detection of hepatic steatosis. METHODS A total of 462 patients (May 2012-January 2017)-89 non-alcoholic fatty liver disease, 182 chronic hepatitis B, 88 chronic hepatitis C and 103 patients with other etiologies who underwent simultaneous liver biopsy and CAP estimation using Transient Elastography (TE) were included. Steatosis was graded as S0: steatosis in 0-5% of hepatocytes, S1: 6-33%, S2: 34-66% and S3: 67-100%. Receiver Operating Characteristic (ROC) curves were plotted to evaluate the accuracy of CAP in detecting hepatic steatosis. Predictors of CAP were assessed by multivariate linear regression model. RESULTS The mean age ± SD was 33.8 ± 11.6 years; 296 (64.1%) were males. On liver histology, steatosis grades S0, S1, S2 and S3 were seen in 331 (71.6%), 74 (16.0%), 39 (8.4%) and 18 (3.9%), respectively. The median CAP (IQR) values for S0, S1, S2, and S3 steatosis were 206 (176-252) dB/m, 295 (257-331) dB/m, 320 (296-356) dB/m, and 349 (306-363) dB/m, respectively. For estimation of ≥S1, ≥S2, and ≥S3 using CAP, AUROC were 0.879, 0.893, and 0.883, respectively. In multivariate analysis, only BMI (OR 1.18; CI, 1.11-1.26, P < 0.001) and grade of hepatic steatosis (grade 1, OR, 3.94; 95% CI, 1.58-9.84, P = 0.003; grade 2, OR 42.04; 95% CI, 4.97-355.31, P = 0.001 and grade 3, OR 35.83; 95% CI 4.31-297.61, P = 0.001) independently predicted CAP. CONCLUSIONS CAP detects hepatic steatosis with good accuracy in Indian patients with various etiologies.
Collapse
Key Words
- ALT, Alanine Aminotransferase
- AST, Aspartate Aminotransferase
- AUROC, Area Under Receiver Operating Characteristics Curves
- BMI, Body Mass Index
- CAP, Controlled Attenuation Parameter
- CHB, Chronic Hepatitis B
- CHC, Chronic Hepatitis C
- IQR, Interquartile Range
- LSM, Liver Stiffness Measurement
- NAFLD
- NAFLD, Non-Alcoholic Fatty Liver Disease
- SD, Standard Deviation
- fibrosis
- hepatitis B virus
- hepatitis C virus
- liver biopsy
Collapse
Affiliation(s)
- Gyanranjan Rout
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Saurabh Kedia
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Baibaswata Nayak
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Rajni Yadav
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Prasenjit Das
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Subrat K. Acharya
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Deepak Gunjan
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Vishwajeet Singh
- Department of Biostatistics, All India Institute of Medical Sciences, New Delhi, India
| | - Mousumi Mahanta
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Swatantra Gupta
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India
| | - Sandeep Aggarwal
- Department of Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Shalimar
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, India,Address for correspondence: Shalimar, Department of Gastroenterology, All India Institute of Medical Sciences, Room No 127, 1st Floor, Human Nutrition Unit, New Delhi 110029, India. Tel.: +91 11 26546643.
| |
Collapse
|